.NET Framework 3.0 Overview of .NET Framework 3.0

[image: image1.png]File Box

Box Ord

 BoxApplication =P

Help

9 Orderagox

Box Configuration

Quantity: | 100 Preview
Size: 0 60x50

P

vy A

Name: Nancy Davolio
Address: 507 - 20th Ave.E, Apt 24

Town: Seatde, WA

Zipeode: 96122

oK.

=)

TABLE OF CONTENTS

1. INTRODUCTION TO .NET FRAMEWORK 3.0

2. WINDOWS PRESENTATION FOUNDATION (WPF)

3. WINDOWS COMMUNICATION FOUNDATION (WCF)

4. WINDOWS WORKFLOW FOUNDATION (WF)

OVERVIEW OF THE MICROSOFT .NET FRAMEWORK 3.0

The Windows® SDK, which includes content for the Microsoft® .NET Framework 3.0, provides you with a set of managed Application Programming Interfaces (APIs), documentation, samples, and tools that allow you to create a wide variety of applications for Windows. At a high level, .NET Framework 3.0 consists of these basic components:

· .NET Framework

· Microsoft® Windows® Communication Foundation

· Microsoft® Windows® Presentation Foundation

· Microsoft® Windows® Workflow Foundation

.NET Framework

The core API contains classes that are shared by all types of .NET Framework 3.0 applications.. They are largely part of the System namespace as well as descendants such as System.Collections. The .NET Framework APIs include support for:

· Basic value and reference types, such as Int32, String, and Uri

· Collections and Data Structures

· Data

· Graphics and Drawing

· Input/Output

· Basic networking

· Security

· Threading and runtime services

The .NET Framework also provides support for creating Web applications and Windows applications.

ASP.NET is a unified Web platform that provides all the services needed to build enterprise-class Web applications. The classes that make up the API are largely part of the System.Web namespace, or its descendants. For details, see ASP.NET Web Applications.

Windows Forms is a platform for developing Windows client applications. A Windows Forms application can also act as the local user interface in a multi-tier distributed solution. Windows Forms extends the core API with a clear, object-oriented, extensible set of classes that enable you to develop rich Windows client applications. The classes that make up the API are largely part of the System.Windows.Forms namespace, or its descendants. For details, see Windows Forms.

Windows Presentation Foundation

Windows Presentation Foundation is Microsoft’s unified presentation subsystem for Windows. It consists of a display engine and a set of managed classes that allow you to create rich, visually-stunning applications. Windows Presentation Foundation also introduces XAML, which allows you to use an XML-based model to declaratively manipulate the Windows Presentation Foundation object model.

The classes that make up the API are largely part of the System.Windows namespace or its descendants. The primary components are:

· An application model with support for navigation, windows, and dialog boxes

· UI data binding

· A rich set of extensible layout and control objects

· 2D and 3D graphics

· Animation

· Media

· Documents

Windows Communication Foundation

Windows Communication Foundation is the new service-oriented communications infrastructure built on top of web services protocols. The advanced web service support in Windows Communication Foundation provides interoperable secure, reliable, and transacted messaging.
The Windows Communication Foundation service-oriented programming model is built on the .NET Framework and radically simplifies development of connected systems. It unifies a broad array of distributed systems capabilities in a composable, extensible architecture that supports multiple transports, messaging patterns, encodings, network topologies, and hosting models. It is the next version of several existing products: ASP.NET’s web methods (“ASMX”) and Microsoft Web Services Enhancements for Microsoft .NET (WSE), .NET Remoting, Enterprise Services, and System.Messaging.

The classes that make up the Windows Communication Foundation API are largely part of the System.ServiceModel namespace and its sub-namespaces. Windows Communication Foundation supports a variety of scenarios, including:

· One-way and duplex messaging

· Synchronous and asynchronous remote procedure calls

· Callbacks

· Sessions

· Multi-contract services

· Transport- and message-based security, reliability, and ordered delivery

· Queued messaging

· Transaction support

Windows Workflow Foundation

Windows Workflow Foundation is a new workflow development platform built on the .NET Framework. It provides a programming model for developing and executing a wide variety of stateful, long-running, persistent workflow applications.

Windows Workflow Foundation provides out-of-the-box workflow functionality that for easily developing workflow-based applications such as document management, commercial page flow, IT management, and various line-of-business applications.

Applications can load the workflow engine and plug a variety of runtime service components into it. Windows Workflow Foundation is highly extensible, so you can create your own custom components to address your particular business concerns.

Windows Workflow Foundation also offers ASP.NET support to make it easy for you to build and execute workflows that run in the Internet Information Services (IIS)/ASP.NET environment.

WINDOWS PRESENTATION FOUNDATION (WPF)

The Windows Presentation Foundation (or WPF), formerly code named Avalon, is the graphical subsystem feature of the .NET Framework 3.0 (formerly called WinFX) and is directly related to XAML. It is pre-installed in Vista, the latest version of the Microsoft Windows operating system. WPF is also available for installation on Windows XP SP2 and Windows Server 2003.
It provides a consistent programming model for building applications and provides a clear separation between the UI and the business logic. A WPF application can be deployed on the desktop or hosted in a web browser. It also enables richer control, design, and development of the visual aspects of Windows programs. It aims to unify a host of application services: user interface, 2D and 3D drawing, fixed and adaptive documents, advanced typography, vector graphics, raster graphics, animation, data binding, audio and video.

Microsoft Silverlight is a web-based subset of WPF. During development it was named WPF/E, which stood for "Windows Presentation Foundation Everywhere". Silverlight is based on XAML and Javascript. The Silverlight subset enables Flash-like web and mobile applications with the exact same code as Windows .NET applications. 3D features are not included, but XPS, vector-based drawing and hardware acceleration are.

History of WPF

Windows Presentation Foundation (WPF) is Microsoft’s unified presentation subsystem for Windows. Before you create a WPF application, you should first be aware of the history behind the development of WPF and learn some of the main features that WPF provides.

The Evolution of WPF

The evolution of WPF begins with the Internet Explorer and dynamic HTML model. This model can produce sophisticated content but has scalability, content, and media limitations. Microsoft also saw a need for a new platform that could exploit the significant graphical power of modern computers.

At the start of 2001, Microsoft established a new project to build an integrated Web client platform. The project team made four crucial decisions:

Managed or Unmanaged Code At the start of the project, the first version of the .Net Framework had not shipped. However, because it was clear to Microsoft that managed code would be the focus of future development, the team decided to use managed code to build the platform.

Markup Language The choices available to Microsoft were either to invent a new markup language or build one that used Extensible Hypertext Markup Language. The project team wanted parallelism between the markup language and the .Net Framework and decided to create a new markup language, known as Extensible Application Markup Language (XAML).

Code Base The Windows Presentation Manager platform was built from the ground up to provide a managed interface for Windows development. The platform is built upon an unmanaged layer called the Media Integration Layer (MIL) that provides support for both device-independent and vector graphics by using the underlying services of DirectX. The developer API, however, is exposed entirely as managed code.

Platform Support Although supported on Windows XP SP2, WPF was designed for Windows Vista. Windows Vista provides new WPF-enabled drivers that take better advantage of WPF, providing a richer experience with higher fidelity graphics and smoother animations. Although WPF applications run on Windows XP, they do not look as visually compelling as on Windows Vista.

The Importance of User Experience

User Experience

User experience is more than looks. User experience represents the overall interaction process of the user with a product. The interaction provides the user with added value and it also provides tremendous business value by:

· Creating brand awareness, enabling the user to differentiate products, and increase customer satisfaction.

· Helping the user to work with products in an easy, consistent and secure manner.

· Encouraging the user to use your product and others like it.

Traditionally, functionality has been more important than user experience in software development, at least partly because the available technologies did not always make it easy to create compelling user interfaces (UI). The introduction of WPF now enables the seamless convergence of user interface, media, and documents, and means that you can create applications with a compelling user experience with a minimum of work.

Presentation

The presentation of your user interface is extremely important and contributes greatly to user experience. Software applications should provide the following:

· Appropriate features for the program and its target users.

· Aesthetic appearance, often in a subtle way.

· High-quality usability and flow.

· Durable good impression.

Professional Design

Along with the developer, professional designers have an important role to play in user experience. The role of the designer is to create an interface that is useful, usable, desirable, and feasible. WPF provides features such as XAML that greatly improve the collaboration possibilities between the designer and the developer of an application.

WPF Features

WPF provides many features that enable you to create sophisticated user interfaces with the minimum of effort. In addition, one of the most powerful features of WPF is the way that it enables improved collaboration between designers and developers.

Graphical Services

All graphics (including desktop items like windows) will be routed through Direct3D.

This aims to provide a unified avenue for displaying graphics, as well as more advanced graphical features. Routing the graphics through Direct3D will allow Windows to offload graphics tasks to the Graphics Processing Unit found on the computer's graphics card. This will reduce the workload on the computer's Central processing unit. It also supports vector-based graphics, which allow infinite lossless scaling. It supports 3D model rendering and interaction in 2D applications.

Deployment

WPF isn't just for building traditional standalone applications. Its deployment model offers both standalone and XAML Browser Applications (XBAP) flavors. The programming model for building either flavor of application is similar.

Standalone applications are those that have been locally installed on the computer using software such as ClickOnce or Microsoft Installer (MSI). Standalone applications are considered full trust and have full access to a computer's resources.

XAML Browser Applications (XBAP's) are programs that are hosted inside a web browser such as Internet Explorer. Hosted applications run in a partial trust sandbox environment, and are not given full access to the computer's resources and not all WPF functionality is available. The hosted environment is intended to protect the computer from malicious applications. Starting an XBAP (pronounced "ex-bap") from an HTML page or vice versa is seamless (there is no security or installation prompt). Although one gets the perception of the application running in the browser, it actually runs in an out of process exe different from the browser.

Interoperability

WPF provides interoperability with Win32: Via hosting, one can use Windows Presentation Foundation inside existing Win32 code, or one can use existing Win32 code inside Windows Presentation Foundation.[4]

Interoperability with Windows Forms is also possible through the use of the ElementHost and WindowsFormsHost classes.

Media Services

WPF provides shape primitives for 2D graphics along with a built-in set of brushes, pens, geometries, and transforms.

The 3D capabilities in WPF are a subset of the full featureset provided by Direct3D. However, WPF provides tighter integration with other features like user interface (UI), documents, and media. This makes it possible to have 3D UI, 3D documents, and 3D media.

There is support for most common image formats.

WPF supports the video formats WMV, MPEG and some AVI files.

WPF supports time-based animations, in contrast to the frame-based approach. This delinks the speed of the animation from how the system is performing.

Text rendering is supported using ClearType. This provides for sub-pixel positioning, natural advance widths, and Y-direction anti-aliasing. WPF also supports OpenType font features.

Data binding

WPF has a built-in set of data services to enable application developers to bind and manipulate data within applications. There exists support for three types of data binding:

one time: where the client ignores updates on the server

one way: where the client has read-only access to data

two way: where client can read from and write data to the server

Binding of data has no bearing on its presentation. WPF provides data templates to control presentation of data.

User interface

A set of built-in controls is provided as part of WPF, containing items such as button, menu, and list box. Lacks a DataGrid control but 3rd-party vendors are already offering some.

A powerful concept in the WPF is the logical separation of a control from its appearance.

A control's template can be overridden to completely change its visual appearance.

A control can contain any other control or layout, allowing for unprecedented control over composition.

Features retained mode graphics, so that applications do not have to be bothered with repainting the display.

Imaging

Windows Imaging Component (WIC) for WPF will allow developers to write image codecs for their specific image file formats.

Effects

WPF provides for bitmap effects, however, they are rendered in software. GPU features like pixel shaders are not used for bitmap effects.

Special effects such as dropshadows and blurring are built in.

Other effects such as reflections can be easily implemented.

Text

WPF includes a number of extremely rich typographic and text rendering features that were not available in GDI. This is the first Windows programming interface to expose OpenType features to software developers, supporting both OpenType, TrueType, and OpenType CFF (Compact Font Format) fonts.

Support for OpenType typographic features includes:

Ligatures

Old-style numerals (for example, parts of the glyph hang below the text baseline)

Swash variants

Fractions

Superscript and Subscript

Small caps

Line-level justification

Ruby characters.

Glyph substitution

Multiple baselines

Contextual and Stylistic Alternates

Kerning

The WPF text engine also supports built-in spell checking. It also supports such features as automatic line spacing, enhanced international text, language-guided line breaking, hyphenation, and justification, bitmap effects, transforms, and text effects such as shadows, blur, glow, rotation etc. Animated text is also supported; this refers to animated glyphs, as well as real-time changes in position, size, color, and opacity of the text.

WPF text rendering takes advantage of advances in ClearType technology, such as sub-pixel positioning, natural advance widths, Y-direction anti-aliasing, hardware-accelerated text rendering, as well as aggressive caching of pre-rendered text in video memory.[5] However, due to the resolution-independent architecture of WPF, ClearType cannot be optionally turned off in WPF applications.[6]

The extent to which glyphs are cached is dependent on the video card. DirectX 10 cards will be able to cache the font glyphs in video memory, then perform the composition (assembling of character glyphs in the correct order, with the correct spacing), alpha-blending (application of anti-aliasing), and RGB blending (ClearType's sub-pixel color calculations), entirely in hardware. This means that only the original glyphs need to be stored in video memory once per font (Microsoft estimates that this would require 2 MB of video memory per font), and other operations such as the display of anti-aliased text on top of other graphics – including video – can also be done with no computation effort on the part of the CPU. DirectX 9 cards are only able to cache the alpha-blended glyphs in memory, thus requiring the CPU to handle glyph composition and alpha-blending before passing this to the video card. Caching these partially-rendered glyphs requires significantly more memory (Microsoft estimates 5 MB per process). Cards that don't support DirectX 9 have no hardware-accelerated text rendering capabilities.

Alternative input

WPF supports digital ink-related functionality.

Accessibility

WPF supports Microsoft UI Automation to allow developers to create accessible interfaces.

XAML - Extensible Application Markup Language

Following the success of markup languages for web development, WPF introduces a new language known as eXtensible Application Markup Language (XAML) (pronounced "Zamel"), which is based on XML. XAML is designed as a more efficient method of developing application user interfaces.

The specific advantage that XAML brings to WPF is that XAML is a completely declarative language. In a declarative programming language, the developer (or designer) describes the behavior and integration of components without the use of procedural programming. This allows someone with little or no traditional programming experience to create an entire working application with no programming. Although it is rare that an entire application will be built completely in XAML, the introduction of XAML allows application designers to more effectively contribute to the application development cycle. Using XAML to develop user interfaces also allows for separation of model and view; which is considered a good architectural principle. In XAML, elements and attributes map to classes and properties in the underlying API's.

As in web development, both layouts and specific themes are well suited to markup, but XAML is not required for either. Indeed, all elements of WPF may be coded in a .NET language (C#, VB.net). The XAML code can ultimately compiled into a managed assembly in the same way all .NET languages are, which means that the use of XAML for development does not incur a performance cost. XAML can also be compiled and run "on demand" similar to an html web-page.

Although XAML has been introduced as an integral part of WPF, the XAML standard itself is not specific to WPF (or even .NET). XAML can also be used to develop applications using any programming API's and is in itself language independant. Nevertheless, special care has been taken in developing the WPF API's to maximize interoperability with the declarative model that XAML introduces.

It is likely that many applications, such as Microsoft PowerPoint and Word, will support exporting their content to XAML.

There are several subset (or profiles) of XAML, such as:

XAML Presentation (XAML-P) - incorporates all items encompassing WPF v1.0

XML Paper Specification (XPS) - a subset of XAML-P for representing fixed format documents and used as the spool format for the printing subsystem in Windows Vista

There are also profiles specific to Workflow Foundation, and other domain specific subsets will likely emerge in the future.

Tools

There are a number of development tools available for developing Windows Presentation Foundation applications, most currently of beta quality, some commercially released.

Microsoft Cider is an add-in for the Visual Studio 2005 designer for building Windows Presentation Foundation

Visual Studio Orcas Beta 1 for building Windows Presentation Foundation applications.

Microsoft Expression Blend is a designer-oriented tool that provides a canvas for the creation of WPF applications with 2D and 3D graphics, text and forms content. It generates XAML that may be exported into other tools.

Microsoft Expression Designer is a bitmap and 2D-vector graphics tool that allows export to XAML.

Electric Rain ZAM 3D provides an interactive graphical design environment for constructing 3D models that can be exported into XAML.

Mobiform Aurora provides an alternative tool for constructing WPF user interfaces.

Xceed DataGrid for WPF free full-featured DataGrid control for WPF.

Blendables Tools and components for designers and developers from IdentityMine, Inc.

Microsoft Silverlight is a cross-platform XAML-based WPF technology that provides features such as video, vector graphics, and animations to multiple operating systems including Windows Vista, Windows XP, and Mac OS X. Specifically, it is provided as an add-on for Mozilla Firefox, Internet Explorer 6 and above, and Apple Safari. Silverlight and WPF only share the XAML presentation layer. Silverlight's competitors include Adobe Flex, Nexaweb and OpenLaszlo.

WPF Applications

WPF is intended to be the next-generation graphics API for Windows applications on the desktop. Applications written in WPF are visually of a higher quality. The following are some of Microsoft's own products or other third-party mainstream applications written in WPF:

Main article: List of WPF applications

Microsoft Expression Design

Microsoft Expression Blend

Yahoo! Messenger

New York Times Reader

Powerful Layout and Control Features of WPF Applications

WPF provides new techniques for application development, and makes better use of current hardware and technologies. These significant advances include several features that relate to the layout and control of applications, as described below.

Layout
WPF provides layout elements to enable you to build an adaptable user interface. These elements include a flow-style layout, where content flows left to right and then onto the start of the next line.

WPF also provides a grid, which enables table-like layouts. The grid layout enables you to resize content automatically or proportionally. You can nest layout elements to produce complex layouts and write new element types if the built-in types are not suitable.

The following sample shows the code for a grid with two rows and two columns. Inside the Grid element, the ColumnDefinition and RowDefinition elements define the properties of the columns and rows in the Grid. Each UI element then has a row and column property that designates where it appears in the Grid.

<Grid>

 <Grid.ColumnDefintions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="5*" />

 </Grid.ColumnDefintions>

 <Grid.RowDefintions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 </Grid.RowDefintions>

 <TextBlock Grid.Row="0" Grid.Column="0"

 Grid.ColumnSpan="2"

 Background="Cyan" FontSize="18pt"

 TextAlignment="Center">

 Title

 </TextBlock>

 <ListBox Grid.Row="1" Grid.Column="0">

 <ListBoxItem>List</ListBoxItem>

 <ListBoxItem>On</ListBoxItem>

 <ListBoxItem>Left</ListBoxItem>

 <ListBoxItem>Hand</ListBoxItem>

 <ListBoxItem>Side</ListBoxItem>

 </ListBox>

 <Rectangle Grid.Row="1" Grid.Column="1"

 Fill="LimeGreen" />

 <Ellipse Grid.Row="1" Grid.Column="1"

 Fill="White" Margin="10" />

</Grid>

Content model
The templates for many controls, such as labels and captions, contain placeholders for additional content, which allows for the composition of elements. Traditionally, these placeholders allowed only text, or sometimes a bitmap. WPF has a flexible content model that enables you to use any content in these placeholders, including other controls, drawings, or animations.

This lack of restrictions enables a host of visual design possibilities and includes a great deal of power for visual designers.

The following sample shows how to create a button that contains an image.

<Window xmlns="http://schemas.microsoft.com/winfx/avalon/2005" >

 <Button Width="260" Height="200" >

 <Image Source="\images\SubmitButtonImage.jpg" />

 </Button>

</Window>

Lookless controls
In WPF, most controls are lookless because WPF disassociates the appearance from the control. Controls provide behavior, but you can easily customize the entire appearance of a control without the need to write a custom control. Controls usually have a built-in template that provides a default appearance, however, you can replace this template to change the look of the control.

This feature means that WPF controls are much more flexible than Windows Forms or Win32 user interface components.

The following sample shows how to replace the template of a button. The ContentPresenter element is a placeholder that tells WPF where the button's content should be added into the results. Without this, the button's caption would not appear.

<Button>

 <Button.Template>

 <ControlTemplate>

 <Grid>

 <Rectangle Fill="VerticalGradient White Red" Stroke="DarkRed"

 RadiusX="10" RadiusY="10" />

 <ContentPresenter Content="{TemplateBinding Button.Content}"

 Margin="{TemplateBinding Padding}"

 HorizontalAlignment="{TemplateBinding

 HorizontalContentAlignment}"

 VerticalAlignment="{TemplateBinding

 VerticalContentAlignment}" />

 </Grid>

 </ControlTemplate>

 </Button.Template>

 Click me!

</Button>

Data binding
With WPF controls, you can use anything as the content of the control, including dynamic content from a data source.

WPF data binding provides a simple and consistent way for applications to present and interact with data. You can bind elements to data from a variety of data sources and use data templates to specify how a control must display an object. Data templates act as a bridge between objects and the user interface, and give designers great flexibility to manage data presentation.
The following sample creates a provider with inline XML data.

<XmlDataProvider x:Key="nodePrototype" XPath="AuctionItem">

 <AuctionItem Description="AuctionItem" StartPrice="3.50">

</XmlDataProvider>

The following code binds to it:

<TextBox>

 <TextBox.Text>

 <Binding XPath="@Description" Source="{StaticResource nodePrototype}" />

 </TextBox.Text>

</TextBox>

Styles
Styles are lists of properties and values that enable consistency across an application. You can apply a style to any element in a user interface and use a style to set any property.

You can only apply a style to framework elements. Styles are a declarative feature and this enables you to manage the look of an application independently of its behavior and structure.
The following code sample creates a button style.

<StackPanel xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 xmlns:x="http://schemas.microsoft.com/winfx/xaml/2005"

 Margin="15" LayoutTransform="scale 2" >

 <StackPanel.Resources>

 <Style x:Key="MyStyle" TargetType="{x:Type TextBox}">

 <Setter Property="Background" Value="Green" />

 <Setter Property="Foreground" Value="White" /> </Style>

 </StackPanel.Resources>

 <TextBox Style="{StaticResource MyStyle}">TextBox 1</TextBox>

 <TextBox Style="{StaticResource MyStyle}">TextBox 2</TextBox>

<TextBox>Unstyled</TextBox></StackPanel>

Triggers

A trigger is a declarative mechanism that specifies how a control should respond to certain stimuli. You can declare a trigger inside a style or a template. One use of a trigger is to start an animation.

The declarative nature of triggers enables designers to create a user interface that responds to actions without the need for code from a developer.

The following code sample changes the background color of an element when it gains focus.

<Trigger Property="IsFocused" Value="true">

 <Setter Property="Background" Value="Red" />

</Trigger>

Advanced Graphics and Text Features of WPF Applications
Windows Presentation Foundation offers a productive, unified approach to UI, media, and documents that empower you to deliver an unmatched user experience. In today's world, it’s not just about the product; it’s about the product integrated into an experience. The Experience IS the product.

Let's explore the rich media features of WPF, and how developers and designers have collaborated to create innovative user experiences.

Windows Presentation Foundation offers developers a powerful toolset for building rich UI applications. Here we can see some of the common controls provided by the platform. You’ll notice many of these controls look similar to the standard controls you are used to seeing in traditional windows applications: Including Buttons, TextBoxes, Combo boxes, Layout controls such as a tab control, as well as many others. Now let’s take a look at some of the rich control enhancements you get with WPF. All controls in WPF support rich content, regardless of whether it is a ComboBox, ListBox, TabControl, or a menu.

Windows Presentation Foundation allows you to completely tailor the look and feel of your controls through styles. Here we have a standard button with a simple color change on hover. Now here’s the same button restyled with a glowing effect. Taking this to the extreme, this button can be completely restyled to take on a new look of a ‘Button Fish’. And with the rich content features of Windows Presentation Foundation ‘Button Fish’ can be embedded in a restyled ‘Button Shark’. Styled controls retain the behavior of normal controls. Both buttons raise the click event and expose the same properties as normal buttons do.

Windows Presentation Foundation provides a variety of panels to handle layout. StackPanels stack elements either horizontally or vertically. WrapPanels stack elements in a layout similar to standard HTML with content flowing from left to right, or from top to bottom. For even more sophisticated layouts DockPanel and GridPanel. Additionally all WPF panels and elements are natively resizable thanks to a vector graphics based engine.

Windows Presentation Foundation uses vector graphics extensively. What this means is that WPF graphics and elements can be scaled larger or smaller without loss of image fidelity. Also this means that elements can be smoothly rotated or skewed without distortion. And as the image is vector graphics based, parts of it can be manipulated programmatically as in the facial lines seen here.

Windows Presentation Foundation provides smooth fonts through native platform support for sub-pixel clear type. This means that similar to vector graphics, fonts look good when they scale. Additionally WPF allows you to create your own fonts and embed them within your application. And WPF supports Open Type fonts allowing for example a different capital letter for the beginning of a word as is seen here.

Windows Presentation Foundation offers full document support. WPF documents automatically reflow as they are resized. The layout including number of columns automatically adjusts to the form factor, from a laptop to a tablet PC to a 10 ft screen. For accessibility, this means that users can view text at a size that is comfortable for them. WPF documents also support text annotations. And the annotations are saved along with the document.

WPF includes a host of bitmap effects that you can attach to any element that has an outline. For example, you can add a drop-shadow. And you can change the direction, depth, and color of that shadow. And you can add other effects such as blur, and reflection. Like all of the other WPF enhancements you can also apply this to rich content.

WPF integrates video within your applications. Content can be overlaid and synchronized. Finally, you can harness the 3D engine provided by the platform. WPF allows you to use any WPF element to paint a 3D surface, even a video as in our futuristic CD cover which is nothing more than a restyled button.

Now that you’ve seen the WPF features, let’s take a look at how these features solve real-world customer problems. At North Face, the guiding principle for their customer base is “Never stop exploring.” For North Face, their innovative retailing strategy complements this principle. You don’t just buy products, you discover products. And this is an essential requirement for online customers, who want to explore products at a deep level of detail.

So as you can see, rich media is really deeply integrated into the Windows Presentation Foundation. You’ve got clear type overlaid on video playing fullscreen in the background. Integrating imagery, sound and video often involved just a single line of markup. We’re able to introduce these great 3-d elements to showcase the Northface’s products. And diving into this other product, Red Point Jacket you can see that the original video is rotated into the background onto that plane. We’ve overlaid yet another video; a testimonial from one of the Norhtface’s athletes, explaining why he likes the product so much. That was all written in XAML and it was very simple to do.

These user interface components right here, features, expeditions, technology that I am circling with the mouse, these are all just listbox controls that have been styled. They are the same control. That’s incredibly important to us because we are able to rapidly change the look and feel of our applications, without a lot of work.

User experience is more than a graphically-rich UI. It allows you to present data in a visual way that is more intuitively understandable. For example, investors using the Woodgrove stock portfolio application can easily view their portfolio performance using 3D models, allowing them to instantly see relationships among complex data values. Interactive data visualization allows them to make business decisions based on real business insight. This data visualization scenario can be easily applied to any data-intensive application in enterprises, such as planning, forecasting, or supply chain.

There are many investors who will pay a premium for tools that translate complex financial data into easily understood visual information. Woodgrove Explorer is one such tool. In this application Woodgrove harnesses WPF to provide an immersive experience, allowing investors to gain critical insights into their stock portfolio. Along with viewing the stock portfolio on the left hand side, the application provides news, 2d performance graphs and other related information.

Notice the rich 3D graph which allows you to visualize how investments are spread across sectors and valuations. Addionally, to provide the most immersive of experiences all surrounding data can be eliminated bringing the 3D graph into focus. As investors look at their portfolio, they can instantly compare industry benchmarks, And View historical trend information. This Woodgrove Finance Explorer took no more than 2.5 weeks of development. Another example of the incredible productivity you’ll see as you develop applications using WPF.

Management of patients within a hospital is a critical challenge. Hospital staff needs quick and easy access to relevant patient records. Contoso’s Patient Monitoring application uses WPF to solve this problem by providing real time monitoring, charts and patient history. From the main screen, staff can access all of the patients on the roster. Notice the real time chart displaying patient monitoring information. You can drill down into patient details to display vital signs and other key medical data. Live monitors gathering real time information can be visualized and compared in 3d.

This graphically rich representation of data provides hospital staff with the information they need to make decisions. And using WPF’s document features, patient medical documents can be viewed inline, and searched. Finally, WPF’s media integration provides full access to live video and even ultrasound. Contoso’s healthcare application showcases the incredibly immersive user experiences you’ll build with Windows Presentation Foundation.

Ultimately, it’s not just about the product. It’s about the user experience integrated with the product. And Windows Presentation Foundation empowers you to deliver superior user experiences for Windows.

WPF Document Features

WPF provides an array of features that enable you to create rich, document-based content.

Document Types

WPF provides fixed and flow document types. Fixed documents enable a precise presentation, independent of the display or printer hardware. Flow documents dynamically adjust their content based on variables such as window size.

Document Controls and Text Layout

WPF comes with the following controls for displaying of document content and text:

DocumentViewer displays fixed document content in read-only mode.

FlowDocumentReader enables you to switch between several viewing modes.

FlowDocumentPageViewer shows content a page at a time.

FlowDocumentScrollViewer shows content in a scrolling mode.

TextBlock displays small amounts of text.

Document Packaging

WPF provides efficient document packaging with the System.IO.Packaging APIs, which include the default ZipPackage implementation. An object in a package is a PackagePart and you can add additional information to a package by using a PackageRelationship.

XML Paper Specification

XML Paper Specification (XPS) is a subset of XAML that is targeted towards fixed format documents. The XPS Document format conforms to the Open Packaging Conventions for data organization and enables users to create, share, print, and archive paginated documents.

How WPF and XAML Increase Developer and Designer Collaboration

User experience, and therefore application design, is very important when you create Windows Presentation Foundation applications.

Traditionally, application design has involved a designer using a tool to build mockups of the application interface.

The designer then passes these designs to a developer who has to re-create them, often by using a different tool.

The mismatch between the tools in this process often requires compromise during the development phase and can lead to conflicts and inefficiency between designers and developers.

Extensible Application Markup Language, or XAML, is a toolable, declarative markup language that can greatly improve collaboration between designers and developers.

XAML enables the separation of the application design from the implementation, so that designers and developers can now share the same technology base.

Designers can create user interfaces and then export them to XAML, and this XAML can then be directly consumed by a developer tool.

The toolability benefits of XAML enable the use of role-specific tools while still maintaining collaboration between teams of developers and designers.

This collaboration is aided by the introduction of the Microsoft Expression suite of products.

Designers can use Microsoft Expression Interactive Designer, or EID, to create the user experience for their application and then save their design as XAML or as a Visual Studio 2005 project.

Developers can then use this XAML directly in their WPF application so they are not required to re-create the user interface.

Visual Studio 2005 and EID also consume the same project format, which further improves the opportunities for collaboration between designers and developers.

Building WPF Applications

How to Define XAML Content

XAML files are XML files with an .xaml extension and a namespace that maps to XML namespaces. XAML objects and markup correspond to a collection of classes. You use the XAML element that maps to the class you require and add properties and events to the element to implement the design and functionality of the application.

Create a XAML File

XAML files must have one root element (which typically supports content) so that you can add child elements to it, for example Window.

Most XAML files contain two xmlns declarations in the root element. The first declaration maps the overall WPF namespace:

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

The second declaration maps a separate XAML namespace, typically to the x: prefix:

xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml

Define XAML Content

XAML has a set of rules to map object tags into classes, attributes into properties and events, and XML namespaces to common language runtime (CLR) namespaces. When you define XAML content, you use the relevant tags and attributes to create the features that you require.

The following sample creates a text box with a blue background and red text:

<TextBox Background="Blue" Foreground="Red">This is a Text Box</TextBox>

The following sample shows how to create a button that contains an image:

<Window xmlns="http://schemas.microsoft.com/winfx/avalon/2005" >

 <Button Width="260" Height="200" >

 <Image Source="\images\SubmitButtonImage.jpg" />

</Button>

</Window>

The following sample shows how to use the ScrollViewer to provide a scrolling view for content. If the content overflows the available space, a scrollbar automatically appears.

<Border xmlns="http://schemas.microsoft.com/winfx/avalon/2005"

 LayoutTransform="scale 2">

 <ScrollViewer>

 <TextBlock FontSize="20" TextWrapping="Wrap" FontFamily="Global User Interface">

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam eleifend arcu

in dui dapibus egestas. Etiam sollicitudin sapien at elit. Etiam rutrum sagittis nisi. Donec tristique

hendrerit risus. Vivamus nulla. Etiam nisi. Cras et urna porta turpis eleifend eleifend. Ut laoreet arcu id pede. Vivamus dictum mattis nisl. Nullam vitae urna.

 </TextBlock>

 </ScrollViewer>

</Border>
How to Build WPF Applications by Using Visual Studio 2005

Visual Studio 2005 provides integrated developer support for creating WPF applications, such as project templates, a user interface designer and IntelliSense, which supports both XAML and procedural code.

1. To create a new Visual Studio project, select File, New, then Project from the main menu.

2. Next, select NetFramework 3.0 as the project type. The three WPF project templates allow you to create a Windows Application, a Browser Application, or a Custom Control Library.

3. select Windows Application as the project template for this demo.

4. By default the WPF Windows Application template creates an App.xaml file, which defines the application object, and a Window1.xaml file which defines a window object and a grid object for the application user interface.

5. Corresponding code-behind files are also created.

6. A code-behind file is used to provide procedural code functionality such as event handlers.

7. Close this Solution Explorer panel so that the XAML is easier to see.

8. You can use the toolbox of WPF controls to design the user interface of your window.

9. Click the control you want to use and place it on the window. Create a simple user interface consisting of a text box and a button.

10. Hide the toolbox panel. Once finished with the design, Press the F6 key to update the project.

11. Notice that the XAML content now displays the text box and button objects.

12. Change the font size of the text box to be larger.

13. Add the font size property to the XAML text box definition, the IntelliSense feature of Visual Studio provides a convenient syntax builder for completing the line of XAML.

14. Also add a Foreground property. In this case, since the property definition defaults to an enumerated type, IntelliSense provides a drop-down list of all enumerated values.

15. For the button control, Add an event handler to respond to the user clicking on the button.

16. Also change the caption of the button to OK.

17. To define the procedural code for the event handler, Display the corresponding code-behind file for the XAML.

18. In this case Window1.xaml.cs. Add an event handler for the button to my window derived class Window1. The name of the event handler is the one created in the XAML definition of the button.

19. When the button is clicked, the text box will display the text string “Hello, world”.

20. Press the F5 key to build the project and run the application.

21. Click the OK button, the text box displays the string defined in the event handler.

Prototyping XAML Content by Using XamlPad

XamlPad is a basic visual editor for XAML. You can use XamlPad to create and test XAML content, as described in the following table.

XamlPad Features

· When you use XamlPad you can:

· Edit XAML and view real-time output.

· Automatically save markup to the file XamlPad_Saved.xaml.

· Use editing features such as copy, paste, and undo.

· Check for invalid XAML, which turns red.

· View errors in the status bar on the bottom left of the main window.

· Load an existing XAML file into XamlPad by passing the file name as a command-line argument.

XamlPad Content Creation

XamlPad is installed as part of the Windows Software Development Kit (SDK) and appears on the Start menu.

The top pane of the Window contains the XAML output. You add XAML fragments to the bottom pane, as shown in the following code:

<DockPanel xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:sys="clr-namespace:System;assembly=mscorlib"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >

 <Button Margin="10" Height="100" Width="100" DockPanel.Dock="Left">Click Me!</Button>

 <MediaElement Source="C:\temp\intro.wmv" Height="150"/>

</DockPanel>

XamlPad Compilation
You must compile a XAML-based application before you can run it. The compiler parses the XAML file and converts it into a partial class.

If you have used XamlPad instead of Visual Studio 2005, then you must use Microsoft Build Engine (MSBuild) to build the project from a command line. To build a project, you need the following four elements:

· The XAML and code-behind source files.

· Any stand-alone procedural code files.

· A project file that contains the build instructions.

· An application definition file.

For command-line builds, you must create the last two items manually.

How to Define UI Elements, Events, and Markup Extensions in XAML

WPF introduces a breadth of advanced graphics features that you can easily implement as XAML content.

Here is a Photo demo sample that illustrates the rich 2D graphics features you can use in a WPF application. You can easily create customise appearances for the WPF controls and the user interface of your application.

In this case, the photo demo uses a blue-white, linear gradient color value that is defined as a XAML resource. The resources for the project are defined in the window1.xaml of the photo demo sample project.

The definition of this resource ButtonGradient can be easily modified without having to change the buttons that reference it. This separation between the appearance of a control and its functionality allows you enormous flexibility in designing custom user interfaces.

WPF implements lookless controls. That is the appearance of a control is independent of its behavior. The photo demo uses several lookless controls. In this case two list box controls.

The list box at the top of the window is defined as a horizontal list box and is used to show the current set of photos. I can use the scroll bar to display all the items, since scrolling is a defined behavior of a list box.

Likewise, the shopping cart is defined as a vertical list box and is used to show the current set of items to purchase.

In both cases the list box appearance is independent of its behavior.

The horizontal list box is defined in the window1.xaml file of the sample project. The Style property allows you to reference a custom style that represents the appearance of a list box.

The DataContext, ItemsSource, and ItemContainerStyle properties allow you to specify the type and style of the items contained in the list box.

In this case the list box items are photo images.

Notice what happens as you move the mouse over each item in the photo list box. The item responds by changing the photo’s opacity to 100 percent, and scaling it so it is slightly larger.

When the mouse moves off the item, the item responds by changing the photo’s opacity to 75 percent, and scaling it to its original size. It is worth noting that WPF, rather than application logic, automatically adjusts the list box layout as items are scaled larger and smaller.

The style definition PhotoListItem defines the MouseEnter and MouseLeave events for the items in the list box.

Looking at the definition for the MouseEnter event for the style, you can see that two animations are applied.

The first animation increases the height of the list box item or photo.

The second animation increases the opacity of the photo to 100 percent.

Now, open a simple application in XAML pad that contains a label control within a page object.

Change the foreground and content properties of the label to use markup extensions. Set the foreground property to a DynamicResource value. In this case, the current color value of a system color.

WPF provides a set of defined types that expose a number of system values, such as colors, fonts, and parameters.

The DynamicResource reference is a markup extension that allows you to defer resolution of the ResourceValue until run time.

The x:Static markup extension allows you to reference a value in the SystemColors type and convert it to the appropriate attribute type.

Next, add a Page.Resources section. The resources section allows you to share resources across all objects contained within the page.

This section contains a FrameworkElement object, whose only role is to store a custom value in its tag property. Define a key value so I can reference the content later.The value of the tag property is the value of the DateTime.Now property.

Notice that the XML namespace prefix for the property references the System namespace of the referenced assembly mscorlib.

Next, change the content property to use a data-binding markup extension, which will bind the property to the static resource DateTime. Set the path property of the binding to reference the value of the Date property of the resource, which is a reference to the dateTime.net framework type.

The label now displays the current date.

Finally, change the content tag to DayofWeek. The label now displays the current day of the week.

The change to the binding path causes the content to update automatically.

Application Type
Consider the sample Box Application, shown in Figure 1. This is a standalone, menu-driven application that allows people who need boxes to list, order, view, and delete box orders. To provide this user experience, you need to begin with the most fundamental of all application model building blocks: creating an application.

Figure 1 The Box Application
A Windows-based application consists of some standard plumbing, including both an entry point and a message loop, and possibly may also require one or more of the following common application services:

· Processing command-line parameters

· Returning an exit code

· Application-scope state

· Detecting and responding to unhandled exceptions

· Managing application lifetime
Windows Presentation Foundation centralizes both plumbing and services within a single type, System.Windows.Application, which you can use from markup (XAML), code (C# or Visual Basic®), or a combination of both (known as markup and codebehind). Application turns out to be so useful that Visual Studio® 2005 automatically adds an instance of one to every new .NET Framework 3.0 (formerly known as WinFX®) Windows Application project:
<!--App.xaml (markup)-->

<Application

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 x:Class="BoxApplicationWindow.App"

/>

// App.xaml.cs (codebehind)

public partial class App : Application { ... }

There isn't a single piece of code that looks remotely like the code used to establish the standard Windows-based application plumbing, including the entry point. This is because the application plumbing is generated for you, which is a result of Visual Studio 2005 configuring your Application markup file as an ApplicationDefinition build action, as shown in Figure 2.

[image: image2.png]Prapertes
Appxaml FilePropertis
sl

T ~ovicstorOetinition

Copy to Output Directz Da nat copy
Custom Taal

Custom Tool Namespa
File Name Appoarnl

Build Action

How the file relates to the build and deployment
processes.

Figure 2 Set an Application XAML File
Under the covers, the equivalent of this code is generated:

// App.cs

using System;

public partial class App : Application

{

 [STAThread]

 public static void Main()

 {

 // Initialize and run the application

 App application = new App();

 application.Run();

 }

}

What exactly is created doesn't really matter, though, since you neither have to write it nor understand its intricacies. Instead, you are shielded by the most complete application abstraction in a Microsoft presentation technology to date, which you can use to create a running application with only a single piece of markup. All you need to do is use Application's services. For standalone applications, this involves showing a window when an application starts running.

The Window
In Windows Presentation Foundation, a window is a Window. A Window has always been the core unit of content hosting in standalone applications. You can add a Window definition to your project in Visual Studio 2005 by choosing Project | Add New Item | WinFX Window, which generates the following:

<!--MainWindow.xaml (markup)-->

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 x:Class="BoxApplication.MainWindow"

</Window>

// MainWindow.xaml.cs (codebehind)

using System.Windows;

public partial class MainWindow : Window { ... }

When the window definition is added, Visual Studio 2005 automatically configures the markup file's build type to Page. When built, the markup is turned into a special type of resource that can be identified uniquely by a Uniform Resource Identifier (URI). Essentially, this enables Windows Presentation Foundation to load a Window declaratively from a URI, and you can use this capability to specify a window to be automatically opened when an application starts. You do this by setting the Application.StartupUri attribute in markup, as shown here:
 <!--App.xaml (markup)-->

 <Application ... StartupUri="MainWindow.xaml" />
This creates and shows a window like the one in Figure 3. Like all windows, Windows Presentation Foundation windows contain a client area (this houses Windows Presentation Foundation content and controls) and a non-client area (a border, a title bar, and the various adornments associated with these).

[image: image3.png](9 Boxapplication
Restore
Move
Size

— Minimize

o Madmize

x Close

Ready

AlteF4

e, 98052
e, 98052

Figure 3 Window and Its Parts
The window that results from Application.StartupUri is modeless, which means it doesn't prevent users from using other windows in the application. Since you haven't created any other windows yet, this isn't so exciting. However, if you need to show other modeless windows, as you'll probably need to do in any nontrivial application, simply call Window.Show:

// MainWindow.xaml.cs (codebehind)

public partial class MainWindow : Window

{

 void helpContentsMenuItem_Click(object sender, RoutedEventArgs e)

 {

 HelpWindow window = new HelpWindow();

 window.Owner = this; // Ensure window always appears above us

 window.Show();

 }

 ...

 }

Windows Presentation Foundation also supports showing a window modally, which means the window prevents other windows in an application from being used. Modal windows are typically (but not always) used as dialogs, to collect data needed for completing a task such as creating a new order. To show a window modally in Windows Presentation Foundation, call Window.ShowDialog (see code below).

// MainWindow.xaml.cs (codebehind)

public partial class MainWindow : Window

{

 void CreateOrder()

 {

 // Place order

 OrderABoxDialog dlg = new OrderABoxDialog();

 dlg.Owner = this; // Ensure dialog box always appears above us

 bool? dialogResult = dlg.ShowDialog();

 // If order details are fine, add order to orders list

 if (dialogResult == true)

 {

 this.orders.Add(dlg.Order);

 }

 }

 ...

}
The Window class also supports typical dialog behavior, which allows users to accept or cancel a dialog and have that choice returned to the calling code for appropriate processing.

Message boxes are a special type of dialog for displaying information to users, or asking them questions, and is supported in Windows Presentation Foundation with the MessageBox type:
// MainWindow.xaml.cs (codebehind)

public partial class MainWindow : Window

{

 void aboutMenuItem_Click(object sender, RoutedEventArgs e)

 {

 MessageBox.Show("Box Application, Version 1.0");

 }

 ...

}

Message boxes, dialogs, windows, and applications form the core of the standalone, menu-driven application development model. And these have been supported by previous presentation technologies for a long time now. However, Windows Presentation Foundation extends these with hyperlink-driven navigation support that begins with the fundamental unit of navigation content—the page.

The Page Class
Page is the Windows Presentation Foundation analog of the HTML Web page, which helped popularize the Web. As I mentioned, Windows Presentation Foundation supports hyperlink-driven navigation in both standalone and browser applications. The content cornerstone of the hyperlink-driven navigation experience in Windows Presentation Foundation is the Page.

You add a markup and codebehind Page definition to your project in Visual Studio 2005 by choosing Project | Add New File | WinFX Page. This generates code resembling what's shown in code.

<!--HomePage.xaml (markup)-->

<Page

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 x:Class="BoxApplicationNavigationWindow.HomePage" ... >

 ...

 <!--Order Content-->

 ...

</Page>

// HomePage.xaml.cs (codebehind)

using System.Windows.Controls; // Page

public partial class HomePage : Page { ... }

The Page markup file is configured as a Page build item. As with Window, this is done so it can be loaded from a URI, which means you can configure Application.StartupUri to automatically load a page when an application starts:
<!--App.xaml (markup)-->

<Application ... StartupUri="HomePage.xaml" />

Because the Page class is not a window, and doesn't derive from Window, it can't host itself. Fortunately, the Application class is smart enough to detect when a particular page is set as the StartupUri. If so, Application creates a window in which to host the page.

Hyperlink Class
Any nontrivial hyperlink-driven application will have more than one XAML page, and you'll need to give your users a way to navigate between these pages. You can probably guess that Windows Presentation Foundation enables hyperlink-driven navigation with hyperlinks. You can add hyperlinks to your pages like so:
<!--HomePage.xaml (markup)-->

<Page ... >

 ...

 <Hyperlink NavigateUri= "OrderingGuidelinesPage.xaml">

 Ordering Guidelines

 </Hyperlink>

 ...

</Page>
This hyperlink is configured to navigate to a XAML page using the same fundamental programming model as HTML HREFs. You specify a URI to navigate to (in this case, OrderingGuidelinesPage.xaml) and the text that users will see and click on to initiate navigation (in this example, "Ordering Guidelines").

Since so much browsable content is located in HTML-based Web pages, it's nice that Windows Presentation Foundation and Hyperlink let you seamlessly navigate to Web-based content. For example, the ordering guidelines already exist on the Box Application's Web site so, rather than replicating them as XAML pages within the application, you can simply change the value of the NavigateUri property:
<!--HomePage.xaml (markup)-->

<Page ... >

 ...

 <Hyperlink NavigateUri="OrderingGuidelinesPage.html">

 Ordering Guidelines

 </Hyperlink>

 ...

</Page>

NavigationWindow
At this point, you might be wondering one of several things. Since Page is not a window, where did the window that's hosting it come from? When a hyperlink is clicked, what actually handles the navigation? And how is HTML Web page content displayed from a Windows Presentation Foundation application? All of these things are taken care of by NavigationWindow.

When you set Application.StartupUri to either a XAML or HTML page, Application (knowing that neither of these can provide its own window) creates an instance of NavigationWindow to host them. NavigationWindow derives from Window and extends its visual appearance to look a little like a browser, as you can see in Figure 4.

[image: image4.png]3 Boxpplcation - Home S
Box Application - Home
Ordering Guidelines Help About
Box Orders

I 70170, 50 b, ot s6122
I 60160 100 B, Recimone, 58052

Order View Delete

Figure 4 Created By NavigationWindow
When a user clicks a hyperlink that appears on a XAML page, Hyperlink asks NavigationWindow to navigate to the specified URI. NavigationWindow proceeds to load the page that is located at the URI, thus hosting it. The URI location from which the page was loaded is stored in the NavigationWindow.Source property, while the loaded page content is available from the NavigationWindow.Content property.

When content changes, navigation is considered to have taken place and the previous content is added to the navigation history. This, too, is managed by NavigationWindow. The navigation UI provides two buttons and dropdown lists for navigation. Note that you are not limited to NavigationWindow's default chrome. Using Windows Presentation Foundation's support for styles, you can easily create your own navigation UI.

Hosting and Deploying WPF applications and Custom Controls

There are two basic methods to deploy a WPF application, by using ClickOnce or Windows Installer. You may also be required to create and deploy your own custom control if the WPF controls that are provided are not suitable.

Hosting and Deploying WPF Applications
Hosting: WPF installed applications are hosted in a stand-alone window. An installed application hosted in its own window enables your application to have full access to system resources. You can also use the application offline, and use all of the extended WPF elements.

The build process creates three files:

1. The .application file is the deployment manifest for an installed application.

2. The .exe.manifest file is the application manifest. This contains the standard application metadata that is created for any managed application.

3. The .exe file is the application’s executable code.

Deployment: You can also create and deploy additional files, such as satellite resource assemblies, as needed.

You can deploy installed applications from a server by using either ClickOnce or Windows Installer. You can also install an application from media such as a CD. You should test your application to ensure it works properly in your target deployment environment.

Security: Installed applications run with the full set of code access security permissions, which enables them to access all system resources, subject to operating system security. Because installed applications run with unrestricted code access security permissions and can potentially access critical system resources, the user must explicitly grant permission to install the application.

Installation: Desktop WPF applications are installed on the user's system until they choose to uninstall it. This type of application appears on the Start menu and in the Add or Remove Programs control panel application.

Guidelines for Creating and Deploying WPF Custom Controls

The WPF control model provides significant extensibility features that reduce the need to create custom controls. However, if you do need to create a custom control, use the following points as guidelines:

Choosing a model

You can use one of the following two basic models to create a custom control:

1. Subclass the UserControl class. This is the simplest method and enables you to use the benefits of rich content, styles, and triggers.

2. Subclass the Control class. This method provides the most flexibility. It enables you to use templates to separate the control’s operational logic from the visual representation.

Creating a custom control

Use the Custom Control Library template in Visual Studio 2005 to create a custom control. If you need to subclass the Control Class, delete the provided User Control and add a Custom Control item to the project.

The control library template automatically creates the required files for you. You must then add properties, methods, and events to the Control class to implement the functionality of the control.

Packaging a custom control

You must package custom controls into a dynamic-link library (DLL) for use by an application. You cannot launch custom controls directly.

Deploying a custom control

There is no deployment manifest, because you can only deploy DLLs with Windows Installer and you cannot use ClickOnce to deploy controls. Components are added to the Add or Remove Programs control panel application but not to the Start menu.

Hosting a custom control

To use a control in a WPF application, create a client application and use the Add References dialog to add a reference to the control library assembly. You must then place an xmlns attribute for the control in the XAML file and create an instance of the control in the XAML file.

The following code example shows how to create the xmlns attribute for a control called myControlCalc in a XAML file and how to create an instance of the control.

<Window x:Class="Window1"

xmlns:myControl="clr-namespace:myControlLibrary;assembly=myControlLibrary">

<Grid>

 <myControl:Calc Name="myControlCalc" />

</Grid>

Interoperating WPF and Other Application Models

WPF provides a rich environment for application development. However, you might already have a significant investment in your current code, which means that you do not want to rewrite your application with WPF. For this reason, WPF provides many opportunities for interoperation with other application models.

WPF Interoperation

The WPF interoperation features let you keep your current code base and start to use WPF at your own pace. You can decide which features and functions you want to keep in your application, and use WPF in the areas of your application that can benefit from the rich functionality that WPF provides.

Technologies

WPF enables you to interoperate with several different technologies. On a single Windows Forms form, you can have Windows Forms controls and WPF controls. On a WPF page or window, you can have Windows Forms controls and WPF controls. WPF can also interoperate with your existing window handle (hwnd) based Win32 code. Moreover, because many technologies use hwnds, including Microsoft Foundation Classes (MFC), Active Template Library (ATL), Microsoft DirectX, and Microsoft ActiveX, WPF can interoperate with all of them.

Win32 Interoperation

To put WPF content inside Win32 applications, use the HwndSource class, which provides an hwnd that contains your WPF content. To reuse Win32 content inside WPF applications, use the HwndHost class, which is a control that makes hwnds look like WPF content.

Limitations to the interoperation features include restricted tabbing through Windows Presentation Foundation and WinForms controls, and the inability of the MIL to support composition between the WPF and hwnd layers.

How to Host a WPF Control in a Windows Forms Application

The Windows STK contains a number of samples that showcase a wide variety of WPF interoperable scenarios.

Here is a specific sample that shows how to host WPF content within a Windows forms application.

This STK sample is called Windows Form Hosting Avalon Control.

On opening the Windows STK sample in Visual Studio 2005, the Solution Explorer panel shows two projects. The first project called WFHost is the Windows Forms project, which defines the host container for the WPF control. The second project called My Controls is a WPF project. This project is a DLL whose content will be hosted within the form. In this case, the content that is hosted is a set of controls that are defined in a Grid control.

Open up the Page1.xaml file. The XAML definitions in the DLL project are no different than in a regular WPF Windows application project.

Open up the corresponding code-behind file Page1.xaml.cs.

The first two lines of the Page1 class define a delegate and an event, which are used to communicate information from the WPF component to the form. This allows the ButtonClick event in the WPF component to propagate a second event that is handled in the Windows forms code.

The Page1.xaml.cs file also defines a custom EventArgs class that will be used to transfer data from the WPF component to the form using an event.

Open up Form1 in design view. The upper right area of the form is where the WPF Page1 object is hosted and view the code for Form1.

The Form1Load method sets up the interoperable bindings between the WPF content and the form by creating an ElementHost control. This is a specialized Windows forms control whose role is to host WPF content.

The next line ensures that the ElementHost control is docked to all edges of its containing control and sized appropriately.

The ElementHost control is then added to the form.

The next three lines create the WPF Page 1 object, initialise it, and add it to the ElementHost control.
The last two lines in the Form1_Load method set up event handlers.

The first event handler OnButtonClick, handles the button being clicked in the WPF component. The second event handler, Loaded, handles the LoadEvent for the WPF component by initialising values. It is the responsibility of the WPF component to route events to its host container.

The OnButton event handler shows that once the interoperable bindings between the WPF component and Windows forms have been set up, the form can receive event notifications.

In this case, the form responds by setting form control values to WPF control values that are passed as event arguments.

Form1 contains several event handlers that modify WPF component properties. For example, a radio button changes the background of the WPF Page1 object to a salmon color by directly referencing the property exposed in the Page1 object.

Press F5 to build and run the application.

You can see the WPF component in the upper-right of the form. Type in John Doe, and click the OK button. The event handler in the WPF component generates a second event that is handled by the form. The form retrieves data from the event arguments and displays it in a form control.

If you click the light salmon radio button, the form directly references the WPF Page1 object property and changes the background color of Page1.

Understanding the WPF Application Object Model

After you have chosen which type of WPF application to create and have implemented the basic application, the next step is to add additional development features to the application. You must add functionality to manage the application object and implement features such as event handling.

This section covers the application object model and explains features such as navigation and window management in WPF applications. The section also introduces the most commonly used features of the programming object model, including data binding, events, and resources.
All applications that use WPF are associated with an Application object that enables the system to communicate with the application. You must understand how to use the Applicaton object to turn your pages into a coherent application.

This section describes the WPF Application object model. It begins with an overview of the Application object.
Introduction to the Application Object

WPF provides the Application object model to enable you to make a collection of XAML pages into a functional application. All WPF applications are associated with a global Application object, which acts as an interface between your application and the operating system.

You can use the Application object to manage your XAML pages, as described in the following table.

Creating the object

For XAML-based applications, WPF creates the Application class at compile time from an application definition file, which consists of a XAML file and an optional code-behind file. If you create an application by using a Microsoft Visual Studio 2005 template, Visual Studio 2005 automatically creates the application definition file for you. The root element of the application definition file must derive from or be Application.

If you write your application in procedural code, you typically implement a custom class that inherits from Application.

Handling events

1. Application-Related Events

The Application object provides several application-level events. These are Startup, Activated, Deactivated, SessionEnding, and Exit.

Each event also has a virtual method. You can override this method to raise, suppress, or forward the event.

2. Navigation-Related Events

The Application object raises navigation-related events, such as Navigating, when navigation takes place in any application window.

Sharing information
If you need to share data between the pages of an application, use the Properties collection of the Application object. Any page can retrieve the data because the Application object is global to all the pages.

You can store any object type in the collection. To do this you assign the object a key string and then use the same string to retrieve the data.

Exiting the application

Call the Shutdown method of the Application object to exit your application.

The system then raises the Exit event. Use the ShutdownMode property to control how your application shuts down.

If the user logs off or shuts down the system while the application is still running, the Application object raises the SessionEnding event and then calls Shutdown.

For XAML-based applications, WPF creates the Application class at compile time from an application definition file, which consists of a XAML file and an optional code-behind file. If you create an application by using a Microsoft Visual Studio 2005 template, Visual Studio 2005 automatically creates the application definition file for you. The root element of the application definition file must derive from or be Application.

If you write your application in procedural code, you typically implement a custom class that inherits from Application.

Sample Application Object

The following example shows the application definition file for a typical XAML application.

<Application x:Class="MyApp"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 StartupUri="Window1.xaml">

</Application>

The following example shows how to create a Windows Presentation Foundation Application object by using procedural code.

public class MyApp : Application

{

 StackPanel rootPanel;

 Window win;

 protected override void OnStartup(StartupEventArgs e)

 {

 win = new System.Windows.Window();

 rootPanel = new StackPanel();

 win.Content = rootPanel;

 win.Show();

 }

}

internal sealed class TestMain

{

 [System.STAThread()]

 public static void Main()

 {

 MyApp app = new MyApp();

 app.Run();

 }

}

The following example shows how to handle the Activated event for an application.

The first step is to declare the name of the event handler in the XAML file for the application.

<Application

…

Startup="MyApp_Startup"

Activated="MyApp_Activated"

Deactivated="MyApp_Deactivated"

SessionEnding="MyApp_SessionEnding"

Exit="MyApp_Exit" >

…

</Application>

You can then create the event handlers in the code-behind file.

private WorkTimer timer1 = new WorkTimer();

void MyApp_Startup (object sender, StartupEventArgs e)

{

 // Start timing when application starts.

 this.timer1.Start();

}

private bool isApplicationActive;

void MyApp_Activated(object sender, EventArgs e)

{

 this.isApplicationActive = true;

}

void MyApp_Deactivated(object sender, EventArgs e)

{

 this.isApplicationActive = false;

}

void MyApp_SessionEnding(object sender, SessionEndingCancelEventArgs e)

{

 // Ask the user if they want the session to end.

 string msg = string.Format("{0}. End session? ", e.ReasonSessionEnding);

 MessageBoxResult result = MessageBox.Show(msg, "Session Ending", MessageBoxButton.YesNo);

 // Cancel end of session, if specified

 If (result == MessageBoxResult.No)

 {

 e.Cancel = true;

 }

}

void MyApp_Exit(object sender, ExitEventArgs e)

{

 // Stop timing when application exits.

 this.timer1.Stop();

}

The following examples show how to store an object type in the Properties collection and how to use the key string to retrieve the stored information.

// Assign the object a key string

MyApp.Current.Properties["TextFromPage1"] = txtBox.Text;

// Retrieve the information

string appPropertyValue;

appPropertyValue = (string)MyApp.Current.Properties["TextFromPage1"];

The following examples show how to call the Shutdown method of the Application object.

Application.Current.Shutdown();

When you develop a WPF application, the user interface and the application presentation are very important. However, it is also crucial to implement the functionality of the application correctly. For this area of development you must make use of the WPF programming object model, which provides features such as event handling, resources, and data binding.

Navigation in WPF Applications

WPF applications often contain a series of pages and the user must navigate from page to page to progress through the application. WPF provides standard and structured navigation, as described in the following animations.

1. Standard Navigation

Many applications that are built with Windows Presentation Foundation consist of a collection of pages.

As the users of an application proceed through these pages, they unload the current page and load the next page, which is called the target page.

The two standard navigation containers are the NavigationWindow and the Frame.

A NavigationWindow automatically provides buttons for forward and back navigation. The user’s navigation history in the window is recorded in a Journal.

A Frame is typically part of a larger page. When you navigate within a frame, the target page fills the frame but the rest of the page does not change.
Navigation containers support the NavigationService class.This class provides a set of properties, methods, and events that you can use to control the navigation of the containers in your application.

One common way to initiate navigation is to add a hyperlink tag to a page and set the NavigateUri attribute of the hyperlink to the URI string of the target page. When a user clicks the hyperlink, the container navigates to the specified page.

For a more flexible approach, you can use the Navigate method of your navigation container. This enables you to set the URI that you want to navigate to at run time. The system creates and initializes a new page object for you.

You can also create the target page object explicitly and pass the page object to the Navigate method.

Other methods that you can use for navigation include setting the Source property or the Content property of a page, and using the Refresh method to reload the current page.
While the new page loads, you can track its progress by handling events. For example, you can use the Navigating event to prevent navigation from taking place and the LoadCompleted event to check when the page has been loaded and parsed.

2. Structured Navigation

Current approaches to navigation can be inflexible, so Windows Presentation Foundation introduces a structured navigation framework that you can use to control the flow of a program.

Structured navigation is useful when you need to guide users through a complex procedure or series of steps. You must implement a PageFunction class for each structured navigation page. The system keeps track of navigation in the journal, and you can call the OnReturn method to return to the previous page.

Structured navigation pages are organized in a topology. Fixed topologies are defined in advance, while adaptive topologies modify themselves in response to user interaction. You can define three types of topologies in Windows Presentation Foundation applications.

A fixed linear topology consists of a predefined sequence of pages. The user interface typically enables the user to navigate to the next page in the sequence or cancel the application. The user is typically returned to the page that originally called the start page if they cancel the application or complete the final page.
A fixed hierarchical topology consists of a set of pages that are organized in a hierarchy. Each page has a user interface that enables users to select from several navigation options.

When users reach the end of a branch or decide to cancel the operation, they return to the page that originally called the start page.

A simple adaptive technology enables you to construct the topology dynamically at run time. The user might navigate to a data entry page and then return to a navigation hub page.

Based on the data, the navigation hub decides which pages are presented to the user and in what order. After each page, the user is returned to the navigation hub and then presented with the next page. When the user has finished the final page, they return to the original calling page.

How to Manage Windows in WPF Applications

This simple navigation demo shows how to create and manage a navigation window object.

If you set StartupUri to a page object, WPF automatically creates and opens a navigation window to host the content in, or run the application. Notice the chrome or navigation controls that allow you to move forward and backwards to view previous content. Click the hyperlink object to display page 2.

The Page1.xaml file contains a definition of the hyperlink. The NavigateUri property is set to Page2.xaml. When the link is clicked the page is displayed.

Click the back button to return to Page 1. This time click the first button to go to Page 2.

The Page1.xaml.cs file contains a procedural code that specifies the navigation. The button GoToPage2 definition calls the navigate method with the parameter set to Page2.xaml. Notice that the navigation window value is derived from the main window of the application object.

Next, click the second button, which assigns a new URI to the navigation window. The button GoToURI definition sets the source property of the navigation window to the desired URI. In this case, the home page of Microsoft.

Next, click the third button, which creates a new instance of Page 2 and displays its content. The button NewContent definition creates a new instance of Page 2, initialises it, and then sets the Content property, the navigation window, to Page 2.

Click the last button to create an entirely new window, so that two windows are now displayed. The button New definition creates a new instance of a window, initialises it, and then calls its Show method.

When I click the Go To Page 1 button the window closes. The window closes because the NewWindow.xaml.cs file contains an event handler for the button. The event handler calls the Close method for the window object, which immediately terminates execution of the window.

Run a simple application that displays both a dialog box and a message box.

Click the Launch Dialog Box button to display a dialog box. The dialog box that appears is a modal window, which means you cannot continue running other parts of the application until you respond to the dialog box. In this case, you need to click OK or Cancel, to continue running the application.

Enter the string ‘Hello, world’ in the text box. Next, click the OK button to return control back to the main part of the application.

The application displays the Return Value and the string you entered in the dialog box. The code for displaying the dialog box is defined in the application’s LaunchDialogBox method. The first four lines of the method create an instance of the dialog box, set its size, and initialise it.

The next line calls the ShowDialog method, which is responsible for displaying the dialog box. Notice that the ReturnValue is a Nullable Boolean value. This means that the Boolean value can either be True, False, or Null. The last two lines of the method display the ReturnValue and the entered string. The entered string is stored in the Properties collection of the application object so it can be retrieved by different parts of the application.

Click the Launch Message Box button to display a message box. The message box that appears is a modal window. You need to click Yes or No to continue running the application. Now, click the Yes button. The application displays the Return Value of the message box.

The code for displaying the message box is defined in the application’s LaunchMessageBox method. The message box object is a special purpose WPF object for displaying the typical types of message boxes you would use in an application. This version of the Show method takes a message string, a caption string, a message box button enumerated value, and a message box image enumerated value, and the last line displays the ReturnValue in the application.

WPF Programming Object Model

When you develop a WPF application, the user interface and the application presentation are very important. However, it is also crucial to implement the functionality of the application correctly. For this area of development you must make use of the WPF programming object model, which provides features such as event handling, resources, and data binding.

WPF Base Objects

A significant number of WPF classes inherit from a few base element classes. These classes in turn inherit from the DependencyObject class. If you need to create your own custom class, then you must decide which of the base element classes to inherit from.

[image: image5.png]

WPF Event Model

Applications respond to events. For example, when a user clicks a button, an event is raised. Your application must handle the event to respond to the user. XAML allows you to map between events on your elements and the event handler you write. First, identify the element that you want to be the event listener.

Add the name of the event as an attribute, and set the value of the event attribute to the name of your event handler. You must then write a method to handle the event.

The handler you write must have the same signature as the delegate declared by the event, which in this case is RoutedEventHandler. The first parameter of an event handler delegate specifies the element that the event handler is attached to, and the second specifies any data for the event.

You place the code that implements the handler in a related “code-behind” file. This enables you to keep the procedural code separate from the declarative markup. A typical application contains a hierarchical tree with many levels of elements.

For example, you might have several text fields grouped inside a panel. Instead of creating an event handler for each text field, you can place a common event handler on the panel, for example, to perform numerical validation, which is the parent of all three text fields.

This takes advantage of a process known as routing. The routed element model informs multiple elements about an event, typically until one of the elements marks the event as Handled.

Bubbling works up the element tree by first notifying the target element, then the target’s parent element, then the parent’s parent element, and so on.

Tunneling is the opposite process. It starts with the root element and works down until it reaches the target element.

Data Binding in WPF Applications

This walkthrough uses XAML pad to create a WPF application that links RSS content to WPF controls using data binding.

XAML pad is a Window’s STK tool that allows you to easily prototype and test XAML content.

The XAML markup code that is created in XAML pad can be easily copied and pasted into XAML files that are part of a Visual Studio 2005 WPF project.

1. Create a XAML pad application that only defines a StackPanel control. The StackPanel allows you to order other controls in a defined layout format. The only attributes defined for the StackPanel element are the XML namespace references for WPF.

2. Add a label, which will contain the title of the RSS fee. Add a second label, which will contain the description of the RSS fee.

3. Next, add a list box on the left-hand side, which will contain a list of all the posts.

4. Finally, add a frame on the right-hand side, which will contain the content of the currently selected post.

5. Wrap the list box and frame objects with a DockPanel object, which allows you to dock containing objects to specific areas of the DockPanel.

6. Although the containing objects appear in the correct areas of the DockPanel, explicitly dock the list box to the left-hand side, and the frame to the right-hand side.
7. At this point the user interface is defined. The next step is to data-bind the user interface to a data source. In this case, it is a well formed XML that represents an RSS fee.

8. In order to create a data source, you need to define a resources section for the StackPanel object.

9. The resources section allows you to share resources across all objects contained within the StackPanel.

10. Define an XmlDataProvider object, which allows you to bind to a data source that can be referenced by the key attribute.

11. The next step is to data-bind the label to the data source by using the WPF binding syntax.

12. The binding syntax uses a data source reference, which was defined as a StackPanel resource called blog. The binding syntax also uses an XPath reference that points to the specific element in the RSS data source. In this case the title.

13. Bind the second label to the same data source as the first label but reference the description element in the RSS data source.

14. Format the two label objects so they are easier to read. By using XAML pad, you can instantly see any changes you make to the XAML.

15. The next step involves creating the master detailed relationship for the data bound list box and frame objects.

16. This relationship needs to be synchronised so that whenever a post in the list box is selected, the contents of the post appear in the frame.

17. In order to synchronise the objects, create a data context for the DockPanel, which allows you to share data among multiple controls. The data that is shared is the item element in the RSS data source.

18. Bind the list box to the item element in the RSS data source. This means that each item in the list box is bound to each item element in the RSS data source. The binding syntax, in this case, defaults to the parent value, so you do not need to provide the entire XPath reference.

19. Bind the frame to the link element in the RSS data source. Notice that the binding syntax is relative to the parent, so only the relative path needs to be specified.

20. Also, notice how the frame can render HTML correctly. At this point the list box items contain both the title and content of the post.

21. In order for the items to display correctly, a data template needs to be applied to the list box, which will cause only the title portion of the content to be displayed.

22. The data template is defined as a resource for the StackPanel object.

23. The list box can now use the data template to correctly format its items.

24. In order for the frame to correctly display the contents of the currently selected list box item, set the IsSynchronizedWithCurrentItem property to True.

25. Now, when you select a post, the current content appears.

WPF Resources

Resources enable you to reuse commonly defined objects and values, as described below.

Standard Resources

You can define resources in XAML or in procedural code. When you use XAML to define a resource you must assign a unique key to each resource by using the X:Key attribute.

You can define resources on any element; however, they are usually defined on a root element such as Stack Panel. When you define a resource on the root element, all the elements on the page can access it, and you only need to define the resource once.

You often use a resource to define a Style because you usually create a Style for reuse.

Application Resources

Use application resources to create resources that you can apply to every page in your application. To do this you must place the resource in the application definition file for the application.

You can reference the application resource by using the unique key or identifier for the requested resource. The lookup scope for a resource continues into the defined application level resources if the application cannot find the resource in the current page.

System Resources

System resources expose system metrics to help you create elements that are consistent with system settings.

For example, the SystemColors class contains system colors, brushes, and resource keys that correspond to system display elements. The SystemFonts class contains properties that expose fonts, and the SystemParameters class enables you to query system settings.

You can use either static or dynamic system resources. Use a dynamic resource if you want the metric to update automatically while the application runs. Dynamic resources have the keyword Key appended to the property name.

You can define resources in XAML or in procedural code. When you use XAML to define a resource you must assign a unique key to each resource by using the X:Key attribute.

You can define resources on any element; however, they are usually defined on a root element such as Stack Panel. When you define a resource on the root element, all the elements on the page can access it, and you only need to define the resource once.

You often use a resource to define a Style because you usually create a Style for reuse.

The following example shows how to define and reference a standard resource.

<StackPanel Name="Sp1">

 <StackPanel.Resources>

 <Style TargetType="{x:Type TextBlock}" x:Key="TitleText">

 <Setter Property="FontStyle" Value="Italic"/>

 </Style>

 </StackPanel.Resources>

 <TextBlock Style="{StaticResource TitleText}">Title</TextBlock>

</StackPanel>

StackPanel sp = new StackPanel();

Style st = new Style();

st.TargetType = typeof(TextBlock);

Setter set1 = new Setter();

set1.Property = TextBlock.FontStyleProperty;

set1.Value = FontStyles.Italic;

st.Setters.Add(set1);

sp.Resources.Add(Title, st);

// reference the resource in a TextBlock

TextBlock tb = new TextBlock();

tb.Style = (Style)sp.Resources.[Title];

tb.Text = "Title";

this.Content = tb;

The following example shows how to define and reference an application resource.

Create the application resource in the application definition file.

<Application.Resources>

 <Style TargetType="{x:Type Label}" x:Key="MyLabel">

 <Setter Property="FontStyle" Value="Italic"/>

 </Style>

</Application.Resources>

To reference the application resource, refer to the key of the resource in a XAML file.

<Label Style="{StaticResource MyLabel}">MyText</Label>

// Create an instance of the ResourceDictionary class

Private ResourceDictionary rd = new ResourceDictionrary();

Style st = new Style();

st.TargetType = typeof(Label);

Setter set1 = new Setter();

set1.Property = Label.FontStyleProperty;

set1.Value = FontStyles.Italic;

st.Setters.Add(set1);

rd.Add(Title, st);

// reference the Application resource in a Label

Label lbl = new Label();

lbl.Style = (Style)rd[Title];

lbl.Content = "Title";

this.Content = lbl;

The following samples show how to use brush references to set the background and foreground of a button. (System Resources)

<Button Content="Good morning!" Height="100" Width="100"

 Background="{x:Static SystemColors.DesktopBrush}"

 Foreground="{x:Static SystemColors.ControlLightBrush}" />

Button b1 = new Button();

b1.Height = 100;

b1.Width = 100;

b1.Content = "Good morning!";

b1.Background = SystemColors.DesktopBrush;

b1.Foreground = SystemColors.ControlLightBrush;

this.Content = b1;

WINDOWS COMMUNICATION FOUNDATION
What is WCF?

WCF is the Microsoft next generation technology for developing distributed applications.

WCF has been built to facilitate the development of service-oriented applications. The communication between loosely coupled clients and services is based on a model that uses schemas and contracts, rather than classes and types. Schemas and contracts are language, platform, and implementation independent, so this model provides benefits in maintainability, reusability, and manageability. In addition, loosely coupled services tend to model real-world systems.

WCF can communicate by using Web services, so it can interoperate with other platforms that can use SOAP, such as Java 2, Enterprise Edition (Java EE). WCF also supports many of the advanced WS-* Web service standards, which can provide rich Web service communication across platforms. WCF can be extended to use protocols other than SOAP to communicate with Web services, for example, Rich Site Summary (RSS).

WCF provides low-level asynchronous operations for passing untyped primitive messages. Higher-level services are layered on top, including typed messages, secure message exchange, reliable message exchange, transacted messaging, and queued messaging.

WCF has been designed to integrate and unify existing distributed computing technologies. It is interoperable with WSE 3.0, System.Messaging, .NET Enterprise Services, and ASMX Web services. This means that, with little or no change to code, existing applications that are built with these technologies can interoperate with WCF services.
What Is the WCF Service Model?
WCF services expose endpoints that clients and services use to exchange messages. Each endpoint consists of an address, a binding, and a contract.

[image: image6.png]

The address identifies where the service is located on the network. The address format is protocol specific. Addresses can be specified in code or in configuration files. Configuration files are preferable, because they enable an administrator to configure addresses at deployment time.

The binding defines how the client needs to communicate with the service. For example, a binding defines the underlying transport protocol, security requirements, and message encoding.

WCF provides several standard bindings whose behaviors can be modified in configuration files. For example, BasicHttpBinding exposes an HTTP-based WCF service that encodes SOAP messages in text format. This binding is used for interoperability. WsHttpBinding adds support for advanced Web service features, such as transactions and reliable messaging. NetMsmqBinding uses Microsoft Message Queuing, or MSMQ, as the transport.

The contract defines what the service can do. WCF specifies attributes that can be used to define contract types, including those that define service operations, messages, data types, and fault behavior. A service contract defines the operations that are available at the endpoint. A service contract is defined by a .NET Framework interface that has added WCF attributes. A class, called the service type, implements the interface to provide the implementation of the service operations.

To make your WCF services widely accessible, you can use ASP.NET and Internet Information Services, or IIS, to host HTTP-based WCF services. In addition, you can use any .NET Framework application to host your WCF services by using the ServiceHost class. The service can provide metadata about its endpoints to clients in the form of Web Service Description Language, or WSDL.

Client-side tools can use WSDL, to generate a proxy through which the client communicates with the service. The proxy contains a client that is capable of invoking the service contract WSDL specifies, and configuration information provides address and binding information.

Scenarios for Building WCF Applications

WCF can be used wherever application functionality needs to be distributed. The following table describes several of the many scenarios within which you might use WCF.

Application:

Application scenarios use WCF clients and services. Typical scenarios include client-server, business-to-business (B2B), business-to-consumer (B2C), smart client to Web service and the WCF Peer Channel.

Example scenario: Peer Channel

With a peer-to-peer application, each instance acts as the peer of other instances. Instances use a duplex contract to send and receive messages to from other instances. Peer channel is a peer-to-peer communication technology in WCF that enables secure, scalable, and reliable messaging.

One type of application that can benefit from Peer Channel is a collaborative chat application, where a group of people might chat in a peer-to-peer manner without requiring servers. Each instance of the chat application creates a duplex Peer Channel to the same endpoint address. Therefore, the message sent by one instance of a chat application on its Peer Channel is received by all other instances because they all use the same address.
Interoperability

WCF services can interoperate with other platforms and technologies. Typical scenarios include interaction with a Web service, a Java EE application, and with other messaging services, such as IBM WebSphere MQ or TIBCO.

Example scenario: Web service to WCF service

A typical interoperability sample might be to use a Web service (asmx) client with a WCF service. The service implements a contract that defines a request-reply communication pattern. The Web service client makes synchronous requests to a given operation of the service and the service replies with the result. The service exposes the endpoint at the base address provided by the IIS host. The asmx client communicates with the service by using a typed proxy that is generated by the WSDL.exe utility. The client uses a configuration file to specify the endpoint with which it wants to communicate.
Messaging

WCF provides powerful mechanisms for inter-process communication between the components of a server-based application. Messaging scenarios with WCF include publisher-subscriber and router.

Example scenario: Publisher-subscriber

A publisher-subscriber scenario might involve a client in manufacturing automation that subscribes to the states of various devices. The client can subscribe to the service, receive state information as notifications, and unsubscribe. Data source programs send information to the service to be shared with all current subscribers. The service might use duplex communication and implement subscribe and unsubscribe service operations, which clients use to join or leave the list of subscribers.

Example scenario: Router

Communication scenarios often involve SOAP intermediaries, which perform various actions on the message that passes through it. One example is a WCF service that acts as a router to route messages to the appropriate service based on their content. The service’s application endpoint is only accessible from the internal network. The service’s metadata exchange endpoint is accessible publicly. The SOAP router is part of the internal network and all application requests coming from outside the internal network must pass through it. The WSDL provided by the service contains the address of the SOAP intermediary rather than the address of the actual service.

Infrastructure

WCF provides the capability to create infrastructure components, for example, a Security Token Service (STS) that provides single sign-on capabilities for applications on multiple platforms. WCF provides out of the box support for Federated security, which enables collaboration across multiple systems, networks, and organizations in different trust realms.

Example scenario: Federated security

Users in Organization A want to use a service that belongs to Organization B. Organization A users can present credentials to Organization B before they access the resource. However, this approach is not scalable. An alternative is to employ Federated security. Organizations A & B establish a trust relationship and employ STSs for brokering of the established trust. The user obtains a token from the STS at Organization A and presents the token to the STS at Organization B. The latter performs authorization of the user’s request and issues a security token to the user. The user can then present this token to the service at Organization B.

WCF Features for Developers of Service-Oriented Applications

Productivity Enhancements in WCF

WCF introduces a number of features that enhance the productivity of service developers.

These features include:

Unified Programming Model

Until now, a developer of distributed applications would require specialist knowledge of a number of different technologies. Programming models, such as COM+, MSMQ, Web services, and .NET Framework remoting, are each designed for use in particular scenarios, and they each require specialist knowledge to be used correctly.

WCF provides one model for writing distributed applications, which uses the features of existing programming models so developers need to learn fewer technologies, and WCF also provides greater flexibility in deployment.

Many WCF features can be specified declaratively, by using .NET Framework attributes in code. Many features can also be specified by using configuration files, which makes it easy for administrators to configure applications at deployment time.

Tooling Support

WCF provides a number of tools that make it easier to create, deploy, and administer WCF applications.

	Tool Name
	Description

	COM+ Service Model Configuration Tool (ComSvcConfig.exe)
	 Existing COM applications can use the WCF Service moniker. The WCF Service moniker provides a representation of the service contracts and bindings for WCF Web services that is both strongly typed and COM-visible, and enables developers of COM+ applications to expose one or more interfaces on a COM+ component as Web services.

	Configuration Editor (SvcConfigEditor.exe)
	 Enables administrators and developers to create and modify configuration settings for WCF services by using a graphical user interface.

	Find Private Key Tool (FindPrivateKey.exe)
	Retrieves a private key from a key store, for example, the name and location of the private key file that is associated with a particular X.509 certificate.

	ServiceModel Metadata Utility (svcutil.exe)
	Generates service model code from metadata, and metadata from service model code. Most often used to generate client-side proxies to WCF services.

	ServiceModel Registration Tool (ServiceModelReg.exe)
	Manages the registration of the WCF ServiceModel with Internet Information Services on a single computer. It can be used to register, unregister, and re-register WCF.

	TraceViewer Tool (SvcTraceViewer.exe)
	Enables developers and administrators to view, group, and filter trace messages that relate to WCF services.

	WS-AtomicTransaction Configuration Utility (wsatConfig.exe)
	Configures WS-AtomicTransaction support settings, such as ports, certificates, and accounts.

Reduction in Code

Most of the features that WCF applications require are already provided. Unlike previous technologies, there is no need for the WCF developer to write quantities of boilerplate code.

Features of WCF that enable a reduction in the amount of code include the following:

· Secure, reliable, and transacted interoperability, through built-in support for the WS-* specifications. This feature reduces the amount of infrastructure code required to achieve heterogeneous interoperability.

· Declarative attributes that are used to specify the functionality of a service.

· Declarative configuration files that contain XML tags and procedural code. Declarative configuration enables changes to be made without the requirement to re-compile the application.

· Tools are provided that can automatically generate the proxy file that is used to perform the communication between a client and a service. These tools include the Add Web Reference option in Visual Studio 2005 and the svcutil tool.

Message Logging and Tracing

WCF provides a comprehensive set of logging and tracing features that use the standard .NET System.Diagnostics tracing mechanism. WCF applications can log messages at transport or service level, and they can also log the output from trace statements in code. Tracing levels are configurable, so that only trace messages that have a given severity level are logged. The TraceViewer Tool can be used to examine WCF trace logs.

WCF itself logs internal events to the Windows Event Log, where they can be viewed using the Event Viewer.
Service-Oriented Development in WCF

Windows Communication Foundation, which is based on the .NET Framework, has been designed to support a service-oriented model for application development, in which loosely coupled services and clients share descriptions of operations and data types in the form of schemas and contracts.

In WCF, clients and services exchange messages, as opposed to the remote method invocation that is common in other distributed technologies, such as DCOM. Messages are contained within SOAP envelopes, and can be rendered in a variety of ways for transmission. Services publish contracts that define message exchange patterns. WCF supports three message exchange patterns.

In one-way messaging, also known as simplex messaging, a client sends a message to a service without expecting a response.

In request-response messaging, a client sends a message to a service, and waits for a reply.

In duplex messaging, the client and service communicate freely with each other without the synchronization that request-response messaging requires. Duplex messaging is used to implement asynchronous communication.

[image: image7.png]

In addition to message exchange patterns, contracts also define the structure of the messagesand the data types that are passed to and from services. Developers define contracts in code by using .NET Framework interfaces, classes, and attributes.

WCF contracts are published in standard XML metadata format. Clients can use the WSDL metadata to create proxies through which to communicate with services. Communication protocols are specified declaratively outside of the business logic code. This means that developers do not have to be concerned about how the service is going to be accessed. It also aids deployment, and further decouples the client and service.

WCF Interoperability and Integration

WCF has been designed to support a high degree of interoperability and integration.

Web Service Interoperability

WCF has built-in interoperability with Web services (including ASMX) through its support for the WS-I Basic Profile 1.1.

In order to provide interoperability with advanced Web services, WCF also supports a number of the WS-* Web service standards, including WS-Policy, WS-Addressing, WS-ReliableMessaging, and WS-AtomicTransaction.

Integration with MSMQ and COM+

WCF can act as the client or server to existing MSMQ applications. Using the MSMQ integration channel, WCF clients and services can exchange classic MSMQ messages with MSMQ applications.

Existing component-based application logic hosted in COM+ can be exposed as Web services. Each exposed COM class will be represented by a service, the contract for which is derived directly from the component's interface definition. The COM+ Service Model Configuration tool (ComSvcConfig.exe) is used to create Web services to represent COM interfaces.

Existing COM applications can use the WCF Service moniker, which provides a strongly-typed COM-visible representation of the service contracts and bindings for WCF Web services.

Support for Extensibility

WCF can be extended to support new communications standards and proprietary protocols, allowing WCF applications to interoperate with other platforms, technologies and third-party tools.

Creating WCF Services and Clients

This section describes how to configure WCF services and clients. It also introduces the fundamental requirements for creating a service and provides further details about the available bindings and behaviors for service configuration.
Creating a WCF Service

WCF Contracts

WCF contracts define the behavior of WCF services. They are created in code by service developers, and are exposed to clients in the service metadata. The five types of contracts are described in the following table.

Service Contracts

A service contract defines the operations that a service supports, and maps to a portType in Web Service Description Language (WSDL). Service contracts are implemented as .NET Framework interfaces that are annotated with the ServiceContract attribute.

 [ServiceContract]

 public interface IMyContract { ...}
Operation Contracts

Operation contracts define the individual operations that a service supports and map to operations in WSDL. Operations are defined by adding methods to a Service Contract interface that is annotated with the OperationContract attribute.

 [OperationContract]

 void SomeOperation();
Data Contracts

Data contracts define how complex types are serialized when they are used in WCF service operations. They are defined by applying the DataContract and DataMember attributes to classes.

 [DataContract]

 public class SomeType{ [DataMember] public int ID;}

Message Contracts

Message contracts describe the entire SOAP message format. They can use data contracts and serializable types to emit schema for complex types, and they also make it possible to control the SOAP message headers and body explicitly, by using a single type. Message contracts provide a simple method to add custom SOAP headers to incoming and outgoing messages.

 [MessageContract]

 public class MyRequest {

 [MessageHeader] public string field1;

 [MessageBody] public string field2;

 }

Fault Contracts

A WCF service reports errors by using Fault objects. Fault contracts document the errors that WCF code is likely to produce, and WCF maps Fault objects to SOAP faults. Note that the type specified in the FaultContract does not have to be an exception, although it often will be.

 [OperationContract]

 [FaultContract(typeof(DivideByZeroException))]

 void SomeMethod();

A Fault is generated by throwing a FaultException:

 throw new FaultException<DivideByZeroException>(someException);

The Process of Implementing a Service Contract

A WCF service publishes the operations that it supports by using a service contract. This contract defines the operations that the service provides, without specifying how the operations should be implemented. It therefore makes sense to model service contracts as .NET Framework interfaces that specify method signatures without providing implementation.

To specify a contract, create an interface and apply the ServiceContract attribute to show that it defines a WCF service.

 [ServiceContract]

 public interface IOrderService

 {

 }

Add methods to the interface, and apply the OperationContract attribute to the methods to show that the service supports these operations. Only methods that are qualified by the OperationContract attribute are service operations, and can be exposed to clients. However, methods that have not been qualified by the OperationContract can be used by the rest of the service implementation code in the same way as normal managed methods.

The following code example shows how to define a WCF service contract by using a .NET Framework interface. The ServiceContract attribute is applied to the interface, and each of the methods defined in the interface has the OperationContract attribute applied to it. Note that any methods that are not marked with OperationContract are not visible to clients.

[ServiceContract]

public interface IOrderService

{

 [OperationContract]

 void CreateOrder(int orderNumber);

 [OperationContract]

 void AddItemToOrder(int orderNumber, Item itm);

 [OperationContract]

 Order GetOrderDetails(int orderNumber);

}

A WCF service is implemented by creating a class that implements the service interface. Although the example code shows only one interface being used, service classes can implement as many service interfaces as required.

The following code example shows how to implement a WCF service contract by using a .NET Framework class that implements a service contract interface. Note that the implementing class does not require any special attributes.

public class OrderService : IOrderService

{

 void CreateOrder(int orderNumber)

 {

 // implementation details

 }

 void AddItemToOrder(int orderNumber, Item itm)

 {

 // implementation details

 }

 Order GetOrderDetails(int orderNumber)

 {

 // implementation details

 }

}

.NET Framework primitives and objects can be used as parameters and return values, but objects if they are to be used in service operations they must be serializable. Many .NET Framework types, such as System.DateTime, can be used directly in service operations without making any changes to the types.

Custom types that are to be used in service operations are defined by applying the DataContract attribute to a class, and then adding DataMember attributes to fields and properties to show which members are to be exposed to clients. The information that you provide in the service and data contract definitions is used to build a WSDL file, which clients can then use to access the service.

The following code example shows how to implement a WCF data contract. The DataContract attribute is used to define a data contract class and DataMember attributes define the class members that take part in the contract.

[DataContract]

public class Order

{

 [DataMember]

 public int OrderNumber;

 [DataMember]

 public String ClientName;

 ...

}

Options for Hosting a WCF Service

WCF is flexible because its services can be hosted in different types of applications. The following table lists several common scenarios for hosting WCF services.

IIS WCF services can be hosted within Internet Information Services (IIS), which provides a number of advantages if the service uses HTTP as its transport. There is no requirement to write hosting code as part of the application and IIS automatically activates service code as required. Services also benefit from IIS features such as management of process lifetime and automatic restart after configuration changes.

Services can be run within IIS by creating a .svc file, which contains the service code, and a configuration file, which contains binding information, and then saving them in an IIS virtual directory.

WAS Windows Activation Service (WAS) is the new process activation mechanism that is a feature of IIS 7.0. WAS builds on the existing IIS 6.0 process and hosting models, but is no longer dependent on HTTP.

Although IIS 7.0 uses WAS over HTTP, WCF can use WAS to provide message-based activation over other protocols, such as TCP and named pipes. This helps WCF applications to take advantage of WAS features, such as process recycling, rapid fail protection, and the common configuration system, which were previously available only to HTTP-based applications.

Self-hosting WCF services can be hosted inside any managed application, such as console applications and Windows Forms or Windows Presentation Foundation (WPF) graphical applications.

A developer creates a class that implements a WCF service contract interface, and specifies binding information in the application configuration file. The application code can then use an instance of System.ServiceModel.ServiceHost to make the service available at a particular Uniform Resource Identifier (baseAddress in the following code example).

 ServiceHost myHost = new ServiceHost(typeof(MyService), baseAddress);

The service is started by calling the Open method on the host:

 myHost.Open();

Managed Windows Service A WCF service can be registered as a Windows Service, so that it is under control of the Windows Service Control Manager (SCM). This is suitable for long-running WCF services that are hosted outside of IIS in a secure environment and are not message-activated. The WCF service benefits from the features of Windows Services, such as automatic start at start time and control by the SCM.

To host a WCF service in this way, the application must be written as a Managed Windows Service by inheriting from System.ServiceProcess.ServiceBase. It must also implement a WCF service contract interface and then create and open a ServiceHost to manage the WCF service.
WCF Bindings

A WCF binding is an object that specifies how to connect to the endpoint of a WCF service, and each endpoint must have a binding associated with it. WCF ships with a number of predefined bindings that cover most common scenarios, although it is also possible to create custom bindings.

What do Bindings Define?

A binding contains the following three categories of information:

1. Protocol information, such as the security mechanism that is being used, and the reliable messaging and transaction settings.

2. Information about the underlying transport protocol to use, such as TCP or HTTP.

3. Information about the message encoding, for example, Text or XML, Binary, or Message Transmission Optimization Mechanism (MTOM).

Bindings contain a collection of binding elements, such as SecurityBindingElement and TcpTransportElement, which define a communication stack, and the operation of the stack depends on the order in which the binding elements were added to the collection.

Predefined WCF Bindings

Binding information can be complex, and not all options may be compatible. For this reason, WCF provides a set of predefined combinations of binding elements that are appropriate for many common scenarios. For example, BasicHttpBinding enables basic Web service communication by using text or HTML, with WSHttpBinding also supporting many of the WS-* standards. NetMsmqBinding uses queuing to communicate between WCF applications, and MsmqIntegrationBinding integrates WCF and existing MSMQ applications.

Specifying Bindings

All types of bindings, including custom or predefined, can be specified in configuration files or in code. By defining bindings in code, the developer gains complete control over the definition at design time, but by specifying binding information in configuration files, the binding information can be changed without recompiling the code.

Service Configuration in WCF

WCF services can be configured in code or by using configuration files. If you are hosting a service in IIS, you use the web.config file, but you use the application configuration file for any other application.

Each service must have an endpoint defined. An endpoint consists of an address that shows where the endpoint is located, a binding that specifies communication information, and a service contract that identifies the methods that the service supports.

An endpoint address contains a URI as well as other optional properties, such as an identity, WSDL elements, and headers. The optional properties can be used for tasks, such as routing incoming messages or deciding where to send a reply.

Defining Endpoints in Code and Configuration Files

To define an endpoint in code, use the AddEndpoint method on the ServiceHost object to pass in an address, a binding object, and a service contract in the form of an interface.

 Uri echoUri = new Uri("http://localhost:8000/");

 WSHttpBinding binding = new WSHttpBinding();

 serviceHost.AddEndpoint(typeof(IMyService), binding, echoUri);

To set up endpoints in configuration files, define <endpoint> elements within a parent <service> element inside the <system.ServiceModel> section of your configuration file.

 <endpoint address="http://localhost/MathService/Ep1" binding="wsHttpBinding" contract="IMath"/>

How to Create a Basic WCF Service
In this walk-through you will see how to create a basic Window’s Communication Foundation service.

Let’s go ahead and create new console-based application using C# language called WCF demo.

We need to add a reference to the System.ServiceModel name space, as well as a using statement at the top of our code module.

Then we can get started by first creating an interface in our program, and we will call this interface IGreeting. IGreeting will contain one method GetGreeting that will return a string value and accept a string value.

In order to make our interface a contract for communication service, we need to apply the necessary attributes. In this case, we apply the ServiceContract attribute to the actual interface itself, and any methods that we have inside of our interface need to have the OperationContract attribute applied to those as well.

So now our interface is complete, and we essentially have the workings of our contract in place. We will now create a class called Greeting that will implement the IGreeting interface.

And we will add functionality here to simply return a simple text string concatenated with the value that gets passed in, and we are all set to go ahead and start creating our service host.

So we will create a ServiceHost instance. Note that we have two options available here: we can use a singleton instance of an object, or we can get at the type of our specific service and utilize that.

We will use the typeofGreeting, and we will create a new URI because we are actually hosting this on our local machine. The URI will consist of local host with a port number, and of course, our service name.

We can now open our host, and we can let the user know that the host is actually up and running.

And we can inform the user how they can shut down our host, and wait for Visual Studio or the user rather to press the Enter key, and at which point in time, we will close our host and the service will shut down gracefully.

Now that we have completed writing the code for this, we need to go ahead and build our project so that we can actually create the executable file, which will be required in our next step.

So now that we have created that functionality, we need to go to our project and we need to add an App.config file.

So we will add the Application Configuration file to our project, and you will currently notice that App.config is very generic and only has the opening and closing tags with nothing in between.

We are going to go ahead now, and go through the process of running the Edit WCF Configuration wizard, which will allow us to apply the necessary settings to our App.config file.

The first step is to create a new service. This is where we had to build our project first so that our WCFDemo.exe does exist, and we can get at our service that we have created inside. Also note that we now want to look at the service contract that we will be using because we only created the one interface within our application with the attributes applied to it, IGreeting is the only one that shows up.

This time we will base our communication mode on TCP rather than HTTP. Again it was local host. We are going to specify a port of 1234 this time around, and Greeting is the address for the Endpoint of our particular service.

So the wizard has created that for us. We will click on finish. Note that we have our hosting Endpoints available.

We need to next create a Service Behavior, and our Service Behavior Configuration we are going to utilise the serviceMetadata element.

We will add the serviceMetadata element to our Service Behavior. Note that it is called NewBehavior. We come back up to our WCFDemo.Greeting service, apply the new behaviour to that, save the file, and then go back to Visual Studio and very quickly open our App.config file, and you can see the changes that have taken place inside our App.config file.

So let’s go ahead and run this and see how our application behaves. Currently we have no clients that will be accessing this. The service just simply comes up and runs. It says the service host is running, press ENTER to close the host, and we are finished.

Creating and Invoking a WCF Client

This section describes the options for creating a client to a service, including two methods for creating clients, by using proxies and channel factories. It also describes how clients can invoke operations asynchronously, and how duplex contracts allow a service to call back to a client.

Fundamentals of Creating a WCF Client

Like almost all other distributed technologies, clients use proxies to access WCF services. Proxies can be created in one of two ways: at design time by using the svcutil.exe command line tool or dynamically at runtime by using a ChannelFactory.

The svcutil.exe command line tool can create a proxy and configuration file from WCF service metadata. The proxy has no reference to the service implementation, but does reference the contract that is exposed by the service. The configuration file can be used to provide the address and the binding. Note that each proxy instance points at exactly one endpoint, and the endpoint is provided to the proxy at construction time.

The service is accessed by creating a proxy object and then by calling service operations. Calling Open locks the settings of the proxy, the channel is opened on the first call, and closed when Close is called, or the proxy is disposed.

The proxy class implements IDisposable, so in C# a using statement can be used to control the lifetime of the proxy. The constructor argument refers to the endpoint to be used by this proxy:

 using (TestProxy tp = new TestProxy("default")) {
// use tp to call service }

A ChannelFactory provides a flexible way to create proxies at runtime, by creating a factory from the address, binding details, and contract details, and then calling CreateChannel on the factory. Note that you can access the underlying channel from both proxy and channel objects.

How to Create a Client by Generating a Proxy
In this walk-through you will see how to create a client application to access a Windows Communication Foundation Service by generating a proxy.

In our client application, we have a label, text box, and a button. When a user enters a name into the text box, and clicks the button, a message box will be displayed showing a greeting with a name entered into the text box.

We need to add a reference to our client application, and in order to do so, we need to have our Endpoint available. This requires us to go in and edit the service behavior that we created in our previous demonstration.

Another serviceMetadata element, we notice that our HttpGetEnabled tag is set to False. We need to enable that, so we will set it to True, save our changes, and come back to Visual Studio.

We will start the service application, and once our service application is up and running, we switch back to Visual Studio. We can now add a service reference to our client application.

We simply type in the URL that was specified in our service application, and provide a service namespace reference, and call this GreetingServices. And this will cause our client application to go and search to the endpoint that we have specified, locate the necessary metadata, and generate the appropriate proxy for us.

So you can see that our client application now contains a System.ServiceModel reference, as well as our new service reference GreetingServices.app.

The proxy has been generated for us automatically, GreetingServices.cs. And as we scroll through our code we can see that it has actually generated a greeting client partial class for us, and we can utilise that in our application.

So let’s go ahead and start debugging, and we will switch back to the code for our client application.

Let’s go ahead and add a using statement here, WCFClient.GreetingServices, so we will add that namespace.

Now we want to add a new proxy client variable, so we will call this GreetingClient proxy. We need to create the proxy to the service, so proxy equals new GreetingClient.

And you will notice that we have five options available to us for the constructor for our GreetingClient. For this demonstration, we are only going to use the default constructor.

So now that we have our proxy created, we are going to call the necessary service, and store the value into the response variable, so the response equals proxy.GetGreeting, and of course the value that we are concerned with, will be displayed in the text box txtName.

And we have a little catch block in the event that we have in the issue we are trying to get the data from our service. The message box will show the response, and of course, when our form is closing, we want to go through the process of closing out our proxy service, so we will close that here.

Now in order to make both of these function, we need to go and make some changes to our solution. We will set our start-up project, so we will have our client and our demo both starting simultaneously, save our changes, and let’s go ahead and run our application and see how it works.

So we see our services running in the background. Here is our client application.

So let’s say hello to Fred Flinstone this morning. We click on Display Greeting, an error message box pops up with the greeting displayed.

So that it is it for our client application that we have generated within Visual Studio. For finer control, Visual Studio also makes available the svcutil client. The svcutil is a tool that you can execute from the command line, and it contains multiple options based on the specific type of configuration you will want to create.

Notice that we have some common options available, some code generation, metadata export options, service validation options, metadata download options, XmlSerializer type generation options, and a few examples in Help file that will show you how to make use of the svcutil command.

This allows a much finer control over the generation of the proxy. For our purposes, in this demonstration, we are simply going to generate the same files that Visual Studio did. So we will use the svcutil connecting to our local host. Note that our service is actually still running.

We will connect to that endpoint, and we will have the svcutil go ahead and download the metadata from our service, and then it will generate the two files that we have available, the app.config and our Greeting.cs.

Notice that it is called an output config.

So if we use notepad to look at our Greeting.cs file, you can see that it has created the same code that was generated in Visual Studio.

We can also use notepad to view the output.config file, and see the values that were generated in the config that we would apply to our client application. This was generated using the svcutil class.

So in this demonstration you have seen how to create a client application for accessing your Windows Communication Foundation Service by generating proxy information.
Creating a Client by Using a Channel Factory

You can also use a ChannelFactory object to create a client, as described below.
Create a ChannelFactory object by specifying the address, binding details, and contract details. The contract is used to parameterize the factory class, as shown in the following code:

 ChannelFactory<IMyChannel>cf = new ChannelFactory<IMyChannel>(

 new EndpointAddress("http://localhost/MyService/EndPoint1"),

 new BasicHttpBinding());

You can now create a channel, which starts in the Created state; which means that the channel can be configured but it cannot used to send messages.

 IMyChannel ch1=cf.CreateChannel();

To send messages you must open the channel. This changes the state of the channel fromCreatedtoOpened.At this point, you can send messages but you cannot configure the channel.

When you have finished, you call Close, which allows any unfinished work to complete before closing the channel.

Creating a Client by using a Underlying Channel

The ChannelFactory class has a number of methods and properties that enable you to access features of the underlying channel. For example, the Credentials property retrieves the credentials that are associated with the channel, so that you can set a username and password:

proxy.ChannelFactory.Credentials.UserNamePassword.UserName = "me";

proxy.ChannelFactory.Credentials.UserNamePassword.Password = "password";

The GetProperty<T> generic method enables you to query the factory for a property of type T, for example, it is often used to query for interfaces that the factory may support.

Asynchronous Invocation in WCF

All communication to this point has been synchronous, but it is also possible to call services asynchronously, so that the client does not block while it is waiting for a response. Both services and clients can use asynchronous calls, but they are mostly initiated from the client side.

Note Calling an operation asynchronously is independent of how the operation is implemented. A synchronous method can be called asynchronously, and an asynchronous method can be called synchronously.

Asynchronous invocation follows the .NET Async pattern in which a synchronous operation is broken down into Begin and End operations. The Begin operation starts the process and returns immediately, and the End operation queries for the result.

The client calls the Begin operation by passing any required parameters, a callback function, and a state object. The callback function is called when the operation finishes. The state object can be any object you want to pass to the callback function and in WCF it is usually a reference to the proxy:

 IAsyncResult iar = proxy.BeginAdd(i1, i2, MyCallback, proxy);

This function returns immediately and provides an IAsyncResult that the caller can use to check the state of the operation. The callback function is executed when the service operation completes, and the callback function calls the matching End method:

 static void MyCallback(IAsyncResult iar)

 {

 double val = ((AddProxy)iar.AsyncState).EndAdd(iar);

 }

Implementing a Duplex Contract in WCF

The duplex message exchange pattern provides an asynchronous way for a service to call back into the client.

Requirements for Duplex

Several requirements are placed on duplex contracts. The service must define the service contract and a callback interface, which the client must implement.

Bindings that are used with duplex contracts must support reliable sessions and security. This means that you can use only the following predefined WCF bindings: WSDualHttpBinding, NetTcpBinding, NetNamedPipeBinding, and NetPeerTcpBinding. These bindings should always have security enabled, unless the data is secured by some other means.

Implementation of Duplex Contracts

To implement a duplex contract, you define a service contract in the usual way, and use the CallbackContract named parameter to refer to a callback interface:

 [ServiceContract(CallbackContract = typeof(ISomeCallbackContract))]

 interface IMyContract

The callback interface does not need aServiceContractattribute, but does needOperationContractto be applied to its members.

When a client generates a proxy, the callback interface is also created. The client implements the methods on the callback interface, and passes a reference to a callback object, if the client creates the proxy at runtime.

Example of a Duplex Contract

A duplex contract is appropriate if a service needs to call back asynchronously to a client. For example, if a client invokes a long-running operation on a service, by using a duplex contract the service can call back to the client periodically to report progress as percent complete. When the operation completes, the service can call back to the client to report the result.
Customizing WCF with Behaviors

WCF behaviors provide a powerful way to customize the behavior of WCF services and clients. This section describes the main features of WCF behaviors, and tells you how to configure them.
Overview of WCF Behaviors

Behaviors enable you to modify how service and clients operate. They can be applied at many places in WCF: client channels, services, endpoints, contracts, and operations. Behaviors are purely local, so they have no effect on contracts or messages and do not have to be compatible with both clients and services.

Behaviors may be code-only, or may also use configuration settings. For example, instancing behavior determines how many instances are created in response to messages, and is specified in code:

 [ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]

 public class MyService : ISomeContract

Throttling allows you to set limits on access to a service, such as the number of connections or pending calls. You configure throttling in the configuration file:

 <throttling maxConcurrentCalls = "12" maxConnections = "34" maxInstances = "56" />

Developers can also retrieve the throttling settings at runtime, and modify them before opening the service.

There are a large number of predefined service and client behaviors in areas such as:

· Service operation, such as concurrency, instancing, and throttling.

· Error handling.

· Security, such as impersonation, authorization, and auditing.

· Transactions, such as AutoEnlist, AutoComplete, Timeout, and Isolation.

· Metadata.

Developers can create custom behaviors by using IServiceBehavior and IEndpointBehavior. Any class that implements these interfaces can be used as a behavior and applied as an attribute or in a configuration file.

How to Configure WCF Behaviors

In this walk-through, you will see how to apply the instancing attributes to your behaviors for your Windows Communication Foundation service. For this demonstration we have an existing application that consists of a service and a client.

The service is hosted on Internet Information Server as a web service.

We have two contracts, or two interfaces in our service, one is a calculator, which has the four standard mathematical methods, add, subtract, multiply, and divide.

We also have an ICalculator instance which implements the ICalculator and this will be responsible for providing us with our ContextMode InstanceId and operationCount values.

Notice that each one of these two contracts of the interfaces in our service have the SessionMode equals SessionMode.Required.

We specify this so that when a client accesses it, we indicate the necessary type of session mode that we wish in our service, and the client will then see that behavior from our service as it is executed.

So very quickly we will take a look at our CalculatorService class which implements our ICalculator instance interface, and we see that we have a static instanceCount variable, and we will see how that plays into our client application as we execute it and we will see those values increment accordingly.

The CalculatorService in the constructor will simply implement our instanceCount and sets the InstanceId equal to the instanceCount and then we have our four methods add, subtract, multiply, and divide, and then for our ICalculator instance, we implement the GetInstanceContextMode method here, our GetInstanceId method, and our GetOperationCount method in here.

So, one of the first things that we need to do is to make sure that we have the appropriate attribute uncommented in our code.

The first one we will make use of is the PerSession attribute, where the PerSession will create an instance per channel session.

So, if we take a look at our client application, it is a console based application, we create an instance of our calculator instance client.

We then get the instance mode from the GetInstanceContextMode, write that value out to our screen, and then start calling the methods and new calculations.

Notice in the first one, that we are using a client called client, so this is our first instance, and for the second instance we will have a client called client2.

We will call the new calculations with client1 and then client2, closing outer clients here, and writing out the necessary information to terminate the client information.

And the new calculations simply call each one of our operations, add service, subtract service, multiply service, we pass in the necessary values, we call the add method, or we call the subtract method as appropriate.

In our output we will write out values that we are going to be adding, subtracting, multiplying or dividing, the result. We will grab the client.InstanceId and GetOperationCount.

So, let’s go ahead and run our client application, and we will see what our first generated output results in.

So here we have used PerSession, as you can see, InstanceContextMode indicates PerSession, we see that we have called the add method, passed in the two values, got a result back, notice our InstanceId is one, and our operationCount is one.

So we have called add, subtract, multiply, and divide, all from instance one and we can see that with the instance IDs.

For each one of these same instances that we have called, we see that our operationCount increments.

Then we went ahead and used client2 to call the same methods again, notice that our instance ID has now changed to two, and that each of our operationCounts has been incremented again within that instance.

So you can see that we have really established two sessions here, and each one of the sessions maintained its own operationCount.

Let’s go ahead and terminate that client, we will come back to our service, and we will comment out the PerSession call and we will now change our attribute to a PerCall InstanceContextMode.

Note that when we change these because we have made changes in the actual attribute that is applied to the service, we need to rebuild that service one more time, and now we can go ahead and run our client application on a PerCall basis.

Notice that our InstanceContextMode indicates that we have executed a PerCall, and you will also note as we take a look at the InstanceId for each method call, regardless of the client that called it, the InstanceId has changed.

So each time we have made a call with a client, regardless of which client it was, we have actually generated a new InstanceId for each and every call.

Also take note, that because the instance changes for every call, the operationCount never gets incremented and always remains at zero. So, once again this is the client using the PerCall method.

Let’s go ahead and terminate that client. And for the final part, comment out our PerCall attribute, uncomment the Single, rebuild our service one more time, and we will start the client application again.

So our InstanceContextMode now, has been changed to Single, again we are still calling the same operations, but you will notice that regardless of the client that is making the call, and regardless of the method that is being called, our InstanceID remains at one, so this is a single instance that is servicing all clients, and you will also notice that the operationCount increments from beginning to end regardless of the number of clients that are actually calling it.

If we were to add client3, and have client3 call one of these methods again, our InstanceID will still remain as one, but we would also notice the values of nine, ten, eleven, and twelve in our operationsCounts incremented.

So in this demonstration, you have seen how to apply the three different attributes to a service behavior for your Windows Communication Foundation service.
Exploring WCF Features

This section explores some of the main features of WCF. It provides information about predefined and custom bindings and presents an introduction to security in WCF. It also covers reliability, which includes transactions, queuing, and reliable sessions.

Choosing a Predefined Binding in WCF

WCF has nine built-in bindings. You can decide which of the bindings to use by considering the features that they support. The following table lists the WCF build-in bindings and their associated features.

	Binding
	Used For

	BasicHttpBinding
	Basic Web service communication. No security by default.

	WSHttpBinding
	Web services with WS-* support. Supports transactions.

	WSDualHttpBinding
	Web services with duplex contract and transaction support.

	WSFederationHttpBinding
	Web services with federated security. Supports transactions.

	MsmqIntegrationBinding
	Communication directly with MSMQ applications. Supports transactions.

	NetMsmqBinding
	Communication between WCF applications by using queuing. Supports transactions.

	NetNamedPipeBinding
	Communication between WCF applications on same computer. Supports duplex contracts and transactions.

	NetPeerTcpBinding
	Communication between computers across peer-to-peer services. Supports duplex contracts.

	NetTcpBinding
	Communication between WCF applications across computers. Supports duplex contracts and transactions.

Defining a Custom Binding in WCF

Although WCF provides a set of standard bindings that are sufficient for most common scenarios, you can define a custom binding if the built-in set does not meet your requirements. The following table describes how bindings work, and what you must do to implement your own.

A binding is made up of a collection of binding elements, each of which describes some feature of the endpoint's communication. It is important to know about transports, encoding, and other elements when you create a custom binding, because you must choose which elements to put into the stack. A binding must specify at least a transport and an encoder. For example, the NetTcpBinding combines the TCP transport with a binary encoder.

You may wish to create a new binding to accommodate a new transport or encoding, to alter the way in which a standard binding works, or to preset or disable configuration options for a standard binding to reflect company policy.
WCF provides three predefined transports:

· HTTP. Used for Web service communication.

· TCP. Typically used for binary communication across computers.

· Named Pipes. Provide efficient communication between applications on the same computer.

It is also possible to define your own custom transports, if required.
Choosing a Transport

You would choose HTTP if you want to do one of the following:

· Host services in IIS 6.0 or later.

· Communicate across machines.

· Provide good tool support for development, diagnosis, and other activities.

You would choose TCP if you want to do one of the following:

· Provide minimal latency and maximal throughput.

· Communicate across computers.

You would choose Named Pipes if you want the most efficient communication on a single computer.

Message Encoders

In addition to a transport, a binding requires a message encoder to serialize a WCF message into bytes.

WCF has three encoders to handle text, binary, and MTOM data. The text encoder supports plain old XML (POX) as well as SOAP encoding. If your encoding requirement is not handled by these three encoders, you can write your own custom encoder.
As well as the transport and encoding elements, you may also want to consider adding other elements to a custom binding. For example, the ReliableSession binding element specifies the type of session to use and the Security binding element specifies the type of security required.

Guidelines for Configuring the Transport Layer

This topic introduces features that you may need to be aware of when configuring the transport layer.

NATs and Firewalls

Firewalls and Network Address Translators (NATs) may make it impossible to use duplex contracts, since NATs hide IP addresses. Firewalls commonly restrict the protocols and ports that can be used, and this may restrict services to using HTTP or HTTPS as a transport.

Streaming Message Transfer

By default, entire messages are buffered in memory by WCF transports. However, you can eliminate the need for large memory buffers by exposing the message body as a stream.

Unidirectional or bidirectional streaming is enabled through the TransferMode property of the transport binding element. Note that there are some restrictions on the use of streaming, especially when using certain WCF features, such as reliable messaging, transactions, and SOAP security, which may require buffering.

Configuring HTTP

If you use WCF over HTTP as a host, rather than an HTTP server, you must configure HTTP settings by using the httpcfg.exe tool. You may need to configure some or all of the following settings:

· Secure Socket Layer (SSL) certificates

· Namespace reservations

· The IP Listen list

Transport Quotas

Transport quotas should be used to ensure that connections do not consume excessive resources. WCF supports two main types of quota: timeouts to guard against denial of service attacks, and allocation limits to guard against excessive memory use.

Quotas can be set on binding elements for maximum flexibility, or more simply through the binding. Binding settings can be applied in code, or though the configuration size.

Introduction to WCF Security

This section provides an overview of WCF security and introduces the high-level features of the WCF security model. It also provides a demonstration of how to configure message based security.

Security Features of WCF

As a service provider, you need to know who is accessing your service and you need to control the level of access that each client has to the service. You may also need to protect messages that are in transit from eavesdropping and tampering.

WCF provides comprehensive security features in three main areas: transfer security, authentication and authorization of clients, and auditing.

[image: image8.png]-

Transfer security supports two main mechanisms that you can use to protect messages. Transport mode uses features of the underlying transport protocol, such as Secure Socket Layer, or SSL, to protect the channel. Message mode uses WS-Security and other specifications to encrypt and sign the message. Transport mode is efficient and well-understood, but it is only useful for point-to-point communication. Message mode is less efficient, but it can be used to ensure that the message is protected on the network, through intermediary nodes, and in persistent stores.

By default, WCF enables authentication and authorization, which is based on credentials and claims. A credential provides proof of identity. It can also provide additional claims about the client. For example, an X.509 certificate can contain a number of claims about a user, including company name and e-mail address. A commonly used credential is the combination of a user name and password, and the user name on its own provides a claim. Other credential types that WCF supports include Kerberos tokens and Security Assertion Markup Language tokens.

WCF uses claims for authorization. Claims are extracted from credentials and used to provide sophisticated access control. You can still use .NET Framework role-based authorization, but claims-based authorization subsumes this model and provides greater flexibility. It enables authorization decisions to be based on more than the authenticated caller’s identity or the roles to which that identity belongs.

Administrators must also be able to audit access to services. By default, WCF security events are written to the Windows event log, so that administrators can see who has accessed a particular service. You can configure auditing in code or in the service configuration file.

Security Modes of WCF

Many WCF services will require secure communication, where it is necessary to authenticate the sender of a message, and to ensure that messages have not been read or tampered with by unauthorized third parties. WCF can provide authentication, privacy, and integrity for messages by using two mechanisms.

Transport mode, which uses the security features of a transport layer such as HTTPS. This mode has performance benefits due to the optimized nature of the underlying protocols, but it has a restricted set of credential or claim types. This mode also only works between two transport endpoints.

Message mode, which protects the message itself by using a protocol such as WS-Security. Credential information is embedded within the message, so that this mode can support a richer set of claim types, at the expense of performance. This mode provides end-to-end security for the message.

WCF also supports a mixed mode, where integrity and privacy is provided by the transport, while authentication is handled by using credentials in the message. This can give the best balance of performance and flexibility.

You can specify the security for a binding by setting its SecurityMode property. By default, the BasicHttpBinding has no security configured. Other HTTP bindings use WS-Security, and TCP and Named Pipe bindings use Windows security.

Authentication and Authorization in WCF

WCF can establish that the sender of a message is who they claim to be, a process known as authentication, and control access to resources based on identity, a process known as authorization. The following table describes how an application can use message credentials and transport credentials, and how you can implement authorization.
Message Credentials

An application that uses message mode can use the following credential types:

· None (anonymous client)

· Windows (Kerberos tokens)

· Username tokens

· X.509 certificates

· Custom tokens, such as SAML tokens issued by a STS

Note that WCF enforces that the transport is secured when using user name credentials. WCF also prevents you from using the username for encryption or to generate signatures.

You can configure the security of a binding by using the SecurityMode property. There are a number of predefined combinations, such as HttpAuthentication and WSSecurityOverTcp.

Transport Credentials
A transport may support more than one method for obtaining authentication information. For example, HttpAuthentication supports a number of schemes including the following:

· Anonymous

· Basic

· Digest

· NT LAN Manager (NTLM)

· Kerberos protocol

· Certificate
Authorization

You can use the .NET PrincipalPermission attribute to restrict access to an operation based on name, role, or authentication status. For example, the following code allows access to any caller who is a member of the Administrators group:

[PrincipalPermission(SecurityAction.Demand, Role="Builtin\\Administrators")]

public void MyOperation()

{

 ...

}
How to Configure Message-Based Security
In this walk-through, we will see how to secure a Windows Communication Foundation Service.

We will also see how to use the service trace utility provided by the Windows SDK to inspect service messages.

Now, what we have here is a very simple application for applying customer credits. This application makes a call to a WCF service for performing the transaction.

And if we look at the application, we can see in the btnApplyCredit_Click event handler, that we are creating a request object which contains account, amount, and transaction ID information.

We then invoke the service and receive a response as to whether or not the transaction was approved.

Let’s run the application. Now we will enter an account number, an amount to be credited, hit apply, and we see that the transaction was successful.

Now let’s take a quick look at the service.

Our service utilizes data contracts for the request and response objects.

As to the service itself, we see that we have an ICredit that defines a credit account method.

Now, our credit service implements the ICredit interface, credit account simply takes the request passed in and creates a response that approves the transaction.

Let’s go enable encryption for our service and also view our service messages in the service trace viewer.

We will go to the binding, we will go to the security tab, and we will specify message level security.

Now, because we are working within a windows domain, we can leave the MessageClientCredentialType set to Windows, and allow Windows to handle the encryption scheme for us.

We will save the config, and now we will go set the security on our client.

We will go to the security tab, we will set the mode to message, just as we did for the service, and now we will enable MessageLogging under Diagnostics.

Once we have enabled message logging it will automatically create a diagnostic source and listener.

If we want to change the location of the output files, we can click on the listener link and change the name.

In this case, we will change it now to c:\wcf logs\credit_service.svclog.

Also, we are going to set message logging to log the entire message so that we can see both the header and the message content.

Now we can save our configuration changes, compile, and run the application.

Now we can see that the application runs successfully without throwing an exception and that our transaction was approved.

Now let’s take a look at our log file in the service trace utility.

When we look at the messages now, we can see that the data for our request and our response is no longer being passed in clear text, but is now encrypted.

So now we have taken care of encrypting our message. However, anyone can access our service, so let’s use WCF to secure the service so only authorised users can invoke it.

So what I am going to do now is add a using statement, for System.Security.Permissions, and now what I am going to do is set permissions on my credit account method, so that only those who are members of the service users group can access it.

And I will do this by using a principal permission attribute setting the security action to demand, and the role equal to service users.

Now because we are not a member of the service users group, the call to this method should fail at runtime.

I will save my application, recompile, then I will run my application; perform my transaction for one final time.

So now you see we have received a security exception because we did not have the proper permissions to invoke this method on the service.

Reliability in WCF Applications

WCF has several features that can be used to implement highly reliable messaging, independent of the transport over which messages are sent. This section covers the reliability features of WCF, namely transactions, queuing, and reliable sessions.

Transactions in WCF

Overview

A transaction treats a group of operations as an atomic unit, so either all succeed or all fail. WCF supports two types of transactions: shared transactions and transacted messaging.

WCF supports two transaction protocols:

OleTransaction protocol Used for transaction control between WCF applications.

WS-AtomicTransaction protocol Enables WCF applications to flow transactions to interoperable applications, such as Web services that have been built by using third-party technology. The ability to flow transactions across services, even if they are on different platforms, is extremely powerful.

Client Side

Clients use a TransactionScope object to group operations into transactions:

 using (TransactionScope sc = new TransactionScope())

 {

 service1.submitRequest(rq1);

 service2.submitRequest(rq2);

 sc.Complete();

 }

As well as specifying transaction requirements, the client can control the isolation level and timeout for the transaction by using a TransactionOptions object:

 TransactionOptions top = new TransactionOptions();

 top.IsolationLevel = IsolationLevel.ReadCommitted;

 using (TransactionScope sc = new TransactionScope(TransactionScopeOption.RequiresNew, top)) ...

Server Side

The ServiceBehavior attribute enables you to configure the service as a whole for transaction time-outs, isolation level, and whether transactions complete when a session closes. The OperationBehavior attribute helps you to control whether a transaction is required for an operation, and whether transactions complete if no exception is thrown.

Configuring Transaction Flow

Transaction flow is governed by the following three factors:

· TransactionFlow attributes applied to methods, which specify whether a transaction is required, allowed or not allowed.

· TransactionFlow binding properties, which specify whether the binding supports transactions.

· TransactionFlowProtocol binding properties, which specify whether to use the OleTransaction or WS-AtomicTransaction protocol.

Developers use the TransactionFlow attribute to specify how their methods take part in transactions; TransactionFlow binding and TransactionFlowProtocol binding properties enable administrators to specify policy at deployment time.
Queuing in WCF

WCF can use Microsoft Message Queuing, or MSMQ, to pass messages between clients and services. Queuing can improve application resilience and scalability. Loosely coupled queues make one-way operations possible even when the destination service is unavailable or unreachable.
[image: image9.png](BindingRequizements (
QueusdbelivaryRequirenenta=
BindingRequirenentsiode.Require)]

class MyConsumer : IMyService

punlic void Opars

SRR

[<enapoine
ladaress="ner msmq: //MyServer /privace MyQuene/
[pinding="net HengBinding”

Queuediiessaging. HessageDisplayer,

Queuediessaging

You can improve scalability by providing multiple readers for a single queue. Queues can also be used to buffer peaks in service demand, and if one of the applications that uses the queue fails, it does not affect the others.

As a service developer, you define WCF service contracts in the usual way by using a .NET Framework interface. Service contracts that use queuing must be defined as one-way. The class that implements the contract can specify queued delivery. The service administrator configures the queue and the service endpoints, which consist of the address, the binding, and the contract.

WCF provides two error-handling mechanisms, called time-to-live and poison messages that are unique to queuing.

A delivery deadline, known as a time-to-live, can be specified for a binding, along with a dead-letter queue, which is used for messages that cannot be delivered in time. In addition, a message that exceeds the maximum number of delivery attempts is called a poison message. In Windows Vista, such messages are diverted to a special poison message queue.

WCF supports two bindings that use queuing: NetMsmqBinding and MsmqIntegrationBinding. If you want to use WCF on both sides and want to use MSMQ as a transport, you would choose NetMsmqBinding. If you want a WCF client to communicate with MSMQ directly, you would choose MsmqIntegrationBinding.

When you use MSMQ as a transport, WCF applications can use transacted messaging. A client can send a group of messages within a transaction. A transaction ensures that either all of the messages or none of the messages are delivered. On the client side, if a transaction is aborted while sending messages, none of the messages are sent. On the service side, when delivering messages from a transacted queue, an aborted transaction causes the messages to remain in the queue and message delivery is retried.
Reliable Sessions in WCF

A reliable session provides session-based delivery for WCF messages, regardless of the number or type of transport intermediaries between two endpoints. A reliable session provides the same reliability for SOAP messages as TCP does for IP packets, but the reliability is provided at the SOAP message level, which provides end-to-end reliability rather than the point-to-point reliability that is provided by TCP.

Reliable sessions handle lost or duplicated messages. Messages are delivered exactly once, and can optionally be delivered in order. If a message cannot be delivered, the sender is informed.

Because reliable sessions can cope with transport disconnections and failures in SOAP or other intermediate transports, they can provide benefits such as connection verification, connection maintenance, flow control (by adapting the sending rate to the receiver) and congestion control (by adapting the sending rate to network load levels).

They are enabled by default for theWsDualHttp, NetNamedPipeandMsmqIntegrationbindings, and can be enabled for theNetTcp, WsHttpandWsHttpFederationbindings. Custom bindings can easily be configured to use reliable sessions by adding areliableSessionelement to the binding description, and optionally by setting the ordered attribute.

If applications are too loosely coupled, queued messaging may be a better solution than reliable sessions.

WINDOWS WORKFLOW FOUNDATION (WF)
Introduction to Windows Workflow Foundation

WF is a Microsoft strategic workflow technology for Windows applications, Web applications, and many Microsoft server products. WF empowers you to deliver innovative workflow-based solutions through an underlying workflow engine, rich and flexible developer tools, and intuitive features that enable business managers and information workers to interact with complex workflow processes.
What Is Windows Workflow Foundation?
Windows Workflow Foundation is a set of components, tools, and a designer that developers can use to create and implement workflows in .NET Framework applications. Windows Workflow Foundation is part of the Microsoft .NET Framework version 3.0.

A workflow is a set of activities that are stored as a model that describes a real-world process. For example, if an employee wants to book a vacation, the vacation request may be checked against a schedule and approved by a manager before it can be accepted. In this example, the workflow is made up of activities such as Request Vacation, Approve Vacation, and Book Vacation. Several different people who can alter the result are involved in the process.

[image: image10.png]

With Windows Workflow Foundation, you can create activities that model the steps in your vacation request process, you can assemble these activities into a workflow that describes how the request flows through the process, and you can build an application, such as an ASP.NET Web page, that includes the workflow.

The workflows that you create can model extremely complex business processes. They can execute different sections of the workflow based on conditions, for example, if the vacation request is approved or rejected. The workflows can include human agents, as in the vacation request example, or interact entirely with computer systems. You can even change the workflow while it is running if, for example, your business logic changes at short notice.

Windows Workflow Foundation includes a programming model of .NET classes, a workflow runtime engine that executes workflows, and tools for Microsoft Visual Studio 2005 that you can use to create workflows.
The Advantages of a Model-Driven Approach

WF models business processes by building up workflows from their individual activities. This approach has many advantages for developers.

Business Logic

The structure of a workflow encourages developers to focus on business logic rather than on technical issues. This results in an application that closely model what users do in a business process.

Developers usually solve the technical challenges involved in a workflow by creating custom activities. When these have been created and tested, developers can reuse them many times to build complex workflows.

Adaptability

In the business environment, procedures and working practices often change. These changes may happen in response to changes in the market, improved quality control, expansion of the business, or many other causes. For example, a business analyst may notice that a procedure is often held up by a member of staff who had little input. By removing that member from the procedure, the analyst can accelerate the procedure without a drop in quality.

Typical application development architecture can obstruct changes. For example, to change the procedure in a typical application, developers must complete the following steps:

· Rewrite part of the application.

· Retest the application.

· Compile the application.

· Deploy the application to user computers.

Because WF stores workflows as Extensible Application Markup Language (XAML), the procedure is not compiled into the executable file. Therefore, the procedure is easier to rewrite, need not be compiled, and is easier to deploy. You can even change workflows while they execute.

Long Running Processes

Workflows that involve only computer systems usually execute quickly. However, workflows that involve human agents often take longer, because users can be in meetings, out of the office, or on holiday. Users may wait days or even months before making decisions. WF provides full support for long-running processes.

While your workflow instance waits for a response from a user, for example, an approval from a project manager, it remains active in the memory of the host application. However, by using Persistence Services, you can save it to a database or other location, and unload it from memory to save resources. When the decision arrives, WF reloads the workflow instance from the database, and continues with the next activities.

By saving a workflow instance in this way, you also ensure that it is not destroyed if the host application stops unexpectedly.

Visual Design

WF includes extensions for Microsoft Visual Studio®. These extensions enable you to develop workflows by drawing them in a flow diagram. The visual depiction of a workflow gives you a clear picture of what takes place when it executes. If the workflows contain unnecessary loops or redundant sections, they are easy to identify.

Although the WF extensions for Visual Studio are not business analysis tools, they represent workflows in a way that business analysts recognize. Analysts are comfortable with these representations, even though they are not developers, because they are similar to the representations of processes they work with.

How Workflow Foundation Improves Working Practices for Developers

When you develop a workflow, you model a business process. Therefore, you must first investigate the business process to ascertain all the steps the process entails, including all eventualities. For example, if a manager is out of the office, who approves a vacation request? Or if the vacation conflicts with a team member's scheduled vacation, which takes priority?

In a small organization with no dedicated business analysts, developers undertake this investigation. Windows Workflow Foundation enables them to focus on the business process, rather than on technical issues. Larger organizations with bigger budgets have specialist business analysts who undertake the investigation.

Workflow diagrams look similar to workflows in the Visual Studio 2005 workflow designer. Because analysts are familiar with workflow diagrams, Windows Workflow Foundation enables developers to work closely with analysts.

After you complete your investigation, you can select the right workflow activities to model your business process. You can quickly build these activities into complex workflows by dragging them into the Visual Studio 2005 workflow designer, setting their properties, and creating connections between them. You can also copy and paste sections of workflow that are similar.

This development approach enables you to rapidly develop applications that closely model your business processes.

[image: image11.png]Submit Check applicant's information
request, against underwriting rules

Reject applicant's] X,
applicant credit ?
esion) Credit
Submitter Service
Yes
A
Accept "::““es‘r
applicant nager L—
approval
Manager
No, Yes
Get
acceptance| | Reject Accept
or rejection \, | _applicant applicant

This Simple workflow-based application for insurance companies illustrates many of the requirements that a typical workflow-based application presents. Those requirements include:
· The ability to make decisions based on business rules
· Ways to communicate with other software and other systems outside the workflow
· Ways to interact with people.
· The ability to maintain state throughout the workflow's lifetime.

Workflow Scenarios
Windows Workflow Foundation can model processes that involve human agents, such as a sales procedure, or computer systems, such as a credit card payment system. Because you need to model different levels of complexity, Windows Workflow Foundation provides two different workflow types: sequential workflows and state machine workflows. In a sequential workflow, activities execute in a fixed order, and the workflow has a clear beginning and end. The sequence can include loops, branches, and other kinds of flow control, but there is a defined path from beginning to end.

In the Workflow Designer, the workflow starts at the top and proceeds downwards. Sequential workflows work well when the workflow model will be shown to a business audience, and when there is no requirement for back-tracking in the process. For example, if an application must send an e-mail to the appropriate employee to handle a support request from a customer, the system needs to determine who receives the e-mail. The workflow logic must enable the system to decide who has the right skills to deal with the request, who is available, and who the least-expensive resource is. However, the end result is the same—the system sends an e-mail.
In a state machine workflow, unlike a sequential workflow, there is no clear direction of flow. Instead, you define a number of request states and the events that trigger transitions between these states. State machine workflows work well when the primary audience is software developers who are familiar with the more complex state machine designs. State machine workflows allow for more complex paths than sequential workflows.

For example, in a bug-tracking application for software development, a bug can be in many states, such as unresolved, resolved, and in progress. A bug moves from unresolved to resolved when a developer deals with the problem. However, if a tester observes the problem, he may move the bug back to the unresolved state. This may happen for an unlimited number of times before the tester is satisfied.

Types of Workflows

[image: image12.png]B Visual Studio 2005

VisualStuclia, You can use the Cder tooln Visual Stucda to draw warkfows n a araphical designer. You
can aso create workflons by witing XAML maraly.

Many different scenarios require developers to coordinate computer systems and human agents. For example, you might have to organize computer systems, human agents, or a mixture of both. To ensure that WF can build solutions for many scenarios, you can choose from three main styles of workflow.

Sequential workflow

A sequential workflow consists of activities that execute in a predefined order. A sequential workflow has a clear direction of flow from top to bottom. Sequential workflows can include loops, conditional tests, and other flow-control structures. However, there are a limited number of routes through a workflow, and a limited number of steps.

Consider, for example, a scheduling workflow in an application that books technician time. Many people may be involved in each booking. For example:

· A customer representative requests a booking on the schedule.

· An administrator chooses a technician with the skills to complete the work.

· A Web service checks that a requested booking does not conflict with the existing schedule.

· A manager gives final approval to the booking.

In this example, a booking proceeds through the workflow in a finite number of steps. Although the booking may be sent back to an earlier step, for example, if the booking conflicts with another in the schedule, there are only a limited number of possible routes through the workflow. However, this does not mean that sequential workflows are always simple.

State machine workflow

A state machine workflow consists of states and transitions that change a workflow instance from one state to another. Although there is an initial state and a final state, the states have no fixed order, and an instance can move through the workflow in one of many paths.

Consider, for example, a helpdesk workflow. Each issue begins in an unresolved state. It can move to many other states, for example:

· When a support technician solves the problem for the user, the issues enters a resolved state.

· When a user finds that the solution did not work, the issues returns to an unresolved state.

· When a support technician cannot solve the problem, the issue enters an escalated state.

Notice that the issue can move from escalated and resolved, and back to unresolved at any time. The actions of the human agents determine the order of the states.

Data driven workflow

A data-driven workflow is usually a sequential workflow that contains constrained activity groups and policies. In a data-driven or rules-based workflow, rules that check external data determine the path of a workflow instance. The constrained activities check rules to determine the activities that can occur.

Consider again the scheduling workflow in an application that books technician time. To improve life for the technicians, and reduce work for the administrators, you want to add some rules to the workflow:

· If a technician has less than 10 per cent of his time in the last month for personal development, the system cannot book his time.

· If no technician with the right skills is available for the booking, the system must not send the booking to the administrators.

By using a data-driven workflow, you can build these types of rules into your system.

Sample WorkFlows:

Sequential: Vacation booking subject to manager approval, Employee induction management, Web page management – new page requires approval.

State Machine: A software bug tracking application, Tender management - track a tender for work

Data Driven: Stock Control – possible actions depend on stock, Purchasing – purchases are restricted by budget
Windows Workflow Foundation in Microsoft Products

Integration with Windows Vista

Windows Vista and the .NET Framework 3.0

Windows Vista is the latest version of the Microsoft desktop operating system. Windows Vista includes a streamlined user interface and advanced desktop search tools, Microsoft Internet Explorer® 7, advanced speech recognition features, and the highest security of any version of Windows. Windows Vista also includes the entire .NET Framework 3.0. This means that Windows Presentation Foundation, Windows Communication Foundation, Windows CardSpace, and Windows Workflow Foundation are all included in Windows Vista.

Deploying Windows Workflow Foundation Applications to Windows Vista

To run a workflow on Microsoft Windows XP or earlier versions of Windows, you must install the .NET Framework 3.0, so that the workflow runtime is present. Because the .NET Framework 3.0 is built into Windows Vista, you do not need to install the Framework before you deploy a workflow application. The runtime is already present to run workflow instances.
Windows Workflow Foundation and SharePoint Products and Technologies
Microsoft SharePoint Products and Technologies facilitate collaboration within an organization and with partners and customers. By using the combined collaboration features of Microsoft Windows SharePoint Services and Microsoft Office SharePoint Portal Server, users in your organization can easily create, manage, and build their own collaborative Web sites and make them available throughout the organization. SharePoint Products and Technologies 2007 will use WF to organize user collaboration. There are three different techniques in which you can use workflows.

Built-in Workflows:

Windows SharePoint Services includes some simple workflows for common situations. For example, workflows for document approval.

To use these workflows, you must first activate the workflow feature of Windows SharePoint Services. Users can then include the simple workflows in their team and collaboration sites by selecting them from a list and setting their properties.
Sharepoint Designer:

If the built-in workflows are not sufficient for your SharePoint site, you can create your own by using SharePoint Designer. Microsoft Office SharePoint Designer 2007 is a Web site development and management program that provides you with powerful tools to build, customize, and contribute to SharePoint sites.

SharePoint Designer can create the look and feel of your collaborative site and add reporting and tracking features to it. It can also create and manage workflows because it hosts a Workflow Designer.
Visual Studio:

In some cases your workflow requirements will be too complex to model with the built-in workflows or SharePoint Designer. For example, you may want to write custom procedural code in your workflow to send an e-mail.

In complex cases you can create a workflow in Visual Studio 2005. You have full access to all the features of WF and can write custom code. You can incorporate the finished workflow into a SharePoint site in the same way you would incorporate it into any other ASP.NET Web application.
Windows Workflow Foundation in Other Microsoft Server Products

Microsoft uses WF to model business processes in several other upcoming server products. The following table describes how these products use workflows.

Speech Server:

Microsoft Speech Server combines Web technologies, speech-processing services, and telephony capabilities into a single system. You can use Microsoft Speech Server to develop and deploy telephony (voice only), and multimodal (voice and visual) applications. Speech Server performs speech recognition and speech synthesis to provide speech interfaces to applications.

In Microsoft Speech Server, you can build up a voice interface to an application by using workflows to create a conversation between the application and the user. Speech Server includes a large number of workflow activities, such as the Statement Activity that reads a message to the user, the RecordMessageActivity that records a voice message, and the QuestionAnswerActivity that obtains a vocal response from the user.

WF is therefore essential for communications with Speech Server users.

BizTalk Server:

Microsoft BizTalk Server enables companies to automate and optimize business processes. BizTalk messaging enables you to communicate with a wide variety of systems. BizTalk orchestration enables you to organize many systems into one business process.

BizTalk 2006 uses XLANG to orchestrate applications and Web services into larger business processes. XLANG is an XML language that defines the steps involved in the orchestration.

Future versions of BizTalk will use WF for orchestration. This is possible because WF organizes computer systems just as well as it organizes users. Instead of XLANG, future versions of BizTalk will use XAML to define workflows.

System Center Server:

System Center Server is the Microsoft family of systems management products and solutions, focused on providing IT professionals with the tools and knowledge to help manage their IT infrastructure. You can use System Center to control the following tasks in you IT infrastructure:

· Operations management

· Change management

· Configuration management

· Asset management

· Problem management

You can organize all of these systems management tasks by using workflows. System Center Server uses WF as the workflow engine. System Center Server includes predefined workflows for each management task that are based on the Microsoft Operations Framework (MOF) standards. You can use these, customize them, or develop your own workflows to control your systems management.

Identity Integration Server:

Microsoft Identity Integration Server (MIIS) is a centralized service that stores and integrates identity information for organizations with multiple directories. MIIS provides organizations with a unified view of all known identity information about users, applications, and network resources.

Identity management frequently requires complex business processes. For example, consider an organization that works with a partner company. It must create identities for the partner users, which requires approval from managers in both companies. A workflow is ideal for managing this approval process. For this reason future versions of Identity Integration Server will include WF.

The Windows Workflow Foundation Architecture
The diagram illustrates the architecture of WF. At the base of the architecture are runtime services. You can add these services to the WF runtime, represented by the next level of the diagram, to control the runtime behavior. Above the runtime is the activity framework, which provides common functions that many activities use. Above the framework are the activities themselves. You can assemble activities into workflows, and create custom activities, by using Visual Studio.
[image: image13.png]

What Are Transaction Services and Persistence Services?

Persistence:

Any business processes that you can model with Windows Workflow Foundation occur over days or months. For example, an issue may remain in a bug-tracking application for a long time before a developer resolves it. For much of this time, the instance of the workflow is idle. Another example is if a tester logs an issue at the end of a day. Overnight the instance is inactive, until a developer reviews the issue the next morning.

It is impractical to maintain a long-running or idle workflow instance in the host application process. It is wasteful to use memory to host many idle instances. Furthermore, the host process may restart before a workflow instance finishes. Workflow instances halt when the host process restarts.

To solve these problems, you can use persistence services in the Windows Workflow Foundation to save the workflow instance. When a workflow instance is saved by the workflow runtime, it is unloaded from memory, and reloaded when it next becomes active.

Windows Workflow Foundation includes the SQLWorkflowPersistenceService class, which can save workflow instances to a SQL Server database. If you want to save to another location, you can create your own custom persistence service.

Transaction:

Many programming technologies use transactions to ensure that data remains consistent, even if errors or unexpected events occur. Windows Workflow Foundation enables you to define transactions within your workflow.

Consider, for example, a payment application. You create a workflow that debits the customer’s credit card, marks the bill as paid, and sends the customer an acknowledgment e-mail. If a power failure occurs during the workflow, the application may debit the customer’s card, but not mark the bill as paid. When the database server restarts, it may debit the card again.

To avoid this, you can create a transaction within your workflow by using the TransactionContext activity. You can drag many activities into the TransactionContext activity. If a failure occurs, the entire transaction fails and all the changes roll back to their initial state. For example, any card debit is removed. When the workflow restarts, the data is in a consistent state and you can restart the transaction smoothly.

What Are Tracking Services and Scheduling Services?
Tracking:

When you develop and test a workflow, you want to optimize your workflow to run quickly and efficiently. Typically, you would like to record which activities execute and when they execute. When you deploy the workflow in an application, you also want to know how users employ your workflow, such as which parts of the workflow execute often and which parts execute rarely.

To gather usage information, you can use a Windows Workflow Foundation Tracking Service, which records the activities that execute and when they execute for each instance of the workflow.

Windows Workflow Foundation Tracking Service includes the SqlTrackingService class, which you can use to store tracking information in a Microsoft SQL Server database. If you want to store tracking information in another location, you can create a custom tracking service, by inheriting from the TrackingService class.

Scheduling:
Windows Workflow Foundation enables you to control the execution threads that your workflow uses on the CPU. You use a Scheduling Service to control the way workflows use threads.

By default, the Windows Workflow Foundation runtime uses the DefaultWorkflowSchedulerService, which uses a new thread for each workflow instance. These threads execute asynchronously from the Common Language Runtime thread pool, so that they do not block the host application from executing its own tasks.

You may host your workflow in a server-based host application, such as an ASP.NET Web application or Web service. These host applications donate a thread to the workflow instance, so that the instance remains synchronized with the application. To use this thread, utilize the ManualWorkflowSchedulerService instead of the DefaultWorkflowSchedulerService.

If you have specific threading requirements, you can create a custom scheduling service by inheriting from the SchedulerService class. However, this is not a typical scenario for most applications.

Building Windows Workflow Foundation Applications
This section describes how to create a WF application. It outlines how to define the workflow by using XAML, and how to host the completed workflow in different types of applications.
Working with Workflow Activities
What Are Common Activities?

WF includes a large number of built-in activities for common purposes. By using these activities you can create complex and functional workflows for organizing user activities or orchestrating computer systems. The following list describes many of these activities.

1. Conditional Activities:

Conditional activities enable you to make tests and control the execution of your workflow according to the results. WF includes the following activities:

IfElseActivity. You use the IfElseActivity to conditionally execute one of several alternative IfElseBranchActivity branches. You place a condition on each IfElseBranchActivity. If the condition evaluates to true, the runtime executes the activities that in the IfElseBranchActivity, otherwise, the next IfElseBranchActivity condition is evaluated, and so on. You do not have to put a condition on the last IfElseBranchActivity because it is treated as the else branch.

WhileActivity. The WhileActivity continuously executes any activities contained within it, as long as its condition evaluates to true. The condition is reevaluated at the completion of each loop.

ConditionedActivityGroup. The ConditionedActivityGroup continuously executes any activities within it until its condition evaluates to true. Each individual activity within the ConditionedActivityGroup has a When condition. Each activity executes only when the When condition evaluates to true.

ReplicatorActivity. The ReplicatorActivity completes its execution when its UntilCondition property evaluates to true.

2. Transaction:

WF enables you to define transactions within your workflows to ensure data integrity. If a failure occurs when a transaction is executing, all the activities that have executed within that transaction roll back their changes. The transaction succeeds or fails as one unit.

To create a transaction within your workflow, use the TransactionScopeActivity. You can create any number of other activities within the TransactionScopeActivity. The workflow runtime enrolls all these activities in the transaction. If a failure occurs within the TransactionScopeActivity, the transaction is aborted.

3. Code

The code activity enables you to include custom procedural code in your workflow without creating a complete custom activity. Use the code activity if you have a simple task that other built-in activities cannot perform.

In Visual Studio 2005, in Workflow Designer, you can create a code activity by dragging it onto the workflow from the toolbox. You must specify the method to execute in the ExecuteCode property of the code activity. When you do this, Visual Studio 2005 creates the method for you in the code-behind file and displays it in a code window. Visual Studio creates the following code if you set the ExecuteCode property to “Example”.

private void Example(object sender, EventArgs e)

{

}

What Are Communication Activities?

WF communication activities send data to, and receive data from, external sources. These sources can include databases, Web services, and e-mail servers. Such activities are fundamental to most workflows. For example, conditional activities may have conditions that check data in a database. The following sections describe frequently used communication activities:

InvokeWebServiceActivity

The InvokeWebServiceActivity invokes a Web service through a proxy class, passing and receiving specified parameters. When you use the InvokeWebServiceActivity, you must specify the proxy class to use by setting the ProxyClass property. You must also specify the Web service method that you want to call by setting the MethodName property.

CallExternalMethodActivity

You can use the CallExternalMethodActivity to communicate with a local service. A local service is a .NET Framework class that implements the ICommunicationService interface.

HandleExternalEventActivity

You can use the HandleExternalEventActivity to handle events from a local service. Usually, the CallExternalMethodActivity calls the local service and send parameters to it. When the external method completes, it raises an event that you handle with HandleExternalEventActivity.

Before you start an instance of your workflow, you must add the ExternalDataExchangeService to the workflow runtime engine and then add your custom communication service to the ExternalDataExchangeService.
Handling Errors in Workflows

Unexpected circumstances can cause workflows to generate exceptions, exactly as they can with procedural code. For example, if your workflow communicates with a database, but the database server is offline, the workflow may generate an exception. WF includes activities that you can use to handle such exceptions.
FaultHandlersActivity:

In a workflow, an exception can occur in the following ways:

· A transaction may time out.

· You may throw an exception using the ThrowActivity.

· Code in code activities or custom activities may throw an exception.

· External components may throw an exception.

When an exception occurs in an activity, the runtime transfers it to the parent activity for resolution. The runtime continues to transfer the exception up the workflow hierarchy until it either reaches the top or it reaches a suitable FaultHandlersActivity. Each FaultHandlersActivity contains one or more FaultHandlerActivity objects.

FaultHandlerActivity:

Each FaultHandlerActivity in a FaultHandlersActivity is associated with a .NET Framework exception type and contains a set of activities that execute to resolve the exception. You can therefore execute different activities for different types of exceptions.

While the FaultHandlerActivity is executing, the activity that threw the exception is in a faulting state. When the FaultHandlerActivity activity completes, the associated activity is put into the closed state.
ThrowActivity:

You may want to declaratively raise an exception in a workflow. For example, you may want to test a database server early in the workflow, and halt the workflow if the server is not present. In this way you can avoid running code pointlessly.

To raise an exception use the ThrowActivity. You can use this activity to raise any .NET Framework exception type, or to raise an exception that you define in the code-behind file of your workflow.
What are Custom Activities?
Even though WF is a general purpose development technology, Microsoft cannot include activities to solve all eventualities. You can solve simple problems with the CodeActivity, but this is not appropriate for more complex problems, and it is difficult to reuse the code in the activity. You can solve complex problems by creating your own custom activities. Moreover, you can reuse a custom activity many times by dragging it from the Visual Studio toolbox onto the Workflow Designer. The best solutions to the following situations require a custom activity. Click each activity to view more details.

E-mail Communication

Consider a workflow in which e-mails communicate between the workflow and the users. For example, a vacation approval application, in which a worker requests vacation and the system send e-mails to managers and administrators for approval and scheduling. Many e-mails may be sent in the process, but they all require the workflow to set their To, From, Subject, and Body properties. If you use code activities to send each e-mail, you must copy and paste the code into each code activity, and alter the lines that set those properties.

Alternatively, if you create a custom activity, you can write code once that sets the To, From, Subject, and Body properties from properties of the custom activity. You can bind these properties to properties of the workflow, the input parameters, or the output of other activities, such as activities that look up e-mail addresses in a directory. You can insert new e-mail activities into the workflow by dragging your custom activity from the toolbox.

Changing Activities

Consider a workflow that is likely to change in the near future. For example, at present, you want the workflow to look information up in a Microsoft Office Access database. However, within the next six months your data team will move that information into Microsoft Active Directory directory. If you write a CodeActivity wherever you need information from the Office Access database, you must rewrite all of those activities when the data moves to the directory.

Alternatively, if you create a custom activity to look information up in the Office Access database, you can later update the whole workflow simply by changing that activity and recompiling the workflow. You do not need to run through all of the individual code activities and repeatedly make corrections.

Creating Custom Composite Activities

Consider a workflow in which similar business logic appears repeatedly. For example, a human resources workflow managing training, promotion, and skills for workers. When you build the workflow, you discover that frequently the workflow communicates with the workers’ managers by looking them up in Active Directory and sending them an e-mail. In each one of these cases, an e-mail must also be sent to the manager’s manager. As you construct the workflow you notice that three or four activities repeat in a common pattern.

In such cases you can save time by creating a custom composite activity. This is a custom activity that consists of several child activities connected to form part of a workflow. You can reuse your composite activity quickly, by dragging it onto the Workflow Designer. In this way you avoid repetitively recreating the same pattern many times.
How to Create Custom Activities?
In this walk-through, you will see how to create simple custom activities and include them in workflows.
Within our workflow solution we just need to add a new activity.

There are two models of activities. There is an activity that it consists solely of code and there is an activity with code separation.

The activity with code separation would allow you to use a XAML file along with a CS or VB file to compile into your activity.

We will go with the first approach of just using all code based approach and you will see really now we have two different ways we can go about creating an activity.

Here you see what appears to be a sequence activity.We can create this activity now by dragging and dropping from the toolbar.This is really a model of composition in order of creating new activity.

The other way that we can create an activity is, rather than inheriting from sequence activity, which will execute all the child activities you place in it, we will just inherit from activity.

If we go back to design view you will see this has changed and we can’t drag and drop things in here anymore.

So what is our activity going to do? Well, we need to override the execute method.An execute method returns an ActivityExecutionStatus.We are going to have an execution status of Closed.

We could return executing if we were doing long running work within our activity and wanted to indicate to the run time that “you can go on and do something else. I’m waiting for a message and when I am done I will raise the closed status up to you”.

The other thing to note on the execute method is that an ActivityExecution context is passed in.This is really the environment of the workflow that the activity lives in.

At the very simplest we could just write out to the console.But we probably want to do something, like maybe we want to add two numbers together.

In order to do that we will need to create two properties, and we can then operate on these properties, but we will need a third in order to have a return value.Instead of writing from here, we will say that total equals num one plus num two.

We can go ahead and build this activity.

Let’s go back and now use this within a workflow.

If we go into our workflow, and go into our toolbox, you will now see an addition to the out of the box activities. We have our custom activity, MyActivity.

You can drop this on here, and if I go look at the properties, you can set num 1 equal to 45 num 2 equal to 86 and you will leave total at 0.

Let’s go into this codeActivity now.

In this codeActivity instead of writing out middle you can now write, based on your activity one, you want to get the total.Access the property that’s on that activity.

This way our activity can take in values it can, it can return values that can be used by any activity in the workflow.
Creating and Debugging Workflows

This section describes how developers create workflows by using XAML or the Workflow Designer in Visual Studio. It also describes how to debug a workflow

How to Use Extensible Application Markup Language to Define a Workflow

In this walk-through, you will see how to create a workflow by writing an XAML document.
Windows Workflow Foundation allows us the ability to define a workflow solely within an XML representation called XAML, the Extensible Application Markup Language. In order to do this, we need to create a root activity. For a sequential workflow, it is simply the SequentialworkflowActivity.

We will also place some additional XML attributes in there, including the name of the class and some XML name spaces.

We will go ahead and save this, and open it up within Visual Studio. You will see we have a Sequential Workflow. We don not have to pick Sequential Workflows or root activity; we could just as easily pick StateMachine.

Save this, return to Visual Studio, reload, and you will see we now have a State Machine.

We will switch this back to Sequential, and show how you can add activities here.

As I mentioned, this is an XML representation of the activity tree, and so you can think of your activity as simply being nested within container activities. In this case, we have the root SequentialworkflowActivity, which will serve as the container for the activities beneath it. We will add a codeActivity, and let’s see what this looks like in the designer.

You will see we now have a Sequential Workflow with a codeActivity.

You will see that we also have a validation error on here. That is, the ExecuteCode property has not been set.

That’s no problem. Within our XML representation, within that activity, all we need to do for a property is to place the property name and set it equal to sum value.

Again, let’s see what this looks like in the workflow. You will see our codeActivity is now functioning. If we look at the properties, you will see that the ExecuteCode property has been set to what we just wired up.

We can have more complicated structures than this. We can nest activities inside other composite activities. A good example of this, is the ParallelActivity.

Now, a ParallelActivity can consist of any number of parallel sets of activities, sequences of activities, and those activities will execute in parallel. The way this is accomplished is within a ParallelActivity with any number of child sequence activities. We will go ahead and add two more of these.

As I said earlier, with regards to nesting of the activities, within the sequence activities, they themselves are composite activities, so we can add more activities within here.

We will save this, and see what it looks like in our designer. See, we added a parallel activity that contained three child sequence activities.

The second sequence activity also contains a child codeActivity. So in this way, you can see how the XML representation of the workflow, is identical to the graphical representation of the workflow.

Now, we can continue to edit within the XML by adding activities and configuring them, or we could continue to edit within the designer.

How to Build Workflows Using the Workflow Designer?

In this walk-through, you will see how to use the Workflow Designer in Visual Studio 2005 to create a workflow.

In order to author a XAML-based workflow we need to add a sequential workflow with code separation or a state machine workflow with code separation to our project.

You will see that this opens up in the standard Windows Workflow Foundation Workflow Designer.

This allows us to graphically compose a workflow consisting of the activities which appear in the toolbar.

We have dropped a code activity here. Let’s just write in the arbitrary C# or VB.NET code that will execute.

You will see that our workflow consists of two parts.

The workflow file itself, which contains the XAML representation of the workflow as displayed in the graphical designer here.

Then we have our code beside-file, which contains a partial class which implements the rest of the workflow.

In this case we implement the ExecuteCode method on the code activity.

But what does that XAML file look like?

As you can see, it is essentially the object tree of all the activities that are contained in the workflow.

SequentialWorkflowActivity forms the root of our workflow. Within that we have our CodeActivity.

You’ll note that our property on the code activity of Executecode, which tells us what we actually need to do, is defined here.

Now you can see how easy it is to use the Window’s Workflow Foundation Designer in order to create your workflows.
How to Debug Workflows with the Workflow Debugger?
In this walk-through, you will see how to troubleshoot errors generated in your workflows by using the Workflow Debugger.

Windows Workflow Foundation also installs a debugger, which allows us to debug our workflows from within Visual Studio.

The way we do this is very similar to the way we currently debug managed code.

We select an activity that we are interested in, we set a break point.

You will see when we execute the workflow, we switch back to the graphical designer, and the activity which we have set the break point on now is highlighted in yellow.

We can continue to step through our workflow this way, all the way until the workflow itself completes.

Now, what if we don’t like stopping in here, what if we have got a bunch of complicated code back here and we want to stop when we are executing that code?

We can set a break point back here just as we would in C#.

Again, we will execute and you will see we stop here within the code.

We can step through the code that we are executing, come back up to the level of the workflow, and begin to step through the rest of the workflow graphically.

Now, if we have come out of the text view, we are in the graphical view, but now we are in another code activity and we want to dig into the code of what is going on within that activity, we can step into this activity.

This way you can very quickly see what is going on in your workflow, you can very easy trace the flow of execution for currently executing process, and you can switch between the graphical representation and the code view, so that you can find out what is going on within your application.
Hosting Workflows

This section describes how to host the workflows you create. Because workflows are not stand-alone applications, they must execute within other applications. This lesson describes several types of application that can host workflows.

How to Host Workflows in Desktop Applications?
In this walk-through, you will see how to create a desktop application in Visual Studio 2005 to host your workflow.

We will now show how you can host a workflow within a Windows Forms Application and communicate to the workflow and have the workflow communicate back to your host application.

A little bit of set up here. We must have our workflow library and windows application created already here.

It is important to note that in terms of references, you need to reference the workflow assemblies, as well as the project which contains the actual definition for your workflow.

Let us take a quick look at that workflow. We have a code activity, a parallel activity with three branches, which we will delay as well as two additional code activities.

Now, we want to talk to this workflow, we want to get data in and send some data out.

And the way we do that is by leveraging .NET properties on the class, so you will see we have created two properties both of type integer.

One for the P/O number, and one for the total price.

We pass in the P/O number, and we set the total price equal to the P/O number times three.

So now let us look at the hosting side of things.

The Windows Workflow Foundation Runtime can be hosted inside any .NET application. So anywhere you can run managed code, you can run the Windows Workflow Foundation Runtime.

You see we have declared a workflow Runtime variable here. We are going to wire up two events.

The WorkflowCompleted event, which will be what we hope happens all of the time. This will be everything worked the way we were thinking it would work.

And then we will also add the WorkflowTerminated event. This is going to be the not happy case where something has gone wrong in the workflow, an exception has been thrown, and it hasn’t been handled, and we end up back here. We do capture this event so if we needed to handle this, we could.

We need to do this because a WorkflowInstance executes on a separate thread of execution, so we need the events in order to communicate back to the hosts that something did happen, otherwise we would not know something had gone wrong.

So, we will leave the WorkflowTerminated code there, and within our WorkflowCompleted code, we are just going to write out what that total amount is.

And how do we get to that total price? Remember over here, we have a property called total price? In this code, we can latch on to the WorkflowCompletedEventsArgs, which contain a dictionary of string object of all of the parameters coming out of the workflow.

Now we know that is coming out as an Int, so we will cast it to a string.

Now, within the button click, this is where we will actually do the work. We have created a run time, so what we need to do now is create a WorkflowInstance.

You will see on the CreateWorkflow method, there are a couple of different overloads. There is one which just passes in a type, and one which passes in an XML reader.

The XML reader case is useful when you need to pass in a XAML only workflow, and this allows you to have a declarative workflow where there is no code bug by side.

We confirm what our name space is, pass in the type of the workflow, and we are done.

We can now start this instance of the workflow and it will execute.

We have not passed in any parameters and we need to do that. So the way we do that is by creating a dictionary of type string, object, and adding to that.

We know we are passing in an integer, and where are we going to get that from? We are going to get this from this text box, which is also named P/O number.

Now, in our CreateWorkflow method, in addition to passing in the type of the workflow we want to create, we can also pass in that dictionary.

This will get the variables into the workflow. And just to convince you of that, we are going to go ahead and set a break point right here. This is a break point within our workflow. We will also set a break point here so we can catch it coming out.

So we will now start up our application and pass in 42, and we will say calculate. We are now within the workflow, and you will see the P/O number, which we have passed in as 42. Total price right now is 0. It will now be 126.

Coming back we are here, and we want to see what just got written out. See that the total price of 126 is written out to the debug console, and now our workflow is completed, and we have passed in information. We have received information form the workflow by attaching to the WorkflowCompleted event and inspecting the event arguments.
Hosting Workflows in ASP.NET Applications

If you want your application to have a Web interface, you can host your workflows within an ASP.NET application. To do this you must satisfy the following requirements.

1. Use the WorkflowRuntime object to access the workflow runtime.

Desktop applications require one instance of the workflow runtime for all the users of the application. It is possible to create this in the Application_Start event in the Global.asax file. You can access the runtime object in the following way:

static WorkflowRuntime wr = new WorkflowRuntime();

2. Pass parameters to the workflow by using a name/value Dictionary.

For desktop applications, you pass information into the workflow by creating a Dictionary object or name/value pairs. Each name must correspond to the name of a public property in your workflow class.

Dictionary<string, object> parameters = new Dictionary<string, object>();

parameters.Add("UserName", "Fred");

parameters.Add("Password", "P@ssw0rd");

3. Register event handlers for the workflow and start a new workflow instance.

For desktop applications, you must register an event handler to handle the output from the workflow. Then you can start the workflow instance:

wr.WorkflowCompleted += new EventHandler<WorkflowCompletedEventArgs>(LoginCompleted);

Type t = typeof(Samples.LoginWorkflow);

WorkflowInstance instance = wr.CreateWorkflow(t, parameters);

instance.Start();
4. Use the Web.config file to configure the runtime.

If you use the WorkflowWebRequestContext object to access the workflow runtime, you cannot add services such as persistence or scheduling services because the workflow is already started. If you try to add services to the runtime when it has already started it will generate an error. Instead, to configure the runtime with services, use the <workflowRuntime> section in the Web.config file:

<configuration>

 <configSections>

 <section name="WorkflowRuntime"

 type="WorkflowRuntimeSection, System.Workflow.Runtime" />

 </configSections>

</configuration>
Exposing a Workflow as a Web Service

A third approach is to publish your workflow as a Web service. This means that ASP.NET applications, desktop applications, and other applications can use the workflow just as they would make requests to any other Web service. To expose a workflow and a Web service you must satisfy the following requirements.
1. Include the WebServiceReceive activity in your workflow.

You can only expose a workflow as a Web service if you include the WebServiceReceive activity in the workflow. The WebServiceReceive activity passes the parameters passed to the Web service into the workflow.

2. Create an interface and bind the WebServiceReceive activity to it.

You must create an interface in the code-behind file of the workflow class. You can only call the methods listed in this interface through the Web service:

public interface ILoginWorkflow {

 bool Authenticate(string user, string pswd);

}

You must also bind the WebServiceReceive activity to one of the methods in that interface.

3. Include the WebServiceResponse activity in your workflow and generate event handlers.

The WebServiceReponse activity comes at the end of the workflow and passes information back to the calling application. You must set the ReceiveActivityId property of this activity to the ID of the WebServiceReceive activity. You must also generate event handlers for the WebServiceReceive activity. Do this by right-clicking it, and then click Generate Handlers.

4. Publish the Web service.

In Visual Studio 2005, right-click the workflow project, and then click Publish as Web Service. The Workflow Designer creates a Web service project with a Web.config file, an .asmx endpoint file, and a .dll file that contains the compiled workflow. You must copy these files to an Internet Information Services (IIS) 6.0 virtual directory.
�

Activity Framework provide functions like validation, fault handling & Compilation

Workflow runtime component execute workflow instances with host application

Activities like send emails, handle errors, run code or execute other tasks

Custom Activities to include in workflows

Transaction Services ensures you that data remains consistent even if failure occurs.

Persistent Services allows you to save workflow instances in database or other locations.

Tracking Services record which activities execute in each workflow instances and when it executes.

Scheduling Services control the way the workflow runtime creates threads for workflow instances

[image: image14.png]

