Week 10-2. QA and testing methodology

Quality Assurance (QA) is the activity aimed to support all the processes of a computer system development to ensure the high quality of the ultimate product. It is essentially broader than software testing simply because for end users the product value is not actually the software but the possibility to implement some activity using the software. Not reliable system, lost data, poor documentation, confusing user’s interface, lack of security – all these can completely destroy the product image even if there are no bugs in the software. To ensure high level of quality QA usually provides the following activities:

· Monitoring the processes of the system development

· Monitoring the standards are being followed

· Testing documentation

· Testing of infrastructure components

· Testing of the software

· Testing of the product usability

· Sign off to production

Testing of the software

There are 3 stages of the software testing:

· Unit testing, provided by a developer

· Functional and other types of testing, provided by QA

· User Acceptance Test, provided by end users with the Product Manager and QA participation

Unit test goal is to make sure that a software component really does what it is supposed to do. Unit testing usually is included into the development team plan and project schedule.

QA testing takes the major part of the overall time of testing. Very often QA testing is treated as a separate project with its own Project Manager, resources and project schedule. Of course this separate project is linked to the development project through Dependencies Log and Master Plan.

QA testing usually comprises the following types of testing:

· Functional Testing, to test the functional requirements implementation

· Loading Testing, to test an application under heavy load, for example simulating a big number of users simultaneously

· Performance testing, to identify response time of the system

· Security Testing, to test security requirements implementation as the minimum. Additionally security testing is to be done to find out how well the system is protected from unauthorized access and intrusion. A company may have a special department to develop security requirements and to conduct security testing

User Acceptance Testing (UAT) is to confirm that the ultimate product (the system) is ready for production. Users create their tests to check the principal activity, usually depicted in Use Case View diagram

Functional Testing activity:

· Develop the testing requirements list

· Develop Test Cases

· Do testing – defect discovering

· Defects tracking

· Defects reporting

· Defects evaluation

· Regression testing

Functional Testing Planning

To do effective planning the testing team first of all has to articulate testing requirements. The requirements come out from the Functional Requirements and other technical documents. Basing on the information what functions are implemented and what types of data processing algorithms and technologies are involved, Tester creates the requirements list. The requirements list is to cover all possible types of software errors that are applicable for the application in question. When the requirements are ready the time is to develop Test Cases.

Defects Tracking, Evaluation and Reporting

The results of testing must be recorded. Usually companies have so called Defects Tracking System that actually contains the database and reports. Tester is to fill in the database with the results of testing. Among the reports there will be the most important ones to show defects discovered and the details. That is to keep the track of errors and history. The company may require daily or weekly reports or possibly immediate contacts to a developer.

One of the tasks of defect recording is to provide defect evaluation. Usually 2 sides are considered – severity and priority. Severity is to show how serious the problem is from the user’s usage perspective. Priority is to show the emergency of getting rid of the bug. Reports support both to sort out the records.

Regression Testing

After discovering a defect and reporting it to the developer, there is the time for the development team to make changes and update the software. Once it is done, Testers are to run again the test cases that resulted in defects discovering. This is known as Regression Testing.

Regression Testing also is to be done to complete the full list of test cases at least once before going to UAT. This is necessary to make sure that changes did not affected those functions that before were tested positively.

Test Case

There is no formal definition of a Test Case. It can be described as a single testing event aimed to check some particular function or statement of the computer system. It is important to keep the modularity of test cases. For each test case it must be defined exactly what type of input is expected and what is the result.

An excellent test case satisfies the following criteria:

· It has a reasonable probability of catching an error.

· It is not redundant.

· It’s the best of its breed.

· It is neither too simple nor too complex.

When searching for ideas for test cases, try working backwards from an idea of how the program might fail. If the program could fail in this way, how could you catch it? Use the Common Software Errors notes as one source of ideas on how a program can fail.

There are usually quite a few test cases designed to test even small computer system. Each test must be run exactly as described.

Speaking about the result we predict the system behaviour as either positive (like allow the access, display the price list etc.) or negative (access is rejected, error message is sent). In the correspondence to our expectations the test cases are grouped in Positive Testing and Negative Testing.

Note: do not confuse Positive and Negative Tests with the positive and negative results of testing. Positive result means that we get what is expected and it really can appear for both Positive Testing and Negative Testing. For example in Negative Testing we make the test case to do login with wrong ID and Password. We expect the system to reject the login – Negative Testing. If we get what is expected the result of testing is positive.

Equivalence classes

Because we cannot test all possible, or impossible, data values and paths in our software, it is useful to determine so called Equivalence classes. Test cases belong to the same class if :

· They all test the same things

· If one test catches a bug, the others probably will too

· If one test does not catches a bug, the others probably won’t either.

To determine equivalence classes look for test cases that are:

· They involve the same input variables

· They result in similar operations in the program

· They affect the same output variables

· None force the program to do error handling or all of them.

Arrange your equivalence classes into the table like this:

	Event/Input
	Valid values (positive testing)
	Invalid values (negative testing)

	Data input by selecting
	Any available
	N/a

	Car model window
	
	

	Data input in the text field
	Alpha-numeric characters
	Decimal numbers

Special characters

	Tel number
	Correct format
	Any other different from numbers

	email
	Correct format
	Not correct format

	Calculation
	Any selected number
	N/a

	Credit Card data
	
	

	Number
	Numeric, 16 figures
	Any other different from numbers

Not equal to 16

	Expiration date
	Correct format
	Not correct format

Then make a few test cases only for each class.

Week 10. Common Software Errors

Boundary-Related Errors

A boundary describes a change point for a program. The program is supposed to work one way for anything on one side of the boundary. It does something different for anything on the other side.

There are 3 standard boundary bugs:

· Mishandling of the boundary case. Example: the program does the calculation where a variable A is not supposed to be 0. What happens if it is 0?

· Wrong boundary. Mistake with the definition of a boundary value

· Mishandling the cases outside the boundary. Example: a variable A is not supposed to exceed 100. What happens if A = 101?

In general boundaries describe a way of thinking about a program and its behavior around its limit. There are many types of limits: largest, oldest, latest, longest, most recent, first time etc. The same type of bugs can happen with any them.

The famous boundary related error was so called Y2K compliance that affected a number of software programs that could not handle the year 2000.

Types of boundaries

Boundaries in time

Occurs when a program sets some time interval as a waiting time for an event but proceed with some activity if the event does not occur.
Examples;

· Browser’s time out

· Time set for the program loading

Boundaries in loops

Occurs when the conditions are set to stop looping. The conditions can be numeric or logical. In any case the program must specify its behavior for each of the 3 states of a loop-control variable:

· Being inside of the boundary

· Being on the boundary

· Being outside of the boundary

Boundaries in memory

Consideration must be given to amount of cache memory used by the running program. The following must be considered:

· What is the smallest amount the program needs to run

· What is the largest amount the program can cope with?
· Are data split across pages or segments of memory?

· How all that may affect performance?

Boundaries within data structures
That often relates to data retrieved from RDB since such records normally assume a structure, e.g. FirstName, LastName, DOB, etc. The following must be considered:

· Does the program read the first record correctly?

· Does the program read the last record correctly?

· How the program marks the end of each record?

· Does everything fit in this format?

· Does everything fit in this data type?

Hardware-related boundaries

Consideration must be given to resources used by the program. For example:
· What happens if the disk is full?

· If the directory can handle 128 files, what happens when you try to save 129th file?

· What happens if the printer buffer is full but the program still has data to send?

· When happens if the printer run out of paper?

Calculation errors

The program calculates a number and gets the wrong result. The reasons could be:

· Bad logic. It might be incorrect formula or one inapplicable to the data input

· Bad arithmetic. It might be an error in coding

· Imprecise calculation. If there are floating point arithmetic it loses precision as it calculates, because of round-off and truncation actions

Types of calculation errors
Outdated constants

Some values may be hard-coded into the code. Over the time the numbers are getting obsolete and incorrect.

Calculation errors

Mistakes in coding a formula

Impossible parentheses

Occurs with formula that contains many parentheses. It is easy to get it wrong.

Overflow and underflow

An overflow condition occurs when the result of numerical calculation is too large for a program to handle.

Underflows may occur only on floating point calculation. It happens when a calculated number is too small to be handled by a specified data format. The number will be converted to 0, however it may not be acceptable for the formula.
Truncation and round-off error

The precision can be lost due to rounding-off or truncating the results. For example, 5.19 may be truncated to 5.1 or rounded-off to 5.2.

The cases exist when it brings serious concerns.

Confusion about the representation of the data

The same numbers can be represented in many different ways, e.g. as a fixed point number, or as ASCII code. Confusion between different data presentation is possible.

Incorrect conversion from one data representation to another

Conversions between ASCII, floating point, integer, character (string) are common. They often result in errors.

Wrong formula
Complicated formulas often result in errors.

Initial and Later States Errors

The values of variables must be initialized and then updated in the way to ensure the proper functionality at each state of the program. Failure to do this result in the program runs amok: the first running is correct but not the next one, unpredictable result of calculation etc. The examples of initial and later states errors follow.
Failure to initialize the variables values

Different languages and compilers treat initial value of variables differently. For example:

· A function’s local variables are erased from memory on exit from the function

· A programmer may define local variables to stay in memory

· Starting values may be specified or not.

You need a strategy about how to deal with variables initialization and erasing.

Failure to erase them from memory on exit from the function

See above

Failure to set data item to 0

Many compilers set data to 0 by default, but not all compilers do that.

Failure to initialize a pointer

A pointer variable stores an address, such as the location in memory where a given string starts. The value of the pointer can change. If the programmer forgets to reset the value next call will give the wrong address.
Also, it is a problem of operating with NULL pointer (pointer value is null).

Failure to initialize a loop-control variable

A loop-control value must be reset correctly after the looping stops.

Failure to clear a flag

Flags are variables that indicate special conditions. A flag can be set or clear. The flag must be kept correct all the time. For example, a flag is set to show that some observers are registered for notification. It must be reset when all observers make de-registration, and set again if at least one registers again.
Failure to clear a string
A string variable stores a set of characters. Do not assume that a string is empty before they use it but it may be not true.

Failure to initialize registers

Registers can be used as temporary data storage. Make sure that registers are cleaned before starting using them.

Failure to re-initialize

Initially variables are initialized correctly, but after the first pass is finished variables are not re-initialized. Often re-initialization is bypassed due to incorrect logic.

Confusion between static and dynamic storage

Static variables stay in memory and keep its values across a function calls. Dynamic variables are erased from memory on the function exit. When both types of variables exist confusion may happen.
Control Flow Errors

The control flow of a program describes what it will do next, under what circumstances. The error occurs when the program does the wrong thing next. The examples of control flow errors in the software:

Wrong GOTO

The unconditional GOTO is beyond the control, and therefore may fall unmanageable.
Come-from logic errors

Errors in identifying what routine was called.

Executing data

This can happen on two conditions:
Data are copied into a memory area reserved for code. The code is overwritten.

The program jumps to an area of memory reserved for data, and treats it like a code.

There may be a number of reasons why that happens. The most often ones are wrong pointers and buffer overflow situation.

Wrong returning state

The program does not check returning state and proceed as it has been success.

Return to wrong place

Sometime occurs as the result of

· Corrupted stack. The stack contains the address of the command that must follow the call to a subroutine. If the program also places data into the stack the address can be mistakenly overwritten.

· Stack overflow. The stack contains only a specified number of addresses. If there too many calls the stack may be not capable to handle some of them.

· GOTO rather than Return from a subroutine

Exception-handling based exits

Occurs when a subroutine that flags and rejects exceptional conditions is used under many different conditions.
Handling interrupts
Interrupts are often used to deal with data input/output. The program stops and branch to an interrupt, after what it must be returned to a main body. The returning address is stored in an interrupt vector. Sometimes it does not return to the right place. There might be the following reasons:

· Wrong interrupt vector. The vector can be corrupted
· Failure to restore or update an interrupt vector

· Failure to block or unblock interrupts

· Invalid restart after an interrupt

Program stops
Often happened stops:

· Dead crash. In a dead crash computer stops responding to any inputs. Often happens due to infinite looping
· Syntax errors reported at run-time. Interpreters may stop the program when they cannot handle the syntax error

· Waits for impossible condition, or combination of conditions.
Loops

The following problems with loops may occur:

· Infinite loop

· Wrong starting value

· Accidental change of the loop control variable

· Wrong criterion for ending the loop

· Commands that do or don’t belong inside the loop

· Improper loop nesting

Wrong If-Then-Else control

This commonly used instruction may result in wrong processing due to a number of reasons. Some of them are listed here:

· Wrong inequalities, e.g. A must be more than B, instead of A must be more or equal B
· Not equal versus equal when there are three cases. Three cases often raise the problem when you have to compare three variables. You must take into account all possible combinations.
· Testing floating point values for equality. Floating value may be rounded-off or truncated, and therefore will never be equal
· Confusing inclusive or exclusive OR

· Inclusive OR: satisfied if A is true, B is true, or both A and B are true
· Exclusive OR: satisfied if A is true or B is true, but not if A and B are both true

· Incorrectly negating a logical expression, e.g. If NOT (A or B) Then … assumes that both A and B must be false to take Then
Race Conditions Errors

In the classic race, there are two possible events, A and B. Both events will happen. The issue is which comes first. Event A almost always precedes event B. There are logical grounds for expecting A to precede B. However under rare and restricted conditions event B “win the race” and precedes A. We have a race conditions bug if the program fails when this happens.

Race condition examples:

· Races in updating data transactions to database

· Assumption that one event or task has finished before another begins

· Assumption that input won’t occur during a brief processing interval

· Assumption that interrupts won’t occur during a brief interval

· Resource races

· Assumption that a person, device or processes will respond quickly

Graphic User’s Interface Error

This group of errors is very large. Groups of GUI errors:

· Functionality

· Communication

· Program Rigidity

The program has a functionality error if something that you reasonably expect it to do is hard, awkward, confusing or impossible to do.

Communication errors occur in communication from the program to the user. There are a big number of communication errors could be listed, however tester may rely essentially to his own impression of the user’s interface. Is it intuitive, easy to learn, contains all necessary information etc.

Program Rigidity

This kind of errors relates to the program flexibility. The program must be flexible enough to allow minor changes and customizing. For example a user must be capable to return back to a previous step with no frustrating effects at any moments. It must not be redundant data required to input, etc. However the program is to be rigid enough to keep a user on the right track.

Note. For complex applications GUI design is to be considered as a subproject with its own scope, requirements and development team. Nowadays there is a special field of computer science known as Customer’s Usability.

Security testing for Cross-Site Scripting and SQL injection attack vulnerability

The attacks exploit the weaknesses in data input validation. SQL injections and Cross-Site Scripting happen particularly often. Both kinds of attack exploit strings of special characters (%, /, ../, <, >, etc) if they are not stripped out by data input validation.

Test cases should be designed and testing completed to discover how the application reacts to special character in data input. If special characters are allowed, there should be special standards of programming implemented. As the result, testing is moved beyond a regular functional testing to the department (people) responsible for application security.

