Week 3. Software System Modeling with UML and Rational Rose

Universal Modeling Language (UML) is a family of graphical notations for specification, construction, visualization and documentation of models of software systems. It is particularly well accommodated to Object – Oriented Approach to system design and programming. UML offers the set of diagrams that could be considered as the language specific words or sentences to convey information.

Rational Rose is one of the tools available on the market to support OO design and programming basing on UML. In Rational Rose, the diagrams usually are located in one of the designated sections following development stages.

Use Case View (functional requirements gathering):

· Use Case Diagram – shows how users interact with a system

Logical View (logical design) major diagrams:

· Activity Diagram – shows procedural and parallel behaviour

· Sequence diagram – shows interaction between objects; emphasis on sequence

· Class Diagram – shows classes, features and classes relationships

Component View (assembling)

· Component Diagram – shows physical components (program files location) and the sequence of compiling

Deployment View (implementation)

· Deployment Diagram – shows the software components deployment on the computer system nodes

Above modeling, Rational Rose provides some additional capacities for the software development. Some of them:

· Documentation

· Source Code generating based on class diagrams

· Re-engineering of the source code

· Versions support

· Unit testing support

We’ll be working with modeling, documentation and source code generating only.

Use Cases and Use Case Diagram

“Functional Requirements” is the text document to describe the system functionality. UML methodology offers graphical form of the system functionality description. This is Use Case Diagram and accompanying documentation.

Definition: Use Case describes a set of activities of a system from the point of view of its actors that lead to a perceptible outcome for the actor. In other words Use Case illustrates how someone might use the system.

General requirements:

· Use Case is always initiated by an actor

· Use Case must have a domain trigger and produces a domain result

Definition: Use Case Diagram shows the relationships between actors and use cases.

It is helpful to have Functional Requirements ready to develop Use Case Diagrams. In fact each scenario – main, extension or exception – can be considered as the use case.

Use Case Diagram shows use cases connected by the lines of a specified content. Each line may have the name, however Rational Rose considers a few stereotypes for them. Most often in use are: <<communicate>>, <<extend>> and <<include>>. The stereotype <<communicate>> is used to show communication between actors and use cases. The stereotype <<extend>> is used to link extension or exception scenarios to main success scenarios. The stereotype <<include>> allows us to show repeating use case realizations. Example: Exception Handling use case realization contains quite complicated scenario. Being done once in details, for all other occasions it can be simply shown as “included”.

Note: a few more stereotypes are possible, ref. to Rational Rose tools

The use case diagram development starts from identifying Actors and Use Cases, and then the relationships.

“Actor” is “thing” outside the system, represents a system communicator. It could be end users or other systems (subsystems) or Time.

Start with Actors. Each computer system provides some work flow implemented as software components. Example: User’s Subscription – Making PO – Sending Invoice- Shipping goods. Actors either initiate the works flow or get the result of the works flow implementation. This concept does not change dependently on the system size. For a small project or even for a stand alone module you may consider the same general sequence of events:

 Actor --------------(Software Components ------------(Actor

 << communicate>> <<communicate>>

In this diagram Software Component is the part of the software in question. That is for this part you are trying to articulate functional requirements. In the context of PRJ845 this is your mini-project.

There are three possible kinds of Actors:

· End Users – real people who interact to the system. Most often they initiate the particular work flow from a number available from the system. For GRP this kind of Actors is represented by Recipient, Customer, GRP Owner (Employee), Retailer

· System, or System Component – other computer system (third party) or other component of the computer system in development that your current component must communicate to. For mini-projects there can be such system or components as Credit Card Validation (third party system), RDB Component (this is the part of GRP but is not included into mini-projects development), Automatic email sending component (again is not included into mini-projects development).

· Time – special kind of Actors, appears when the time is considered as the trigger for the Software Component initiating (must start in accordance to the schedule).

When identifying the Actors think and define how the works flow can be initiated. Two questions to answer – Who is to start (Actor) and What data must be provided to start.

Example: Users Login. Actors to start – any end users. Data to provide first of all – indicate if there is a First time visitor or an Existing user. This initial data request will appear on the first screen displayed by the Software Component. When Actor indicates one of the options – the signal comes to the system and relevant works flow will be initiated.

From the other side you have to decide how to complete the works flow, in other words what is the other Actor to whom the control (and data) will be transferred. Very often this is other system or system component.

A use case illustrates a pattern of WHAT the system can do. Use cases should be focused on what the user will get out from the system.

Relationships in Use Case Diagram

The association relationship is used to show the relationship between a use case and an actor. The arrow shows the target of communication.

There are three types of relationships between use cases: an include relationship, an extend relationship, and a generalization relationship. Theses relationships are used when there is a certain amount of commonality between the use cases.

An “include” relationship suggests that one use case always uses the functionality provided by another. The arrow shows to the use case included.

An “extend” relationship suggest some optional functionality, that can be used or not dependently on the runtime conditions. The arrow is directed from the extension to the main use case.

A generalization relationship is used to show “is a” relationship. Most often is used between Actors in Use Case Diagram.

There is only one relationship allowed between actors. This is a generalization relationship.

Documentation

Each use case must be documented. Short description can be provided from the Rational Rose GUI – Documentation Window or Specification Window. As well additional documents written in MS Word or other files can be attached to have the documentation complete. The attachment can be done from the Specification Window – the bookmark “Files” (right click, then “insert file”). It is recommended to provide the following information about each use case:

· Use Case Name

· Brief Description

· Actors

· Preconditions

· Basic Flow Actions and trigger

· Alternative (branching) Flow Actions and trigger

· Subflow Actions and trigger

· Successful Post Conditions

Comments to the Login Use Case Diagrams

There are 6 actors for this mini-project. Portal Owner, Recipient, Customer and Retailer are end-users. Two other actors are computer subsystems – RDB and System. We need the System as the actor because some use cases are initiated automatically, from inside of the software. Thus the System (the Login software) becomes an actor as well.

Main success scenarios are converted into the chain of use cases to achieve the goals:

· To create the record with credentials and account number for a new user

· To validate existing user’s credentials and allow them to the system

Extension scenarios are converted into <<extend>> use cases.

The actor System is shown in the diagram for a new user subscription scenario because there is a special action of sending email message that is invoked by the system.

Re-Enter Credentials use case can be invoked from both Existing User and Change Password use cases and it is optional, that’s why the relationship stereotype is “extend”.

User Event Log use case can be invoked by any use cases indicating the user’s activity. It is always used by another use cases. The relationship is “include”.

Note: Use Case Diagram does not participate directly in source code generation. It is aimed to convey the system content to the developers and is in fact as intermediate layer between business people and programmers. For this reason there is no formula in its development. Good understanding and correct logic are the main criteria.

Tips to reviewing the result Of Use Case Diagram development

Of course you will review and change the diagram until you are satisfied with the result. What to pay the attention to:

· It must be simple and readable.

· All use cases must be initiated by an actor unless they are bound by extend or include type of relationships.

· Documentation must specify exactly Preconditions and Successful Post conditions for each use case.

· In the case of branching, the main use case must specify the terms under what the branching starts and the extend use case must specify Preconditions to start. Both must be in match to each other.

