Programming Contest

@

MTSU Computer Science Department

Organized by: 

Dr. Sung Yoo

Dr. Zhijiang Dong
Sponsored by:


ACM Student Chapter @ MTSU
Computer Science Department @ MTSU
Date:

October 7, 2008
Notes: 
1. Go to http://www.cs.mtsu.edu/~zdong/programmingContest/account08F.txt to find your user name and password.

2. Go to http://www.cs.mtsu.edu/~zdong/programmingContest/input to download sample input files.

3. Input files and your source codes should be in the same folder.

4. All output should be directed to the screen.

Problem 1: Brad and the Boards
Input File: bboards.in
Brad the intrepid Computer Science student has been given the task of getting some statistics on the many flyers in the many billboards of the computer science building. As an intrepid computer science student, Brad wants a computer program to help him in his task. Help Brad with your own intrepid skillz! 

Input: 

The input consists of several test cases. Each test case describes a set of billboards and how many fliers are posted in them. Each case consists of a line of integers. The first integer n describes the number of billboards in this case. Following are n integers, each describing the numbers of flyers in each billboard. The input will be terminated by a test case starting with n = 0. This test case should not be processed. 

Output: 

For each test case, first output the number of the test case. Then output the total number of flyers, the number of fliers in the billboard with the least fliers, and number of flyers in the billboards with the most fliers. An empty line should be outputted between two adjacent test cases.
Sample Input: 

3 8 3 0

5 2 16 1 13 9 

0

Sample Output: 

CASE #1 

Total: 11 fliers

Max: 8 fliers

Min: 0 fliers

CASE #2 

Total: 41 fliers

Max: 16 fliers

Min: 1 flyer

Problem 2: Brad and Numbers Inc.

Input file: numbers.in

Brad the intrepid Computer Science student is working for Numbers Inc., a developer of mathematical software. Recently, he is assigned a project by his boss to write a suite of programs to test the integer arithmetic unit (IAU) of the forthcoming 168.168 microprocessor. One problem of the project is to write a program that correctly adds and subtracts integer numbers up to 40 digits long. This will be used as a standard against which the 168.168 is tested.

Input
Initially, the IAU's accumulator is zero. Each line of the input contains a positive integer up to forty digits long. If the integer is preceded by a +, add it to the accumulator. If the integer is preceded by a -, subtract it from the accumulator. Otherwise, simply set the accumulator to the value of the integer.

The integers have no leading zeros. The end of the input file is indicated by a line containing only a # character.

Output
Print out the value of the accumulator each time it is updated, with leading zeros suppressed.

Sample Input
-123456789123456789

-45454545

+232323233

123466666

-99999

+1000000

#

Sample Output
-123456789123456789

-123456789168911334

-123456788936588101

123466666

123366667

12436667

Problem 3: Brad and the Editor

Input file: editor.in

Brad the intrepid Computer Science student is a fan of the vi-like editor at the Unix/Linux platform. One day, Brad decided to develop a mini vi-like editor for fun. The editor needs a simple string processor, which needs to read in a single line of text followed by a line of commands that will modify the string. The commands are as follows:

  0   - move cursor to the start of the line 

  $   - move cursor to the position after the last character (end of line). 

  x   - delete the character at the cursor position if not at end of line. 

  s   - swap the character at the cursor with that to the right of it, as long as the cursor is not at or just before the end of the line. 

  i  x  - insert the character 'x' at the cursor position, and move the cursor along one space. 

  u   - make the character go into upper case if a letter, and move the cursor along one space. 

  +   - move the cursor right one space. 

  -   - move the cursor left one space.

The cursor can be at the first character, through to being at the position one after the last character.

Input
The input commands are in a single line following the input text line, not separated by spaces. The input text line does not contain a carriage return. The cursor starts at the first character in the line for each text input line. The input is terminated by an input text line that contains only a single character, '#'.

Output:

The string processor will output the lines of processed text. 

Sample Input
Hello, I am a frog.

$-----xxxxipieirisioin

Needle nardle noo.

+++xizuu+++xxips

#

Sample Output
Hello, I am a person.

NeezLE napel noo.

Problem 4: Brad and his Lunch

Input file: lunch.in

In an effort to push students to either use credit cards or buy a dining plan, the university has implemented the draconian measure of only accepting exact change in all the food courts
Our friend Brad neither has a credit card nor a dining hall. He only carries around his trusty bag of coins. Use your computer skillz to help Brad overcome the evil measure by helping him determine the minimum number of coins needed to pay for the items he wants. Just be careful not to let him starve in the process. 

Input: 

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets. The input will be terminated by a line consisting of a single integer 0.

A single data set has 1 component: 

1. Start line - A single line: 


         A B C D E

where: 

· A: (0.01 ≤ A ≤ 5.00) is a decimal number (to two decimal places) of a monetary amount. 

· B: (0 ≤ B ≤ 100) is an integer number of quarters (one quarter = $0.25). 

· C: (0 ≤ C ≤ 100) is an integer number of dimes (one dime = $0.10). 

· D: (0 ≤ D ≤ 100) is an integer number of nickels (one nickel = $0.05). 

· E: (0 ≤ E ≤ 100) is an integer number of pennies (one penny = $0.01). 

Output: 

For each data set, there will be exactly one line of output. If there exists one or more subsets of the given coins whose values add up to the given monetary amount exactly, the output will be a single line in the form: 

   A B C D

where A is the number of quarters, B is the number of dimes, C is the number of nickels, and D is the number of pennies, for the subset with the fewest number of coins. Otherwise, the output will be a single line with the statement: 

NO LUNCH TODAY

Sample Input: 

0.45 2 1 1 4

0.75 3 7 1 75

0

Sample Output: 

NO LUNCH TODAY

3 0 0 0

Problem 5: Brad and the Bitmaps

Input file: bitmaps.in

Dr. Watson has a peculiar problem and needs Brad's help. Two of Dr. Watson master students have been developing programs that operate on "bitmaps", a common data structure used in image processing and many other applications. You can think of a bitmap as a rectangular matrix in which each cell has a value of either 0 or 1. The problem is that each student is using a different format to store their bitmaps. Student A is storing his bitmaps as a contiguous sequence of 1's and 0's, writing the cells left to right, top to bottom. Student B is using a more complicated approach based on decomposition. First, the entire bit map is considered. If all bits within it are 1, a 1 is output. If all bits within it are 0, a 0 is output. Otherwise, a 'D' is output, the bit map is divided into quarters (as described below), and each of those is processed in the same way as the original bit map. The quarters are processed in top left, top right, bottom left, bottom right order. Where a bit map being divided has an even number of rows and an even number of columns, all quarters have the same dimensions. Where the number of columns is odd, the left quarters have one more column than the right. Where the number of rows is odd the top quarters have one more row than the bottom. Note that if a region having only one row or one column is divided then two halves result, with the top half processed before the bottom where a single column is divided, and the left half before the right if a single row is divided. Help Brad with a program that will read in bitmaps of either format and transform them to the other format 

Input: 

Input will consist of a series of bit maps. Each bit map begins with a line giving its format ('A' or 'B') and its dimensions (rows and columns). Neither dimension will be greater than 200. There will be at least one space between each of the items of information. Following this line will be one or more lines containing the sequence of '1', '0' and 'D' characters that represent the bit map, with no intervening spaces. Each line (except the last, which may be shorter) will contain 50 characters. The input will be terminated by a line consisting of a single #. 

Output: 

Output will consist of a series of bitmaps. For each bitmap of the input, output the bitmap in the opposite format. Output of each bit map begins on a new line and will formated as described before. as the input. The width and height are to be output right justified in fields of width four. 

Sample Input: 

A 3 4 

001000011011 

B    2    3 

DD10111 

# 

Sample Output: 

B   3   4

D0D1001D101 

A   2   3 

101111

Problem 6: Brad and the Rose Garden

Input file: rose.in

Dr. Lovecraft has asked Brad to go to his house and water his roses while he is out on a conference. Dr. Lovecraft left Brad the keys to his house, and warned him not to step in the roses, step only on the sidewalk. Also, that Brad will need to bring his own hose, because the one in the garden is broken.
Before leaving to water the roses, Brad realized that he was not sure what length of hose to bring. Being an intrepid computer science student, Brad took a look of Dr. Lovecraft's garden in Google maps. He could see the layout of the garden, but not where the water faucet is. Still, this shall be enough to determine a minimum hose length needed. 

Input: 

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers C and R (3 <= C,R <= 1000) indicating the number of columns and rows. Then exactly R lines follow, each containing C characters. These characters specify the garden. Each of them is either a hash mark (#) or a period (.). Hash marks represent roses, periods are free sidewalk blocks. It is possible to walk between neighboring blocks only, where neighboring blocks are blocks sharing a common side. Brad cannot walk diagonally and we cannot step out of the garden. 

Output: 

For each test case, output the line "Maximum hose length is X." where X is the length of the longest path between any two free blocks, measured in blocks. 

Sample Input: 

2

3 3

###

#.#

###

7 6

#######

#.#.###

#.#.###

#.#.#.#

#.....#

#######

Sample Output: 

Maximum hose length is 0.

Maximum hose length is 8.
