Public OLAP Services

Introduction

On-Line Analytical Processing (OLAP) tools are typically used internally in an organization by decision makers who wish to obtain summarized and consolidated views into corporate data contained in Data Warehouses (DW). In this paper, we argue that OLAP services should, in many contexts, be published as Web Services and show how to go about transforming an OLAP service into a public service.

In this Introduction, we briefly define OLAP and Web Services; more time is dedicated to presenting Web Services, since they are a newer concept. At the end of the section, we review the aims of our work and identify the methodology to successfully attain these aims.

What are OLAP Services?

OLAP characterizes the requirements for summarizing, consolidating, viewing, applying formulae to, analyzing and synthesizing data according to multiple dimensions [CCS93]. The back-end for an OLAP interface is a kind of multidimensional database known as Data Warehouse (DW), in which one of the dimensions is always time. A DW typically stores historical data that have been generated in an enterprise’s own transaction processing systems.

DWs and OLAP interfaces have gathered tremendous market momentum as the platform for building decision-support applications (or OLAP applications, for short. In such applications, business end users perform data analyses on their own, that is, without the need to wait for special IT department-developed systems.

What are Web Services?

Web Services are a relatively new technological alternative for application deployment and integration based on the ubiquity of Web protocols. These protocols are TCP/IP, at a lower level, and a few high level protocols such a HTTP (Web navigation) and SMTP (mail). If you think of the Web as a set of services of interest to users, then the above-mentioned protocols, coupled with search engines, enable human users to access services with relative ease. The italics in the last sentence indicate where the focus of Web Services resides. How does a non-human user (a software program) navigate the Web? How does it find services that it needs to do a particular job? How does it discover how to interface to the services and use them?

This is an important issue today, due to the ever-growing need to integrate enterprises through e-commerce solutions, and since new opportunities to obtain business advantage may surface by having machines navigate the Web. This is the context in which Web Services were born.

We may now informally define Web Services as being a service accessible through software and exhibiting the following main characteristics:

1. The service is accessed over the Web. That means that an interested client machine accesses services through standard, ubiquitous protocols such as TCP/IP, HTTP and SMTP. The advantages of relying solely on such protocols are that they are ubiquitous and, just as important, can freely cross firewalls in most enterprises.

2. The service is meant to be used by a program, not a human user. Although nothing prohibits human users to be sitting at a console while accessing a Web Service, the driving motivation is to connect programs that want to automate some processing step.

3. The client interested in the service is external to the enterprise offering the service. Web Services allow for the integration of applications from enterprises that are administratively independent. This is really one of the toughest challenges in integrating applications. Applications that were developed independently, using totally different architectures, languages, object and component models, databases, etc. must now cooperate and interface to each other. Interestingly, once solutions were devised to provide Web Services, IT departments saw that the very same solutions would also help to solve the Enterprise Application Integration (EAI) problems that have plagued many enterprises over the years. Thus, while it is possible to use Web Services in an Intranet (to solve EAI), it is really meant to be user over the Internet.

4. In general, the client is not aware of where to obtain the service, nor does it know the details of how to interact with the Web Service beforehand. A client application desiring to have a job done externally will first have to locate a Web Service that offers the appropriate semantics and will then have to discover how to interact with it. In an object-oriented sense, the client will have to locate an object offering an appropriate interface and will then have to find out how to call its methods and receive answers from them.

5. Only large-grained, loosely-coupled interactions are supported by Web Services. They are not meant to involve two applications in a tight loop of interactions.

Any type of application can be offered as a Web Service. Typical examples include:

· Stock quotes

· Credit card authorizations

· E-procurement for materials and services

XML is the basic technology that has allowed Web Services to appear. Three XML-based technologies have emerged as standards for Web Services:

1. Universal Description, Discovery and Integration (UDDI) allows Web Services to be registered in global directories and searched for by clients.
2. Web Services Description Language (WSDL) defines a mechanism to describe a Web Service.

3. Simple Object Access Protocol (SOAP) defines a protocol to establish communication between client and Web Service layered over ubiquitous Web protocols such as HTTP and SMTP. The latter two protocols are used as delivery mechanisms for SOAP messages that essentially define a way of performing Remote Procedure Calls.

In the sections that follow, we argue that OLAP services can, in many contexts, be published as Web Services and show how to go about transforming an OLAP service into a Web Service. In other words, we argue that OLAP services, typically used by internal decision makers accessing internal corporate data through OLAP applications, may in some instances be externalized to the mutual benefit of the service publisher and service users. This is not an obvious step, when one considers that the data typically processed by OLAP applications are considered proprietary and secret, since they carry sensitive business information.

Public OLAP Services: Joining OLAP and Web Services

A Public OLAP Service is an OLAP interface supported by a DW and accessed through Web Services from OLAP applications. The idea of exposing OLAP services as Web services poses two non-obvious questions:

1. What incentives can an enterprise have to expose its internal data to outsiders?

2. In which segments of the economy would aggregate data be interesting to outsiders?

The next section offers concrete examples to answer these questions.

Example Scenarios for Public OLAP Services

Example 1: Analysis of Health Indicators by World Health Organization

· General description of application area: The World Health Organization (WHO) develops international guidelines for health management, analyses the spread of disease, and coordinates international health programs. With all health indicators, at several level of granularities, available from each country and exposed as a Web Service, the WHO would be able to consolidate information and, in general, perform its mission in a more straightforward way.

· Service providers: Health ministries of world’s countries.

· Clients: WHO, or any other researchers interested in aggregate health indicators.

· Typical dimensions in the exposed data (other than time): country, disease.

Example 2: Analysis of School Egress Statistics by Ministry of Education

· General description of application area: A country’s or State’s Ministry of Education would like to analyze aggregate data about student egress from the several schools under its jurisdiction. A country’s data could be made available to the United Nations, researchers, etc. Aggregation and consolidation by region, age group, etc. would be possible.

· Service providers: Schools, Universities.

· Clients: Country’s or State’s Ministry of Education, United Nations Educational, Scientific and Cultural Organization (unesco) or any other researchers interested in aggregate education indicators.

· Typical dimensions in the exposed data (other than time): country, grade.

Example 3: Analysis of Stock Exchange Data by Brokers

· General description of application area: The data that originates from a Stock Exchange can be of immense value to stockbrokers or investors, if available through an OLAP service.

· Service providers: Stock Exchanges.

· Clients: Stockbrokers, individual investors.

· Typical dimensions in the exposed data (other than time): company, segment.

Example 4: Analysis of Demographic Data

· General description of application area: Companies planning product lines for different segments of society could benefit from demographic data exposed by the Census Bureau.

· Service providers: Census Bureau.

· Clients: Individual companies, especially those aiming for product niches.

· Typical dimensions in the exposed data (other than time): city, income, age.

Example 5: Ranking Services

· General description of application area: Enterprises offering a Ranking Service for any of several categories could base their best-of-breed rankings on aggregate data made available through Web Services. As an example, a Web site could offer a Ranking of the best universities, based on data provided by these universities through a public OLAP interface. A similar ranking could be produced for stockbrokers, hotels, airlines, TV channels, etc.

· Service providers: Ranking Service.

· Clients: Individual clients.

· Typical dimensions in the exposed data (other than time): for a University, for example, the dimensions could include program, publication type, etc.

Example 6: Analysis of Legislative Body

· General description of application area: A country’s or state’s population could benefit from the analysis of a Legislative Body’s track record through an OLAP service.

· Service providers: Legislative chamber, or news organization, or Non-Governmental Organization.

· Clients: Individual citizens, news organizations, Non-Governmental Organization.

· Typical dimensions in the exposed data (other than time): congressman or senator, bill.

It is clear that most examples shown above include government as a producer or consumer of Public OLAP Services. This is merely a consequence of the fact that no competition is involved in these settings and there is more incentive to provide aggregate data.

It can also be verified that, in the above examples, the major Web Services characteristics apply: there is external access to services, service discovery must be performed and loose interactions are involved. However, it is not as clear that a machine client (as opposed to a human client) would be present in each scenario.

Generic Operations for Public OLAP Services

The main goal of the section is to shortly describe a set of generic operations designed for public OLAP services.

Discussion of granularity

Conceptually, a DW is a data hypercube with its “edges” representing the dimension domains, while its elements are numeric values associated to the valid combinations of the dimension values. More formally, a hypercube C has the following components: (c1) k dimensions Di, (Di a domain di; (c2) E(C)(d1,…,dk) refers to the element at “position” d1,…,dk of hypercube C; and (c3) metadata describes the dimension attributes and the fields of the k-tuple elements.

Figure 1 illustrates a “hypercube” view of the world. For simplicity´s sake, it shows sales data only for product p2
.

[image: image1.png]Day Sales for Product p2

city

Product

Figure 1: Example data hypercube

Dimension attributes usually have associated with them hierarchies that specify aggregation levels and hence granularity of viewing data. Thus, day (month (quarter (year is a hierarchy on Day that specifies various aggregation levels. Similarly, city name (state (region is a hierarchy on the City dimension.

2.1 Generic Operations for Public OLAP Services
We now discuss basic generic operations on a conceptual DW. In a typical OLAP interaction
, an application might want to see only a subset of the data, that is, pivoting (“rotate” the hypercube to show a particular “face” (and slicing-dicing (select some subset of the of the “face” (some dimension attributes and the values of interest within each selected attribute). Hierarchies associated with each dimension can also be viewed in a logical manner. Aggregating the day dimension from day to quarter is expressed as a roll-up operation on hypercube. The converse of roll-up is drill-down that produces more detailed information. Thus, drilling-down the day dimension from quarter to day gets sales for individual days within the quarter. Drill-down is essential because often users
want to see only highly aggregated data first and selectively see more detailed data. Pivoting, slicing-dicing, roll-up and drill-down are high-level functional operators.

Functional operators can be described by a set of four basic operators on the hypercube (destroy, restriction, merge and join
. Next the presentation of the basic operators, we will discuss how the functional operators can be built using these basic operators.

2.1.1 Basic Operators
Destroy. This operator removes a dimension Di (hypercube C that has in its domain a single value.

· Input: C, Di.

· Output: new hypercube Cans without Di.

· Constraint: Di has only one value.

· Formally: destroy(C, Di) = Cans with (k - 1) dimensions.

Restriction. It operates on a dimension Di of a hypercube C and removes the hypercube values of the dimension that do not satisfy a predicate P.

· Input: C, P defined on Di.

· Output: new hypercube Cans obtained by removing from C those values of dimension Di that do not satisfy P. If no element of dimension Di satisfies P then Cans is an empty hypercube.

· Formally: restrict(C, Di , P) = Cans.

domj(Cans) = domj(C) if 1 <= j <= k & j (i else domj(Cans) = P(domj(C)).

Merge. The merge operation is an aggregation function felem, operating on dimension hierarchy levels defined by a function fmerge. As a result of merging a dimension Di, multiple elements in the original hypercube C get mapped to the same element in the new hypercube.
· Input: C, aggregate function felem e m [dimension, fmerge] pairs.

· Output: hypercube Cans. Dimension Di is merged as per function fmergei. An element corresponding to the merged elements is aggregated as per felem.

· Formally: merge(C, {[D1, fmerge1], ..., [Dm, fmergem]}, felem) = Cans.

domi(Cans) = {fmergei(e) (e (domi(C)} if 1 <= i <= m else domi(Cans) = domi(C).

E(Cans)(d1, ..., dk) = felem({t (t = E(C)(d´1, ..., d´k) where fmergei(d´i) = di if 1 <= i <= m else d´i = di}).

Join. The join operation is used to relate information in two hypercubes. The result of joning a m-dimensional hypercube C1 with an n-dimensional hypercube C2 on k dimensions, called joining dimensions, is hypercube Cans with m+n-k dimensions. Each joining dimension D1i of C1 combines with exactly one dimension D2i of C2; the corresponding result dimension will have values that are union of the values on D1i and D2i before they are mapped to the result dimension. The elements of the resulting hypercube Cans are obtained by combining via a function felem all elements of C1 and C2 that get mapped to the same element of Cans.

· Input: C1 with dimensions D1 ... Dm and C2 with dimensions Dm-k ... Dn. Dm-k ... Dm are the join dimensions. 2k mapping functions, fm-k,…,fm defined over values of dimensions Dm-k ... Dn of C1 and f´m-k,…,f´m defined over dimensions Dm-k ... Dn of C2. Also needed is a function felem that combines sets of elements from C1 and C2 to output elements of Cans.

· Output: Cans with dimensions D1 ... Dm+n-k.

· Formally: join(C1, C2, [fm-k,..., fm, f´m-k,..., f´m], felem) = Cans.

domi(Cans) = domi(C1) if 1<= i <= m-k-1.

domi(Cans) = domi(C2) se m <= i <= n.

domi(Cans) = {d((d((fi(d), d (domi(C1) OR d((f´i(d´), d´ d´ (domi(C2)} if m-k <= i <= m.

E(Cans)(d1,...,d(m-k,...,d(m,...,dn) = felem({t1}, {t2}) (t1 = E(C1)(d1,..., dm-k,..., dm), t2 = E(C2)(d´m-k,...,d´m,dm+1,...,dn), and d(i (fi(di) OR d(i (f´i(d´i) for m-k <= i <= m.

2.1.2 Mapping Functional Operators to Basic Operators

High-level functional operators can be built using the basic operators.

Pivoting. Pivoting is mapped to successive destroy operations.

Slicing-dicing. Slicing-dicing is mapping to successive restriction operations.

Roll-up. Roll-up is a merge operation felem with one function operating on one dimension hierarchy levels, fmerge. In order to prepare for merging, restriction and destroy operations can be necessary.

Drill-down. Drill-down is obtained joining an aggregate hypercube with a hypercube that has more detailed information. In order to prepare for joining, restriction, destroy and merge operations can be necessary.
2.2 Example Queries

E1. Apresentar uma consulta e mostrar que, conceitualmente, é uma operação roll-up. Ela será resolvida com destroy, restriction e merge.

E2. Apresentar uma consulta e dizer que, conceitualmente, é uma operação drill-down. Ela será resolvida com destroy, restriction e join
, e eventualmente merge.

Acknowledgements. The multidimensional data model presented in this section appeared firstly in the seminal paper "Modeling Multidimensional Databases", R. Agrawal, A. Gupta, S. Sarawagi. Proc. of the 13th Int'l Conference on Data Engineering (ICDE) , Birmingham, U.K., April 1997. Since then, various new models have appeared, but their underlying ideas are essentially the same.

Expressing Public OLAP Services in WSDL

Results

� - As a matter of fact, other basic operators exist, but they are rarely necessary.

�PAGE \# "'Página: '#'�'" ��Marcus: revisar as dimensões com cuidado. Precisamos discutir isso.

�PAGE \# "'Página: '#'�'" ��A fazer

�PAGE \# "'Página: '#'�'" �� O exemplo de hypercube mudará, para ficar conforme com o motivating example.

�PAGE \# "'Página: '#'�'" �� Problema: quem interage é usuário-pessoa, e não usuário-aplicação.

�PAGE \# "'Página: '#'�'" �� Applications?!

�PAGE \# "'Página: '#'�'" �� Se eu pudesse já ter o exemplo de motivação ... Neste caso, mudarei o exemplo de hypercube.

PAGE
5

