A Brief Introduction to SAS Operators and Functions

(commands=functions.sas)
This chapter introduces SAS arithmetic, comparison, and Boolean operators, and SAS mathematical and statistical functions and provides some basic rules for using them. SAS operators and functions are used as part of SAS programming statements, including if…then statements and assignment statements used in the data step to create new variables and carry out other tasks, and where statements used in proc steps to select cases. Examples using operators and functions appear throughout this workbook. You can get more information on SAS operators and functions in the SAS online documentation and in the Language Reference.

SAS Arithmetic Operators:
The symbols for SAS arithmetic operators are given below, along their definitions and examples of how they could be used in an expression to set up a new variable.

Symbol

Definition

Example
**

Exponentiation

y = x**2;

z = x**y;

*

Multiplication

r = x*y;

/

Division

r = x/y;

+

Addition

s = x+y;

-

Subtraction

t = x-y;
Note that an asterisk (*) must always be used to indicate multiplication e.g. y=2*x, not y=2x, or 2(x). If one of the arguments for an arithmetic operator is missing, the result is missing.

SAS Comparison Operators:
SAS comparison operators can be written as symbols or as their mnemonic equivalents, as shown below:

	Symbol
	Mnemonic
	Definition

	<
	Lt
	Less than

	<=
	Le
	Less than or equal to

	>
	Gt
	Greater than

	>=
	Ge
	Greater than or equal to

	=
	Eq
	Equal to

	~=
	Ne
	Not equal to.

If the symbol for a comparison operator is used, it is not necessary to have blank spaces around it, but if the mnemonic is used, it must be set off by spaces, as illustrated in the examples below:

if x<y then group=1;

is equivalent to:

if x < y then group = 1;
This statement can also be written using mnemonic equivalents:

if x lt y then group eq 1;
The mnemonics used for comparison operators are not case-sensitive and may be given in upper case, lower case, or a mixture.

Logical (Boolean) Operators:

Logical or Boolean operators are used as links between parts of a SAS programming statement. The table below lists the logical operators and their mnemonic equivalents.

Symbol

Mnemonic Equivalent
&

AND

|

OR

~

NOT*

*Note that the symbol for NOT depends on the operating system you are using; it is probably safer to use the mnemonic equivalent, rather than the symbol for NOT.

An example of a SAS statement using a logical operator is shown below:

if age < 25 and sex = "F" then youngfem = 1;
Parentheses can be used in SAS expressions to group parts of the expression and control the order in which operations are processed. Expressions within parentheses are evaluated before anything outside parentheses. Be sure that each left parenthesis is followed by a matching right parenthesis.

if (age < 25) and (sex = "F") then youngfem = 1;

Order of Precedence of Operations:

The order of precedence of the arithmetic operators and Boolean operators is shown below. Items in a higher row are evaluated before those in a lower row, and items in the same row are evaluated generally from left to right.

**

* and /

+ and -

< < + = ~= >= > ~< ~>

& (AND) | (OR)

SAS Functions:

A SAS function performs a computation or system manipulation on argument(s) and returns a value. For example, the log function returns the natural log of an argument. The argument(s) to a function are contained in parentheses immediately following the function name; argument(s) may be either variable names, constants such as numbers, or SAS expressions (e.g. other SAS functions or mathematical expressions). If a function requires more than one argument, they are separated by commas.

There are many types of SAS functions, including arithmetic, array, truncation, mathematical, trigonometric, probability, quantile, sample statistics, random number, financial, character, date and time, state and ZIP code functions. For a complete list of SAS functions by category, see the SAS Language Reference.

SAS Mathematical Functions:
A short list of some of some commonly used mathematical functions is given below:

Selected Mathematical Functions

	Function Name
	Definition
	Assignment Statement Example

	Abs
	Absolute value
	Y1 = abs(x);

	Int
	Integer (takes the integer part of the argument)
	Y2 = int(x);

	Log
	Natural log
	Y3=log(x);

	Log10
	Log base 10
	Y4=log10(x);

	Round
	Rounds the argument to the nearest specified level (e.g., hundredths)
	y5=round(x,.01);

	Sqrt
	Square root
	Y6=sqrt(x);

If the value of the argument is invalid (such as using the sqrt function with a negative value as the argument), SAS will return a missing result, and display an error message in the SAS Log. However this error will not prevent the program from executing.

Example using SAS mathematical functions to transform variables and create new variables:
The example below shows how to use SAS mathematical functions and arithmetic operators to transform variables and create new variables in a data step. Each new variable is created using an assignment statement, in which the new variable is named on the left hand side of the equals sign, and the function or expression is on the right hand side. These new variables must be created between the data statement and the run statement of a data step to be valid.

data math;

 input x y;

/*mathematical functions*/

 absx = abs(x);

 sqrtx = sqrt(x);

 log10y = log10(y);

 lny = log(y);

 int_y = int(y);

 roundy = round(y,.1);

/*arithmetic operators*/

 mult = x*y;

 divide = x/y;

 expon = x**y;

 tot = x + y;

 diff = x - y;

 cards;

 4 5.23

 -15 22.0

 . 18.51

 -1 3

 6 0

 5 5.035

 ;

proc print data=math;

run;

The output from these commands is shown below. Notice the missing values as the result of applying arithmetic or mathematical operators to a missing or illegal argument.
 OBS X Y ABSX SQRTX LOG10Y LNY INT_Y ROUNDY

 1 4 5.230 4 2.00000 0.71850 1.65441 5 5.2

 2 -15 22.000 15 . 1.34242 3.09104 22 22.0

 3 . 18.510 . . 1.26741 2.91831 18 18.5

 4 -1 3.000 1 . 0.47712 1.09861 3 3.0

 5 6 0.000 6 2.44949 . . 0 0.0

 6 5 5.035 5 2.23607 0.70200 1.61641 5 5.0

 OBS MULT DIVIDE EXPON TOT DIFF

 1 20.920 0.76482 1408.55 9.230 -1.230

 2 -330.000 -0.68182 7.48183E25 7.000 -37.000

 3

 4 -3.000 -0.33333 -1.00 2.000 -4.000

 5 0.000 . 1.00 6.000 6.000

 6 25.175 0.99305 3306.08 10.035 -0.035
SAS Statistical Functions:
Statistical functions can be used to generate such values as the mean, sum, and standard deviation of values within a case. Statistical functions operate on at least 2 arguments. The arguments can be listed separated by commas, or lists of variables can be used if the keyword of precedes the list. The result of a statistical function is based on the non-missing values of the arguments.

Selected Statistical Functions

	Function Name
	Definition
	Assignment Statement Example

	Mean
	Mean of non-missing values
	y1 = mean (x1,x2,x3);

	Min
	Minimum of non-missing values
	y2 = min (of x1-x3);

	Max
	Maximum of non-missing values
	y3 = max (cash, credit);

	N
	The number of non-missing values
	y4 = n (of age--weight);

	Nmiss
	The number of missing values
	y5 = nmiss (of wt1-wt3);

	Std
	Standard deviation of non-missing values
	y6 = std (5,6,7,9);

	Stderr
	Standard error of the mean of non-missing values
	y7 = stderr(of x1-x20);

	Sum
	Sum of non-missing values
	y8 = sum(of x1-x20);

The example below shows the use of selected statistical functions on a hypothetical data set with three variables containing the salary for each person in the years 2001, 2002, and 2003 (SAL01, SAL02, and SAL03, respectively). The format statement is used to display the values of the salary variables and some of the result variables in dollar form, with 9 places (dollar9.). You can change the way these values are displayed by modifying the format used. For example, you could display these variables with dollars and cents by using the dollar12.2 format.

data salary;

 input SAL01 SAL02 SAL03;

 AvgSalary = mean(SAL01,SAL02,SAL03);

 StdSalary = std(SAL01,SAL02,SAL03);

 MaxSalary = max(SAL01,SAL02,SAL03);

 YrsSalary = n(SAL01,SAL02,SAL03);

 TotSalary = sum(SAL01,SAL02,SAL03);

 format SAL01 SAL02 SAL03 AvgSalary MaxSalary TotSalary dollar9.;

cards;

50000 55000 60000

 . 65000 70000

 . . 52000

50000 . .

;

title "Salary Example";

proc print data=salary;

run;

The output from these commands is shown below:

 Salary Example

 Std Yrs

Obs SAL01 SAL02 SAL03 AvgSalary Salary MaxSalary Salary TotSalary

 1 $50,000 $55,000 $60,000 $55,000 5000.00 $60,000 3 $165,000

 2 . $65,000 $70,000 $67,500 3535.53 $70,000 2 $135,000

 3 . . $52,000 $52,000 . $52,000 1 $52,000

 4 $50,000 . . $50,000 . $50,000 1 $50,000
To restrict the calculation of the mean salary to cases that have at least two valid values in the arguments, you could use the n function in combination with the mean function, as shown below for the variable AVGSAL2:

data salary2;
 input SAL01 SAL02 SAL03;

 AvgSalary = mean(SAL01,SAL02,SAL03);

 StdSalary = std(SAL01,SAL02,SAL03);

 MaxSalary = max(SAL01,SAL02,SAL03);

 YrsSalary = n(SAL01,SAL02,SAL03);

 TotSalary = sum(SAL01,SAL02,SAL03);

 if n(SAL01,SAL02,SAL03)>=2 then AvgSalary2 = mean(SAL01,SAL02,SAL03);

 format SAL01 SAL02 SAL03 AvgSalary AvgSalary2 MaxSalary TotSalary dollar9.;

cards;

50000 55000 60000

 . 65000 70000

 . . 52000

50000 . .

;

title "Salary Example, with Two Ways of Calculating Mean";

proc print data=salary2;

 var SAL01 SAL02 SAL03 AvgSalary AvgSalary2;

run;

 Salary Example, with Two Ways of Calculating Mean

 Avg

 Obs SAL01 SAL02 SAL03 AvgSalary Salary2

 1 $50,000 $55,000 $60,000 $55,000 $55,000

 2 . $65,000 $70,000 $67,500 $67,500

 3 . . $52,000 $52,000 .

 4 $50,000 . . $50,000 .
PAGE
6
Intro to SAS operators and functions.

