1

QuickPay Online Payment Protocol

Jian Dai
Mark Stamp

Department of Computer Science

San Jose State University
ABSTRACT Online payment has been viewed as a promising technology [9] with potentially large demand even before the Internet boom. In this article, we propose a new online payment protocol, QuickPay, which is built as a middleware framework for online payment and potentially other online financial transactions. QuickPay is aimed to serve as a highly effective, user-anonymous, secure infrastructure for online transfer of sensitive financial data at a low transaction cost. We first introduce the underlying motivation for this work. Then, we provide the general design of the QuickPay system by describing its business and technical goals, system architecture, major players, and the relationships among the players. To show how QuickPay works, we discuss an application online payment protocol in detail. By carefully evaluating QuickPay’s security and performance, we demonstrate that QuickPay can provide a more effective and more secure framework than other existing online payment systems.

Keywords

Security, online payment, micropayment

INTRODUCTION

Online payment systems are designed to facilitate online purchases involving various amounts of money. Examples of situations where online payments naturally arise include downloading a news article, a recipe, a song, requesting information from a specialized database, or even buying a lottery ticket [3, 5, 8]. Online payments present several challenges, including [6, 9]

· Trust — The physical separation between customer and vendor makes it more difficult to establish a trust relationship than in traditional business applications

· Anonymity — Like traditional customers, online customers usually have only a transient connection with vendor during the purchase and are not willing to give the vendors too much personal information

· Instant payment — When an online payment is used for an intangible product (such as digital content or online services), the payment must be verified immediately since vendor can not cancel the order after the bits have been delivered

· Low processing cost — Since online transactions often result in small payments—often referred to as micropayments—the processing cost is very critical. In fact, it is this cost concern that makes such micropayments qualitatively different from other online payment processes.

At present, many online payment systems have been developed. Based on their design principles and characteristics, we can roughly classify them into the following three categories.

· Token-based Systems — These systems borrow their basic concepts from physical currency. In such system, a host creates “virtual” coins that can be used by customers [2 8, 7, 10, 12] to pay for their online purchases. After collecting virtual coins, the vendor sends them back to the host to obtain reimbursement.

· Account-based System [1] — Here, customers and vendors both need to register accounts on a broker’s site. After login, the customer can only purchase the contents or services from vendors which are registered with a particular broker. When the customer orders from a vendor, the amount of payment is deduct from his account and added to the vendor’s account. PayPal is the most successful account-based online payment system.

· Protocol-based Systems — These systems involve both hardware and software components [4]. Anybody who adopts such a protocol should be able to communicate with and establish a trust relationship with other components of the system. As a result, transactions (including micropayments) can be handled efficiently, provided, of course, that both sides in the transaction have the necessary hardware and use the required protocols.

Based on our analysis of existing online payment systems, we propose QuickPay as a generic online payment application which, in our estimation, provides an optimal tradeoff among competing demands for security, effectiveness and costs. QuickPay has also been designed so that it can be used for the widest possible variety of commercial activities.

BUSINESS/TECHNICAL REQUIREMENTS

Based on our understanding about online payments, we believe the following business requirements are the most critical to the success of a system such as QuickPay.

Customer anonymity [11]. This means that the vendor does not have to identify the customer during the online payment process. Such anonymity also implies that the vendor can serve any potential customers. In addition, anonymity makes customer online shopping more convenient and less worrisome with respect to the loss of personal information.

Micropayment support. We require that QuickPay is sufficiently efficient that it can be used for micropayments. Online activities that might be classified as micropayments include downloading music, articles or video, getting expert advice on a special issue, online gaming and so on. We believe it is critical that an online payment system can support such purchases, which represent some of the fastest-growing segments of online consumer activity.

Prevention of Forged payment. Forgery prevention is the most basic requirement of any payment systems. QuickPay must be able to addresses various concerns related to transaction validation, double spending, final settlement guarantee, etc.

Support of instant order delivery. As discussed above, it is a crucial that transactions can be completed quickly, since many online transactions are irrevocable.

In addition, we make some business assumptions related to the circumstances under which QuickPay is most likely to operate. First, we assume that in most cases, customers do online shopping from their own dedicated domains, such as home computers, office computers, laptops, wireless phones, etc., as opposed to a public domain (public library, school, or Internet café, etc.). Therefore, we can tie customer “identification” with specific machines, as a matter of convenience. Secondly, we assume that a broker (who is responsible for settling accounts) has much less motivation to cheat as compared to vendors and customers, due to the broker’s long-term interest in commissions. Third, we assume that customers are more likely to have a long-term relationship with a particular broker than with a particular vendor.

To satisfy the business requirements mentioned above, QuickPay is designed to satisfy the following technical requirements.

Openness. QuickPay can accommodate users who use other online payment systems.

High scalability. QuickPay is able to support additional customers and vendors without any impact on existing customers and vendors. This implies that there is no performance bottleneck in the entire system.

Independence and open plugin. Here, we mean that QuickPay supports different online financial transaction with different set of protocols. Each set of protocol can plugin to the framework freely and independently.

Isolation. By isolation, we mean that QuickPay’s users (vendor, broker, or customer), can have their own implementation for QuickPay’s protocols. Their implementations are isolated from others.

High security at low cost. This implies that QuickPay provides high security (as compared to existing online payment systems), with a low overall cost.

Standard user interface. This means that QuickPay will have a standard user-friend interface for end users.

QUICKPAY ARCHITECTURE
QuickPay is designed as a middleware application based on HTTP, Web Services, and other related open source protocols. It defines four main player roles for the system, as illustrated in Figure 1. In terms of business, each player role represents a special kind of physical participant in an online payment transaction. In terms of technology, each role represents a logical entity defined by a set of functionalities implemented via QuickPay protocols. In theory, a physical entity (such as a website) may play multiple roles as long as it implements all the functionalities required for those roles.

System Host is the central controller and administrator for the whole QuickPay system. This is the only component that can be trusted by all other players and it has the most authentication information on other parts.

A System Host will mediate the information exchange between other players; monitor the payment process and act as a fair third part judge when there is any dispute between any other components. In addition, the System Host is responsible to guarantee the authentication of QuickPay’s client side software (the “wallet”) and to keep the track of its binding with a particular client machine.

[image: image1.emf]Figure 1

Vendor represents anybody (usually an ecommerce website) that is selling products (tangible or intangible) online and intending to use QuickPay to collect payments. To join QuickPay, a Vendor, as an untrusted partner, needs to obtain a unique vendor identification number from the System Host. In addition, the Vendor must supports all the Vendor functionalities defined in the QuickPay protocol. In principle, the System Host knows very little about its Vendors.

Unlike Vendors, a Financial Broker is an entity (typically, a financial institution) that serves to facilitate payments for online purchases on behalf of its customers (i.e., End Users in QuickPay). A Financial Broker is a trusted partner and is expected to have a long-term relationship with the System Host. In this sense, QuickPay can be regarded as a club for its Financial Broker members. With its System Host, QuickPay effectively helps its Financial Broker members to provide online payment service to their own customers.

The last player role in QuickPay is the End User. In business term, an End User is generally regarded as a person who wants to use QuickPay to pay for his or her online purchase. An End User must be a customer of at least one QuickPay Financial Broker. QuickPay expects that the Financial Brokers maintain all the information about End Users (which are their customers) and is able to communicate with them securely. In technical term, an End User represents an installation of QuickPay’s client-side software, which is bonded to a machine (desktop, laptop, Palm, Internet Phone, or other).

Besides these player roles, the QuickPay system also defines two client-side software components. The Wallet is a browser plug-in software component provided by the System Host. It provides a standard QuickPay client side graphical user interface; it maintain the necessary client-side data; and it handles all of the online communication between End Users and other parts of the system. A PayCard is a Wallet plug-in software component provided by the Financial Broker. A Wallet can have multiple PayCards for different Financial Brokers but only one can be active at any given time. A PayCard is used to provide APIs for the Wallet to communicate with its host Financial Broker.

Among these players, the System Host and a Financial Broker have the closest and fully trusty relationship. Instead of serving End Users directly, QuickPay is designed to work with a Financial Broker, which in turn serves for its End Users. As a result, the System Host has full trust in Financial Brokers. The System Host knows an End User based on the End User’s Wallet, which contains a unique identifier assigned by the System Host. Beyond that, the System Host does not have any other identifying information about an End User. The Financial Broker deals with its End Users via PayCards. An End User obtains a PayCard if and only if he or she has an existing account with the host Financial Broker. An active PayCard serves to bond a customer account with a specific Financial Broker. Note that a Vendor does not have any other relationship with the System Host.

Anyone who wants to sell a product or service online can join QuickPay as a Vendor and use QuickPay to collect payment. All that a Vendor needs is a unique Vendor ID and, of course, the Vendor must support all Vendor functionalities in the QuickPay protocol.

End Users and Financial Brokers have an order-based one-time relationship with a Vendor. Note that an End User does not have any relationship with a particular Vendor until he or she makes a payment to that Vendor via QuickPay.

QUICKPAY PROTOCOLS

As mentioned above, QuickPay is composed of a set of independent protocols. Considering the fact that it is not possible to cover all the protocols in this short article, we will briefly introduce the support protocols and then use the micropayment protocol as an example to describe the most common characters for all the application protocols. See [13] for complete details of the QuickPay protocol.

QuickPay Support Protocols Besides application protocols, QuickPay also defines a set of support protocols, such as administration protocols, batch process protocols, etc. these support protocols are essential and construct the base on which application protocols are built. The main purpose of these support protocols is to take most of the security burden from application protocols so that those application protocols can perform high security at low cost.

For example, unlike most of existing online payment system that require users to submit an order with authorization information (such as credit card number), the order submission in QuickPay (discussed in more detail below) does not include any of such information. In QuickPay, we inform the Vendor which Financial Broker will pay for this order (note that the Financial Broker’s information is public and does not itself need to by protected). To support this feature, QuickPay employs an administration protocol, Add-PayCard, which serves to bond an End User (represents by its Wallet) to an existing account in an individual Financial Broker (represented by its PayCard).

Batch Process is another example of an administration protocol. This protocol is used to settle pending payment orders processed in certain application protocols, such as the micropayment protocol. With this protocol, Vendors will first obtain a formal signed payment commitment from a Financial Broker. If Vendors cannot obtain a Financial Broker’s signed commitment for some orders, they can then turn those orders over to the System Host for approval. In QuickPay, an order will be validate if it is committed to by Financial Broker or approved by System Host.

Generally, administration protocols run much less frequently but are more critical for overall system security as compared to application protocols. Consequently, the implementation of these protocols can rely on high-security algorithms with relative high cost.

Example: Micropayment protocol. The Micropayment protocol must runs at very low transaction cost in order to support mini-sized online order. To reach this goal, this protocol is designed with the emphasis on performance over security. QuickPay also shifts some security burden to administration Protocols in order to improve the performance of this protocol.

[image: image2.emf]
Figure 2
The QuickPay Micropayment protocol consists of four steps and 5 messages as illustrated in Figure 2. The process starts when the End User submits the order back to the Vendor as represented by Message 1.1 in Figure 2. Note that this message contains information about the active Financial Broker. Simultaneously, the End User registers the order with the Financial Broker with Message 1.2. After receiving the message, the Vendor will send a confirmation message (Message 2) to the Financial Broker. If the Financial Broker finds that the order has been registered by the End User, it commits to pay for this order on behalf of the End User. Otherwise, it will deny that order. The Vendor will then deliver that order to End User (as Message 3) only if it obtains a commitment for payment from the Financial Broker; otherwise, it will deny the order. Once the order has been delivered to the End User, the End User will send a log message (Message 4) to the System Host so that System Host can track the order record.

In this Micropayment protocol, all of the online transactions are public and plaintext format. There is no direct security implementation applied to these messages. The payment commitments of the Financial Broker made here are temporal, and will be finally settled in a batch settlement process Note that the System Host is not directly involved in the payment transaction, but it does monitor the whole process indirectly by keeping the track of orders.

Besides the normal process described above, this protocol also handles some of the most common exceptions. During the process, if the End User could not receive the delivery for a relatively long period time after it submits the order, it could send an alert message to the Financial Broker. The Financial Broker, in turn, will give the benefit of doubt to the End User and revoke the payment commitment, unless the Vendor can demonstrate that it did deliver the order. Another exception occurs when a Vendor tries to confirm an order with Financial Broker but the order registration has not been received yet because of a network delay. In this case, the End User may resubmit the order again. A third exception is that the System Host could be offline or too busy to receive the order log from the End User. In this case, the End User would save (i.e., cache) that log and try to send it to System Host again as soon as System Host becomes available.

DISCUSSION

As mentioned above, the central issue faced by online payment systems is how to achieve an optimal tradeoff between transaction costs and payment security. Instead focusing on trying to protect sensitive data at low costs with special algorithms, QuickPay is aimed at cutting the transaction cost (and value to the attacker) of sensitive data during a payment process. To do so, QuickPay implements a set of unique strategies.

For existing payment systems, the transaction process is a linear. For example, with a credit card payment, the customer provides a credit card number to a vendor and the vendor then uses such information to claim payment from the credit card issuer. In this case, the whole process functions as a linear chain. If any step in this chain is broken, the whole chain is broken.

Considering that an application has two steps, if the security risk for each step is 5%, then the overall risk could reach almost 10% since

10% (9.75% =1-(1-0.05)(1-0.05)

In contrast to a linear approach, QuickPay uses a collateral verification strategy. For each payment request, the Financial Broker gets information from both the End User and the Vendor. The Vendor can only claim a payment from a Financial Broker that has been registered by the End User. As a result, the overall risk is diluted (instead of combined) due to these separate steps. To achieve a 10% security risk for the overall process, each step in QuickPay can afford a security risk greater than 33% since

10% (10.9% =0.33*0.33

In other words, QuickPay can tolerate a much looser security implementation (resulting in much lower transaction costs) than more traditional payment system.

.

Protection of password and other crucial user information is one of the most critical security issues (specially in account-based system), and it is costly to protect users’ personal information during the payment transaction. In QuickPay, all of the players except for the Financial Broker do not have End User personal and/or Financial Information and there is no need to exchange such information during payment transactions. As a result, QuickPay itself bears no security cost to protect such information.

With many existing payment system, customers need to submit some credentials to vendors and those credentials potentially can be abused by malicious vendors to, for example, make fraudulent transaction. In QuickPay, the payment commitment is based solely on individual orders. Consequently, a commitment cannot be reused to collect any additional fraud payment.

In addition to security concerns, QuickPay also includes many design elements related to system performance. In general, the System Host is the central part of system and could potentially be a bottleneck of the whole QuickPay network. To overcome this problem, each QuickPay payment protocol is design to support “offline” transaction. That is, QuickPay supports the payment transaction without direct involvement of the System Host. A Financial Broker’s performance is also important, but not as critical as the System Host since QuickPay supports multiple Financial Brokers.

As another performance improvement, QuickPay is designed to have its client-side software, i.e., the Wallet and PayCard, handle the work as much as possible in order to reduce overall network traffic. For example, signature verification can be handled by the Wallet or PayCard on the client side instead of by servers. QuickPay also shifts some security work to batch processing, which serves to improve the system performance in two ways. First, batch processes can run in low traffic times so that the traffic on a System Host can be more balanced. Second, processing many orders together in one transaction is much more effective and results in a much lower per unit cost than to process individual orders. For example, use of one signature to settle a thousand orders is obviously more effective and much cheaper than the use of one signature for each individual order.

Besides these general strategies, QuickPay employs different protocols to deal with different payment scenarios in order to obtain an optimal performance/security balance. For example, the micropayment protocol places far more emphasis on performance than security, whereas the administration protocols place the emphasis on security.

Overall, we believe that QuickPay provides a better performance/security balance than existing payment system. For example, the transaction cost for online payments can be measured by the amount of online communication and cost of security operations per transaction. Account-based online payment applications, such as PayPal, usually require two online calls to the System Host (get payment request from customer and send confirm notice to Vendor in PayPal), which are protected using SSL. In contrast, in the QuickPay Micropayment protocol, such transactions need three messages, but no SSL. Due to the relatively high cost of SSL transactions, QuickPay provides a performance benefit in this case.

CONCLUSION

In this article, we proposed QuickPay, an efficient online payment protocol designed for different types of online payment and, potentially, other financial transactions. By identifying and focusing on the most common characteristics of different online payment situations, QuickPay can significantly outperform existing online payment applications.

We believe that QuickPay satisfies the core requirements necessary to become a widespread financial solution for a variety of online business activities.

REFERENCES

[1] Anonymous, Case Study: PayPal, http://digitalenterprise.org/cases/paypal.html,

September 30, 2004.

[2] Chi, Ellis "Evaluation of micropayment Schemes" HP Laboratories Technical Report,

97-14, pp 1-29, Jan, 1997.

[3] Hallam-Bakeer, Phillip, "Micro Payment Transfer Protocol",

http://www.w3.org/TR/WD-mptp-951122, 1995.

[4] IBM, "IBM Multi-Payment Framework (version 1.2)" http://www-

306.ibm.com/software/genservers/commerce/payment/mpf.pdf, 1999.

[5] Manasse, M. "The Millicent protocols for electronic commerce" proceedings of the

1st USENIX workshop on Electronic commerce, 1995.

[6] MacKie-Mason, Jeffrey K. and White, Kimberly, "Evaluating and Selecting Digital

Payment Mechanisms," in Interconnection and the Internet, G. Rosston and D.

Waterman, eds. Lawrence Erlbaum, 1997: 113-134.

[7] Micali, Silvio. and Rivest, Ronald L. "micropayment Revisited" CT-RSA 2002.

[8] Palmer, Jonathan W. and Eriksen, Lars Bo "Digital newspapers explore marketing on

the Internet" Communications of the ACM, Volume 42 No 9 pp 33-40, September 1999.

[9] Pilioura, Thomi "Electronic Payment Systems on Open Computer Networks: A

Survey" work paper http://wwwi.wu-wien.ac.at/public/ehandel/Zahlung_Ueberblick.pdf

1999.

[10] Rivest, Ronald L. and Shamir, Adi "PayWord and MicroMint: Two simple

micropayment systems" Lecture Notes Computer Science, 1318, pp 307-314, 1998.

[11] Shirkey, Clay, "Fame vs Fortune: micropayment and Free Content",

http://shirky.com/writings/fame_vs_fortune.html, September 5, 2003.

[12] Yang, Beverly and Garcia-Molina, Hector "Emerging applications: PPay:

micropayment for peer-to-peer systems" Proceedings of the 10th ACM conference on

Computer and communication security, October 2003.

[13] Dai, J., QuickPay: and online payment protocol, Masters Report, Department of Computer Science, San Jose State University, 2006.

_1265831683.vsd
Mainframe

Laptops

Servers

System Host

End User

Vendor

Financial Broker

Wallet

PayCard

Machine-binding

plugin

Binding with exist account

Transient, Order based

Perm Member

Transient, Order based

Loose Account

System Host

End User

Vendor

Financial Broker

Msg 1.1: Submit Order

Msg 3: Deliver Order

Msg 4: Log Order

Msg 1.2: Register Order

Msg 2: Confirm Order

_1265831682.vsd
Mainframe

Laptops

Servers

System Host

End User

Vendor

Financial Broker

Wallet

PayCard

Machine-binding

plugin

Binding with exist account

Transient, Order based

Perm Member

Transient, Order based

Loose Account

System Host

End User

Vendor

Financial Broker

Msg 1.1: Submit Order

Msg 3: Deliver Order

Msg 4: Log Order

Msg 1.2: Register Order

Msg 2: Confirm Order

