 Event File
Interface to the PI System

Version 3.5.0.12
How to Contact Us

	Phone
	(510) 297-5800    (main number)
(510) 297-5828    (technical support)

	Fax
	(510) 357-8136

	E-mail
	techsupport@osisoft.com

	World Wide Web
	http://www.osisoft.com

	Mail
	OSIsoft
P.O. Box 727
San Leandro, CA  94577-0427
USA

OSI Software GmbH 
Hauptstra(e 30 
D-63674 Altenstadt 1
Deutschland
	OSI Software, Ltd
P O Box 8256
Symonds Street
Auckland 1035  New Zealand

OSI Software, Asia Pte Ltd
152 Beach Road
#09-06 Gateway East
Singapore, 189721


Unpublished – rights reserved under the copyright laws of the United States.
RESTRICTED  RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph I(1)(ii) 
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013

Trademark statement—PI is a registered trademark of OSIsoft, Inc. Microsoft Windows, Microsoft Windows for Workgroups, and Microsoft NT are registered trademarks of Microsoft Corporation. Solaris is a registered trademark of Sun Microsystems. HP‑UX is a registered trademark of Hewlett Packard Corp.. IBM AIX RS/6000 is a registered trademark of the IBM Corporation. DUX, DEC VAX and DEC Alpha are registered trademarks of the Digital Equipment Corporation.
PI_EVTIntf.doc

( 2002-2005 OSIsoft, Inc. All rights reserved
777 Davis Street, Suite 250, San Leandro, CA  94577

Table of Contents

1Introduction


1Reference Manuals


1Supported Features


3Diagram of Hardware Connection


5Principles of Operation


5Event Journals


5Syntax Variations in Batch Execution Systems


7Processed Event Journals


7Definition of ‘Batch’


7Recipe Model vs. Equipment Model


9Methodology


9PIBatch


10PIUnitBatch


10PISubBatch


10Sub-PISubBatch


11Phase-Level Only Recipes


11Arbitration Events Unavailable


12PI Point and Unit Creation


13Foreign Language Support


13Event Logging


15Merging EVT Files into a Single PIBatch


18Questionable Files


19Example Event File Journal


21Installation Checklist


23Interface Installation


23Naming Conventions and Requirements


24Interface Directories


24The PIHOME Directory Tree


24Interface Installation Directory


24Interface Installation Procedure


24Installing the Interface as an NT Service


24Installing the Interface Service with the PI-ICU


27Installing the Interface Service Manually


29PointSource


31PI Point Configuration


31Interface-specific Points


31Point Attributes


31Tag


31PointSource


31PointType


31Location1


32Location2


32Location3


32Location4


32InstrumentTag


32ExDesc


33Scan


33Shutdown


35Performance Point Configuration


35Configuring Performance Points with PI-ICU


36Configuring Performance Points Manually


37I/O Rate Tag Configuration


37Monitoring I/O Rates on the Interface Node


37Configuring I/O Rate Tags with PI-ICU


38Configuring I/O Rate Tags Manually


38Configuring the PI Point on the PI Server


39Configuration on the Interface Node


41Startup Command File


46Command-line Parameters


61Sample evtintf.bat File


63Interface Node Clock


65Security


67Starting / Stopping the Interface


67Starting Interface as a Service


67Stopping Interface Running as a Service


69Buffering


71Appendix A: Error and Informational Messages


71Message Logs


71Messages


76Questionable Batches


76System Errors and PI Errors


79Appendix B: BES Configuration Requirements


79Introduction


79Background


79Objectives


79Principles of Operation


79Principles of the PI Server Batch Database


80Principles of the PI-EVT Interface


81Recommendations for BES Recipes and Equipment Models


85Appendix C: Event File Directory Sync Utility


85Introduction


85Principles of Operation


85Utility Installation Procedure


86Installing the Utility as an NT Service


86Startup Command File


86Command-line Parameters


87Sample evtsync.bat File


87Starting / Stopping the Utility


87Starting the Utility Service


87Stopping the Utility Service


87Conclusions


89Revision History





Introduction

The Event File interface to the PI Data Archive gathers information from event journal files (.evt files), which are generated by batch execution systems (BESs) based upon Sequencia’s OpenBatch product.  Examples of these batch systems include Rockwell Software’s RSBatch 5.0 (formerly Sequencia’s OpenBatch 5.0), Emerson’s DeltaV Batch Executive, Honeywell’s Total Plant Batch 2.2, and Intellution’s iBatch 4.1.30.

Note: This interface requires PI Server version 3.3 SR 2 or higher and the PI-SDK version 1.2.0.180 or higher.

Since the event journal file is a flat ASCII file, data can only be written to the PI system.  Outputs back to the BES are not allowed within the scope of this interface. 

An Arbitration event occurs whenever a batch takes ownership of a physical unit or equipment module.  Several batch recipe execution systems (or batch execution systems, BESes) such as Sequencia’s OpenBatch previous to version 4.0.0.81 and all licensed variants based on those versions, generate event journals, but do not list Arbitration events.  The interface can be configured to account for this.  However, depending upon the methods used for recipe execution, the start and end times of PI Batch Database objects (e.g. PIUnitBatches and PISubBatches) are only approximate due to the bracketed timeframe that is used without Arbitration events.
Reference Manuals
OSIsoft
· UniInt End User Document

· PI Data Archive Manual

· PI-API Installation Instructions

Vendor

The user is advised to review the pertinent documentation regarding the particular BES that they are using.  In addition, the user is also advised to maintain familiarity with the contents and format of the Event File journal such that appropriate options and features of the interface may be properly chosen.
Supported Features

	Feature
	Support

	Part Number
	PI-IN-OS-BEFM3-NT

	Platforms
	Windows 2000/XP (NT4 not supported)

	PI Point Types
	real / digital / integer / 
float32 / float16 / string

	Sub-second Timestamps
	Yes

	Sub-second Scan Classes
	No

	Automatically Incorporates PI Point Attribute Changes
	Yes

	Exception Reporting
	No

	Outputs from PI
	No

	Inputs to PI: Scan-based / Unsolicited / Event Tags
	Event and Scan-based

	Maximum Point Count
	None

	Uses PI-SDK
	Yes

	PINet to PI 3 String Support
	N/A

	* Source of Timestamps
	Device

	* History Recovery
	Yes

	Failover
	No

	* UniInt-based
	Yes

	Vendor Software Required on PI-API / PINet Node
	No

	* Vendor Software Required on Foreign Device
	Yes

	Vendor Hardware Required
	No

	Additional PI Software Included with Interface
	No

	* Device Point Types
	String Only


*See paragraphs below for further explanation.
Source of Timestamps

Since each record in the event journal file contains a timestamp and the interface itself is solely scan-based, use of the time at record processing could introduce inherent latency with respect to establishing the event time.  Thus, the timestamp accompanying the record is used as the source of the timestamp for the data to be placed into the PI system.

History Recovery

The operation of the interface may be interrupted without loss of data as long as the event files continue to be generated properly by the batch execution system.  The interface monitors the specified directory where the event journal files are located.  It then processes any new files or ones which have received new entries since it last checked the directory.

UniInt-based

UniInt stands for Universal Interface. UniInt is not a separate product or file; it is an OSIsoft-developed template used by our developers, and is integrated into many interfaces, such as the PI-IN-OS-BEFM interface. The purpose of UniInt is to keep a consistent feature set and behavior across as many of our interfaces as possible. It also allows for the very rapid development of new interfaces. In any UniInt-based interface, the interface uses some of the UniInt‑supplied configuration parameters and some interface-specific parameters. UniInt is constantly being upgraded with new options and features.

The UniInt End User Document is a supplement to this manual.

Vendor Software Required

The BES and its accompanying support software are required for proper operation of the Event File interface.

Device Point Types

Since the event journal file is a flat ASCII file, all data contained within it is of string ASCII type.  The interface attempts to coerce the string data into numerical equivalents where possible.  If automatic point creation is used, the interface will attempt to coerce data into 32-bit floating point format if necessary. 
Diagram of Hardware Connection

[image: image17.png]


[image: image18.png]




Figure 1.  Schematic of Recommended Hardware and Software Configuration for Event File Interface 

The interface may either be installed on the same node as the batch execution system (BES) or the PI Server or on a completely separate node.  Due to load balancing considerations, OSIsoft does not recommend that the interface be installed on the same node as the PI Server.  Contact the vendor of your BES for recommendations as to installing third-party software, such as the Event File Interface, on the same node as the BES.

Principles of Operation

This section contains relevant information to help the user better understand some of the primary logic of the Event File interface.

Event Journals

Event journals are files that are generated by a batch execution system.  These files contain a log of events that occur during the execution of a recipe.  The following is a partial list as an example of the types of events that are recorded in an event journal:

· Arbitration (of units and equipment modules)

· Recipe Values

· System Messages

· State Changes

· Owner Changes

· Reports

· Param Download Verification

· Scale Factors

· Batch Deletions

· State Commands

Users can select which of these message types will be saved by the interface.  Because event messages are stored as strings in the PI Batch Database, specifying fewer types of messages to be stored may have a significant impact on the performance of both the PI Server and any client retrieving the data from the PI Server.

Syntax Variations in Batch Execution Systems

Contrary to popular belief, the syntax used in event journals between BES types has enough variance to warrant that the customer must be aware that such differences exist.  Different BESes use slightly different syntax and event types.  To date, there are 32 known types of events that occur in event journals.  

	#
	Event Type
	Present in which BES

	1
	Active Binding
	iBatch

	2 
	Active Step Change
	All

	3 
	Active Step Change Commencing
	All

	4 
	Arbitration
	Honeywell, RSBatch (OpenBatch)

	5 
	Batch Deletion
	All

	6 
	Bind
	All

	7 
	Comment
	All

	8 
	Creation Bind
	All

	9 
	Event File Name
	All

	10 
	Formula Header
	All

	11 
	Mode Change
	All

	12 
	Mode Command
	All

	13 
	Operator Prompt
	All

	14 
	Owner Change
	All

	15 
	Param Download Verified
	All

	16 
	Phase Link Permissive Received
	All

	17 
	Phase Link Permissive Sent
	All

	18 
	Phase Logic Arbitration
	All

	19 
	Prompt
	All

	20 
	Prompt Response
	All

	21 
	Recipe Arbitration
	DeltaV

	22 
	Recipe Data
	All

	23 
	Recipe Data Changed
	All

	24 
	Recipe Header
	All

	25 
	Recipe Value
	All

	26 
	Recipe Value Change
	All

	27
	Report
	All

	28 
	Scale Factor
	All

	29 
	State Change
	All

	30 
	State Command
	All

	31 
	Step Activity
	All

	32 
	System Message
	All


That is, the physical equipment arbitration events vary from BES implementation to BES implementation.  This highlights the fact that while OSIsoft attempts to implement a set of common logical rules across all implementations, this is not possible in all situations.

The syntax from various vendors’ versions of the event journal varies slightly.  Given these variations, the user generally must specify their BES type using the (/bestype command-line switch).  In particular, delimiters between the recipe hierarchy levels and the formatting of individual event records may vary as a function of the BES type.  The interface expects that each record in the event file will contain at least 14 tab-delimited columns and that the first 14 columns contain the following information in the following order:


Column1:
Timestamp (either LclTime or GMTTime)


Column2:
BatchID


Column3:
Recipe


Column4:
Descript


Column5:
Event


Column6:
Pvalue


Column7:
EU


Column8:
Area


Column9:
ProcCell


Column10:
Unit


Column11:
Phase


Column12:
PhaseDesc


Column13:
UserID


Column14:
UniqueID

All columns after the 14th can be stored in PI, but are not currently used by the interface to trigger any additional logic.

Processed Event Journals

Once the interface processes an event file successfully, the interface renames the file to *.999. This is necessary to keep track of the processed files. However, some times renaming the file may not be a viable solution. There are two ways of resolving this issue. First, the /rdt (Rename Delay Time) switch in the interface command line will delay the renaming of the file by specified time after it finishes processing the file. The second option is to use the PI Event File Directory Sync Utility (See Appendix C) to copy the original files to the directory monitored by the interface. This utility will sync the original and destination directories at a specified frequency. Read Appendix C before using this utility.
Definition of ‘Batch’

A single event journal is generated per execution of a recipe.  The term ‘batch’ will be used to indicate the material produced by a single execution of a recipe.  In other words, each event file will represent a distinct batch. If the merge switch is used, one batch represents multiple event files. Please refer to “Merging Event Files into one PIBatch” section on how the merge works.
Recipe Model vs. Equipment Model

Two distinct yet related models are used to describe batch processes.  These are the Recipe Model and the Equipment Model.  Diagrams depicting hierarchical structures, in particular those for an S88-compliant hierarchical structure, of these models are shown in Figures 2 and 3.  The Equipment Model describes the physical equipment necessary to create a batch while the Recipe Model describes the procedures, which are performed during the execution of a recipe.  There is no intrinsic or direct relationship between the levels of the Equipment Model and the Recipe Model.  With the exception of Arbitration events, journal files contain only Recipe Model event information.  

It should be noted that within S88, the use of procedures and unit procedures is optional.  A recipe may be defined consisting of only operations and phases.  


Figure 2.  Recipe Model hierarchy


Figure 3.  Equipment Model hierarchy

The Event File interface uses S88 terminology and hierarchy as framework to attempt to collate and store information in a structured manner within the PI Module and Batch databases.

The Event File interface makes the assumption that a unit procedure maps directly to a PI-UnitBatch.  This assumption implies that only a single unit procedure can be active in a unit at any given time for the event file interface to be able to process the file and populate the BDB objects.  This lays a fundamental restriction on the configuration of recipes that may be run by the BES, if the Event File interface is to be used to process the resultant event journals and populate the BDB in a meaningful manner.  In the cases where the recipe contains more than one active unit procedure for a given unit, the Event File interface should be run with merge switch for entering that data into the PI server. Please refer to “Merging Event Files into one PIBatch” section on how the merge works.

Methodology

The PI Module Database is used to organize and store batch data.  Further discussion of this database can be found in the PI 3.3 Data Archive Manual and the PI-SDK tutorial documentation.  This interface creates PIBatch, PIUnitBatch, PISubBatch, and Sub-PISubBatch objects within the PI Batch Database to represent the recipe procedures, unit procedures, operations, and phases, respectively.  Each of the objects created in the PI Batch Database will possess the following properties in common:

· Name

· batch ID

· start time

· end time

Note that, in a PIBatch the name is stored in the Recipe property and in a PIUnitBatch the Procedure property is used to store the name of the corresponding recipe level.  Each object in the PI Batch Database represents a specific level of the Recipe Model.  However, the relationship between the PI Batch Database and the Recipe Model is complicated by the possibility of building a recipe without the procedure or unit procedure levels.  In cases where the highest recipe level is an operation (i.e. neither procedure nor unit procedure levels are defined), PIBatch and PIUnitBatch objects must still be created by the interface.  However, the PIBatch and PIUnitBatch will not have names assigned to them.  

PIBatch

A PIBatch will be created for each event journal processed.  All messages within an event journal will be recorded in the PIProperties collection of a PIBatch.  The structure of the PIProperties collection will be organized to reflect the hierarchy of the Recipe Model described by the journal file.  First, the record is parsed into its individual fields.  Then, the event is checked to see if it is to be recorded in PI.  If the event is to be stored (i.e. not excluded, see /exc option), then the event string (all fields except the batch-id and recipe hierarchy) are saved as the value of the PI-Property of the event, which is in itself a member of the PI-Property hierarchy under the appropriate recipe level.  The field names are known from the first line of the event file and are saved for reference in the base level of the PIProperties collection for the batch.  The event’s timestamp and event type identifies the event.

A PIBatch represents the collection of procedures within the recipe.  Each PIBatch will contain a collection of associated PIUnitBatches (which correspond to the Unit Procedures in the recipe).

The system messages “Beginning Of BATCH” and “End Of BATCH” will be used to mark the start and end times of a PIBatch respectively.

If no Procedure level for the recipe exists, the interface will still create a PIBatch object whose start and end times are triggered by the “Beginning Of BATCH” and “End Of BATCH” messages.

The PIProperties collection for the batch is revised under three conditions: 

1. When the batch is first started (i.e. the “Beginning Of BATCH” system message is received), 

2. When the batch ends (i.e. the “End Of BATCH” system message is received, and 

3. When the file is processed after each scan class. 

This is done to minimize the number of times that PIBatch’s PIProperties collection is modified. The user is allowed to specify that specific events types can be stored in string tags for more immediate access through PI client tools.

PIUnitBatch

A PIUnitBatch is created for each unit procedure defined in a journal file.  The start and end times of a PIUnitBatch are intended to reflect the onset and completion of physical processing within a unit.  The start time is determined by either the time of the “Unit Acquired” Arbitration event or the System Message event “Unit Procedure Started,” whichever event occurs last.  In other words, the unit procedure must “start” and the unit must be acquired before the start time of the PIUnitBatch is assigned.  The end time for a PIUnitBatch is determined by the time of the “Unit Released” Arbitration event or the System Message “Unit Procedure Finished,” whichever event occurs first.  In other words, the unit procedure must “finish” or the physical unit must be released for the end time to be assigned.

If no unit procedure is defined for the recipe (i.e. the operation level of the recipe is the highest level), a PIUnitBatch object is still created.  The start time is determined by either the time of the “Unit Acquired” Arbitration event or the System Message event “Operation Started,” whichever event occurs last. The end time for a PIUnitBatch is determined by the time of the “Unit Released” Arbitration event or the System Message “Operation Finished,” whichever event occurs first. The Procedure Name property is same as the Operation name and the batchid property is same as the batchid in the event journal.

PISubBatch

A PISubBatch will be created for each operation found within a journal file. The start and end times of a PISubBatch will be determined by the System Messages “Operation Started” and “Operation Finished” respectively. If the recipe is an Operation Level recipe, the logic is analogous to that used with the PIUnitBatch, the start and end times of a PISubBatch will be determined by unit acquisition/release and the System Messages “Operation Started” and “Operation Finished.”  Each PISubBatch will be added to the PISubBatches collection of the PIUnitBatch.  

Sub-PISubBatch

A Sub-PISubBatch will be created for each phase defined within a journal file.  The start time for Sub-PISubBatch will be set by the state change events “RUNNING”, “STARTING”, “RESTARTING”, “DOWNLOADING”, “UPLOADING” or “UNKNOWN STATE”, whichever occurs first for that Sub-PISubBatch. The end time for Sub-PISubBatch will be set by the state change events “COMPLETE”, “STOPPED” or “ABORTED” which ever occurs first. If “COMPLETE”, “STOPPED” or “ABORTED” event occurs without a start time event change, then a zero second Sub-PISubBatch is created. All other state change events do not modify a Sub-PISubBatch start or end time. Each Sub-PISubBatch will be added to the PISubBatches collection of the parent PISubBatch.  
In some cases, the name of the instance of the phase class that is running is not easily linked to the equipment module or phase that has been defined.  In this case, the interface can be configured to combine equipment and recipe names (/cern).  The interface then stores the Sub-PISubBatch name as a combination of both the equipment and recipe phase names.

By default, the Interface creates an additional PI-SubBatch level.  This corresponds to the S88 Phase State.  When a State Change is detected for a phase, the previous PI-SubBatch phase state object is closed, if it exists, and if the S88 state is anything other than “IDLE”, “READY”, “ABORTED”, “STOPPED” or “COMPLETE,” then the interface creates a PI-SubBatch named after the S88 state and with a start time corresponding to time of the State Change event.  This feature can be disabled by using the /sps (suppress phase state) command parameter.

Phase-Level Only Recipes

Phase-level only recipes are not supported with the EVT interface, due to the fact that phase-level recipes do not necessarily contain unit-level arbitration information.  Since the user actions with respect to the unit level arbitration are not found in the event journal when a phase-level recipe is run and such information is vital in properly placing the data into PI, phase-level recipe event files are not supported in this interface.

When the interface encounters a phase-level recipe, it will create a PI-Batch with the standard start and end times.  However, no PI-UnitBatch or PI-SubBatches will be created for that event file.  The PI-Properties for the PI-Batch and any event string tags required by the application set up will be created and used normally.

Arbitration Events Unavailable

The behavior described above is the default behavior of the interface.  However, if the batch execution system does not generate Arbitration events, the user may select the option “Arbitration events unavailable” (/aeu). (This parameter would likely be used with older versions of the BESs from Sequencia, Rockwell, Intellution, Fisher DeltaV, or Honeywell.)  With this option chosen, the start time of PIUnitBatches will be determined by the later of either “Unit Procedure Started” and the start of a sublevel (Operation or Phase) event in that unit.  The end time of PIUnitBatches will be determined by the earlier of the “Unit Procedure Finished” message and end of the last sublevel in that unit.  If no unit procedures have been defined (i.e. operation is the highest recipe level), the start of the first phase will mark the start time of the PIUnitBatch, PISubBatch and the first Sub-PISubBatch.  The end of the last phase (as determined by the presence of the “Operation Finished” system message) will mark the end time of the PIUnitBatch, PISubBatch, and that last Sub-PISubBatch.  In this case, the PIUnitBatch and PISubBatch will have the same start and end times.

Note that if Arbitration events are unavailable, the triggering of the PIUnitBatches from the Event File is only imprecisely bracketed by the Unit Procedure Started/Finished events and the start/end of the sublevels of the recipe.  The Arbitration event is the most explicit method of determining the allocation of a physical unit to a given instance of a recipe.

PI Point and Unit Creation

The interface will perform automated unit creation within PI.  PI-Units (PIModules with the IsUnit flag set to true) are created when they are first encountered in an event file.  A known units list is maintained so that the interface knows which units need to be created.  The interface can prefix the PI-Modules, including the unit name, with a BES identifier to avoid confusion with similarly named units in other trains (/besname=<BES ID> switch).

The interface will create PI-Modules for both the Area and Processing Cell specified in the event journal.  By default, the placement of these modules is at the root level of the Module DB.  The user can define a separate starting point by using the (/smp switch).  The structure of the PI-module hierarchy that is utilized by the interface is depicted in Figure 4.

<Area>
<ProcCell>

<Unit> ( [Alias Collection]

            Status

            Phases

<PhaseName>

<EventType> ( [Alias Collection]

Figure 4:  Interface Generated PI-Module DB Structure
Item/names in the angled brackets (<>) are placeholders for names that are specified in the event file.  Aliases are created at the <Unit> and <EventType> levels.  The unit level aliases can be suppressed with the /sula switch.

Points are created by the interface when first encountered.  The aliases for the unit to the points are created once the unit definition is completed.  The naming convention for created points are <unitname>(<phase>):<descript>-<eventtype>.  The interface allows two switches that will disable the automatic point and unit creation features.  These are the /spc (Suppress Point Creation) and /suc (Suppress Unit Creation) switches.  PIAlias creation is suppressed when unit creation is suppressed. In case of a language file used to translate the <eventtype>, the /uen (Use English Names) allows using only the English Name for the <eventtype> rather than using the language used in the file. See the section on Interface Operation for more detail on these switches. 

Since it is not possible to generally determine if a unit name change in the batch execution system corresponds to the creation of a new unit or merely an edit to the name (i.e. whether point history associated with a particular unit should be maintained), the interface is unable to determine the users motive a priori and must assume a default behavior.  In this case, the interface assumes that a new name is a completely separate unit.  If this is not the desired behavior, then the user should disable unit creation (using the /suc switch).  The user will then be required to edit the Module Database, incorporating into the Module Database any changes made on the BES. 

Foreign Language Support

The Event File interface supports languages other than English by providing for the use of a look-up table for the various event types that trigger specific events in the interface.  Note that this is not necessarily all of the events that are possible in the event journal, only a select few are required: those, which are primarily used to trigger the start and end times of the PI-Batch objects.  However, if a user intends to base an action (such as excluding an event type from being saved in the PI-Properties or trying to specify an event type for logging to a string tag), then the translation of that event must be supplied.  A sample language string file, containing the syntax and events necessary for the interface is included with the interface distribution.  This file is used only when the “/langpath=<path>” switch is used.  If the switch is not used, then the default language of English is assumed. If /uen switch is used, the language translation is still done for comparison, but the event type used in naming tags, aliases, and modules will be in English.
Event Logging

Besides the creation and population of PI-Batch DB objects, there are 3 methods by which the specific events from EVT file can be saved into the PI system.  These 3 methods are:

1. The interface can store the individual events to the PI-Properties hierarchy of the PI-Batch.

2. The interface can store each event type to a separate string tag for each event.

3. The interface can create new tags (and link them to a unit with a PI-Alias) when it encounters numeric or string data that it can store in the PI database when Event Types “Report”, “Param Download Verified”, “Recipe Value”, “Owner Change” and “Prompt” are encountered.
These three functions are separate actions triggered independently under different sets of criteria.  If a given event fulfills the separate criteria (they are not mutually exclusive), then each of the actions will be triggered in turn.

PI-Batch PI-Properties Collection

The PIProperties collection of the PI-Batch object is revised each time new events are detected.  When revised, the PI-Properties collection has all known events in the event journal placed hierarchically into the collection.  The type of events that are saved can be moderated by use of the “/exc=<event type>” switch.  It is not generally recommended that the user store all of the events in the event file in the PI-Properties, since a number of the events are used to trigger logic and therefore, would be saved in a redundant manner.  In addition, the saving of all of the event records in the PI-Batch can lead to object bloat, which will affect performance of the PI server in accessing the PI-Batch object (both in saving additional information and retrieving it for display).

The format of the event that is stored in the PI-Batch PI-Properties hierarchy contains all of the fields in the EVT file except the Batch ID and recipe hierarchy fields (generally columns 2 and 3 in the event record).  These are not stored since the Batch ID is already in the PI-Batch object and the recipe hierarchy is known from the position of the property in the PI-Properties hierarchy.  All columns of the PI-Properties value are separated by the pipe (“|”) delimiter.

String Tag Pool

If the user wishes to be informed of a particular event type each time the event is encountered, they may specify an event type which the interface will specifically target and place all events of that type into a string tag upon detection of the event in an event journal.  The interface keeps a pool of string tags specifically for this purpose.  Use of this feature is specified with the “/logtotag=<event type>” switch.  The event trigger types are specified at startup and therefore known at runtime, when a new event journal is detected the interface will set aside enough string tags to log the specified events.  The names of the string tags and their event types are stored in the PI-Properties collection of the PIBatch object under the “Recipe Messages->Event Tags” PI-Property.  Use of the point pool allows for efficient use of the points, while avoiding potentially confusing overlaps of timeframes for concurrent batches.  Since the interface stores the events in PI-Batch PI-Properties collection by default, it is not necessarily recommended that user store many event types to string tags.

The format of the string saved in the string tag differs from the string saved in the PI-Properties collection.  This is due to the fact that the event is stored at a particular time, but its position in the recipe hierarchy is not necessarily known.  As such, all of the fields in the EVT record are saved in the event except the timestamp (which is known from the timestamp of the event in the archive) and the Batch ID (which is known from the PI-Batch object which points to this string tag for the PI-Batch’s active timeframe).  Like the string format of the PI-Properties, the string tag event has all of its EVT column values separated by the pipe (“|”) delimiter.

Specific Point Generation

If a numeric or string value is encountered as the Pvalue for one of the following five different event types: Param Download Verified, Recipe Value, Report, Prompt, and Owner Change, then the interface will attempt to create a point to record that data. The point type for such points is determined by the data type of Pvalue the first time the interface encounters that event on a unit for a phase. The point is not created until the event has a value. If the first value is string type and second value is numeric for the same event in the same phase on the same unit, a string type point is created and both values are stored as string values. However, if the first value is numeric and the second value is string, then a float32 point is created, the first value is recorded but the second value is not recorded. If such a situation is anticipated, it is recommended to manually create string tags for that event (see section on PI Point Configuration for more details). An optional switch /cost will create only string type points irrespective of the data type. This switch will only apply to new points created by the interface and does not impact data collection on already existing points. Every point created by the interface has a tag name defined by <unitname>(<phase>):<descript>-<eventtype>. If any of those parameters change, for example the same phase is run on a different unit, then a new tag will be created and the point type will again depend on the Pvalue. If the resulting tag name contains invalid characters, then the tag will be named “EVT_InvalidTagName_” appended by the point creation time in UTC seconds. A log message indicates if such a point is created and the name of that point can be changed manually to any suitable tag name at any time. Point creation can be suppressed with the /spc switch.  PI-Aliases are generated automatically if the interface creates a specific point.  The PI-Aliases definitions are triggered off of the point creation actions. If point creation is suppressed, interface does not generate the PIAliases. The PI-Aliases at the <Unit> level may be suppressed using the /sula switch.  The PI-Aliases at the <Event Type> level are always generated. If the /uen switch is used, then only the <eventtype> in the tag name and alias name will be in English and the <unitname>(<phase>):<descript> will be in the same language as recorded in the Event file.
Merging EVT Files into a Single PIBatch

Version 3.5.0.11 and greater has the feature of merging multiple event files into one single PIBatch. This feature is enabled by using the /merge switch in the command line parameters. Event files with the same BatchID will be merged into one PIBatch. When a new file is processed, the interface searches the PIBatch Database to find a PIBatch with BatchID as the search criteria. The/pmt switch (required when /merge is used) specifies the duration in days before and after the start time of the new event file that the interface should search the PIBatch Database. If there is no existing PIBatch in the search time with a match for the BatchID, then a new PIBatch with the appropriate BatchID, Product and Recipe is created. If there is an existing PIBatch then the new event file will be merged with this PIBatch even if the Product and Recipe of the new event file do not match those of the already existing PIBatch. The start time and end time of the existing PIBatch are modified to reflect the total duration of the two event files. The /bidf or /bidd parameter is optional and allows the interface to use a substring of the actual BatchID in the event file as the BatchID for the PIBatch. See the section on “Using /BIDF and /BIDD Switches” for details on how this switch works. When event files are merged and there are overlapping Unit Procedures on a PIUnit in those event files, then only one PIUnitBatch represents the overlapping Unit Procedures. The start time and end time for the PIUnitBatch span the entire duration of all the overlapping Unit Procedures. However, the Product and Procedure Name properties of the PIUnitBatch come from the event file that first created the PIUnitBatch. If there are overlapping Operations with the same name, they are not merged into one Operation. There will be two Operations with the same name and probably with different start times. Since Operation level is never merged, the phases will never merge as well.

Event Logging When Event Files Are Merged

When the PIBatches are merged, the same set of string pool tags are used to record events from all the merged event files. Also, the same tags are used for Param Download Verified, Report, Prompt, Recipe Value and Owner Change events. The PIProperties in the PIBatch will have a name in the format “EventRowNo_filename” where RowNo is the Row number from the event file and filename is the name of the event file. Please read the section on “Event Logging” above for details on how the events are stored.

Additional Events Logged to the String Tags

Additional events can be logged to the string tags in the string tag pool at the start of every Operation. This feature is enabled by the /aspe switch. If /aspe=10 is specified, then additional events are added to the string tag for the “Formula Header”. Additional “Formula Header” events switch is valid only when the “Formula Header” is being logged to a string tag. In other words, the /aspe=10 is valid only when /logtotag includes the value 10. If /aspe=33 is specified, then additional string tag is allocated for the BatchID to store the Original BatchID (if a substring is used). If /aspe=10,33 then additional events for both Forumla Header and BatchID are stored in the string tags. These additional events are added at the start time of every Operation executed under each of the merged PIBatches. For additional “Formula Header” events, the value is a concatenation of Operation Name from the event file, the string “Formula Name”, the string “Formula Header”, formula name from the file, Area Column, Proc Cell Column, Unit Column, Phase Column, Phase Description Column, UserID column and UniqueID column that correspond to the event that triggers the start of the operation in the event file. All the values are separated by “|”. Note that only formula name is stored at Operation level and not all the events for “Formula Header”. The “BatchID” string tag stores events with every value being concatenation of  BatchID substring used for the PIBatch, Original BatchID as in the “BatchID” column in the event file, Operation Name from the event file, Area Column, Proc Cell Column, Unit Column and the word “BatchID”. All the values are separated by “|”.

Using /BIDF and /BIFF Switches

Either /bidf (BatchID Fixed format) or /bidf (BatchID Dynamic format) switch is used to obtain a new BatchID, which is a substring of the value in the BatchID column in the event file. The /bidf takes four values in the format /bidf=n:c:p:a where n represents a fixed number of contiguous digits in the desired BatchID, c represents the number of contiguous characters embedded in the substring to be extracted, p represents the starting position of the characters with respect to the contiguous digits and a represents the anchor point for the varying digit count. n must have a value specified if /bidf=n:c:p:a is used but c, p and a take default value of zero. A substring from the BatchID column in the event file is determined based on these criteria. If there is no match, then the complete string in the BatchID column of the event file is used as the BatchID for the PIBatch. If there are multiple matches, the first substring is used as the BatchID for the PIBatch. If the number of contiguous digits could vary, then the /bidd switch allows a dynamic count. The /bidd is used in conjunction with/bidf=n:c:p:a. When/bidd is used, a BatchID with the minimum number (n) of digits is searched. If there is no match then the interface searches for n+1 contiguous digits and so on until a match is found or the length of the BatchID string is reached. If there is no match, then the complete string in the BatchID column of the event file is used as the BatchID for the PIBatch. If more than one match is found then the first substring is used. If there are characters embedded within the substring, then in the dynamic format it is necessary to specify whether the digit count should be increased before or after the characters. The anchor value a serves this purpose. 

Example for /bidf to extract a substring from the BatchID column in the event file:

Let’s say that the BatchID column in the event file is lot30112 / 90dev123 / 12345stp / ld567. 
If /bidf=5:0:0:0 means that there are 5 contiguous digits and no characters in the substring. Since there are two matches, the first substring is used and the result will be 30112. 

If /bidf=6:0:0:0 means that there are 6 contiguous digits and no characters in the substring and there is no match for this and the complete string lot30112 / 90dev123 / 12345stp is used as the BatchID. 

If /bidf=3:0:0:0 means that there are 3 contiguous digits and no characters in the substring. Since there are two matches, the first substring is used and the result will be 123. 

If /bidf=5:3:1:0 means that there are 5 contiguous digits with 3 contiguous characters and the characters are placed before the first digit. Hence the resulting BatchID will be lot30112. 

If /bidf=5:3:3:0 means that there are 5 contiguous digits with 3 contiguous characters and the characters are placed before the third digit. Hence the resulting BatchID will be 90dev123. 

If /bidf=5:3:6:0 means that there are 5 contiguous digits with 3 contiguous characters and the characters are placed before the sixth digit (in this case it means at the end of the 5 digit number). Hence the resulting BatchID will be 12345stp. 
Example for /bidd in conjunction with /bidf to extract a substring from the BatchID column in the event file:

Let’s say that the BatchID column in the event file is lot30112 / 90dev124 / 12345stp / ld567 / 201num54. 
If /bidf=3:0:0:0 means that there are 3 contiguous digits and no characters in the substring. Since there are multiple matches, the first substring is used and the result will be 124. 

If /bidf=4:0:0:0 means that there are 4 contiguous digits and no characters in the substring. There is no match for 4 contiguous digits. Hence the search continues for a 5 contiguous digits. Since there are two matches, the first substring is used and the result will be 30112. Note that without the /bidd switch, the BatchID would be the entire string.

If /bidf=5:0:0:0 means that there are 5 contiguous digits and no characters in the substring. Since there are two matches, the first substring is used and the result will be 30112. 

If /bidf=6:0:0:0 means that there are 6 contiguous digits and no characters in the substring. There is no match for 6 contiguous digits. Hence the search continues for a 7 contiguous digits. There is no match for 7 contiguous digits. Hence the search continues for 8 contiguous digits and so on but there is never a match for more than 5 contiguous digits. Therefore the complete string lot30112 / 90dev124 / 12345stp / ld567 / 201num54 is used as the BatchID. 

If /bidf=5:3:1:0 means that there are 5 contiguous digits with 3 contiguous characters and the characters are placed before the first digit. The resulting BatchID will be lot30112. 

If /bidf=5:3:6:0 means that there are 5 contiguous digits with 3 contiguous characters and the characters are placed before the sixth digit (in this case it means at the end of the 5 digit number). Hence the resulting BatchID will be 12345stp. 
If /bidf=4:3:3:0 means that there are 4 contiguous digits with 3 contiguous characters and the characters are placed before the third digit. There is no match for the given criteria. So, the number of contiguous digits for the substring is increased to 5. Since the number of digits is increased, the position of the characters becomes ambiguous because the increased digit can be either before or after the three characters. This means the two possibilities are 90dev124 and 201num54. The last value in the switch specifies where the increased digit should be added. A value of zero (as in this case) means the number of digits to the left of the characters is fixed and hence the result will be 90dev124. If /bidf=4:3:3:1 is used, the result would be 201num54.
If /bidf=4:3:3:1 means that there are 4 contiguous digits with 3 contiguous characters and the characters are placed before the third digit. There is no match for the given criteria. So, the number of contiguous digits for the substring is increased to 5. Since the number of digits is increased, the position of the characters becomes ambiguous because the increased digit can be either before or after the three characters. This means the two possibilities are 90dev124 and 201num54. The last value in the switch specifies where the increased digit should be added. A value of one (as in this case) means the number of digits to the right of the characters is fixed and hence the result will be 201num54. If /bidf=4:3:3:0 is used, the result would be 90dev124.
Questionable Files

The event file delineates a complex data structure.  The concept of a hierarchical PI-Batch and its children (and children’s children) creates a very complex set of relationships between the various objects in the Batch database (BDB).  Given the complexity of the data structure and the potential actions that an operator may take in the execution of a recipe, the interface may encounter a sequence of events in the event journal that does not conform to the logic delineated above and cannot create the required objects based on the known information in the file.

When a file is deemed to have questionable event sequences, the interface must continue to operate without manual intervention, but must also inform the user that a problem has occurred.  The interface attempts to process all files using the logic outlined above to create the required BDB objects.  However, when the interface encounters a file that does not conform to the specifications outlined above, it stops processing that particular file and marks the corresponding PI-Batch and PI-UnitBatch “questionable”.  In these cases, the interface has encountered a file, whose event format or order cannot be processed properly.  See Appendix A, for more information concerning the specific actions that the interface takes when it encounters a “questionable” file.  Appendix A also delineates the actions that the user is required to take in those circumstances.

Example Event File Journal

An annotated journal file is shown in Figure 4.  For clarity, the entire journal file has not been shown.  Those fields that have been excluded do not significantly affect the logic used by the interface to process the event journal.  The last column shown in Figure 4 describes the actions taken by the interface in response to each message listed in the journal file.

	LclTime
	Descript
	Event
	Pvalue
	EU
	Action Taken by Interface

	2000.05.17 14:06:17
	 
	Event File Name
	\\OBATCH\JOURNALS\15.evt
	
	New event file detected.

	2000.05.17 14:06:17
	Author
	Recipe Header
	PR1Upauthor
	
	Interface waiting for “Beginning of Batch.”

	2000.05.17 14:06:17
	Product Description
	Recipe Header
	PR1UPProcedureDescription
	
	

	2000.05.17 14:06:17
	PR1UPPROCDESCRIPT
	System Message
	Beginning Of BATCH
	Procedure
	PIBatch object created. Start time assigned to PIBatch.

	2000.05.17 14:06:30
	Procedure Started.
	System Message
	0
	
	

	2000.05.17 14:06:30
	Step Activated
	Step Activity
	UP2OPS:1
	Unit Procedure
	PIUnitBatch created to represent the unit procedure.

	2000.05.17 14:06:30
	Unit Procedure Started
	System Message
	0
	
	

	2000.05.17 14:06:30
	Unit Acquired
	Arbitration
	SOL_DELIV_1
	
	Start time assigned to PIUnitBatch.

	2000.05.17 14:06:30
	Step Activated
	Step Activity
	OP1PHASE:1
	Operation
	PISubBatch created to represent the operation.

	2000.05.17 14:06:30
	Operation Started
	System Message
	0
	
	Start time assigned to PISubBatch.

	2000.05.17 14:06:30
	Equip. Module Acquired
	Arbitration
	S1_TEMPERATURE1
	
	

	2000.05.17 14:06:30
	Step Activated
	Step Activity
	SX_TEMPERATURE:1
	Phase
	Sub-PISubBatch created to represent the phase.

	2000.05.17 14:06:32
	State Changed: 
	State Change
	RUNNING
	
	Start time assigned to Sub-PISubBatch.

	2000.05.17 14:07:06
	State Changed: 
	State Change
	COMPLETE
	
	End time assigned to the Sub-PISubBatch.

	2000.05.17 14:07:07
	Equip. Module Released
	Arbitration
	S1_TEMPERATURE1
	
	

	2000.05.17 14:07:07
	Operation Finished
	System Message
	0
	
	End time assigned to the PISubBatch.

	2000.05.17 14:07:45
	Unit Released
	Arbitration
	SOL_DELIV_1
	
	End time assigned to the PIUnitBatch.

	2000.05.17 14:07:45
	Unit Procedure Finished
	System Message
	0
	
	

	2000.05.17 14:09:05
	Procedure Finished.
	System Message
	0
	
	

	2000.05.17 14:09:05
	PR1UPPROCDESCRIPT
	System Message
	End Of BATCH
	Procedure
	End time assigned to the PIBatch.


Figure 5: Abbreviated Example EVT file demonstrating interface actions pertaining to PIModule and PIBatch object creation

Installation Checklist

For those users who are familiar with running PI data collection interface programs, this checklist helps you get the PI-EVT interface running. If you are not familiar with PI interfaces, you should return to this section after reading the rest of the manual in detail.

1. Install the PI-Interface Configuration Utility (which installs PI-SDK and PI-API)

2. Verify that the PI-API and PI-SDK has been installed.

3. Install the Event File interface.

4. Test the connection between the interface node and the foreign device using the windows explorer, since the interface needs access to the file system.

5. Define digital states sets.  On and Off are required in the System Digital State Table.  Note that this step is optional, as the interface will not automatically generate digital state points.

6. Choose a point source.

7. Configure PI points, if necessary. 
Location1 is the interface instance.
Location2 is the point type.
Location4 is the scan class, typically this is set to 1 for the Event File interface.
ExDesc contains the variable name and phase name.
InstrumentTag is the unit.

8. Configure performance points.

9. Configure I/O Rate tag.

10. Edit startup command file using the PI-ICU.
/path=<directory> defines the monitored directory containing the event journal files.  /pospath=<directory> defines the directory in which intermediate “position” files are saved, so that the interface can recover its place in an event file upon restart.
11. Set interface node clock.

12. Set up security.

13. Start the interface without buffering. (Buffering is not recommended for this interface.)

14. Verify data.

Interface Installation

OSIsoft recommends that interfaces be installed on PI-API nodes instead of directly on the PI Server node. A PI-API node is any node other than the PI Server node where the PI Application Programming Interface (PI-API) has been installed (see the PI‑API Installation Instructions manual). With this approach, the PI Server need not compete with interfaces for the machine’s resources. The primary function of the PI Server is to archive data and to service clients that request data. 

Note: Buffering is not recommended with the PI Event File interface.  This is due to the fact that this interface reads flat ASCII files, which are already effectively buffered.  Once a file is processed, it is renamed by the interface to ensure that it is not reprocessed.  Since the file is not renamed until processing is finished, the interface may pick up where it left off when processing is interrupted.

In most cases, interfaces on PI-API nodes should be installed as automatic services. Services keep running after the user logs off. Automatic services automatically restart when the computer is restarted, which is useful in the event of a power failure.

The guidelines are different if an interface is installed on the PI Server node. In this case, the typical procedure is to install the PI Server as an automatic service and interfaces as manual services that are launched by site-specific command files when the PI Server is started. Interfaces that are started as manual services are also stopped in conjunction with the PI Server by site-specific command files. This typical scenario assumes that Bufserv is not enabled on the PI Server node. Bufserv can be enabled on the PI Server node so that interfaces on the PI Server node do not need to be started and stopped in conjunction with PI, but it is not standard practice to enable buffering on the PI Server node. See the UniInt End User Document for special procedural information.

Naming Conventions and Requirements

In the installation procedure below, it is assumed that the name of the interface executable is evtintf.exe and that the startup command file is called evtintf.bat. 

It is customary for the user to rename the executable and the startup command file when multiple copies of the interface are run. For example, one would typically use evtintf1.exe and evtintf1.bat for interface number 1, evtintf2.exe and evtintf2.bat for interface number 2, and so on. When an interface is run as a service, the executable and the command file must have the same root name because the service looks for its command-line arguments in a file that has the same root name.

Interface Directories

The PIHOME Directory Tree

The PIHOME directory tree is defined by the PIHOME entry in the pipc.ini configuration file. This pipc.ini file is an ASCII text file, which is located in the WinNT directory. A typical pipc.ini file contains the following lines:
[PIPC]
PIHOME=c:\pipc
The above lines define the \pipc directory as the root of the PIHOME directory tree on the C: drive. OSIsoft recommends using \pipc as the root directory name. The PIHOME directory does not need to be on the C: drive.

Interface Installation Directory

Place all copies of the interface into a single directory. The suggested directory is:

PIHOME\interfaces\evtintf\

Replace PIHOME with the corresponding entry in the pipc.ini file.

Interface Installation Procedure

The PI-EVT interface setup program uses the services of the Microsoft Windows Installer. Windows Installer is a standard part of Windows 2000. When running on Windows NT 4.0 systems, the PI-EVT setup program will install the Windows Installer itself if necessary. To install, run the EVT_x.x.x.x.exe installation kit. 

If the interface cannot be started interactively, one will not be able to run the interface as a service. It is easier to debug interactively started processes because error messages are echoed directly to the screen. Once the interface is successfully running interactively, one can try to run it as a service by following the instructions below.

Installing the Interface as an NT Service

The PI-EVT interface service can be created with the PI-Interface Configuration Utility, or can be created manually.

Installing the Interface Service with the PI-ICU

The PI-Interface Configuration Utility provides a user interface for creating, editing, and deleting the interface service:

[image: image1.png]General| Uniint| evtint | Service | I0Rates/Status Tags| Peit Poirts| Pert Counters | Contiol Program!
e

Senice name:
Dislay e
Loganas:
Password
Corfim password

Dependencies:

T
[PrEvTFie
i —
—
—

Startup Type.
& Ao

© Manual

 Disabled

Installd services:

Create / Remave.

Create

‘v‘A

lerter
ALR
Apphamt
aspret_state
AudioSty
bachi

BITS

3

Alerter





Service Configuration

Service Name

The Service to Add box shows the name of the current interface service. This service name is obtained from the interface executable.

Display Name

The Display Name text box shows the current Display Name of the interface service.  If there is currently no service for the selected interface, the default Display Name is the service name with a “PI-” prefix. Users may specify a different Display Name. OSIsoft suggests that the prefix “PI-” be appended to the beginning of the interface to indicate that the service is part of the OSI suite of products.

Service Startup Type

The Service Startup Type indicates whether the interface service will start automatically or need to be started manually on reboot.  

· If the Auto option is selected, the service will be installed to start automatically when the machine reboots.  

· If the Manual option is selected, the interface service will not start on reboot, but will require someone to manually start the service.  

· If the Disabled option is selected, the service will not start at all.  

Generally, interface services are set to start automatically.

Interface Dependencies

The Installed Services list is a list of the services currently installed on this machine. Services upon which this Interface is dependant should be moved into the Interface Dependencies list using the “Add>>” button. For example, if API Buffering is running, then “bufserv” should be selected from the list at the right and added to the list on the left. 

When the PI Interface is started (as a service), the services listed in the dependency list will be verified as running (or an attempt will be made to start them). If the dependent service(s) cannot be started for any reason, then the PI interface service will not run. 

Note: Please see the PI Log and Operating System Event Logger for messages that may indicate the cause for any server not running as expected.   

Add>>

To add a dependency from the list of Installed Services, select the dependency name, and click the Add button.

<<Remove

To remove a selected dependency, highlight the service name in the Installed Dependencies list, and click the Remove button.  

The full name of the service selected in the Installed Services list is displayed below the Installed Services list box.

Create or Remove Interface Service

Create

The Create button adds the displayed service with the specified Dependencies and with the specified Startup Type.  

Remove 

The Remove button removes the displayed service. If the service is not currently installed, or if the service is currently running, this button will be grayed out.  

Start or Stop Service

The Start / Stop section contains a Start button [image: image2.bmp] and a Stop button [image: image3.bmp]. If this interface service is not currently installed, these buttons will remain grayed out until the service is added. If this interface service is running, the Stop button is available. If this service is not running, the Start button is available.

The status XE “Status:service”  of the Interface service is indicated in the lower portion of the PI-ICU dialog.

[image: image4.png]Ready Stopped EVTInt! - Installed






Installing the Interface Service Manually

One can get help for installing the interface as a service at any time with the command:
evtintf.exe –help 

Change to the directory where the evtintf1.exe executable is located. Then, consult the following table to determine the appropriate service installation command.
	NT Service Installation Commands on a PI Interface node or a PI Server node

without Bufserv implemented

	Manual service
	evtintf.exe –install –depend tcpip

	Automatic service
	evtintf.exe –install –auto –depend tcpip


When the interface is installed as a service on the PI Server node and when Bufserv is not implemented, a dependency on the PI network manager is not necessary because the interface will repeatedly attempt to connect to the PI Server until it is successful. 
Note: Interfaces are typically not installed as automatic services when the interface is installed on the PI Server node. 

Check the Microsoft Windows NT services control panel to verify that the service was added successfully. One can use the services control panel at any time to change the interface from an automatic service to a manual service or vice versa. 

PointSource

The PointSource is a single, unique character that is used to identify the PI point as a point that belongs to a particular interface. For example, one may choose the letter E to identify points that belong to the Event File interface. To implement this, one would set the PointSource attribute to E for every PI Point that is configured for the Event File interface. Then, if one uses /ps=E on the startup-command line of the Event File interface, the Random interface will search the PI Point Database upon startup for every PI point that is configured with a PointSource of E. Before an interface loads a point, the interface usually performs further checks by examining additional PI point attributes to determine whether a particular point is valid for the interface. For additional information, see the /ps argument.

Case-sensitivity for PointSource Attributes

If the interface is running on a PINet node and the Server node is a PI 3 system, use a capital letter (or a case-insensitive character such as a number, a question mark, etc.) for the PointSource attribute when defining points. For all other scenarios, one does not need to be careful with the case of the PointSource. 

In all cases, the point source character that is supplied with the /ps command-line argument is not case sensitive. That is, /ps=E and /ps=e are equivalent. One only needs to be careful with the case of the PointSource during point definition, and only if the interface will be running on a PINet node communicating to a PI 3 Server.

No point source table exists on a PI 3 Server, which means that points can be immediately created on PI 3 with any point source character. Several subsystems and applications that ship with PI 3 are associated with default point source characters. The Totalizer Subsystem uses the point source character T, the Alarm Subsystem uses G and @, Random uses R, RampSoak uses 9, and the Performance Equations Subsystem uses C. Either do not use these point source characters or change the default point source characters for these applications. Also, if one does not specify a point source character when creating a PI point, the point is assigned a default point source character of L. Therefore, it would be confusing to use L as the point source character for an interface.

PI Point Configuration

The PI point is the basic building block for controlling data flow to and from the PI Data Archive. A single point is configured for each measurement value that needs to be archived. Use the point attributes below to define what data to transfer.

Interface-specific Points

Process parameters are often specified in event files.  These parameters are typically more easily viewed as a graphical trend.  Points may be built to specify which events are to be captured and stored in PI.  The point attributes described in the following section are used to specify the event type, unit name, event description, and engineering units of the event to be captured. For this version of the interface, only five events can be captured in specific points and those events are “Report”, “Param Download Verified”, “Recipe Value”, “Owner Change” and “Prompt”. For all other events, they should be sent to the PIProperties in a PIBatch or to the string tag pool. Points for string tag pool are automatically created by the interface. Remember to add a PIAlias to the Phase level module and the PIUnit for the manually created points because the interface does not create PIAliases for such points.
Point Attributes

Tag

A tag is a label or name for a point. Any tag name can be used in accordance to the normal PI point naming conventions.

PointSource

The PointSource is a single, unique character that is used to identify the PI point as a point that belongs to a particular interface. For additional information, see the /ps command-line argument and the “Point Source” section.

PointType

Typically, device point types do not need to correspond to PI point types. For example, integer values from a device can be sent to floating point or digital PI tags. Similarly, a floating-point value from the device can be sent to integer or digital PI tags, although the values will be truncated. 

The Event File interface supports float16, float32, int16, int32, and string tag types for data.  

Location1

Location1 is used to specify the instance of the interface that the point is linked to.  The interface will check for the use of the “/id=x” switch, where n specifies the instance of the interface used.  Location1 for the point must be x for the interface to recognize the point.  Note that x must be a non-negative integer value.

Location2

Location2 is used to specify the type of event, which the point is linked to.  The following five values are allowed:

	Location 2
	Type of Event

	1
	Param Download Verified

	2
	Recipe Value

	3
	Report

	4
	Prompt

	5
	Owner Change


Location3

Location 3 should be set to 2 for all string tags that collect data for the five specific events mentioned above. For numeric tags, location 3 is insignificant and can be left at the default value. The interface differentiates specific event string tags from string tag pool tags from the value of Location3.
Location4

Scan-based Inputs

For interfaces that support scan-based collection of data, Location4 defines the scan class for the PI point. The scan class determines the frequency at which input points are scanned for new values. For more information, see the description of the /f flag in the section called “The Startup Command File”.

InstrumentTag

The InstrumentTag attribute is used to specify the name of the unit.  For example, if the unit column specified UNIT1, then this text would be entered in the InstrumentTag attribute.

ExDesc

This is the extended descriptor attribute. For a PI 3 Server, the extended descriptor is limited to 1024 characters since UniInt was compiled to use the PI-SDK.

Variable Name

The extended descriptor is used to specify the ‘Descript’ text of the event.

For example, a Recipe Value event may specify SP_JACKET_MASTER_TEMP_SETPOINT in the Descript column of the event file.  To specify this Descript text, the ExDesc would contain the following:


descript=”SP_JACKET_MASTER_TEMP_SETPOINT”

Phase
The extended descriptor is also used to specify the ‘Phase’ text of the event.

For example, a Recipe Value event may specify PHASE1 in the Phase column of the event file.  To specify this Descript text, the ExDesc would contain the following:


phase=”PHASE1”

Note: the “phase” and “descript” keywords are currently case-sensitive and must be specified for a given point.  However, they may be specified in any order.

Performance Points

For UniInt-based interfaces, the extended descriptor is checked for the string “PERFORMANCE_POINT”. If this character string is found, UniInt treats this point as a performance point. See the section called “Performance Points.” 

Scan 

By default, the Scan attribute has a value of 1, which means that scanning is turned on for the point. Setting the scan attribute to 0 turns scanning off. If the scan attribute is 0 when the interface starts, SCAN OFF will be written to the PI point. If the scan attribute is changed from 1 to 0 while the interface is running, SCAN OFF will also be written to the PI point after the point edit is detected by the interface.

There is one other situation, which is independent of the Scan attribute, where UniInt will write SCAN OFF to a PI point. If a point that is currently loaded by the interface is edited so that the point is no longer valid for the interface, the point will be removed from the interface, and SCAN OFF will be written to the point. For example, if the PointSource of a PI point that is currently loaded by the interface is changed, the point will be removed from the interface and SCAN OFF will be written to the point.

Shutdown

The shutdown attribute is used only if the server node is a PI 3 system.

The Shutdown attribute is 1 (true) by default. The default behavior of the PI Shutdown subsystem is to write the SHUTDOWN digital state to all PI points when PI is started. The timestamp that is used for the SHUTDOWN events is retrieved from a file that is updated by the Snapshot Subsystem. The timestamp is usually updated every 15 minutes, which means that the timestamp for the SHUTDOWN events will be accurate to within 15 minutes in the event of a power failure. For additional information on shutdown events, refer to PI Data Archive for NT and UNIX. 

Note: The SHUTDOWN events that are written by the PI Shutdown subsystem are independent of the SHUTDOWN events that are written by the interface when the /stopstat=Shutdown command-line argument is specified.

One can disable SHUTDOWN events from being written to PI when PI is restarted by setting the Shutdown attribute to 0 for each point. Alternatively, one can change the default behavior of the PI Shutdown Subsystem to write SHUTDOWN events only for PI points that have their Shutdown attribute set to 0. To change the default behavior, edit the \PI\dat\Shutdown.dat file, as discussed in PI Data Archive for NT and UNIX. 

Bufserv

Bufserv should not be used with this interface.
Performance Point Configuration

One can configure performance points to monitor the amount of time in seconds that an interface takes to complete a scan for a particular scan class. The closer the scan completion time is to 0 seconds, the better the performance. The scan completion time is recorded to millisecond resolution

Configuring Performance Points with PI-ICU

The PI-Interface Configuration Utility (PI-ICU) provides a user interface for creating and managing Performance Points. 


[image: image5.png]Not Created 1 spstpiphd.scT
Cieated 2 spstpiphd.sc2
NotCrealed 3 spstpiphd.sc3
Cieated 4 spstpiphd.sod





To create or delete a Performance Point, right mouse click the line belonging to the tag to be created, and click Create or Delete. If a tag already exists, the status is marked “Created”, the Delete option will be enabled. If a tag does not exist, the status is marked “Not Created” or “Deleted”, and the Create option is enabled.

The Performance Points are created with the following PI attribute values:

	Attribute
	Details

	Tag
	Tag name that appears in the list box

	Point Source
	Point Source for tags for this interface, as specified on the first tab

	Compressing
	Off

	Excmax
	0

	Descriptor
	Interface name + “ Scan Class # Performance Point”


Status

The Status column in the Performance Points table indicates whether the Performance Point exists for the scan class in column 2. If a Performance Point does exist, a status of “Created” is displayed. If the Performance Point does not exist, a status of “Not Created” is displayed. If a Performance Point exists, and is deleted, a status of “Deleted” is displayed.

Scan Class

The Scan Class column indicates which scan class the Performance Point in the Tagname column belongs to. There will be one scan class in the Scan Class column for each scan class listed in the Scan Classes combo box on the UniInt Parameters tab.

Tagname

The Tagname column holds the Performance Point tag name.

Configuring Performance Points Manually

Performance point configuration is the same on all operating system platforms. Performance points are configured as follows.

Set the extended descriptor to:
PERFORMANCE_POINT
or to:
PERFORMANCE_POINT=interface_id
where interface_id corresponds to the identifier that is specified with the /id flag on the startup command line of the interface. The character string PERFORMANCE_POINT is case insenstive. The interface_id does not need to be specified if there is only one copy of an interface that is associated with a particular point source.
Set Location4 to correspond to the scan class whose performance is to be monitored. For example, to monitor scan class 2, set Location4 to 2. See the /f flag for a description of scan classes.
Set the PointSource attribute to correspond to the /ps flag on the startup command line of the interface.
Set the PointType attribute to float32.

I/O Rate Tag Configuration

An I/O Rate point can be configured to receive 10-minute averages of the total number of exceptions per minute that are sent to PI by the interface. An exception is a value that has passed the exception specifications for a given PI point. Since 10-minute averages are taken, the first average is not written to PI until 10 minutes after the interface has started. One I/O Rate tag can be configured for each copy of the interface that is in use.

Monitoring I/O Rates on the Interface Node

For NT and UNIX nodes, the 10-minute rate averages (in events/minute) can be monitored with a client application such as ProcessBook.

Configuring I/O Rate Tags with PI-ICU

The PI-Interface Configuration Utility (PI-ICU) provides a user interface for creating and managing IORates Tags.


[image: image6.png]Input DR ates Tag
7 Enable I0Rates for ths nteface:

TagStatus [ InFie Event Courter | Tagname

Cieated Yes 5 spio.piphd




PI-ICU currently allows for one I/O Rate tag to be configured for each copy of the interface that is in use. Some interfaces allow for multiple I/O Rates tags.

Enable IORates for this Interface

The Enable IORates for this interface check box enables or disables IORates for the current interface. To disable IORates for the selected interface, uncheck this box. To enable IORates for the selected interface, check this box.

Tag Status

The Tag Status column indicates whether the IORates tag exists in PI. The possible states are:

Created – This status indicates that the tag exist in PI

Not Created – This status indicates that the tag does not yet exist in PI

Deleted – This status indicates that the tag has just been deleted

Unknown – This status indicates that the ICU is not able to access the PI Server
In File

The In File column indicates whether the IORates tag listed in the tag name and the event counter is in the IORates.dat file. The possible states are:

Yes – This status indicates that the tag name and event counter are in the IORates.dat file

No – This status indicates that the tag name and event counter are not in the IORates.dat file

Event Counter

The Event Counter correlates a tag specified in the iorates.dat file with this copy of the interface. The command line equivalent is /ec=x, where x is the same number that is assigned to a tag name in the iorates.dat file.

Tagname

The tag name listed under the Tagname column is the name of the IORates tag.

Right Mouse Button Menu Options

Create

Create the suggested IORates tag with the tag name indicated in the Tagname column.

Delete

Delete the IORates tag listed in the Tagname column.

Rename

Allows the user to specify a new name for the IORates tag listed in the Tagname column.

Add to File

Adds the tag to the IORates.dat file with the event counter listed in the Event Counter Column.

Search

Allows the user to search the PI Server for a previously defined IORates tag.

Configuring I/O Rate Tags Manually

There are two configuration steps.

Configuring the PI Point on the PI Server

Create an I/O Rate Tag with the following point attribute values. 

	Attribute
	Value

	PointSource
	L

	PointType
	float32

	Compressing
	0

	ExcDev
	0


Configuration on the Interface Node

For the following examples, assume that the name of the PI tag is evtintf001, and that the name of the I/O Rate on the home node is evtintf001.

Edit/Create a file called iorates.dat in the PIHOME\dat directory. The PIHOME directory is defined either by the PIPCSHARE entry or the PIHOME entry in the pipc.ini file, which is located in the \WinNT directory. If both are specified, the PIPCSHARE entry takes precedence. 

Since the PIHOME directory is typically C:\PIPC, the full name of the iorates.dat file will typically be C:\PIPC\dat\iorates.dat.

Add a line in the iorates.dat file of the form:

evtintf001, x

where evtintf001 is the name of the I/O Rate Tag and x corresponds to the first instance of the /ec=x flag in the startup command file. X can be any number between 2 and 34 or between 51 and 200, inclusive. To specify additional rate counters for additional copies of the interface, create additional I/O Rate tags and additional entries in the iorates.dat file. The event counter, /ec=x, should be unique for each copy of the interface. 

Set the /ec=x flag on the startup command file of the interface to match the event counter in the iorates.dat file.

The interface must be stopped and restarted in order for the I/O Rate tag to take effect. I/O Rates will not be written to the tag until 10 minutes after the interface is started.

Startup Command File

Command-line arguments can begin with a / or with a -. For example, the /ps=E and –ps=E command-line arguments are equivalent.

For NT, command file names have a .bat extension. The NT continuation character (^) allows one to use multiple lines for the startup command. The maximum length of each line is 1024 characters (1 kilobyte). The number of flags is unlimited, and the maximum length of each flag is 1024 characters.

The PI-Interface Configuration Utility (PI-ICU) provides a tool for configuring the Interface startup command file. The PI-EVT interface on Windows has a PI-ICU Control that will aid in configuring the PI-EVT interface startup command file:

[image: image7.png]iy Pl-Interface Configuration Utility - EVTIntf1 *

o5 | N2

[EVT File -1 (EVTIntT) > losalost =] _ Rename

EventFil

i E

EVTinttexe version 3.4.1.4 UNIINT version 35.12.0

Generl] Urint  evint | Senice | 10RteeStas Toge| P Poiis| Per Couniers | Conke Progen
Event File Interface-Specific Parameters (35.0.11)
General Application
o [ G | \ | S|
‘File and Folder Paths (Required) ‘Suppression Parameters File Handing
Event joum files directory I~ Suppress Point Creation Rename delay time (sec).
I = [ ovreces e St o
= Suppress U Ceaton
=ty I~ Stppres Unk Level s Ceaton [ PE
P ¢ ceacomyomaTpepons || T g
Inteface Specfic Debugaing Module Path
I™ Use inteface specific debugging ‘Specify altemate starting module for
™ Brea>Processing Ce- Ut ieerchy
Debugging level (0-5) Pl Moduie path

[

Close.

Servics Uninstalled EVTinti - Not Installed




The PI-EVT control for PI-ICU has five tabs, each of which has a number of separate sections. A yellow text box indicates that an invalid value has been entered, or that a required value has not been entered.

Within the following descriptions, the command line switches are listed with the sections.  The user is advised to check the section on “Command-line Parameters” for more detailed information concerning the behavioral consequences of selecting or specifying a given option.

General Options

The event journal file (/path) and position files directory (/pospath) paths are required for the interface configuration.

Interface debugging (/db=#) can be enabled, but is optional.

The automatic creation of points (/spc), units (/suc), phase states (/sps) or unit-level aliases (/sula) can all be suppressed by checking the appropriate box in the “Suppression Parameters” section of the General Options Tab. The create only string tags (/spc) can also be seen under this section.
An optional starting module path (/smp=<module path>) can be specified in the “Module Path” section.  The syntax for specifying the starting module path is as follows: \\<RootModule>\<SubModule>\<…>.  For example,

\\pea_soup\pea_soup1\
The ellipsis (…) button pulls up a dialog that aids the user in selecting a specified module path.

Application Options

[image: image8.png]Event Fie Inteface-Specific Parameters (35.0.11)

Gt o | ML \ | S|
‘Foreign Language Translation ‘Application Parameters
I Uso Bl e BES senerte

I Use foreign language transiation fie:
Numerical Convers. based on local seftings
Language translaton path andfie.

I
|

Evert Parameters
I~ Use Event Exclusions.
™ Use event message logging to sting tag

[OenBatch (Sequencia) E

BES identfier prefiedto Area, Processing Cells and
PIModues created

e

T~ Combine Equpment and Recipe Names:
I~ Abration Events are unavaiable
™ Compare and merge curent and previous unit batch





The foreign language translation file path (/langpath) can be set in the “Foreign Language Translation” section.  Use of the “Edit translation file” button will pull up a separate dialog that allows for the configuration of the phrases that need translation for the interface to operate properly.  This dialog has two tabs for General and Event specific phrases that must be translated. The (/uen) switch will allow creating tags, aliases, and modules only using English name for EventTypes even though a translation file is used.
The numerical conversion settings (/ns) can be specified from the drop down list. The default setting is “English_United  States”. From the dropdown list, select the “Local Windows Settings” if the settings should be based on the local Windows settings. Select the appropriate language if the settings must be different from the local windows settings. Select the “blank” option to set it to default.
[image: image9.png]Language Translation File Editor - [D:\Program Files\

IPClInterfaces\evtintflangfile.ini]

Geneial Paameters

Atbation Exvert Sting Defiions:
Beginring of BATCH

Endof BATCH

Events

588 States
AUNNING

COMPLETE

iz BATCH
Uit Prosedure Started

Fine BATCH

Unit Prosedure Finished

FNZIONE
HELD.

COMPLETATO
STOPPED

Procedua unita aviata

Operaton Started

[Procedura unita teminata

Operaton Firished

BLOCCATO
ABORTED

FERMATO
IDLE

[Operacione avviata

UnitAcquired

[Operacions terminata

Unit Released

[ABORTIT
READY.

[ATTESA
CONNECTING

Urits soquisia
State Changed
Stata madficato
Batch Speciic

Acquiing Resource:

Unita fasciata

Releasing Resovrce:

PRONTO
UNKNOWN STATE

CONNECTING
STARTING

UNKNOWN STATE
RESTARTING

RESTARTING

UPLOADING

[Acquiing Resouce:

Dekal/ Specic
Riesource Acquied by Recipe

[Releasing Resauice:

Resaurce Released by Recipe.

UPLOADING

588 Levels
Pracedue.

STARTING
DOWNLOADING

Unit Prosedure

[Resource Acaied by recipe
Uit
Unit

ProductIrfarmation
Product Cads:

[Resaurce Released by recpe

Frocedua

Operation

Pracedua unia
Phase

(Operazione.

123 product code

Fase

DOWNLOADING





and

[image: image10.png]Language Translation File Editor - [D:\Program Files\PIP

Genera Parameters

AllEvent Types
Active Binding

Event File Name

Phase Link Permissive Sent

Feend

Recipe Vakie

[Active Bindng
Active Step Change

Name fie everti

Formula Header

[Phase Link Permissive Sent

Phase Logic Arbiation

Valore cetta

Riecipe Value Changs

[Active Step Change

Active Step Change Commencing

[Formua Inestazone
Made Change

[Arbivagaio logica di fase
Frompt

[ecipe Value Change
Repot

[Active Step Change Commenci
Atration

Cambiamenta dimoda

Mode Command

Fichiesta

Frompt Response.

Rapparto
Seale Factor

[Arbivagoio
Batch Deletion

Comando moda

Operator Prompt

Fisposta a prompt

Riecipe Arbitation

Fatore di scala

State Change

[Elminaziane batch
Bind

Fichiesta operatore

Qurer Change

[Arbivaggi fcetta
Recipe Data

Cambiamenta distato

State Command

[Colegamento

Comment

Modica proprietaia

Param Dowrload Veriied

Datircetta

Riecipe Data Changed

Comando sata

Step Activy

Comment

Creation Bind

[Dowrload parameti veificato

Phase Lirk Permissive Received

[ecipe Data Changed

Riecipe Header

[Ativita del passa

System Message

[Collgamento creazione

[Phase Link Pemissive Receive

testaione ficetta

Messaggio di sitema





Event exclusions (/exc) and event logging (/logtotag) options can be specified.  Use of event exclusions is highly recommended, not all events are relevant to the user and the performance of PI and the PI-EVT interface can be greatly compromised by making the interface store many events (such as Step Activities, State Changes or Arbitration events) that are of less general relevance to user for exception tracking or are stored in PI in another manner (such as the start and end times of the various PI-Batch DB objects).

The “Application Parameters” section allows the specification of certain operational behaviors of the interface.   The BES Type (/bestype), BES Identifier (/besname), Combine equipment and recipe name (/cern), arbitration event unavailable (/aeu) and unit procedure merge mode (/mmm) options can all be specified here. 

Event Exclusions

[image: image11.png]Event File Interface-Specific Parameters (3.5.0.11)

Generl Options | Aegtedion [ Event ' et Logging | EVT Fie Mergn]
Excusions
¥ Actve Bnding ¥ Fomuia Header o Prose Logio
¥ Actve Step Change ¥ Mode Change. E ¥ Recpe Value Chiange
v Acive Step Change [/ Mode Command ¥ Promet ¥ Repot

Commencing [ Operstor Prompt ¥ Prompi Response. [ Scale Factor

¥ Abiration ¥ Owrer Ghange. ¥ Rece Abiration [V State Change:
¥ Batch Deleion o Dosriond [V RecbeData [V Siate Command
W Bnd W Verfied [ RecpeData [ Step Activiy.
¥ Comment - Phase Link Pemissive ~ Changed 7 System Message.
¥ Creaton Bind Received ¥ Recpe Header

W Event FleName [ Ehase Lk Pemissive G gecpe vaise Unselect Al





The “Event Exclusions” section is only enabled if the option is selected on the “Application Options” tab.  By default this is enabled (since the switch is recommended) and all of the events are selected for exclusion.

Event Logging

[image: image12.png]Event File Interface-Specific Parameters (3.5.0.11)

GenerslOptions | %P1 e Exclusons| Event Logging]| EVT Fie Merging

Eventstobe Loggedto Tag
[ Aowebndng [ FomiaFeass - Phaselogc

I Actve Step Changs | Mo Change. Abtration ¥ Recpe Value Change

[~ Actve Step Change |~ Mode Command | Promet I Repot
Commencing [ Operstor Prompt | Prompt Response [~ Scale Factor

I~ Abiration I Owrer Ghange. I~ Recie Atiration | State Change

™ Batch Deleion Paam Dosrond | RecbeData [ State Command

I~ Bnd T Verfied [~ RecpeData [~ Step Activiy.

¥ Comment [~ Phase Lik Pemissive _ Changed ™ System Message

™ Greation Bind Received I™ Recpe Header

I EvetFloName [~ PRoseLik Pemssve ey e





The “Event Logging” section is only enabled if the option is selected on the “Application Options” tab.

EVT File Merging

[image: image13.png]Event File Interface-Specific Parameters (3.5.0.11)

EVT Fie
Merging

et ptors | A0 | et ] vt Loons |

Options

Merge EVT Fies [~

o
I~ Orgal BatchiD

1T





The Merge EVT Files (/merge) should be checked to merge multiple event files into one PIBatch. The merge is based on batchid. The PIBatch Merge Time (/pmt) is required when /merge is specified. In addition to merging event files into one PIBatch, additional events can be logged to string tags. The Formula Name and the Original BatchID (if the BatchID is a substring of the value in the event files) can be logged to string tags at the start time of every Operation. A separate tag is allocated for the BatchID but for the Formula Name, the string tag allocated for the Formula Header is used. Hence, it is necessary to select “Formula Header” in the “Event Logging” section for the “Formula Header with Formula Name” under “Additional String Pool Events” to be enabled. 

[image: image14.png]Event File Interface-Specific Parameters (3.5.0.11)

e e e )

EVT Fie
Merging

Mews EVTFies [ PlBatch Megs Tme: 5 days  Use BatchiD Foed Fomat [
‘Addtional Sting Pool Everts [ BatchiD Fxed Format Setings

AddtonlSing Poo Everts BachiD Dyanic g r
Foced Court Consective Digts 5

Fied Count Apha Characters — [g
Stating Posion Aph Chracters [g—
Foced court Left@or Rht() o -]

¥ Fomua Header with Fomia Name.
v Biginal BaichiD)





The “Use BatchID Fixed Format” (/bidf) is an optional setting while merging event files into one PIBatch. This switch allows the interface to look for a substring in the BatchID column value in the event files to be used as the BatchID for the PIBatch. The /bidf setting specifies the number of digits, characters and the postion of those digits and characters with respect to each other in the substring. For details on how these settings work and what values to use, see the section titled “Using /BIDF or /BIDD switches”. The /bidd switch is enabled by checking the “BatchID Dynamic Flag”. 

Additional Parameters

If the interface-specific control cannot be accessed for any reason by the PI-ICU (e.g., the control is not installed) or if the interface-specific control does not contain a particular switch (e.g., the version of the control for some reason is not synchronized with the interface version) additional parameters may be specified in the “Additional parameters” section of the control.  This ensures a minimal level of forward compatibility for the control with future versions of the interface and PI-ICU.  The user should not place parameters here that can be configured elsewhere in the control.

[image: image15.png]



Note: The UniInt End User Document includes details about other command line parameters, which may be useful.

Command-line Parameters

This is a listing of the command-line parameters and their specific behaviors with respect to the PI-EVT interface.  This section gives more detailed information concerning the parameters that may be specified when configuring the interface (such as with the PI-ICU).

	Parameter
	Description

	/path=<event journal path>

Required
	The /path flag specifies the directory where the interface should look to find the event journal files.  

	/pospath=
<position file path>

Required
	The /pospath flag specifies the directory where the interface should store its position (*.pos) files for recovery purposes.  

	/aeu

Optional
	The /aeu switch specifies that Arbitration Events are Unavailable in the event journal files.  When this switch is used, the logic by which the interface resolves the start and end times for various PIBatch objects is altered.  This switch should only be used if with Batch Execution Systems which are based on Sequencia’s OpenBatch system 4.0.0.75 and earlier.

	/aspe=[10,33]

Optional
	The /aspe=[10,33] switch allows logging Additional String Pool Events to string tags for Formula Header (with more values for Formula Name) and also allocates a string tag for BatchID. This switch is valid only when /merge switch is used. An additional event is added to these tags at the start time of each Operation. The BatchID string tag stores the Original BatchID when a substring of the BatchID column value in the event file is used to merge event files into one PIBatch. Use /aspe=10 if only Formula Name should be logged. /aspe=10 is valid only if /logtotag has the value 10 included. Use /aspe=33 if only the BatchID should be logged. Use /aspe=10,33 to log both of them.

	/bestype=”bestype”

Optional
	The /bestype flag specifies the BES application that is generating the event files.  Because each of the specific vendor implementations can have subtle differences, this argument may be required.  The valid arguments are:

    OpenBatch (Sequencia)

    TotalPlantBatch (Honeywell)

    iBatch (Intellution)

    RSBatch (Rockwell)

    DeltaV (Emerson)

The vendor name should not be included in the argument (i.e. only “DeltaV” or “iBatch” is used).

The default, if the argument is not used, is “OpenBatch.”

	/besname=”BESName”

Optional
	The /besname flag specifies the string that the application will pre-fix to each Area, Processing Cell, and Unit PI-Module that the interface creates.  Since the name of the PI-Unit created using this option is different than one that is created not using the option, points for that unit are distinguishable.  The besname is separated from the rest of the name by a colon (‘:’).  The default is to not include a prefix for any string for Area, Processing Cell or Unit names.

	/bidd

Optional
	The /bidd (BatchID Dynamic format) switch is used used in conjunction with /bidf=n[:c:p:a]. When/bidd is used, a BatchID with the minimum number (n) of digits is searched. If there is no match then the interface searches for n+1 contiguous digits and so on until a match is found or the length of the BatchID string is reached. If there is no match, then the complete string in the BatchID column of the event file is used as the BatchID for the PIBatch. If more than one match is found then the first substring is used. If there are characters embedded within the substring, then in the dynamic format it is necessary to specify whether the digit count should be increased before or after the characters. The anchor value a serves this purpose. 
Example for /bidd in conjunction with /bidf to extract a substring from the BatchID column in the event file:

Let’s say that the BatchID column in the event file is lot30112 / 90dev124 / 12345stp / ld567 / 201num54. 
If /bidf=3:0:0:0 means that there are 3 contiguous digits and no characters in the substring. Since there are multiple matches, the first substring is used and the result will be 124. 

If /bidf=4:0:0:0 means that there are 4 contiguous digits and no characters in the substring. There is no match for 4 contiguous digits. Hence the search continues for a 5 contiguous digits. Since there are two matches, the first substring is used and the result will be 30112. Note that without the /bidd switch, the BatchID would be the entire string.

If /bidf=5:0:0:0 means that there are 5 contiguous digits and no characters in the substring. Since there are two matches, the first substring is used and the result will be 30112. 

If /bidf=6:0:0:0 means that there are 6 contiguous digits and no characters in the substring. There is no match for 6 contiguous digits. Hence the search continues for a 7 contiguous digits. There is no match for 7 contiguous digits. Hence the search continues for 8 contiguous digits and so on but there is never a match for more than 5 contiguous digits. Therefore the complete string lot30112 / 90dev124 / 12345stp / ld567 / 201num54 is used as the BatchID. 

If /bidf=5:3:1:0 means that there are 5 contiguous digits with 3 contiguous characters and the characters are placed before the first digit. The resulting BatchID will be lot30112. 

If /bidf=5:3:6:0 means that there are 5 contiguous digits with 3 contiguous characters and the characters are placed before the sixth digit (in this case it means at the end of the 5 digit number). Hence the resulting BatchID will be 12345stp. 

If /bidf=4:3:3:0 means that there are 4 contiguous digits with 3 contiguous characters and the characters are placed before the third digit. There is no match for the given criteria. So, the number of contiguous digits for the substring is increased to 5. Since the number of digits is increased, the position of the characters becomes ambiguous because the increased digit can be either before or after the three characters. This means the two possibilities are 90dev124 and 201num54. The last value in the switch specifies where the increased digit should be added. A value of zero (as in this case) means the number of digits to the left of the characters is fixed and hence the result will be 90dev124. If /bidf=4:3:3:1 is used, the result would be 201num54.

If /bidf=4:3:3:1 means that there are 4 contiguous digits with 3 contiguous characters and the characters are placed before the third digit. There is no match for the given criteria. So, the number of contiguous digits for the substring is increased to 5. Since the number of digits is increased, the position of the characters becomes ambiguous because the increased digit can be either before or after the three characters. This means the two possibilities are 90dev124 and 201num54. The last value in the switch specifies where the increased digit should be added. A value of one (as in this case) means the number of digits to the right of the characters is fixed and hence the result will be 201num54. If /bidf=4:3:3:0 is used, the result would be 90dev124.

	/bidf=n[:c:p:a]
Optional

	The /bidf (BatchID Fixed format) switch is used to obtain a new BatchID, which is a substring of the value in the BatchID column in the event file. The /bidf takes four values in the format /bidf=n:c:p:a where n represents a fixed number (greater than zero) of contiguous digits in the desired BatchID, c represents the number of contiguous characters embedded in the substring to be extracted, p represents the starting position of the characters with respect to the contiguous digits and a represents the anchor point for the varying digit count. n must have a value greater than zero specified if /bidf=n:c:p:a is used but c, p and a take default value of zero. A substring from the BatchID column in the event file is determined based on these criteria. If there is no match, then the complete string in the BatchID column of the event file is used as the BatchID for the PIBatch. If there are multiple matches, the first substring is used as the BatchID for the PIBatch. If the number of contiguous digits could vary, then the /bidd switch must also be used in conjunction with /bidf. 

Example for /bidf to extract a substring from the BatchID column in the event file:

Let’s say that the BatchID column in the event file is lot30112 / 90dev123 / 12345stp / ld567. 
If /bidf=5:0:0:0 means that there are 5 contiguous digits and no characters in the substring. Since there are two matches, the first substring is used and the result will be 30112. 

If /bidf=6:0:0:0 means that there are 6 contiguous digits and no characters in the substring and there is no match for this and the complete string lot30112 / 90dev123 / 12345stp is used as the BatchID. 

If /bidf=3:0:0:0 means that there are 3 contiguous digits and no characters in the substring. Since there are two matches, the first substring is used and the result will be 123. 

If /bidf=5:3:1:0 means that there are 5 contiguous digits with 3 contiguous characters and the characters are placed before the first digit. Hence the resulting BatchID will be lot30112. 

If /bidf=5:3:3:0 means that there are 5 contiguous digits with 3 contiguous characters and the characters are placed before the third digit. Hence the resulting BatchID will be 90dev123. 

If /bidf=5:3:6:0 means that there are 5 contiguous digits with 3 contiguous characters and the characters are placed before the sixth digit (in this case it means at the end of the 5 digit number). Hence the resulting BatchID will be 12345stp. 

	/cern

Optional
	The /cern switch (Combine Equipment and Recipe Names) is used when the user wishes to have the interface name its Sub-PI-SubBatches as a combination of the name of a phase in the recipe structure (name of instance of the class of a phase) and the class name of the phase (which appears in the “Phase” column of the *.evt file.  The default value is not to combine names, only the user specified instance name (in the “Recipe” column) is used.

	/cost

Optional
	The/cost switch will Create Only String Type points for the events irrespective of what data type is encountered. This applies only to new points created by the interface and is not applicable if /spc is used.

	/db[=##]

Optional
	The /db[=##] switch specifies the interface debug logging message level.  The various levels that may be assigned are as follows:

    0 – Log all messages (LOG_ALL)

    1 – Log all runtime messages (LOG_DEBUG)

    2 – Log additional informational messages (LOG_LOW)

    3 – Log minor errors (issues arising from optional switch use) (LOG_MEDIUM)

    4 – Log major errors (LOG_HIGH)

    5 – Log critical/fatal errors (LOG_CRITICAL)

Log level zero (0) is the most verbose setting, while level five (5) reports the least detail (it logs only those error messages that are fatal to interface operation).  The default logging level is 3 (LOG_MEDIUM), to log errors only.  When testing the interface, it may be necessary to use a more verbose setting (0,1, or 2).

	/exc[=#,#,…]

Optional
	The /exc switch informs the interface of the type of events which are excluded (i.e. not saved) in the PIProperties of the PIBatch Object.  Event types are designated by number and are specified as follows:

1 = Active Binding

2 = Active Step Change 

3 = Active Step Change Commencing

4 = Arbitration

5 = Batch Deletion

6 = Bind

7 = Comment

8 = Creation Bind

9 = Event File Name

10 = Formula Header

11 = Mode Change

12 = Mode Command

13 = Operator Prompt

14 = Owner Change

15 = Param Download Verified

16 = Phase Link Permissive Received

17 = Phase Link Permissive Sent

18 = Phase Logic Arbitration 

19 = Prompt

20 = Prompt Response

21 = Recipe Arbitration

22 = Recipe Data

23 = Recipe Data Changed

24 = Recipe Header

25 = Recipe Value

26 = Recipe Value Change

27 = Report

28 = Scale Factor

29 = State Change

30 = State Command

31 = Step Activity

32 = System Message

For example,

    /exc=1,3,4,5,11

would specify that the interface would not place Active Binding, Active Step Change Commencing, Arbitration, Batch Deletion, and Mode Change events in the PIProperties of the PIBatch object.

If the /exc is specified with no argument, then no events are placed in the PIProperties.

	/langpath[=<foreign language translation path and file>] 

Optional
	The /langpath flag specifies the directory and file where the interface should look to find the language translations for the logic triggering events.  If this switch is not used, then the interface assumes that the default language of English is to be used.  If a path and file is not specified, then the interface looks for the event translations in the c:\winnt\langfile.ini file.  If that file is not found, and the switch is specified, then an error is generated and the interface will not start.

	/logtotag=#[,#,…]
Optional
	The /logtotag=#[,#,…] switch specifies which events messages will be logged to a string tag.  See section xxx for more information concerning this behavior.  The syntax for the switch is similar to that for the /exc=[#,#,…] switch.  However, the user must specify at least one event type, there is no default event that is logged to a string tag.

For example,

    /logtotag=1,3,4,5,11

would specify that the interface would place Active Binding, Active Step Change Commencing, Arbitration, Batch Deletion, and Mode Change events in separate string tags when those events are found in the event journal.

	/merge

Optional
	The /merge switch allows the interface to merge multiple event files with same BatchID into one PIBatch. If there are overlapping Unit Procedures on any Units within the merged event files, the Unit Procedures will be merged into one PIUnitBatch. The /pmt switch must be specified along with the /merge switch.

	/mmm

Optional
	The /mmm switch specifies that the interface will attempt to compare and merge the current unit batch with the previous one.  This merge will only occur when (in addition to this switch being present) the unit, unit procedure name, and batch id match between the old and new unit procedures (this is most common with Manual Mode intervention, where the BES often has to reallocate resources after the being placed back into Auto mode).  This switch is recommend, (and required for the interface, if manual mode intervention is standard operating procedure with respect to BES operation).

	/ns=[lang]

Optional
	The /ns (Numeric Settings) switch allows the interface to perform proper numerical conversions based on the “Regional and Language Options” setting on local system or based on user defined language. 

This switch is particularly useful when the numerical conventions differ (example a comma is used instead of a decimal etc) from the default settings.

If the switch is not used, then the default settings of “English_UnitedStates” is used.

If the switch is used without any language specification, i.e. /ns, then the interface will use “Regional and Language Options” settings specified on the Windows machine where the interface is running. If the language specification is passed as a value (/ns=lang), then the interface will use that value as internal regional/language setting to perform numerical conversions regardless of local system “Regional and Language Options” setting. 

If the switch contains invalid language, .i.e /ns=<invalid language>, then the interface will exit.

The language can be passed by type as it is specified below or by its abbreviation.

Language types (abbriviations): 

chinese 

chinese-simplified  (chs) 

chinese-traditional  (cht)

czech (csy) 

danish (dan) 

belgian, dutch-belgian (nlb) 

dutch (nld) 

australian, english-aus (ena) 

canadian, english-can (enc) 

english 

english-nz (enz) 

english-uk (uk) 

american, american-english, english-american, english-us, english-usa, (enu) (us) (usa) 

finnish (fin) 

french-belgian (frb) 

french-canadian (frc) 

french (fra) 

french-swiss (frs) 


	/ns=[lang]

Optional

(continued)
	german-swiss, swiss (des) 

german (deu) 

gegerman-austrian (dea) 

greek (ell)

hungarian (hun) 

icelandic (isl) 

italian (ita) 

italian-swiss (its) 

japanese (jpn) 

korean  (kor) 

norwegian-bokmal (nor)

norwegian

norwegian-nynorsk (non) 

polish (plk) 

portuguese-brazilian (ptb) 

portuguese (ptg) 

russian (rus) 

slovak (sky) 

spanish  (esp) 

spanish-mexican (esm) 

spanish-modern (esn) 

swedish (sve) 

turkish (trk)

Examples:

/ns  - will set the interface to use the local Windows language/regional settings

/ns=italian 
/ns=ita
Both switches will set the interface to use Italian language/regional settings.

	/pmt=x
Required with /merge switch
	The /pmt PIBatch Merge Time switch specifies the merge time in days. When a new event file is processed, the interface searches the PI Batch Database for existing PIBatches that match the BatchID of the new event file. The /pmt limits the time range in which the interface will perform this search. The search is limited to x days before the start of the new event file and x days after the start of the new event file.  for Batches with identical BatchIDs to be merged. Typically x represents the maximum total duration of all the event files that might be merged. 

Example:

If there are 3 batches and each batch is 1 day long and if the idle period between each batch is also 1 day then /pmt=5 will merge all three event files into one PIBatch. 

	/rme

Optional

(version 3.1.0.42 and greater)
	The /rme (Recovery Mode Enabled) feature allows for the insertion and backfilling of PI-Batch in the past.  Use of this switch causes the Event File Interface to read the file normally, but to create PI-UnitBatches with a 1 second duration (since record of the start event of the unit procedure does not contain any information about the termination of the unit procedure).

As such, the PI-UnitBatch is created and then when the end time is properly triggered (i.e. the Unit Procedure ends or the physical unit is released) the interface will edit the unit batch with the correct end time.  Note: this is a true edit.  The PI Audit Database, if enabled, will show that this PI-UnitBatch has been edited.  Also, the status of the PI-Batches and PI-UnitBatches that are populated in this mode will have their statuses listed as “Recovered.”

By default, recovery mode is not enabled.  This switch is not recommended under normal runtime conditions for two (2) main reasons: 1) all PI-UnitBatches will show a 1 second duration with all PI visualization clients and PI-batchDB search results until they completed; 2) all PI-UnitBatches created with recovery mode on will be shown to be edited in to the PI Audit DB. 

Note, the interface cannot create PI-Points or PI-Modules in archives that are not the primary archive.  As such, the use of this switch will not enable the insertion of data that requires PI-Point or PI-Module creation for a past timeframe in a non-primary archive.  The target archive must already be aware of PI-Points and PI-Modules that are to reference the data.

	/rdt=#

Optional

(version 3.0.0.36 and greater)
	The /rdt=# switch configures a Rename Delay Time in which the interface will wait after registering the “End Of BATCH” system message which normally triggers the closing of the event file object in memory and renaming of the file.  

# is the number of seconds to delay.  The default value for the rename delay is 0 seconds.

	/smp=”PI-Module Path”

Optional
	The /smp switch designates an alternate PI-Module path to start looking for a particular Area->ProcessingCell->Unit hierarchy.  If this option is not specified (i.e. the default) is to begin at the root level of the PI-ModuleDB.  A path must be specified.  This path is of the syntax:

    \\<RootModule>\<SubModule>\<…>

e.g.

    \\MyEnterprise\MyPlant\
The PI server is not specified in this syntax, since that is already known from the /host switch.

	/spc

Optional
	The /spc (Suppress Point Creation) switch suppresses the automatic creation of points and aliases by the interface.  This switch will not stop the interface from creating its global string tag pool points or the interface and PI-Unit status points.

	/sps

Optional
	The /sps (Suppress Phase State) switch suppresses the automatic creation of the phase state PI-subbatch by the interface.

	/suc

Optional
	The /suc (Suppress Unit Creation) switch suppresses the automatic creation of units and aliases in the interface.

	/sula
Optional
	The /sula (Suppress Unit Level Alias) switch allows the user to stop the interface from creating aliases at the base unit level.  This switch does not stop the interface from creating the aliases at the PhaseName sub PI-Module level.

	/ps=x
Required


	The /ps flag specifies the point source for the interface. X is not case sensitive and can be any single character. For example, /ps=P and /ps=p are equivalent. 

The point source that is assigned with the /ps flag corresponds to the PointSource attribute of individual PI Points. The interface will attempt to load only those PI points with the appropriate point source. 

	/ec=x
Optional


	The first instance of the /ec flag on the command line is used to specify a counter number, x, for an I/O Rate point. If x is not specified, then the default event counter is 1. Also, if the /ec flag is not specified at all, there is still a default event counter of 1 associated with the interface. If there is an I/O Rate point that is associated with an event counter of 1, each copy of the interface that is running without /ec=x explicitly defined will write to the same I/O Rate point. This means that one should either explicitly define an event counter other than 1 for each copy of the interface or one should not associate any I/O Rate points with event counter 1. Configuration of I/O Rate points is discussed in the section called “I/O Rate Tag Configuration,” p. 37.

For interfaces that run on NT nodes, subsequent instances of the /ec flag may be used by specific interfaces to keep track of various input or output operations. One must consult the interface-specific documentation to see whether subsequent instances of the /ec flag have any effect. Subsequent instances of the /ec flag can be of the form /ec*, where * is any ASCII character sequence. For example, /ecinput=10, /ecoutput=11, and /ec=12 are legitimate choices for the second, third, and fourth event counter strings.

	/f=SS
or
/f=SS,SS
or 
/f=HH:MM:SS
or
/f=HH:MM:SS,hh:mm:ss

Required 


	The /f flag defines the time period between scans in terms of hours (HH), minutes (MM), and seconds (SS). The scans can be scheduled to occur at discrete moments in time with an optional time offset specified in terms of hours (hh), minutes (mm), and seconds (ss). If HH and MM are omitted, then the time period that is specified is assumed to be in seconds. 

Each instance of the /f flag on the command line defines a scan class for the interface. There is no limit to the number of scan classes that can be defined. The first occurrence of the /f flag on the command line defines the first scan class of the interface, the second occurrence defines the second scan class, and so on. PI Points are associated with a particular scan class via the Location4 PI Point attribute. For example, all PI Points that have Location4 set to 1 will receive input values at the frequency defined by the first scan class. Similarly, all points that have Location4 set to 2 will receive input values at the frequency specified by the second scan class, and so on. 

Two scan classes are defined in the following example:
/f=00:01:00,00:00:05 /f=00:00:07
or, equivalently:
/f=60,5 /f=7
The first scan class has a scanning frequency of 1 minute with an offset of 5 seconds, and the second scan class has a scanning frequency of 7 seconds. When an offset is specified, the scans occur at discrete moments in time according to the formula:

scan times = (reference time) + n(frequency) + offset

where n is an integer and the reference time is midnight on the day that the interface was started. In the above example, frequency is 60 seconds and offset is 5 seconds for the first scan class. This means that if the interface was started at 05:06:06, the first scan would be at 05:06:10, the second scan would be at 05:07:10, and so on. Since no offset is specified for the second scan class, the absolute scan times are undefined.

The definition of a scan class does not guarantee that the associated points will be scanned at the given frequency. If the interface is under a large load, then some scans may occur late or be skipped entirely. See the section called “Performance Point Configuration” for more information on skipped or missed scans.

	/host=host:port
Optional
	The /host flag is used to specify the PI Home node.  Host is the IP address of the PI Sever node or the domain name of the PI Server node.  Port is the port number for TCP/IP communication. The port is always 5450 for a PI 3 Server and 545 for a PI 2 Server. It is recommended to explicitly define the host and port on the command line with the /host flag. Nevertheless, if either the host or port is not specified, the interface will attempt to use defaults. 

Defaults:

The default port name and server name is specified in the pilogin.ini or piclient.ini file. The piclient.ini file is ignored if a pilogin.ini file is found. Refer to the PI‑API Installation Instructions manual for more information on the piclient.ini and pilogin.ini files.

Examples:
The interface is running on a PI-API node, the domain name of the PI 3 home node is Marvin, and the IP address of Marvin is 206.79.198.30. Valid /host flags would be:
/host=marvin                      
/host=marvin:5450 
/host=206.79.198.30
/host=206.79.198.30:5450

	/id=x

Optional


	The /id flag is used to specify the interface identifier. 

The interface identifier is a string that is no longer than 9 characters in length. UniInt concatenates this string to the header that is used to identify error messages as belonging to a particular interface. See the section called “Error and Informational Messages” for more information.

UniInt always uses the /id flag in the fashion described above. This interface also uses the /id flag to identify a particular interface copy number that corresponds to an integer value that is assigned to Location1. For this interface, one should use only numeric characters in the identifier. For example,

/id=1

	/stopstat
or
/stopatat=
digstate
Default:
/stopstat=
”Intf shut”
Optional


	If the /stopstat flag is present on the startup command line, then the digital state I/O Timeout will be written to each PI Point when the interface is stopped. 

If /stopstat=digstate is present on the command line, then the digital state, digstate, will be written to each PI Point when the interface is stopped. For a PI 3 Server, digstate must be in the system digital state table. For a PI 2 Server, where there is only one digital state table available, digstate must simply be somewhere in the table. UniInt uses the first occurrence in the table.

If neither /stopstat nor /stopstat=digstate is specified on the command line, then no digital states will be written when the interface is shut down.

Examples:
/stopstat=”Intf shut” 

The entire parameter is enclosed within double quotes when there is a space in digstate. 

	/uen

Optional
	The /uen switch Uses English Names for <eventype> in a point name, alias name and PIModule name even when a language file is used to translate EventType. All other parameters, <unitname>(<phase>):<descript>, used in point name will still remain in the same language as shown in the Event file.


Sample evtintf.bat File

The following is an example file:

REM Startup file for the Event File Interface
REM

REM EVTINTF.bat

REM

REM This command procedure specifies the interface startup parameters

REM 

REM If multiple copies of the interface are to be run, 

REM copy EVTINTF.bat to EVTINTF#.bat where # is the same number passed 

REM by /id=# in the command string.

REM

REM Required Command-line Parameters:

REM

/path=<monitored directory>
path to event journal files

REM

/pospath=<position directory>
path for position files

REM

/ps=X




point source

REM

/f=hh:mm:ss<,HH:MM:SS>
  
scan class and offset

REM

REM Optional Command-line Parameters

REM

/besname=<BES Identifier>

BES prefix to MDB objects

REM

/bestype=<OpenBatch or DeltaV>
specifies EVT syntax via BES

REM

/aeu




arbitation events unavailable

REM

/aspe=[10,33]



Log Additional String Pool
REM






Events for Formula Name and  BatchID
REM

/bidd




Dynamic BatchID Format

REM

/bidf=n[:c:p:a]


Fixed BatchID Format

REM

/cern




combine equip & recipe names

REM

/cost




Create only string type points

REM

/db=#




logging or debug message level

REM

/exc[=#,#,…]



events excluded from PI-Props 

REM

/logtotag=#[,#,…]


events to log to string tags

REM

/langpath=<language dir & file>
path for translation file

REM

/merge




Merge event files into one PIBath
REM

/mmm




merge consecutive/manual mode
REM

/ns=[lang]



Regional settings for numerical 
REM






conversions

REM

/pmt=#




PIBatch merge time in days

REM    /rme




Recovery mode enabled

REM    /rdt=#




Rename delaly time
REM

/smp=<UNC-like PI-Module path>
starting module pointer

REM

/spc




suppress point creation

REM

/sps




suppress phase state

REM

/suc




suppress unit creation

REM

/sula




suppress unit level aliases

REM

/host=<piserver>:<port>

name of PI server

REM

/ec=#
  



event counter number of tag

REM

/id=#




interface number

REM

/stopstat[=<system digstate>]
shutdown event for interface 

REM

/uen




use English name

REM

REM NOTE: use a space between arguments but no spaces within argument.

REM Sample command line

evtintf.exe /pospath=d:\pipc\interfaces\evtintf\posfiles\ ^ 


/PATH=\\BatchServer\Journals\ ^


/HOST=localhost:5450 /PS=EV /ID=1 /EC=11 ^


/bestype=DeltaV /exc /logtotag=32 /f=00:00:30

REM

REM end of EVTINTF.bat

Interface Node Clock

The correct settings for the time and time zone should be set in the Date/Time control panel. If local time participates in Daylight Savings, from the control panel, configure the time to be automatically adjusted for Daylight Savings Time. The correct local settings should be used even if the interface node runs in a different time zone than the PI Server node.

Make sure that the TZ environment variable is not defined. The currently defined environment variables can be listed by going to Start | Settings | Control Panel, double clicking on the system icon, and selecting the environment tab on the resulting dialog box. Also, make sure that the TZ variable is not defined in an autoexec.bat file. When the TZ variable is defined in an autoexec.bat file, the TZ variable may not appear as being defined in the System control panel even though the variable is defined. Admittedly, autoexec.bat files are not typically used on NT, but this does not prevent a rogue user from creating such a file and defining the TZ variable unbeknownst to the System Administrator.
Security

If the home node is a PI 3 Server, the PI Firewall Database and the PI Proxy Database must be configured so that the interface is allowed to write data to the PI Data Archive. See “Modifying the Firewall Database” and “Modifying the Proxy Database” in the PI Data Archive Manual.
Note that the Trust Database, which is maintained by the Base Subsystem, replaces the Proxy Database used prior to PI version 3.3. The Trust Database maintains all the functionality of the proxy mechanism while being more secure.
See “Trust Login Security” in the chapter “PI System Management” of the PI Universal Data Server System Management Guide.

If the interface cannot write data to a PI 3 Server because it has insufficient privileges, a –10401 error will be reported in the pipc.log file. If the interface cannot send data to a PI2 Serve, it writes a –999 error. See the section “Appendix A: Error and Informational Messages” for additional information on error messaging.
Starting / Stopping the Interface

This section describes starting and stopping the interface once it has been installed as a service. See the UniInt End User Document to run the interface interactively.

Starting Interface as a Service

If the interface was installed a service, it can be started from the services control panel or with the command:

evtintf.exe –start

A message will be echoed to the screen informing the user whether or not the interface has been successfully started as a service. Even if the message indicates that the service started successfully, make sure that the service is still running by checking in the services control panel. There are several reasons that a service may immediately terminate after startup. One is that the service may not be able to find the command-line arguments in the associated .bat file. For this to succeed, the root name of the .bat file and the .exe file must be the same, and the .bat file and the .exe file must be in the same directory. If the service terminates prematurely for whatever reason, no error messages will be echoed to the screen. The user must consult the pipc.log file for error messages. See the section “Appendix A: Error and Informational Messages” for additional information.

Stopping Interface Running as a Service

If the interface was installed a service, it can be stopped at any time from the services control panel or with the command:

evtintf.exe –stop

The service can be removed by:

evtintf.exe –remove

Buffering

Buffering of data on the Interface node is not recommended for this interface.
Appendix A:
Error and Informational Messages

A string NameID is pre-pended to error messages written to the message log. Name is a non-configurable identifier that is no longer than 9 characters. ID is a configurable identifier that is no longer than 9 characters and is specified using the /id flag on the startup command line. 

Message Logs

The location of the message log depends upon the platform on which the interface is running.  See the UniInt End User Document for more information.

Messages are written to PIHOME\dat\pipc.log at the following times.

· When the interface starts many informational messages are written to the log. These include the version of the interface, the version of UniInt, the command‑line parameters used, and the number of points.

· As the interface retrieves points, messages are sent to the log if there are any problems with the configuration of the points.

· If the /db is used on the command line, then various informational messages are written to the log file.

Messages

The Event File interface logs all unit, alias, and point creation attempts for system management and auditing purposes.  In addition, there are various debug level messages which may be logged using the /db=<level> switch in the interface startup file.  See the section on Interface Operation for more detail on this switch.

Initialization or Startup Errors

Generally, these errors will stop the interface from starting up – it is normal behavior for the interface to exit since in many cases the proper startup state of the interface cannot be achieved (or determined) when these errors occur.  Generally, speaking if an interface initialization error occurs, the user should check to ensure that communications between the PI server and interface node are existent (since many of the initial parameters need to be synchronized – checked or created with or on the PI server).

“Monitored Directory not found.  Check use of /path=<MonDir> switch.”

User should check that the account under which the interface is running has access to the directory in question. Access can be denied to due to either network access (remember that the interface will likely run under a different account as a service versus that when run interactively) or file permissions.  The latter is more likely with local path specifications, the former with paths specified over a LAN or mapped drive. 

“Position File Directory not found.  Check use of /pospath=<POSDir> switch. Exiting.”

It is recommended that the temporary position files be kept in a local drive, and therefore, the most likely culprit is that either a) the directory does not exist (the interface does not automatically create the directory) or b) that the file permissions on it are such that the interface cannot access the directory.

“Failed to create EVT Interface S88 Hierarchy heading set”

This error implies that the interface could not find or create the required PI-HeadingSet.  The user should ensure that the interface node has the proper permissions on the PI server to be allowed to create objects in the PI-Module DB.  Otherwise, the user can manually create this PI-HeadingSet.  The headingset name should be “EVT Interface S88 Hierarchy” and it must contain the following PI-Headings in this order (1-5): “Procedure”, “Unit Procedure”, “Operation”, “Phase”, “Phase State”.

“Failed to create PI-UnitBatch status digital state set”

Means that the digital state set for the general PI-UnitBatch status digital state set used in marking a PI-UnitBatch questionable was not allowed.  Check to ensure that the interface node is allowed permissions on the PI server to create this set.  Or is must be created manually.  The set name is “UnitBatchStatus” with the first state of “Good” and at least one other state “Questionable”. 

“Fatal Error Initializing PI Module and Batch DBs [Number]: <Description>”

The user should check the PI server is running and is PI 3.3 or later (to ensure the presence of the Module DB on the PI server).  Ensure that the PI-SDK is running on that interface node (it should be since, another error is likely to be generated before this on if the PI-SDK is not present when the interface starts) and attempt to connect with another PI-Module DB application on the same interface node (e.g. the PI-Module Database Editor).  Without access to a PI server’s Module and Batch databases, the interface cannot operate.

“Failed to create EVT Interface Status Point”

The interface failed to create the required interface status point.  Ensure that permissions to write to the PI-Point database are allowed for the interface node.  The user can create this point manually if necessary.   The tagname must be “EVTIntf<IntfID>_Status” with pointtype “String”.  The user must also specify the pointsource, interface ID (location1) and a scan class (location4).

“Failed to create <various interface specific> Object”

The interface failed to create one of its internal objects (“Directory”, “Log”, “Global String Pool”, “Rules”, “Action” or “Unit Collection”).  These errors are always fatal and will cause the interface to exit.  If any of these objects fail to create, it is likely that the interface executable is corrupted and the user should attempt to repair or uninstall and reinstall the interface.

Runtime Errors

Generally, PI-EVT errors are triggered by some action that the interface takes while interacting with the PI Server. Therefore, most (if not all) PI-EVT Errors will contain a variable portion of the message which is returned from either the PI Server or the underlying PI-SDK layers.  PI server specific portions of messages will generally contain a negative five-digit number (e.g. –10401 or –15001).  These numbers are often followed by a description.  However, these error numbers can also be looked up using the following command line commands:



pidiag –e <error number>

or:



pilogsrv –e <error number>

PI-SDK numbers are generally eight-digit hexadecimal numbers (e.g. 0x000403a0).  Again specific descriptions for the error are generally appended to the error message, but can also be obtained by using the “Error Lookup” function in the AboutPI-SDK.exe application installed when the PI-SDK is installed.

“Call getting Module DB modules list failed, Error: <#>: <description>”

Module database pointer is no longer valid.  Check that PI server is still running.  The interface node can be purposefully disconnected from the PI server to attempt to reinitialize the Module DB pointer.  Otherwise, the interface may need to be restarted to reinitialize this pointer.

“[Area | Processing Cell] Module <Name> Not Found and Module Creation Suppressed (/suc)”

User has not created the correct module hierarchy for the interface to use and has suppressed PI-Unit/PI-Module creation.  Therefore, the interface cannot create the required PI-Batch objects since it cannot specify the correct linkages to the Module DB.  The user will likely need to:

Stop the interface,

Correct the Module DB hierarchy,

Delete the intermediate *.pos files for the affected event files (all those that use the modified portion of the hierarchy)

Delete the PI-Batches (if any in the PI-Batch DB using, for example, the PI-Module Database Editor).

Restart the interface.

“Error attempting to create Unit <UnitName>”

Interface encountered an error while attempting to create the local unit definition.  If this message appears in conjunction with another error that has a PI-SDK then this message is likely to be due to that.  Resolve the PI-SDK error and this message should no longer appear.  The nature of the PI-SDK error is variable, but common potential types are connection (data or connection timeouts), permissions (on either the PI-SDK or PI server sides) or illegal characters in names.

“Error Removing PI-UnitBatch (<UPName>), Error: <#>: <description>”

This error appears when the interface encounters a PI-UnitBatch that has a 0-second duration.  Since PI cannot have more than one PI-UnitBatch present in a given Unit at a given time, the presence of the 0-second duration PI-UnitBatch will not allow the insertion of a new PI-UnitBatch at this time.  The user will likely have to manually remove the PI-UnitBatch to get the interface to continue.  Check interface node permissions to ensure that it can write to the PI server’s Module and Batch DBs.

“Error [Adding | Closing] [PI-UnitBatch | Operation level PI-SubBatch] (<Name>), Error: <#>: <description>”

Check interface node permissions to ensure that it can write to the PI server’s Module and Batch DBs.  The interface encountered a situation where it was either not allowed to make a new BatchDB object or close out an old one.

“Error Prepping Operation Level PI-SubBatch (<OPName>) for Insertion, Error: <#>: <description>”

The interface encountered an error while trying to retrieve a PI-Heading from the “EVT Interface S88 Hierarchy” PI-HeadingSet.  Check to ensure that the PI server has this PI-HeadingSet and its five required PI-Headings.

“Error Finding PI-UnitBatch SubBatches (<UPName>), Error: <#>: <description>”

or

“Error retrieving Phases sub-PIModule for PI-Unit (<UnitName>), Error: <#>: <description>”

or

“Failed to get SubBatches List for UnitBatch <UPName> on Unit <UnitName>, Error: <#>: <description>”

or

“Phase <Name> not found, Error: <#>: <description>”

or

“Phase <Name> not Found.  Cannot insert phase state: <State>.”


Or

“Failed to create SubBatch <Name> in UnitBatch <UPName> for Unit <UnitName> SubBatches List, Error: <#>: <description>”


or

“Error Adding Phase Level PI-SubBatch (<Name>), Error: <#>: <description>”


or

“Error getting heading set for PI-SubBatch (<Name>), Error: <#>: <description>”


or

“Error Setting Phase <Name> end time, Error: <#>: <description>”

Check interface node permissions to ensure that it can read from the PI server’s Batch DB.  The interface encountered a situation where it was not allowed to access a PI-Batch DB object or that object was not present.  The specific error number and description will contain the differentiation of these situations.

“Error Adding Phase <PhaseName> to Unit <UnitName> Phases Module: <description>”

Check interface node permissions to ensure that it can write to the PI server’s Module DB.  The interface encountered a situation where it was either not allowed to make a new PI-Module object.  Also check the current hierarchy to ensure that the PI-Unit in questions still exists.

“Point Creation Failed for <tagname>”

The interface failed an attempt to create a PI Point.  Generally, this will be accompanied by another message with a PI-SDK error.  Check PI-SDK connection to PI server.  Resolve the situation according to the circumstances specified by the PI-SDK error (e.g. permissions, connection issues, etc.). 

“File <filename> contains ambiguous event order.  Suspending processing on BatchID <#>.”

The file has encountered a situation in the event file that requires that it mark the resultant PI-Batch (and possibly PI-UnitBatch) questionable.  See the following section in this appendix on “Questionable Batches”. 

“There are already two PIUnitBatches on the PIUnit <unitname> that overlap with the unitbatch in the file <filename>. This file might be marked questionable”

This is an informational message. This message is written when the /merge switch is used. When the /merge switch is used, the interface searches for existing PIUnitBatches to check for any overlaps. If only one PIUnitBatch exists, the files are merged. If there is more than one PIBatch that exists, then the interface cannot merge the three PIUnitBatches into one. Therefore it shows this message in advance.

Questionable Batches

The “questionable” flag is the generic error state method. It exists as an error trap for support and maintainance reasons.  The “questionable” flag on a batch is only activated when interface encounters an error that it cannot recover from.  The conditions under which this arises are, generally, when the file does not conform to the logic that is outlined in the Principles of Operation section, and therefore, the interface cannot (or has not) created the proper set of BDB objects that current event requires for whatever actions it is to take.

At this time, a batch and unitbatch (if any are active) are marked “questionable”, the interface stops processing the file, the “Unprocessed Files” performance counter in the interface is incremented by 1, and the name of the event file that had its processing halted is posted to the Interface status tag (generally named “EVTIntf#_status”, where # is the interface id value).  The PI-Batch is marked questionable by the introduction of a PI-Property into the PI-Properties collection.  A “Status” property is introduced and a subPI-Property with “Questionable” as its name and the timestamp of the event as its value.  The PI-UnitBatch is marked questionable by having its status point put into the digital state “Questionable”.  

Note, the interface automatically creates the status PIPoint, PIAlias, and “Status” subPIModule for the PI-Unit, when the unit is created.  If the unit creation is (or the unit was created by an early beta version of the interface), then the status PIPoint, PIAlias, and subPIModule will need to be created manually. 

When the batch is marked “questionable”, the interface will not start processing the file again ever.  The PI-Batch is closed when the “End Of BATCH” System Message Event appears in the Event Journal.  The interface will attempt to close any open PI-UunitBatches and PI-SubBatches that are still open in the context of the PI-Batch. 

The user needs to resolve the conflict in the file, or on the PI server (dependent on the error) and reprocess the file or input the data manually.  Note, that to have the interface reprocess that file, the user will need to remove all traces of that PI-Batch (and its PI-UnitBatch collection) from the BDB.  In addition, since the interface cannot back fill, if there have been files that have been subsequently processed by that interface that use the same PI-Units, the user will be unable to have the interface process the file.  Reprocessing the file must be done manually, in this case.

The “questionable” state on a given PI-Batch should not affect any other file being processed by the interface.  The next file that uses that PI-Unit should not see a problem.  When the next UP starts up in that unit (in a different file) it should mark the status “good” for the PIUnitBatchStatus flag and then continue processing the file.

System Errors and PI Errors

System errors are associated with positive error numbers. Errors related to PI are associated with negative error numbers. 
Error Descriptions 

On NT, descriptions of system and PI errors can be obtained with the pidiag utility:

\PI\adm\pidiag –e error_number

Appendix B:
BES Configuration Requirements

Introduction

Background

The PI-EVT interface reads event files, interprets their contents, and builds the corresponding objects in the PI Server Batch Database (BatchDB).  In order for this process to work, each event file must contain specific recipe events in a predictable order.  

Note: The PI-EVT interface is not appropriate for all types of recipes generated by a Batch Execution System.  It is designed for recipes that constrain a unit to run a single unit procedure at a time.
This document is meant to be informative enough for the potential user to make the assessment that the interface is appropriate for their environment; it does not delineate the low-level technical aspects of the event file or Batch Execution System (BES) logic.

Objectives

The goals of this document are two-fold.  Firstly, to outline the event file interface logic and PI Server Batch Database objects.  Secondly, to make recommendations regarding recipe configuration and BES operations that are compatible with the PI-EVT interface logic.

Principles of Operation

Principles of the PI Server Batch Database

The PI-Batch Database has three hierarchical objects for the purposes of the PI-EVT interface: the PI-Batch, PI-UnitBatch, and PI-SubBatch.  All three of these objects have a start and end time property that designates the timeframe in which they are “active”.

The PI-Batch is an object that is meant to correlate to a Batch (for instance a single execution of a recipe).  The PI-Batch has one main feature with respect to the PI-EVT interface:  it has a collection of PI-UnitBatches.  The PI-Batch is not tied to a specific piece of equipment.

The PI-UnitBatch object has three primary properties.  These are a parent PI-Batch, a PI-SubBatches collection, and a single unit.  The PI-UnitBatch rigidly enforces the S88 stricture that only one PI-UnitBatch may be present in a unit at any given time.

The PI-SubBatch is an object that contains only four user properties:  a Name, a PIHeading (which allows it to alias a user configurable title), a parent (which may be a PI-SubBatch or a PI-UnitBatch) and a PI-SubBatches collection.  PI-SubBatches are hierarchical (i.e. each PI-SubBatch has its own PI-SubBatches collection, of which each PI-SubBatch in the collection has its own PI-SubBatches collection and so on).  They are also only creatable from within a PI-UnitBatch (i.e. all PI-SubBatch hierarchies start with a PI-UnitBatch at the top level).

For more detailed information on the PI Batch Database and its objects, consult the document “PI-SDK Tutorial” Chapters 3 and 4.

Principles of the PI-EVT Interface 

The PI-EVT interface makes the following assertions about the connections between the S88 recipe hierarchy and the PI-Batch Database (BatchDB).

Each instance of a recipe loaded on to the BES batch list is a PI-Batch.  Generally, the highest level of a recipe possible is the Procedure.

Each Unit Procedure is a PI-UnitBatch

Each Operation is a PI-SubBatch with a PI-UnitBatch as parent

Each Phase is a PI-SubBatch with a PI-SubBatch as a parent 

The PI-EVT interface populates the BatchDB objects based on certain events in the event journals.

PI-Batch

For example, the PI-Batch start and end times are populated by the System Message events “Beginning Of BATCH” and “End Of BATCH”, respectively.

PI-UnitBatch

The PI-UnitBatch start and end times are based on a combination of events.  Since the PI-UnitBatch is tied to a piece of equipment, a unit procedure must start in the recipe and the equipment specified must be acquired.  When both of these criteria are fulfilled (i.e. the latter of the two events being found) the PI-UnitBatch is created and its start time property populated.  When either of these criteria ceases to be true (i.e. either the unit procedure ends or the equipment is released), the PI-UnitBatch is ended.

PI-SubBatch: Operation Level

PI-SubBatches that correspond to an operation in the recipe must also fulfill two criteria with logic similar to that for PI-UnitBatches.  That is, the equipment must be acquired and the operation must become active in the recipe for the appropriate PI-SubBatch to be started.  When either criterion ceases to be true, the PI-SubBatch is ended. In the case of an Operation level recipe, a PI-UnitBatch is created as a placeholder for the Operation level PI-SubBatch.

PI-SubBatch: Phase Level

For a PI-SubBatch corresponding to a phase, the start time and end times are populated by the phase state.  Since phases are not necessarily under the auspice of the BES directly (they are calls into the phase logic on either the DCS or through another mechanism), the only thing that is specified is the state.  The first receipt of an “active” BES phase (a superset of the allowable S88 states) state (e.g. RUNNING, DOWNLOADING, UPLOADING, STARTING, RESTARTING) will start the PI-SubBatch and the receipt of a “terminal” state (e.g. COMPLETE, STOPPED, ABORTED) will end it.

While some BESes allow for the linking of recipes into a campaign, the PI-EVT Interface does not currently link or group PI-Batches in any way.  PI-Batches with the same BatchID are allowed and do not conflict with the normal operation of the PI-EVT interface or PI-BatchDB.

For a more detailed account of the logic that the PI-EVT Interface uses, refer to the Principles of Operation section in the PI-EVT Interface manual.

Recommendations for BES Recipes and Equipment Models

The following page shows three figures depicting various types of recipes that can be configured and run on a BES.  Figure 1 is a sequential flow control (SFC) diagram that shows a simple procedure that consists of one unit procedure that houses two parallel operations.  Each operation consists of two sequential phases.  This type of recipe can be processed by the PI-EVT interface.  Since the interface will attempt to create two parallel PI-SubBatches, which is allowed, the running of this recipe can be represented in PI without any issues.  Recipes that contain concurrent unit procedures in different units are also allowed.


Figure 1:  This recipe configuration is allowed as long as the unit that UP_A runs on is not configured to allow more than one simultaneous owner (see Figure 2).

Figures 2 and 3 are SFC diagrams that depict the two types of recipes that can be created on some BESes and that cannot be processed by the interface and, therefore, are not supported.  These two types of recipes are:

If the maximum number of owners allowed for a unit is greater than one (Figure 2)

If multiple parallel unit procedures are configured and any one of those unit procedures requires that the arbitration of the unit occurs before the unit procedure starts (Figure 3)

These two types of recipes would result in the creation of PI-UnitBatches that violate the S88 requirement of only one Unit Procedure active in a given unit at a given time.  If the equipment (units) or recipes are configured in either of the above two situations, then the PI-EVT interface is not appropriate for that system.

Figure 2:  An SFC diagram portraying two parallel procedure level recipes, each containing a single unit procedure.  This recipe configuration is not allowed under the following conditions: a) UP_A and UP_B use the same unit; and b) unit is allowed to have multiple owners; and c) Recipes 1 and 2 are run concurrently.  Note, this equipment configuration is not possible on all BESes.


Figure 3:  This figure depicts an SFC diagram consisting of a procedure level recipe that has parallel unit procedures.  This recipe configuration is not allowed under the following circumstances: a) UP_A and UP_B use the same unit; and b) UP_A and/or UP_B are configured to acquire the unit before the start of the unit procedure.  Note, this recipe configuration may not be possible on all BESes.

Note that not all BESes can be configured to make these types of recipes or equipment configurations.  For example, it is known that the DeltaV Batch Executive allows for the configuration of multiple owners for a unit, while this is not possible on any version of Sequencia’s OpenBatch or on Rockwell’s RSBatch version 5.0 or lower.

There is no workaround for equipment or units that are configured to allow more than one concurrent owner (Figure 2).  This situation can lead to multiple batches/recipes simultaneously acquiring a given piece of equipment and using it, since the interface is unaware of the interaction between recipes (i.e event files).  Ultimately, this is equivalent to having multiple PI-UnitBatches simultaneously active in a given unit, which cannot be represented in the PI BatchDB.

Often, it is possible to adapt recipes with concurrent unit procedures on the same unit (Figure 3) to contain concurrent operations instead (similar to what is depicted in Figure 1).  Recipes with concurrent operations (or phases) can be processed by the PI-EVT interface accurately.  In the case of multiple concurrent owners for a unit, the only solution is to modify the equipment model to restrict the number of owners of a unit to one.  This is the recommended method for resolving the issue of multiple unit owners.  Recipe modifications may also be required in addition to the equipment model modifications.  

Appendix C:
Event File Directory Sync Utility

Introduction

The Event File interface to the PI system operates by reading in data from event journal files generated by a batch execution system and sending the data to PI. Once the interface has finished processing a file, it renames the original file with a new extension. However, there are some circumstances where it may be undesirable to rename event journal files. For example, there may be other programs on the system which require that the file names remain unchanged. 

The Event File Directory Sync utility has been designed for use in these scenarios. The utility continually monitors a source directory for new files. If any new files are detected, the utility copies the files to a destination directory. The Event File interface is then able to process and rename files in the destination directory without modifying the original files in the source directory.

Principles of Operation

The utility takes a source path and a destination path as parameters, along with an optional scan rate parameter. On each scan, the utility scans for all files with the extension .evt in the source path and compares that list with all files with the extensions .999 and .que in the destination path. Any .evt files which do not have a corresponding .999 or .que file are copied from the source path to the destination path. If a matching .evt file is found in the destination path, the source file is copied over only if the file sizes differ.

For a file to be copied successfully, the full path to either the source filename or destination filename cannot exceed 259 characters. In addition, neither the source path nor the destination path can exceed 252 characters.

[image: image16.png]



CAUTION 

It is critical that the processed .999 and .que files are not deleted until after the corresponding .evt files are deleted. If a .999 file is deleted before its associated .evt file, the .evt file will be copied into the destination directory again, and the EVT File Interface will send duplicate batch information to PI.

Utility Installation Procedure

1. Copy the interface files from the installation media to a directory on the interface node, for example, C:\PIPC\interfaces\evtintf\. Create the directory if necessary.

2. Create a .bat command file with the same root name of the executable.

3. Alter the command-line arguments in the .bat file as discussed in this manual.

4. Try to start the utility interactively with the command file. For example:
evtsync.bat

If the utility cannot be started interactively, it will not be able to start as a service. It is easier to debug interactively started processes because error messages are echoed directly to the screen. Once the utility is successfully running interactively, try to run it as a service by following the instructions below. To stop the utility once it has been started interactively, hit CTRL-C.
Multiple copies of the utility can run on the same system. In order to run multiple copies as services, each copy of the executable must have a unique name, with a matching .bat file in the same directory.
Installing the Utility as an NT Service

Change to the directory where the evtsync.exe executable is located. Then run the utility with the –install switch:

evtsync.exe –install
Check the Microsoft Windows services control panel to verify that the service was added successfully. Use the services control panel to change the utility from a manual service to an automatic service or vice versa.

Startup Command File

Command-line arguments can begin with a / or with a -. For example, the /dest=C:\data and –dest=C:\data command-line arguments are equivalent.

Command file names have a .bat extension. The continuation character (^) allows one to use multiple lines for the startup command. The maximum length of each line is 1024 characters (1 kilobyte).

Command-line Parameters

	Parameter
	Description

	/src=<path>
	Full path to source directory.

	/dest=<path>
	Full path to destination directory.

	/rate=#
	Optional rate in seconds to scan source and destination directory. Default scan rate is 30 seconds. This parameter must be an integer value.


Sample evtsync.bat File

The following is an example file:

evtsync.exe ^ 


/src=C:\Journals ^


/dest=C:\Data

Starting / Stopping the Utility

Starting the Utility Service

If the interface was installed a service, it can be started from the services control panel or with the command:

net start evtsync

A message will be echoed to the screen informing the user whether or not the utility has been successfully started as a service. Even if the message indicates that the service started successfully, make sure that the service is still running by checking in the services control panel. There are several reasons that a service may immediately terminate after startup. One is that the service may not be able to find the command-line arguments in the associated .bat file. For this to succeed, the root name of the .bat file and the .exe file must be the same, and the .bat file and the .exe file must be in the same directory. If the service terminates prematurely for whatever reason, no error messages will be echoed to the screen. The user must consult the pipc.log file for error messages. 
Stopping the Utility Service

If the interface was installed a service, it can be stopped at any time from the services control panel or with the command:

net stop evtsync

The service can be removed with:

evtsync.exe –remove

Conclusions

The Event File interface processes event files from a BES to create and populate PI BatchDB objects.  The interface is not appropriate for all recipe types.  In particular, recipes that contain concurrent unit procedures or that run in units that allow more than one simultaneous owner may not be accurately processed by the interface.  However, recipes that contain concurrent operations or phases can be accurately processed by the interface.  Recipes that contain concurrent unit procedures in different units are also allowed.

Revision History

	Date
	Author
	Comments

	30-may-01
	DCO
	Manual Version 1.0.1 – Draft for consideration

	01-oct-01
	DCO
	Manual Version 1.1.0 – Added information on numeric point pool, logging tag pool, /logtotag switch, and updated Principles of Operation section.

	07-oct-02
	DCO
	Updated use of “phase” keyword in exdesc configuration.  Updated interface manual to use version 1.11 of the interface skeleton.

	16-dec-02
	DCO
	Reorganized and updated command line switches list, incorporating /langfile, /cern and /sps switches.  Also elaborated on section for foreign language support.

	10-feb-03
	DCO
	Added entries for command line switches: /mmm, /sula, and /smp.  Also added section which details the “questionable” file labeling by the interface in Principles of Operation and Appendix A: Error Handling.

	14-feb-03
	DCO
	Updated supported platforms to “Windows 2000” specific.  Added section on “Syntax Variations in Batch Executions Systems”.

	17-mar-03
	DCO
	Added “Appendix B: BES Configurations Recommendations”

	29-mar-03
	DCO
	Updated PI-ICU interface specific control section to include screen shots and descriptions. Also, added specific error messages list and descriptions to “Appendix A: Error Handling”.

	7-Apr-03
	CG
	Changed title page; fixed formatting; fixed headers & footers

	14-Apr-03
	DCO
	Added documentation for /rme switch in startup command file section.

	24-May-03
	DCO
	Updated documentation for “Event Logging” in “Principle of Operations” section to include a more detailed account of the 3 types of event values saved in the PI server.

	18-Jun-03
	DCO
	Added documentation for /rdt=# switch in startup command file section.

	14-Aug-03
	DCO
	Updated documentation for 3.1.0.42 release.

	08-Apr-04
	DCO
	Added reference to DeltaV Batch in introduction.

	27-May-04
	SGODASI
	Changed the version number. Added information about string type tags for specific events. Added Appendix C.

	08-Jun-04
	CG
	Version 3.2.0.1 Rev B: Removed extra spacing; fixed copyright; added note about not using buffering; removed version # on section header of sync utility

	22-Jul-04
	SGODASI
	Version 3.3.0.2 Rev A: Added two new switches (/cost) and (/uen). Updated the figures for ICU control.

	22-Jul-04
	CG
	Version 3.3.0.2 Rev: Added that the new switches are optional.

	13-Oct-04
	MPK
	Fixed headers and Footers

	04-Mar-05
	SGODASI
	Changed version number

	9-Mar-05
	MPK
	Added new screenshots for the ICU Control section.

	13-May-05
	SGODASI
	Added new switches (/merge and /ns). Added new screenshots for the new ICU Control.

	16-May-05
	MPK
	Added arguments to some of the command line parameters in the sample batch file which were missing.  Made manual Final.

	3-Jun-05
	MPK
	Saved manual as Final after version number was changed.

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	


Unit










































































































































































Process Cell




































































Phase












































Operation


























Unit Procedure


























Procedure




















Local Area Network




















PI-API, PI-SDK














Event File Interface 














PI-API














PI 3.3 Data Archive














Event Journal File














Batch Execution System 

















Equipment Module





Control Module





Area





Unit Procedure


(UP_B)





OP_A





Operation


(OP_A)





PHS_A





PHS_B





Procedure





UP_B





UP_A





Recipe 1


(Proc_1)





UP_A





Recipe 2


(Proc_2)





UP_B





Unit Procedure


(UP_A)





OP_B





OP_A





Operation


(OP_B)





PHS_A





PHS_B





Procedure





UP_A
























































Status of the ICU














Status of the Interface Service





Service installed or uninstalled


























[image: image17.png]
i
UniInt End-User Interface to the PI System



_1061225799

_1061225598

