[image: image58.png]

Emerson DeltaV Syncade Batch
Interface to the PI System

Version 1.0.1.0
Revision B
Copyright © 2008-2009 OSIsoft, Inc.

	OSIsoft, Inc.

777 Davis St., Suite 250
San Leandro, CA 94577 USA
(01) 510-297-5800 (main phone)
(01) 510-357-8136 (fax)
(01) 510-297-5828 (support phone)

http://techsupport.osisoft.com

techsupport@osisoft.com

Houston, TX
Johnson City, TN
Longview, TX
Mayfield Heights, OH
Philadelphia, PA
Phoenix, AZ
Savannah, GA

	
	OSIsoft Australia

Perth, Australia
OSI Software GmbH

Altenstadt, Germany

OSIsoft Asia Pte Ltd.

Singapore

OSIsoft Canada ULC

Montreal, Canada

Calgary, Canada

OSIsoft, Inc. Representative Office

Shanghai, People’s Republic of China

OSIsoft Japan KK

Tokyo, Japan

OSIsoft Mexico S. De R.L. De C.V.

Mexico City, Mexico

OSIsoft do Brasil Sistemas Ltda.

Sao Paulo, Brazil

	
	
	

	Sales Outlets/Distributors
	
	

	Middle East/North Africa
Republic of South Africa
Russia/Central Asia
	
	South America/Caribbean
Southeast Asia
South Korea Taiwan

www.osisoft.com
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of OSIsoft, Inc.

OSIsoft, the OSIsoft logo and logotype, PI Analytics, PI ProcessBook, PI DataLink, ProcessPoint, Sigmafine, Analysis Framework, PI Datalink, IT Monitor, MCN Health Monitor, PI System, PI ActiveView, PI ACE, PI AlarmView, PI BatchView, PI ManualLogger, PI ProfileView, ProTRAQ, RLINK, RtAnalytics, RtBaseline, RtPortal, RtPM, RtReports and RtWebParts are all trademarks of OSIsoft, Inc. All other trademarks or trade names used herein are the property of their respective owners.
RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph I(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227

Table of Contents

viiTerminology

1Introduction

2Reference Manuals

2Supported Features

6Diagram of Hardware Connection

11Principles of Operation

11Interface Modes

12Multiple Data Sources

15Event Journals as Data Source

16SQL Batch Historian as Data Source

17SQL Alarm&Events Historian as Data Source

18OPC Alarm&Events Server as Data Source

18Syncade as Data Source

18Recipe Model vs. Equipment Model

19Methodology

21PIBatch

23PIUnitBatch

27PISubBatches

27Operation

29Phase

31Phase State

31Phase Step

33Arbitration Events Unavailable

33Template Placeholders

34PIBatch and PIUnitBatch Product Property

36PIModule Creation

38Foreign Language Support

43Event Logging

44Advanced Parsing Parameters

45Property Templates

48Tag Templates

58Tag Templates – PI Batch Database Activity Logging

60Alarm Tag Templates

64Merging Multiple Source batches into a Single PIBatch

65Using /BIDM Parameter

66Lost Connections to PI Server and PI Archive Backup Issues

66Data Preprocessing

68Data Recovery

69Data Analysis

69PI Data Deletion

69EVT Source - Event Based Time Ordered Processing

71Dealing with Irrelevant Recipes

71Dealing with Irrelevant Units

72Dealing with Irrelevant Phases

72Dealing with Irrelevant Phase States

73Initialization File

75EVT Source - Example Event File Journal

77Installation Checklist

77Data Collection Steps

78Interface Diagnostics

83Interface Installation

83Naming Conventions and Requirements

83Interface Directories

83The PIHOME Directory Tree

84Interface Installation Directory

84Interface Installation Procedure

84Installing the Interface as a Windows Service

84Installing the Interface Service with the PI ICU

86Installing the Interface Service Manually

89Digital States

91PointSource

93PI Point Configuration

93Interface-specific Points

95Startup Command File

95Configuring the Interface with PI ICU

97PIEMDVBCS Configuration

105Configure INI File Form

105Source Template Tab

108Tag Template Tab

110Property Template Tab

111General Template

113Translation Tab

114Configuring Interface Startup Files

115Command-line Parameters

126Sample PIEMDVBCS.bat File

127Initialization File Parameters

130Sample INI file – Multiple EVT Sources

130Sample INI file – DeltaV German EVT Source

131Sample INI file – DeltaV SQL, OPCAE, Syncade

135Interface Node Clock

137Security

139Starting and Stopping the Interface

139Starting Interface as a Service

139Stopping the Interface Running as a Service

141Buffering

143Appendix A: Error and Informational Messages

143Message Logs

143Messages

150System Errors and PI Errors

151Appendix B: Batch Executive System – Configuration Requirements

151Introduction

151Background

151Objectives

151Principles of Operation

151Principles of the PI Server Batch Database

152Principles of the PI DeltaV Syncade Batch Interface

153Recommendations for BES Recipes and Equipment Models

157Appendix C: Event File Directory Sync Utility

157Introduction

157Principles of Operation

157Utility Installation Procedure

158Installing the Utility as a Windows Service

158Startup Command File

158Command-line Parameters

159Sample EVTSync.bat File

159Starting and Stopping the Utility

159Starting the Utility Service

159Stopping the Utility Service

159Conclusions

161Revision History

Terminology

To understand this interface, you should be familiar with the terminology used in this manual.

ICU

ICU is the PI Interface Configuration Utility. The ICU is the primary application that you use to configure and run PI interface programs. You must install the ICU on the same computer on which an interface runs. A single copy of the ICU manages all the interfaces on that particular computer.

OSIsoft strongly recommends that you use the ICU for interface management tasks. While, you can configure and run an interface by editing a startup command file, OSIsoft discourages this approach.

ICU Control

An ICU Control is a plug-in to the ICU. Whereas the ICU handles functionality common to all interfaces, an ICU Control implements interface-specific behavior. Most PI interfaces have an associated ICU Control.

Interface Node

An Interface Node is a computer on which

· the PI API, the PI SDK, or both are installed, and

· PI Server programs are not installed.

PI API

The PI API is a library of functions that allow applications to communicate and to exchange data with the PI Server.

PIHOME

PIHOME is the directory that is the common location for PI client applications. A typical PIHOME is C:\Program Files\PIPC. PI interfaces reside in a subdirectory of the Interfaces directory under PIHOME. For example, files for the Modbus Ethernet Interface are in C:\Program Files\PIPC\Interfaces\ModbusE.

This document uses [PIHOME] as an abbreviation for the complete PIHOME directory. For example, ICU files in [PIHOME]\ICU.

PI SDK

The PI SDK is a library of functions that allow applications to communicate and to exchange data with the PI Server. Some PI interfaces, in addition to using the PI API, require the PI SDK.

PI Server Node

A PI Server Node is a computer on which PI Server programs are installed. The PI Server runs on the PI Server Node.

PI SMT

PI SMT refers to PI System Management Tools. PI SMT is the program you use for configuring PI Servers. A single copy of PI SMT manages multiple PI Servers. PI SMT runs on either a PI Server Node or a PI Interface Node.

pipc.log

The pipc.log file is the file to which OSIsoft applications write informational and error messages. While a PI interface runs, it writes to the pipc.log file. The ICU provides easy access to the pipc.log.

Point

The PI point is the basic building block for controlling data flow to and from the PI Server. For a given timestamp, a PI point holds a single value.

A PI point does not necessarily correspond to a "point" on the foreign device. For example, a single "point" on the foreign device can consist of a set point, a process value, an alarm limit, and a discrete value. These four pieces of information require four separate PI points.

Service

A Service is a Windows program that runs without user interaction. A Service continues to run after you have logged off as a Windows user. A Service has the ability to start up when the computer itself starts up.

The ICU allows you to configure a PI interface to run as a Service.

Tag (Input Tag and Output Tag)

The tag attribute of a PI point is the name of the PI point. There is a one-to-one correspondence between the name of a point and the point itself. Because of this relationship, PI System documentation uses the terms "tag" and "point" interchangeably.

Interfaces read values from a device and write these values to an Input Tag. Interfaces use an Output Tag to write a value to the device.
Introduction

This manual describes the operation of the Emerson DeltaV Syncade Batch Interface to the PI System. In this manual, we refer to the Emerson DeltaV Syncade Batch interface as the Batch Interface. The primary objective of the Batch Interface is to collect Emerson Syncade events in addition to batch processing events from DeltaV and Syncade and to store them in the PI Batch Database. In addition to collecting batch data, the interface collects associated batch data and parameter data for PI Tags and PI Batch properties.

The Batch Interface is the first dedicated interface for collecting batch data from Syncade and DeltaV; creating an integrated structure in the PI Batch Database. The interface collects batch events, electronic work instruction events, and parameter data through a Microsoft Message Queue populated by the Emerson Syncade System in additional to all the functionality of the Emerson DeltaV Batch Interface.

The interface establishes connections to the following data sources:

· DeltaV OPC Alarm & Events Server (A&E Server): the interface uses this connection for collecting batch events from the DeltaV System in real-time.

· DeltaV Batch Historian: the interface uses this connection for collecting associated batch data, such as operator comments, report parameters, and recipe parameters. If you lose connection to the DeltaV OPC A&E Server, the interface retrieves batch data and associated batch data through this data source connection.

· Emerson Syncade Microsoft Message Queue: the interface uses this connection for collecting batch events, electronic work instruction events, and parameter data.

This interface is primarily designed to be used with Emerson Syncade (EBR) 4.0.1 and DeltaV 10.3 and later systems utilizing the data sources specified above; however, it can run against earlier DeltaV systems utilizing different data sources.

· For DeltaV 9.3 systems this interface can utilize the DeltaV Batch Historian or DeltaV event files as the primary data source.
· For DeltaV 8.4 systems this interface can only use DeltaV event files as the primary data source.
NOTE: The use of DeltaV event files as a public interface for the DeltaV System is not recommended by Emerson.
The flow of data in the interface is unidirectional—that is, data can only be read from the specified data source and written to the PI Server. This interface can read data from multiple batch data sources simultaneously. By design, the interface does not edit or delete source data.

The Batch Interface is a scan-based interface that populates the PI Batch Database and PI Module Database. In addition to batch data, the interface can populate the PI Point Database. PI Point creation, commonly known as tag creation and event population, is controlled by using tag templates. All modules, tags, tag aliases, and health tags are automatically created on the PI server. The Interface does not use the PI API Buffering Service because batch and tag data is already buffered by the source historian databases. To maximize performance, the interface writes events to PI tags in bulk—that is, it writes all events per interface scan.

NOTE: The Emerson DeltaV Syncade Batch Interface is not an upgrade to the Batch Event File Monitor Interface. OSI plans to provide a migration path for those customers who want to migrate from the Batch Event File Monitor Interface to the Emerson DeltaV Syncade Batch Interface. This migration plan and best practices will be posted to the OSI Technical Support website.

Reference Manuals
OSIsoft
· PI Data Archive Manual
· PI Server System Management Guide
· PI SDK User Manual
Vendor

You should review the pertinent documentation regarding the particular Batch Executive System (BES) at your facility. You should also maintain familiarity with the contents and format of the source data so that you can choose appropriate options and features for the interface.
Supported Features

	Feature
	Support

	Part Number
	PI-IN-EM-DVBCS-NTI

	* Platforms
	Windows 2000 SP4/XP/2003/Vista/2008 Server, Win7, 2008 Server R2

	APS Connector
	No

	Point Builder Utility
	No

	ICU Control
	Yes

	PI Point Types
	integer / float32 / string

	Sub-second Timestamps
	Yes

	Sub-second Scan Classes
	No

	Automatically Incorporates PI Point Attribute Changes
	No

	Exception Reporting
	No

	Outputs from PI
	No

	Inputs to PI: Scan-based / Unsolicited / Event Tags
	Event and Scan-based

	Supports Questionable Bit
	No

	Supports Multi-character PointSource
	Yes

	Maximum Point Count
	None

	* Uses PI SDK
	Yes

	PINet String Support
	N/A

	* Source of Timestamps
	Device

	* History Recovery
	Yes

	* UniInt-based

 Disconnected Startup

* SetDeviceStatus
	No
No
Yes

	Failover
	No

	Vendor Software Required on PI Interface Node / PINet Node
	No

	* Vendor Software Required on Foreign Device
	Yes

	Vendor Hardware Required
	No

	Additional PI Software Included with Interface
	No

	* Device Point Types
	String/integer/float

	Serial-Based Interface
	No

*See paragraphs below for further explanation.
Platforms
The Interface is designed to run on the above mentioned Microsoft Windows operating systems. Because it is dependent on vendor software, newer platforms may not yet be supported. Please contact OSIsoft Technical Support for more information.

PI SDK

The PI SDK and the PI API are bundled and must be installed on each PI Interface node. The PI DeltaV Batch Interface makes PI SDK calls to access the PI Module Database and PI Batch Database. The Interface requires PI SDK version 1.3.4.333 or higher to be installed. The Interface uses PI API to log messages in the local pipc.log file. It does not require a PI API connection to the PI Server.
Source of Timestamps

Since each record in the source contains a timestamp and the interface itself is solely scan-based, use of the time at record processing could introduce inherent latency with respect to establishing the event time. Thus, the timestamp accompanying the record is used as the source of the timestamp for the data to be placed into the PI system. For the health tags, the Interface uses local system time at the time the value is being recorded.
History Recovery

The operation of the Batch Interface may be interrupted without loss of data. While the Interface is offline, the data is being buffered by the data sources such as SQL Server (DeltaV 9.3+), Event Journal files (DeltaV 8.4+), or MSMQ (Syncade 4.0.1+).
The Interface can recover data provided it is still available in the data sources. If the data interruption occurred while the interface was running, then the data is recovered automatically without user intervention. To perform historical data recovery, the Interface must be run in Recovery mode. In this mode, the Interface can recover data for any time period specified by the user. The recovery mode is enabled by specifying the recovery time period through the command line parameters /rst=<date and time> (required) and /ret=<date and time> (optional). Note, the data recovery is limited by BES historical data availability as well as by few other factors on the PI Server, like the number of licensed tags, the size and time frame of PI archives into which data is backfilled, etc. Refer To Data Recovery section for more information.
SetDeviceStatus

The Health PIPoint with the attribute ExDesc = [UI_DEVSTAT], is used to represent the status of the source devices. This tag is automatically created and configured if missing by the interface on startup. The following events can be written into the tag:

a) "Good" - the interface is properly communicating and reading data from the data sources.

b) The following events represent proper communication with the data sources. This message is displayed on successful connection to each source.
"2 | Connected/No Data | EVT Directory Monitor: <directory name> Initialized."

"2 | Connected/No Data | Source SQL Server: <server name> Initialized."
c) The following list of events represents the failure to communicate with either the Event Journal file directory or Position directory, or failure to read data from the Event Journal File:

"3 | 1 device(s) in error | Error monitoring directory (onError): <directory name>"
"3 | 1 device(s) in error | Error monitoring directory: <directory name>"

"3 | 1 device(s) in error | Failed to start directory monitoring thread: <directory name>"

"3 | 1 device(s) in error | Error in scanning directory: <directory name>"

"3 | 1 device(s) in error | Error obtaining EVT files EOF."

"3 | 1 device(s) in error | Error getting current EVT file timestamp."

"3 | 1 device(s) in error | Error reading EVT file: <filename>."

"3 | 1 device(s) in error | Error while reading EVT file."

"3 | 1 device(s) in error | Error reading SQL Server: <server name>."

Vendor Software Required

The Batch Executive System (BES) and its accompanying support software are required for proper operation of this Batch interface.
SQL Native Client must be installed on the interface node when selected data source is DeltaV SQL server.

Device Point Types

Since the interface receives data from source as string type, it attempts to coerce the string data into numerical equivalents according to Tag Templates if defined.
Diagram of Hardware Connection

Figure 1. Schematic of Recommended Hardware and Software Configuration for Batch interface with Event Files as sources.

[image: image1.png]Source 1
[Batch Execution System

Event Journal File

:

Source 2

Natweals_(LAN)

Tnterface Node

[Batch Execution System

Event Journal File

PI
Batch
Interface

PISDK

Lol Ams

PT Module|
Database

s Network (LAN)

Figure 2. Schematic of Recommended Hardware and Software Configuration for Batch interface with DeltaV SQL servers as data sources.

[image: image2.png]Source 1
[Batch Execution System

SQL
Server

a

Source 2

PT Module|
Database

o

[P Batch
Database|

a

Tnterface Node

[Batch Execution System

SQL
Server

a

s Network (LAN)

Figure 3. Schematic of Recommended Hardware and Software Configuration for Batch interface with DeltaV SQL and OPC AE servers as data sources.

[image: image3.png][Batch Execution System

Source 1

OPC AE
Server

a

Source 2

Tnterface Node

PT Module|
Database

o

[P Batch
Database|

a

s Network (LAN)

SQL
Server

[Batch Execution System

OPC AE
Server

a

a

PI
Batch
Interface

Figure 4. Schematic of Recommended Hardware and Software Configuration for Batch interface with Syncade, DeltaV SQL and OPC AE servers as data sources.

[image: image4.png]Compliance Suite PI Server
SQL PI
Server | [MSMQ Archive

0B

[Batch Execution System | |[web Service

Netwok_(LAN)

Tnterface Node

[Batch Execution System

Lol A

PI
Batch
Interface

s Network (LAN)

The Batch interface may either be installed on the same node as the batch execution system (BES) or the PI Server or on a completely separate node. Due to load balancing considerations, OSIsoft does not recommend that the interface be installed on the same node as the PI Server. Contact the vendor of your BES for recommendations as to installing third-party software, such as the Emerson DeltaV Batch Interface, on the same node as the Emerson DeltaV Batch Executive.

Principles of Operation

This section contains relevant information to help the user better understand some of the primary logic of the Emerson DeltaV Syncade Batch interface.
Interface Modes

The Interface can be run in five different modes:

· RealTime (default)

· Recovery

· Preprocess

· Statistics

· Delete
RealTime mode is the default mode of operation and Recovery mode is designed to recover historical batch and tag data, provided the data still exists on the source. The principal difference between RealTime and Recovery modes is that in RealTime mode the interface synchronizes newly acquired data from the source with the PI Server at the end of each scan regardless of batch completion on the source. In Recovery mode, the interface synchronizes the batch only when it has completed on the source—that is, the end time is known.

In Recovery mode, all open batches are processed only when there are no completed batches left to be processed, when we have reached the current time. If the interface is started in Recovery mode without defining the Recovery End Time (interface command line parameter /ret=<date and time>), it prints the results of recovery process and change to RealTime mode as soon as it reaches current time. The Recovery mode is always used on interface startup. The recovery is performed from the timestamp of the last processed event to the PI Server before shutdown until the interface reaches the current time. The mode is then automatically changed to the Realtime. Recovery mode can be also enabled through the use of the optional command line parameter - Recovery Start Time (/rst=<date and time>). This parameter allows you to specify an alternative history recovery start time. The history recovery end time is optional and can be specified through the command line parameter - Recovery End Time (/ret=<date and time>). The Recovery End Time has no effect unless the (/rst) parameter is specified.
Note: if the Recovery End Time switch is used, the interface stops on recovery completion.

The Preprocess mode is designed for situations when the source data must be written to PI archives with earlier timestamps than the primary PI archive. Due to the nature of the PI Server, newly added tags, units and modules are indexed (referenced) only in the primary PI archive. Any older archive will not have knowledge of these modules, units and tags. In Preprocess mode the interface creates only modules, units, tags and tag aliases without processing batch data and adding events into the tags. On completion, the interface stops and the user has to reprocess older archives with the offline archive utility. Please refer to the PI Server System Management Guide for details on archive reprocessing procedure. The reprocessing creates indexes for newly added units, modules, tags in each reprocessed archive. This mode should be always used before writing new batch data to older PI archives. It can be enabled by simply adding the /mode=noupdate parameter to the command line parameters in conjunction with the Recovery Start Time switch (/rst=<date and time>. OSI does not recommend using the Recovery End Time /ret=<date and time> parameter because it can cause incomplete data processing, and therefore all tags and modules would not be created on the PI server.

In Statistics mode, the interface compares source data with the PI server data. In this mode the interface does not write or modify any data on the PI Server. Upon completion the interface reports results and stops. To enable this mode, the command line parameter (/mode=stat) has to be specified in command line parameters in conjunction with the Recovery Start Time parameter (/rst=<date and time>). The Recovery End Time parameter /ret=<date and time>) can also be specified to limit the time frame of interest. If not specified, the interface will compare data from Recovery Start Time until current time.
In Delete mode, the interface cleans PI archives based on specified source data only, leaving data from all other sources intact. This mode should be used only if the interface is unable to synchronize source batch data with the PI server. This modes is used only in conjunction with Recovery mode command line parameters (/rst and /ret) and can be enabled by adding the parameter (/mode=delete) to the command line parameters in the interface startup file.

Multiple Data Sources

The Batch interface supports simultaneous data processing coming from multiple sources. Primarily, parallel processing is designed for processing data from distributed control Batch Execution Systems. For example, the control logic of manufacturing process can be split among upstream and downstream segments, where each segment is controlled by a separate DeltaV Batch Executive. Even though the logical batch is the same, the actual batch related data is split among two batch historians. This Batch interface allows merging data for such batches and storing it into a single PI batch. Refer to section Merge multiple source batches with same BatchID into one PI Batch for more details. Parallel data processing resolves the problem with shared unit control as well, where different overlapping batch recipes can access the same unit in different stages of its production cycle. This is achieved through acquiring data for the same time frame from multiple sources and process combined time ordered data by the single instance of the interface. Data source(s) should be defined in the INI file associated with the specific interface. If EVT files are used as data sources, then ONLY the full path EVT directory should be defined for each source object. When DeltaV SQL historians are used as data sources, then the SQL server name and optionally database (default database: DVHisDB) should be defined for each source object. For Emerson DeltaV 10.3+ BES, this interface is able to retrieve batch data in realtime from DeltaV embedded OPC AE server. Since OPCAE server is a DA server, the interface requires that SQL to be used for data recovery. For cases when such mode of operation is desired, OPC AE node name and optional server name (default: DeltaV.OPCEventServer.1) should be defined in conjunction with SQL server name.
Table 1. Data source usage and description.
	Object Name
	Property name
	Description

	Source[#]
	
	Defines the interface data source, where # is the index of the source. Index can be any positive 1-based number. The index is only used to match multiple source properties to the same source object, such as:

 opcnode, opcserver

OR
 sqlserver, sqldatabase, sqluser , sqlpswd.

	
	.evtdir=
[directory path]

Required for EVT data Source
	Defines the Event File journal directory associated with particular source.

Example:

Source[1].evtdir = D:\TEST\RELEASE\test_1
Source[2].evtdir = D:\TEST\RELEASE\test_2

Source[3].evtdir = D:\TEST\RELEASE\test_3

	
	.opcnode=
[Node Name / IP]

Required for OPCAE data Source
Available in DeltaV 10.3+
	Defines the name of the node (machine) where the DeltaV OPCAE server is installed. Required for OPCAE data collection. If used in conjunction with DeltaV SQL server, it must be defined under the same source.

Example:

Source[1].sqlserver = deltav10
Source[1].sqldatabase= DVHisDB

Source[1].opcnode = deltav10
Source[1].opcserver = DeltaV.OPCEventServer.1

Source[2].sqlserver = deltav10

Source[2].opcnode = 192.168.1.10

(for Source 2: using default SQL database name and default OPCAE server name)

	
	.opcserver =
[Server Name]

Optional for OPCAE data Source
Default: DeltaV.OPCEventServer.1
Available in DeltaV 10.3+
	Defines the name of DeltaV OPCAE Server. Optional for OPCAE data collection. If used in conjunction with DeltaV SQL server, it must be defined under the same source. Default: DeltaV.OPCEventServer.1
Example:

Source[1].opcnode = deltav10
Source[1].opcserver = DeltaV.OPCEventServer.1
When used with DeltaV SQL (same source):

Source[1].sqlserver = deltav10
Source[1].sqldatabase = DVHisDB

Source[1].opcnode = deltav10
Source[1].opcserver = DeltaV.OPCEventServer.1

	
	.sqlserver=
[Server Name / IP]

Required for SQL data Source
Available in DeltaV 9.3+
	Defines the name of the source DeltaV BES SQL server name.

Example:

source[1].sqlserver = 192.168.1.10

source[1].sqldatabase = PrimeDB

source[2].sqlserver = deltav10
(for source 2: using default database: DVHisDB)

	
	.sqldatabase =
[Primary Database Name]

Optional for SQL data Source
Default: DVHisDB

Available in DeltaV 9.3+

	Defines the name of the primary database name in DeltaV BES SQL server. Must be used in conjunction with property: .sqlserver=[Server Name]

Example:

source[2].sqlserver = deltav9

source[2].sqldatabase = DVHisDB

	
	.sqluser=[SQL user name]

Optional for SQL data Source

Default: Windows authentication
Available in DeltaV 9.3+
	Defines the explicit user name used for connection to DeltaV SQL server.

Example:

source[1].sqlserver = deltav9

source[1].sqldatabase = DVHisDB

source[1].sqluser = Johns

	
	.sqlpswd = [SQL user password]

Optional for SQL data source

Available in DeltaV 9.3+
	Defines the user password used for connection to DeltaV SQL server. Must be used in conjunction with .sqluser= property.

Example:

source[2].sqlserver = deltav9

source[2].sqldatabase = DVHisDB

source[2].sqluser = Johns

source[2].sqlpswd = test

	
	.isAE = true

Optional for SQL data source

Available in DeltaV 10.3+
	Sets the SQL data source as the DeltaV Alarm and Events historian.

Example:

source[1].sqlserver = deltav10\DELTAV_CHRONICLE

source[1].sqldatabase = EJournal

source[1].isae = true

	
	.CSwebsrvpath = [http:// path to the Syncade web service]

Required Syncade data Source

Available in CS 4.0.1+
	Defines the path to the Syncade web service which is used by the interface to perform history data recovery on startup. Must be used in conjunction with Microsoft Message Queue path defined by csmsmq source property

Example:

source[2].cswebsrvpath = http://wfdemobox/wf/webservice
source[2].csmsmq = mybox\\private$\\hist

	
	.CSmsmq=<UNC path>

Required for Syncade data source.

Available in CS 4.0.1+
	Defines the path to the Syncade Microsoft Message Queue which is used by the interface to receive data in realtime. Must be used in conjunction with web service defined by cswebsrvpath source property.

Note: the Microsoft Message Queue must be created by the user on the interface node as Private queue. Syncade software should be configured to write data to this queue.

Example:

source[2].cswebsrvpath = http://wfdemobox/wf/webservice
source[2].csmsmq = mybox\\private$\\hist

Event Journals as Data Source
Event journals are files that are generated directly by a DeltaV Batch Execution System (BES). Each file represents execution of particular recipe and contains a log of batch events as well as batch related data. The interface expects that each record (row) in the event file will contain at least 15 tab-delimited columns which contain the following information in the following order:

Column1:
Timestamp (either LclTime or GMTTime)

Column2:
BatchID

Column3:
Recipe

Column4:
Descript

Column5:
Event

Column6:
PValue

Column7:
EU

Column8:
Area

Column9:
ProcCell

Column10:
Unit

Column11:
Phase

Column12:
PhaseDesc

Column13:
UserID

Column14:
UniqueID

Column15:
Comment

SQL Batch Historian as Data Source
The DeltaV Batch Execution System (BES) consists of various components and the SQL Server is one of them. The SQL Server is used to store events performed by the DeltaV BES. While the SQL Server contains multiple databases used to store realtime data and batch data, the interface requires only primary for initial connection, by default named -DVHisDB.

Table 2. List of public views used for data retrieval.

	View/Table
	Description

	Batchview
	Contains UniqueID, BatchID, start time, end time, Product, UniqueID and archived flag with new archived database name for all batches.

	brecipestatechangeview
	Contains State Change events which are used by default for PI batch generation.

	Batchrecipeview
	Contains Recipe data for all batches, such as Procedure, Unit Procedure, Operation, Phase, equipment linkage, start and end time for each object.

	Batchequipmentview
	Contains equipment arbitration for all batches.

	Batcheventview
	Contains batch associated data for all batches.
Note: This view does not provide explicit [Descript], [Pval] and [EU] fields. Instead the [Descript] field contains all 3 fields combined.

	LocaleVars
	This table is used to convert Local start and end times with DST offsets provided by each view to GMT time and then to UTC seconds.

	Union of Tables:

BActiveStepChangeEvent, BMaterialChargeRequestEvent BMaterialChargeEvent BPauseStatusEvent BEquipmentSelectionEvent BPhaseLinkPermissiveEvent BRecipeModeChangeEvent BRecipeModeCommandEvent BRecipeStateChangeEvent BRecipeStateCommandEvent BRecipeValueChangeEvent BRecipeValueRequestEvent BReportEvent BTextMessageEvent BPhaseBatchRequestEvent BRecipeComment UnhandledBatchMsg
(used by default to retrieve batch associated events)
	Contains batch associated data for all batches. These tables are used by default to retrieve batch associated events.

Note: the union of the tables provides the batch associated events with explicit fields [Descript], [Pval] and [EU].

If the data archiving was performed on DeltaV SQL batch historian, then the new database name containing archived batch will be referenced in the primary database - DVHisDB, allowing the interface to reconnect to the new database and retrieve archived batch data as well. Data retrieval from SQL server is scan based. Microsoft ADO driver for the Microsoft SQL is used to communicate with the SQL server databases (part of SQL Native client package). Microsoft SQL Native Client can be downloaded from the following location: http://msdn.microsoft.com/en-us/data/aa937733.aspx
 SQL Alarm&Events Historian as Data Source

The DeltaV Batch Execution System (BES) 10.3+ includes the SQL Alarm&Events historian. This historian uses an independent SQL Server for its storage, which is named by default as <node name>\DELTAV_CHRONICLE. The stored data is identical to the data produced by the DA OPC Alarm&Events server. The default database name is EJournal. The use of SQL A&E historian is optional and it is not required by the interface.
	View/Table
	Description

	Journal
	Each event contains the following fields: Timestamp, Event Type, Category, Area, Unit, Module, Module Description, Attribute, Level, Desc1, Desc2.

The SQL A&E data source(s) can be specified separately or in parallel with the SQL Batch historian data source(s). Note, the SQL AE data source is missing the ProcessCell definition. In order to properly map module hierarchy retrieved from SQL AE database onto existing DeltaV Batch equipment hierarchy, it is required to define the ProcessCell correlation to the Area. It can be achieved through INI file definition:
Apcmap: <Area> = <ProcessCell>

where apcmap stands for Area to ProcessCell map. For DeltaV default PAINT recipe, the map can be defined as:

Apcmap: EXTERIOR_PAINT = PAINT_BLEND
The definition of SQL AE historian as data source is identical to specifying the DeltaV batch SQL historian with one exception - an extra parameter source[##].isAE=true has to be defined.

Example 1: DeltaV Batch historian is the only data source:
Source[1].sqlserver = deltav10

Source[1].database = DVHisDB

Example 2: DeltaV Batch (1) and Alarm and Events (2) historians as data sources:
Source[1].sqlserver = deltav10

Source[1].database = DVHisDB

Source[2].sqlserver = deltav10\DELTAV_CHRONICLE

Source[2].database = EJournal

Source[2].isAE = true
Apcmap: EXTERIOR_PAINT = PAINT_BLEND

Data retrieval from SQL server is scan based. Microsoft ADO driver for the Microsoft SQL is used to communicate with the SQL server databases (part of SQL Native client package). Microsoft SQL Native Client can be downloaded from the following location: http://msdn.microsoft.com/en-us/data/aa937733.aspx
OPC Alarm&Events Server as Data Source

OPCAE server is another component of the DeltaV Batch Execution System. Starting with version 10.3, OPCAE server provides batch events performed by the BES in real time. The use of OPCAE server is optional and is not required by the interface. Although, if it is used as an additional data source, it allows processing of batch data into the PI server in real time, not scan based. The OPCAE server can be specified only in conjunction with the DeltaV SQL server, which serves as backup source as well as the source for additional batch associated events.

Syncade as Data Source

Emerson Syncade is the separate product from Emerson DeltaV which is used to create and execute recipes on DeltaV Batch Execution Systems. For configurations where Syncade is used, the Batch interface is capable to retrieve Syncade batches with the manual phase steps as well as the parameters and their values. These parameters can be retrieved through the use of Tag or Property templates.
Note: The communication between Batch interface and Syncade data source is available only with Syncade version 4.0.1 and above.
Recipe Model vs. Equipment Model

Two distinct yet related models are used to describe batch processes. These are the Recipe Model and the Equipment Model. Diagrams depicting hierarchical structures, in particular those for the S88-compliant hierarchical structure, of these models are shown in Figures 5 and 6. The Equipment Model describes the physical equipment necessary to create a batch while the Recipe Model describes the procedures, which are performed during the execution of a recipe. There is no intrinsic or direct relationship between the levels of the Equipment Model and the Recipe Model. With the exception of Arbitration events, journal files contain only Recipe Model event information.

It should be noted that within S88, the use of procedures and unit procedures is optional. A recipe may be defined consisting of only operations and phases.
Figure 5. Recipe Model hierarchy

[image: image58.png]
Figure 6. Equipment Model hierarchy[image: image59.png]

The Batch interface uses S88 terminology and hierarchy as framework to collate and store information in a structured manner within the PI Module and Batch databases.

The Batch interface makes an assumption that a unit procedure maps directly to a PI UnitBatch. This assumption implies that only a single unit procedure can be active in a unit at any given time. This lays a fundamental restriction on the configuration of recipes that may be run by the BES, if the Batch interface is to be used to process the resultant data and populate the BDB in a meaningful manner. If there are overlapping Unit Procedures on the same unit, the interface closes the conflicting PI UnitBatches, although the data is still processed into closed PI UnitBatches. The actual end time for truncated UnitBatch is stored in its Product property. The actual Product is appended by the keyword “_TrueEndUTC=” which is followed by UTC seconds representing the actual End Time for specific unit batch.
If the recipe is divided in multiple smaller unit procedures or operations, the DeltaV Batch interface should be run with merge startup command line parameter for entering that data into the PI server. Please refer to the Merging Multiple Source batches into a single PIBatch section for more information on how the merge works.

Methodology

The PI Module and Batch Databases are used to organize and store batch data. Further discussion of these databases can be found in the PI 3.3 Data Archive Manual and the PI SDK tutorial documentation. This interface creates PIBatch, PIUnitBatch and hierarchy of PISubBatch objects within the PI Batch Database to represent the recipe procedures, unit procedures, operations, phases, phase states and phase steps respectively (Fig. 7). Each of the objects created in the PI Batch Database has the following common properties:

· Name (PISubBatch)
· batch ID (PIBatch and PIUnitBatch objects only)
· start time

· end time

Note that in a PIBatch the name is stored in the Recipe property and in a PIUnitBatch the Procedure property is used to store the name of the corresponding recipe level. If illegal characters (* ' ? | ` ") are encountered in the BatchID, Name, Product, Recipe or Procedure fields, they are replaced with the underscore “_” character. Each object in the PI Batch Database represents a specific level of the Recipe Model. However, the relationship between the PI Batch Database and the Recipe Model is complicated by the possibility of building a recipe without the procedure or unit procedure levels. In cases where the highest recipe level is an operation or phase (i.e. neither procedure nor unit procedure levels are defined), PIBatch and PIUnitBatch objects must be still created by the interface.

The Batch interface can operate in two different processing modes which are applicable only to EVT, SQL and OPCAE datasources. The first mode is default mode of operation and based on State Change events. When the interface is run in this mode, you can change between data sources without PI Batch database time adjustments. Another mode of operation is Batch Recipe based processing which can be enabled through specifying the /ubr parameter in command line parameters. This mode is only applicable to EVT or SQL data sources and changing between data source may create PI Batch database object time frame adjustments.

Figure 7. Schematic of PI Batch Database organization.

[image: image5.png]Procedute Avalile in EVT, SOL, OPCAE, CS =
(BaichD] [Profust) (Recpe] [StariTime) [EndTime) e
[BaichiD)
PlUnitBatch Formula
Uit Procedre Avalile in EVT, 501, OPCAE, €S [Broduc)
(BaichiD) (Prvcedose) [Froduct) (Start Time) End Time] (Recipe)
Fesies Tree]
Sarttic)
PiSwBaiches
Operation Avalile in EVT, SOL, OPCAE, CS —N
10| amg) (it Tine] (o Time) it Name
Phase Available in EVT, SQL, OPCAE, CS
[ame Start Time) (End Time) Figued)
Phase State vailable in EVT, SQL Event n <Vabe>
- e (Star{Tone] (Eod Tume) {0nit Frosedure
PhaseStep AvalilemEVI.SOL

PIBatch

The PIBatch object is created for each batch defined in the data source. All records associated with the source batch can be recorded in the PIProperties collection of the PIBatch or in PI Points. The root PIProperty nodes are always the UniqueID of the batches which is assigned automatically by the Batch Executive. The interface stores the following batch properties under UniqueID: BatchID, Product, Formula Name, Recipe, Recipe Type, Start Time UTC, End Time UTC, Interface Name, Interface ID, DataSource, and events defined by the client. The underlying structure of the PIProperties collection is organized to reflect the hierarchy of the Recipe Model described by the data source where the Recipe names create hierarchical PIProperty nodes. Events of interest are stored in lists under appropriate Recipe node. Each PIProperty event name is defined as ‘Event_<event count>’, where <event count> is the current number of events already stored under a specific node. This method of event naming is dictated by the PIProperty rule, which states each event name under the same node should be unique. The PIProperty value can be defined through the use of Property templates. Please refer to Property Template section below for description and configuration steps.
The PIBatch represents the procedure within the recipe. Each PIBatch contains a collection of associated PI UnitBatches (which correspond to the Unit Procedures in the recipe).

The PIBatch object can represent merged object, which contains multiple source batches with identical BatchID or common subset of characters in BatchID. The PI Batch Product and Recipe properties contain data associated with the first source batch which started merged PI Batch. Use PIProperties to retrieve original source batch properties. For each merged source batch, the interface creates a node named as the UniqueID of the source batch containing the original batch properties.
Note: Because source batch can be terminated unexpectedly, without proper unloading by the operator, the interface maintains this batch in the local memory for 100 days, after which the batch is considered abandoned, and the interface closes the batch with the latest known time stamp for this particular batch. The abandon timeout can be changed through the command line parameter /abto=<days> (Abandoned Batch TimeOut).
PI Batch Start event combinations
	Data Source
	PIBatch Start triggering event(s)

	DeltaV EVT
	The batch recipe event containing [Event] field = “State Change” and [PValue] field = “CREATED”

The batch recipe type is determined by the recipe messages such as system message – Procedure Started, Unit Procedure Started, etc.

	DeltaV EVT with /ubr switch enabled
	The batch recipe event containing: [Event] field = “System Message” and [Pvalue] field = “Beginning Of BATCH”. The associated [EU] field = “Procedure” / “Unit Procedure” / “Operation” / “Phase” determines the type of the particular recipe.

	DeltaV SQL
	The batch recipe event containing: [EventType] field = “State Change” and [EventDescript] field containing substring “CREATED” is used to set the Start Time for PIBatch. The batch recipe type is provided for each event by the data source in [Action] field. The event is retrieved from “dbo.brecipestatechangeview” or “dbo.batcheventview” views.

	DeltaV SQL with /ubr switch enabled
	The batch object with [ActivateTime] timestamp used to set the Start Time of PIBatch. This batch objects are retrieved from SQL “batchview” view. The batch recipe is determined by other batch recipe objects retrieved from “batchrecipeview” view.

	DeltaV OPCAE
	The BATCH-EVENT event with Event Attribute [6] = “LOAD” is used to start PIBatch object (0 based index)
Note: batch recipe type is determined by any of the BATCH-EVENT’s containing explicit action, such as Procedure Started/Finished, UnitProcedure Started/Finished, etc.

Note: the PIBatch is not created until the interface is able to identify the recipe type of the batch, which is normally available as soon as the recipe is loaded and started.

	Syncade (both MSMQ and WebService)
	The source batch object [StartUtcDateTime] value is used to set the Start Time for PIBatch object. [OrderNumber] property is used as PIBatch BatchID. Batch Recipe type is provided for each object by the data source.

PI Batch End triggering event combinations
	Data Source
	PIBatch End triggering event(s)

	DeltaV EVT
	The batch recipe event containing [Event] field = “State Change” and [PValue] field = “REMOVED”

	DeltaV EVT with /ubr switch enabled
	The first out of two recipe events is used to set an End Time for PIBatch object.

1) The batch recipe event containing [Event] field = “System Message” and [PValue] field = “End Of BATCH”

2) The batch recipe event containing: [Event] field = “State Change” and [PValue] field = “REMOVED”/ ”COMPLETE” / ”ABORTED”

	DeltaV SQL
	The batch recipe event containing: [EventType] field = “State Change” and [EventDescript] field containing substring “REMOVED” is used to set the End Time for PIBatch. This event is retrieved from “dbo.brecipestatechangeview” or “dbo.batcheventview” views.

	DeltaV SQL with /ubr switch enabled
	Uses source batch object [DeactivateTime] retrieved from SQL “dbo.batchview” table. Batch Recipe type is provided for each object by the data source.

	DeltaV OPCAE
	The BATCH-EVENT event with Event Attribute [6] = “REMOVED” is used to set an End Time for PIBatch object (0 based index)
Note, batch recipe type is determined by any of the BATCH-EVENT’s containing explicit action, such as Procedure Started/Finished, UnitProcedure Started/Finished, etc.

	Syncade (both MSMQ and WebService)
	The source batch object [EndUtcDateTime] value is used to set an End Time for PI Batch object.[OrderNumber] property is used as PIBatch BatchID. Batch recipe type is provided for each object by the data source.

PIUnitBatch

A PIUnitBatch is created for each unit procedure as defined in the data source. The start and end times of a PIUnitBatch are intended to reflect the onset and completion of physical processing within a unit.
The PIUnitBatch properties do not change if the parent object is a merged PI Batch. PIUnitBatch always contains original BatchID and Procedure name as it is defined in the source unless /tbid parameter was specified in command line parameters. This parameter enforces a stripped BatchID to be used for PIUnitBatch objects and for all events to be stored in PIPoints and PIProperties.
When Operation or Phase level recipes are run, the interface uses the Operation/Phase name as the PIUnitBatch Procedure name.

PIUnitBatch Start Time triggering event combinations

	Data Source
	PIUnitBatch Start triggering event(s)

	DeltaV EVT
	For Procedure, Unit Procedure and Operation level recipes, the following two events must be preset to set the Start Time for PIUnitBatch. The timestamp of the latest event is used as the start time.

1) The batch recipe event containing [Event] field = “State Change” and [PValue] field = “RUNNING”.

2) The arbitration event containing [Event] field = “Recipe Arbitration”, [Descript] field = “Resource Acquired by recipe” and [EU] field = “Unit”. The [PValue] field contains the actual unit name.
For Phase Level recipes, single event is used to start PIUnitBatch containing [Event] field = “State Change” and [PValue] field = “RUNNING”.
The [Recipe] field contains the batch recipe hierarchy.

	DeltaV EVT with /ubr parameter enabled
	For Procedure, Unit Procedure level recipes, the following two events must be preset to set the Start Time for PIUnitBatch. The latest timestamp is used as the start time.

1) The batch recipe event containing [Event] field = “System Message” and [Descript] field = “Unit Procedure Started”.

2) The arbitration event containing [Event] field = “Recipe Arbitration”, [Descript] field = “Resource Acquired by recipe” and [EU] field = “Unit”. The [PValue] field contains the actual unit name.

For Operation level recipes the following two events must be present to start PIUnitBatch:

1) The batch recipe event containing [Event] field = “System Message” and [Descript] field = “Operation Started”.

2) The arbitration event containing [Event] field = “Recipe Arbitration”, [Descript] field = “Resource Acquired by recipe” and [EU] field = “Unit” with the [PValue] field containing the actual unit name.

For Phase level recipes, single event is used to set the Start Time for PIUnitBatch containing [Event] field = “State Change”, [PValue] field = “RUNNING”.
The [Recipe] field contains the batch recipe hierarchy.

	DeltaV SQL
	For Procedure, Unit Procedure and Operation level recipes, the following two events must be preset to start PIUnitBatch. The latest timestamps used as the start time.

1) The batch recipe event containing [EventType] field = “State Change” and [EventDescript] field containing substring “RUNNING” which is retrieved from “brecipestatechangeview” view.
2) The arbitration event containing the [AcquireTime] timestamp associated with the specific unit arbitration object retrieved from “batchequipmentview” view.
For Phase level recipes, single event is used to set the Start Time for PIUnitBatch, containing [EventType] field = “State Change” with [PValue] field containing substring “RUNNING”.

The batch recipe hierarchy is provided in [Action] field.

	DeltaV SQL with /ubr parameter enabled
	For Procedure and Unit Procedure level recipes, the following two events must be preset to start PIUnitBatch. The latest timestamp is used as the start time.

1) The batch recipe event containing the [StartTime] timestamp associated with the specific “unitprocedure” object retrieved from the “batchrecipeview” view.
2) The arbitration event containing the [AcquireTime] timestamp associated with the specific unit arbitration object retrieved from “batchequipmentview” view.

For Operation level recipes, the following two events must be preset to start PIUnitBatch. The latest timestamp is used as the start time.

1) The batch recipe event containing the [StartTime] timestamp associated with the specific “operation” object retrieved from the “batchrecipeview” view.

2) The arbitration event containing the [AcquireTime] timestamp associated with the specific unit arbitration object retrieved from “batchequipmentview” view.
For Phase level recipes, the batch recipe event containing the [StartTime] associated with the specific “phase” object is sufficient to set the Start Time for PIUnitBatch.

The batch recipe hierarchy is provided in fields: [Procedure], [UnitProcedure], [Operation] and [Phase].

	DeltaV OPCAE
	The BATCH-EVENT event with the following attributes is used to set the Start Time for PIUnitBatch:
Event Attribute [6] = “State Changed”
Event Attribute [8] = <batch recipe hierarchy> RUNNING
Note, batch recipe type is determined by any of the BATCH-EVENT’s containing explicit action, such as Procedure Started/Finished, UnitProcedure Started/Finished, etc.

	Syncade (both MSMQ and WebService)
	For Procedure, UnitProcedure level recipes the source Unit Procedure object [StartUtcDateTime] timestamp is used to set the Start Time for PIUnitBatch object.
For Operation level recipes the Operation object [StartUtcDateTime] timestamp is used to set the Start Time for PIUnitBatch.

For Phase level recipes the Phase object [StartUtcDateTime] timestamp is used to set the Start Time for PIUnitBatch.

The batch recipe hierarchy is provided in object form by the data source.

PI UnitBatch End Time triggering event combinations

	Data Source
	PIUnitBatch End triggering event(s)

	DeltaV EVT
	For Procedure, Unit Procedure and Operation level recipes, the first out of the following two events is used to set an End Time for PIUnitBatch:

1) The batch recipe event containing [Event] field = “State Change” and [PValue] field = “COMPLETE” / “STOPPED” / “ABORTED”.

2) The arbitration event containing [Event] field = “Recipe Arbitration”, [Descript] field = “Resource Released by recipe” and [EU] field = “Unit”. The [PValue] field contains the actual unit name.

For Phase Level recipes, single event is used to set an End Time for PIUnitBatch containing [Event] field = “State Change” and [PValue] field = ““COMPLETE” / “STOPPED” / “ABORTED”.

The [Recipe] field contains the batch recipe hierarchy.

	DeltaV EVT with /ubr parameter enabled
	For Procedure, Unit Procedure level recipes, the first out of the following two events is used to set an End Time for PIUnitBatch:
1) The batch recipe event containing [Event] column = “System Message” and [Descript] column = “Unit Procedure Finished”.

2) The arbitration event containing [Event] field = “Recipe Arbitration”, [Descript] field = “Resource Released by recipe” and [EU] field = “Unit”. The [PValue] field contains the actual unit name.

For Operation level recipes the first out of the following two events is used to set an End Time for PIUnitBatch:
1) The batch recipe event containing [Event] field = “System Message” and [Descript] field = “Operation Finished”.

2) The arbitration event containing [Event] field = “Recipe Arbitration”, [Descript] field = “Resource Released by recipe” and [EU] field = “Unit” with the [PValue] field containing the actual unit name.

For Phase level recipes, single event is used to set an End Time for the PIUnitBatch, containing [Event] field = “State Change” and [PValue] field = “COMPLETED” / “ABORTED” / “STOPPED”.

The [Recipe] field contains the batch recipe hierarchy.

	DeltaV SQL
	For Procedure, Unit Procedure and Operation level recipes, the first out of the following two events is used to set an End Time for PIUnitBatch:

3) The batch recipe event: [EventType] field = “State Change” and [EventDescript] field containing substrings “COMPLETED” / “ABORTED” / “STOPPED” which is retrieved from “brecipestatechangeview” view.

4) The arbitration event containing [ReleaseTime] timestamp associated with the specific unit arbitration object retrieved from “batchequipmentview” view.

For Phase level recipes, single event is used to set an End Time for PIUnitBatch, containing [EventType] field = “State Change” with [PValue] field containing substrings “COMPLETED” / “ABORTED” / “STOPPED”.

The batch recipe hierarchy is provided in [Action] column.

	DeltaV SQL with /ubr parameter enabled
	For Procedure and Unit Procedure level recipes, the first out of the following two events is used to set an End Time for PIUnitBatch:

1) The batch recipe event containing the [EndTime] associated with the specific “unitprocedure” object retrieved from the “batchrecipeview” view.

2) The arbitration event containing the [ReleaseTime] associated with the specific unit arbitration object retrieved from “batchequipmentview” view.

For Operation level recipes, the first out of the following two events is used to set an End Time for PIUnitBatch:

1) The batch recipe event containing the [EndTime] associated with the specific “operation” object retrieved from the “batchrecipeview” view.

2) The arbitration event containing the [ReleaseTime] associated with the specific unit arbitration object retrieved from “batchequipmentview” view.
For Phase level recipes, the batch recipe event containing the [EndTime] associated with the specific “phase” object is sufficient to set an End Time for PIUnitBatch.

The batch recipe hierarchy is provided in columns: [Procedure], [UnitProcedure], [Operation] and [Phase].

	DeltaV OPCAE
	The BATCH-EVENT with the following attributes is used to set an End Time for PIUnitBatch:

Event Attribute [6] = “State Changed”

Event Attribute [8] = <batch recipe hierarchy> COMPLETED / ABORTED / STOPPED
Note, batch recipe type is determined by any of the BATCH-EVENT’s containing explicit action, such as Procedure Started/Finished, UnitProcedure Started/Finished, etc.

	Syncade (both MSMQ and WebService)
	For Procedure, UnitProcedure level recipes the source Unit Procedure object [EndUtcDateTime] timestamp is used to set an End Time for PIUnitBatch object.

For Operation level recipes the Operation object [EndUtcDateTime] timestamp is used to set an End Time for PIUnitBatch.

For Phase level recipes the Phase object [EndUtcDateTime] timestamp is used to set an End Time for PIUnitBatch.

The batch recipe hierarchy is provided in object form by the data source.

PISubBatches
Operation

A PISubBatch is created for each source operation found within the data source as child for PIUnitBatch object.
Note: The operation and phase level recipes populate upper levels of PIBatch Database hierarchy automatically with PIUnitBatch Procedure property and PISubBatch operation name as the name of the source Operation/Phase recipe object.

PISubBatch Operation Start triggering events
	Data Source
	PISubBatch Operation Start triggering event(s)

	DeltaV EVT
	The batch recipe event containing [Event] field = “State Change” and [PValue] field = “RUNNING”. The [Recipe] field contains the batch recipe hierarchy.

	DeltaV EVT with /ubr parameter enabled
	For Procedure, Unit Procedure, Operation level recipes, the batch recipe event containing [Event] field = “System Message” and [Descript] field = “Operation Started” is used to set the Start Time for PISubBatch operation level object.
For Phase level recipes the batch recipe event containing [Event] field = “State Change” and [PValue] field = “RUNNING” is used to set the Start Time for PISubBatch operation level object.
The [Recipe] field contains the batch recipe hierarchy.

	DeltaV SQL
	The batch recipe event containing [EventType] field = “State Change” and [EventDescript] field containing substring “RUNNING” is used to set the Start Time for PISubBatch operation level object. The event is retrieved from “brecipestatechangeview” / ”batcheventview” view.

The batch recipe hierarchy is provided in event’s [Action] field.

	DeltaV SQL with /ubr parameter enabled
	For Procedure, Unit Procedure, Operation level recipes the batch recipe event containing the [StartTime] timestamp associated with the specific source “operation” object is used to set the Start Time for PISubBatch operation level object. The event is retrieved from the “batchrecipeview” view. The batch recipe hierarchy is provided in fields: [Procedure], [UnitProcedure], [Operation] and [Phase].
For Phase level recipes the batch recipe event containing [EventType] field = “State Change” and [EventDescript] field containing substring “RUNNING” is used to set the Start Time for PISubBatch operation level object. The event is retrieved from “brecipestatechangeview” / ”batcheventview” view. The batch recipe hierarchy is provided in event’s [Action] field.

	DeltaV OPCAE
	For Procedure, Unit Procedure, Operation, Phase level recipes, the BATCH-EVENT event with the following attributes is used to set the Start Time for PISubBatch operation level object:

Event Attribute [6] = “State Changed”

Event Attribute [8] = <batch recipe hierarchy> RUNNING

Note, batch recipe type is determined by any of the BATCH-EVENT’s containing explicit action, such as Procedure Started/Finished, UnitProcedure Started/Finished, etc.

	Syncade (both MSMQ and WebService)
	For Procedure, UnitProcedure, Operation level recipes the source Operation object [StartUtcDateTime] timestamp is used to set the Start Time for PISubBatch operation level object.
For Phase level recipes the Phase object [StartUtcDateTime] timestamp is used to set the Start Time for PISubBatch operation level object.

The batch recipe hierarchy is provided in object form by the data source.

PISubBatch Operation End triggering events

	Data Source
	PISubBatch Operation End triggering event(s)

	DeltaV EVT
	The batch recipe event containing [Event] field = “State Change” and [PValue] field = “COMPLETE” / “ABORTED” / “STOPPED”. The [Recipe] field contains the batch recipe hierarchy.

	DeltaV EVT with /ubr parameter enabled
	For Procedure, Unit Procedure, Operation level recipes, the first event out of two following events is used to set an End Time for PISubBatch operation level object:

1) the batch recipe event containing [Event] field = “System Message” and [Descript] field = “Operation Finished”

2) The batch recipe event containing [Event] field = “State Change” and [PValue] field = “REMOVED” (at Operation level). Note, this event is used due to possibility that some “Operation Finished” events are not present in EVT data source.
For Phase level recipes the batch recipe event containing [Event] field = “State Change” and [PValue] field = “RUNNING” is used to set the Start Time for PISubBatch operation level object.
The [Recipe] field contains the batch recipe hierarchy.

	DeltaV SQL
	The batch recipe event containing [EventType] field = “State Change” and [EventDescript] field containing substrings “COMPLETE” / “ABORTED” / “STOPPED” is used to set an End Time for PISubBatch operation level object. The event is retrieved from “brecipestatechangeview” / ”batcheventview” view.

The batch recipe hierarchy is provided in event’s [Action] field.

	DeltaV SQL with /ubr parameter enabled
	For Procedure, Unit Procedure, Operation level recipes the batch recipe event containing the [EndTime] timestamp associated with the specific source “operation” object is used to set an End Time for PISubBatch operation level object. This event is retrieved from the “batchrecipeview” view. The batch recipe hierarchy is provided in fields: [Procedure], [UnitProcedure], [Operation] and [Phase].
For Phase level recipes the batch recipe event containing [EventType] field = “State Change” and [EventDescript] field containing substrings “COMPLETE” / “ABORTED” / “STOPPED” is used to set an End Time for PISubBatch operation level object. The event is retrieved from “brecipestatechangeview” / ”batcheventview” view. The batch recipe hierarchy is provided in event’s [Action] field.

	DeltaV OPCAE
	For Procedure, Unit Procedure, Operation, Phase level recipes, the BATCH-EVENT event with the following attributes is used to set the Start Time for PISubBatch operation level object:

Event Attribute [6] = “State Changed”

Event Attribute [8] = <batch recipe hierarchy> COMPLETE / ABORTED / STOPPED
Note, batch recipe type is determined by any of the BATCH-EVENT’s containing explicit action, such as Procedure Started/Finished, UnitProcedure Started/Finished, etc.

	Syncade (both MSMQ and WebService)
	For Procedure, UnitProcedure, Operation level recipes the source Operation object [StartUtcDateTime] timestamp is used to set the Start Time for PISubBatch operation level object.
For Phase level recipes the Phase object [StartUtcDateTime] timestamp is used to set the Start Time for PISubBatch operation level object.

The batch recipe hierarchy is provided in object form by the data source.

Phase

A PISubBatch is created for each phase found within the data source as child for Operation level PISubBatch object.
Note: The phase level recipes populate upper levels of PIBatch Database hierarchy automatically with PIUnitBatch Procedure property and PISubBatch operation name as the name of the source Phase recipe object.
PISubBatch Phase Start triggering events

	Data Source
	PISubBatch Phase Start triggering event(s)

	DeltaV EVT
	The batch recipe event containing [Event] field = “State Change” and [PValue] field = “RUNNING”. The [Recipe] field contains the batch recipe hierarchy.

	DeltaV EVT with /ubr parameter enabled
	For Procedure, Unit Procedure, Operation, Phase level recipes, the batch recipe event containing [Event] field = “State Change” and [PValue] field = “RUNNING” is used to set the Start Time for PISubBatch phase level object.
The [Recipe] field contains the batch recipe hierarchy.

	DeltaV SQL
	The batch recipe event containing [EventType] field = “State Change” and [EventDescript] field containing substring “RUNNING” is used to set the Start Time for PISubBatch phase level object. The event is retrieved from “brecipestatechangeview” / ”batcheventview” view.

The batch recipe hierarchy is provided in event’s [Action] field.

	DeltaV SQL with /ubr parameter enabled
	For Procedure, Unit Procedure, Operation level recipes the batch recipe event containing the [StartTime] timestamp associated with the specific source “phase” object is used to set the Start Time for PISubBatch phase level object. The event is retrieved from the “batchrecipeview” view. The batch recipe hierarchy is provided in fields: [Procedure], [UnitProcedure], [Operation] and [Phase].
For Phase level recipes the batch recipe event containing [EventType] field = “State Change” and [EventDescript] field containing substring “RUNNING” is used to set the Start Time for PISubBatch phase level object. The event is retrieved from “brecipestatechangeview” / ”batcheventview” view. The batch recipe hierarchy is provided in event’s [Action] field.

	DeltaV OPCAE
	For Procedure, Unit Procedure, Operation, Phase level recipes, the BATCH-EVENT event with the following attributes is used to set the Start Time for PISubBatch phase level object:

Event Attribute [6] = “State Changed”

Event Attribute [8] = <batch recipe hierarchy> RUNNING

Note, batch recipe type is determined by any of the BATCH-EVENT’s containing explicit action, such as Procedure Started/Finished, UnitProcedure Started/Finished, etc.

	Syncade (both MSMQ and WebService)
	For Procedure, UnitProcedure, Operation, Phase level recipes the source Phase object [StartUtcDateTime] timestamp is used to set the Start Time for PISubBatch phase level object.

The batch recipe hierarchy is provided in object form by the data source.

PISubBatch Phase End triggering events

	Data Source
	PISubBatch Phase End triggering event(s)

	DeltaV EVT
	The batch recipe event containing [Event] field = “State Change” and [PValue] field = “COMPLETE”/”STOPPED”/”ABORTED”. The [Recipe] field contains the batch recipe hierarchy.

	DeltaV EVT with /ubr parameter enabled
	For Procedure, Unit Procedure, Operation, Phase level recipes, the batch recipe event containing [Event] field = “State Change” and [PValue] field = “COMPLETE” / ”STOPPED” / ”ABORTED” is used to set an End Time for PISubBatch phase level object.
The [Recipe] field contains the batch recipe hierarchy.

	DeltaV SQL
	The batch recipe event containing [EventType] field = “State Change” and [EventDescript] field containing substring “COMPLETE” / ”STOPPED” / ”ABORTED” is used to set an End Time for PISubBatch phase level object. The event is retrieved from “brecipestatechangeview” / ”batcheventview” view.

The batch recipe hierarchy is provided in event’s [Action] field.

	DeltaV SQL with /ubr parameter enabled
	For Procedure, Unit Procedure, Operation level recipes the batch recipe event containing the [EndTime] timestamp associated with the specific source “phase” object is used to set an End Time for PISubBatch phase level object. The event is retrieved from the “batchrecipeview” view. The batch recipe hierarchy is provided in fields: [Procedure], [UnitProcedure], [Operation] and [Phase].
For Phase level recipes the batch recipe event containing [EventType] field = “State Change” and [EventDescript] field containing substring “COMPLETE” / ”STOPPED” / ”ABORTED” is used to set an End Time for PISubBatch phase level object. The event is retrieved from “brecipestatechangeview” / ”batcheventview” view. The batch recipe hierarchy is provided in event’s [Action] field.

	DeltaV OPCAE
	For Procedure, Unit Procedure, Operation, Phase level recipes, the BATCH-EVENT event with the following attributes is used to set an End Time for PISubBatch phase level object:

Event Attribute [6] = “State Changed”

Event Attribute [8] = <batch recipe hierarchy> COMPLETE / ABORTED / STOPPED

Note, batch recipe type is determined by any of the BATCH-EVENT’s containing explicit action, such as Procedure Started/Finished, UnitProcedure Started/Finished, etc.

	Syncade (both MSMQ and WebService)
	For Procedure, UnitProcedure, Operation, Phase level recipes the source Phase object [EndUtcDateTime] timestamp is used to set an End Time for PISubBatch phase level object.

The batch recipe hierarchy is provided in object form by the data source.

Phase State

A PISubBatch is created for each phase state found within the data source as child for Phase level PISubBatch object. All Phase States are sequential; start of new Phase State ends the previous Phase State. Note, the self terminating Phase States which set its End Times are COMPLETE, ABORTED and STOPPED.
PISubBatch Phase State triggering events

	Data Source
	PISubBatch Phase State triggering event

	DeltaV EVT
	The batch recipe event containing [Event] field = “State Change” and [PValue] field = <State Name>. The [Recipe] field contains the batch recipe hierarchy.

	DeltaV EVT with /ubr parameter enabled
	The batch recipe event containing [Event] field = “State Change” and [PValue] field = <State Name>. The [Recipe] field contains the batch recipe hierarchy.

	DeltaV SQL
	The batch recipe event containing [EventType] field = “State Change” and [EventDescr] field containing substring <State Name>. The event is retrieved from “brecipestatechangeview” / ”batcheventview” view.

The batch recipe hierarchy is provided in event’s [Action] field.

	DeltaV SQL with /ubr parameter enabled
	The batch recipe event containing [EventType] field = “State Change” and [EventDescr] field containing substring <State Name>. The event is retrieved from “brecipestatechangeview” / ”batcheventview” view.

The batch recipe hierarchy is provided in event’s [Action] field.

	DeltaV OPCAE
	No Phase State data available from this source.

	Syncade (both MSMQ and WebService)
	No Phase State data available from this source

Phase Step

A PISubBatch is created for each phase step found within the data source as a child for the Phase State level PISubBatch object. Phase Steps are not S88 complaint and are custom to each particular implementation and configuration of the Batch Execution System. By default this level of PISubBatches is not enabled. To enable this feature use the optional switch /ras=<Start Substring>, <End Substring> (Report As Step). The Phase Steps are always created beneath the first PISubBatch Phase State = “RUNNING”, regardless if the parent Phase State is ended or not. The Phase Step name and start/stop events are coming from the “Descript” column. The triggering event is “Report”. The Phase Steps do not create the higher level PI Batches, UnitBatches and SubBatches, if the parent Phase is not found. If the Phase Step was not closed by the appropriate closing event, it will be closed by the end of the parent Operation level PI SubBatch. 0-duration Phase Steps are ignored. Multiple sequential Start/End events are ignored except the first one.

PISubBatch Phase Step Start triggering events

	Data Source
	PISubBatch Phase State Start triggering event

	DeltaV EVT
	The following two events can set the Start Time for PISubBatch phase step object.

1) The event containing [Event] field = “Report” and [Descript] field containing <Start Substring>. The Phase Step name is determined as the prefix substring to <Start Substring> in [Descript] field.

2) The event containing [Event] field = “Report” and [PValue] field containing <Start Substring>. The Phase Step name is determined as the prefix substring to <Start Substring> in [PValue] field.

The [Recipe] field contains the batch recipe hierarchy.

	DeltaV SQL
	The event containing [EventType] field = “Report” and [EventDescr] field containing <Start Substring> is used to set the Start Time for PISubBatch Phase State object. The Phase Step name is determined as the prefix substring to <Start Substring> in [EventDescr] field. The associated [Action] field contains the batch recipe hierarchy

	DeltaV OPCAE
	No Phase Step data available from this source.

	Syncade (both MSMQ and WebService)
	No Phase Step data available from this source.

PISubBatch Phase Step End triggering events
	Data Source
	PISubBatch Phase State Start triggering event

	DeltaV EVT
	The following two events can set an End Time for PISubBatch phase step object.

3) The event containing [Event] field = “Report” and [Descript] field containing <End Substring>. The Phase Step name is determined as the prefix substring to <End Substring> in [Descript] field.

4) The event containing [Event] field = “Report” and [PValue] field containing <End Substring>. The Phase Step name is determined as the prefix substring to <End Substring> in [PValue] field.

The [Recipe] field contains the batch recipe hierarchy.

	DeltaV SQL
	The event containing [EventType] field = “Report” and [EventDescr] field containing <End Substring> is used to set an End Time for PISubBatch Phase State object. The Phase Step name is determined as the prefix substring to <End Substring> in [EventDescr] field. The associated [Action] field contains the batch recipe hierarchy

	DeltaV OPCAE
	No Phase Step data available from this source.

	Syncade (both MSMQ and WebService)
	No Phase Step data available from this source.

Arbitration Events Unavailable

The behavior described above is the default behavior of the interface. However, if the batch execution system does not generate Arbitration events, you may select the option “Disable Arbitration” (/noarbitration). With this option, the start time of PIUnitBatches is determined by the later of either “Unit Procedure Started” or the start of a sublevel (Operation or Phase) event in that unit. The end time of PIUnitBatches is determined by the earlier of the “Unit Procedure Finished” message and end of the last sublevel in that unit. If no unit procedures have been defined (i.e. operation is the highest recipe level), the start of the first phase marks the start time of the PIUnitBatch, Operation level PISubBatch and the first Phase level PISubBatch. The end of the last phase (as determined by the presence of the “Operation Finished” system message) marks the end time of the PIUnitBatch, Operation PISubBatch, and that Phase PISubBatch. In this case, the PIUnitBatch and PISubBatch has the same start and end times.

Note: if Arbitration events are unavailable, the triggering of the PIUnitBatches from the Event File is only imprecisely bracketed by the Unit Procedure Started/Finished events and the start/end of the sublevels of the recipe. The Arbitration event is the most explicit method of determining the allocation of a physical unit to a given instance of a recipe.

Template Placeholders

The DeltaV Batch interface uses templates to specify what is stored in PI Batch Product field, PI Batch Properties, PI Points and it also allows defining the equipment hierarchy structure in the PI Module Database. The word - template is used to define the custom name and/or value structure applied to particular PI object. The template is defined by a combination of a free text and placeholders. The placeholder can be referred as to the name of the column in EVT or SQL data sources, except the Recipe column which is broken down into subcolumns, such as Procedure, UnitProcedure, Operation and Phase. Placeholders are used to identify the positions in the name or value structure where the actual data from these columns is going to be placed. Figure 8 provides the sample placeholder association to the EVT column names.
Figure 8. Placeholders to EVT columns association example.
[image: image6.png]Template
Placeholders

[Procedure]
[UnitProcedure]
[Tine] [BatchID] [Operation] [Descript] [Event] [PVal] [EU]
1 [Phase] 1 1 1 1
EVT Source
i | |
1_|GMTtime BatchlD [v]Recipe [=]Descript [=]Event [JPvalue [ZJEU
2007/12/11 06:19:12:184 | 2007121105 | PR_SULF_DT_CIP Event File Name _ D:WDeltavADVDatatbatchiournal
2007/12/11 0:19:12:184 | 2007121105 PR_SULF DT CIP Version Recipe Header 6
2007/12/11 05:19:12:184 | 2007121105 |PRLSULF DT CIP Version Date Recipe Header S
2007/12/11 05:19:12:184__ 2007121105 PR_SULF DT CIP___ Author Recipe Hearer JABADG
[2007/12/11 05 19.12:184__20071211.05 PR SULF DT CIP___ Product Code Recipe Header UNDEFINED
Event 2007712/11 05.19.12:184 2007121105 PR_SULF_DT CIP___ Description Recipe Header Sulf Dilution Tanks CIP Procedur
2007/12/11 0:19:12:184 | 2007121105 PR.SULF_DT CIP Class or Instance Recipe Header Class
2007/12/11 05:19:12:184 2007121105 PRSULF_DT_CIP Recipe Type Recipe Header P
2007/12/11 05:19:12:184 | 2007121105 PR_SULF_DT_CIP Area Madel File Name _ Recipe Header D:1DeltaVDVData\DOWNLOAT
112007/12/11 06:19:12.184 | 20071211.05 PR_SULF DT_CIP_ File Name Recipe Header D:1DeltaV DY Data i DOWNLOAD:
2007/12/11 0:19:12:184 | 2007121105 PR_SULF DT CIP Scale Recipe Header 100 %

2007/12/11 05:19:12:184
2007/12/11 05:19:12:184
2007/12/11 05:19:12:184
2007/12/11 05:19:12:184
2007/12/11 05:19:12:184
2007/12/11 05:19:12:184
2007/12/11 05:19:12:184
0200711211 05:19:12:184
1 [2007/12/11 05:19:12:184
2200711211 0519354

2]
3
A
5
& |
Z]
8
9
o]
R
2]
JEER
4]
5]
|
a7
8]
9]
2
2
2|
=

20071211.05
20071211.05
20071211.05
20071211.05
20071211.05
20071211.05
20071211.05
20071211.05
2007124%

PR_SULF_DT_CIP
PR_SULF_DT_CIP
PR_SULF_DT_CIP
PR_SULF_DT_CIP
PR_SULF_DT_CIP
PR_SULF_DT_CIP
PR_SULF_DT_CIP
PR_SULF_DT_CIP
R_SULF_DT_CIP

U F DT CP

UP_FCIP0_TK4B00_CIEquiprment Selection
UP_F CIPO0_TKA4B00_NI Equipment Selection
UP_F CIPO0_TK4B00_NI Equipment Selection
UP_SULF_DT_CIP:1__ Equipment Selection
UP_SULF_DT_CIP_SE Equipment Selection
Sulf Dilution Tanks CIP Syster Message

Sulf Dilution Tanks CIP Syster Message

State Changed State Change
Forrm.

TKag00
TKABOO_NULL.
TKABOD_NULL.
TKa125

TKa125

Delta Batch E P

Berinnins

Example:

Consider the following template structure:

Sample [Time] | [Descript]-[BatchID]:[Event]__pvalue:[PVal][EU]

This structure contains the free text and the placeholder combination. Assume that the incoming event is the row number 6 (Figure 8), which is Recipe Header. Then using the template structure we can replace placeholders with the actual data from the associated columns to create the following text:

Sample 2007/12/11 05:19:12:184 | Product Code:Recipe Header__pvalue:UNDEFINED
Note, in this example [EU] placeholder was replaced with BLANK value since the source row did not have the associated column populated.
PIBatch and PIUnitBatch Product Property
Some of data source contain the Product ID information. In the case of Event Files, this information is stored as the PValue in the row that contains the description “Product Code”. Typically this is a Recipe Header event.
However, if there is some other description instead of “Product Code”, then the language translation section of the INI file can be used to change the description value that the interface looks for. For example, if the “Product Value” is used in the EVT file, then the language translation can be set so that “Product Value” is the same as “Product Code”. The language translation can be achieved through the use of INI file. The language translation syntax is the following and it is not case sensitive:
translate: <Foreign language definition> = <English definition>,
Example:

Translate: Product Value = Product Code

Note, the translations approach is only applicable to the EVT data sources. SQL data sources contain the Product field as part of the source batch object and cannot be changed with language translations.

Another way to change the PIBatch and PIUnitBatch Product property is through the use of Product Template, which can be defined in the interface’s INI file. This template represents the order in which the interface tries to set the PIBatch product field when the batch start event received. The product template: product=<list of product options>. It is possible to use placeholders such as [product] or [formula] in conjunction with free text to set the product.
Product Template definition
	Template Name
	Value
	Allowed Placeholders
	Description

	product
	<list of options>
	[product]

[formula]
	Defines the PI Batch and PI UnitBatch product name. The provided value should be a list of possible product sources. From most important to least important. Allowed placeholders are not case sensitive.

Default: Product=[product]

Example 1:

Product=[Product],[Formula],TestProduct

In this example, when batch starts, it checks if the “Source Product” is defined, if yes, it uses the actual product name, if product is missing, the interface checks if the “Source Formula Name” is known, if yes, then it uses the Formula name as product. In the worst case scenario, when there is no product or formula defined before start of batch, the value “TestProduct” is used as product name.

Example 2:

Product=abs:[Formula], def_[Product], Unknown

On start time of source batch, assume, that

Source Formula=12345aaa

Source Product=IceCream

Then resulting PI Batch Product=abs:12345aaa

Assume that Formula is not known, then

PI Batch Product=def_IceCream

Assume that both Product and Formula are unknown, then

PI Batch Product = Unknown

Note, in case of a merged PIBatch, the PIBatch Product contains the product associated with the batch which started the PIBatch. All merged batch products are stored in PIProperties underneath UniqueID nodes.
PIModule Creation

The interface performs automated module and unit creation within the PI Server. PI Units (PIModules with the IsUnit flag set to true) are created if needed when they are first encountered in the data source. The following modules in DeltaV equipment hierarchy are maintained by the interface: Area, Process Cell, Unit and Phase Module. By default, the placement of these modules is at the root level of the Module DB. Although, the user can define an optional Starting Module Path by using the (/smp command line parameter) under which the equipment hierarchy will be created. The default structure of the PI module hierarchy utilized by the interface is depicted in Figure 9.

[image: image7.png]Start Module Path | (optional)

U]

Unit level Tag Alias Collection

[Phase Module]

Phase level Tag Alias Collection|

Figure 9. Interface PI Module DB Structure
The DeltaV Batch automatically references PI tags at the unit and phase PIModules through tag aliases if tag names contain unit and phase module names. If the tag name contains reference to the unit and not the phasemodule, then only Unit Alias is created for this tag.
If for any reason default equipment hierarchy is not feasible, then the interface allows creating custom equipment hierarchy through the use of Equipment Template (Table n). Equipment Template should be defined in INI file associated with specific interface instance.
Note, if SQL Alarm&Events SQL server is defined as one of the data source(s), the interface will use this Equipment template definition only down to [Unit] level. All underlying module names will be named exactly as it is provided by the data source.
Equipment Template definition
	Template
	Value
	Allowed

Placeholders
	Description

	Equipment

	<Equipment Hierarchy>
	[Area]

[ProcessCell]

[Unit]

[PhaseModule]
	This template defines the ModuleDB structure which the interface creates automatically. The Module names should be delimited by the “\” character.

Restrictions:

The hierarchy order must be maintained in the following order:

[Area] (optional)

[ProcessCell] (optional)

[Unit] (required)

[PhaseModule] (optional)

Note: Any reoccurrence of already defined placeholder is treated as text.

Default: Equipment=[Area]\[ProcessCell]\[Unit]\[PhaseModule]

Example 1:

The Equipment Template is defined in INI file as follows:

Equipment = abc:[unit]\Phases\[unit]:[phasemodule],

Where the first [unit] placeholder is marked as PIUnit and the second [unit] placeholder serves as a prefix to a PhaseModule and which is marked as PhaseModule name.

Assume: that incoming event contains Unit=U101, and PhaseModule=Agitator, then resulting PIModuleDB hierarchy is shown in Fig. 10.
Figure 10. Equipment Hierarchy for Example 1.
[image: image8.png]Shell0l

Unit level Tag Alias Collection

Tl0L:Agitator

Phase level Tag Alias Collection|

Example 2:
The Equipment Template is defined in INI file as follows:
Equipment = Just_Testing\areas\abc:[area]\Cells\def:[processcell]\Units\ghk:[unit]\Phases\

orspr[unit]:[phasemodule]\miseleneous
Assume that the incoming event contains:

Area=BLOCK1

ProcessCell=DEP10

Unit=SW101

PhaseModule=HEAT

Then, the resulting PIModuleDB hierarchy is shown in Figure 11.
Figure 11. Equipment Hierarchy for Example 2.
[image: image9.png]4efDEPI0

| Unit

<@ é :g:swm

nit level Tag Alias Collection
¢ preprSWIOEHEAT]

[Phase level Tag Alias Collection|

Foreign Language Support

The Emerson DeltaV Batch interface supports languages other than English by providing the use of a look-up table for the various event types that trigger specific actions in the interface. Note that this is not necessarily all of the events that are possible in the data source, only a selected few are required: those, which are used to trigger the start and end times of the PI Batch objects (Table 5). The language translation syntax is the following:

 translate: <native language definition> = <english definition>,

where translation is identified by the keyword - translate: followed by the native language word or phrase to be translated. The equal sign determines the end of the native language phrase or word definition and serves as a token for the start of English definition. The syntax is not case sensitive.
DELTAV EVT (default)

DeltaV EVT required English definitions (no /ubr switch):
	Category
	Can be found in EVT Column
	English Definitions

	S88 Levels
	
	

	
	[EU]
	Procedure

	
	[EU]
	 Unit Procedure

	
	[EU]
	 Operation

	
	[EU]
	 Phase

	Batch Header info
	
	

	
	[Event]
	Recipe Header

	
	[Descript]
	Product Code

	
	[Event]
	Formula Header

	
	[Descript]
	Formula Name

	Equipment Arbitration
	
	

	
	[Event]
	Recipe Arbitration

	
	[Descript]
	Resource Acquired by recipe

	
	[Descript]
	Resource Released by recipe

	
	[EU]
	Unit

	Batch Recipe
	
	

	
	[Event]
	System Message

	
	[PVal]
	Beginning Of BATCH

	
	[PVal]
	End Of BATCH

	
	[Event]
	State Change

	State Changes
	
	

	
	[PVal]
	CREATED

	
	[PVal]
	RUNNING

	
	[PVal]
	COMPLETE

	
	[PVal]
	REMOVED

	
	[PVal]
	STOPPED

	
	[PVal]
	ABRORTED

	Additional
	
	

	
	[Event]
	Comment

	(if /ras switch is used)
	[Event]
	Report

DELTAV EVT (with /ubr switch defined)

DeltaV EVT required English definitions (with /ubr switch)

	Category
	Can be found in EVT Column
	English Definitions

	S88 Levels
	
	

	
	[EU]
	Procedure

	
	[EU]
	 Unit Procedure

	
	[EU]
	 Operation

	
	[EU]
	 Phase

	Batch Header info
	
	

	
	[Event]
	Recipe Header

	
	[Descript]
	Product Code

	
	[Event]
	Formula Header

	
	[Descript]
	Formula Name

	Equipment Arbitration
	
	

	
	[Event]
	Recipe Arbitration

	
	[Descript]
	Resource Acquired by recipe

	
	[Descript]
	Resource Released by recipe

	
	[EU]
	Unit

	Batch Recipe
	
	

	
	[Event]
	System Message

	
	[PVal]
	Beginning Of BATCH

	
	[PVal]
	End Of BATCH

	
	[Descript]
	Unit Procedure Started

	
	[Descript]
	Unit Procedure Finished

	
	[Descript]
	Operation Started

	
	[Descript]
	Operation Finished

	
	[Event]
	State Change

	State Changes
	
	

	
	[PVal]
	RUNNING

	
	[PVal]
	COMPLETE

	
	[PVal]
	REMOVED

	
	[PVal]
	STOPPED

	
	[PVal]
	ABRORTED

	Additional
	
	

	
	[Event]
	Comment

	(if /ras switch is used)
	[Event]
	Report

DELTAV SQL (default: no /ubr switch)
Table of DeltaV SQL required English definitions:
	Category
	Can be found in SQL Column
	English Definitions

	Batch Recipe
	
	

	
	[EventType]
	State Change

	State Changes
	
	

	
	[EventDescr]
	CREATED

	
	[EventDescr]
	RUNNING

	
	[EventDescr]
	COMPLETE

	
	[EventDescr]
	REMOVED

	
	[EventDescr]
	STOPPED

	
	[EventDescr]
	ABRORTED

	Additional
	
	

	(if /ras switch is used)
	[EventType]
	Report

DELTAV SQL (with /ubr switch)
DeltaV SQL required English definitions (with /ubr switch):
	Category
	Can be found in SQL Column
	English Definitions

	Batch Recipe
	
	

	
	[EventType]
	State Change

	State Changes
	
	

	
	[EventDescr]
	RUNNING

	
	[EventDescr]
	COMPLETE

	
	[EventDescr]
	REMOVED

	
	[EventDescr]
	STOPPED

	
	[EventDescr]
	ABRORTED

	Additional
	
	

	(if /ras switch is used)
	[EventType]
	Report

DELTAV SQL +OPCAE (NO /ubr switch available)
DeltaV SQL +OPCAE required English definitions:

	Category
	Can be found in SQL Column
	OPCAE BATCH-EVENT attribute index (0-based)
	English Definitions

	Equipment Arbitration
	
	
	

	
	N/A
	Attr[6]
	Resource Acquired by recipe

	
	N/A
	Attr[6]
	Resource Released by recipe

	Batch Recipe
	
	
	

	
	N/A
	Attr[6]
	Procedure Started

	
	N/A
	Attr[6]
	Procedure Finished

	
	N/A
	Attr[6]
	Unit Procedure Started

	
	N/A
	Attr[6]
	Unit Procedure Finished

	
	N/A
	Attr[6]
	Operation Started

	
	N/A
	Attr[6]
	Operation Finished

	
	N/A
	Attr[6]
	Phase Started

	
	N/A
	Attr[6]
	Phase Finished

	
	[EventType]
	N/A
	State Change

	
	N/A
	Attr[6]
	State Changed

	State Changes
	
	
	

	
	N/A
	Attr[6]
	LOAD

	
	[EventDescr]
	N/A
	CREATED

	
	[EventDescr]
	Attr[8]
	RUNNING

	
	[EventDescr]
	Attr[8]
	COMPLETE

	
	[EventDescr]
	Attr[6], Attr[8]
	REMOVED

	
	[EventDescr]
	Attr[8]
	STOPPED

	
	[EventDescr]
	Attr[8]
	ABRORTED

	Additional
	
	
	

	(if /ras switch is used)
	[EventType]
	N/A
	Report

Sample German EVT required and optional event translations (when /ubr is used):

// [S88 Levels]

 translate: "Grundrezept" = "Procedure"

 translate: "Teilrezept" = "Unit Procedure"

 translate: "Grundoperation" = "Operation"

 translate: "Grundfunktion" = "Phase"

// [Batch Header info]

translate: "Rezeptkopf" = "Recipe Header"

translate: "Produktcode" = "Product Code"

translate: "Formelkopf" = "Formula Header"

translate: "Formelname" = "Formula Name"

// [Arbitrations]

translate: "Rezeptzuteilung" = "Recipe Arbitration"

translate: "Betriebsmittel belegt durch Rezept" = "Resource Acquired by recipe"

translate: "Betriebsmittel freigegeben durch Rezept" = "Resource Released by recipe"

translate: "Teilanlage" = "Unit"

// [Recipe Logic, Comment needed only if there is an extra column in DeltaV, so event
// can be converted to Comment event, and use English word in Tag Template as
// trigger]

translate: "Zustands\E4\nderung" = "State Change"

translate: "Kommentar" = "Comment"

translate: "Systemmeldung" = "System Message"

translate: "CHARGEN-Anfang" = "Beginning Of BATCH"

translate: "CHARGEN-Ende" = "End Of BATCH"

translate: "Teilrezept gestartet" = "Unit Procedure Started"

translate: "Teilrezept beendet" = "Unit Procedure Finished"

translate: "Grundoperation gestartet" = "Operation Started"

translate: "Grundoperation beendet" = "Operation Finished"

// [Phase States]

translate: "L\C4\UFT" = "RUNNING"

translate: "BEENDET" = "COMPLETE"

translate: "ENTFERNT" = "REMOVED"

translate: "GESTOPPT" = STOPPED"

translate: "ABGEBROCHEN" = "ABORTED"

// [Optional assuming /ras switch is used]

translate: "Bericht" = "Report"

Note: As soon as we translate word/phrase into English, we can use English Names, i.e. word – “Report” in resulting output of Template Tags and Properties. The templates must be defined using native language. Translations can be used to redefine any source word/phrase to any new word/phrase.

Template Example:
Based on provided translations the interface can create and populate PI Tags and PI Properties from templates in native language. For example, consider the following tag template:

Tag[1].Name = [Unit] abc_[Parameter,value=”Bericht”]

Tag[1].Value = [Value]:def

Tag[1].type = string

Tag[1].unitalias = Some Bericht

Tag[1].Descriptor = Bericht for Unit: [Unit]

Tag[1].EngUnits = just text

Property[1].Value = [Time] [Parameter,value=”Bericht”] [Unit]-[Value]

These templates are triggered by parameter – Bericht (German word for – Report) as it is found in the data source and the tag name and PI Property value will be based on native language parameter name. Assume that there is a particular row with unit field containing value: “U101” and associated Value field containing value: “testing”. In this case PI Tag name is defined as: “U101 abc_Bericht” and tag value is defined as: “testing:def”.

With the use of language translations we can create tag where foreign word/phrase is replaced with translated word/phase. For example:

 translate: "Bericht" = "Report"

 translate: "testing" = "1"
Then resulting Tag name would be: "U101 abc_Report" and Tag value would be "1:def"

The same logic is applicable to the property template definitions. Translations are not case sensitive. Language translations don’t have to be defined prior to the tag or property template definitions, they can be defined anywhere within the INI file.
Event Logging

Besides the creation and population of PI Batch and Module DB objects, there are 3 methods by which the specific events from the data sources can be saved into the PI system. These 3 methods are:

1. The interface can store the individual events to the PI Properties hierarchy of the PI Batch when incoming event(s) match triggering events defined in Property Templates.
2. The interface can create new tags (and link them to a unit and phase module with a PI Aliases) when the incoming event(s) match triggering events defined in Tag Templates.
3. The interface can create new Alarm PI Tags (and link them to a modules with a PI Aliases) when the incoming event(s) match triggering events defined in AlarmTag Templates..

These functions are separate actions and triggered independently under different sets of criteria.

DeltaV Batch Historian available placeholders:

[TIME], [BATCHID], [PROCEDURE], [UNITPROCEDURE], [OPERATION], [PHASE], [DESCRIPT], [EVENT] or [PARAMETER], [PVAL] or [VALUE], [EU], [AREA], [PROCESSCELL], [UNIT], [PHASEMODULE], [USERID] or [USER], [UNIQUEID]

DeltaV Alarm&Events Historian available placeholders:

[TIME], [EVENT], [CATEGORY], [NODE], [AREA], [PROCESSCELL], [UNIT], [MODULE], [MODULEDESC], [ATTRIBUTE], [STATE], [LEVEL], [DESC1], [DESC2]

Emerson Syncade available placeholders:

[TIME], [BATCHID], [PROCEDURE], [UNITPROCEDURE], [OPERATION], [PHASE], [DESCRIPT], [PARAMETER], [SET], [HIGH], [LOW], [VALUE], [USER], [AREA], [PROCESSCELL], [UNIT], [UNIQUEID]

Starting with version 1.0.1.0 interface supports wildcards in templates. Available wildcards are given below and can be used in any property field of Tag or Property Templates.

	Wildcard
	Description

	#
	single digit numerical value (0-9)

	@
	single alpha character (a-z, A-Z)

	?
	any single valid symbol

	*
	An array of valid symbols

	!
	repeat previous mask symbol

Example:

Tag[1].Name = [Event, value=”Report”]

or using mask

Tag[1].Name = [Event, value=”Repo*”]

Advanced Parsing Parameters

Starting with interface version 1.0.1.0, each placeholder can contain additional parameters which allow advanced parsing of incoming data. The allowed syntax:

[Placeholder, <list of parameters delimited by comma>]

The following table provides the list of available parameters which can be used with any placeholder. Note, the names of parameters, placeholders, and value substrings are not case sensitive. If additional parameters are used for at least one placeholder, then in case of resulting substring returning empty set, the whole template will be set to blank. If it is desired to search in ALL fields of incoming event then set Name of Placeholder as a wild card, i.e. [*,lbe=”u:”].

	Parameter
	Description

	VALUE=”substring” or “mask”
	Defines the exact field value to search for in particular column. Masks are allowed. If ‘*’ is used instead of Name of Placeholder (i..e. search in all event fields, then [*,value=”test”] is equivalent to <test>

	LBE=”substring”

Optional
	Left Bound Exclusive substring. Defines the left bound of the target substring value. The resulting substring DOES NOT include the LBE defined boundary substring.

	LBI=”substring”

Optional
	Left Bound Inclusive substring. Defines the left bound of the target substring value. The resulting substring includes the LBI defined boundary substring.

	RBE=”substring”

Optional
	Right Bound Exclusive substring. Defines the right bound of the target substring value. The resulting substring DOES NOT include the RBE defined boundary substring.

	RBI=”substring”

Optional
	Right Bound Inclusive substring. Defines the right bound of the target substring value. The resulting substring includes the RBI defined boundary substring.

	Delim=”substring”

Optional
	Delimiter character or substring. Must be used in conjunction with the Count parameter. This parameter defines the field separator. If used, it narrows the resulting substring to the substring contained within delimiters, where the starting delimiter index is specified by the count parameter.

Note: right and left boundary substrings can be specified as well, resulting in parsing the delimited substring.

	Count=#

Optional
	Index of the delimiter from which to start parsing. Must be used in conjunction with the Delim parameter.

For example, assume that [Value] column field contains the following data:

|U:browntod|C:SP_CHARGE_AMOUNT|O:1200|N:1123|E:kg|M:Local

The sample placeholder parameter combinations and results are presented in the table below.

	Placeholder syntax
	Resulting substring

	[value]
	|U:browntod|C:SP_CHARGE_AMOUNT|O:1200|N:1123|E:kg|M:Local

	[value, lbe=”N:”]
	1123|E:kg|M:Local

	[value, lbi=”N:”]
	N:1123|E:kg|M:Local

	[value, rbe=”tod”]
	|U:brown

	[value, rbi=”tod”]
	|U:browntod

	[value, lbe=”U:”, rbe=”|”]
	Browntod

	[value, lbi=”U:”, rbe=”|”]
	U:browntod

	[value, lbe=”O:”, rbi=”kg”]
	1200|N:1123|E:kg

	[value, delim=”|”,count=3]
	O:1200

	[value, delim=”|”,count=3,lbe=”O:”]
	1200

	[value, delim=”|”,count=3,lbe=”C:SP”,rbe=”UNT”]
	_CHARGE_AMO

	[value, delim=”|”,count=6,lbe=”M:”]
	Local

Property Templates
Due to current PI server limitations, batch recipe associated data can be stored only at the PIBatch level through the use of the PIProperties collection. To maintain the recipe hierarchy, PIProperties are organized as a recipe tree, where each PIProperty node is the name of the specific recipe level, i.e. procedure, unit procedure, operation, phase. The data is stored in lists (Name, Value) under each specific node.
Note: The batch PI Properties collection has a limitation of 1Mb per PIBatch object. Therefore, it is not recommended to store all incoming events into batch PIProperties collection.
By default the interface does not store batch associated data into PIProperties. To store data in PIProperties, use Property Templates which define the subset of events and associated PIProperty value structure for each event to be stored in PIProperties. The Property Templates are not case sensitive and must be defined in the INI file associated with each specific instance of the interface. The Property Template can define only PIProperty values, but not the PIProperty names. This is dictated by the PISDK rule, stating that each PIProperty event name under the same PIProperty node should be unique. Each PIProperty event name is defined as ‘Event_<event count>’, where <event count> is the current number of events already stored under specific PI Property node. The Property Template usage as follows:

Property[index].Value = Value structure
Property[index].Trigger = Trigger expression
Property[index].Translate = true/false (default: false)
Where index – is an arbitrary 1-based positive number. Value structure should be given in the free text format with the placeholder names contained within the square brackets. The triggering expression must be embedded in the Value Structure or specified through explicit Trigger(s). Specifying multiple placeholders in a single triggering expression is treated as an AND logic and specifying multiple trigger expressions is treated as an OR logic.
Note: If /uobev switch is defined in command line parameter, the SQL batch data source will not have [Pval] and [EU] available as separate columns; instead they are embedded in [Descript] column. The description of Property Template is given in the Property Template Description, below.
Property Template Description
	Template Name
	Allowed Placeholders in Value
	Value Description

	Property[#].Value

Required
	[TIME]

[BATCHID]

[PROCEDURE]

[UNITPROCEDURE]

[OPERATION]

[PHASE]

[PHASESTATE]

[PHASESTEP]

[DESCRIPT]

[EVENT] or [PARAMETER]
[PVAL] or [VALUE]

[SET] (Syncade only)

[HIGH] (Syncade only)

[LOW] (Syncade only)
[EU]
[AREA]

[PROCESSCELL]

[UNIT]

[PHASEMODULE]

[USERID] or [USER]
[UNIQUEID]
<Exact Field> or [*,value=”Exact Field”],

<Field Mask> or [*,value=”Field Mask”],

 advanced parsing
	This property defines the value structure of the PI Property. The triggering expression or Event Type must be embedded in the value structure. Allowed placeholders are not case sensitive. Due to the requirement that PI Property Names should be unique under the same PI Property Node, the property names are created automatically by the interface.

Note: Each incoming event can trigger multiple Property Templates if it is defined in each as triggering event.

Property Template Name: (not configurable)
Event_(Same Node Event Count).

Property Template Value:

Defined by user as free text with optional placeholders. Placeholder – is the name of the source column. For each incoming event, placeholder in the template is replaced by corresponding field from the event structure.

Note: for SQL data source(s), if /uobev switch is used then there are no explicit columns for [PVal] and [EU], instead, these columns are combined and appended to [Descript] column.

Example :

Property[1].Value = [BatchID] | event: <State*> | [Descript] | val: [PVal]

Or using advanced parsing definition:

Property[1].Value = [BatchID] | event: [*,value=”State*”] | [Descript] | val: [PVal]

	Property[#].Trigger

Optional
	Same as for Value Property, except [TIME]
	Defines the triggering expression or Event Type which used to create and populate PI Properties. If trigger is defined, it overrides triggering expression in Value property if defined.

Note: There can be multiple triggers defined for a single template property.

Note: Interface uses only placeholders embedded into expression to trigger particular template. All free text is omitted and placeholders are treated as with AND logic. Using multiple Triggering expression allows to create OR logic for triggering.

Example 1:

Property[1].Trigger = [Parameter, value=”State Change”]

Property[1].Trigger = [Value, value=”test”]

or using mask:

Property[1].Trigger = [Parameter, value=”State Ch*”]

Property[1].Trigger = [Value, value=”tes*”]

Example 2:

Using triggering expression with two placeholders:

Tag[1].Trigger=[Event, value=”State*] [Pval,value=RUNNING”]

This expression will trigger tag template only if both conditions are met.

	Property[#].Translate
Optional
	Values: true/false

	If set to true this property allows the Property Template to use the translate map and replace words, phrases found in Value with the custom ones.

EVT Example 1:
The Property Template is defined in INI file as follows:
Property[1].Value=[Time]:[Descript]:[Pval]:[EU]-[Event]_Testing
where index=1 is arbitrary (1-based) and is used to identify which template was used to create particular PIProperty event structure. The property index number must be defined in square brackets. The text string defined after the equal sign (=) is the actual PIProperty structure given in the free text format, and is not case sensitive.
Assume that incoming event from data source contains populated fields as:

[Time]=”12/01/2008 12:01:05”

[Descript]=abc

[Pval]=123.456

[EU]=cm

[Event]=Report
Then the actual PIProperty value added to the PIBatch object is:

12/01/2008 12:01:05:abc:123.456:cm-Report_Testing

SQL Example 1 (switch /uobev is used):
The Property Template is defined in INI file as follows:

Property[2].Value=[BatchID]_[Descript]_[Event]:abc
where index=2 is arbitrary (1-based) and is used to identify which template was used to create particular PIProperty event structure.
There is no difference between EVT and SQL data sources unless the /uobev (Use Original Batch Event View) switch is specified. In this case [Pval] and [EU] columns are not available in SQL data source. Instead the SQL [descript] column is the union of EVT data source columns: [descript],[pval],[eu].We defined an [Event] placeholder which allows ANY incoming event to use this template and to populate PIProperties collection for each PIBatch.
Assume that incoming event from the data source contains specific fields populated as:

[BatchID]=Lot12345
[Descript]=abc 123.456 cm
[Event]=Report
Then the actual PIProperty value added to the PIBatch object is:

Lot12345_abc 123.456 cm_Report:abc
Tag Templates
The Emerson DeltaV Batch interface has an option to store batch associated data in PI Points, commonly known as tags. Every Event Type known on the source can be recorded in the PI Server. By default, interface does not create tags or populate them with events. You can enable this functionality through the use of Tag Templates, which are defined in the INI file associated with each interface instance. The INI file should be located in the same directory as the interface startup batch file (BAT) and have the same filename (except extension) as the batch file (BAT) which is used to start the particular instance of the interface. If such setup is not possible for any reason, then INI file can be specified in optional command line parameter /inifile=<full path filename>.
Tag Templates allow defining structures for tag name, tag data type, tag value, unit alias name, phase module alias name, engunits and descriptor properties. The timestamp for each tag event is obtained directly from the data source. The required properties to be completed are tag name structure, tag value structure and tag type, all other properties are optional. If only tag name is defined then the triggering “event type” or expression should be defined as part of the tag name structure. If an explicit trigger is defined, then the tag creation and population is based on the event type or expression defined as <trigger> value overriding the tag name triggering (if defined). Multiple tag templates can be triggered by the same source event, and a single template can be triggered by multiple source events.
Note: If explicit triggers are used, then the Tag Name embedded triggering is overridden.
You also have the option to specify the tag value type. There are 3 tag types allowed: float, integer and string. By default, if the value type is not specified, the batch interface creates a string type PI Point and treats all event values as strings.
Tag Template usage:

Tag[index].<Property> = Free text
Where index is the 1-based positive number, also serves as Location2 value in actual PI Point attributes and is used to identify which Tag Template created specific PI Point.

Possible Tag Template <Property> definitions:

Tag[index].Name = Name structure (with embedded triggering Event Type or Event Type Mask or Expression)
Tag[index].Value = Event value structure as free text

Tag[index].Trigger = Event Type or Event Type mask or Expression
Tag[index].Type = string/integer/float

Tag[index].UnitAlias = <optional sub unit module path |> unit tag alias name structure (default: alias name as .Name and alias module path as [Unit])

Tag[index].PhaseAlias = <optional sub phasemodule path |> phase module tag alias name structure (default: alias name as .Name and alias module path as [PhaseModule])
Tag[index].Descriptor = value structure as free text (default: blank)

Tag[index].EngUnits = value structure as free text (default: blank)

Tag[index].Translate = true/false (default: false)
If the name structure contains placeholders, then the tag template will only be triggered if all placeholders are replaced with non-empty fields from each incoming event. The event value structure does not have this limitation, i.e. placeholders can be replaced with empty fields. The only exception is the advanced field value parsing. In the Tag Template Description table below, a complete list of possible properties, values and placeholders that can be used to define value/name structures is provided.
Multiple tag templates are capable of writing to the same PI tag (if the .Name attribute of the tag templates resolves to the same PI tag name). This is useful when you want different values to be written to the same PI tag dependent on the trigger for each.
Note: when /uobev switch is used, SQL data source does not have [Pval] and [EU] columns separately as it is in EVT data source; instead they are embedded in [Descript] column as union of EVT [Descript][Pval][EU].
Tag Template Description
	Property
	Allowed Placeholders
	Description

	Tag[#].Name

Required
	[BATCHID]

[PROCEDURE]

[UNITPROCEDURE]

[OPERATION]

[PHASE]

 [DESCRIPT]

[EVENT] or [PARAMETER]
[PVAL] or [VALUE]

[SET] (Syncade only)

[HIGH] (Syncade only)

[LOW] (Syncade only)
[EU]

[AREA]

[PROCESSCELL]

[UNIT]
[PHASEMODULE]

[USERID] or [USER]
[UNIQUEID]
<Exact Field> or [*,value=”Exact Field”],

<Field Mask> or [*,value=”Field Mask”],

 advanced parsing,

	This property defines the name structure of the tag. Allowed placeholders are not case sensitive. The triggering “Event Type” or expression can be specified either in Tag.Name or in Tag.Trigger properties.

The tag name structure can also contain Exact word or phrase (must be specified within angled brackets <>) which can be found in any fields of the incoming event. If resulting Tag Name contains illegal characters such as * ' ? ; { } [] | ` " \ then these characters are replaced by “_” character. The contained word or phrase can be also a mask.

For example, Descript column contains field: B10_OP_CIP100. If it is desired to have a tag when this descriptor is encountered, then the tag name template can be specified as:

Tag[1].Name = [unit] <B10_OP_CIP100> State Change.

Or using masked field definition:

Tag[1].Name = [unit] <B10_OP_CI*> State Change.

Triggering event can be defined as mask as well.

Example: Tag[1].Name = [unit] <B10_OP_CI*> <State Ch*>

Note: Each incoming event can be used to create/populate multiple PI Tags, if it is defined as triggering event in multiple Tag Templates.

	Tag[#].Value

Required
	Same as for Name property and

[TIME]
	This property defines the event value structure for the specific PI Point. Allowed placeholders are not case sensitive.

The event timestamp is taken from the incoming event [Time] field.

Note: Placeholders [Pval] and [EU] are not available if source is defined as SQL Server(s) and switch /uobev is specified in command line. When using the switch /uobev, the interface reads batch associated events from the batcheventview, where the [Descript] column is the union of EVT [Descript], [Pval] and [EU] columns.

	Tag[#].Type

Required
	String

Float

Integer
	Defines the type of the PI Point to be created and how to treat the events written to this tag.

	Tag[#].Trigger

Optional
	Same as for Name and

Event Type or

Event Type Mask

	Defines the triggering Event Type or expression which used to create and populate PI tags. If trigger is defined, it overrides triggering Event Type or expression in Name property if defined.

Note: There can be multiple triggers defined for a single template tag.
Note: Interface uses only placeholders embedded into expression to trigger particular template. All free text is omitted and placeholders are treated as with AND logic. Using multiple Triggering expression allows to create OR logic for triggering.

Example:

Tag[1].Trigger = State Change

or using mask:

Tag[1].Trigger = State Ch*

Using triggering expression with two placeholders:

Tag[1].Trigger=[Event, value=”State*] [Pval,value=RUNNING”]

This expression will trigger tag template only if both conditions are met.

	Tag[#].UnitAlias

Optional

	Same as for Name property

	This property defines the unit level alias name structure for specific template tag. The contained field can be defined as exact phrase or mask. If resulting Alias Name contains illegal characters such as * ' ? | ` " then these characters are replaced by “_” character. Starting with interface version 1.0.1.0 optional sub unit module path can be specified in alias name. “\” symbol should be used to separate parent\child modules and “|” symbol should be used to separate module path and the actual alias name.
Default: uses Name property as unit level alias name and [unit] module as alias location.

Note: The names for PI Aliases must be unique.

Example 1:

Tag[1].UnitAlias = [phasemodule] State alias

This alias is going to be created on particular [Unit] module with alias name as [phasemodule] State alias
Example 2:

Tag[2].UnitAlias = ABC\def | [phasemodule] State alias

This alias is going to be created under [Unit]\ABC\def module tree with alias name template as [phasemodule] State alias

	Tag[#].PhaseAlias

Optional

	Same as for Name property

	This property defines the phase module level alias name structure for specific template tag. The contained field can be defined as exact phrase or mask. If resulting Alias Name contains illegal characters such as * ' ? | ` " then these characters are replaced by “_” character. Starting with interface version 1.0.1.0 optional sub unit module path can be specified. “\” symbol should be used to separate parent\child modules and “|” symbol should be used to separate module path and the actual alias name.
Default: uses Name property as phase module level alias name and [PhaseModule] module as alias location.
Note: The names for PI Aliases must be unique.

Example 1:

Tag[1].PhaseAlias = State alias

This alias is going to be created on particular [PhaseModule] module with name as State alias
Example 2:

Tag[2].PhaseAlias = ABC\[EVENT] | State phasemodule alias

This alias is going to be created under [Unit]\ABC\[Event] module tree with alias name as State phasemodule alias

	Tag[#].Descriptor

Optional
	Same as for Name property

	This property defines the Tag Descriptor structure for the specific PI Point. Allowed placeholders are not case sensitive.

	Tag[#].EngUnits

Optional
	Same as for Name property

	This property defines the Engineering Units (EngUnits) structure for the specific PI Point. Allowed placeholders are not case sensitive.

Note: Placeholder [EU] are not available if source is defined as SQL Server(s) and switch /uobev is specified in command line. When using the switch /uobev, the interface reads batch associated events from the batcheventview, where the [Descript] column is the union of EVT [Descript], [Pval] and [EU] columns.

	Tag[#].Translate
Optional
	Values: true/false

	If set to true this property allows the Tag Template to use the translate map and replace words, phrases found in Name, Value, UnitAlias, PhaseAlias, Descriptor and EngUnits with the custom ones.

EVT Example 1:

Tag[23].Name =[Unit] [phasemodule] [Event,value=”Report”]
Tag[23].Value =[Descript]:[Pval]:[EU]-[Event]_Just for testing
Tag[23].Type = string
Assume that incoming event contains the following fields populated as:
[Time]=08/12/2008 13:00:05.123
[Descript]= Level
[Pval]=123.456

[EU]=cm
[Event]=Report

[Unit]=U101

[PhaseModule]=PDL123
Since Event Type = “Report” is embedded in Tag Name template and [Unit] and [PhaseModule] placeholders are replaced with non-empty fields, then the template is triggered. The interface is going to search for and add if necessary a PI Point named as “U101 PDL123 Report”. The Interface stores the tag name in the PIPoint’s Extended Descriptor field also. If the PIPoint was not known to the interface since the last startup, the interface also checks for the existence of aliases. Since the [Unit] placeholder is defined in the Tag Name, then the interface is going to find/add alias to this tag on Unit: U101 in PIModule Database as

Unit level alias name = “U101 PDL123 Report”,

Because the [PhaseModule] placeholder is also defined in Tag Name, the interface finds/adds alias for this tag on PhaseModule: PDL123.

Phase level alias name = “U101 PDL123 Report,”
When PIPoint and aliases are verified the actual event value is added to the PIPoint:

	Event TimeStamp
	Event Value

	08/12/2008 13:00:05.123
	Level:123.456:cm-Report_Just for Testing

Assume that in addition to the above Name and Value properties we have defined:
Tag[23].unitalias=[phasemodule] Report

Tag[23].phasealias=Report

Then the Unit level Alias Name = “PDL123 Report” and the Phase Module level Alias Name = “Report” are aliases for the tag name as illustrated in the figure below.
[image: image10.png]| PLaxchive

W
Tag [U101 PDLIZ3 Report

Time Stamp

Value

081212008 13:00:05.123

3.456:em Report_Just for Testing.

EVT Example 2:

Based on EVT Example 1, let’s replace the Tag Template definition for the value as
Tag[23].Value =[Pval]

Tag[23].Type = float
Assume that the incoming event contains:
[Time]=08/12/2008 13:00:05.123
[Pval]=34.12345 (as float32)

Then the resulting PIPoint named (from the EVT Example 1) as “U101 PDL123 Report” will be created or treated as a float type PIPoint, and the event is going to be sent as

	Event TimeStamp
	Event Value (float)

	08/12/2008 13:00:05.123
	34.12345

SQL Example 1:
Based on EVT Example 1, let’s replace the Tag Template definition for the value as
Tag[23].Value=[BatchID]_[Descript]_[Event]:abc

Tag[23].Type = string
Assume that incoming event contains:

[BatchID]= IceCreamLot101

[Descript]=Loaded 54.3 kg

[Event]=Report
The resulting PIPoint named (from the EVT Example 1) as “U101 PDL123 Report” is created and treated as a string type PIPoint, and the event is sent as

	Event TimeStamp
	Event Value (string)

	08/12/2008 13:00:05.123
	IceCreamLot101_Loaded 54.3 kg_Report:abc

Note: In the Template Value definition we did not specify the value type. Therefore, by default, the interface treats PIPoint as string type Tag.

EVT Example 3:

Now let’s consider the more complicated example involving multiple Event Types triggering the single Tag Template to find/create PIPoint and populate it with data. Multiple triggering events can be defined using keyword – trigger. The value for each trigger is the triggering expression, which can be defined as Event Type itself (Example below: event type - Comment) or combination of placeholders, which is treated with AND logic. Providing multiple trigger expressions as below is treated with OR logic.

Tag[12].Name = [Unit] Tester

Tag[12].Value =[pval]-[Event]

Tag[12].Type = string

Tag[12].Trigger = [Event, value=”Report”]

Tag[12].Trigger = [Event, value=”State Change”]

Tag[12].Trigger = Comment

Tag[12].unitalias = Testing [Unit]

Tag[12].phasealias = Testing phase alias
Note: In this example we do not have the [PhaseModule] placeholder or actual phase name embedded in the Tag Template Name. Therefore, phasealias will not be created or verified.

Assume that we have 4 incoming events:
Event 1 contains the following fields populated as:

[Time]=08/12/2008 13:00:05.123

[Event]=Report

[Unit]=U101

[Pval]=123.456

Event 2 contains the following fields populated as:

[Time]=08/12/2008 15:20:01.998

[Event]=State Change

[Unit]=U101

[Pval]=HOLDING

Event 3 contains the following fields populated as:

[Time]=08/12/2008 18:49:12.020

[Event]=Comment

[Unit]=U101

[Pval]=Discard Product

and Event 4 contains the following fields populated as:

[Time]=08/12/2008 21:49:14.025

[Event]=Comment

[Unit]=

[Pval]=Discard Product

As result, the Tag Template only gets triggered for the first 3 events. The last incoming Event 4 does not have the [Unit] field populated; therefore the Tag Name structure is not complete and cannot be processed. All events result in tag name as “U101 Tester” and tag unit level alias name as “Testing U101”.

The resulting events is stored to PI as follows:

	Event TimeStamp
	Event Value (string)

	08/12/2008 13:00:05.123
	123.456-Report

	08/12/2008 15:20:01.998
	HOLDING-State Change

	08/12/2008 18:49:12.020
	Discard Product-Comment

EVT/SQL Example 4:

Now let’s consider the following scenario where we want to store value “1” when Operation and Phase is started and “0” when Operation or Phase is complete. To achieve such task we can use source Event Type – “Step Activity”. Then we can use single template to for both Operation and Phases to write start event, i.e. “1” and then another template to write an end event “0”

Tag[1].Name = Activity on [Unit] [PVal]

Tag[1].Value = 1

Tag[1].Type = integer

Tag[1].Trigger = [Descript, value=”Step Activated”] [Event, value=”Step Activity] [EU, value=”Operation”]

Tag[1].Trigger = [Descript, value=”Step Activated”] [Event, value=”Step Activity] [EU, value=”Phase”]

Tag[2].Name = Activity on [Unit] [PVal]

Tag[2].Value = 0

Tag[2].Type = integer

Tag[2].Trigger = [Descript, value=”Step Deactivated”] [Event, value=”Step Activity] [EU, value=”Operation”]
Tag[2].Trigger = [Descript, value=”Step Deactivated”] [Event, value=”Step Activity] [EU, value=”Phase”]

Assume that the current incoming events are represented by highlighted rows as in the figure below. Then the templates are going to be triggered on Step Activity for Phase module.
[image: image11.png]c 2] E F G H ! J K
Recipe (] Descript (+]event PValue [BE (+]area (] Proccell (~Junit [~]phase E
RNLCIP_A StepActivated StepActivity Initial Step
RNLCIP_A Step Deactivated _ Step Activity _ Initial Step
RNLCIP_A StepActivated StepActivity U-NL-CIP_AZL-1 Unit ProcecA_BATCH_N1 BIOREACTOR-N1
RNLCIP_A StepActivated StepActivity U-CP-CIP_AiI-1 Unit ProcecA_BATCH_CP CIPSKID-UP
R-N1-CIP_A\\U-N1-CIP_A:1-1 Step Activated Step Activity Initial Step A_BATCH_N1 BIOREACTOR-N1 BR-1550
R-N1-CIP_A\\U-CP-CIP_A:1-1 Step Activated Step Activity Initial Step A_BATCH_CP_CIPSKID-UP. CP-6310
R-N1-CIP_A\\U-N1-CIP_A:1-1 Step Deactivated Step Activity Initial Step A_BATCH_N1 BIOREACTOR-N1 BR-1550
R-N1-CIP_A\\U-CP-CIP_A:1-1 Step Deactivated Step Activity Initial Step A_BATCH_CP_CIPSKID-UP. CP-6310
R-N1-CIP_A\\U-N1-CIP_A:1-1 Step Activated Step Activity O-N1-CIP_A:1-1 Operation A_BATCH_N1 BIOREACTOR-N1 BR-1550
R-N1-CIP_A\\U-CP-CIP_A:1-1 Step Activated Step Activity O-CP-SETUP_A:1-Operation A_BATCH_CP_CIPSKID-UP CP-6310
R-N1-CIP_A\\U-N1-CIP_A:1-1\\O-N1-CIP_A:1-1 Step Activated Step Activity Initial Step A_BATCH_N1 BIOREACTOR-N1 BR-1550
R-N1-CIP_A\\U-CP-CIP_A:1-1\\O-CP-SETUP_A:1-1 Step Activated Step Activity Initial Step A_BATCH_CP_CIPSKID-UP. CP-6310
R-N1-CIP_A\\U-N1-CIP_A:1-1\\O-N1-CIP_A:1-1 Step Deactivated Step Activity Initial Step A_BATCH_N1 BIOREACTOR-N1 BR-1550

R-N1-CIP_A\\U-CP-CIP_A:1-1\\O-CP-SETUP_A:1-1 Step Deactivated Step Activity Initial Step A_BATCH_CP_CIPSKID-UP. CP-6310
R-N1-CIP_A\\U-N1-CIP_A:1-1\\O-N1-CIP_A:1-1 Step Activated Step Activity ~ C-NICIPSET:1-1 Phase A_BATCH_N1 BIOREACTOR-N1 BR-1550 P-NI1CIPSE
R-N1-CIP_A\\U-N1-CIP_A:1-1\\O-N1-CIP_A:1-1 Step Activated Step Activity ~ C-CONNECT:1-1 Phase A_BATCH_N1 BIOREACTOR-N1 ~ BR-1550 P-CONNEC

R-N1-CIP_A\\U-CP-CIP_A:1-1\\O-CP-SETUP_A:1-1 Step Activated Step Activity ~ C-CPSETUP:1-1 Phase A_BATCH_CP_CIPSKID-UP CP-6310 P-CPSETUI
R-N1-CIP_A\\U-CP-CIP_A:1-1\\O-CP-SETUP_A:1-1 Step Deactivated ~ Step Activity = C-CPSETUP:1-1 Phase A_BATCH_CP_CIPSKID-UP CP-6310 P-CPSETUI
R-N1-CIP_A\\U-CP-CIP_A:1-1\\O-CP-SETUP_A: Step Activated Step Activity Terminal Step. A_BATCH_CP_CIPSKID-UP CP-6310
R-N1-CIP_A\\U-CP-CIP_A:1-1\\O-CP-SETUP_/ Step Deactivated Step Activity Terminal Step. A_BATCH_CP_CIPSKID-UP. CP-6310

ALl Step Deactivated Step Activity O-CP-SETUP_A:1 Operation A_BATCH_CP_ CIPSKID-UP cp-6310

20070519 203527302 3 AT m

The first highlighted event triggers the template – Tag[1] with resulting PI Tag Name “Activity on CP-6310 C-CPSETUP:1-1” and value “1” is written as PI Value. The second event triggers template – Tag[2] with same resulting PI Tag Name as “Activity on CP-6310 C-CPSETUP:1-1” with value “0” is written as PI Value. Note, both templates write to the same PI Tag.
EVT/SQL Example 5:

Different variations on how PI Points can be aliased to PI Modules. Consider the following Tag Templates:

Tag[6].Name = Super Test1 [Unit]

Tag[6].Value = [Event] | [PVal]

Tag[6].Trigger = [Event,value=State Change]

Tag[7].Name = Super Test2 [Unit]

Tag[7].Value = [Event] | [PVal]

Tag[7].Trigger = [Event,value=State Change]

Tag[7].UnitAlias = stuff2\[Event] | Super Testing2

Tag[8].Name = Super Test3 [Unit] [PhaseModule]

Tag[8].Value = [Event] | [PVal]

Tag[8].Trigger = [Event,value=State Change]

Tag[9].Name = Super Test4 [Unit] [PhaseModule]

Tag[9].Value = [Event] | [PVal]

Tag[9].Trigger = [Event,value=State Change]

Tag[9].UnitAlias = stuff4\[Event] | Super Testing4 [PhaseModule]

Tag[9].PhaseAlias = phasa4\abc\[Event] | Super Testing4

Tag[10].Name = Super Test5 [Unit] [PhaseModule]

Tag[10].Value = [Event] | [PVal]

Tag[10].Trigger = [Event,value=State Change]

Tag[10].UnitAlias = NONE

Tag[10].PhaseAlias = NONE
Refer to the screenshot below for results of aliasing:

[image: image12.png](@ EMERSON
-0 EXTEROR_PAINT
2§ PANT BLEND
2-TF UN_BLEND_500
- Hisses
% Super Test1 UM_BLEND_500
‘e Super Tead UM_BLEND_ 500 AGITATE
‘e Super Teat3 UN_BLEND_ 500 CHG_BASE
e Super Teat3 UM_BLEND._ 500 CHG.COLOR
2 Super Tea3 UM_BLEND_500 DRAIN
{0 AGITATE
- Hisses
‘2, Super Test3 UN_BLEND_ 500 AGITATE

2 Super Tesngt AGITATE
2 Super Tetingé CHG_BASE
% Super Testing CHG_COLOR
2 Super Tesing DRAIN

{.{k UM_COLOR 200

Tag Templates – PI Batch Database Activity Logging
The Batch Interface is capable of providing its activity on PI Batch database by generating its own PIEvents. These events are based on the triggering batch event logic the interface uses against each source system to trigger PI Batches, PIUnitBatches, PISubBatches (Operations, Phases, Phase States, Phase Steps). This functionality allows customers to configure Tag Templates based on these PIEvents to write batch triggering data to PI tags (the interface is already creating PI Batch records in the PI Batch Database). PIEvent Tag Templates can be used to replace the Unit specific tag functionality (/unittags) that was available with the EVT Interface. Writing this data to PI tags allows it to be used on displays within the various PI Client Tools and reporting applications or by third party applications using data from PI tags.

PIEvent records have the following placeholders and values to be used within the .Trigger attribute of the tag template:

	Placeholder
	Values
	Description

	[EVENT]
	PIEVENT
	All PIEvents must trigger on [EVENT, value="PIEVENT"]

	[DESCRIPT]
	BATCH

UNITBATCH

OPERATION

PHASE

PHASESTATE

PHASESTEP
	The DESCRIPT column contains the batch level you want to trigger on. For example:

[DESCRIPT, value="UNITBATCH"]

Or

[DESCRIPT, value="PHASE"]

	[PVAL]
	START

END
	The PVAL column contains either the start event or end event associated with the defined DESCRIPT. For example:

[PVAL, value="START"]

Or

[PVAL, value="END"]

Multiple tag templates are capable of writing to the same PI tag (if the .Name attribute of the tag templates resolves to the same PI tag name). This is useful when you want different values to be written to the same PI tag dependent on the trigger for each. For example, a value of 1 could be written to the tag when the UnitBatch starts and a value of 0 could be written to the same tag when the UnitBatch ends.

The following placeholders are useful when writing defining the tag template (especially useful for the .Value tag template attribute):

	Placeholder
	Description

	[BATCHID]
	The Batch ID Name

	[PRODUCT]
	The Product Name

	[PROCEDURE]
	The PIBatch Procedure (Recipe) Name

	[UNITPROCEDURE]
	The PIUnitBatch Procedure Name

	[OPERATION]
	The Operation Name

	[PHASE]
	The Phase Name

	[PHASESTATE]
	The Phase State Name

	[PHASESTEP]
	The Phase Step Name

PIEVENT Example 1: PIBatch Active Tag

Tag[11].Name=BESName:PIEvent.Batch.Active

Tag[11].Value=BATCH START: [BATCHID] |Prod: [PRODUCT] |Rec: [PROCEDURE]

Tag[11].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT, value="BATCH"] [PVAL,value="START"]

//// SAME TAG

Tag[12].Name=BESName:PIEvent.Batch.Active

Tag[12].Value=BATCH END: [BATCHID] |Prod: [PRODUCT] |Rec: [PROCEDURE]

Tag[12].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT, value="BATCH"] [PVAL,value="END"]

PIEVENT Example 2: PIUnitBatch Active Tag

Tag[21].Name=BESName:[UNIT].PIEvent.UnitBatch.Active

Tag[21].Value=1

Tag[21].Type=integer

Tag[21].UnitAlias=PIEvent.UnitBatch.Active

Tag[21].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT, value="UNITBATCH"] [PVAL,value="START"]

//// SAME TAG

Tag[22].Name=BESName:[UNIT].PIEvent.UnitBatch.Active

Tag[22].Value=0

Tag[22].Type=integer

Tag[22].UnitAlias=PIEvent.UnitBatch.Active

Tag[22].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT, value="UNITBATCH"] [PVAL,value="END"]

PIEVENT Example 3: PIUnitBatch BatchID Tag

Tag[31].Name=BESName:[UNIT].PIEvent.UnitBatch.BatchID

Tag[31].Value=[BATCHID]

Tag[31].UnitAlias=PIEvent.UnitBatch.BatchID

Tag[31].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT, value="UNITBATCH"] [PVAL,value="START"]

//// SAME TAG

Tag[32].Name=BESName:[UNIT].PIEvent.UnitBatch.BatchID

Tag[32].Value=Inactive

Tag[32].UnitAlias=PIEvent.UnitBatch.BatchID

Tag[32].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT, value="UNITBATCH"] [PVAL,value="END"]

PIEVENT Example 4: Phase Active Tag

Tag[41].Name=BESName:[UNIT].PIEvent.Phase.Active

Tag[41].Value=PHASE START: [PROCEDURE]\[UNITPROCEDURE]\[OPERATION]\[PHASE]

Tag[41].UnitAlias=PIEvent.Phase.Active

Tag[41].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT, value="PHASE"] [PVAL,value="START"]

//// SAME TAG

Tag[42].Name=BESName:[UNIT].PIEvent.Phase.Active

Tag[42].Value=PHASE END: [PROCEDURE]\[UNITPROCEDURE]\[OPERATION]\[PHASE]

Tag[42].UnitAlias=PIEvent.Phase.Active

Tag[42].Trigger=[EVENT,value="PIEVENT"]

Alarm Tag Templates

The Emerson DeltaV Batch interface has an option to store Alarm and Event data in PI Points, commonly known as tags. Every Alarm & Event stored on DeltaV SQL source can be recorded in the PI Server. By default, interface does not create alarm tags or populate them with events. You can enable this functionality through the use of Alarm Tag Templates, which are defined in the INI file associated with each interface instance. The INI file should be located in the same directory as the interface startup batch file (BAT) and have the same filename (except extension) as the batch file (BAT) which is used to start the particular instance of the interface. If such setup is not possible for any reason, then INI file can be specified in optional command line parameter /inifile=<full path filename>.

Alarm Tag Templates allow defining structures for tag name, tag data type, tag value, alias name, engunits and descriptor properties. The timestamp for each tag event is obtained directly from the data source. The required properties to be completed are tag name structure, tag value structure and tag type, all other properties are optional. If only tag name is defined then the triggering expression should be defined as part of the tag name structure. If an explicit trigger is defined, then the tag creation and population is based on the expression defined as <trigger> value overriding the tag name triggering (if defined). Multiple tag templates can be triggered by the same source event and a single template can be triggered by multiple source events.

Note: If explicit triggers are used, then the Tag Name embedded triggering is overridden.

You also have the option to specify the tag value type. There are 3 tag types allowed: float, integer and string. By default, if the value type is not specified, the batch interface creates a string type PI Point and treats all event values as strings.

AlarmTag[index].<Property >= Free text

Where index is the 1-based positive number, also serves as Location2 value in actual PI Point attributes and is used to identify which Tag Template created specific PI Point.

Possible Alarm Tag Template <Property> definitions:

AlarmTag[index].Name = Name structure (with embedded triggering Event Type or Event Type Mask or Expression)

AlarmTag[index].Value = Event value structure as free text

AlarmTag[index].Trigger = Event Type or Event Type mask or Expression
AlarmTag[index].Type = string/integer/float

AlarmTag[index].Alias = <optional sub module path |> tag alias name structure
(default: alias name as .Name and alias module path as [module])
AlarmTag[index].Descriptor = value structure as free text (default: blank)
AlarmTag[index].EngUnits = value structure as free text (default: blank)
AlarmTag[index].Translate = true/false (default: false)
If the name structure contains placeholders, then the tag template will only be triggered if all placeholders are replaced with non-empty fields from each incoming event. The event value structure does not have this limitation, i.e. placeholders can be replaced with empty fields. The only exception is the advanced field value parsing. In the Tag Template Description table below, a complete list of possible properties, values and placeholders that can be used to define value/name structures is provided.

AlarmTag Template Description

	Property
	Allowed Placeholders
	Description

	AlarmTag[#].Name

Required
	[EVENT]

[CATEGORY]

[NODE]

[AREA]

[PROCESSCELL]

[UNIT]

 [MODULE]

[MODULEDESC]

[ATTRIBUTE]

[STATE]

[LEVEL]

[DESC1]

[DESC2]

<Exact Field> or [*,value=”Exact Field”],

<Field Mask> or [*,value=”Field Mask”],

 advanced parsing,
	This property defines the name structure of the tag. Allowed placeholders are not case sensitive. The triggering expression can be specified either in AlarmTag.Name or in AlarmTag.Trigger properties.

The tag name structure can also contain Exact word or phrase (must be specified within angled brackets <>) which can be found in any fields of the incoming event. If resulting Tag Name contains illegal characters such as * ' ? ; { } [] | ` " \ then these characters are replaced by “_” character. The contained word or phrase can be also a mask.

For example Category column contains field: PROCESS. If it is desired to have a tag when this category is encountered, then the tag name template can be specified as:

Tag[1].Name = [module] [Category,value=”PROCESS”]

Or using masked field definition:

Tag[1].Name = [module] [Category,value=”PROC*”]

Note: Each incoming event can be used to create/populate multiple PI Tags, if it is defined as triggering event in multiple Tag Templates.

	AlarmTag[#].Value

Required
	Same as for Name property and

[TIME]
	This property defines the event value structure for the specific PI Point. Allowed placeholders are not case sensitive.

The event timestamp is taken from the incoming event [Time] field.

	AlarmTag[#].Type

Required
	String

Float

Integer
	Defines the type of the PI Point to be created and how to treat the events written to this tag.

	AlarmTag[#].Trigger

Optional
	Same as for Name property
	Defines the triggering expression which used to create and populate PI tags. If trigger is defined, it overrides triggering expression in Name property if defined.

Note: There can be multiple triggers defined for a single template tag.

Note: Interface uses only placeholders embedded into expression to trigger particular template. All free text is omitted and placeholders are treated as with AND logic. Using multiple Triggering expression allows to create OR logic for triggering.

Example:

Tag[1].Trigger = [Attribute, value=”HI*”]

Using triggering expression with two placeholders:

Tag[1].Trigger=[Event, value=”Alarm”] [Attribute, value=”HI*”]

This expression will trigger tag template only if both conditions are met.

	AlarmTag[#].Alias

Optional

	Same as for Name property

	This property defines the unit level alias name structure for specific template tag. The contained field can be defined as exact phrase or mask. If resulting Alias Name contains illegal characters such as * ' ? | ` " then these characters are replaced by “_” character. Optional sub [module] path can be specified within alias name. “\” symbol should be used to separate parent\child modules and “|” symbol should be used to separate module path and the actual alias name.

Default: uses Name property as [module] level alias name.

Note: The names for PI Aliases must be unique.
Example 1:

Tag[1].Alias = [module] State alias

This alias is going to be created on particular [module] module with alias name based on template: [module] State alias
Example 2:

Tag[2].Alias = ABC\def | test[module]
This alias is going to be created under [module]\ABC\def module tree with alias name base d on template: test[module]

	AlarmTag[#]. Descriptor
Optional
	Same as for Name property
	This property defines the Tag Descriptor structure for the specific PI Point. Allowed placeholders are not case sensitive.

	AlarmTag[#].EngUnits
Optional
	Same as for Name property
	This property defines the Engineering Units (EngUnits) structure for the specific PI Point. Allowed placeholders are not case sensitive.

	AlarmTag[#].Translate
Optional
	Values: true/false

	If set to true this property allows the AlarmTag Template to use the translate map and replace words, phrases found in Name, Value, Alias, Descriptor and EngUnits with the custom ones.

Example 1:

Store all Alarm and Events coming from DeltaV SQL Alarm and Events historian with automatic module generation and auto alias creation

AlarmTag[1].Name = Alarm Test [module]

AlarmTag[1].Value = [Event] | [Category] | [Area] | [ProcessCell] | [Unit] | [Module] | [ModuleDesc] | [Attribute] | [State] | [Level] | [Desc1] | [desc2]

AlarmTag[1].trigger = [Event]

Example 2:

Store in a single global Alarm tag ONLY Alarm and Events with Event Level >= 10 or Event Level =5

AlarmTag[2].Name = Alarm Test Global

AlarmTag[2].Value = [Event] | [Category] | [Area] | [ProcessCell] | [Unit] | [Module] | [ModuleDesc] | [Attribute] | [State] | [Level] | [Desc1] | [desc2]

AlarmTag[2].trigger = [Event] [level, value="1#*"]

AlarmTag[2].trigger = [Event] [level, value="5*"]
Example 3:

Create integer tag for each Module and Category combination. Using advanced parsing store only numerical values embedded into the Desc2 column (Example: Desc2 contains: “VALUE = 12” and we want to store only numerical value “12”) for Event type: “CHANGE” and Attribute column containing “ALM_COUNTER” substring (using mask).
AlarmTag[3].Name = Test [module] [Category]

AlarmTag[3].Value = [desc2,lbe="VALUE = "]

AlarmTag[3].type = integer

AlarmTag[3].Trigger = [Event, value="CHANGE"] [attribute, value="ALM_COUNTER*"]

Merging Multiple Source batches into a Single PIBatch

The DeltaV Batch interface has the ability to merge multiple source batches into one single PIBatch. This feature is enabled by using the /merge parameter in command line parameters. Source batches with the same BatchID are merged into one PIBatch. When a new batch is found on the source, the interface locates the identical batch in the local batch cache and adds the new batch to the existing one. The/cachetime parameter (default: 1day) specifies the duration in days (can also be a fraction of the day) for which the interface keeps the closed batches in the local memory.
Note: The interface only merges batches which are within cached time frame, i.e. cached in the local memory.
If the batch with the identical BatchID was not found, the interface creates a new one. The /bidm parameter is optional and allows the interface to use a substring of the source batch BatchID as the BatchID for the PIBatch. See Using /BIDM Parameter below for details on how this switch works. Regardless of the use of the /bidm parameter, unitbatches under merged batch always contain the original BatchID, Recipe and Product. Each merged batch stores its original information such as full BatchID, Product, Recipe, Formula, Start and End times in the PI Properties of the merged batch under the PIProperty node named as the source batch UniqueID. Event logging in merged a PIBatch is identical to the mode when merging is not used.
Using /BIDM Parameter
The /bidm (BatchID Mask) parameter is used to obtain a new BatchID, which is a substring of the value in the BatchID column in the data source. As a value the /bidm takes a list of BatchID masks, where the order of importance depends on the position of the mask in the list. The mask can consist of an array of valid symbols and/or wildcards. The following table represents available wildcards which can be specified within the BatchID mask.

	Wildcard
	Description

	#
	Single digit numerical value, 0-9

	@
	Single alpha character, a-z, A-Z

	?
	Any single symbol

	!
	Repeat the previous mask symbol

	*
	Any set of symbols

Example for /bidm parameter to extract a substring from the BatchID column in the data source:

Let’s say that the BatchID column contains: lot30112 / 90dev123 / 12345stp / ld567.
If /bidm=##### is defined then there are 5 contiguous digits and no characters in the substring. Since there are two matches, the first substring is used and the result is 30112.

If /bidm=###### is defined then there are 6 contiguous digits and no characters in the substring and there is no match for this and the complete string lot30112 / 90dev123 / 12345stp/Id567 is used as the BatchID.

If /bidm=### is defined then there are 3 contiguous digits and no characters in the substring. Since there are two matches, the first substring is used and the result is 123.

If /bidm=@@@##### is defined then there are 5 contiguous digits with 3 contiguous characters and the characters are placed before the sequence of digits. Hence the resulting BatchID is lot30112.

If /bidm=##@@@### is defined then there are 5 digits with 3 contiguous characters and the characters are placed before the third digit. Hence the resulting BatchID is 90dev123.

If /bidm=#####@@@ is defined then there are 5 contiguous digits with 3 contiguous characters and the characters are followed the digits. Hence the resulting BatchID is 12345stp.
If /bidm=????? Is defined then any sequence of 5 symbols so the PIBatch BatchID is lot30.
Lost Connections to PI Server and PI Archive Backup Issues

The Interface is designed to detect and recover from connection loss from either the data sources or the PI Server, or both. If the connection is lost during processing, the Interface suspends all actions until the PI and data sources are available for communications. If the data source connection is down, the interface retries to connect on every scan until it succeeds. In configurations where SQL and OPCAE data sources are used simultaneously, connection loss to either OPCAE or SQL server(s) would not prevent the interface from receiving data from a good source. If connection only to the OPCAE server was lost and reestablished, then OPCAE data will be considered as valid only after the next SQL scan is performed to ensure that there are no data gaps while the OPCAE server was disconnected. If the PI server connection is down, the interface attempts to reconnect every /retry (default: 60) seconds until the /retryTO (default: 0- which is infinity) timeout is reached. Connection to the data sources or the PI Server could be lost for various reasons including broken physical network, data source shutdown, PI Server or required Server’s subsystem shutdown, PI Server backup, freeze, etc. The Interface logs the errors to the local pipc.log file.

During interface shutdown and restart no data is lost. All data is buffered by the data sources. If the Interface is interrupted and it did not finish processing data from the source to the PI Server, it saves the last good processed event timestamp on shutdown. On each startup, the Interface continues processing from this timestamp in recovery mode with later switching to real-time mode.
 Data Preprocessing

The DeltaV Batch interface is designed to handle situations when the source data needs to be written to PI archives which are earlier than the primary PI archive. Due to the nature of the PI Server, the newly added tags, units and modules are indexed (referenced) only in the primary PI archive. Any older archive does not have knowledge of these modules, units and tags. In Preprocess mode the interface creates only modules, units, tags and tag aliases without processing batch data and adding events into the tags. On completion, the interface stops and the user has to reprocess older archives with the offline archive utility.
Note: The PI server does not allow any data to be written to older archives unless each older archive knows about the units and tags of interest. Refer to the PI Server System Management Guide for details on the archive reprocessing procedure.
Reprocessing creates indexes for newly added units, modules, tags in each reprocessed archive.

This mode should be always used before writing new batch data to older PI archives. This mode is enabled by simply adding the /mode=noupdate parameter in conjunction with the recovery start time (/rst) and optional recovery end time (/ret) parameters to command line parameters.

Example:

Consider the time range for recovery – [01/15/2005 12:00:00 – 06/20/2008 13:00:00].

[image: image13.png]Data Source

PIPoint PIModule
PLSDK , Datbase Database

interface

Tgl | | tmit1

1-:% Uni2

I

P P P P
Archive 1 | | Archive 2| | Archive Archive
Primary

Lteet

Tag2

Unit 1
Unit2 +—

OL012005| [0Fmsi2006| (12152007 (057112008
132500 | | olazo0| | 10000 | | 2:00:05

Tow ()

Timeline

In the figure above the interface was run in Preprocess mode, where only tags and units were created in PIPoint and PIModule databases with references in the Primary archive only. After reprocessing PI Archive 1, 2 and 3 with PI Archive offline utility (piarchss), the PI archives 1, 2 and 3 now contain references to the newly created tags and units as shown in the figure below.

[image: image14.png]Data Source

PIPoint PIModule
PLSDK | Datbase Database

interface

Unit1

Unit2

P
Archive
Primary
Lreet
Tag2
Unit 1

Unit2 +—

OL012005| [0Fmsi2006| (12152007 (057112008
13:25:00 | | ovazo0| | 10000 | | 2:00:05

Tow (4]

Timeline

At this point the interface can be run in Recovery mode (using only /rst and optional /ret parameters) to backfill data into PI Points and PI Batch database.
Data Recovery
The Batch interface can perform recovery of historical data. The Recovery mode of the interface can be used to perform recovery based on the clean PI archives or recover missing data for already existing PIModule, PIBatch and PIPoint objects. These objects include: PI modules, PI units, unit level aliases, phase level aliases, PIBatches, PIUnitBatches, PISubbatches (Operations, Phases, Phase States and Phase Steps), PIProperties, PIPoints, PIPoint events. When a PI object exists but contains incorrect data comparing to the source, the interface attempts to correct the PI object to match the data from the source. In the worst case, the interface prints the error message to the PIPC.log file. In such case the PI server needs to be cleaned first by using /mode=delete, then the recovery steps have to be performed again.
In Recovery mode, all open batches are processed only when there are no completed batches left to be processed, i.e. the interface reached the current time. If the Interface starts in Recovery mode without defining the Recovery End Time (parameter /ret=<date and time>), it prints the results of the recovery process and changes to RealTime mode as soon as it reaches current time. Recovery mode is enabled when the Recovery Start Time parameter (/rst=<date and time>) is specified in command line parameters. The Recovery End Time parameter (/ret) is optional and has no effect without the /rst parameter.
Note: If you specify the Recovery End Time parameter, the interface stops on completion.
For example consider recovering data from 12/15/2007 16:00:00 through 05/11/2008 2:00:05. Assume that 7 batches exist on the data source as shown in figure below:
[image: image15.png]a3 Baihs

=y)

120512007 057112008
16:00:00 2.00:08

Timeline

To perform recovery, you must specify the following command line parameters:
/rst=”12/15/2007 16:00:00” and /ret=”05/11/2008 2:00:05”.
These parameters are sufficient to perform historical data recovery process. In this case, the interface recovers contained batches (Batch 4 and 5) as well as border batches (Batch 1, Batch 3 and Batch 6). Batches outside the time frame (Batch 2 and 7) will NOT be recovered.
If you require recovery from 12/15/2007 16:00:00 until now (*), specify the following command line parameters:

/rst=”12/15/2007 16:00:00”

Note: In this case, the interface recovers (Batch 7) as well and continues processing in RealTime.
Data Analysis
The Batch interface can perform data analysis by comparing source data with the PI server data. In this mode the interface does not write or modify any data on the PI Server. Upon completion the interface reports results to PIPC.log file and stops. To enable this mode, the parameter (/mode=stat) must be specified in command line parameters. Data analysis can be performed only when recovery start (/rst) and optional recovery end time (/ret) are specified, otherwise the data analysis will be performed from the last processed event timestamp until system current time.
For example consider the example and figure provided in the Data Recovery section. If it is required to analyze data between data source(s) and PI server, then the sufficient command line parameters should be:
/rst=”12/15/2007 16:00:00” /ret=”05/11/2008 2:00:05” /mode=stat

If you require analysis from 12/15/2007 16:00:00 until now (*), then command line parameters should be:

/rst=”12/15/2007 16:00:00” /mode=stat

PI Data Deletion

The Batch interface can perform selective data deletion stored in PI server based on the source data.

Note: The interface cleans PI archives based on specified source data only, leaving data from all other data sources intact. This mode should be used only if the interface is unable to synchronize source data with the PI server in Recovery mode (using only parameters /rst and /ret).
The Delete mode must be used only in conjunction with Recovery mode parameters (/rst and /ret) and can be enabled by adding the parameter (/mode=delete) to command line parameters.
Consider the example and figure provided in the Data Recovery section. If it is required to delete data from the PI server contained in time frame [12/15/2007 16:00:00 - 05/11/2008 2:00:05], then sufficient command line parameters should be:

/rst=”12/15/2007 16:00:00” /ret=”05/11/2008 2:00:05” /mode=delete

If you need to delete all batches from specific time in the past until current time, the command line parameters should be:
/rst=”12/15/2007 16:00:00” /mode=delete

EVT Source - Event Based Time Ordered Processing

The Batch interface processes EVT files based on the timestamps of each row within each EVT file, rather than processing EVT files based on names. On each scan, the interface performs a preliminary EVT directory scan to create a time ordered processing queue of all active EVT files based on the current position’s timestamp within each file. It then scans each EVT file for the end position. This strategy allows creating a fixed time frame common to all EVT files. The interface will then read data, in the time frame, in time order. Any processing delays due to network losses, server unavailability, slow scan rates, and non alphabetical file naming can be handled gracefully by this approach. The following figure illustrates the difference in alphabetical file name versus event time ordered processing.
[image: image16.png]File 1

File 3

File 4

There are four EVT files starting at different times and containing data written sequentially by Batch Execution System. The vertical axis is the file time, where the t1 is the earliest time and the t11 is the latest time. The alphabetical file name processing sequence is given in the table below.

	Order
	File Name
	Data Segments [start time – end time] written by the BES in parallel EVT files

	
	
	t1 - t2
	t2 - t3
	t3 - t4
	t4 - t5
	t5 - t6
	t6 - t7
	t7 - t8
	t8 - t9
	t9 - t10
	t10 - t11

	1
	File 1
	X
	
	X
	
	X
	
	
	
	X
	

	2
	File 2
	
	
	
	X
	
	
	X
	
	
	X

	3
	File 3
	
	X
	
	
	
	X
	
	
	
	

	4
	File 4
	
	
	
	
	
	
	
	X
	
	

The event time ordered processing is illustrated in the table below

	Order
	File Name
	Data Segments [start time – end time] written by the BES in parallel EVT files

	
	
	t1 - t2
	t2 - t3
	t3 - t4
	t4 - t5
	t5 - t6
	t6 - t7
	t7 - t8
	t8 - t9
	t9 - t10
	t10 - t11

	1
	File 1
	X
	
	
	
	
	
	
	
	
	

	2
	File 3
	
	X
	
	
	
	
	
	
	
	

	3
	File 1
	
	
	X
	
	
	
	
	
	
	

	4
	File 2
	
	
	
	X
	
	
	
	
	
	

	5
	File 1
	
	
	
	
	X
	
	
	
	
	

	6
	File 3
	
	
	
	
	
	X
	
	
	
	

	7
	File 2
	
	
	
	
	
	
	X
	
	
	

	8
	File 4
	
	
	
	
	
	
	
	X
	
	

	9
	File 1
	
	
	
	
	
	
	
	
	X
	

	10
	File 2
	
	
	
	
	
	
	
	
	
	X

Dealing with Irrelevant Recipes

Sometimes it is necessary to exclude particular recipes from being processed into PI Server. Such recipes can be excluded from processing by using the INI file command skiprecipes. The switch contains the list of all recipes or recipe masks the interface should not evaluate. Everything related to specified recipe is not processed into PI Batch Database, PI Module database and PI Points databases. The filtering supports the following recipe types: Procedure, UnitProcedure, Operation, and Phase. For each event to be processed, the interface will check for the match in the recipe fields depending on recipe type:

Procedure Recipe: [Procedure] field of event

Unitprocedure Recipe: [UnitProcedure] field of event

Operation Recipe: [Operation] field of the event

Phase Recipe: [Phase] field of the event

Multiple recipes or their masks can be specified with a comma separator. If there is a space in the recipe name, use double quotes for the entire switch (not required if specified in INI file). The following table represents available wildcards which can be specified within the recipe name mask.
	Wildcard
	Description

	#
	Single digit numerical value, 0-9

	@
	Single alpha character, a-z, A-Z

	?
	Any single symbol

	!
	Repeat the previous mask symbol

	*
	Any set of symbols

Example(ini file): skiprecipes=recipe1,prc_*nt2 or skiprecipes=recipe 1, prc_paint 2
Dealing with Irrelevant Units

It is sometimes possible to use “virtual” or “dummy” units in a recipe that do not exist physically but aid in control transfer between recipes. In such cases, there could be overlapping PIUnitBatches on these “dummy” units which could lead to incorrect PIUnitBatch end times. These units can be excluded from processing the file by using the INI file command skipunits. The switch contains the list of all units the interface should not evaluate. Everything related to this unit is not processed into PI Batch Database or PI Points. The interface looks for the value in the [UNIT] field of each event. If any of those values match any of the units in the INI file skipunits list, the interface will simply move to the next event to be processed. The unit name comparison is not case sensitive and the interface does not compare the [AREA] or [ProcCell] values. Multiple unit names can be specified with a comma separator. If there is a space in the unit name, use double quotes for the entire switch. The unit masks can be specified as valid units. The following table represents available wildcards which can be specified within the unit name mask.

	Wildcard
	Description

	#
	Single digit numerical value, 0-9

	@
	Single alpha character, a-z, A-Z

	?
	Any single symbol

	!
	Repeat the previous mask symbol

	*
	Any set of symbols

Example (ini file): skipunits=unit1,u*t2 or skipunits=unit 1, unit 2
Dealing with Irrelevant Phases

It is sometimes possible to use “virtual” or “dummy” phases or some phases are of no interest. These phases can be excluded from processing the file by using the INI file command skipphases. The parameter contains the list of all phases the interface should not evaluate. Everything related to this phase is not processed into PI Batch Database or PI Points. The interface looks for the value in the [Phase] or [PhaseModule] fields in each event. If any of those values match any of the phases in the INI file skipphases list, the interface will simply move to the next event to be processed. The phase name comparison is not case sensitive and instance number independent. Multiple phase names can be specified with a comma separator. If there is a space in the phase name, use double quotes for the entire switch. Phase masks can be specified as valid phases. The following table represents available wildcards which can be specified within the phase name mask.

	Wildcard
	Description

	#
	Single digit numerical value, 0-9

	@
	Single alpha character, a-z, A-Z

	?
	Any single symbol

	!
	Repeat the previous mask symbol

	*
	Any set of symbols

Example (ini file): skipphases=phase_1,ph*2 or skipphases=phase_1, ph*2
Dealing with Irrelevant Phase States
By default, the Batch interface creates every Phase State from the source (except states preceding RUNNING state). Sometimes it is desired to exclude some Phase States from being reported in PI server. The can be achieved by specifying the INI file command excludestates which defines the list of Phase States to be ignored. For each event to be processed, the interface checks for the match in the Phase State field (batch recipe). If match is found, the interface will mark particular Phase State as not visible and will not write it into PI server. Internally the interface still creates every Phase State to properly set Start and End times for all Phase States, visible and not. The name comparison is not case sensitive and allows masks as valid Phase State specifiers. Multiple phase states can be specified with a comma separator.
The following table represents available wildcards which can be specified within the phase state name mask.

	Wildcard
	Description

	#
	Single digit numerical value, 0-9

	@
	Single alpha character, a-z, A-Z

	?
	Any single symbol

	!
	Repeat the previous mask symbol

	*
	Any set of symbols

Example (ini file): excludestates = COMPLETE , ABO*NG
Initialization File

The Initialization file: PIEMDVBCS<serviceid>.ini is used to specify the interface configurations, such as data sources, translations, product template, equipment template, tag templates and property templates.
The command line syntax:

/rst=”12/05/2008 12:05:23” /merge

Equivalent Initialization file defined parameters:

rst=12/05/2008 12:05:23

merge = true

Note: In the initialization file every single parameter should be defined on separate line. There should be only one equal (=) sign per line. Specify two forward slashes (//) to comment any line in the INI file.
//rst=12/05/2008 12:05:23

//merge = true
In this case rst and mode parameters are commented, therefore they are considered to be undefined.
The initialization can contain any free text. The lines which will be attempted to be loaded by the interface are the lines with embedded equal sign (=).

Sample Initialization file - PIEMDVBCS.ini:

[Source Template]

Source[1].evtdir=”c:\test\evt”

Source[2].evtdir=\\deltav9\\journals\evt
[General]

Excludestates=COMPLETE, ABORTING

Equipment = abs:[Unit]\[PhaseModule]\Misc

[Basic Tag template, triggered on Event=Report, aliases are created as tag name]
[Tag Template]

Tag[6].Name = [Unit]_[PhaseModule]_Report
Tag[6].Value = [Pval]

Tag[6].Type = float
// [Tag template with custom aliases, triggered on Event=Owner Change]

Tag[7].Name = [Unit]_[PhaseModule]_Owner Change

Tag[7].Value = [time]_[Descript]

Tag[7].Type = string

Tag[7].unitalias = [PhaseModule] Owner Change Me

Tag[7].phasealias = Owner Change Me

// [Tag template with custom aliases, triggered on set of events defined as triggers]
// [Note: Unitalias and Phasealias are NOT going to be created since there are no Unit or Phase
// Module defined in the tag name]

Tag[8].Name = Generic Tag

Tag[8].Value = [time]_[Event]_[BatchID]_[pval]
Tag[8].Type = string
Tag[8].trigger = Report

Tag[8].trigger = Owner Change

Tag[8].trigger = Operator Prompt

Tag[8].unitalias = [phasemodule] abcd

Tag[8].phasealias = testing
[Property Template]
Property[3].Value = [Time] State Change [Descript] [pval]
// Property[20].Value = [Time][PVal][Event]
(Disabled Property template.

EVT Source - Example Event File Journal

An annotated journal file is shown in the table below. For clarity, the entire journal file has not been shown. Those fields that have been excluded do not significantly affect the logic used by the interface to process the event journal. The last column shown in the table below describes the actions taken by the interface in response to each message listed in the journal file.

Abbreviated Example EVT file demonstrating interface actions pertaining to PIModule and PIBatch object creation

	LclTime
	Descript
	Event
	Pvalue
	EU
	Action Taken by Interface

	2000.05.17 14:06:17
	
	Event File Name
	\\OBATCH\JOURNALS\15.evt
	
	New event file detected.

	2000.05.17 14:06:17
	Author
	Recipe Header
	PR1Upauthor
	
	Interface waiting for “Beginning of Batch.”

	2000.05.17 14:06:17
	Product Description
	Recipe Header
	PR1UPProcedureDescription
	
	

	2000.05.17 14:06:17
	PR1UPPROCDESCRIPT
	System Message
	Beginning Of BATCH
	Procedure
	PIBatch object created. Start time assigned to PIBatch.

	2000.05.17 14:06:30
	Procedure Started.
	System Message
	0
	
	

	2000.05.17 14:06:30
	Step Activated
	Step Activity
	UP2OPS:1
	Unit Procedure
	PIUnitBatch created to represent the unit procedure.

	2000.05.17 14:06:30
	Unit Procedure Started
	System Message
	0
	
	

	2000.05.17 14:06:30
	Unit Acquired
	Arbitration
	SOL_DELIV_1
	
	Start time assigned to PIUnitBatch.

	2000.05.17 14:06:30
	Step Activated
	Step Activity
	OP1PHASE:1
	Operation
	PISubBatch created to represent the operation.

	2000.05.17 14:06:30
	Operation Started
	System Message
	0
	
	Start time assigned to PISubBatch.

	2000.05.17 14:06:30
	Equip. Module Acquired
	Arbitration
	S1_TEMPERATURE1
	
	

	2000.05.17 14:06:30
	Step Activated
	Step Activity
	SX_TEMPERATURE:1
	Phase
	Sub-PISubBatch created to represent the phase.

	2000.05.17 14:06:32
	State Changed:
	State Change
	RUNNING
	
	Start time assigned to Sub-PISubBatch.

	2000.05.17 14:07:06
	State Changed:
	State Change
	COMPLETE
	
	End time assigned to the Sub-PISubBatch.

	2000.05.17 14:07:07
	Equip. Module Released
	Arbitration
	S1_TEMPERATURE1
	
	

	2000.05.17 14:07:07
	Operation Finished
	System Message
	0
	
	End time assigned to the PISubBatch.

	2000.05.17 14:07:45
	Unit Released
	Arbitration
	SOL_DELIV_1
	
	End time assigned to the PIUnitBatch.

	2000.05.17 14:07:45
	Unit Procedure Finished
	System Message
	0
	
	

	2000.05.17 14:09:05
	Procedure Finished.
	System Message
	0
	
	

	2000.05.17 14:09:05
	PR1UPPROCDESCRIPT
	System Message
	End Of BATCH
	Procedure
	End time assigned to the PIBatch.

Installation Checklist

If you are familiar with running PI data collection interface programs, this checklist helps you get the Interface running. If you are not familiar with PI interfaces, return to this section after reading the rest of the manual in detail.

This checklist summarizes the steps for installing this Interface. You need not perform a given task if you have already done so as part of the installation of another interface. For example, you only have to configure one instance of Buffering for every interface that runs on an Interface Node.
The Data Collection Steps below are required. Interface Diagnostics are optional.
Data Collection Steps

1. Confirm that you can use PI SMT to configure the PI Server. You need not run PI SMT on the same computer on which you run this Interface.

2. If you are running the Interface on an Interface Node, edit the PI Server's Trust Table to allow the Interface to write data.

3. Run the installation kit for PI Interface Configuration Utility (ICU) on the interface node. This kit runs the PI SDK installation kit, which installs both the PI API and the PI SDK.

4. Run the installation kit for this Interface. This kit runs the PI SDK installation kit, which installs both the PI API and the PI SDK.
5. If you are running the Interface on an Interface Node, check the computer's time zone properties. An improper time zone configuration can cause the PI Server to reject the data that this Interface writes.

6. Run the ICU and configure a new instance of this Interface. Essential startup parameters for this Interface are

Point Source
Interface ID
PI Server
Define sources
7. Location1 is the interface instance.
Location2 is the index of the tag.

Location3 is the point type
Location4 is the scan class, typically this is set to 1 for the Event File interface.
ExDesc contains the copy of tag name created by the interface.
InstrumentTag is the unit.

8. Start the Interface interactively with command line parameter /mode=stat (this mode allows only read from data sources and PI server) and confirm its successful connection to the PI Server and data sources.
Note, this interface does not use the PI API, therefore PI Buffering (pibufss/bufserv) is not required by the interface.
9. Confirm that the Interface collects data successfully.

10. Configure the Interface to run as a Service. Make sure that interface is NOT set as PI Buffer dependent. Confirm that the Interface runs properly as a Service.

11. Restart the Interface Node and confirm that the Interface restarts.

Interface Diagnostics

The PI DeltaV interface can be diagnosed through the use of performance points automatically created by each instance of the interface. There are 34 performance tags which are broken into 3 categories:

1) Health Monitoring

2) Object counters.

3) Timers.
All performance tags are prefixed by the interface name and the serviceID as:

 Prefix : PIEMDVBCS_<ServiceID>
In the following paragraphs, Prefix will be used to create actual performance tag names.

Health Monitoring

There are two tags designed to monitor the health of the interface: heartbeat tag and the device status tag. The heartbeat tag is updated with the frequency defined by the /scan parameter in command line parameters. If scan time is greater than 60 seconds than the heartbeat tag is updated every 60 seconds. The heartbeat tag value is defined as a cycle of integer numbers from 1 to 15. The device status tag is automatically configured and created if missing by the interface on startup. The following events can be written into the device tag:

a) "Good" - the interface is properly communicating and reading data from the data sources.

b) “1 | Starting” – the interface goes through the initialization routines.

c) The following events represent proper communication with the data sources. This message is displayed on successful connection to each source.

"2 | Connected/No Data | EVT Directory Monitor: <directory name> Initialized."

"2 | Connected/No Data | Source SQL Server: <server name> Initialized."

d) The following list of events represents the failure to communicate with the Event Journal file directory, or failure to read data from the Event Journal File:

"3 | 1 device(s) in error | Error monitoring directory (onError): <directory name>"
"3 | 1 device(s) in error | Error monitoring directory: <directory name>"

"3 | 1 device(s) in error | Failed to start directory monitoring thread: <directory name>"

"3 | 1 device(s) in error | Error in scanning directory: <directory name>"

"3 | 1 device(s) in error | Error obtaining EVT files EOF."

"3 | 1 device(s) in error | Error getting current EVT file timestamp."

"3 | 1 device(s) in error | Error reading EVT file: <filename>."

"3 | 1 device(s) in error | Error while reading EVT file."

"3 | 1 device(s) in error | Error reading SQL Server: <server name>.”

The properties of Health monitoring tags are provided in the table below, where the Prefix represents PIEMDVBCS_<ServiceID>. Note, these tags are automatically created by the interface if they are not found in the PI server upon startup.
	Tag Name
	Point Type
	Loc1
	Loc3
	PointSource
	ExcDesc

	Prefix_DeviceStatus
	Int32
	Intf ID
	0
	Intf Pt Src
	[UI_DEVSTAT]

	Prefix_HeartBeat
	Int32
	Intf ID
	1
	Intf Pt Src
	[UI_HEARTBEAT]

Object Counters

There are 24 tags designed to monitor performance of the interface based on the number of different type objects read from the source and written to the PI server. These tags are automatically created on first interface startup. Archiving flag for these tags is turned off. The following table contains common point attributes for this group of tags:

	Point Type
	Location1
	Point Source

	Int32
	<Interface ID>
	<Interface Point Source>

The specific attributes for each performance counter tag are provided in the table below where the Prefix is defined as PIEMDVBCS _<ServiceID>. All Counters are reset on interface startup.
	Tag Name
	Loc3
	ExcDesc
	Description

	Prefix_EventReadCount
	2
	[UI_EVENTREADCOUNT]
	Number of events read from the source since last startup.

	Prefix_ErrorCount
	3
	[UI_ERRORCOUNT]
	Number of errors occurred since last startup.

	Prefix_SourceUnitCount
	4
	[UI_SOURCEUNITCOUNT]
	Number of Units found on the data source(s) since startup.

	Prefix_PIUnitCount
	5
	[UI_PIUNITCOUNT]
	Number of Units found and added on the PI server since startup.

	Prefix_SourcePhaseModCount
	6
	[UI_SOURCEPHASEMODCOUNT]
	Number of Phase Module found on the data source(s) since startup.

	Prefix_PIPhaseModCount
	7
	[UI_PIPHASEMODCOUNT]
	Number of Phase Module found and added on the PI Server since startup.

	Prefix_SourceBatchCount
	8
	[UI_SOURCEBATCHCOUNT]
	Number of batches found on the data source(s) since startup.

	Prefix_PIBatchCount
	9
	[UI_PIBATCHCOUNT]
	Number of PIBatch objects found and added on the PI server since startup.

	Prefix_SourceUnitBatchCount
	10
	[UI_SOURCEUNITBATCHCOUNT]
	Number of unitbatches found on the data sources(s) since startup.

	Prefix_PIUnitBatchCount
	11
	[UI_PIUNITBATCHCOUNT]
	Number of PIUnitBatch objects found and added on the PI server since startup.

	Prefix_SourceSubBatchCount
	12
	[UI_SOURCESUBBATCHCOUNT]
	Total number of operations+phases+phase states found on the data source since startup.

	Prefix_PISubBatchCount
	13
	[UI_PISUBBATCHCOUNT]
	Total number of PISubBatch objects founded and added to the PI server since last startup.

	Prefix_SourcePropertyNodeCount
	14
	[UI_SOURCEPROPNODECOUNT]
	Number of property nodes found in data source(s) since last startup

	Prefix_PIPropertyNodeCount
	15
	[UI_PIPROPNODECOUNT]
	Number of PIProperty objects (nodes) found and added to the PI server since last startup.

	Prefix_SourcePropertyEventCount
	16
	[UI_SOURCEPROPEVENTCOUNT]
	Number of events to be written to the batch properties found on the data source(s) since last startup.

	Prefix_PIPropertyEventCount
	17
	[UI_PIPROPEVENTCOUNT]
	Number of PIProperties(events) found and added to the PI server since last startup.

	Prefix_SourceTagCount
	18
	[UI_SOURCETAGCOUNT]
	Number of tags found on the data source(s) since last startup

	Prefix_PITagCount
	19
	[UI_PITAGCOUNT]
	Number of PIPoints found and added to the PI server since last startup.

	Prefix_SourceTagEventCount
	20
	[UI_SOURCETAGEVENTCOUNT]
	Number of events to be written into tags found on the data sources(s) since last startup.

	Prefix_PITagEventCount
	21
	[UI_PITAGEVENTCOUNT]
	Number of events written into PIPoints on the PI server since last startup.

	Prefix_SourceTagAliasCount
	22
	[UI_SOURCETAGALIASCOUNT]
	Number of tag aliases to be created based on the data source(s) since last startup.

	Prefix_PITagAliasCount
	23
	[UI_PITAGALIASCOUNT]
	Number of PIAliases found and added to the PI server since last startup.

	Prefix_CachedBatchCount
	24
	[UI_CACHEDBATCHCOUNT]
	Number of batch objects cached in the local memory.

	Prefix_OpenBatchCount
	25
	[UI_OPENBATCHCOUNT]
	Subset of cached objects which still have no end time set.

	Prefix_WaitingForEquipmentUB
	34
	[UI_UBWAITFOREQUIP]
	Number of UnitBatches which do not have equipment allocated yet. The allocation is check at PI Server synchronization routine.

Timers

The last performance tag category is composed of timer tags which are build automatically on first interface startup. Each timer tag reports on how much time per scan it took the interface to perform particular task. There are 3 task subcategories: data source reading, local data caching and synchronizing cached data with PI server. The following table provides common tag attributes for these tags:

	Point Type
	Location1
	Point Source

	Float32
	<Interface ID>
	<Interface Point Source>

The specific attributes for each performance timer tag are provided in the table below where the Prefix is defined as PIEMDVBCS_<ServiceID>.

	Tag Name
	Loc3
	ExcDesc
	Description

	Prefix_SourceReadTime
	26
	[UI_SOURCEREADTIME]
	The time per scan it took the interface to read data from data source(s).

	Prefix_TagCacheTime
	27
	[UI_TAGCACHETIME]
	The time per scan it took the interface to populate local tag cache.

	Prefix_BatchCacheTime
	28
	[UI_BATCHCACHETIME]
	The time per scan it took the interface to populate the local batch cache.

	Prefix_EquipmentCacheTime
	29
	[UI_EQUIPCACHETIME]
	The time per scan it took the interface to populate the local equipment (module) cache.

	Prefix_BatchSyncTime
	30
	[UI_BATCHSYNCTIME]
	The time per scan it took the interface to synchronize local batch cache with the PI server.

	Prefix_TagSyncTime
	31
	[UI_TAGSYNCTIME]
	The time per scan it took the interface to synchronize local tag cache with the PI server.

	Prefix_EquipmentSyncTime
	32
	[UI_EQUIPSYNCTIME]
	The time per scan it took the interface to synchronize local equipment cache with the PI server.

	Prefix_TotalTime
	33
	[UI_TOTALTIME]
	The total time per scan it took the interrface to read data, cache it in the local memory and synchronize local cache wit PI server.

Interface Installation

OSIsoft recommends that interfaces be installed on PI Interface Nodes instead of directly on the PI Server node. A PI Interface Node is any node other than the PI Server node where the PI Software Development Kit (PI SDK) has been installed (see the PI SDK manual). With this approach, the PI Server need not compete with interfaces for the machine’s resources. The primary function of the PI Server is to archive data and to service clients that request data.

Note: Buffering is not recommended with the PI Emerson DeltaV Batch interface. This is due to the fact that the source data is already effectively buffered on the source.
In most cases, interfaces on PI SDK nodes should be installed as automatic services. Services keep running after the user logs off. Automatic services automatically restart when the computer is restarted, which is useful in the event of a power failure.

The guidelines are different if an interface is installed on the PI Server node. In this case, the typical procedure is to install the PI Server as an automatic service and interfaces as manual services that are launched by site-specific command files when the PI Server is started. Interfaces that are started as manual services are also stopped in conjunction with the PI Server by site-specific command files. This typical scenario assumes that Bufserv is not enabled on the PI Server node. Bufserv can be enabled on the PI Server node so that interfaces on the PI Server node do not need to be started and stopped in conjunction with PI, but it is not standard practice to enable buffering on the PI Server node.
Naming Conventions and Requirements

In the installation procedure below, it is assumed that the name of the interface executable is PIEMDVBCS.exe, the startup command file is called PIEMDVBCS.bat, and the initialization file is called PIEMDVBCS<serviceid>.ini. .

When Configuring the Interface Manually
When configuring the interface manually it is customary for the user to rename the executable, the startup command and initialization files when multiple copies of the interface are run. For example, PIEMDVBCS1.exe, PIEMDVBCS1.bat and PIEMDVBCS1.ini would typically be used for interface number 1, PIEMDVBCS2.exe, PIEMDVBCS2.bat and PIEMDVBCS2.ini for interface number 2, and so on. When an interface is run as a service, the executable and the command file must have the same root name because the service looks for its command-line parameters in a file that has the same root name.
Interface Directories

The PIHOME Directory Tree

The PIHOME directory tree is defined by the PIHOME entry in the pipc.ini configuration file. This pipc.ini file is an ASCII text file, which is located in the %windir% directory. A typical pipc.ini file contains the following lines:
[PIPC]
PIHOME=C:\PIPC
The above lines define the \PIPC directory as the root of the PIHOME directory tree on the C: drive. OSIsoft recommends using \PIPC as the root directory name. The PIHOME directory does not need to be on the C: drive.

Interface Installation Directory

The interface install kit will automatically install the interface to:

PIHOME\Interfaces\EMDVBCS\

PIHOME is defined in the pipc.ini file.
Interface Installation Procedure

The Batch interface setup program uses the services of the Microsoft Windows Installer. Windows Installer is a standard part of Windows 2000. To install, run the EMDVBCS_#.#.#.#.exe installation kit.

Installing the Interface as a Windows Service

The Batch interface service can be created with the PI Interface Configuration Utility, or can be created manually.

Installing the Interface Service with the PI ICU

The PI Interface Configuration Utility provides a user interface for creating, editing, and deleting the interface service:

[image: image17.png], Pl-Interface Configuration Utility - PIEMDVBCS1

Interface Tooks
IERAS
Intetface:

Tope:

Help

B R

[Emersan Delta Compliance Sule Balch nterface (PIEMDVECS] > mkelpiaptop

EMDVECS

] Emerson Delta Complance Sue Batch

Pl Server Cornestion Status-

Descipton

mkelplaptop.

Versions:

[FIEMDVELS eve version 1.0.00

General
ENMDVECS

10 Rate
Itetface Status

Senice Confguaton
Servios name:
Dislay e
Loganas:
Passnod

Confim passworc

RO DT | [ST | (Gt /Renee

[CocalSystem " Disabled

Witeable
Non Unintbased nteface

& Ao

FIPEMDVECS1 © Manual

Create

Installd services:

Dependencies:

Service Urinstalled

Alerter

AR

‘Apple Mobile Device:
Apphamt
aspret_state
AudioGty
BalchFL10

<

Aletter

PIEMDVBCST - Not Installed

Service Configuration

Service Name

The Service to Add box shows the name of the current interface service. This service name is obtained from the interface executable.

ID

This is the service id used to distinguish multiple instances of the same interface using the same executable.

Display Name

The Display Name text box shows the current Display Name of the interface service. If there is currently no service for the selected interface, the default Display Name is the service name with a “PI ” prefix. Users may specify a different Display Name. OSIsoft suggests that the prefix “PI ” be appended to the beginning of the interface to indicate that the service is part of the OSI suite of products.

Log on as

The Log on as text box shows the current “Log on as” Windows User Account of the interface service. If the service is configured to use the Local System account, the Log on as text box will show “LocalSystem.” Users may specify a different Windows User account for the service to use.

Password

If a Windows User account is entered in the Log on as text box, then a password must be provided in the Password text box, unless the account requires no password.
Confirm Password

If a password is entered in the Password text box, then it must be confirmed in the Confirm Password text box.
Startup Type

The Startup Type indicates whether the interface service will start automatically or needs to be started manually on reboot.

· If the Auto option is selected, the service will be installed to start automatically when the machine reboots.

· If the Manual option is selected, the interface service will not start on reboot, but will require someone to manually start the service.

· If the Disabled option is selected, the service will not start at all.

Generally, interface services are set to start automatically.
Dependencies

The Installed services list is a list of the services currently installed on this machine. Services upon which this Interface is dependent should be moved into the Dependencies list using the [image: image18.png]

 button. For example, if PI API Buffering is running, then “bufserv” should be selected from the list at the right and added to the list on the left. To remove a service from the list of dependencies, use the [image: image19.png]

 button, and the service name will be removed from the “Dependencies” list.

When the PI Interface is started (as a service), the services listed in the dependency list will be verified as running (or an attempt will be made to start them). If the dependent service(s) cannot be started for any reason, then the PI interface service will not run.

Note: Please see the PI Log and Operating System Event Logger for messages that may indicate the cause for any server not running as expected.

[image: image20.png]

 - Add Button

To add a dependency from the list of Installed services, select the dependency name, and click the Add button.

[image: image21.png]

 - Remove Button

To remove a selected dependency, highlight the service name in the Dependencies list, and click the Remove button.

The full name of the service selected in the Installed services list is displayed below the Installed services list box.

Create

The Create button adds the displayed service with the specified Dependencies and with the specified Startup Type.

Remove

The Remove button removes the displayed service. If the service is not currently installed, or if the service is currently running, this button will be grayed out.
Start or Stop Service

To Start or Stop an interface service, use the Start button [image: image22.bmp] and a Stop button [image: image23.bmp] on the ICU toolbar. If this interface service is not currently installed, these buttons will remain grayed out until the service is added. If this interface service is running, the Stop button is available. If this service is not running, the Start button is available.

The status of the Interface service is indicated in the lower portion of the PI ICU dialog.
[image: image24.png]Ready Service Uninstalled PIEMDVBCST - Not Installed

Installing the Interface Service Manually

Help for installing the interface as a service is available at any time with the command:
PIEMDVBCS.exe -help

Change to the directory where the P PIEMDVBCS1.exe executable is located. Then, consult the following table to determine the appropriate service installation command.
	Windows Service Installation Commands on a PI Interface Node or a PI Server Node
without Bufserv implemented

	Manual service
	PIEMDVBCS.exe -install -depend tcpip

	Automatic service
	PIEMDVBCS.exe -install -auto -depend tcpip

	*Automatic service with service id
	PIEMDVBCS.exe -serviceid X -install -auto -depend tcpip

*When specifying service id, the user must include an id number. It is suggested that this number correspond to the interface id (/id) parameter found in the interface .bat file.
Check the Microsoft Windows services control panel to verify that the service was added successfully. The services control panel can be used at any time to change the interface from an automatic service to a manual service or vice versa.
Digital States

For more information regarding Digital States, refer to the PI Server documentation.

Digital State Sets

PI digital states are discrete values represented by strings. These strings are organized in PI as digital state sets. Each digital state set is a user-defined list of strings, enumerated from 0 to n to represent different values of discrete data. For more information about PI digital tags and editing digital state sets, see the PI Server manuals.

An interface point that contains discrete data can be stored in PI as a digital tag. A Digital tag associates discrete data with a digital state set, as specified by the user.

System Digital State Set

Similar to digital state sets is the system digital state set. This set is used for all tags, regardless of type to indicate the state of a tag at a particular time. For example, if the interface receives bad data from an interface point, it writes the system digital state bad input to PI instead of a value. The system digital state set has many unused states that can be used by the interface and other PI clients. Digital States 193-320 are reserved for OSIsoft applications.
PointSource
The PointSource is a unique, single or multi-character string that is used to identify the PI point as a point that belongs to a particular interface. For example, the string EV may be used to identify points that belong to the Batch Interface. To implement this, the PointSource attribute would be set to EV for every PI Point that is configured for the Batch Interface. Then, if /ps=EV is used on the startup command-line of the Batch Interface, the Interface will search the PI Point Database upon startup for every PI point that is configured with a PointSource of EV. Before an interface loads a point, the interface usually performs further checks by examining additional PI point attributes to determine whether a particular point is valid for the interface. For additional information, see the /ps parameter.
Case-sensitivity for PointSource Attributes

The PointSource character that is supplied with the /ps command-line parameter is not case sensitive. That is, /ps=P and /ps=p are equivalent.
Reserved Point Sources

Several subsystems and applications that ship with the PI are associated with default PointSource characters. The Totalizer Subsystem uses the PointSource character T, the Alarm Subsystem uses G and @, Random uses R, RampSoak uses 9, and the Performance Equations Subsystem uses C. Do not use these PointSource characters or change the default point source characters for these applications. Also, if a PointSource character is not explicitly defined when creating a PI point; the point is assigned a default PointSource character of Lab (PI 3). Therefore, it would be confusing to use Lab as the PointSource character for an interface.

Note: Do not use a point source character that is already associated with another interface program. However it is acceptable to use the same point source for multiple instances of an interface.
PI Point Configuration

The PI point is the basic building block for controlling data flow to and from the PI Server. The batch interface automatically builds all points based on the information found in INI file.
Interface-specific Points

Process parameters are often specified in batch data sources. These parameters are typically more easily viewed as a graphical trend. Points may be built to specify which events are to be captured and stored in PI. Please refer to section Event Logging - Tag Template for information on how to configure Tag Templates for specific event capturing.
Startup Command File

Command-line parameters can begin with a / or with a -. For example, the /ps=E and –ps=E command-line parameters are equivalent.

For Windows, command file names have a .bat extension. The Windows continuation character (^) allows for the use of multiple lines for the startup command. The maximum length of each line is 1024 characters (1 kilobyte). The number of parameters is unlimited, and the maximum length of each parameter is 1024 characters.
Configuring the Interface with PI ICU
Note: PI ICU requires PI 3.3 or later.
The PI Interface Configuration Utility provides a graphical user interface for configuring PI interfaces. If the interface is configured by the PI ICU, the batch file of the interface (PIEMDVBCS.bat) will be maintained by the PI ICU and all configuration changes will be kept in that file. The procedure below describes the necessary steps for using PI ICU to configure the Batch Interface.

From the PI ICU menu, select Interface, New Windows Interface Instance from Exe…, and then Browse to the PIEMDVBCS.exe executable file. Then, enter values for the Host PI System, Point Source and Interface ID# and Service ID if available. A window such as the following results:
[image: image25.png]%y Configure a New Interface

Use the Browse butan to select P Intaface service fe e+ to configue. The addiional
parameters shown may akso be selected.

1) Browse to neiface executable (ieqied)

2) Host Pl Server/Cllective fequied):

Bowss,

Path:

mkelplaptop.

3) Optional Setings

Itettace name as displayed in the ICU (optona)

[mkeyiaptop

Point Saurce:

[Emerson el Compliance Sute Batch Interlace

Intetface ID #

Sen

wice ID

[EMDVECS

i Suggest

i

Add

Coaioks |0

“Interface name as displayed in the ICU (optional)” will have PI- pre-pended to this name and it will be the display name in the services menu.

Click on Add.

You should then see a display such as the following:
[image: image26.png]1) Emerson Dokl ComplianceSufe Sach Intrface (PIEMDVBCS) s now eady t beconfgured with P Inerface Configuration Uty

&

Note that in this example the Host PI System is mkellylaptop,. However, if you want the interface to communicate with a different PI Server, you can do this by selecting ‘Connections…’ item from PI ICU menu and make it your default server. If you do not see the remote node in the list of servers, you can add that in.

Once you add the interface to PI ICU, near the top of the main PI ICU screen, the Interface Type should be PIEMDVBCS. If not, use the drop-down box to change the Interface Type to be PIEMDVBCS.

Click on Apply to enable the PI ICU to manage this copy of the Batch Interface.

[image: image27.png], Pl-Interface Configuration Utility - PIEMDVBCS1

Interface Tooks Help
IERAS

Intetface: kel

Type: EMDVECS] Emerson Delta Complance Sue Batch Pl Server Cornestion Status-

Desciion: mkelplaptop.
Witeable

Versions: [FIEMDVELS eve version 1.0.00 Non Unintbased nteface

[Geredl [Genewl Pl Host Information

oHovecs FointSouce: [EMDVECS Server/Collective: [FTEIEE 3]
10 Rate LS SDK Menber: |EEEEN =l

Itetface Status API Hostname:

Intetface ID: User: piadmin

Scan Classes Tope: Nonepicated -FI3

Version Fi3aasm

Sean Frequency Sean Class # Port 5450

Descipton

Intetface Instalaton Path

D:\Program Files\FIPC\Intefaces\EMDVECS,

coe |

Service Urinstalled PIEMDVBCST - Not Installed

The next step is to make selections in the interface-specific tab (i.e. “PIEMDVB”) that allow you to enter values for the startup parameters that are particular to the Batch Interface.
PIEMDVBCS Configuration
Administration Tab
[image: image28.png], Pl-Interface Configuration Utility - PIEMDVBCS1

Interface Tooks

Help

DX d B R @

Intetface:

[Emersan Delta Compliance Sule Balch nterface (PIEMDVECS] > mkelpiaptop

Tope:

EMDVECS] Emerson Delta Complance Sue Batch

Descipton

Versions:

Service
10 Rate
Itetface Status

General

[FIEMDVELS eve version 1.0.00 Non Unintbased nteface

Emerson Delta Compliance Suite Batch Intefae-Specific Parameters (1.0.0.0)

Pl Server Cornestion Status-

mkelplaptop.
Witeable

‘Adminisuaion | _Tim Setinge | _Batcnsep | Disgrosis

RunringMode [Reatime

o

I~ Uss batch recipe:
I~ Pl User Name.

o

I~ Debuglevel

I~ Pint st o st scan tofl:

I~ Numeic Setings
I~ Enter altemate NI Fie

I~ Pl Password

I~ Perfom 1 scan and then stop

Configure NI File

“Addion Paameters

Service Urinstalled

PIEMDVBCST - Not Installed

Interface running mode

Interface running mode is used to set the running mode of the Interface. There are four available modes:

· Realtime(default)/Recovery – The Interface will perform realtime processing. This mode is also used for historical data recovery. To activate recovery mode, /rst switch has to be defined in command line parameters. In Recovery mode, if the /ret switch was not defined; the interface is going to recover data until current time, then switch to realtime processing automatically. If /ret switch was defined, then the interface is going to stop on completion of the recovery process. (/Mode=<mode>, no mode is written for Realtime or Recovery)

· Statistics (Stat) – In this mode, the interface only compares source data with the PI server data. Note, the interface does not write or modify any data on the PI Server. On completion the interface reports results and stops. (/Mode=Stat)
· Preprocess (NoData) – This mode is designed for situations when the source data needed to be written to PI archives which are earlier than the primary PI archive. Due to the nature of the PI Server, the newly added tags, units and modules are indexed (referenced) only in the primary PI archive. Any older archive will not have any knowledge of these modules, units and tags. In /mode=NoData the interface creates only modules, units, tags and tag aliases without processing batch data and pushing events into the tags. On completion, the interface stops and the user has to reprocess older archives with offline archive utility. The manual archive reprocessing creates indexes for newly added units, modules, tags in each reprocessed archive. This mode should be always used before writing new batch data to older PI archives (other than Primary). (/mode=NoData)
· Delete (Delete) – In this mode the interface cleans PI archives based on specified source data only, leaving data from all other sources intact. This mode should be used only if the interface is unable to synchronize source batch data with the PI server. This modes is used only in conjunction with Recovery mode switches (/rst and /ret). (/Mode=Delete)
Recovery Start Time

The Recovery Start Time (/rst) parameter is used to set the target start time of the history data recovery process. The Recovery Start Time is approximate and the interface will recover all batches which start time after Recovery Start Time. In the boundary case when the batch start time is before Recovery Start Time and the batch end time is after Recovery Start Time, the interface is going to perform recovery for such batches as well. The <date time> should be provided in local interface node time format.

Recovery End Time

This command must be used in conjunction with the optional parameter Recovery Start Time. The Recovery End Time /ret parameter is used to set the target end time of the history data recovery process. The Recovery End Time is approximate and interface is going to recover all batches with start time before Recovery End Time even though its end time might be beyond Recovery End Time. The <date time> should be provided in local interface node time format.

Note: This parameter requires specification of Recovery Start Time /rst=<datetime>

Perform 1 scan and stop

This parameter forces the interface to perform only one scan and stop. (/singlerun)
Debug level

The /db=[#] parameter specifies the Interface debug logging message level. There are three levels that may be assigned:

 0 – Log only errors and warnings.

 1 – Log errors, warnings and major success messages

 2 – Log ALL messages.

Log level two (2) is the most verbose setting; while level zero reports the least detail (it logs only error messages). The default logging level is 0, to log errors and warnings only. When testing the Interface, it may be necessary to use a more verbose setting (1 or 2).
PI User Name

The /PIUser parameter is used to explicitly specify the user name to establish a connection to the PI Server. If this parameter is not specified, the Interface will try to use the trust table.
PI Password

The /PIPswd parameter is used to explicitly specify the user password to establish the connection to the PI Server. If this parameter is not specified, the Interface will try to use the trust table.

Note: The /PIPswd parameter must be used in conjunction with the /PIUser parameter.
Numeric Settings

Numeric Settings (/ns) allows the interface to perform proper numerical conversions based on the “Regional and Language Options” setting on local system or based on user defined language.

This parameter is particularly useful when the numerical conventions differ (example a comma is used instead of a decimal etc) from the default settings.

If the parameter is not used, then the default settings of “English_UnitedStates” is used.

If the parameter is used without any language specification, i.e. /ns, then the interface will use “Regional and Language Options” settings specified on the Windows machine where the interface is running. If the language specification is passed as a value (/ns=lang), then the interface will use that value as internal regional/language setting to perform numerical conversions regardless of local system “Regional and Language Options” setting.

If the switch contains invalid language, .i.e /ns=<invalid language>, then the interface will exit.

INI File

This read-only field displays the full path to the INI file the interface will use.
Configure INI File

Click this button to configure the INI file.

Time Settings Tab

[image: image29.png], Pl-Interface Configuration Utility - PIEMDVBCS1
Interface Tools Fielp

DX d B R @

Intettace: [Emerson el Compliance Sute Batch Interlace (FIEMDVBCST) > mkelplaptop

Type: EMDVECS] Emerson Delta Complance Sue Batch Pl Server Cornestion Status-
mkelplaptop.
Witeable

Descipton

Versions: [FIEMDVELS eve version 1.0.00 Non Unintbased nteface
[Gemedl - Emeison Dekay Compiance Suite Baich Inteface-Specific Parameters (1.0.0.0)

EMDvECS Anivistaton | (Time Seftings | Batchoens | Disgrostos |
Senice

Gereral
orse I~ Sean [T sectd I~ Abendoned Batch Timeout
™ Cache Tine dayls) ™ Masimum Query Time Frame

i}
I~ Pl Connection Timeout sec) [Rety

I~ Pl Data Access Timeout secs) [Rely Timeout

saL
I~ S0L Connestion Timeout secls)

I~ SOL Data Access Timeout secls)

“Addion Paameters

Service Urinstalled PIEMDVBCST - Not Installed

Scan

The Scan (/scan=#) parameter defines the time period between Interface scans in terms of seconds.

If the scanning frequency is set to 30 seconds, the Interface will attempt to query and process data every 30 seconds. Although, scan may be skipped if an abundance of data is processed.
Cache Time

Cache Time (/cachetime=#.#) defines the time period for which the completed batches are retained in the memory. [(*-cachetime) - *] The default value is 1.0 day. The value can be specified as whole day or fraction of the day.

Abandoned Batch Timeout

(A)Bandoned (B)atch (T)ime(O)ut (/abto=#.#) defines the time period from the cached batches time frame into the past after which the open batches are considered to be abandoned and can be released from the interface’s local cache. The default value is 100 days.

Maximum Query Time Frame

Maximum Query Time Frame (/maxqtf=#) sets the maximum time frame for each query made to DeltaV SQL server.

PI Connection Timeout

PI Connection Timeout (/piconnto = #) is used to change the current PI Connection TimeOut property. By default the Interface uses the default SDK settings.
PI Data Access Timeout

PI Data Access Timeout (/pidato = #) is used to change the current PI Data Access TimeOut property. . By default the Interface uses the default SDK settings.
Retry

Retry (/retry=#) specifies the retry time delay, in seconds, for retrying a failed SDK attempt to write data to PI Server. The default retry delay is set to 60 seconds.
Retry Timeout

Retry TimeOut (/retryTO=#) specifies the timeout, in seconds, for retrying a failed SDK attempt to write data to PI. The default timeout is set to 0 seconds (infinity).

Note: To prevent data loses, it is recommended NOT to use the retry timeout switch.
SQL Connection Timeout

SQL Connection Timeout (/SQLConnTO=#) is used to change the current SQL Connection TimeOut property.
SQL Data Access Timeout

SQL Data Access Timeout (/SQLDATO=#) is used to change the current SQL Data Access TimeOut property
Batch Setup Tab

[image: image30.png], Pl-Interface Configuration Utility - PIEMDVBCS1

Interface Tooks

Help

DX d

B R @

Intetface:

[Emersan Delta Compliance Sule Balch nterface (PIEMDVECS] > mkelpiaptop

Tope:

EMDVECS

] Emerson Delta Complance Sue Batch Pl Server Cornestion Status-

Descipton

mkelplaptop.
Witeable

Versions:

EMDVECS
Service
10 Rate
Itetface Status

[FIEMDVELS eve version 1.0.00 Non Unintbased nteface

General

Emerson el Compliance Suite Batch Intefae-Specific Parameters (1.0.0.0)

Adnivistaton | Tine Setings | Baish Setup | Disgrostcs |

I~ Repott as Step Start End

e |

I~ Disable atbiation
I~ Disable atbitiation courters
Merge
I~ Merge muliple source batches with same BatchiD into one PI Batch
I™ Tuncate Batch D

o

“Addion Paameters

Service Urinstalled PIEMDVBCST - Not Installed

Report as Step
Report As Step (/ras = start, end) allows to use the “Report” event to create Phase Steps under active Phase States. The Phase Step name and start/stop events are obtained from the “Descript” column.

Note: if the Phase Step left open, it is going to be closed by the end of the parent operation, and not by the end of parent phase or phase state.

Start

Enter the start time for Report as Step

End

Enter the end time for Report as Step

Alternate PI Module Path

Alternate PI Module Path (/smp=<path>)designates an alternate PI Module path to start looking for a particular Equipment hierarchy. If this option is not specified (i.e. the default) is to begin at the root level of the PI ModuleDB. A path must be specified. This path is of the syntax:

The PI server is not specified in this syntax, since that is already known from the /host parameter.

Click the … button to browse for the PI Module path. Note that the text box is read‑only. You may not edit it directly, you must browse for the module path with the … button.
Disable arbitration

Disable arbitration (/noarbitration) is used when the source Batch Executive System (BES) provides batch data without equipment arbitration. When this switch used, PI UnitBatches are created based on source batch recipe data only.
Merge multiple source batches with same BatchID into one PI Batch

Merge multiple source batches with same BatchID into one PI Batch (/merge) allows the interface to merge multiple source batches with same BatchID into one PIBatch. Original data for each merged batch is stored in PIProperties under PI Property Node named as UniqueID of the original batch. This data includes: original BatchID, StartTime (UTC), EndTime(UTC), Product and Formula Name. Merging time frame is controlled by /cachetime switch, i.e. the interface will only merge batches which are still cached in local memory.

Note: If BatchIDs are different, use additional switch /bidm. This switch causes the merge function to identify a common subset of characters in BatchIDs Merging is then performed based on this subset in addition to actual BatchID merging.

Truncate Batch ID

Checking this box will cause the interface to truncate all incoming events according to the mask defined in the BatchID Mask. (/tbid)
BatchID Mask

BatchID Mask (/bidm=<list>)is used to obtain a new BatchID, which is a substring of the value in the source BatchID field. The /bidm takes a list of masks as the input value. Each BatchID mask can consist of an array of valid symbols and wildcards. The following wildcards are supported the interface:

- single digit numerical value (0-9)

@ - single alpha character (a-z, A-Z)

? – any single valid symbol

! – repeat previous BatchID mask symbol

* - any array of ? symbols.
[image: image31.png], Pl-Interface Configuration Utility - PIEMDVBCS1

Interface Tooks Help

DX d

B R @

Intettace: [Emerson el Compliance Sute Batch Interlace (FIEMDVBCST) > mkelplaptop

Tope: EMDVECS

] Emerson Delta Complance Sue Batch Pl Server Cornestion Status-

Descipton

mkelplaptop.
Witeable

Versions: [FIEMDVELS eve version 1.0.00

General
EMDVECS
Service

10 Rate
Itetface Status

Non Unintbased nteface

Emerson el Compliance Suite Batch Intefae-Specific Parameters (1.0.0.0)

Adnvisioion_| T etings | Batch Sotup | Disgroses)

I~ Repott as Step Start

I~ Alemate Pl Modue Path
I~ Disable atbiation

I~ Disable atbitiation courters
Merge

]
|

I~ Merge muliple source batches with same BatchiD into one PI Batch

W {fiincats BaichiD

e

“Addion Paameters

Service Urinstalled

PIEMDVBCST - Not Installed

Additional Parameters

If the interface-specific control cannot be accessed for any reason by the PI ICU (e.g., the control is not installed) or if the interface-specific control does not contain a particular switch (e.g., the version of the control for some reason is not synchronized with the interface version) additional parameters may be specified in the “Additional parameters” section of the control. This ensures a minimal level of forward compatibility for control in future versions of the interface and PI ICU.
Note: You should not place parameters here that can be configured elsewhere in the control.

[image: image32.png]

Configure INI File Form

Source Template Tab

[image: image33.png]Configure INI File: D:\Program Files\PIPCMInterfaces\EMDVBCS\PIEMDVBCS1. INI
Sok T EVT O Cargiao oL

Souce Tonpiatg | TeoToroe | FropoyTonplte | Gewd | ol

Sourcels) Selected Source:

Source Template
e

C5MSMD
CSWebSiPath

slsrver
sodetcbese [DVARDR
sluser
sclpsn

I Enable Delial/ OPCAE
openods.

I~ opeserver [DeltaV. OFCE ventServer. T

Note: Right cick an Treeviews to add/edit/delte cbiects Cancel Save Save and Exit

Select Type

Select Source Type of EVT or Syncade / SQL. Once a source type is chosen, these select buttons are disabled. You may only have ALL EVT sources, or a combination of Syncade and SQL (with optional OPC) source selected.

Once the type is chosen, then you must add a source. To add a source, right-click on “Source Template” in the Source(s) Treeview, and select the type of source to add: EVT, Syncade, or SQL

[image: image34.png]Source Template Tag Template. Propetty Template

Sourcels)

Selected Source: Source Template

AddEVT Source

—
—

EVT

[image: image35.png]Configure INI File: D:\Program Files\PIPCinterfaces\EMDVBCS\PIEMDVBCS1.INI

SelectType @ EVT € Complance Suite/50L.

Source Template | TagTenpiate) Propeny Tonplale | Geneal) Tranlaion

Sourcels) Selected Saurce: Sourcel]

C5MSMD

Source Templte

CSWebSiPath

slsrver
sodetcbese [DVARDR
sluser
sclpsn

I Enable Delial/ OPCAE
openods.

I~ opeserver [DeltaV. OFCE ventServer. T

Note: Right cick an Treeviews to add/edit/delte cbiects Cancel Save Save and Exit

Once you have added a source, specify the EVT file directory by clicking the browse [image: image36.bmp] button. To save your changes to the INI file, you must click the [image: image37.png]

 button. This button will turn blue when changes are detected, prompting you to click the button.

You may add multiple sources by right-clicking the Source Template tree. You may edit or delete as well.

Syncade
[image: image38.png]Configure INI File: D:\Program Files\PIPCinterfaces\EMDVBCS\PIEMDVBCS1.INI

SelectType € EVT & Complance Suite/50L

Source Template | TagTenpiate) Propeny Tonplale | Geneal) Tranlaion

Sourcels) Selected Saurce: Sourcel]

Source Templte
e
C5MSMD
CSWebSnPath
C5MSMD

CSWebSiPath

slsrver
sodetcbese [DVARDR
sluser
sclpsn

I Enable Delial/ OPCAE
openods.

I~ opeserver [DeltaV. OFCE ventServer. T

Note: Right cick an Treeviews to add/edit/delte cbiects Cancel Save Save and Exit

Enter both the Syncade Microsoft Message Queue path (CSMSMQ) and the Syncade Web Service Path (CSWebSrvPath) then click the Assign button to save your changes.

Note: the CSWebSrvPath expects http:// syntax.

SQL (with optional OPC)

[image: image39.png]Configure INI File: D:\Program Files\PIPCinterfaces\EMDVBCS\PIEMDVBCS1.INI

SelectType € EVT & Complance Suite/50L

Source Template | TagTenpiate) Propeny Tonplale | Geneal) Tranlaion

Sourcels) Selected Saurce: Sourcel]
Source Template
= Sourcell] et
S0LSever
OPCNode
C5MSMD

CSWebSiPath

sqdatebase [0

shser
sabswd
v e Dekav BciE

T~ opeserver [DeltaV. OFCE ventServer. T

Note: Right cick an Treeviews to add/edit/delte cbiects Cancel Save Save and Exit

When the SQL source is selected, you must enter the .sqlserver name. You may also choose to enter optional fields by checking the check box next to the field you wish to populate. If you check the Enable DeltaV OPCAE check box, you must populate both opcnode and opcserver values. Once you have made your entries, click the Assign button to save your changes to the form.

Tag Template Tab
Just like with the Source Template tab, you manage the Tag Template by right-clicking on the Tag Template treeview. To add a tag template, right click and select Add Tag.

[image: image40.png]Tagls)

Tag Template

You are then prompted to specify the tag index:

[image: image41.png]Pl Emerson Delta¥ Compliance Suite Batc.

Enter Tag Number:

Only enter a unique tag number here.

Note: this number corresponds to the Tag Attribute Location2.

If you wish, you may also edit the tag number. Select the desired tag in the treeview, and right-click on the tag name and choose the “Change Tag Number” menu to edit the index.

[image: image42.png]Tag Template

ddTag
Changs Tag umber
Add Trigger

Delete

Tiiggers

Once Tag templates are added, you may also add Triggers to a tag, or delete the tag template.

[image: image43.png]Configure INI File: D:\Program Files\PIPCinterfaces\EMDVBCS\PIEMDVBCS1.INI

SelectType € EVT & Complance Suite/50L

Souce Terpate | Tog Tomplate | _PropstyTonplte | Gened | ot

Tadls)

Selected Tag: Taol1]
Tag Template

Name.
Value
Tope Tope
Urihlias - UnitAlas
Phasedlias Unit Alias = Tag Name.
Tiiggers © Custom Uit Afas Name.
 Disable Unit Alas Creation
- Phasslias
@ Phase Alias = Tag Name.
 Custom Phase Alss Name. Placefolders
" Disable Phase Alas Creation

Value Placeholders

Placeholders

Assign Tag Template

Trigger

Note: Right cick an Treeviews to add/edit/delte cbiects Cancel Save Save and Exit

You may enter free form text for .Name and .Value, .UnitAlias, and .PhaseAlias. You may also use Placeholders. To add a placeholder, either click the [image: image44.png]Placeholders

 button, or just double-click in the desired text box. A Placeholders form will appear, and you may select whichever placeholder you like.

Note: If using Placeholders, [Unit] must precede [PhaseModule]

Triggers
To add a Trigger to a specific Tag Template, select the Triggers entry, and then right-click and select Add Trigger

[image: image45.png]Tagls)

Tag Template
5 Tagll]
Name.
Value
Tope
Unitlas
Phasedlias

oo
| risoer |

The Triggers text box will be available. To save your changes to the form, you must click the [image: image46.png]Assign Tag Template

 button.

Property Template Tab
To add a property template, right click on the Property Template tree and select Add Property

[image: image47.png]Configure INI File: D:\Program Files\PIPCinterfaces\EMDVBCS\PIEMDVBCS1.INI

Select Type

Source Template Tog Template Property Template. General Translaion

Praperty

Fioperty Template

Note: Right cick an Treeviews to add/edit/delte cbiects Cancel Save Save and Exit

[image: image48.png]SouceTenple | TagTemplte | Property Template |

Property

add Property

You may enter free form text or use Placeholders, or use a combination of the two. Once you have entered the desired Property Template value, you must click the [image: image49.png]

 button to save it to the form.

Note: if you use placeholders, [UNIT] must precede [PhaseModule]

General Template
[image: image50.png]Configure INI File: D:\Program Files\PIPCinterfaces\EMDVBCS\PIEMDVBCS1.INI

Select Type 3

Soutcs Tempiao TegTewpse | PopetyTendde | General Traretaton
I Sk Units I Skip Phases ™ Evclde Phase States

<] <]

I~ Equipment Template I~ Prodct Templte

Equipment Templste

Note: Right cick an Treeviews to add/edit/delte cbiects Cancel Save Save and Exit

Skip Units

Skip Units specifies the list of units for which all events in the source should be ignored. This interface will check the Unit field in every event for the match in the provided list. If the match, the interface will skip processing that event. The name comparison is not case sensitive, masks are allowed as valid unit specifiers. Multiple unit names can be specified with a comma separator.
Skip Phases

Skip Phases specifies the list of phases for which all events in the source should be ignored. For each event to be processed, the interface will check for the match in the Phase field (batch recipe) and Phase Module field (equipment). If one of those two fields equals one of the entries in this list, the interface will skip processing that event. The name comparison is not case sensitive and allows masks as valid phase specifiers. Multiple phase names can be specified with a comma separator.
Exclude Phase States

Exclude Phase States specifies the list of Phase States which should be ignored. For each event to be processed, the interface will check for the match in the Phase State field (batch recipe). If match is found, the interface will not write particular Phase State into PI server. The name comparison is not case sensitive and allows masks as valid phase state specifiers. Multiple phase states can be specified with a comma separator.
Equipment Template

This template defines the ModuleDB structure which the interface creates automatically. The Module names should be delimited by the “\” character.
	Template
	Value
	Allowed

Placeholders
	Description

	Equipment

	<Equipment Hierarchy>
	[Area]

[ProcessCell]

[Unit]

[PhaseModule]
	Restrictions:

The hierarchy order must be maintained in the following order:

[Area] (optional)

[ProcessCell] (optional)

[Unit] (required)

[PhaseModule] (optional)

Note: Any reoccurrence of already defined placeholder is treated as text.

Default: Equipment=[Area]\[ProcessCell]\[Unit]\[PhaseModule]

Product Template

Product Template defines the PI Batch and PI UnitBatch product name. The provided value should be a list of possible product sources. The list is ordered from most important to least important. Allowed placeholders are not case sensitive.
	Template Name
	Value
	Allowed Placeholders
	Description

	product
	<list of options>
	[product]

[formula]
	Default: Product=[product]

Example 1:

Product=[Product],[Formula],TestProduct

In this example, when batch starts, it will check if the “Source Product” is defined, if yes, then it will use the actual product name, if product is missing, then the interface checks if the “Source Formula Name” is known, if yes, then it will use the Formula name as product. In the worst case scenario, when there is no product or formula defined before start of batch, the value “TestProduct” is going to be used as product name.

Example 2:

Product=abs:[Formula], def_[Product], Unknown

On start time of source batch, assume, that

Source Formula=12345aaa

Source Product=IceCream

Then resulting PI Batch Product=abs:12345aaa

Assume that Formula is not known, then

PI Batch Product=def_IceCream

Assume that both Product and Formula are unknown, then

PI Batch Product = Unknown

Translation Tab

[image: image51.png]Configure INI File: D:\Program Files\PIPCinterfaces\EMDVBCS\PIEMDVBCS1.INI

Select Type

e Tag Terpiae Propeny Tergiae Gorerl T
AT x|

Engish Text Foreign Tent
STATE CHANGE STATE CHANGE
CREATED CREATED
RUNNING AUNNING
COMPLETE COMPLETE
REMOVED REMOVED
STOPPED STOPPED
ABDRTED ABORTED

Note: Right cick an Treeviews to add/edit/delte cbiects Cancel Save Save and Exit

The translation text will automatically be loaded for you when you launch this form, depending on your configuration. (See tables below to determine which translations are available for each configuration.) To enable translations, click the check box. You may then click on any cell in the table to edit the value listed.
If you wish to add values, click the plus button. If you wish to delete values, click the red X button. This will add or delete the entire row, depending on which button was selected.

Remember, to save this configuration, you must click one of the following buttons [image: image52.png]

 .
Once a translation value has been written to the INI file, the ICU control will automatically load whatever it finds in the file.

Note: Right now the supported languages should be based on ASCII characters table.

Note: Syncade does not have required translations.

Configuring Interface Startup Files

The interface has two startup configuration files; PIEMDVBCS.bat and PIEMDVBCS.ini. The .bat file is required and is the primary file for specifying interface configurations. The INI file is used to specify the interface configurations, such as data sources, translations, product template, equipment template, tag templates and property templates.

When using the .INI file, each parameter should be defined on separate line. There should be only one equal (=) sign per line. Specifying two forward slashes (//) to comment any line in the INI file.
When configuring the .bat startup file the continuation character ^ can be used to allow multiple lines for defining parameters. The maximum length for a single line is 1024 characters (1 kilobyte). This is a Windows limitation.

Command-line Parameters

This is a listing of the command-line parameters and their specific behavior with respect to the PI Batch interface. This section gives more detailed information concerning the parameters that may be specified when configuring the interface (such as with the PI ICU).

	Parameter
	Description

	/abto=<days>

Optional

Default: 100 days
	(A)Bandoned (B)atch (T)ime(O)ut. Defines the time period from the cached batches time frame into the past after which the open batches are considered to be abandoned and can be released from the interface’s local cache. The default value is 100 days.

Example:

 If /abto=50.5 and /cachetime=7.1 then the batches with last event occurred before

 NOW() – 7.1 days – 50.5 days will be considered abandoned and removed from the local interface memory.

 --|--------------------------------[-cached batches time frame -] ---> Timeline

-57.6 days -7.1 days (current time)

	/bidm=<list>

Optional
	The /bidm switch (Batch ID Mask) is used to obtain a new BatchID, which is a substring of the value in the source BatchID field. The /bidm takes a list of masks as the input value. Each BatchID mask can consist of an array of valid symbols and wildcards. The following wildcards are supported the interface:

- single digit numerical value (0-9)

@ - single alpha character (a-z, A-Z)

? – any single valid symbol

! – repeat previous BatchID mask symbol

* - any array of ? symbols.

Example:

Let’s say that the BatchID column in the event file is lot30112 / 90dev123 / 12345stp / ld567.
The /bidm=”#####” will result in new BatchID 30112.
The /bidm=”##@!” will result in new BatchID 90dev.
The /bidm=”*##@!” will result in new BatchID lot30112 / 90dev.
The /bidm=”@@@@, #8dev4, #!” will result in new BatchID 30112. Since the first and second masks could not be found, third mask is used instead.

	/cachetime=<days>

Optional

Default: 1 day
	Defines the time period for which the completed batches are retained in the memory. [(*-cachetime) - *] The default value is 1.0 day. The value can be specified as whole day or fraction of the day.

Example:

/cachetime=7.5 days

In this case the interface is going to release completed batches when their end time is going to be less than 7 days and 12 hours from current time.

	/dac

Optional

	The /dac Disable Arbitration Counters parameter informs interface to release unit on the first Resource Release event even though the number of Acquire events is higher than number of Release events. By default, interface requires number of Resource Release events to be the same as Resource Acquire events for each unit to release the unit.

	/db=[#]

Optional

Default: 0
	The /db=[#] parameter specifies the Interface debug logging message level. There are three levels that may be assigned:

 0 – Log only errors and warnings.

 1 – Log errors, warnings and major success messages

 2 – Log ALL messages.

Log level two (2) is the most verbose setting; while level zero (0) reports the least detail (it logs only error messages). The default logging level is 0, to log errors and warnings only. When testing the Interface, it may be necessary to use a more verbose setting (1 or 2).

	/host=host:port

Required
	The /host parameter is used to specify the destination PI server node where the data is going to be stored. Host is the IP address of the PI Sever node or the domain name of the PI Server node. Port is the port number for TCP/IP communication. The port is always 5450. It is recommended to explicitly define the host and port on the command-line with the /host parameter. Nevertheless, if either the host or port is not specified, the interface will attempt to use defaults.

Examples:
The interface is running on a PI Interface Node, the domain name of the PI home node is Marvin, and the IP address of Marvin is 206.79.198.30. Valid /host parameters would be:
/host=marvin
/host=marvin:5450
/host=206.79.198.30
/host=206.79.198.30:5450

	/id=x

Required
	The /id parameter is used to specify the interface identifier.

The interface identifier is a string that is no longer than 9 characters in length.

This interface uses the /id parameter to identify a particular interface copy number that corresponds to an integer value that is assigned to one of the Location code point attributes, most frequently Location1. For this interface, use only numeric characters in the identifier. For example,

/id=1

	/inifile=<UNC Path>

Optional
	This parameter allows you to specify an alternate Path and Filename for the INI file. If not specified, the interface will expect to find the INI file in the same directory as, and expect the INI file to have the same file name (but with an .INI extension) as the interface executable.

	/maxstoptime=<seconds>

Optional

Default: 120 seconds
	The /maxstoptime parameter is used to set the maximum time allowed for the Interface to properly shutdown. The value must be given in seconds. If the Interface shutdown process takes longer than the specified time, the Interface will be forced to terminate immediately.

	/MaxQTF=<days>

Optional

(affects only DeltaV SQL source and Syncade WebService startup query)
	Maximum Query Time Frame. This parameter sets the maximum time frame for each query made to source.

Example:

if /rst=01/01/2005 and /ret=12/30/2007, then the actual data time frame to be processed is ~2 years. This can be very memory intensive and potential run out of memory. With the help of this parameter, the interface is going to break 2year query into smaller sub queries with time frame = 30 days each by default.

So the actual queries will be performed with the following time frames:

[01/01/2005 – 31/01/2005]

[31/01/2005 – 02/03/2005]

[02/03/2005 - 01/04/2005]

Etc.

	/merge
Optional
	The /merge switch allows the interface to merge multiple source batches with same BatchID into one PIBatch. Orignial data for each merged batch is stored in PIProperties under PI Property Node named as UniqueID of the original batch. This data includes: original BatchID, StartTime (UTC), EndTime(UTC), Product and Formula Name. Merging time frame is controlled by /cachetime switch, i.e. the interface will only merge batches which are still cached in local memory.

Note: If BatchID’s are different, use additional switch /bidm. This switch allows to identify common subset of characters in BatchID and then merging will be performed based on this subset in addition to actual BatchID merging.
Example:

There are 5 running batches within /cachetime timeframe:

Test12345_1, Test_12345_2, CleaningTest, USPO12345_test, CleaningTest

With /merge switch defined: there will be:

4 separate batches:

Test12345_1, Test_12345_2, USPO12345_test

And 1 merged batch:

CleaningTest

With additional /bidm=##### switch defined, where # is the wildcard for numerical values. There will be only 2 merged batches. Note: the unitbatches will have its original BatchID’s:

Batch(1): 12345

UnitBatches: Test_12345_1

 Test_12345_2

 Test_12345_test

Batch(2): CleaningTest

UnitBatches: CleaningTest

 CleaningTest

	/mode=<mode>

Optional

Default: realtime
Possible values:

/mode=realtime

(or no switch defined)

/mode=delete

/mode=stat

/mode=nodata
	The /mode parameter is used to set the running mode of the Interface. There are four available modes:

Realtime – (default) The Interface will perform realtime processing. This mode is also used for historical data recovery. To activate recovery mode, /rst switch has to be defined in command line parameters. In Recovery mode, if the /ret switch was not defined, the interface is going to recover data until current time, then switch to realtime processing automatically. If /ret switch was defined, then the interface is going to stop on completion of recovery process.

Stat – In this mode, the interface only compares source data with the PI server data. Note, the interface does not write or modify any data on the PI Server. On completion the interface reports results and stops.
Delete – In this mode the interface cleans PI archives based on specified source data only, leaving data from all other sources intact. This mode should be used only if the interface is unable to synchronize source batch data with the PI server. This modes is used only in conjunction with Recovery mode switches (/rst and /ret).
NoData – This mode is designed for situations when the source data needed to be written to PI archives which are earlier than the primary PI archive. Due to the nature of the PI Server, the newly added tags, units and modules are indexed (referenced) only in the primary PI archive. Any older archive will not have any knowledge of these modules, units and tags. In /mode=NoData the interface creates only modules, units, tags and tag aliases without processing batch data and pushing events into the tags. On completion, the interface stops and the user has to reprocess older archives with offline archive utility. The manual archive reprocessing creates indexes for newly added units, modules, tags in each reprocessed archive. This mode should be always used before writing new batch data to older PI archives (other than Primary).

	/noarbitration
	This switch is used when the source Batch Executive System (BES) provides batch data without equipment arbitration. When this switch used, PI UnitBatches are created based on source batch recipe data only.

	/ns=[lang]

Optional
	The /ns (Numeric Settings) switch allows the interface to perform proper numerical conversions based on the “Regional and Language Options” setting on local system or based on user defined language.

This switch is particularly useful when the numerical conventions differ (example a comma is used instead of a decimal etc) from the default settings.

If the switch is not used, then the default settings of “English_UnitedStates” is used.

If the switch is used without any language specification, i.e. /ns, then the interface will use “Regional and Language Options” settings specified on the Windows machine where the interface is running. If the language specification is passed as a value (/ns=lang), then the interface will use that value as internal regional/language setting to perform numerical conversions regardless of local system “Regional and Language Options” setting.

If the switch contains invalid language, .i.e /ns=<invalid language>, then the interface will exit.

The language can be passed by type as it is specified below or by its abbreviation.

Language types (abbreviations):

chinese

chinese-simplified (chs)

chinese-traditional (cht)

czech (csy)

danish (dan)

belgian, dutch-belgian (nlb)

dutch (nld)

australian, english-aus (ena)

canadian, english-can (enc)

english

english-nz (enz)

english-uk (uk)

american, american-english, english-american, english-us, english-usa, (enu) (us) (usa)

finnish (fin)

french-belgian (frb)

french-canadian (frc)

french (fra)

french-swiss (frs)

german-swiss, swiss (des)

german (deu)

gegerman-austrian (dea)

greek (ell)

hungarian (hun)

icelandic (isl)

italian (ita)

italian-swiss (its)

japanese (jpn)

korean (kor)

norwegian-bokmal (nor)

norwegian

norwegian-nynorsk (non)

polish (plk)

portuguese-brazilian (ptb)

portuguese (ptg)

russian (rus)

slovak (sky)

spanish (esp)

spanish-mexican (esm)

spanish-modern (esn)

swedish (sve)

turkish (trk)

Examples:

/ns - will set the interface to use the local Windows language/regional settings

/ns=italian

/ns=ita

Both switches will set the interface to use Italian language/regional settings.

	/PIConnTO=<seconds>

Optional
	This parameter is used to change the current PI Connection TimeOut property. By default the Interface uses the default SDK settings.

	/PIDATO=<seconds>

Optional
	This parameter is used to change the current PI Data Access TimeOut property. . By default the Interface uses the default SDK settings.

	/PIPswd=<password>

Optional

Default: Use Trust Table
	The /PIPswd parameter is used to explicitly specify the user password to establish the connection to the PI Server. If this parameter is not specified, the Interface will try to use the trust table.

Note: The /PIPswd parameter must be used in conjunction with the /PIUser parameter.

	/PIUser=<name>

Optional

Default: Use Trust Table
	The /PIUser parameter is used to explicitly specify the user name to establish a connection to the PI Server. If this parameter is not specified, the Interface will try to use the trust table.

	/print=<file name>
	Prints the results of first scan in flat text file. The results include: Batch Tree, Tag List, Equipment Tree. This parameter is designed primarily for troubleshooting.

	/ps=x
Required
	The /ps parameter specifies the point source for the interface. X is not case sensitive and can be any multiple character string. For example, /ps=P and /ps=p are equivalent.

The point source that is assigned with the /ps parameter corresponds to the PointSource attribute of individual PI Points. The interface will attempt to load only those PI points with the appropriate point source.

	/ras=<start, stop>

Optional

	The /ras Report As Step switch allows to use the “Report” event to create Phase Steps under active Phase States. The Phase Step name and start/stop events are obtained from the “Descript” column.

Note: if the Phase Step left open, it is going to be closed by the end of the parent operation, and not by the end of parent phase or phase state.

Example: /ras=”-STRT, -STOP”
Event - Report:

Descipt Column: TEST123-STRT-B.

Triggers the start of the Phase Step "TEST123" under the currently active Phase State.

Event - Report:

Descipt Column: TEST123-STOP-B.

Sets an end time on the Phase Step "TEST123", if it can be found and regardless of what is the active Phase State.

	/ret=<date time>

Optional
	The Recovery End Time /ret parameter is used to set the target end time of the history data recovery process. The Recovery End Time is approximate and interface is going to recover all batches with start time before Recovery End Time even though its end time might be beyond Recovery End Time. The <date time> should be provided in local interface node time format.

Note: This command must be used in conjunction with the optional switch: Recovery Start Time /rst=<datetime>
Illustration:
 Recovery Recovery

 Start End

-----------|----------------|------------(time line

 [--A--]

 [-----B-----]

 [-------------C-----------------]

 [---D---]

 [---------E-------]

 [---F---*

Given Recovery Start – End timeframe, the interface is going to recover batches: B, C, D, E. Batches A and F are going to be ignored.

Examples:

/ret=”29-sep-2005 7:12:01 pm”

/ret=”07/20/2008 15:43:12”

	/retry=<seconds>

Optional

Default: 60 seconds
	The /retry switch specifies the retry time delay, in seconds, for retrying a failed SDK attempt to write data to PI Server. The default retry delay is set to 60 seconds.

	/retryTO=<seconds>

Optional

Default: 0 seconds
	The Retry TimeOut /retryTO switch specifies the timeout, in seconds, for retrying a failed SDK attempt to write data to PI. The default timeout is set to 0 seconds (infinity).

Note: To prevent data loses, it is recommended NOT to use the retry timeout switch.

	/rst=<date time>

Optional
	The Recovery Start Time /rst parameter is used to set the target start time of the history data recovery process. The Recovery Start Time is approximate and an interface is going to recover all batches which start time after Recovery Start Time. In the boundary case when the batch start time is before Recovery Start Time and the batch end time is after Recovery Start Time, the interface is going to perform recovery for such batches as well. The <date time> should be provided in local interface node time format.

Illustration:
 Recovery Recovery

 Start End

-----------|----------------|------------(time line

 [--A--]

 [-----B-----]

 [-------------C-----------------]

 [---D---]

 [---------E-------]

 [---F---*

Given Recovery Start – End timeframe, the interface is going to recover batches: B, C, D, E. Batches A and F are going to be ignored.

Examples:

/rst=”29-sep-2003 7:12:01 pm”

/rst=”05/21/2007 15:43:12”

	/scan=<seconds>

Optional

Default: 60 seconds
	The /scan parameter defines the time period between Interface scans in terms of seconds.

Example:
/scan=30

If the scanning frequency is set to 30 seconds, the Interface will attempt to query and process data every 30 seconds. Although, scan may be skipped if an abundance of data is processed.

	/singlerun

Optional
	This parameter forces the interface to perform only one scan and then stop.

	/smp=”PI Module Path”

Optional
	The /smp switch designates an alternate PI Module path to start looking for a particular Equipment hierarchy. If this option is not specified (i.e. the default) is to begin at the root level of the PI ModuleDB. A path must be specified. This path is of the syntax:

 \\<RootModule>\<SubModule>\<…>

e.g.

 \\MyEnterprise\MyPlant\
The PI server is not specified in this syntax, since that is already known from the /host switch.

	/SQLConnTO=<seconds>

Optional

(DeltaV ONLY)

Default: /SQLConnTO=60
	The /SQLConnTO parameter is used to change the current SQL Connection TimeOut property.

	/SQLDATO=<seconds>

Optional

(DeltaV ONLY)

Default: /SQLDATO=100
	The /SQLDATO parameter is used to change the current SQL Data Access TimeOut property. ..

	/tbid

Optional
	Truncate BatchID. This parameter should be used in conjunction with /bidm parameter. When this parameter is enabled, all incoming events BatchID will be truncated according to the mask defined in /bidm swith. PIBatch, PIUnitBatch BatchID property will contain truncated BatchID. Tag and Property templates using placeholder [batchid] will replace it with truncated BatchID.

	/UOBEV
Optional

(DeltaV SQL 9.3+ ONLY)
	Use Original Batch Event View. By default the interface performs query against 17 tables to retrieve data for batch associated events with explicit [Descript], [Pval] and [EU] fields. If this switch is enabled, the interface is going to collect data from BatchEventView. Note: This view does not provide explicit [Descript], [Pval] and [EU] fields. Instead the [Descript] field contains all 3 fields combined.

	/UBR
Optional

(DeltaV SQL or EVT ONLY)
	Use DeltaV SQL Batch Recipe View data to populate PIBatch Database as opposed to Recipe State Changes used by default.

Note: The Recipe State Change timestamps differs from Batch Recipe timestamps, therefore inconsistencies in timestamps might occur.

Sample PIEMDVBCS.bat File

The following is an example file:

REM==

REM

REM PIEMDVBCS.bat

REM

REM Sample startup file for the Emerson DeltaV Syncade Batch

REM Interface to the PI System
REM

REM
REM

REM==
REM

REM OSIsoft strongly recommends using the PI ICU to modify startup files.

REM
REM Sample command line
REM

PIEMDVBCS.exe ^

/merge ^

/bidm="Lot#####" ^

/smp="\\Plant1" ^

/host=XXXXXX:5450 ^

/maxqtf=10 ^

/rst="4/24/2005 12:50:14.111" ^

/db=0 ^

/id=1 ^

/ps=EMDVBCS ^

/scan=15 ^

/cachetime=1.5 ^

/abto=98
REM

REM end of PIEMDVBCS.bat

Initialization File Parameters
The Initialization file: EMDVBCS<serviceid>.ini is used to specify the interface configurations, such as data sources, translations, product template, equipment template, tag templates and property templates. In addition to the listed properties the following parameters can be specified in INI file:
	Parameter
	Description

	excludestates=<list>

Optional

	The excludestates switch specifies the list of Phase States which should be ignored. For each event to be processed, the interface will check for the match in the Phase State field (batch recipe). If match is found, the interface will not write particular Phase State into PI server. The name comparison is not case sensitive and allows masks as valid phase state specifiers. Multiple phase states can be specified with a comma separator.

The following wildcards are supported in masks by the interface:

- single digit numerical value (0-9)

@ - single alpha character (a-z, A-Z)

? – any single valid symbol

! – repeat previous mask symbol

* - any array of ? symbols.
Example: excludestates=COMPLETED,AB*ING

or exludestates=”COMPLETED, ABO*ING”
The following phases: IDLING, COMLETED, COMPLETING should be ignored by the interface. The switch will have the following form:

Excludestates = IDLING, COMPLE*

	skipphases=< list>

Optional

	The skipphases parameter specifies the list of phases for which all events in the source should be ignored. For each event to be processed, the interface will check for the match in the [Phase] field (batch recipe) and [PhaseModule] field (equipment) . If one of those two fields equals one of the entries in this list, the interface will skip processing that event. The name comparison is not case sensitive and allows masks as valid phase specifiers. Multiple phase names can be specified with a comma separator.
The following wildcards are supported in masks by the interface:

- single digit numerical value (0-9)

@ - single alpha character (a-z, A-Z)

? – any single valid symbol

! – repeat previous mask symbol

* - any array of ? symbols.
Example 1: skipphases=phase_1, ph*2
Example 2:

The following phases: PH_TEST:1-1, PH_ABORT:2-2 should be ignored by the interface. The switch will have the following form:

skipphases = ph_test*, ph*ort*

	skiprecipes=< list>

Optional

	The skiprecipes parameter specifies the list of recipes for which all events in the source should be ignored. For each event to be processed, the interface will check for the match in the recipe fields depending on recipe type:

Procedure Recipe : [Procedure] field of event

Unitprocedure Recipe: [UnitProcedure] field of event

Operation Recipe: [Operation] field of the event

Phase Recipe: [Phase] field of the event

 If the incoming event corresponding fields equals to one of the entries in this skip list, the interface will skip processing that event. The name comparison is not case sensitive and allows masks as valid recipe specifiers. Multiple recipes can be specified with a comma separator.

The following wildcards are supported in masks by the interface:

- single digit numerical value (0-9)

@ - single alpha character (a-z, A-Z)

? – any single valid symbol

! – repeat previous mask symbol

* - any array of ? symbols.

Example 1: skiprecipes=recipe_1, rec*2

Example 2:

The following recipes: PRC_PAINT (procedure level recipe), UP_TEST:2 (unitprocedure level recipe) should be ignored by the interface. The switch will have the following form:

skiprecipes = PRC_PAINT*, UP_TEST:2

	skipunits=<list>

Optional

	The skipunits switch specifies the list of units for which all events in the source should be ignored. This interface will check the [Unit] field in every event for the match in the provided list. If the match, the interface will skip processing that event. The name comparison is not case sensitive, masks are allowed as valid unit specifiers. Multiple unit names can be specified with a comma separator.
The following wildcards are supported in masks by the interface:

- single digit numerical value (0-9)

@ - single alpha character (a-z, A-Z)

? – any single valid symbol

! – repeat previous mask symbol

* - any array of ? symbols.
Example: skipunits = unit_1, u*2

Note, most of the command line parameters can be defined in INI file. For example consider Recovery Start parameter /rst and /merge parameter.

The command line syntax:

/rst=”12/05/2008 12:05:23” /merge

Equivalent Initialization file defined parameters:

rst=12/05/2008 12:05:23

merge = true

Note: In the initialization file each parameter should be defined on separate line. There should be only one equal (=) sign per line. Specify two forward slashes (//) to comment any line in the INI file.
//rst=12/05/2008 12:05:23

//merge = true
In this case, rst and mode parameters are commented, therefore they are considered to be undefined.

The initialization can contain any free text. The only lines that will be loaded by the interface are lines with embedded equal sign and their continuation lines, if any.
Sample INI file – Multiple EVT Sources
[SOURCE TEMPLATE]

Source[1].evtdir=”c:\test\evt”

Source[2].evtdir=\\deltav9\\journals\evt
[GENERAL]

Excludestates=COMPLETE, ABORTING

Equipment = abs:[Unit]\[PhaseModule]\Misc
[TAG TEMPLATE]

// [Basic Tag template, triggered on Event=Report, aliases are created as tag name]

Tag[1].Name = [Unit]_[PhaseModule]_Report

Tag[1].Value = [Pval]
Tag[1].Type = Float
// [Tag template with custom aliases, triggered on Event=Owner Change]

Tag[2].Name = [Unit]_[PhaseModule]_Owner Change

Tag[2].Value = [time]_[Descript]
Tag[2].Type = String
Tag[2].unitalias = [PhaseModule] Owner Change Me

Tag[2].phasealias = Owner Change Me
// Tag template with custom aliases, triggered on set of events defined as triggers]

// [Note: Unitalias and Phasealias are NOT going to be created since there are no Unit or Phase Modulde
// defined in the tag name]

Tag[3].Name = Generic Tag

Tag[3].Value = [time]_[Event]_[BatchID]_[pval]
Tag[3].Type = String
Tag[3].trigger = Report

Tag[3].trigger = Owner Change

Tag[3].trigger = Operator Prompt

Tag[3].unitalias = [phasemodule] abcd

Tag[3].phasealias = testing
[PROPERTY TEMPLATE]

Property[1].Value = [Time] State Change [Descript] [pval]

// Property[20].Value = [Time][PVal][Event]
(Disabled Property template.

Sample INI file – DeltaV German EVT Source

[SOURCE TEMPLATE]

source[1].evtdir = "D:\TEST\evt german\evt"

[GENERAL]

ExcludeStates = NONE

[TAG TEMPLATE]

Tag[55].Name = German Report

Tag[55].Value = [Descript]:[event][pVal]

Tag[55].Type = string

Tag[56].Name = German Bericht

Tag[56].Value = [Descript]:[event][pVal]

Tag[56].Type = string

Tag[57].Name = German Bericht float

Tag[57].Value = [pVal]

Tag[57].Type = float

[PROPERTY TEMPLATE]

Property[1].Value = [Time] Bericht [Unit] [phasemodule] [descript]-[Pval]

Property[2].Value = [Time] report [Unit] [phasemodule] [descript]-[Pval]

[Translations]

// [S88 Levels]

 translate: "Grundrezept" = "Procedure"

 translate: "Teilrezept" = "Unit Procedure"

 translate: "Grundoperation" = "Operation"

 translate: "Grundfunktion" = "Phase"

// [Batch Header info]

translate: "Rezeptkopf" = "Recipe Header"

translate: "Produktcode" = "Product Code"

translate: "Formelkopf" = "Formula Header"

translate: "Formelname" = "Formula Name"

// [Arbitrations]

translate: "Rezeptzuteilung" = "Recipe Arbitration"

translate: "Betriebsmittel belegt durch Rezept" = "Resource Acquired by recipe"

translate: "Betriebsmittel freigegeben durch Rezept" = "Resource Released by recipe"

translate: "Teilanlage" = "Unit"

// [Recipe Logic, Comment needed only if there is an extra column in DeltaV, so event can be converted to
// Comment event]

translate: "Zustands\E4\nderung" = "State Change"

translate: "Kommentar" = "Comment"

translate: "Systemmeldung" = "System Message"

translate: "CHARGEN-Anfang" = "Beginning Of BATCH"

translate: "CHARGEN-Ende" = "End Of BATCH"

translate: "Teilrezept gestartet" = "Unit Procedure Started"

translate: "Teilrezept beendet" = "Unit Procedure Finished"

translate: "Grundoperation gestartet" = "Operation Started"

translate: "Grundoperation beendet" = "Operation Finished"

// [Phase States]

translate: "L\C4\UFT" = "RUNNING"

translate: "BEENDET" = "COMPLETE"

translate: "ENTFERNT" = "REMOVED"

translate: "GESTOPPT" = STOPPED"

translate: "ABGEBROCHEN" = "ABORTED"

// [Additional Events to translate]

translate: "Bericht" = "Report"

translate: "Schrittaktivit\E4\t" = "Step Activity"

Sample INI file – DeltaV SQL, OPCAE, Syncade

[SOURCE TEMPLATE]

source[1].csmsmqpath = wdemo2008\private$\historian
source[1].cswebsrvpath = http://wdemo2008/wf/webservice

source[2].sqlserver = deltaV10

source[2].sqldatabase = DVHisDB
source[2].sqluser = test

source[2].sqlpswd = test
source[2].opcnode = deltav10

source[2].opcserver = DeltaV.OPCEventServer.1

// DeltaV AE SQL server datasource
source[3].sqlserver= deltav10\DELTAV_CHRONICLE
source[3].isae = true
[GENERAL]

ExcludeStates = NONE

[TAG TEMPLATE]

Tag[2].Name = Global [Unit]

Tag[2].Value = param:[Parameter] | descr: [Descript] | set:[Set]| low:[Low]|high:[high]|val:[Value]|recipe:[Procedure]\[UnitProcedure]\[Operation]\[Phase]|unit:[Unit]

Tag[2].type = string

Tag[2].Trigger = [Parameter,value="rpt_*"]

Tag[2].Trigger = [Parameter,value="par_*"]

Tag[2].Trigger = [Parameter,value="OP_*"]

Tag[2].Trigger = [Parameter,value="UP_*"]

Tag[2].Trigger = [Parameter,value="PRC_*"]

Tag[2].Trigger = [Parameter,value="PS_*"]

Tag[2].Trigger = [Parameter,value="description"]

Tag[2].Trigger = [Parameter,value="SET_*"]

Tag[3].Name = Global PAR

Tag[3].Value = param:[Parameter] | descr: [Descript] | set:[Set]| low:[Low]|high:[high]|val:[Value]|recipe:[Procedure]\[UnitProcedure]\[Operation]\[Phase]|unit:[Unit]
Tag[3].type = string

Tag[3].Trigger = [Parameter,value="par_*"]

Tag[4].Name = DeltaV Report tag

Tag[4].Value = [PVal]

Tag[4].Trigger = [Event, value=”Report”]

Tag[4].Type = string

[ALARM TAG TEMPLATE]

AlarmTag[1110].Name = Test [module] [Category]

AlarmTag[1110].Value = e: [Event] | a: [Attribute] | s: [State] | l: [level] | d1: [desc1] | d2: [desc2]

AlarmTag[1110].Trigger = [Event, value="ALARM"]

AlarmTag[1110].Trigger = [Event, value="CHANGE"]
[PROPERTY TEMPLATE]

Property[1].Value = event: [event] |desc: [descript] | val: [pVal] | eng units: [eu]

Property[1].Trigger = [Event, value=”Recipe Header”]

Property[1].Trigger = [Event, value=”Recipe Data”]

Property[1].Trigger = [Event, value=”Formula Header”]

Interface Node Clock

Make sure that the time and time zone settings on the computer are correct. To confirm, run the Date/Time applet located in the Windows Control Panel. If the locale where the interface node resides observes Daylight Saving Time, check the box marked “Automatically adjust clock for daylight saving changes”. For example,

[image: image53.png]Date and Time Properties

Date & Time | Time

[t6M1-08:00) Pocic Time (U5 & Canada); Tiuens v

kfor daylight saving

In addition, make sure that the TZ environment variable is not defined. All of the currently defined environment variables can be viewed by opening a Command Prompt window and typing set. That is,

C:> set

Make sure that the TZ environment variable is not defined. All of the currently defined environment variables can be viewed by opening a Command Prompt window and typing set. Confirm that TZ is not in the resulting list. If it is, run the System applet of the Control Panel, click the Environment tab, and remove TZ from the list of environment variables.
Security

The PI Firewall Database and the PI Proxy Database must be configured so that the interface is allowed to write data to the PI Server. See “Modifying the Firewall Database” and “Modifying the Proxy Database” in the PI Server manuals.

Note that the Trust Database, which is maintained by the Base Subsystem, replaces the Proxy Database used prior to PI version 3.3. The Trust Database maintains all the functionality of the proxy mechanism while being more secure.
See “Trust Login Security” in the chapter “PI System Management” of the PI Universal Data Server System Management Guide.

If the interface cannot write data to the PI Server because it has insufficient privileges, a –10401 error will be reported in the pipc.log file. If the interface cannot send data to a PI2 Serve, it writes a –999 error. See the section “Appendix A: Error and Informational Messages” for additional information on error messaging.
PI Server v3.3 and Higher

Security configuration using piconfig

For PI Server v3.3 and higher, the following example demonstrates how to edit the PI Trust table:

C:\PI\adm> piconfig

@table pitrust

@mode create

@istr Trust,IPAddr,NetMask,PIUser

a_trust_name,192.168.100.11,255.255.255.255,piadmin

@quit

For the above,

Trust: An arbitrary name for the trust table entry; in the above example,

a_trust_name
IPAddr: the IP Address of the computer running the Interface; in the above example,

192.168.100.11
NetMask: the network mask; 255.255.255.255 specifies an exact match with IPAddr
PIUser: the PI user the Interface to be entrusted as; piadmin is usually an appropriate user

Security Configuring using Trust Editor

The Trust Editor plug-in for PI System Management Tools 3.x may also be used to edit the PI Trust table.

See the PI System Management chapter in the PI Server manual for more details on security configuration.

PI Server v3.2

For PI Server v3.2, the following example demonstrates how to edit the PI Proxy table:

C:\PI\adm> piconfig

@table pi_gen,piproxy

@mode create

@istr host,proxyaccount

piapimachine,piadmin

@quit

In place of piapimachine, put the name of the PI Interface node as it is seen by PI Server.

Starting and Stopping the Interface

This section describes starting and stopping the interface once it has been installed as a service.

[image: image54.png]

Starting Interface as a Service

If the interface was installed a service, it can be started from PI ICU, the services control panel or with the command:

PIEMDVBCS.exe –start

To start the interface service with PI ICU, use the [image: image55.png]

 button on the PI ICU toolbar.

A message will inform the user of the the status of the interface service. Even if the message indicates that the service has started successfully, double check through the Services control panel applet. Services may terminate immediately after startup for a variety of reasons, and one typical reason is that the service is not able to find the command-line parameters in the associated .bat or initialization .ini file. Verify that the root name of the .bat file, .ini file and the .exe file are the same, and that the .bat file, .ini file and the .exe file are in the same directory. Further troubleshooting of services might require consulting the pipc.log file, Windows Event Viewer, or other sources of log messages. See the section “Appendix A: Error and Informational Messages,” for additional information.
Stopping the Interface Running as a Service

If the interface was installed a service, it can be stopped at any time from PI ICU, the services control panel or with the command:

PIEMDVBCS.exe –stop

The service can be removed by:

PIEMDVBCS.exe –remove

To stop the interface service with PI ICU, use the [image: image56.png]

 button on the PI ICU toolbar.
Buffering

This Interface is not compatible with OSIsoft’s standard buffering mechanisms, PI API Buffer Server (Bufserv) and the PI Buffer Subsystem (PIBufss). This interface is based on PI SDK as the data transfer mechanism. PI SDK calls are not buffered by the Bufserv or PIBufss. Regardless of data transfer mechanism from interface node to PI, all source batch related data is buffered by the source. Therefore, no additional buffering mechanism is necessary.
Appendix A:
Error and Informational Messages

A string NameID is pre-pended to error messages written to the message log. Name is a non-configurable identifier that is no longer than 9 characters. ID is a configurable identifier that is no longer than 9 characters and is specified using the /id flag on the startup command line.

Message Logs

The messages are logged in the local node log file PIHOME\dat\pipc.log.
Messages are written to log files at the following events:

· When the Interface starts many informational messages are written to the log. These include the version of the Interface, the version of PI SDK, the version of the PI Server, and the command‑line parameters used.

· As the Interface processes batch-related data, messages are sent to the log if there are any problems with data retrieval from the SQL Server or data processing to the PI Server.

· If the /db is used on the command line, then various informational messages are written to the log file.
Messages

The Batch interface logs all module, unit, alias, and point creation attempts for system management and auditing purposes. In addition, there are various debug level messages which may be logged using the /db=<level> switch in the interface startup file. See the section on Interface Operation for more detail on this switch.

Initialization or Startup Errors

Generally, these errors will stop the interface from starting up – it is normal behavior for the interface to exit since in many cases the proper startup state of the interface cannot be achieved (or determined) when these errors occur. Generally, speaking if an interface initialization error occurs, the user should check to ensure that communications between the PI server and interface node are existent (since many of the initial parameters need to be synchronized – checked or created with or on the PI server).

“<source>: Memory Allocation Error, <error description>.”
Errors, containing the message above, generally mean that the Interface node is out of memory. Release some memory by closing unused applications.
“<source>: COM Error: [error number] : <error description>.”
Errors, containing the message above, are COM generated errors. These errors can occur on data retrieving from the data source as well as during processing of data to the PI Server. Refer to PI SDK reference manual for PI related COM errors to resolve such errors.
“<source> object = NULL” or “<source> pointer = NULL”
Errors, containing the messages above, are memory allocation related errors. Generally mean that the Interface node is out of memory. Release some memory by closing unused applications and restart the interface.
“parse_argument_file: Error, Failed to open argument file: <argumentfile>”
This error means that the Interface failed to find the batch file associated with the specific Interface instance. Make sure that the batch file is consistent with the serviceid of the Interface. For example, on setup the service id is set as serviceid 4. In this case the batch file must be named PIDeltaVIntf4.bat.
“parse_argfile_line: Error, Found open quote (\”) without closing quote on command line...Terminating.”
This error means that one of the command line parameters in the startup batch file has only one opening quote without matching closing quote. Check the batch file for missing quotes.
“read_ini_file: Error, unable to locate Initialization file: <filename>”
Verify that initialization file named <filename> exists in the Interface directory.
“read_ini_file: Error, unable to open Initialization file in READ MODE: <filename>”
Check the access properties of the initialization file named <filename>.

“read_startup_file: Error, unable to locate <startup file>: <filename>”
Verify that startup file named <filename> exists in the Interface directory.

“read_startup_file: Error, unable to open <startup file> in READ MODE: <filename>”
Check the access properties of the startup file named <filename>.
“write_startup_file: Error, failed to open <startup file> for writing : <filename>, Error: [errno=error number] :<error description>.”

Check the access properties of the startup file named <filename>. Refer to error number and description for the actual error description.
“[REQUIRED PARAMETERS]: Development Error: No Batch Executive System defined. Please Contact OSIsoft technical support.”
This is invalid build of the interface. Contact OSIsoft’s technical support to request a valid build.
“[REQUIRED PARAMETERS]: Development Error: More than [1] Batch Executive System defined. Please Contact OSIsoft technical support.”
The interface was build incorrectly; contact OSIsoft’s technical support to request a valid build for required Batch Execution System.
“SimpleTemplateList::Verify: Error, Template: <template structure>, contains unresolved placeholder(s).”
This error generally means that there are unknown placeholders defined in template structures, such as [test] or square brackets without closing pair. Please read the Event Logging section of this manual on list of available and valid placeholders.
“SimpleTemplateList::Verify: Error, Template: <invalid structure>, contains invalid placeholder(s).”
This error generally means that there are unknown placeholders defined in template structures, such as [test] etc. Please read the Event Logging section of this manual on list of available and valid placeholders.
“TemplateModuleList::Verify: Error, <error description>”
The errors containing message above mean that there is an incorrect data provided while defining Equipment module structure. Refer to error description for hints and check your input in initialization file.
“[REQUIRED PARAMETERS]: <error description>”

OR
“[MISSING REQUIRED COMMAND LINE PARAMETERS] : <error description>”
The errors containing message above generally mean that there are missing parameters in either command line or in initialization file required for interface startup. Please refer to error description to resovle the error.

“Main: Error, Failed to set Numerical Settings to : [
anguage]”
The value provided for /ns switch in command line parameters is invalid, please check your input.
“check_SDK_version: Error: Too Many fields in PI SDK Version”
The interface failed to identify the PI SDK version number. Please consult with OSIsoft technical support to resolve this error.
“check_SDK_version: Error, This is an Old PI SDK Version, Please upgrade to <minimum SDK version> or higher.”
The PI SDK version installed on the interface node is lower than the minimum required by the interface version of the PI SDK. Please download and install new version of PI SDK.
“set_PISDK_GUID: Error, The Interface failed to identify itself to the PI Server, appID = NULL. Terminating.”
The interface failed to broadcast its Global Unique ID to the PI server. Please contact OSIsoft technical support to resolve this error.
“OpenPIConnection: Error, PI Server <collective name\PI server name> is a SECONDARY Server. The interface is designed to run only against PRIMARY PI Server. Terminating.”
The current version of the interface is designed to run only against primary server if used in the Collective configuration. Change the /host switch value and restart the interface.
“netsafe::FindCreateMonitorTags: ERROR, Failed to Add <object description>”
Errors, containing the messages above, are memory allocation related errors. Generally mean that the Interface node is out of memory. Release some memory by closing unused applications and restart the interface.
“StartHealthMonitor: Error, Failed to start health monitor thread. [error number]:<error description>”
This is windows related error, check error description.
“ReadCommandFile: ERROR, Unable to read Command file: <filename>, REASON: NO reading privileges”
Check the access properties of the command file named <filename>.
“ReadCommandFile: ERROR, Unable to reset Command file: <filename>, REASON: NO writing privileges”
Check the access properties of the command file named <filename>.
“mCOMThreadProc: ThreadID: [thread ID]: Error, Unable to retrieve passed arguments... Terminating”
This error indicates that the interface node might be out of memory. Release some memory by closing unused applications and restart the interface.
“OPCAEConnectionsInitialize: Error, Failed to start connection thread (mCOMThreadProc). [error code]:<description>”
This is Windows generated error. Check the error code and description for more information.
“The source IP address <server name> is not valid, <error description>“
The errors containing message above generally mean that the /host=<server name>switch value is invalid. Please refer to error description and correct your input in command line parameters.
“SourceList::AddUpdate: Error <error description>“
The errors containing message above mean that there is an incorrect data provided while defining source[#] properties. Refer to error description for hints and check your input in initialization file.
“SQLInitialize: Error, NO SQL Sources defined. Terminate.”
Or
“EVT_Initialize: “ Error, <sw->Sources> is EMPTY list. Terminating.”
Or
“EVT_Initialize: Error, Failed to access EVT directory: <directory name>: [errno=<error code>]: <error description>”
The above errors indicate that the sources in initialization file were not defined properly. Check your input. Initialization file is located in the same directory as the batch file.
“TemplatePropertyList::Verify: Error, <error description>”
or

“TemplatePropertyList::Add: Error, <error description>”

The errors containing message above mean that there is an incorrect data provided while defining Property[#] template value structure. Refer to error description for hints and check your input in initialization file.
“TemplateTagList::Verify: Error, <error description>”
or

“TemplateTagList::AddUpdate: Error <error description>”

The errors containing message above mean that there is an incorrect data provided while defining Tag[#] template properties. Refer to error description for hints and check your input in initialization file.
Runtime Errors

Generally, Batch interface errors are triggered by some action that the interface takes while interacting with the PI Server or reading data from the data source. Therefore, most (if not all) errors will contain a variable portion of the message which is returned from either the PI Server or the underlying PI SDK layers. PI server specific portions of messages will generally contain a negative five-digit number (e.g. –10401 or –15001). These numbers are often followed by a description. However, these error numbers can also be looked up using the following command line commands:

pidiag –e <error number>

or:

pilogsrv –e <error number>

PI SDK numbers are generally eight-digit hexadecimal numbers (e.g. 0x000403a0). Again specific descriptions for the error are generally appended to the error message, but can also be obtained by using the “Error Lookup” function in the AboutPI SDK.exe application installed when the PI SDK is installed.

“<source>: Memory Allocation Error, <error description>.”
Errors, containing the message above, generally mean that the Interface node is out of memory. Release some memory by closing unused applications.

“<source>: COM Error: [error number] : <error description>.”
Errors, containing the message above, are COM generated errors. These errors can occur on data retrieving from the data source as well as during processing of data to the PI Server. Refer to PI SDK reference manual for PI related COM errors to resolve such errors.
“<source>: Critical Error, <error description>.”
“<source> object = NULL” or “<source> pointer = NULL”
Errors, containing the messages above, are memory allocation related errors. Generally mean that the Interface node is out of memory. Release some memory by closing unused applications and restart the interface.
“Read_SQL_Table: Lost connection to <SQL Server=<server name>:Database=<database name>>. Will try to connect on the next scan.”
This is informational error. The interface will resume data collection automatically as soon as connection to SQL server is restored.
“Read_SQL_Table: <SQL Server=<server name>: Database=<database name>> <error message>.”
This is generic error while reading data from SQL server. Refer to <error message> for error description.
“SQLSource::CheckSQLtoPITimeOffset: Error, Failed to convert Current Local SQL time: <SQL date time string> to GMT UTC seconds”
Check the date and time settings on interface node. The date and time settings should be identical to the source DeltaV SQL server.
“SQLSource::CheckSQLtoPITimeOffset: Error, Failed to retrieve Current PI Server Time as UTC seconds.”
Check the network connection between interface node and the PI server.
“SQLSource::CheckSQLtoPITimeOffset: Error, SQL Server is ahead of PI Server more than 30 seconds, please adjust clocks. Terminating.”
The PI server allows the source event timestamps to be only 30 seconds ahead of its time. Please adjust date and time settings for source node and/or PI server node to be identical.
“GetSQLData: Unable to Determine SQL Query End Time, skipping scan.”
OR
“GetSQLData: Unable to Determine SQL Query Start Time, skipping scan.”
OR
“GetSQLData: Error, Failed to set next query Start Time. Terminating.”
The above errors indicate that the interface failed to convert start or end SQL query times from UTC seconds to SQL local time. Please contact OSIsoft technical support to resolve this error.
“SQLThreadFunc: ThreadID: [<thread id>]: Error, Unable to retrieve passed arguments... Terminating.”
The above error indicates that the interface node might be out of physical memory. Release memory by closing unused applications and restart the interface.
SQL Server [<server name>:<database name>] working thread[<thread id>] – Error, failed to convert TimeStamp: <SQL query start time string>.”
Check the date and time settings on interface node. The date and time settings should be identical to the source DeltaV SQL server.
“EVTThreadFunc::OnChanged::Created: Error occurred while ADDING file: <path>\\<filename> to the <EVTFileList>. Terminating.”
The above error indicates that the interface node might be out of physical memory. Release memory by closing unused applications and restart the interface.
“EVTThreadFunc::OnChanged::Deleted: Error occurred while DELETING file: path\<filename> from the <EVTFileList>”
OR
“EVTThreadFunc::OnRenamed: Error occurred while ADDING file: path\<filename> to the <EVTFileList>”
OR
“EVTThreadFunc::OnChanged (oldfile): Error occurred while DELETING file: path\<filename> from the <EVTFileList>”
OR

“EVTThreadFunc::OnRenamed (new name): Error occurred while ADDING file: path\<filename> to the <EVTFileList>”
These errors indicate that internal memory error occurred. Restart the interface to resolve this problem and report the error to OSIsoft technical support.
“EVTThreadFunc::OnError: Directory: <path> Error: <error description>”
 System error occurred while listening for directory changes. Refer to error description for more details.
“EVTThreadFunc: ThreadID: [thread id]: Error, Unable to retrieve passed arguments... Terminating.”
The above error indicates that the interface node might be out of physical memory. Release memory by closing unused applications and restart the interface.
“EVT Directory Monitor[thread id]: <directory path>, Exception Error: <error description>”
Exception error occurred while monitoring evt directory. This is intermediate error and should be resolved by the interface on the next scan.
“CheckEVTMonitoringThreads: Error, Failed to start Directory Monitoring Thread on <dir=path>, [errno=<error number>] : <error description>.”
System error occurred while attempting to start directory monitoring thread. Refer to error number and error description for more information.
“file_list::GetNextFile: Error, The data is out of time order: …”
This error indicates that interface internal file list is corrupted. Restart the interface.
printmsg((CallerFunction + “::ReadNewLine: <file = “ + filename + “>, Error: (FilePtr=NULL)”).c_str());return -1;}

“…ReadNewLine:: … file:<filename>…”
The errors containing the above substring indicate that the interface can not process new line. If the error is recoverable, the interface will retry to process same file again on the next scan. Please refer to the error description for troubleshooting.
“… Failed to correct file pointer…” or “…failed adjusting position pointer…”
Interface encountered illegal position pointer and failed to correct itself. Restart the interface.

“… Error…<Empty> ” or “… Error…<Blank> ”

Errors containing the above substring indicate that the passed parameter was empty. Please report this error to OSI technical support.
“… Error in file <filename >, Failed to OPEN…”
Interface cannot open source file either due to network issues, file deleted/renamed or no read privileges. Please refer to the error message for more information.
For all other errors, refer to error description and contact OSIsoft technical support.
System Errors and PI Errors

System errors are associated with positive error numbers. Errors related to PI are associated with negative error numbers.
Error Descriptions

On Windows, descriptions of system and PI errors can be obtained with the pidiag utility:
\PI\adm\pidiag –e error_number
Appendix B:
Batch Executive System – Configuration Requirements

Introduction

Background

The Batch interface reads batch data from different types of data sources, interprets their contents, and builds the corresponding objects in the PI Server Batch Database (BatchDB). In order for this process to work, each data source must contain specific recipe events in a predictable order.

Note: The PI Batch interface is not appropriate for all types of recipes generated by a Batch Execution System. It is designed for recipes that constrain a unit to run a single unit procedure at a time.
This document is meant to be informative enough for the potential user to make the assessment that the interface is appropriate for their environment; it does not delineate the low-level technical aspects of the event file or Batch Execution System (BES) logic.

Objectives

The goals of this document are two-fold. Firstly, to outline the Batch interface logic and PI Server Batch Database objects. Secondly, to make recommendations regarding recipe configuration and BES operations that are compatible with the PI Batch interface logic.

Principles of Operation

Principles of the PI Server Batch Database

The PI Batch Database has three hierarchical objects for the purposes of the PI DeltaV Batch interface: the PI Batch, PI UnitBatch, and PI SubBatch. All three of these objects have a start and end time property that designates the timeframe in which they are “active”.

The PI Batch is an object that is meant to correlate to a Batch (for instance a single execution of a recipe). The PI Batch has one main feature with respect to the PI DeltaV Batch interface: it has a collection of PI UnitBatches. The PI Batch is not tied to a specific piece of equipment.

The PI UnitBatch object has three primary properties. These are a parent PI Batch, a PI SubBatches collection, and a single unit. The PI UnitBatch rigidly enforces the S88 stricture that only one PI UnitBatch may be present in a unit at any given time.

The PI SubBatch is an object that contains only four user properties: a Name, a PIHeading (which allows it to alias a user configurable title), a parent (which may be a PI SubBatch or a PI UnitBatch) and a PI SubBatches collection. PI SubBatches are hierarchical (i.e. each PI SubBatch has its own PI SubBatches collection, of which each PI SubBatch in the collection has its own PI SubBatches collection and so on). They are also only creatable from within a PI UnitBatch (i.e. all PI SubBatch hierarchies start with a PI UnitBatch at the top level).

For more detailed information on the PI Batch Database and its objects, consult the document “PI SDK Tutorial” Chapters 3 and 4.

Principles of the PI DeltaV Syncade Batch Interface

The Batch interface makes the following assertions about the connections between the S88 recipe hierarchy and the PI Batch Database (BatchDB).

Each instance of a recipe loaded on to the BES batch list is a PI Batch. Generally, the highest level of a recipe possible is the Procedure.

Each Unit Procedure is a PI UnitBatch

Each Operation is a PI SubBatch with a PI UnitBatch as parent

Each Phase is a PI SubBatch with a PI SubBatch as a parent

The interface populates the BatchDB objects based on certain events read from data source(s).

PI Batch

For example, consider Event Journals as data source then the PI Batch start and end times are populated by the System Message events “Beginning Of BATCH” and “End Of BATCH”, respectively.

PI UnitBatch

The PI UnitBatch start and end times are based on a combination of events. Since the PI UnitBatch is tied to a piece of equipment, a unit procedure must start in the recipe and the equipment specified must be acquired. When both of these criteria are fulfilled (i.e. the latter of the two events being found) the PI UnitBatch is created and its start time property populated. When either of these criteria ceases to be true (i.e. either the unit procedure ends or the equipment is released), the PI UnitBatch is ended.

PI SubBatch: Operation Level

PI SubBatches that correspond to an operation in the recipe must also fulfill two criteria with logic similar to that for PI UnitBatches. That is, the equipment must be acquired and the operation must become active in the recipe for the appropriate PI SubBatch to be started. When either criterion ceases to be true, the PI SubBatch is ended. In the case of an Operation level recipe, a PI UnitBatch is created as a placeholder for the Operation level PI SubBatch.

PI SubBatch: Phase Level

For a PI SubBatch corresponding to a phase, the start time and end times are populated by the phase state. Since phases are not necessarily under the auspice of the BES directly (they are calls into the phase logic on either the DCS or through another mechanism), the only thing that is specified is the state. The first receipt of an “active” BES phase (a superset of the allowable S88 states) state (e.g. RUNNING, DOWNLOADING, UPLOADING, STARTING, RESTARTING) will start the PI SubBatch and the receipt of a “terminal” state (e.g. COMPLETE, STOPPED, ABORTED) will end it.

While some BESes allow for the linking of recipes into a campaign, the PI DeltaV Batch Interface does not currently link or group PI Batches in any way. PI Batches with the same BatchID are allowed and do not conflict with the normal operation of the PI Batch interface or PI BatchDB.

For a more detailed account of the logic that the PI DeltaV Batch Interface uses, refer to the Principles of Operation section in this manual.

Recommendations for BES Recipes and Equipment Models

The following page shows three figures depicting various types of recipes that can be configured and run on a BES. Figure 1 is a sequential flow control (SFC) diagram that shows a simple procedure that consists of one unit procedure that houses two parallel operations. Each operation consists of two sequential phases. This type of recipe can be processed by the PI DeltaV Batch interface. Since the interface will attempt to create two parallel PI SubBatches, which is allowed, the running of this recipe can be represented in PI without any issues. Recipes that contain concurrent unit procedures in different units are also allowed.

Figure 1: This recipe configuration is allowed as long as the unit that UP_A runs on is not configured to allow more than one simultaneous owner (see Figure 2).

Figures 2 and 3 are SFC diagrams that depict the two types of recipes that can be created on some BESes and that cannot be processed by the interface and, therefore, are not supported. These two types of recipes are:

If the maximum number of owners allowed for a unit is greater than one (Figure 2)

If multiple parallel unit procedures are configured and any one of those unit procedures requires that the arbitration of the unit occurs before the unit procedure starts (Figure 3)

These two types of recipes would result in the creation of PI UnitBatches that violate the S88 requirement of only one Unit Procedure active in a given unit at a given time. If the equipment (units) or recipes are configured in either of the above two situations, then the PI Batch interface is not appropriate for that system.
Figure 2: An SFC diagram portraying two parallel procedure level recipes, each containing a single unit procedure.

This recipe configuration is not allowed under the following conditions: a) UP_A and UP_B use the same unit; and b) unit is allowed to have multiple owners; and c) Recipes 1 and 2 are run concurrently. Note, this equipment configuration is not possible on all BESes.

Figure 3: This figure depicts an SFC diagram consisting of a procedure level recipe that has parallel unit procedures.

This recipe configuration is not allowed under the following circumstances: a) UP_A and UP_B use the same unit; and b) UP_A and/or UP_B are configured to acquire the unit before the start of the unit procedure. Note, this recipe configuration may not be possible on all BESes.

Note that not all BESes can be configured to make these types of recipes or equipment configurations. For example, it is known that the DeltaV Batch Executive allows for the configuration of multiple owners for a unit, while this is not possible on any version of Sequencia’s OpenBatch or on Rockwell’s RSBatch version 5.0 or lower.

There is no workaround for equipment or units that are configured to allow more than one concurrent owner (Figure 2). This situation can lead to multiple batches/recipes simultaneously acquiring a given piece of equipment and using it, since the interface is unaware of the interaction between recipes (i.e. event files). Ultimately, this is equivalent to having multiple PI UnitBatches simultaneously active in a given unit, which cannot be represented in the PI BatchDB.

Often, it is possible to adapt recipes with concurrent unit procedures on the same unit (Figure 3) to contain concurrent operations instead (similar to what is depicted in Figure 1). Recipes with concurrent operations (or phases) can be processed by the PI DeltaV Batch interface accurately. In the case of multiple concurrent owners for a unit, the only solution is to modify the equipment model to restrict the number of owners of a unit to one. This is the recommended method for resolving the issue of multiple unit owners. Recipe modifications may also be required in addition to the equipment model modifications.

Appendix C:
Event File Directory Sync Utility

Introduction

The Emerson DeltaV Syncade Batch interface to the PI system can read batch data from event journal files generated by a batch execution system and sending the data to PI.
The Event File Directory Sync utility has been designed to copy event journal files from one directory to another. The utility continually monitors a source directory for new files. If any new files are detected, the utility copies the files to a destination directory. The DeltaV Batch interface is then able to process and rename files in the destination directory without modifying the original files in the source directory.

Principles of Operation

The utility takes a source path and a destination path as parameters, along with an optional scan rate parameter. On each scan, the utility scans for all files with the extension .evt in the source path and compares that list with all files with the extensions .999 and .que in the destination path. Any .evt files which do not have a corresponding .999 or .que file are copied from the source path to the destination path. If a matching .evt file is found in the destination path, the source file is copied over only if the file sizes differ.

For a file to be copied successfully, the full path to either the source filename or destination filename cannot exceed 259 characters. In addition, neither the source path nor the destination path can exceed 252 characters.

[image: image57.png]

CAUTION

It is critical that the .999 and .que files are not deleted until after the corresponding .evt files are deleted. If a .999 file is deleted before its associated .evt file, the .evt file will be copied into the destination directory again.
Utility Installation Procedure

1. Copy the interface files from the installation media to a directory on the interface node, for example, C:\PIPC\Interfaces\PIEMDVBCS\. Create the directory if necessary.

2. Create a .bat command file with the same root name of the executable.

3. Alter the command-line parameters in the .bat file as discussed in this manual.

4. Try to start the utility interactively with the command file. For example:
EVTSync.bat
If the utility cannot be started interactively, it will not be able to start as a service. It is easier to debug interactively started processes because error messages are echoed directly to the screen. Once the utility is successfully running interactively, try to run it as a service by following the instructions below. To stop the utility once it has been started interactively, hit CTRL-C.
Multiple copies of the utility can run on the same system. To run multiple copies as services, each copy of the executable must have a unique name, with a matching .bat file in the same directory.
Installing the Utility as a Windows Service

Change to the directory where the EVTSync.exe executable is located. Then run the utility with the –install switch:

EVTSync.exe –install
Check the Microsoft Windows services control panel to verify that the service was added successfully. Use the services control panel to change the utility from a manual service to an automatic service or vice versa.

Startup Command File

Command-line parameters can begin with a / or with a -. For example, the /dest=C:\data and –dest=C:\data command-line parameters are equivalent.

Command file names have a .bat extension. The continuation character (^) allows one to use multiple lines for the startup command. The maximum length of each line is 1024 characters (1 kilobyte).

Command-line Parameters

	Parameter
	Description

	/dest=<path>
	Full path to destination directory.

	/rate=#
	Optional rate in seconds to scan source and destination directory. Default scan rate is 30 seconds. This parameter must be an integer value.

	/src=<path>
	Full path to source directory.

Sample EVTSync.bat File

The following is an example file:

REM==

REM

REM EVTSync.bat

REM

REM Sample startup file for the Event File Directory Sync Utility

REM

REM==

REM

REM Sample command line

REM

EVTSync.exe ^

/src=\\hostname\journals ^

/dest=\\BatchServer\Journals

REM

REM end of EVTSync.bat

Starting and Stopping the Utility

Starting the Utility Service

If the interface was installed a service, it can be started from the services control panel or with the command:

net start EVTSync

A message will be echoed to the screen informing the user whether or not the utility has been successfully started as a service. Even if the message indicates that the service started successfully, make sure that the service is still running by checking in the services control panel. There are several reasons that a service may immediately terminate after startup. One is that the service may not be able to find the command-line parameters in the associated .bat file. For this to succeed, the root name of the .bat file and the .exe file must be the same, and the .bat file and the .exe file must be in the same directory. If the service terminates prematurely for whatever reason, no error messages will be echoed to the screen. The user must consult the pipc.log file for error messages.
Stopping the Utility Service

If the interface was installed a service, it can be stopped at any time from the services control panel or with the command:

net stop EVTSync

The service can be removed with:

evtsync.exe –remove

Conclusions

The DeltaV Batch interface processes batch associated events from Emerson DeltaV Batch Executive to create and populate PI BatchDB, PI ModuleDB and PI Point objects. The interface is not appropriate for all recipe types. In particular, recipes that contain concurrent unit procedures or that run in units that allow more than one simultaneous owner may not be accurately processed by the interface. However, recipes that contain concurrent operations or phases can be accurately processed by the interface. Recipes that contain concurrent unit procedures in different units are also allowed.
Revision History

	Date
	Author
	Comments

	14-Aug20-08
	Idatskov
	Created.

	14-Nov-2008
	MKelly
	Version 1.0.0.0; Revision A, Added new ICU Control screenshots, fixed headers and footers, removed comments, updated TOC.

	21-Nov-2008
	Janelle
	Version 1.0.0.0 Revision B: added new ICU control screen shot for editing tag number; added header rows to .bat file and .ini file parameters tables.

	23-Nov-2008
	MKelly
	Version 1.0.0.0 Revision C; added new ICU Control screenshot for Administration tab, fixed sample ini file by adding correct section headers.

	24-Nov-2008
	Janelle
	Version 1.0.0.0 Revision D: changed description of (//) in INI file – these are comment characters, changed from “disabled”

	24-Aug-2009
	Idatskov
	Version 1.0.1.0. Added new features: Advanced Parsing, AlarmTag Templates, skiprecipes parameter, Batch Activity tag template support. Added new placeholders for Syncade data source: [SET], [HIGH], [LOW]

	24-Sep-2009
	MKelly
	Version 1.0.1.0 Revision A; Fixed Headers, Footers and Hyperlinks. Reformatted several tables.

	25-Sep-2009
	MKelly
	Version 1.0.1.0, Revision B; Correct sample ini files which were showing .value.string or .value.float instead of .type=String or .type=Float for Tag Templates.

Procedure

Unit Procedure

Operation

Phase

Process Cell

Unit

Equipment Module

Control Module

Area

Service installed or uninstalled

Status of the Interface Service

Status of the ICU

UP_A

Procedure

PHS_B

PHS_A

Operation

(OP_B)

OP_A

OP_B

Unit Procedure

(UP_A)

UP_B

Recipe 2

(Proc_2)

UP_A

Recipe 1

(Proc_1)

UP_A

UP_B

Procedure

PHS_B

PHS_A

Operation

(OP_A)

OP_A

Unit Procedure

(UP_B)

