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General info about the programming language Rapp
Web site for Rapp is http://www.stigrosenlund.se/rapp.htm, also with the Visual Basic application Rappmenus. The programs are downloaded as Rapp.Exe and Rappmenus.Exe. Make a shortcut to Rappmenus on the desktop or start menu. (But a shortcut to Rapp is of no use.) Input and output to Rapp.Exe are simple text-files. Use of the graphics embedded in Rapp needs MiKTeX or Adobe Acrobat to translate PostScript to PDF. Rappmenus has graphical user interfaces for several Rapp procedures.
Rapp is written in C. But no special software for C is needed, because Rapp.Exe is a com-piled and linked C program. Rapp.Exe is an interpreter for the programming language Rapp, ie it reads a Rapp-program and interprets the instructions in it and uses C code to solve systems of equations and make PDF and Xml files, etc. Programming languages are usually built in C. Eg SAS is written in C. It is the fastest way. Rapp would be slower in C++. Here is an explanation.
[image: image1.emf]WhyC.jpg

. It is found also on the Rapp web page.
In Appendix 1 are e. g. confidence intervals described mathematically and Appendix 2 describes my multiclass method. The main purpose is tariff (price rating) analysis, but there are also procedures for maps and claim reserve calculation, random samples, matching, data mangling, etc.
I will denote the book "Non-Life Insurance Pricing with Generalized Linear Models" by Esbjörn Ohlsson and Björn Johansson (2010), Springer, Berlin by OJ2010.

Reasons for using Rapp
Proc Taran was the first proc constructed. By default it makes tariff analysis by MMT (Method of Marginal Totals), but the methods Standard GLM and Tweedie are also available. Factor estimates are made for claim frequency and risk premium. For mean claim, no factor estimates are in the listfile, but they are given in a semicolon-separated textfile and displayed in Proc Graf with parameter m. What is then given are factor estimates and confidence intervals derived from the frequency and risk premium via (mean claim factor) = (risk premium factor)/(claim frequency factor) and an essentially similar calculation of confidence intervals. Mean claim factors are of interest to provide background information as to why the risk premium is as it is. Given the fact that MMT solutions, for at least four arguments, mostly are the best for both frequency and risk premium, a separate analysis of frequency and mean claim is best done by (mean claim factor) = (risk premium factor)/(claim frequency factor) and its confidence intervals as a basis. See
http://www.tandfonline.com/doi/abs/10.1080/03461238.2012.760885 or Appendix 1.
Built-in hypothesis testing options are not available in Rapp. OJ2010 contains instructions on how to perform e. g. F-tests with the facilities in Sas Proc Genmod. Tests in SAS for mean claim factors are completely dependent on both the gamma distribution and the homoscedasticity assumption for the claim amounts in the standard-GLM. Since the assumption of gamma distribution is never even remotely true in reality, it would be wrong to build such facilities in Rapp. (The misguidedness of using the specific gamma distribution assumption in standard-GLM is also shown by the research conducted on the LF for different -estimation techniques, resulting in the dismissal of all gammalikelihood-based estimates, with the conclusion that Pearson's -estimation of non-aggregated claim data is the only acceptable one.) Hypothesis tests for the argument classes' risk premium factors are best done by studying graphs with confidence intervals.

If certain levels (= classes) miss claims, or even insurances, the equation solutions go through anyway, in contrast to SAS, with 0 in the estimated factors for the levels.
In non-mathematical respects such as

 Ease of use

 The speed with which the results reached

 Output information richness

 The impact of the graphic images obtained

the programming language Rapp has clear benefits, which is shown below. Especially the latter aspect is usually considered to be very important.
It is easy to write and run a Rapp-program. Selection and grouping of frequently occurring types can be done in Proc Taran and thus reduce the need to create new input for each new angle of analysis. You can combine multiple variables into one, such as sex and age. For example, if Sex has values 1=Male / 2=Female / 3=Company, and Age values 0-120, then the variable Sexage is calculated and used as argument with

dvar(Sexage = 1000 * Sex + Age)

arg(Sexage) niv( (1,1000-1019 'M -19') (2,2000-2019 'K -19') ... (9,3000-3999 'Company') );

Rapp interacts easily with SAS. A SAS table for Proc Genmod can, with a few simple statements inside Rapp, be exported to a textfile for Rapp. Output from Rapp can be easily transferred to a SAS or Excel table for further processing for tariff simulation. Rapp is also considerably more flexible than SAS concerning the structure of the input.

By optimized calculation algorithms Proc Taran runs go through much faster than SAS and is sometimes the only way to get to a result in reasonable time. The difference in speed is greatest with many free parameters. There, SAS can use weeks or years, while Rapp goes through in minutes using the classical method for numerical solution of equations. But even in normal tariff analysis the difference is significant. A test of a SAS table with approximately 4 million lines, about 1700 million combinations, 15 arguments and 70 free parameters was made. The Newton-Raphson method for the numerical solution of equations is here better than the classical method. The SAS-run, with "Proc Genmod / Dist=Poisson Link=log", was optimized by first using Proc Summary. Thereafter, the factor solution was performed on both claim frequency and risk premium like in Rapp. SAS and Rapp was running in Windows on a local PC with 1 gigabyte of RAM and processor speed of 3.2 GHz. Outcome:

SAS: 60 minutes.

Rapp: 3.7 minutes, of which 2.2 minutes to export the table to a textfile and 1.5 minutes to solve the equations from that textfile.
Informative text in text blocks, and in graphs are produced easily. Several key ratios and univariate (marginal) accounting concepts are produced at the same time as factor and variance estimates. The easily produced graphic images are extremely powerful.

Input is one or more textfiles with fields that are separated by a space or other delimiter such as semicolon or tab character. No special computerfile formats like SAS tables are designed for Rapp, because it would make data more closed and difficult to port between platforms. For visual inspection of data one should read the textfiles into SAS, Access or Excel. Reading of the numeric fields display the form of textfiles is slower than reading binary stored fields such as in a SAS table, but still fast enough to be acceptable in this context. Even with millions of input lines there is only a few seconds delay. In the internal processing of Rapp are used, however, files stored with binary fields, in sorting, aggregation and multiple input of data during the iterations of the equation solution.

Output is a listfile in text format with factor estimates for claim frequency and risk premium, uncertainty rates, the marginal risk premium, claim percent of premium, and other marginal totals and ratios. In addition is made a textfile with the factor estimates and sums in semicolon-separated fields, which can easily be transferred to a table in SAS, Access or Excel. With the listfile as the only input is produced graphics with point estimates, confidence and portfolio accounts in PDF format. SAS can be run inside Rapp. Arbitrary Exe files, BAT files and other applications that can be called from the Command prompt can be run from within Rapp.
Columns in Swedish in the listfile (which are not self-explanatory)
Antal försår     = duration = number of insurance years

Skkost 1000-tal  = claim cost in thousands of units of currency (eg USD or EUR)

Marg. skfr.      = 1000×(number of claims)/(number of insurance years)

Osäkerhet        = uncertainty of the claim frequency (relative standard error)

Marg. medsk.     = (claim cost)/(number of claims)

Osäkerhet        = standard error för mean claim

Marg. riskpr.    = (claim cost)/(number of insurance years)

Marg. rp/fbel    = (claim cost)/(sum insured under yearly risk)

Osäkerh %        = relative standard error in percent for marginal risk premium

Premint 1000-tal = earned premium in thousands of currency units

Medelpremie      = average premium = (earned premium)/(number of insurance years)

Skadeproc        = 100×(claim cost)/(earned premium)

Faktorer frekvens = claim frequency factor estimate solved with GLM

Faktorer riskprem = risk premium factor estimate solved with GLM

Ffaktospct = relative standard error as a percentage of the frequency factor estimate

Rfaktospct = relative standard error as a percentage of the risk premium factor estimate

Tariff faktor = factors in an existing or recommended multiplicative tariff

Omrfakt       = tariff factor multiplied by a constant to make the average Omrfakt 1,

                weighted by the duration, or sum insured under yearly risk if sum insured

                is used. Normed duration ndur is used in the same way as sum insured.
Translation of the column headers depending on the parameter lan() in Proc Init:
Swedish           English           German
Antal försår      Number insyears   Summe Versdauer

Antal skador      Number claims     Anzahl Schaden

Skkost 1000-tal   Clcost 1000:s     Schhöhe 1000:n

Marg. skfr.       Marg. clfreq      Marg. Schfrz

Osäkerhet         Uncertainty       Unsicherheit

Marg. medsk.      Marg. meancl      Marg. Mittels

Osäkerhet         Uncertainty       Unsicherheit

Marg. riskpr.     Marg. riskpr.     Marg. Risikpr

Marg. rp/fbel     Marg. rp/suin     Marg. RP/Vsum

Osäkerh %         Uncertainty %     Unsicherheit %

Premint 1000-tal  Premium 1000:s    Präm.ein 1000:n

Medelpremie       Mean prem         Mittelprämie

Medelfbel         Mean suin         Mittelvsum

Medelp/fbel       Average pr/suin   Mittel Pr/Vsum

Skadeproc         Claim perct       Schadprozt

Faktorer frekvens Factors frequency Faktoren Frequenz

Faktorer riskprem Factors riskprem  Faktoren Risikpräm

Ffaktospct        Ffactucpct        FfaktusPzt

Rfaktospct        Rfactucpct        RfaktusPzt

Tariff faktor     Tariff factor     Tarif Faktor

Omrfakt           Recfact           Umrfakt

The semicolon-separated textfile gives units of currency instead of thousands of units of currency. With base factor for each of claim frequency, mean claim, risk premium is meant a constant that the factors for the right argument classes for a policy should be multiplied with to give the factor smoothed estimate of the parameter.
Columns in the semicolon-separated textfile
Argnamn  = the argument name

Nivnamn  = level's name (class name)

Anr      = argument consecutive numbers 1, 2, 3, ...

Ninr     = level consecutive numbers 1, 2, 3, ...

Dur      = duration = number of insurance years

Fbelndur = sum insured under yearly risk or normed duration

Prem     = earned premium in currency units

Antskad  = number of claims

Skkost   = claim cost in currency units

Ospmu    = relative standard error in percent for marginal (univariate) mean claim

Osp      = relative standard error as a percentage of the marginal risk premium

Basff    = base factor for smoothed claim frequency (equal in all lines)

Basfm    = base factor for smoothed mean claim (equal in all lines)

Basfr    = base factor for smoothed risk premium (equal in all lines)

Faktf    = claim frequency factor estimate

Faktm    = mean claim factor estimate

Faktr    = risk premium factor estimate

Ospf     = relative standard error in percent of the claim frequency factor estimate

Ospm     = relative standard error in percent of the mean claim factor estimate

Ospr     = relative standard error in percent of the risk premium factor estimate

Tarf     = tariff factor
Translated column headings in the textfile depending on parameter lan() in Proc Init:
Swedish  English        German
Argnamn  Argname        Argname

Nivnamn  Classname      Klassename

Anr      Argno          Argno

Ninr     Classno        Klasseno

Dur      Exposure       Versicherungsdauer

Fbelndur Suminsexposure Vsumversicherungsdauer

Prem     Premium        Prämie

Antskad  Claimnumber    Schadenanzahl

Skkost   Claimcost      Schadenhöhe

Ospmu    Uncpctmclu     Unspztmschade

Osp      Uncpct         Unspzt

Basff    Baseff         Basisff

Basfm    Basefm         Basisfm

Basfr    Basefr         Basisfr

Faktf    Factf          Faktf

Faktm    Factm          Faktm

Faktr    Factr          Faktr

Ospf     Uncpctf        Unspztf

Ospm     Uncpctm        Unspztm

Ospr     Uncpctr        Unspztr

Tarf     Tarf           Tarf

Ffaktospct = Ospf and Rfaktospct = Ospr were calculated from the GLM theory for claim frequencies, as in SAS "Proc Genmod / Dist=Poisson Link=log". These identities apply:

Basfr = Basff*Basfm

Faktr = Faktf*Faktm

Ospr² = Ospf² + Ospm²
Let level (class) j be a base level specified with bas(), see below, or the level of those with claim cost not 0, which has the greatest duration if bas(0) indicated that no level should be a base level. Then level j has the same value for Ospf, Ospm, Ospr as in a univariate account with only one argument. For the risk premium factors for those levels of the respective arguments, Rfaktospct is equal to Osäkerh % (= Uncertainty %).

Other levels are adjusted upwards by means of the diagonal elements of the inverses of the Fisher information matrices for claim frequency and risk premium.

If in Proc Graf is given F2_bas=n1_n2_ ... where n1, n2 are base levels specified with bas(n1), bas(n2) in Proc Taran, then graphs are obtained that give confidence intervals for the frequency factors exactly as GLM theory, i.e. without confidence intervals for the base levels.

If you give R_bas=n1_n2_ ... respectively M_bas=n1_n2_... you get graphs of risk premium respectively mean claim factors without confidence intervals for the base level. This is from a solution I designed for a model where no assumption is placed on the claim amount distribution in a Compound Poisson process. The solution is partly strictly mathematical and partly adhoc. It gives a better approximation to the strict confidence intervals than the adhoc method to transfer "Osäkerh %" above for the marginal risk premiums to the risk premium factors and "Osäkerhet" above to mean claim factors. The portfolio must be very non-multiplicative (the arguments very dependent) for the difference between the partial and the coarse adhoc method to be noticeable. The partly adhoc method is denoted MVW and the coarse adhoc method is denoted 1984 in Appendix 1.
If you enter in Proc Graf R, F, M or R_bas=0_0_ ... F_bas=0_0_ ... M_bas=0_0_..., then intervals are given for all levels. Then preferably bas(0) should have appeared in Proc Taran for easier interpretation of the report and graphs. To give confidence intervals for all levels is important in applications, although such intervals may be difficult to interpret from a mathematical-statistical point of view. When they are shown to laymen, ie product specialists, however, these intervals are intuitively correctly interpreted directly! Confidence interval with positive length for all levels can be described as relative confidence intervals for marginal risk premiums with respect to duration normed for other arguments. That is, we should multiply the lower bound, point estimate and upper limit by a common factor such that the resulting estimate shows this marginal risk premium. Another way to interpret the confidence intervals with positive length for all levels is that they are literally approximately correct if all factors have been multiplied by a factor such that the average factor over the portfolio is 1.00, provided no argument dominates.

With parameter T to Proc Graf Omrfakt (Recfact) is illustrated by the black bar. To the right of it, like a flag on a flagpole, is displayed a confidence interval for the argument level as a bar hanging in the air. The midpoint is the risk premium factor, the whole bar is the 90%-interval and the inner bar with a denser pattern is the 60%-interval. If in the underlying reality the risk premium factor is equal to the tariff factor, then on the average in nine cases out of ten the top of the flagpole will be within the flag's height. But in one case out of ten the top will be either below or above the flag. Alternatively Omrfakt (Recfact) is given as a broken line with parameter tarline[C[F]]|[L]|[S[F]].
Location of program and how to write and run Rapp code
An all-in-one package is available at http://www.stigrosenlund.se/rappzip.htm as a zip file. It contains the essentials and example Rapp programs.

Rapp is written in MSVC = Microsoft Visual C++, C-part only. There are two Rapp exe files for different environments in http://www.stigrosenlund.se/rappexes.htm and in the zip file, namely Rapp32Vc2017.Exe for 32 bit and Rapp.Exe for 64 bit. In a 64-bit system Rapp.Exe will run faster than Rapp32Vc2017.Exe. Rapp32Vc2017.Exe will work in Windows XP, although I have compiled and linked it in Windows 7 Professional 64-bit. Do not use Rapp32Vc2017.Exe in a 64 bit system, although it is possible.
Rename the chosen exe file after download to Rapp.Exe and put it eg in C:\Rapp\Pgm.
In addition you find on the site a special zip file Rappmultiprecision.zip with variants of Rapp.Exe for different levels of multiple precision in Proc Mbasic. The precision below denotes the maximum number of correct digits in the mantissa of the mouble data type of Proc Mbasic. These exe files work as Rapp.Exe with the exception of precision. They are only for 64-bit. Rapp.Exe with maxprecision 306 is not included in the special zip file.
Exe file     Maximum precision Storage size in bytes of a mouble

Rapp0027.Exe         27                     32
Rapp0054.Exe         54                     40
Rapp0108.Exe        108                     64
Rapp1008.Exe       1008                    464
Rapp1800.Exe       1800                    816
Rapp5004.Exe       5004                   2240
Rapp9000.Exe       9000                   4016

Rapp.Exe            306                    152
To run SAS from within Rapp of course requires that SAS is installed. Graphic images in PDF requires MiKTeX with the PS2PDF.BAT program, or Acrobat Distiller (comes with the larger Adobe Acrobat, which you pay for). Rapp needs no other special programs. You can bring home the program on a USB stick and run it at home, and make graphs if you have MiKTeX alternatively Acrobat Distiller. MiKTeX is a free program that can be easily downloaded from the Internet - search for MiKTeX on Google, or use the link in  http://www.stigrosenlund.se/AllInOne.htm.
Expected technical lifetime of Rapp.Exe (personal independence and invulnerability)
Rapp.Exe can be expected to last at least 25 years, given that the way described above to re-compile and link the program can be remembered. If the source code cannot be compiled and linked, then maybe sustainability is only 15 years. 
Rapp.Exe is very simple in Windows technique though mathematically advanced. Rapp.Exe is not "installed", but simply copied to a disk that the computer has access to. No advanced windows with combo boxes, etc., no environmental variables set permanently, no file types that are reserved (the user can make that herself). There is no reason to believe that future Windows versions will be backward incompatible with the existing parts of MSVC, which are used for Rapp.Exe. MSVC is Microsoft's own product for C/C++, which is a guarantee of continued operation.

The graphics part of Rapp.Exe needs some software to convert a PS file to PDF. Since Adobe Systems has invented both PostScript and PDF such programs will exist in the future, even if the free program PS2PDF.BAT stops working. See under Proc Init for initial settings suitable for PS2PDF.BAT and Acrobat Distiller, respectively.
There is no risk for disturbances in the PC from running Rapp.Exe. Long ago, there were risks with exe files from C-programs of the kind that we are talking about, but no longer. Both the operating system and the C-compiler/linker have built-in safety guards that prevent such disturbances. If for example Rap.Exe would try to write data in forbidden memory, the only thing that happens is that the program aborts with a message that a forbidden operation has been attempted. So it is safe to run Rapp.Exe. - Another thing is that one should be careful with exe files of unknown origin, since they can contain viruses.
Editing Rapp programs and how to run Rapp.Exe

Parameter to Rapp.Exe is a textfile with Rapp-code. No limit exists for the line length or size of the program. To write Rapp-programs you can use a text editor you're used to, such as the SAS editor or Wordpad. I recommend SPF Source Editor. It takes some time to learn and costs money, though. It can be bought from CTC Command Technology Corporation with web site
  http://www.commandtechnology.com
From the site: "SPF/SourceEdit provides File Management and Editing similar to IBM's mainframe based ISPF."
The SAS source editor can also be used. Rapp is adapted to that editor by treating tab characters as blanks. 
In Rappmenus, choice "Text editor for, in particular, Mbasic and Rapp.", there is an editor with coloring of Mbasic (part of Rapp, see Proc Mbasic later in this manual) and Rapp special syntax words. There is also syntax-sensitive coloring for C and for some of the keywords of SAS (those I used at Länsförsäkringar). I have emulated some of the functionality of SPF. An Mbasic- or general Rapp-program is run from the editor with a button. There are some useful template parmfiles to get you started in the folder Mbparm of the zip files Rapp.zip and Rapp.zipx. Place this folder on your computer as C:\Rapp\Mbparm. There are special features which facilitate debugging your Mbasic-program. Find, replace and sort are extensively implemented.
The editor is not as good as SPF, but I think it is better than Wordpad and many other editors also for general files.
Running Rapp – short description
From the Command Prompt
Prerequisiste is that you have entered C:\Rapp\Rpp by writing Br for the execution of Br.Bat. (Search Br.Bat in this document.)

  Rapp Rapp-progname

where the extent can be omitted if it is .Rpp, and the full path can be omitted if the Rapp program resides in C:\Rapp\Rpp. For example

  Rapp Taran-demo

From Windows Explorer

  Open the Rapp program with Rapp

This can be done in two ways. Either by double-clicking the Rapp program after having checked “Always open with this program” earlier. Or by right-click / Open with and choosing Rapp.Exe.
Running Rapp – long description

From an arbitrary Command prompt, you can run the command

  C:\Rapp\Pgm\Rapp.Exe

Shortened to only Rapp if the folder C:\Rapp\Pgm is in PATH, for example with a BAT file with the statement

  PATH=C:\Rapp\Pgm;%PATH%

being executed at the entrance of the Command prompt.

If you write Rapp in the Command Prompt prompt or double click Rapp.Exe in Windows Explorer you are asked for the Rapp-codefile. If you write Rapp followed by Rapp-codefile, or open a Rapp-codefile with Rapp in Windows Explorer, it runs directly. Extent may be excluded if it is .Rpp. With a word that begins with n (for nolog) as a second parameter, the messages on the screen telling how the program progresses in different Procs are suppressed. Error messages appear however if necessary. With only one parameter, or with another word, such as x, as the second parameter this information is not suppressed.

With only the Rapp program as parameter this happens when Rapp has finished its task: 
If Rapp is run from Windows Explorer by opening a Rapp-codefile, the opened window is retained until Enter, unless the first line’s first word is N or n. If N or n the program runs as "Rapp prog n" even from the Explorer, ie the program gives no progress reports and the window closes without Enter at termination. With X or x instead the program is run as "Rapp prog x", ie with progress reports and window closing after termination. See Calc.Rpp further down here for an example where the N increases the programs usefulness.

If Rapp is run from the Command Prompt it depends on how you went into the prompt. Suppose you went by the command Br, after having made Br.Bat with this statement among others

  set "FromCmdPrompt=Yes"

(See further down here by searching Br.Bat). Then Rapp exits. If you did not go by Br, then Rapp pauses and waits for the Enter key. If Rapp is run from a bat file, where other commands follow the Rapp command, it is necessary that Rapp exits.
You can change the Rapp-program and run the changed program. The third argument to Rapp shall then be cha or CHA. It is case insensitive. Example:

  Rapp rprog01 x cha §01 T  §02 "Trafik 1995-1999"

  Rapp rprog01 nolog cha keep(rprogt.Rpp) §01 T  §02 "Trafik 1995-1999"

  Rapp "rprog 01" x CHA "keepnorun(rprog avs D.Rpp)" §01 D  §02 "Delkasko 1995-1999"

  Rapp B{\aa}t cha keep(B{\aa}t01.Rpp) §01 A  §02 "B{\aa}tf{\oe}r{\ae}kring 2000-2006"

At execution from a BAT file, å - Ö come out wrong, so they must be represented like this

   å     ä     ö     Å     Ä     Ö

{\aa} {\ae} {\oe} {\AA} {\AE} {\OE}

Program file name and change strings after cha or keep() or keepnorun() must be given within double quotes " if they contain blanks, not within single quotes ', because a single quote is taken as part of a change string. A double quote as part of a change string is given as \". Up to 100,000 changes are admitted after cha, keep(), keepnorun().

If keep() or keepnorun() (case insensitive) is not indicated after CHA, a temporary file is created with name containing the date and time, which is removed after execution. At keepnorun() the modified file is not run. The purpose is to enable checking that the change strings, e. g. §01 §02 §03, are right in the Rapp-program.

You can right-click a file with extent .Rpp in Windows Explorer, select Open With, select C:\Rapp\Pgm\Rapp.Exe, and check that this program continues to be used to open files with extent .Rpp. Then you can double click (highlight + return) on a file with extent .Rpp to run it. Upon such execution the Command window is retained after run, as described above.
End running Rapp – long description
Examples of running Rapp-programs
The Rapp-program is Rapp01.txt. Respond Rapp01.txt on the program's question, or type the command "Rapp Rapp01.txt" in the Command prompt or in a BAT file. Command "Rapp Rapp01.txt nolog" suppresses screen printing.

The Rapp-program is Rapp01.Rpp. Respond Rapp01 on the program's question, or type the command "Rapp Rapp01" or "Rapp Rapp01 n" in the Command prompt or in a BAT file.
Examples of running in a BAT program with changeable content in the Rapp-program
@ECHO OFF

REM This program modifies §01 to the right company in a temporary Rapp-program and runs

REM it in a loop in the companies. For example, the Rapp-program can contain

REM rub62 ('Company §01') and urval(company=§01). The parameter x means that the loop

REM goes on, rather than pause at the end of the Rapp-execution.

set rae= C:\Rapp\Pgm\Rapp.Exe

set bol=02 03 04 08 09 10 11 14 15 16 21 24 27 28 29 31 32 33 34 35 37 42 43 50

set rap=F:\B99sti\xxx\Vip01.Rpp

for %%b in (%bol%) do "%rae%" "%rap%" x cha §01 %%b §02 "rub62 'Riskanalys Hem'"

ECHO Press a button!

pause

Example of execution in a SAS program
x C: & CD \Mapp1\Mapp2 & C:\Rapp\Pgm\Rapp.Exe Rapp01 nolog & exit;
The language syntax and components
It is case insensitive, ie large cap or small cap letters do not matter, except in text strings within single or double quotes. An exception is the keyword TEXT alone on a line in Proc Taran. You can have any number of blanks between statements and parameters. Line breaks are irrelevant. Comments are written as in C, REXX and SAS, ie between /* and */. They can be nested in each other, ie as /* ... /* ... /* ... */ ... */ ... */. Also // comments are recognized, ie those that end with the line it is written on.
A caret ^ is continuation symbol last on a line, except in strings and in the block TEXT in Proc Taran. This has a use in Proc Graf to split long words for easier editing, eg:

1_pie_color=LGREEN,0.7/0.7/1/rgb,GOLD,1/.4/.4/rgb,CYAN,^

BROWN,.85/1/.8/hsb,DBLUE,DRED,YELLOW_pattern=L1,X2,L2,SOLID,L1,X2,L2,SO^

LID,L1,X2,L2,SOLID,L1,X2,L2
Do not put blanks first on the line following a caret, if you want to preserve the word.
Strings can be split in several lines without a caret. A caret would appear in string.
Include: Rapp-code in another file can be included by writing include or #include or %include first on a line or after N or X, then the file name. Example:

  N Include C:\Rapp\Rpp\Init.Rpp
See under Running Rapp – long description above for the N or X.

Unlimited many levels of include files are allowed. An include file is included in the Rapp-program at the time point where it is needed. Thus it is possible to run a file creation program in a system()-statement or a Proc Data procedure and take in the created file with include in a later step. See Calc.Rpp below in this manual. Two file names can be given with | in between. If Rapp cannot find the first file, it reads the other one. After the included file only a comment can stand.
Exit: Rapp is terminated. Handy if you create Rapp programs dynamically, which shall be closed at some point under certain conditions. This is the case sometimes when you run from Rappmenus.Exe
Say: A text is written on the screen with Say (Say, say) outside procedures and system()-statements. What is on the same line after Say is written, but not the following lines. For example, the information that a particular procedure has finished. Proc Alarm before or after Say gives audio info also. A comma last after Say makes the text written by the next Say-statement appear on the same line. Say is case independent.
System(): Another program can be run with a statement system() outside procedures and say-sattements. Case independent. The command within system() must have as many right parentheses as left ones. Eg

  system(C:\xx\aaa.bat), SYSTEM(C:\xx\aaa.bat), System(C:\xx\aaa.bat).

The remainder of a Rapp is a collection of procedures according to the table of contents.

First is given Proc (or PROC or proc or pRoC, etc., ie optional uppercase or lowercase) followed by the proc name. The end of the Proc is given with Endproc.

Example of a work process in a Rapp-program:

  Init  : Set parameters needed for the rest of the processing.

  Cmd   : Perform a set of commands in the operating system.

  Sasut : Export SAS tables to textfiles that are input in Proc Data.

  Data  : Mangle textfiles - create new indexes, etc.

  Durber: Calculate duration.

  Taran : Make a tariff analysis report.

  Sasin : Import an outputfile with estimates from Proc Taran to a SAS table.

  Graf  : Makes graphic images in PDF format from an outputfile from Proc Taran.
Limitations, summary
Filename: For externally named files å, ä, ö, Å, Ä, Ö is OK, but files created in Rapp-

programs should not have these characters in the name.

nummetod(K), Classical Approach: A maximum of 20 arguments and 2147483646 argument combinations.

nummetod(N), Newton-Raphson: Up to 99 arguments.

Heading lengths: up to 30 for rub30, 62 for rub62 and 110 for rub110.

Level (class) names in arguments: 10 characters.

Number of variables in the inputfiles: 600, including derived variables in dvar().

Length variable name: 30 characters.

Number of levels (classes) for arguments: 65535.

Length alphanumeric variable: 10 for arguments, otherwise according to alphasize().

Interval numeric argument, variant 1 and 2: [1,65535].

Interval numeric argument, variant 3 with niv((...)): [-2100000000,2100000000].

Interval numeric argument, variant 4 without parameter niv(): [-999999999,2147483647].

Number of selection conditions per set of inputfiles: 250.

Number of enumerated values for selection after selection condition = or ^=: no limit.

Number of ID fields for multiclass analysis with OJ2010:s method: 99.
Description of the procs in alphabetical order:
Proc Acctra

Example:

Proc Acctra infil(Acctable1.Txt) utfil(Acctable2.Txt) recfil(Acctable2.Rpp) Endproc

Transforms a textfile exported from Access. The export must be a textfile with tab separated fields, a first line of field names, and strings delimited by double quotes ". The proc transforms alphanumeric dates on the form YYYY-M-D to numerical ones on the form YYYYMMDD. First character in each field name is assumed to specify the datatype: 'c' and 'm' for character, 'd' for dates as above. Other initial characters are assumed to mean numeric field. Up to 150 alphanumeric characters per field are transmitted to the output-file utfil(). In recfil() a record description in Rapp syntax is given, where numeric fields that need be floating-type are given type R. The outputfile is a valid input file for Proc Taran et al, with parameters dlm(9) and firstobs(2).

Proc Alarm

Example:

Proc Alarm time(1500) sec(5) type(3) Endproc

The example gives a 5-second ringtone, at 15:00. With type() is given the repetion speed of the signal, where 1 (default) gives the slowest and 5 the fastest repetition. If time() is omitted the signal comes directly when the proc is found. If sec()is omitted, it will be a single signal. Useful between other procs to show how a long calculation progresses. Or - as a somewhat extraneous application for Rapp - to be reminded that it is lunchtime.
Proc Bich
Example:

Include C:\Rapp\Rpp\Init.Rpp
Proc Bich Timeconv(Y) Nrep(2000) /* Nsvans(4) Nmseinf(6) */ Utfil(Bootst1.Txt)

  Infil-boo(C:\S\Boot1.Txt) Firstclaimtime-boo(19940101) Lastclaimtime-boo(19961231)

  RDC Openuse(2) maxW(4) quantlimit(999) quantno(500)

  Colnpaybel-boo(2) Colnpaytime-boo(3) Colnsettime-boo(4)

  Colnreptime-boo(5) Colncltime-boo(6)

  Urval-boo(1_2_1_1_44_9_0_49999)

  Pricefile-boo(Kpi.Txt) Basepricetime-boo(2007) Colnpricetime-boo(1) Colnprice-boo(14)

  Infil-akt(C:\S\Boot1.Txt) Firstclaimtime-akt(19970101) Lastclaimtime-akt(20071231)

  Colnpaybel-akt(2) Colnpaytime-akt(3) Colnsettime-akt(4)

  Colnreptime-akt(5) Colncltime-akt(6)

  Urval-akt(1_2_1_1_44_9_0_49999)

  Pricefile-akt(Kpi.Txt) Basepricetime-akt(2007) Colnpricetime-akt(1) Colnprice-akt(14)

  Inx-method(1) graf-akt

ENDPROC

Proc Excel listfil(Bootst1.txt) xlmfil(C:\Rapp\Ut\Xlm\Bootst1.xml) cb visa endproc

Proc Graf  listfil(Bootst1.txt) pdffil(C:\Rapp\Ut\Pdf\Bootst1.Pdf)

  genhead('Prediction intervals by BICH in boxplots') sw boxplot nosubtitle

  pos[ 0 A_vbar_pattern=solid_color=green

    47-(1.96*71) § 47+(1.96*71) 95§%§with§normal§approx§(±1.96×stderr)]

Endproc

The ordinary use of this proc will be as part of Rapp programs generated dynamically in Rappmenus / BICH. I hardly expect any other uses.

Bootstrap simulation of reserve development outcomes with development histories of individual claims as input. The reserve is calculated by one of seven methods.
A. Chain ladder and optionally an exponential tail as in Proc Reschl.

B1. Statistical reserve conditioned on report delay, development period and paid to date.

    The method is chosen with parameter RDC.

B2. As B1 with smoothing by simple linear regression over the Quantno quantiles,

    separately for each combination of the other variables K and A, as described at

    Quantlimit().

C. Bornhuetter-Ferguson as described in Wüthrich and Merz (2008), Stochastic Claims

   Reserving Methods in Insurance, 2.2. Is selected by parameter Bornhuetter-Ferguson.

   Priorultimate() is parameter for a file with the preliminary estimates of the final

   claim cost.

D. Benktander as described in the same book, 4.1.1. Also known as Benktander-Hovinen.

   Is selected by parameter Benktander. Priorultimate() has the same role as for

   Bornhuetter-Ferguson.

E. Cape-Cod as described in the same book, 4.1.2. Is selected by parameter Cape-Cod.

   Premium() is parameter for a file with earned premium per claim period.

F. Schnieper as described in the same book, 10.2. Is selected by parameter Schnieper.

   Schnieperexposure() is parameter for a file with exposure per claim period.

Method B (1 and 2) provides a reserve for any known claim and a reserve per report delay period for not yet reported. The numbers per report delay period for the latter are predicted with chain ladder. Known and predicted numbers are multiplied by their reserves, giving a total reserve per claim period. See Appendix 6 for more details. This method requires that payments are adjusted for inflation to the same level in each file for object and bootstrap claims. It can be done with Pricefile-akt() and Pricefile-boo(). Furthermore, any known claim must be found in the infiles. If no payment has been made on a claim, make a line for it with payment period = report period and payment amount = 0. Parameter RDC is used to apply the method B. Additional parameter Regr for B2.
In experiments, B2 has not given another variability than B1 in reserve estimates, and the bias against the outcome has not changed. If you give the parameter Resfil, reserves for individual claims in that file can however be better smoothed with B2 than B1.

For methods Benktander, Bornhuetter-Ferguson and Cape-Cod, intermediate lower triangle cumulated values, before the last development period, are raised by the same percentage as the ultimate claim cost is raised from chainladder.
Which method gives the best results varies with the situation.
Claims are assumed to exist as textfiles with one line per payment amount or change amount of known claim cost. A line must contain the words
  claim-ID, claim-time, pay-time, payment/change-amount

blank-, semicolon- or tab-separated. There must a line with pay-time = report-time. If there is none naturally, make a such a line with Payment/change-amount = 0.

Here claim-ID must be the first word and it must have the same length for all claims in an infile. A field for report-time is also recommended. This is indicated by parameters Colnreptime-akt() and Colnreptime-boo(). For metod B are needed also settlement periods, which are indicated by Colnsettime-akt() and Colnsettime-boo(). An open claim shall have settlement period 0.
Rapp determines if the fields are separated by spaces, semicolons or tabs from the presence of a semi-colon or tab or not. Time can be given as date YYYYMMDD date, month YYYYMM, quarter YYYYQ, year YYYY or non-negative integer index. The same kind of text-files as to Proc Restri, with a first column for the claim-ID, eg 28-12345-1-03.

A number Nrep() simulations are made. Let claim period i for the selected lines from the inputfile Infil-akt() have N(i) claims occurred in the period and reported as of now. For each simulation s (s = 1, ..., Nrep()) and i (i = 1, ..., n), where n is determined by the selected lines from the inputfile Infil-akt(), Rapp draws f(i)N(i) claims from the inputfile Infil-boo().

Here f(i) is an IBNR-factor, which can be determined in three ways.

1. By drawing a random number M(i) claims from Infil-boo() until N(i) ones with report period <= n - i + 1 were obtained. Then f(i) = M(i)/N(i). Furthermore, the distribution of M(i) is a bootstrap version of the predictive distribution of the corresponding number that will appear in Infil-akt() after full development. This is the default, provided Colnreptime-boo is given > 0.

2. By chainladder estimates of f(i) using Infil-akt(). This method is the default if Colnreptime-boo = 0 and Colnreptime-akt > 0.
3. By input of IBNR-factors in the parameter Ibnrfakt(), such that f(n) is the first word of Ibnrfakt() etc. This method is used when the two other methods cannot be used due to missing reportdates.

The f(i)N(i) claims are to be imagined having occurred in the period i, ie claim-date and payment-/change-date are shifted to the right time for this purpose. On those bootstrapped claims, which may represent the actual claims for object reserve, we can calculate the reserve by method A or B and also the final outcome in terms of what each claim really was worth. Observed MSE (mean square error) of the predicted residual claim cost from the outcome of residual claim cost can be calculated from these Nrep() simulations. The relative MSE can then be transferred to a prediction-MSE-estimate for the current object-chainladder, given a model assumption that we have time homogeneity except for a price adjustment factor. The output report Utfil() provides a collection of such prediction-MSE-estimates.

Optionally simulations can be made in three stages, where in the second and third stage bootstrapped triangles differing from the object triangle by more than a certain number or percentile are thrown away. The parameters Nrep2(), Nrep3(), Rholimit() and Rhopercentile() are set for this purpose. See Appendix 6, section 6.2 for more details.
Two claim files, which can be the same file, shall be specified

  Infil-akt()          Claims for object (actual) chainladder to be given reserves per

                       claim period with chain ladder and optional exponential tail.
  Infil-boo()          Shall contain a sufficient number of claims that occurred

                       sufficiently long ago to be fully developed. For the bootstrap

                       simulation.
Other parameters

  Argname()            Indicates name of segment. 
  Basepricetime-akt()  Base period for inflation adjustment, to which the claims in

                       Infil-akt() shall be recomputed. The adjustment uses pay-time. 

  Basepricetime-boo()  Ditto for the bootstrap claims in Infil-boo().
  Benktander           That method, of Gunnar Benktander (1919-2018) is used, see above.

  Bornhuetter-Ferguson That method is used, see above.

  Cape-Cod             That method is used, see above.
  Colncltime-akt()     Column number for claim time in Infil-akt() inclusive of ID. Eg if

                       claim time comes after ID, then give Colncltime-akt(2).
  Colncltime-boo()     Ditto for Infil-boo().

  Colnpaybel-akt()     Column number for payment in Infil-akt() inclusive of ID.

  Colnpaybel-boot()    Dito för Infil-boo().

  Colnpaytime-akt()    Column number for payment time in Infil-akt() inclusive of ID.

  Colnpaytime-boo()    Dito för Infil-boo().

  Colnprice-akt()      Column number (space separated) for price index in

                       Pricefile-akt().

  Colnprice-boo()      Ditto for bootstrap in Pricefile-boo().

  Colnpricetime-akt()  Column number (space separated) for time period in

                       Pricefile-akt(). The time periods may be specified in any format,

                       eg year SSAA, although time periods of Infil-akt() is in the form

                       eg YYYYMMDD.

  Colnpricetime-boo()  Ditto for bootstrap in Pricefile-boo().

  Colnreptime-akt()    Column number for report-time in Infil-akt() inclusive of ID.

  Colnreptime-boo()    Ditto for Infil-boo().

  Colnsettime-akt()    Column number for settlement-time in Infil-akt() inclusive of ID.

  Colnsettime-boo()    Ditto for Infil-boo().

  DiscountToClaimperiodRate() See button Info1 in first screen of Rappmenus.Exe.

  Firstclaimtime-akt() The first claim period to be included in Infil-akt().
  Firstclaimtime-boo() Ditto for bootstrap.
  Futureprices         See button Info1 in first screen of Rappmenus.Exe.

  genhead()            General heading within single or double quotes.
  graf-akt             Indicates that the object claims part of the report is to be used

                       in Proc Graf. See example above. The parameter nosubtitle in Proc

                       Graf prevents Rapp from taking the first of three header lines as

                       subtitle in the graph.
  graf-boo             The same for the bootstrapped claims part of the report.
  Ibnrfakt()           Optional sequence of IBNR-factors for number of occurred claims,

                       starting with the latest development period. Eg

                         Ibnrfakt(1.23 1.10 1.05)

                       means that number of claims in the latest period is adjusted with

                       a factor 1.23, the next latest with a factor 1.10 and the one

                       before that with a factor 1.05. Remaining periods are not

                       adjusted.
  Infl-method()        0: As described in Appendix 6, ie a common factor for all claim

                          periods for method RDC, otherwise separate factors. Default.
                       1: No adjustment for inflation.

                       2: Separate factors per claim period.

                       3: A common factor for all claim periods.
  Inx-method()         Relevant for method RDC and if Pricefile-akt() was given. If

                       Inx-method is not given, then all payments in the reports are

                       indexed by the price file. If given as Inx-method(1), then

                       payments are indexed only internally in Rapp for calculation of

                       reserves. Known payments are shown in the reports with nominal

                       values, and these are the same as in a report without price file.
  Lastbetper()         Last payment period index (1,2,3, ...) to be included in both

                       files. If not specified, all available payments of the

                       bootstrap file are included. Suitable to set if there are small

                       payments at the end that do not mean anything but disturb the

                       model. For example lastbetper(12) causes payments only in

                       development periods with indices 1-12 to be included. If not

                       given, the parameter is taken as the development index for a

                       payment on the first claimdate made on the last claimdate. If a

                       tail is wanted in the computations, set Lastbetper(999).
  Lastclaimtime-akt()  Last time period to be included in Infil-akt().
  Lastclaimtime-boo()  Ditto for bootstrap. 
  LaTex()              If given by two numbers in brackets, eg LaTex(7 3), Rapp creates a

                       file parallel to the output file with L before the extent, with

                       tables for LaTex. The first number is the first table number and

                       the second is example number. For example utfil(Motor-200912.Txt)

                       gives the file Motor-200912L.Txt.
  Low()                Lower bound b_1 by section 4.1 in Appendix 6. Default none.
  MaxW()               Maximal report period counted from the claim period (report period

                       = 1 means reported at claim period), for conditioning with respect

                       to report period. At maxW(w) are calculated separate reserves for

                       report period W = 1, ... , w-1, while report periods W = w, w+1,

                       ... are lumped together. Conditioning refers to the expected

                       remaining payment amount given J = elapsed duration from the

                       report date. The duration J is calculated exactly from the report

                       date, but the distribution given J is assumed independent of W for

                       W >= w. With maxW(1) you indicate that W is not important except

                       for conditioning with respect to J. Default is maximal possible w.

  MergeSegm            If given segments are merged before reserving, as opposed to

                       separate reserving per segment as described at the end of section

                       5 in Appendix 6. The object reserves will then be equal to the

                       ones obtained without giving Segments-akt(). The bootstrap

                       reserves will however be different, due to the mechanism of

                       bootstrapping per segment. Normally this parameter would not be

                       appropriate.
  Nmseinf()            Same meaning as Nmseinfskk() in Proc Reschl.

  Nrep()               Number of simulations of f(1)N(1), ... , f(n)N(n) claims. The

                       larger Nrep() the more certain prediction-MSE-estimates. The

                       standard errors for the prediction-MSE-estimates are given as a

                       basis for assessing appropriate Nrep() for the next simulation.

                       If not given or as Nrep(0), then no bootstrapping is done and no

                       boo-parameters are needed.
  Nrep2()              Number of simulations of f(1)N(1), ... , f(n)N(n) claims in a 

                       second stage. Bootstrapped triangles with rho_n(object

                       triangle,bootstrap triangle) > rho_0 are thrown away. See Appendix

                       6. If Rhopercentile() is given, then this percentile from the

                       first stage is taken as rho_0. Otherwise rho_0 is the number

                       Rholimit(), if given. If not given, then no bootstrapped outcomes

                       are thrown away in the second stage.
  Nrep3()              See Appendix 6. 

  Nsvans()             Same meaning as Nsvansskk() in Proc Reschl. Default 0.
  Openuse()            Has effect with parameter RDC. Which open claims to use for

                       inference and how they are to be used:

                         0 Closed (finalized) claims only.

                         1 Closed claims and open claims with known settlement period.

                         2 Closed claims and all open claims. For any fixed payment

                           period, the mean payment per settlement period for open

                           claims, for any possible settlement period, is taken to be

                           proportional to mean payment per settlement period for closed

                           claims. This is the default.

                         3 Closed claims and all open claims. For any fixed payment

                           period, the mean payment per settlement period for open

                           claims, for any possible settlement period, is taken to be the

                           same value.
  Percentiles()        Optional. A sequence of at most 11 percentile values which

                       overtake the default values 0.5 1.0 ... 99.0 99.5. Example:

                       Percentiles(0.5 1 25 50 75 80 90 95 97.5 99.55 99.6034)
  Premium()            A file of earned premium per segment and claim period for method

                       Cape-Cod. The same structure as the file Schnieperexposure(). If

                       the file is not given or is given as D, then Rapp uses

                        (chainladder computed claim number per segment and claim period)*

                        (total chainladder computed mean claim per segment)

  Pricefile-akt()      File with price index for claims in Infil-akt().
  Pricefile-boo()      Ditto for bootstrap.
  Priorultimate()      A file of preliminary estimates of ultimate claim costs per

                       segment and claim period for the methods Bornhuetter-Ferguson and

                       Benktander. Same structure and default values as for Premium().

  Quantlimit()         Maximum for period K calculated from the report period for which

                       conditioning shall be made for claims open at K with respect to

                       hitherto paid period 1, ... , K calculated from W = report period.

                       Hitherto paid is quantile divided. For example, quantlimit(3)

                       indicates that for claims open at K = 3, 4, 5,... the conditioning

                       shall be made for the payment sum over pay periods [W-1]+1,

                       [W-1]+2, [W-1]+3, ie W, W +1, W +2. With quantlimit(999) is

                       indicated that conditioning should be carried out with respect to

                       the last known pay sum so far. With quantlimit(0) is indicated

                       that no conditioning should be done with regard to paid so far.
  Quantno()            Number of quantiles for paid so far. For example quantno(20) gives

                       quantiles 0.05, 0.10, ... , 0.95, 1.00 for 20 quantile intervals.

                       Quantno(1) indicates no conditioning with regard to paid so far.
  Resfil()             If specified with RDC, this file gets one line per claim in

                       Infil-akt() with claim-ID, claim period (1, 2, ...), report delay

                       w, quantile q, segment and statistical reserve. Also Rapp creates

                       a file with -IB before the extent with IBNR calculation of the

                       numbers of unknown claims, reserve per unknown claim and reserve =

                       product of these two, and RBNS-reserve in the same way. Eg

                       resfil(Res-TPL-200912.Txt) gives IBNR file Res-TPL-200912-IB.Txt.

                       A file with -IBtri before the extent, giving partitions of IBNR

                       and RBNS on development periods, is also created.

  RDC                  If specified, method B (Reserve by Detailed Conditioning) is used.

  Regr                 If specified together with RDC, method B2 is used. RDC only

                       gives method B1.

  Rholimit()           See under Nrep2().

  Rhopercentile()      See under Nrep2().
  Schnieper            If given, the method used is the one by R. Schnieper "Separating

                       true IBNR and IBNER claims", Astin Bulletin 1991, vol 21(1), p.

                       111-127. Colnreptime() is required for this.

  Schnieperexposure()  A file with exposures E_i for Schnieper's method. Dates are given 

                       as in the claim files. Exposures in the file are added up to the

                       right level. Segment, date and exposure are given blank separated

                       on each line. If this file is not given or given as D, the numbers

                       of claims reported in the first development periods are used as

                       exposures.
  Segmname()           Synonym for Argname(). 

  Segments-akt()       Position of segmenting variable, see under Segments-boo().

  Segments-boo()       If given it shall contain two numbers denoting startposition and

                       number of positions, separated by underscore. For example

                       segments-boo(12_3). Then Infil-boo() will divided according to a

                       segmenting variable, with alphanumeric values that in the example

                       starts in position 12 and is 3 characters long in the file. For

                       each claim period, the sampling will be proportional to the

                       numbers of claims in Infil-akt() in the different segments. For

                       example, say that in claim period 5 there are 300 claims belonging

                       to segment 7 in Infil-akt(). Then, to represent this segment 300

                       claims will be sampled from segment 7 in Infil-boo(). Lines in

                       Infil-boo() with segments not found in Infil-akt() will not be

                       used. Segments will be merged so that segments with no claims in

                       Infil-boo() will be merged with adjacing segments. For each

                       segment, after merging, in Infil-akt() there will thus be at least

                       one claim in the corresponding bootstrap segment, provided there

                       are claims at all in Infil-boo() that belong to a segment in

                       Infil-akt(). If the composition of the claim collection has

                       changed from the time covered in Infil-boo() after selection wrt

                       Urval-boo() and the dates to the time covered in Infil-akt() after

                       selection, then the sampling will be more representative.

                       Segmenting can for example be wrt line of business or percentiles

                       of the first claim periods result or both.
  Timeconv()           Same as in Proc Restri. Valid alphanumeric values D,H,I,M,T,Q,Y,H.

                       Default Y. Numerical values 1,3,4,6,12 only are supported.
  Upp()                Upper bound b_1 by section 4.1 in Appendix 6. Default none.
  Urval-akt()          Same meaning as in Proc Restri. Urval-akt(1_2_1_1_44_9_0_49999) 

                       means that the field in position 1 with length 2 (bussiness line)
                       shall be 1 and that the field in position 44 with length 9

                       (original reserve) shall be maximum 49999.

  Urval-boo()          Ditto for bootstrap.
  Utfil()              File for the report.

  Uttri()              Optional. File for triangles as from Proc Restri, with predictions 

                       in the future lower triangles.
  W-method()           0: As described in Appendix 6, ie drawing bootstrap claims until

                          the numbers of reported ones are the same as for the object

                          claims.

                       1: The number of drawn bootstrap claims shall be as for the object

                          claims for each known report period.

                       2: The number of drawn bootstrap claims shall be as for the object

                          claims for each report period, known or unknown.

Colnreptime-akt(), Colnreptime-boo(), Colnsettime-akt(), Colnsettime-boo(), Nsvans(), Nmseinf(), Urval-akt(), Urval-boo() are optional. Also all parameters for adjustment with price indexes are optional; if none is given there will be no price adjustment.
The first lines of C:\S\ Boot1.Txt (made with Easytrieve in z/OS)

03021994000001 19940102 19941206 00001200å 000012000

03021994000001 19940102 19940103 000012000 000012000

03021994000002 19940101 19941206 00002000å 000020000

03021994000002 19940101 19940103 000020000 000020000

Negative numbers are represented here with Zoned Decimal according to Easytrieve. Also minus signs are accepted by Rapp.

The first lines of Kpi.Txt (from Statistics Sweden's site)
2011 306.15 308.02 310.11 311.44 312.02

2010 299.79 301.59 302.32 302.36 302.92 302.97 302.04 302.06 304.60 305.57 306.58 308.73 303.46

2009 297.88 297.95 298.80 299.26 299.45 300.17 298.80 299.42 300.35 301.11 301.03 301.69 299.66

2008 294.09 295.28 298.08 299.67 300.99 302.45 302.11 301.98 305.08 305.56 303.06 298.99 300.61

2007 285.01 286.45 288.33 289.79 289.48 289.95 289.49 289.41 292.30 293.85 295.75 296.32 290.51
See Appendix 6 for the mathematics.
Proc Calend

Produces a calendar for any year from 1582. Week numbers by ISO 8601 effective 1972.

Example:

N

Include C:\Rapp\Rpp\Init.Rpp

Proc Init lan(e) Endproc

Proc Calend Pdffil(C:\Rapp\Pdf\a1.Pdf) CalendarYear(1889) charsperday(1) visa ENDPROC

Proc Calend Pdffil(C:\Rapp\Pdf\a2.Pdf) prompt visa charsperday(1) ENDPROC

Parameters

pdffil()       Output file.

visa           Displays pdf.

prompt         Makes Rapp ask for year, if calendarYear() not given.

calendarYear() Calendar year, default present year.

charsperday()  Number of characters per day, max 14. If language is English, for Monday

               the value 1 gives M and the value 2 gives Mo.

indonesian     If given the language of the calender will be Indonesian (Java).

               Indonesian is not (yet) generally available as language in Rapp.
Proc Chaall
Example:

Proc Chaall root(C:\Webb\Egna mallar) files(*.asp webb*FE%%.htm*) cha(Sakförsäkring Livförsäkring 'Stig Rosenlund' 'Karl Svensson') Endproc
Parameters

  cha()       Required. Change commands in the form of pairs (string newstring). A change

              string with blanks or parentheses must be within single or double quotes.

              A change string with single quotes must be within double quotes.

              A change string with double quotes must be within single quotes.

  ci          Case independence - string is changed to newstring regardless of its case.

              The default is case dependence, called MatchCase in other languages.

  cols()      Blank separated number pairs, firstcolumn lastcolumn, to change.

              They take effect for successive change instructions. E.g.

                cha(x1 y1 x2 y2) cols(1 5 30 35)

              changes x1 to y1 in columns 1-5 and x2 to y2 in columns 30-35. The line

              length can be smaller than lastcolumn; if you want to change one or more

              blanks to somehting, the last characters are set to blanks before the

              change. Default all columns.

  files()     File name patterns separated by commas eg *.asp,*.htm. Default *, ie all.

                With * is meant any number (>= 0) arbitrary characters.

                With % or ? is indicated as many arbitrary characters as the number of %

                or ?. Here % is the legacy representation in the mainframe, which I want

                to keep, while ? is the Windows representation.

              File name pattern can also be a specific file name without * and % and ?.

              Files without a file type, ie no point in the name, are indicated by ,,

              (two commas). Blanks can be part of patterns. If a pattern contains commas,

              represent these with |, (a vertical line and a comma). If it contains

              %-characters, represent these with |%.

  folders()   Folder name patterns separated by commas eg *xyz,*asp,*Steinberg*.

                With * is meant any number (>= 0) arbitrary characters.

                With % or ? is indicated as many arbitrary characters as the number of %

                or ?.

              Folder name pattern can also be a specific folder without * and % and ?.

              Blanks can be part of patterns. These rules are as those for files(), but

              ,, is not relevant here. Commas are represented with |, and %-characters

              with |% as in files(). Letting folders() = root() is the same as nl.
  lines()     Blank separated number pairs, firstline lastline, to change. Analogous to

              cols(), but the number of lines is not changed. Default all lines.

  nl          Files in subfolders of the root folder are not searched.

  nochange    The files are not changed. All lines that would be affected are written on

              the screen.

  nomatchcase Synonym of ci.

  notlower    Synonym of nl.

  root()      Required. Start folder eg C: or C:\ or C:\Webb\Sak försäkring. With the

              flag /K last, eg C:\Webb\Sak/K, a question on modification is given.

  wholeword   Only strings that are whole words are changed. For example, say a string is

              foot, to be changed to Hand. If footprint is found in the file to be

              changed, it will not be changed if wholeword is set. Otherwise it will be

              changed to Handprint. Strings preceded or succeeded by digits or letters

              are not whole words. Strings preceded and succeeded by other characters are

              whole words. For example, foot is a word in the string [foot]. But foot( is

              not a word in the string foot(x. I follow the Visual Basic conventions.
If the flag /K was set: You get a screen print of each change and a question if the file shall be changed, for each file to be changed.
Example of use beside the obvious: Say you want to find all SAS programs in the folder E:\Sas\Pgm that use a specific function, say func01(), in order to modify the use of the function in a way that a simple change will not attain. Then run
Proc Chaall root(E:\Sas\Pgm) files(*.sas) cha('func01(' 'fu¤c0§(') Endproc 
Proc Chaall root(E:\Sas\Pgm) files(*.sas) cha('fu¤c0§(' 'func01(') Endproc 
Sort the file list of E:\Sas\Pgm by date descending and you find the programs that need your attention.

Note that 'func01(' etc must be framed by single or double quotes, since otherwise Rapp’s parsing of the parameters by parentheses gets confused.
Proc Cmd

Example:

Proc Cmd

@echo off

hf lista1.txt b99sti.cdoc(lista1) w

copy lista1.txt lista1x.txt

Endproc

Here you write code as in a CMD or BAT program. The code is executed where it stands.
Proc Compar

Example:

Include C:\Rapp\Rpp\Init.Rpp
Proc Compar fil1(Rappg8.Exe) fil2(Rapp.Exe) Endproc

Proc Compar fil1(Rappg8.c) fil2(Rapp.c) text visa Endproc

Compares two files.
Parameters

  Fil1       Old file.

  Fil2       New file.

  Firstcol() The first column for comparing with parameter Text. Default 1.

  Maxlen()   The last column for comparing with parameter Text. Default 255.

  Text       Comparison as in SPF with a listing of the lines that were deleted from Fil1

             and the new lines that were inserted into Fil2, and reformated lines.

  Utfil()    Text file for comparison results at parameter Text. Default Rappcompare.Txt

             in folder tempmapp.
  Visa       Shows the comparison in Notepad at parameter Text.

Without parameter Text the following is done. If they are equal byte by byte, then information "Files equal" is given. If not, the proc gives line and character numbers for the first differing line and character, or a notice that one of the files ended before the second one. Line number is relevant only for textfiles.

A comparison with parameter Text may differ slightly from the same comparison in SPF, since there are several ways to determine deleted and inserted rows.
Proc Coofil
Examples:
Include C:\Rapp\Rpp\Init.Rpp

Proc Coofil merge infil(Sverige-forsaml.Txt) utfil(Sverige-kommun.Txt)

  InfilNewIdStartpos(1) InfilNewIdNumofpos(4) colim(4) newid ID4prefix(Komm)

Endproc

Proc Coofil merge infil(Sverige-forsaml-land.Txt) utfil(Sverige-bol-land.Txt)

  colim(4) masterfil(Sverige-forsaml-Bol.Txt)

Endproc

Proc Coofil Bordersplit Infil(Sverige-kommun.Txt) Utfil(Sverige-kommun-borders.Txt)

  Infilid(Sverige-kommun-ID.Txt) Coordidcol(1) Coordsegcol(2) Coordxcol(3) Coordycol(4)

  Rpidcol(1) Labelidcol(3) alfaid(j) newid ID4prefix(Kngr)

Endproc
Makes a new coordinate file for Proc Map from another coordinate file. Three uses:

1. Merge areas to larger and fewer ones.

2. Split borders by which areas share which border segments.

3. Transform ID to form A + B*j or PREFnnnnnnnn. Se alfa2num() and Id4prefix().
Use 1 merge can be combined with use 3. Use 3 is implied automatically for use 2 split. 

See Proc Svg2co for making coordinate files from Scalar Vector Graphics files.
Parameters for use, at least one must be given
  Mege

  Bordersplit

  Newid

Parameters for all uses
  Alfa2num()  Optional. Can be given as one or two numbers, alfa2num(b) or

              alfa2num(a b). For example alfa2num(0.001) and alfa2num (0.2 0.0001). If

              given, ID is converted to numerical values a+b, a+2×b, a+3×b, a+4×b, ... .

              See like-named parameter of Proc Svg2co. For Bordersplit every new created

              distinct border segment will get its own ID. Eg, if you give alfa2num(0.5

              0.01), the third created new ID will be 0.53. You can treat the new ID as

              alphanumeric or numeric in subsequent uses in Proc Map. Possibly you want

              to change the ID:s with an edit operation in the oufiles.
  Id4prefix() If given ID will begin with these four characters in upper case, followed    

              by an 8-digit number starting with Startno(). Overtakes Alfa2num().
  Infil()     Coordinate infile.

  Startno()   See under Id4prefix(). Default 1.

  Utfil()     Coordinate outfile.
  Utfilid()   Outfile with one line per ID of the borders. If not given this outfile will

              get name as Utfil() with -IX before the point. With parameter Merge it will

              contain ID, midpoint-x, midpoint-y. With parameter Bordersplit it will

              contain ID, bordersegment-name. With parameter Newid it will contain the

              new ID where the old one was while the old one is discarded.
Merging areas

It is assumed that the column numbers for ID, segment, x-coordinate, y-coordinate are 1,2,3,4. Merges areas of inputfile to the larger and fewer areas in the outputfile, according to an algorithm that gives the right result, given the condition that two corners in succession in an area of the inputfile also are two corner points in a line in a different area of the inputfile that has the distance between corner points as border, if such a different area in the inputfile exists. This condition has been satisfied in the coordinatefiles in Sverige1000plus from Statistics Sweden and the Land Survey.
Special parameters for Merge
  Colim()     Optional. Merged areas with a maximum of colim points (including one end

              point equal to the starting point) are not included in the outputfile. If

              not given 3 is assumed, which means that areas that are only a point or a

              line are not included.

  Epsilon()   Optional. If given > 0 coordinates x and y of the inputfile are changed to

              the lowest value in a group nearby. If there is a value x1 with x - epsilon

              <= x1 < x, then x is changed to x1. The smallest of the possible x1 is

              selected. If given < 0 then -epsilon is used in the same way, but the

              outputfile will in other respects be equal to the inputfile.

  Masterfil() Optional. If given it contains a table with ID and parent ID, and then

              spoid and npoid are irrelevant.

  MasterNewIdcol()     Optional. Column number of parent identity of the master file. If

                       not given assumed 2. Can also be written as mcolnoid().

  MasterOldIdcol()     Optional. Column number for the ID of the master file. If not

                       given assumed 1. Can also be written as mcolnid().

  InfilNewIdNumofpos() Optional. If given > 0 the number of positions within the ID for

                       the parent ID. Can also be written as npoid(). Default 2.
  InfilNewIdStartpos() Optional. If given > 0 the starting position within the ID for the

                       parent ID. Can also be written as spoid(). Default 1.
Example of the use of a master file with an infile that is to be merged

Master file content

011401 COMP00000028

011402 COMP00000028

...

258402 COMP00000024

258403 COMP00000024

Infile content

011401 0 1616982.000 6605402.000 1616391.00000 6602314.50000

011401 0 1616952.000 6605297.000

...

258403 0 1809735.000 7581527.000

258403 0 1810042.000 7581377.000

We want to make all coordinates for IDs 011401, 011402 etc to have new ID COMP00000028 and coordinates for IDs 258402, 258403 etc to have new ID COMP00000024. So the outfile obtains these lines. New midpoints x and y per new ID have been computed.
COMP00000028 0 1616982.000 6605402.000 1650412.50000 6597995.00000
COMP00000028 0 1616952.000 6605297.000

...

COMP00000028 0 1809735.000   7581527.000

COMP00000028 0 1810042.000   7581377.000

The second column is segment, which alternates between 0 1 to distinguish geographically separate areas within the ID.
Splitting borders

Give keyword Bordersplit somewhere in the Proc statement. Input is a file with areas, some of which might have common borders with one or more other area. For example a file satisfying the condition for merging described above. 
Newid is implied. If neither of Alfa2num() and ID4prefix() was given, then Alfa2num(0 1) is assumed as default.  

Output is a file of border segments, to be used with _AC=none or TP=S in Proc Map.
Special parameters for Bordersplit
  Alfaid()      Set j or J if the coordinate infile has an alphanumeric ID.

  Coordidcol()  Column number of ID in coordinate infile. Default 1.

  Coordsegcol() Column number of segment in coordinate infil. Default 2.

  Coordxcol()   Column number of x-coordinate in coordinate infil. Default 3.

  Coordycol()   Column number of y-coordinate in coordinate infil. Default 4.

  Rpfil()       Infile with one line per ID with the columns above. Synonym Infilid().
  Labelidcol()  Column number of name of area in Infilid(). Default 2.

  No-bd         -bd will not be added to the border names.

  Rpidcol()     Column number of ID in Infilid(). Default 1.

Copy Utfilid() to an rpfil() for Proc Map, with risk premiums (possibly dummy values) added as a new column in each line. If the names of the areas area1, area2, etc, are name1, name2, etc, the names of the border segments will be name1-bd if the segment is border for area1 only and area1/area2-bd if the segment is border bewteen area1 and area2. You can change these names, eg to area1/area2_borderline. Blanks in names are represented by underscores.
Special parameters for Newid

  Alfaid(), Coordidcol(), Rpfil() and Rpidcol() as for Bordersplit.
Proc Copy

Examples:

Proc Copy infil(f1.txt) utfil(f3.txt) from(10) for(1000) Endproc

Proc Copy infil("f1.txt" "f 2.txt") utfil(f3.txt) for(1000) append Endproc

Parameters

app, append  Infil() shall be added to an existing utfil(), not create it new. If utfil()

             does not exist, it is created new.

for()        Number(s) of lines to be copied, default all.

forcol()     Number of columns (positions) to be copied, default all.

from()       First line(s) to be copied, default 1.

fromcol()    First column (position) to be copied, default 1.

infil()      Infile(s). Anyone can be equal to utfil(), it is then copied to a tempfile.
utfil()      Outfile.

If multiple inputfiles are to be merged, give each in double quotes. If only infil() and utfil() and possibly append are given, then a fast binary copy is made. If at least one of the other parameters is given, the infile is supposed to have 10, 13 or (13,10) as linebreaks (LF, CR, CRLF), and the outfile will get (13,10) as linebreaks. For instance from(1) will accomplish this. If files with linebreaks to be merged have different linebreaks, eg some have 10 and some have (13,10), then give from(1) to get an OK outfile. Otherwise the outfile might become bungled.
Several from- and for-numbers can be given, eg From(10 2000) For(1000 1500).

If the security program annoys you by saying that a downloaded file, eg Rapp.Exe or Rappmane.doc, is suspect: You can run it through this proc, thereby copying it byte for byte without copying the catalogue info. Eg

Proc copy infil(C:\Rapp\Dok\Rappmane.doc) utfil(C:\Rapp\Dok\a.doc) Endproc

system(del C:\Rapp\Dok\Rappmane.doc & ren C:\Rapp\Dok\a.doc Rappmane.doc)

Another use of for() and forcol() is to copy a limited number of lines and columns of a large file to a smaller file that can be inspected in Notepad. For example an svg-file as input to Proc Svg2co to determine its attributes.
If a file exported from Excel is to be used by Rapp, it might have 13 (CR) as linebreaks. This might cause problems in rare instances. Avoid these by making a copy with from(1), thus giving the new file (13,10) as linebreaks. 
Proc Copyfo
Examples:

Proc Copyfo infil(C:\Rapp\Xmlnew) utfil(C:\Rapp\Xml) mode 3 Endproc

Proc Copyfo infil("C:\Rapp\Xml1" "C:\Rapp\Xml2") utfil(C:\Rapp\Xml) mode 5 Endproc

The parameters infil() and utfil() are as the ones of Proc Copy but shall contain folders. Mode defines priorities of the folders. The outfolder needs not exist. Infolders can be postfixed with a \ and a wildcard for file names, thus copying only files satisfying the wildcard. Example: C:\Rapp\Rpp\Resv*.

Mode values

With Des (destination) folders and files are meant the outfolder and those already present in the outfolder. The infolders and -files are denoted Sou (source) folders and files. Sou folders and files without corresponding Des are added in all modes.
1. Delete destination outfolder if existing and create it new. Of Sou infolders and infiles with the same paths, the ones with the latest date-times are copied.

2. Keep the outfolder if existing. Keep Des folders and files if there are no Sou ones with the same paths, otherwise replace them. Sou infolders and infiles that are listed later in your enumeration replace earlier listed Sou infolders and infiles with the same paths.

3. Keep the outfolder if existing. Keep Des folders and files if there are no Sou ones with the same paths, otherwise replace them. Sou infolders and infiles with later date-times replace earlier listed Sou infolders and infiles with the same paths.

4. Keep the outfolder if existing. Keep Des folders and files if there are no Sou ones with the same paths. If there are Sou ones with the same paths, they replace the Des ones only if they are newer than the Des ones. Of Sou infolders and infiles with the same paths, the ones with the latest date-times are copied.

5. Keep the outfolder if existing. Replace Des folders and files with the same paths as Sou ones only after confirmation. You must run as administrator; right-click on the Rappmenus startmenu and choose that.

6. Keep the outfolder if existing. Never replace Des folders and files. Of Sou infolders and infiles with the same paths, the ones with the latest date-times are copied.
7. Keep the outfolder if existing. Never replace Des folders and files. If there are Sou files with the same paths, they are copied as name(n).ext, where name.ext is the Des file and n is the lowest integer  2 such that name(n).ext did not exist before the copy. Sou folders and files are added. Of Sou infolders and infiles with the same paths, the ones with the latest date-times are copied.
8. The same as 7, but uses a more dangerous method of renaming the Sou files forth and back. This process must be allowed to complete. It can also be thwarted if the Sou files are occupied by you in some other application. If the total volume of the files copied is large, you might want to take the risk of messing up the Sou files for the benefit of faster execution.
Mode 5 uses Xcopy. The other modes use Robocopy. It is an inconsequential peculiarity of the Windows utilities that Xcopy needs administrator permission while Robocopy does not.
Proc Data
Example:

Include C:\Rapp\Rpp\Init.Rpp
Proc Data;

Infiler fil(Skador.Txt) var(kkl Sex frdk birtdate Living $ Car_age bmkl mvikteff skkost)

urval(Skkost > 0 & Age >= 40 & Age <= 49 & kkl ne 0)

dvar(

  Age    = min(99,|[(frdk-birtdate)/10000]|)

  Sexage = 100*(Sex-1) + age

)

delimiter(';') ;

Utfil fil(Skador2.Txt) Headerline delimiter(';')

  Var(kkl Sex Age Sexage Living Car_age bmkl mvikteff skkost)

  Sort(Car_age/D Sexage Living) Textfilexk(Skador-bortvalda.Txt) ;

ENDPROC

You can omit var() for the outputfile, and then all variables in the inputfile are included in the outputfile.

Here Skador.Txt is washed and mangled into a new file Skador2.Txt with the fields

  kkl Sex Age Sexage Living Car_age bmkl mvikteff skkost

and with as many lines as there are in Skador.Txt which satisfy the selection condition

  Skkost > 0 & Age >= 40 & Age <= 49 & kkl ne 0

The outputfile Skador2.Txt is sorted on Car_age, Sexage, Living in that order.
Example with norming

Include C:\Rapp\Rpp\Init.Rpp
Proc Data arr(0(0, 0.75 , 0.93874 , 0.63 , 1.17)) ;

Var(kkl kon Ålder Könålder boende fordald bmkl mvikteff dur ndur) ;

Infiler fil(Forsakr.Txt) var(kkl kon frdk föddat boende $ fordald bmkl mvikteff dur)

urval(kkl ne 0)

dvar(

  boende_medblanka = " "!!boende!!" "

  boinx = Indci(boende_medblanka," 01 03 ") + 2*Indci(boende_medblanka," 06 ")

      + 3*Indci(boende_medblanka," 04 ") + 4*(1-Indci(boende_medblanka," 01 03 04 06 "))

  ndur = dur*arr(0,boinx)

  Ålder    = min(99,|[(frdk-föddat)/10000]|)

  Könålder = 100*(kon-1)+ålder

) dlm(';') ;

Utfil fil(Forsakr2.Txt) Headerline dlm(';')

  Var(kkl kon Ålder Könålder boende fordald bmkl mvikteff dur ndur) ;

Endproc

Here normed duration is calculated in a new file intended as input to Proc Taran. For example, when boende = '06 duration is multiplied by 0.93874 to give ndur.

The parameters of the main clause Proc Data has the same meaning as those with same name in the main clause of Proc Match.

The syntax for the statement Infiler is the same as for the statement Transfil in Proc Match apart from Key() and Timekey(). Ie as for the statement Infiler in Proc Taran with the elimination of the parameters associated with utfilink(). Parameters Dvar() and Urval() can be used, but Urval() cannot contain variables in dvar() made with the function inx() or depending on such variables. Trying to make such a selection Rapp interrupts with an error message, so this is not necessary to have in mind.

Sort(): The syntax of statement Utfil is the same as in Proc Match. In addition, there is an optional parameter sort() as shown in the first example. A sort field needs not appear in the outputfile. If /d is suffixed a sort field, eg Company/D, the sort is in descending order, otherwise ascending. Numerical sort fields have to be integer-valued. They can have negative values.
Further, any number of arg()-statements with syntax as in Proc Taran, can be used with inx() to create new variables. The above ways to create a new variable boinx with the function Indci(,) can be simpler, however. 
Proc Ddist
Example:

N

Include C:\Rapp\Rpp\Init.Rpp

Proc Ddist n(12) values(-1.30 0.22   -.1 0.24   .2 0.46   9 , -0.25 0.08   1.3 ) utfil(C:\Rapp\x.Txt) ENDPROC

The proc computes the probability distribution of a sum S = X1 + ... + Xn of n independent discrete random variables Xi distributed according to values(). Successive distributions for X1, X2, … are delimited by comma characters. If less than n distributions are given, the remaining distributions are taken to be the last one. If no comma characters are present, the random variables are thus identically distributed. In the example n = 12 and P(X1 = -1.3) = 0.22, P(X1 = -0.1) = 0.24, P(X1 = 0.2) = 0.46, and P(X1 = 9) = 1 - 0.22 - 0.24 - 0.46 = 0.08. For i > 1 the distribution is: probability 0.08 for the value -0.25 and 0.92 for 1.3. If there are at most nine decimals for the values -1.30, -.1 etc, and if they are not in E-notation, and if the values are not too far apart, the computation employs a fast algorithm. Otherwise a slower algorithm. Probabilities can be in E-notation for the fast algorithm. A possible probability for the last value per comma-separated distribution is disregarded by Rapp. Any number of blanks between numbers are admitted.

Parameters

Digits     Optional. Maximum number of decimal digits with which values and probabilities
           can be given, and the number of digits for the output distribution of S. The
           latter is given as a set of mouble numbers, if digits is set to more than 15.
           Without digits or with digits at most 15, the computation is in double. See
           Proc Mbasic for the datatypes double and mouble and for the parameter digits.
N()        Number of independent random variables.
Utfil()    Outputfile.

Values()   Comma-separated sequences of pairs of discrete values and their probabilities.

Visa       Optional. Show outputfile in Notepad after computation.

Give n between 1 and 40. Rapp computes and adds all possible probabilities for combinations of the Xi. Max 1,100,000,000,000 combinations are allowed, so as to keep run time within an hour or two. If there are only two possible values for each Xi, then there are 240 = 1,099,511,627,776 combinations for the S distribution with n = 40.

The calculation is time-consuming. But it admits all discrete distributions on a finite support, within the limitations. If there is an interest in possibly faster algorithms, using inversion formulas for the Fourier- or Laplace-transform of Xi, I might start to develop those. See my paper "Practical Inversion Formulas", Scandinavian Actuarial Journal 1983: 29-38:

http://www.stigrosenlund.se/matstat/Practical%20Inversion%20Formulas.doc
The result is listed in utfil(). With parameter visa the list is displayed in Notepad. Every possible value for S is shown with its probability and accumulated probability up to and including the value. Numbers in both fixed point notation and scientific notation are given if the fast algorithm was used, otherwise only in scientific notation.
Proc Diskcm
Example: 

Proc Diskcm Spacesort(K) Numshow(All)

  Root(C:\Rapp)

  Folders(C:\Rapp\Pdf,C:\Rapp\Xml)
  files(B*.pdf,B*.Xml)

  Sorttyp /O-DN

  Textfind Any  Findstr('"String">2016-' ModifyDate>2016)

  numshow(10) // numshow(all)

  Utfil(C:\Rapp\Uparm\DiskcmResult.Txt)

Endproc
Mnemonics for diskcm is DISK CoMputation.

The proc lists the total space, and space per folder and file, for folders, subfolders and files satsifying the name patterns of the parameters below.

Parameters
 cols()      A pair firstcolumn and lastcolumn to search with findstr().
 files()     File name patterns separated by commas eg *.asp,*.htm.

                With * is meant any number (>= 0) arbitrary characters.

                With % or ? is indicated as many arbitrary characters as the number of %

                or ?. Here % is the legacy representation in the mainframe, which I want

                to keep, while ? is the Windows representation.

              File name pattern can also be a specific file name without * and % and ?.

              Files without a file type, ie no point in the name, are indicated by ,,

              (two commas). Blanks can be part of patterns. If a pattern contains commas,

              represent these with |, (a vertical line and a comma). If it contains

              %-characters, represent these with |%. The default is files(*), meaning all

              files.
  findstr()   A sequence of strings, in syntax as cha() in Proc Chall, that are to be

              searched for in the files listed. Only files satisfying the search criteria

              are listed. Their space is not included in the space per folder shown.
  folders()   Subfolder name patterns separated by commas eg *xyz,*asp,*Steinberg*.

              The root folder is also considered to be a subfolder.

                With * is meant any number (>= 0) arbitrary characters.

                With % or ? is indicated as many arbitrary characters as the number of %

                or ?.

              Folder name pattern can also be a specific folder without * and % and ?.

              Blanks can be part of patterns. These rules are as those for files(), but

              ,, is not relevant here. Commas are represented with |, and %-characters

              with |% as in files(). The default is folders(*), meaning all subfolders.
  lines()     A pair firstline and lastline to search with findstr().
  numshow()   The number of files per subfolder to show. Default is All.

  renewatfind If given, the files satisfying findstr() get new date-times.

  root()      Start folder eg C: or C:\ or C:\Webb\Sak försäkring. Not given or given as

              root() means the work folder.

  sorttyp     After this parameter can be given one of the following parameters, to be
              used as paraameters to the command line dir command. The default is /ON.

                Parameter Listing sort order

                /ON       Name Ascending

                /O-N      Name Descending

                /ODN      Time A

                /O-DN     Time D

                /OSN      Size A

                /O-SN     Size D

                /OEN      Extent A, Name A

                /OE-N     Extent A, Name D

                /O-EN     Extent D, Name A

                /O-E-N    Extent D, Name D

                /OEDN     Extent A, Time A

                /OE-DN    Extent A, Time D

                /O-EDN    Extent D, Time A

                /O-E-DN   Extent D, Time D

                /OESN     Extent A, Size A

                /OE-SN    Extent A, Size D

                /O-ESN    Extent D, Size A

                /O-E-SN   Extent D, Size D
  spacesort() Disk space unit. Values B for bytes, K for Kilobytes, M for Megabytes and

              G for Gigabytes. If omitted, Rapp uses the largest unit that makes the

              total disk space at least 1, given the name patterns.

  textfind    After this parameter can be given Any or All, determing whether at least

              one or all strings in findstr() shall be found in a file for it to be

              listed. Any file can be searched, for instance %PDF-1.4 in pdf files. Only

              text that can be displayed when opening the file in a text editor, such as

              Notepad, is searched.
  utfil()     Required. The file with the report.

  wholeword   Only strings that are whole words are searched. See Proc Chaall.

Rappmenus / Utilities can be used to generate a Rapp program with a Proc Diskcm and a Proc Graf to display a listing.
Proc Durber
Example:

Proc Durber infil(Fors1.txt) utfil(Fors2.txt)

  var(falt1 fromdat falt3 falt4 4 R falt5 intilldat falt7)

  frdkvar(fromdat) todkvar(intilldat) ypremvar(falt4) datum(20020101 360 5) firstobs(2)

Endproc

Main function: For an inputfile with insurance versions (ie containing start-date and day-after-ending-date for successive policy premium periods), 360-day durations (banking day durations) are computed for a sequence of periods. For each read in-line is output as many out-lines as there are periods in the in-line with duration > 0. Can also be used simply to shuffle the variables in the inputfile to the outputfile with the same number of lines. That will be the case when frdkvar() and/or todkvar() is omitted. Delimiter space, semicolon or tab character is determined by the first line of the inputfile.
Parameters

datum()        Optional. There are two formats:

               1. datum(startdate number-of-days-per-period number-of-periods).

               Example:

                 datum(20020101 360 5)

               If the number-of-periods is omitted, for example datum(20020101 360), then

               it will be as many periods as are entirely in the past at today's date. If

               number-of-days-per-period is omitted, for example datum(20020101), it

               becomes 360, ie whole-year-durations, and number-of-periods is also here

               as many periods as are entirely in the past at today's date. Pername

               equals the period's starting-date.
               2. datum(startdate1 enddate1 name1 [startdate2 enddate2 name2] ...)

               Example:

                 datum(

                   20020101 20021231 2002

                   20030101 20031230 2003

                   20040101 20041231 2004

                   20050101 20051230 2005

                 )

               An in-line with (start-date,day-after-ending-date) = (20040701,20050501)

               provides two lines, one with period name 2004 and duration 0.5 and one

               with period name 2005 and duration 0.333... = 4/12 = 120/360. It is

               immaterial whether the day number in the last two characters of the end

               dates is 30 or 31, under the principle of banking day durations. If

               datum() is not given, then 360 days per period and as many full-year

               periods as fully cover the in-line's data are used.

firstobs()     Optional. First observation of the inputfile to be processed, eg

               firstobs (2) if the first line is a header. Default 1.

frdkvar()      Optional. The variable in var() containing the version's start-date

               YYYYMMDD. If not given, there will be as many lines out as in and no

               duration is calculated.

headerline     A header line with field names shall be first in the outputfile.

infil()        Inputfile/files. If multiple files are to be merged, give each one within
               double quotes, eg infil("HelfC.Txt" "HelfD.Txt" "HelfR.Txt").

todkvar()      Optional. The variable in var() containing the version's

               day-after-ending-date YYYYMMDD. If not given the result will be the same

               as when frdkvar() is omitted.

utfil()        Outputfile.

uvar()         Optional. Outputfile variables. In addition to inputfile variables these

               can be listed:

                 pername = field where the name of the period, determined by datum(), is

                 dur     = computed duration

                 prem    = computed earned premium from yearly premium and dur.

               If uvar() is not given, the output variables will the same as the input

               variables with the addition of pername, dur and - if ypremvar() was given

               - prem.

var()          The infile variables as in Proc Taran et al. Type declarations are not

               required.

ypremvar()     Optional. The variable in var() containing the annual premium. If given,

               then prem = earned premium can be obtained in the outputfile.

zerodur        If given, then dur = 0 in the outputfile without prem being affected.

zeropre        If given, then prem = 0 in the outputfile without dur being affected.

If a file for each period is desired, use Proc Split afterwards with the period name as split column.
Proc Excel

Examples:

Include C:\Rapp\Rpp\Init.Rpp
Proc Excel listfil(EBL-lista1.txt) xmlfil(EBL-lista1.xml) cb visa endproc

Proc Excel textfil(EBL-skattn.txt) xlmfil(EBL-skattn.xml) strip visa endproc

Parameter listfil(): Makes an XML file from a listfile, including crosslist and English or German language listfile, from Proc Taran. Output file can be given as either xmlfil() or xlmfil(). It can be opened in Excel 97-2003 and later versions, but shall sometimes have extent .xml and sometimes .xlm. The following requirements 1-3 must be met for a listfile to be treated. Requirement 4 should be satisfied for the Excel output to be informative.

1. Position 1 shall be '1' when a page break is to occur. If position 1 is '+' the line

   can indicate a subsequent total line, but is not itself used in Excel. Otherwise

   position 1 shall be blank.

2. Lines with numerical list output must include

   A. A column describing the class of the distribution argument, starting at position

      2 and 10 characters long. Opening, closing and interspersed blanks may occur.

   B. A sequence of numerical columns.

3. Each block of list output must include

   A. One or more lines by specification 2.

   B. Subsequently, a line that begins with'+__" or '==', which marks the border between

      lines for different levels of the distribution argument and an total line.

   C. A line for the total. It must comply with specification 2 and also start with

      " Total " or " Totalt ".

4. The following can (should) also be provided before list output blocks to provide

   output column headings:

   A. A sequence of lines at least as long as the shortest of the subsequent lines of

      numerical list output before the total line. Contains text describing the following

      lines.

   B. Between those lines and numeric-list-output lines can be boundary lines starting

      with '+__' or '=='.

Part of a listfile that meets the requirements:
1                                                                     p.    2

 Company:02 Blekinge

               Number  Number   Clcost     Risk Uncer-  Premium   Mean  Claim

 Breed       insyears  claims   1000:s  premium tnty %   1000:s   prem  perct

+____________________________________________________________________________

 Angora          7420     620     1190      160   7.15     2873    387   41.4

 Persian         1694     157      355      209  14.87      644    380   55.0

 Oth breeds       275       9       17       60  57.85       91    332   18.1

+____________________________________________________________________________

 Total           9390     786     1561      166   6.44     3608    384   43.3

 Company:03 Dalarna

               Number  Number   Clcost     Risk Uncer-  Premium   Mean  Claim

 Breed       insyears  claims   1000:s  premium tnty %   1000:s   prem  perct

 ============================================================================

 Angora         17404    1049     2211      127   5.45     7155    411   30.9

 Persian         5138     421      842      164   8.35     1789    348   47.1

 Oth breeds       703      51       87      124  23.72      217    309   40.1

 ============================================================================

 Total          23246    1521     3141      135   4.49     9162    394   34.3

Parameter textfil(): Without other parameters than textfil() and xmlfil(), or xlmfil(), the proc makes an XML file from a textfile with a first line containing column headings. The file must have a constant number of columns per line. The textfile that is made with parameter textfil() in Proc Taran can thus be treated, but also other textfiles with a maximum of 600 columns can be treated. The XML file displays the first line with yellow background. Fields can be separated by blanks, semicolons or tab characters (x'09').

More parameters for textfil()
Headerline()  Can be given with blank separated column headings. If some heading contains

              a character + or other character that can be interpreted as Rapp syntax,

              then enclose the line in apostrophes or citation marks. Then the first line

              of the input file is taken as data, not column headings. Example:

              Headerline("Column_1 Column2 Column_3").

Sp2() Sp3()   If given, the start columns for field 2 and 3. Fields 1 and 2 have fixed 

              startpositions and can have embedded blanks.

Strip         Blanks at the beginning and end of each field are removed.

Types         Can be given with a sequence of characters N or $. Example: Types(N $ N).

              This means that columns given the $ type always will be alphanumeric in

              Excel. Without the parameter columns with numerical content will be

              numeric.

Visa          Gives an Excel open of the Excel file, which then must have extent .xml.

              Visa means Show in Swedish.
Parameters for listfil()
Cb        Results in blank-separated thousands in Excel, for integer numbers in colored

          fields with comma-separated thousands in the listfile. For example, 1,234,567

          will be 1 234 567.

Blanksep  Gives blank-separated thousands in Excel, for integer numbers in colored fields

          with or without comma-separated thousands in the listfile. Eg 1234567 will be

          1 234 567.

Colcomb() Provides different colors for different columns. Start with the first column

          after the class name, eg Bondkatt above. Put 0 for default colors. Valid other

          values are 1-5. For example Colcomb(0 1 1 2) gives default for Number insyears,

          color combination 1 for Number claims and Clcost 1000:s, and 2 for Riskpremium.

          Other columns get default colors. Try different combinations to see how they

          fit the report's purpose. For every code-value there is a color for detail

          lines and a color for total lines. Different Colcomb() can be given for

          different blocks. See TemplateB.Rpp or contact me. The colors are as follows.
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Kilo      Integer numbers in colored fields are given in thousands. Eg 1234567 will be

          1235 if Blanksep was not given, otherwise 1 235.
Mega      As Kilo but in millions. Eg 1234567 will be 1.
In order to make the proc more durable, the parameter Excelproepilog() has been introduced in Proc Init. For example Excelproepilog(Proepilog-v7.xml). If given, the prologue of the XML file until its first blank line is replaced with the first paragraph of the given file, and the epilogue after the last blank line is replaced with the second paragraph of the given file. Below is the content of such a file corresponding to Excel in November 2011.
<?xml version="1.0"?><?mso-application progid="Excel.Sheet"?>

<Workbook

  xmlns="urn:schemas-microsoft-com:office:spreadsheet"

  xmlns:o="urn:schemas-microsoft-com:office:office"

  xmlns:x="urn:schemas-microsoft-com:office:excel"

  xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet">

 <ExcelWorkbook xmlns="urn:schemas-microsoft-com:office:excel">

 <AcceptLabelsInFormulas/><ProtectStructure>False</ProtectStructure>

 <ProtectWindows>False</ProtectWindows>

 </ExcelWorkbook>

  <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">

   <Unsynced/>

   <Print>

    <ValidPrinterInfo/>

    <PaperSizeIndex>9</PaperSizeIndex>

    <Scale>21</Scale>

    <HorizontalResolution>600</HorizontalResolution>

    <VerticalResolution>600</VerticalResolution>

   </Print>

   <PageBreakZoom>60</PageBreakZoom>

   <Selected/>

   <DoNotDisplayGridlines/>t

   <FreezePanes/>

   <FrozenNoSplit/>

   <SplitHorizontal>1</SplitHorizontal>

   <TopRowBottomPane>1</TopRowBottomPane>

   <ActivePane>2</ActivePane>

   <Panes>

    <Pane>

     <Number>3</Number>

    </Pane>

    <Pane>

     <Number>2</Number>

     <ActiveRow>0</ActiveRow>

    </Pane>

   </Panes>

   <ProtectObjects>False</ProtectObjects>

   <ProtectScenarios>False</ProtectScenarios>

  </WorksheetOptions>

 </Worksheet>

</Workbook>
Note. The opening program for XML files might not be excel.exe. If so, search ecxel.exe with Windows Explorer in the root, note its location, right-click an XML file for Open with, and go to excel.exe.
Proc Figadj
Examples:

Proc Figadj Endproc

Helps to adapt PostScript figures for use in Rapp as logos and map symbols. Run the example program for instruction. See Rappmenus / Info3 for more explanations.
Proc Filsta

Examples:

Proc Filsta infil(f1.txt) Endproc

Proc Filsta infil("f1.txt" "f 2.txt") Endproc

Applicable only to text files, including C-code, etc. Provides file statistics for the inputfile/files - the number of lines, number of bytes, the minimum and maximum line length, average line length. If multiple inputfiles, give each within double quotes. Then statistics are given for the files as if they were one file combined.
Proc Ftp

File transfer.

With s the file(s) are sent from Windows, otherwise it/they are downloaded. With b a binary transfer is made, otherwise a textfile transfer ASCII <-> EBCDIC. If multiple files are to be transferred, give each within double quotes.
Example 1. Sends a file from Windows binary to an MVS file given with whole dataset name.

Include C:\Rapp\Rpp\Init.Rpp
Proc Ftp s b winfil(Hf.exe) hostfil('B99STI.EXE(HF)')

  host(lfsasp.lfnet.se) user(b99sti) password(sr47wy) Endproc

Example 2. Retrieving six files from MVS to Windows with prefix B99STI implied.

Include C:\Rapp\Rpp\Init.Rpp
Proc Ftp host(lfsasp.lfnet.se) user(b99sti) password(sr47wy)

  winfil( "For 02.Txt" "For 03.Txt" "For 04.Txt" "For 08.Txt" "For 09.Txt" "For 10.Txt")

  hostfil("Fors02.Dat" "Fors03.Dat" "Fors04.Dat" "Fors08.Dat" "Fors09.Dat" "Fors10.Dat")

Endproc
The proc might not work, depending on the configuration of the network. If so, you have to use some other method of file transfer.

Proc Gpdml
Example:

Proc Gpdml Infil(C:\Rapp\Data\Catastro-claims.Txt) Utfil(C:\Rapp\Ut\Txt\C01.Txt) Endproc
Produces ML estimates for the Generalized Pareto Distribution from claims in Infil(). Write claims in Infil in display format, one claim per line. See Appendix 9. Adaptation
of a program originally written in 2000 for the Reinsurance Department, LFAB, Stockholm.
Proc Graf

Example:

Include C:\Rapp\Rpp\Init.Rpp
Proc Graf listfil(C:\s\Agria\Agr001.Txt) listfilut(C:\s\Agria\Agr001-withgraphs.Txt)

  pdffil(C:\s\Agria\Agr001.Pdf) r u s a ENDPROC

Proc Graf listfil(C:\s\Agria\Agr001.Txt) pdffil(C:\s\Agria\Agr001.Pdf)

  R_bas=1_2_3_max=0_3_0  f_bas=1_2_3  m_bas=1_2_3  u_bas=1_2_3  s_bas=1_2_3  a ENDPROC
Parameters, they can be given in any order
listfil() listfilut() pdffil()

A listfile from Proc Taran as listfil() or crosslist() can be treated. For a crosslist the multivariate parameters r, f and m are irrelevant. Also lists from Proc Reschl.

Three files can be given: listfil, listfilut, pdffil. Here listfil was created with Proc Taran or in some other way, see below. The role that listfilut plays is to be a middle file with embedded SAS code that gives graphs in the PDF file pdffil. If the SAS code, created from listfil and the parameters r etc below, doesn't need to be changed, then listfilut is unnecessary. The SAS code is interpreted by a limited SAS-emulator.

Files that the user gives in Proc Graf are marked with x in the table below for different cases.
Case listfil listfilut pdffil Action if no preceding Proc Taran has been executed

  1     x        -        x   from listfil is made pdffil with a temporary middle file

  2     x        -        -   from listfil is made a pdffil with the same name as listfil
                              but with extent .PDf, with a temporary middle file.
  3     -        -        x   not accepted

  4     -        -        -   not accepted

  5     x        x        x   from listfil is made listfilut and from listfilut pdffil

  6     x        x        -   from listfil is made listfilut

  7     -        x        x   from listfilut is made pdffil

  8     -        x        -   from listfilut is made a pdffil with the same name as

                              listfil but with extent .PDf.

If a preceding Proc Taran was executed, then listfil in Proc Graf in cases 3 and 4 will be listfil in Proc Taran. Then case 3 will be case 1 and case 4 will be case 2. Cases 5-8 are normally not interesting, but if one wants to make some additions to the graphics, one can use case 6, change the SAS code in listfilut, and then use case 7.

a, a_pie    A percent account of exposure (number insyears) and number of claims is

            given. Classes below a certain percentage p can be grouped to an othergroup

            with _p%, eg A_pie_2.5%.

b, b_...    Gives a regression analysis of risk premium in monetary units as a linear

            or broken linear function of fbel or ndur. The analysis uses the series of

            pairs (mean sum insured, risk premium factor) that is given in listfil.

            Only one argument is allowed, namely an interval partitioning of fbel or

            ndur, in listfil, that has been created by editing away the remaining

            arguments that appeared in a original listfile.

            b_X1=x1_X2=x2_X3=x3_X4=x4, e. g. b_X1=3_X2=9_X3=759.25_X4=900

            X1 and x2 can discretionarily be given as the first and the last class for

            the mean sum insured points that the regression shall pertain to. If not

            given, the argument's first respectively last class are used.

            X3 is a discretionary upper limit for x-values that is used for regression

            line n:o 1 in broken linear regression.

            X4 is a discretionary lower limit for x-values that is used for regression

            line n:o 2 in broken linear regression, determined after line n:o 1 and so

            that the broken line is continuous and is broken in x4. If x4 is omitted

            but x3 is given, Rapp takes x4 = x3.

            All classes get confidence intervals, and exact normal distribution does

            not hold.

c, c_...    As b, but gives risk premium per thousand instead of monetary units.

dec()       Optional. Number of decimal places at writenum. Default = appropriate choice.

f, m, s, u  Refers to respectively frequency (= claim frequency), mean claim, claim

            percent and univariate (marginal) risk premium. As r (see below), with

            variants f2, f2_bas= etc. For the univariate key ratios claim percent and

            univariate (marginal) risk premium, s_bas=... respectively u_bas=... yield

            confidence intervals for the quotient between claim percent respectively

            univariate (marginal) risk premium for a certain class and the base-class.

fontsize()  Optional. Font size at writenum. If given > 0, that size in points is used.

            One point is 0.352778 mm. If given as one of the negative values. -1, -2, -3,

            -4, -5, -6, -7, -8, -9, a size appropriate to the bar width is used. The

            minimum is -1, which writes the bar values with width equal to bar width plus

            a small margin. The value -5 gives the maximum size that guarantees that the

            staple values do not overlap and obscure each other regardless of the chart

            structure. The values -6, -7, -8, -9 give progressively larger font size,

            which sometimes may cause the staple values to overlap. Value -6 can be used

            without overlapping, if there is a maximum of two consecitive bars without

            separating space. Default value is -5.
genhead()   General heading for the graphs within single or double quotes. Maximum 80

            characters.
landscape   The output is made as "landscape", ie with larger width than height.

leftfoot()  A footnote at bottom left. Example: leftfoot('2015, Stig Rosenlund').
lefthead()  A header text at top, like leftfoot().
logo        Relevant if t or t_bas was given. The tariff bar is built up by the company

            logo, if defined by logo() in Proc Init, instead of black. For instance

            logo(L) in Proc Init gives the LF logo.
logo()      Relevant if t or t_bas was given. The tariff bar is built up by that logo,

            regardless of logo() in Proc Init. Eg logo(t) gives a number of Trygg-Hansa

            life-buoys stacked on each other.
nosubtitle  Stops Rapp from making a graph title of a header line in a report. To be used 

            for reports from Proc Bich made with parameters graf-akt or graf-boo.
pos[parameter1 ... parameter10]

            where the parameters state discretionary columns for different types of

            graph. Default for graph form is vbar (vertical bar). At least four

            parameters must be given:

            parameter1

              startpos for duration, arbitrary e. g. 0 if duration does not exist or

              exists but is not needed. In the normal case it is 13.

            parameter2

              The first character = 1, A, F, N

                1: sum of column value = 100, i. e. the share of the class in percent

                   is shown

                A: no recalculation

                F: the first column value = 100

                N: (sum of (ndur per class)*(column value))/(sum of ndur) = 1, where

                   dur, appearing from pos parameter 1, is used

              Characters n:o 2-4 or 2-5 can be given as PIE or _PIE for pie charts

              instead of vertical bars. At most four bar types and at most two pie

              charts per page. After the first underscore, or the second underscore if

              _PIE was given, options without blanks and separated by underscores can

              be written. The refer to colors and, for vertical bars, patterns, e. g.

                A_pie_color=red,green,blue,yellow,0.7/0.7/1/rgb,lgreen

                1_color=red,green,blue,yellow,gold_pattern=L1,L2,solid,X2

              where color and pattern are given values separated by comma (,). The

              colors and patterns are assigned in the order of the given columns with

              vertical bars and the given classes with pie. If no such options are given,

              default colors and patterns are used. Logos can be used as patterns. They

              shall be written with at least two characters, eg pattern=if for if....
                Classes below a certain percentage can be grouped to an othergroup, e. g.

                A_pie_2.5%_color=red,green,blue,yellow

            parameter3

              startpos for column 1 = the first pos after the blanks following the

              preceding column. Several start positions can be separated by the

              arithmetic operators + - * /. Those columns are then combined. E. g.

              13*85*95 gives the product of exposure, mean sum insured and mean

              premium/(sum insured) = earned premium. With 42-66 the difference between

              the columns is obtained.

            parameter4

              column name for column 1, blanks must be represented by §-characters

            parameter5, parameter6  (discretionary): startpos and column name for col 2

            parameter7, parameter8  (discretionary): startpos and column name for col 3

            parameter9, parameter10 (discretionary): startpos and column name for col 4

            One can use Proc Graf with the parameter pos[ ] on listfiles made in some

            other way than with Rapp, provided each table block is preceded by a line

            on the form

              xxx...xxx (argument n:o xxx), xxx...xxx

            and the heading that immediately precedes the number lines begins with

            " Class " (exact case) and the number lines are immediately followed by a

            line that begins with " ==". Lines that begin with + can be inserted. If a

            table of contents exists on the form

               Table of contents

              +_________________

               xxx...xxx

               xxx...xxx ...................... p.   2

               xxx...xxx ...................... p.   3

               ...

            then it is supplemented with page references to the graphs.

            Example:

              Include C:\Rapp\Rpp\Init.Rpp
              PROC Graf listfil(Lonk7.Txt) pdffil(Lonk7.PDf) s

                pos[ 13 A_color=red_pattern=l2            56 Claim freq§perthousand ]

                pos[ 13 A_color=red_pattern=x1            70 Meanclaim ]

                pos[ 13 A_color=red_pattern=solid         86 Riskpremium ]

                pos[ 13 A_color=green_pattern=x1         111 Meanprem ]

                pos[ 13 A_color=blue_pattern=solid 126 Meanprem-Riskprem ]

                pos[ 13 1 13 Number§customeryears 100 Earned§premium ]

                pos[ 13 Apie_color=red,yellow,green,blue_pattern=if
                     13 Number§customeryears 100 Earned§premium ]

              ENDPROC

r, r_...    Optional. States that graphic pictures for risk premium factor shall

            be created in PDF-format. The PDF file contains both the text tables and

            the pictures.

            r              All classes get confidence intervals in all arguments. See

                           above under the introduction.

            r_bas=3_4_5    In argument n:o 1 class 3 will be base-class, in n:o 2 class 4

                           will be base-class, in n:o 3 class 5 will be base-class. (If

                           class 0 is given as base-class all classes get confidence

                           intervals in the argument.) Then bas(3) should have been given

                           for argument n:o 1 in Proc Taran, and the corresponding

                           numbers for n:o 2 and n:o 3. Remaining classes that are not

                           given after r_ get base-class 0. Analogously with

                           bas(xx/label) in Proc Taran one can give ..._xx/label... for

                           the class name xx that shall be base class. No blanks may

                           occur in the string r_bas=...; where a blank is in a class

                           name, write a ¤-character instead. See below for alternative

                           use of the parameter in order to give a blowup factor.

            r2, r2_bas=... The 2 states that exact normal distribution is assumed for

                           the factor estimates, with confidence degree 95 % for a

                           coefficient 1.96 applied to standard error in the familiar

                           way. If 2 is not given, or if r1, r1_bas=... is given, then

                           Rapp gives confidence degree 90 % for a coefficient 2.00.

                           The latter is my normal way to give confidence intervals

                           with respect to that reality always is considerably more

                           irregular than the nice normal distribution assumption. The

                           exact normaldistributionen is however useful if the language

                           Rapp is used for simulated data that in fact give normally

                           distributed factor estimates.

rightfoot() A footnote at bottom right. Example: rightfoot('2015, Stig Rosenlund').

righthead() A header text at top, like rightfoot().
sw          Provides Swedish standards at writenum, eg 23 456.78 instead of 23,456.78.

t, t_bas... As r, but recalculated tariff factor is also given and compared to

            recalculated risk premium factor. Use t_o0 if a list block for a specific

            argument has more than 99 levels and therefore is divided by you into several

            listfiles, where each file must have the two header lines, of which the

            second one begins with " Nivå" (" Class"). In such cases the computation in

            Proc Graf of mean tariff factors and risk factors will not be correct. To get

            a computation of the recalculated tariff factor Omrfakt (Recfact), use

            parameter listfilut() and delete in edit the other arguments and the graphics

            part at the bottom of the created file. The edited file does not have to have

            a line beginning with " ====" and shall then not have a total line either.

            Fixed factors: Example: T_FIX=()(3_1.1_1)()(7_0.8_1.2)() gives

              in argument 2 for class 3: 1.1 = risk premium factor, 1.0 = tariff factor

              in argument 4 for class 7: 0.8 = risk premium factor, 1.2 = tariff factor

            Can be combined with MAX and BAS with underscore as separator, eg

            T_FIX=()(3_1.1_1)()(7_0.8_1.2)()_MAX=0_5_0_6_BAS=1_0_2_0_1

tarline     Relevant if t or t_bas was given. The tariff is given by a broken line

            instead of by vertical bars.

tarlinec    As tarline with circle contours at the tariff factors.

tarlinecf   As tarlinec with filled black circles at the tariff factors.

tarlinel    As tarline with the logo, if given, at the tariff factors.

tarlines    As tarline with square contours at the tariff factors.

tarlinesf   As tarlines with filled black squares at the tariff factors.

visa        Discretionary. Used only in Windows. Shows the PDF file in Acrobat Reader.

writenum    If given for bar chart type pos[], then values for the bars are written in

            the graph.

If the listfile was produced from Proc Taran with parameter s-GLM, which is identified by the texts "Table of Contents" and "standard-GLM." first on a line, then Proc Graf uses Graf x2_bas=... Graf x2_bas =... (x = r, ... , u) where the base levels, if not explicitly given, are taken from the lines with factor 1 and uncertainty 0.

When a base class > 0 is given by _bas =..., then confidence intervals are calculated in the GLM-way for the logarithms of the factors. They are then converted to the intervals for the factors. For example, Rapp computes log(factor) ± 1.96×sqrt([Baseuncertainty/100]² + [Uncertainty/100]²), whereafter the confidence interval factor×exp{±1.96×sqrt([Baseuncertainty/100]² + [Uncertainty/100]²)}. is calculated and given in the graph. This is for r, f, m, s, u and r2, f2, m2, s2, u2. With suffix 2 the coefficients 0.8416 and 1.96 are used. Without suffix 2 the coefficients 1 and 2 are used.

For R,R2,F,F2,M,M2,S,S2,U,U2,T can be given maxvalues for the height of the confidence vertical bar. Give 0 if no maxvalue is wanted. Examples: R_max=0_0_4, F2_bas=1_2_max=5_5, U_max=4_7_bas=0_1.
Should there be a base-class or not? The following can be said.

No base-class, comments

Without the parameter bas= in Proc Graf the factors for risk premium etc, univariate (marginal) risk premiums and claim percentages in Proc Graf are shown precisely as they are in the listfile from Proc Taran. All classes get confidence intervals with positive lengths. This no matter whether any base-class exists in Proc Taran or not. In order to make the interpretation easier, it is an advantage if no bas()-parameter exists in Proc Taran, but it is not necessary.

Advantages with having no base-class: One can clearly see how the classes' factors differ from the average. The comparison between any two classes is not disturbed by the confidence intervals being enlarged with the uncertainty of the base-class. The risk premium factors' confidence intervals can directly be compared with the confidence intervals for univariate risk premiums and claim percentages.
Certain base-class, comments

With the parameter bas= in Proc Graf the factors for risk premium m m, univariate risk premiums and claim percentages in Proc Graf are shown recalculated so that the base-class gets value 1 and the remaining ones are recalculated. This no matter whether any base-class exists in Proc Taran or not. The base-class gets no confidence intervals, while the remaining ones get confidence intervals with positive width that is relatively larger than the widths without the parameter bas=. This is in order to add the uncertainty for the base-class. In order to make the interpretation easier it is an advantage if the bas()-parameters in Proc Taran are set in accordance with Proc Graf, so that the numbers in the pictures are recognizable.

Advantages with having a base-class: One can compare Rapp's output with output from SAS Proc Genmod and other GLM-programs. (For more exact comparison the second variant R2 etc for the assumption of exact normal distribution should also be used.) For an argument with only two classes (e. g. Stoneground J or N) a graphic test of the hypothesis that they differ is made easier. If the tariff by tradition departs from a 1-class (100-class), the comparison between the tariff and the risk premium factor estimates is made easier. (But estimates without base-class can easily be recalculated, of course.)

Mathematically the interpretation of confidence intervals without base class is described in Appendix 1.

Alternate use of _bas in r, f, m, s, u, b, c: one can instead of base-class give a blowup factor, such that all factor estimates are multiplied with the blowup factor, after the factor estimates have been computed so that the mean value will be 1. It must be written with a decimal point in order to distinguish it from a base-class. Example: m_bas=7_2856.0 means that in the mean claim factor graph argument, n:o 1 shall get base-class 7, but for argument n:o 2 all factor estimates shall be multiplied with 2856. Because, it can sometimes be suitable for a pedagogical purpose to give the graph in mean claim scale instead of around 1. Preferably in the mean claim case one should take the blowup factor as the ratio between the list text's constants for risk premium and claim frequency, given that all arguments have base-class average in the listfile, i. e. bas(0) which is default.

If as listfil is given a program-codefile with extent someone of

  .bas .bat .c .cmd .cpp .exec .ezt .h .hpp .jcl .rpp .sas

then the PDF file is coloured depending on the syntax of the language.

Example:

PROC Graf listfil(PRISAS-tst1.rpp) pdffil(a.Pdf) ENDPROC
Proc Grafb
1. Vertical bars and pies

Example:

n

Include Init.Rpp

/* Possible colors: WHITE BLACK GREEN RED BLUE GOLD PINK LGREEN

                    CYAN BROWN GREY PINK2 DBLUE DRED YELLOW

   where D first means Dark and L first means Light. Also colors

   in the form x/y/z/rgb or x/y/z/hsb as in Proc Map.

   Possible patterns: SOLID L1 L2 X2 and logos. */

Proc Grafb Infil(C:\Rapp\Data\Grafb-demo1.Txt) Pdffil(C:\Rapp\Pdf\a1.pdf) // Sw

  Patterns(Fo LF TR if Mo di X2) writenum Ylabel(Antal)

  Colors(black black black black black black .7/.7/1/rgb) // marin

Endproc

Proc Grafb Infil(C:\Rapp\Data\Grafb-demo2.Txt) Pdffil(C:\Rapp\Pdf\a2.pdf) // Sw

  writenum Ylabel(Insurances) PatternsPerArg

  Patterns(di Fo if LF Mo TR X2) Colors(black black black black black black .7/.7/1/rgb)

Endproc

Proc Grafb Pie Piedecimals 1 Infil(C:\Rapp\Data\Grafb-demo2.Txt) Percentonly // Sw

  Pdffil(C:\Rapp\Pdf\a3.pdf) landscape
  Patterns(di Fo if LF Mo TR X2) Colors(white white white white white white .7/.7/1/rgb)
Endproc
Produces two pdf's with vertical bar graphs and one pdf with pies, one page per section delimited by .p.
Indata files:
Grafb-demo1.Txt

.p

Antal försäkringar

Separat hemförsäkring

Datum      Folksam Länsför Trygg-H  if...  Moderna dina_Group
2010-03-31 1450696  735523  328514 287813    63959   40701

2011-03-31 1463403  740589  322897 290311   100720   44435

Källa: Svensk Försäkring

.p
etc with more insurance branches.

Grafb-demo2.Txt

Number of insurances Mars 31

Separate home insurance

Company         _2010      _2011

dina_Group      40701      44435

Folksam       1450696    1463403

if...          287813     290311

Länsförsäk     735523     740589

Moderna         63959     100720

Trygg-Hans     328514     322897

Source: Svensk Försäkring

.p

etc.

The argument listed downwards, ie Datum in Grafb-demo1.Txt and Company in Grafb-demo2.Txt, is written i columns 1-10. The accounting concepts listed from left to right, ie insurance company in Grafb-demo1.Txt and date in Grafb-demo2.Txt, are written blank separated in columns 12-. Max 10 characters for the argument header and values, and max 38 characters for the headers of the accounting concepts. Write underscores in the latter headers for blanks. Prepend or append numeric such headers with an underscore, eg _2011.

Data lines with values for the accounting concepts are identified by having only numeric characters in columns 12-.
If parameter PatternsPerArg is given, patterns and colors are given to the argument values. If not, they are given to the accounting concepts.

If patterns() or colors() are not stated, default values are used.

Maxvalues: 99 argument values, 6 titles and 5 footnotes. For vertical bars max 99 accounting concepts. For pies max 6 accounting concepts. 

2. Polygons - piecewise linear functions, max 300 points (x,y)  

Example:

Include Init.Rpp

Proc Grafb Infil(Polygon1.Txt) Pdffil(a.pdf) polygon Ylabel(y) Endproc
Polygon1.Txt

.p

Piecewise linear function

x              y

.1           0.1

.15          0.2

.25          0.35

.3           0.36

.4           0.35

.5           0.25

.9           0.1

Example n:o 1
Proc Init

Example:
Proc Init

  pathdir(C:\Rapp\Pgm)

  // SAS interpreter: example - remove if SAS not available.

  sasexe(C:\Program Files\SAS\SAS 9.1\sas.exe)

  logo(i) tempmapp(C:\Rapp\Jt) antmb(SYSTEMINFO) prioffset(0) erralarm(5)

  pdfoffset(14) xgfact(1.03) ygfact(1.03) xgtran(-15) ygtran(3)
Endproc
Parameters that are given in the proc (the order is arbitrary):

  antmb()     RAM-memory MB available to the program, alternatively antmb(systeminfo).

  erralarm()  If given > 0 Rapp makes a sound at error with that type as in Proc Alarm.

  excelproepilog()  See under Proc Excel.

  figuretab() See Proc Figadj and Rappmenus / Info3.
  lan()       Language that the output is given in. Swedish = s. English = e,

              German = d, g, t.

  logo()      Logo in PDF files. Default RA for Rapp. Other values are

              DI,FO,GO,IF,LF,MO,RA,RI,SI,SW,TR. Case independent. Meaning:

                DI = dina

                FO = Folksam

                GO = Gothaer

                IF = if...

                LF = LF (Länsförsäkringar Alliance)

                MO = Moderna

                RA = Rapp detailed picture

                RI = Rapp icon, simpler picture

                SI = Sirius

                SV = Svenska Sjö (a blue anchor - available as Svsym in Proc Map)

                SW = Swiss Mobiliar

                TR = Trygg-Hansa

              Use two characters in Proc Graf pos[ after pattern=, eg pattern=Mo. In

              logo() one character is enough if unambiguous. logo(0) means no logo.
  pathdir()   Folders for bat-, cmd- and exe-files to be run by name only.    

  pdfoffset() Offset in points for PDF files, integer value.

  prioffset() Offset in points for paper printout, integer value.

  ps2pdf()    Command name max 256 chars for converting a PS file to a PDF file.

  ps2pdfp()   Parameters between ps2pdf and psfil pdffil, default nothing.

  printer()   Printer that takes PostScript for printout.

  sasexe()    The name of the SAS exe that runs SAS.

  tempmapp()  Folder for temporary files, gives faster execution if on the C-disk. Folder

              name can contain blanks from July 2018.
  TempMonthCl This will clean tempmapp montly from all files not used the last 14 days,

              depending on the content of the file TempMonthCl.Txt in tempmapp. If this

              file does not exist, or if it contains a date in the form YYYYMMDD that is

              one month or more earlier that today's date, then files unused for two

              weeks in tempmapp will be deleted, except that possible subfolders in

              tempmapp with contents will be kept. After the cleanup TempMonthCl.Txt will

              be created anew with today's date. Also antmb(SYSTEMINFO), if given, will

              be executed. The purposes of the parameter are to delete temporary files

              left after abends and to ascertain available memory anew. The latter might

              have changed since the previous execution due to removal or adding of

              applications in the computer.
  xgfact()    X-ccordinate scale factor for graphs including maps. See explanation below.

  ygfact()    Y-ccordinate scale factor for graphs including maps.

  xgtran()    Amount of right translation in points for graphs including maps.

  ygtran()    Amount of upwards translation in points for graphs including maps.

The proc can be omitted. No parameter is mandatory. Default antmb is 1500, lan Swedish, tempmapp C:\Rapp\Jt. For ps2pdf the default is ps2pdf, for pdfoffset and prioffset 0. If printer is not given, it will be the default printer. It needs not take PostScript.

A point is 0.352778 mm and a mm is 2.83465 points. The placement of the text in the PDF file respectively on the paper is raised with the value given in pdfoffset() respectively prioffset(), or lowered if a negative value is given. E. g. pdfoffset(-28) lowers the text with one cm. Useful if the settings in PDF or the printer are changed without the user's control. The offset parameters do not however work for the graphic pictures. How to change these is described next.

The parameters xgfact(), ygfact(), xgtran(), ygtran() are used to change graphs. Defaults are 1, 1, 0, 0, i.e. no change. The size in X is changed by a factor xgfact(), in such a way that the left border of the graph (paper) is unchanged. E.g. xgfact(2) will double the horizontal size and push the rightmost half of the graph outside the paper. In Y (vertically) ygfact() works analogously and leaves the bottom border unchanged. With xgtran() the graph is pushed, to the right if positive and to the left if negative. E.g. xgtran(-10) will push the graph to the left 10 points. Analogously for ygtran(), with a positive value pushing the graph upwards and a negative value downwards. Since new versions of ps2pdf in MiKTeX seem to change the placement of graphs randomly, this way of correcting the placement is needed.

The following parameters are suitable for MiKTeX 2.9.

  pdfoffset(14)

  xgfact(1.03)

  ygfact(1.03)

  xgtran(-15)

  ygtran(3)
If you use Acrobat Distiller, make a bat file with name e.g. C:\Rapp\Pgm\Ps2pdfAD.bat and the right exe file and parameters:
@echo off

"C:\Program Files (x86)\Adobe\Acrobat 10.0\Acrobat\acrodist.exe" --deletelog:on /F /N /Q /O %2 %1

alternatively on two lines with a caret as continuation symbol
@echo off

"C:\Program Files (x86)\Adobe\Acrobat 10.0\Acrobat\acrodist.exe" ^

--deletelog:on /F /N /Q /O %2 %1
Set these Proc Init parameters: 

xgfact(0.97) ygfact(0.97) xgtran(9) ps2pdf(C:\Rapp\Pgm\Ps2pdfAD.bat)
Much RAM speeds the sorting of indata to Rapp and is needed for the equations' solution. In order to solve the equations 512 MB Available Physical Memory is always enough, but problems may arise with 256 MB or smaller. Subtract about 100-300 MB from Available Physical Memory in order to accomodate other processes. At 512 MB, subtract 150 and set antmb(362) for example. If your computer has Windows XP Professional, Vista or later, you can write antmb(systeminfo). Then at the first call Available Physical Memory is read, which e.g. can be 1832 MB with Vista and 4 GB of RAM. It can take for example 7 seconds. From that value Rapp subtracts 300, if it is at least 1000. If it is less than 1000 Rapp subtracts 150. The result, for example 1532, is stored in a file in tempmapp. The file is Antmb.Txt if Rapp.Exe is 32-bit and Antmb64.Txt if 64-bit. Subsequent times that file is read to fetch antmb, so you do not have to wait several seconds. If you have set antmb(systeminfo) and the computer does not support it, then you will be told to set antmb to a number or store the number in Antmb.Txt, respectively Antmb64.Txt, in tempmapp.

What is given in Proc Init works for the rest of the run until a new Proc Init is given with other values, which supersede the previous values. Parameters that are not given in a new Proc Init are not changed. New folders in pathdir() are added to the previous ones.

If tempmapp is put on a server instead of on a disk within the PC, then the executions will be much slower.
Proc Linreg
Example, with a subsequent Proc Graf for graph of the confidence intervals:

Include C:\Rapp\Rpp\Init.Rpp
Proc Linreg infil(Lintst1.Txt) gutfil(Lingraf.txt) log level(95) Endproc

Proc Graf listfilut(Lingraf.txt) Endproc

system(del Lingraf.txt & Lingraf.Pdf)

Performs regular multivariate linear regression, based on H Cramér, Mathematical Methods of Statistics, Ch 37.3. Provides point estimates, confidence intervals and p-values. Has no specific mathematical features - use SAS for more advanced methods. The proc appears in Rapp so you can avoid paying for SAS, if you do not need more of linear regression than what the proc provides. The model is:
Yi =  + 1X1i + 2X2i + ... + pXpi + i, where Xri are deterministic and i IID N(0,²)

Also least-squares estimates of j are given for the model without a constant 
Yi = 1X1i + 2X2i + ... + pXpi + i
but without confidence intervals or other variance estimates. I needed such estimates in a non-statistical context, where I really wanted to minimize absolute deviations, but where least-squares were more practical.

Parameters

  cols()      Optional. Column number of the variables to be used. The first given column

              must relate to the dependent Y-variable. If col() was not given, the first

              column is the dependent variable and the remaining ones the independent

              variables perceived as deterministic. Blank separated columns are assumed.

              For example "cols(4 7 3 9 5)" indicates that the line's fourth column shall

              be Y-variable and columns 7, 3, 9, 5 shall be four x-variables.

  gutfil()    Optional. Inputfile to Proc Graf for boxplots of the confidence intervals.

  level()     Optional. Confidence level in percent for confidence intervals. Default 95.

  log         Optional. Indicates that the natural logarithm of each variable shall be

              used. Then Rapp gives both estimate and exp(estimate) for the

              multiplicative model in the original data resulting from the taking of

              logaritms.

  infil()     Required. Textfile with blank separated numeric input data.

  utfil()     Optional. Reportfile. If not given the infile name is used with "-ut"

              appended before the point. The example outputfile is Lintst1-ut.Txt
Example of infil. Col 1 is house price Y(i) and the following explanatory variables.

  68900  5960 44967 1873

  48500  9000 27860  928

  55500  9500 31439 1126

  62000 10000 39592 1265

 116500 18000 72827 2214

  45000  8500 27317  912

  38000  8000 29856  899

  83000 23000 47752 1803

  59000  8100 39117 1204

  47500  9000 29349 1725

  40500  7300 40166 1080

  40000  8000 31679 1529

  97000 20000 58510 2455

  45500  8000 23454 1151

  40900  8000 20897 1173

  80000 10500 56248 1960

  56000  4000 20859 1344

  37000  4500 22610  988

  50000  3400 35948 1076

  22400  1500  5779  962
Proc Livr

Example:

Include E:\Riskanalys\Rapp\Init.Rpp

Proc Livr

Include E:\Livrgrund.Rpp

perdat(20081231) /* perdat(Ovfdat) */ livrid(Livn)

var(Livn Skadenr $ Grupp Kon Foddat Får Ovfdat

     Belopp1 Termin1 Tomdat1 Belopp2 Termin2 Tomdat2 Kapbel Kapdat)

infil(Livran.Txt) listfil(Livrskr.txt)

ENDPROC

where the include file Livrgrund.Rpp has the following contents:
grupper(

/*                    ----------- Man ----------   ----------- Female ------------

 Kat Utbf delta       a        b          k2       a        b              k2      */

 999(1.01 0.0143988   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* unknown   */

  11(1.01 0.0293588   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Cas indiv */

  12(1.01 0.0293588   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Cas indiv */

  13(1.01 0.0293588   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Cas indiv */

  21(1.01 0.0293588   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Cas coll  */

  22(1.01 0.0293588   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Cas coll  */

  31(1.01 0.0143988   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Liabil eg */

  32(1.01 0.0143988   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Liabil eg */

  33(1.01 0.0143988   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Liabil eg */

  41(1.01 0.0342014   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Traf old  */

  42(1.01 0.0342014   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Traf old  */

  51(1.01 0.0143988   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Traf new  */

  52(1.01 0.0143988   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Traf new  */

  53(1.01 0.0143988   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Traf new  */

  54(1.01 0.0143988   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Traf new  */

  61(1.01 0.0143988   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Liab bol  */

  63(1.01 0.0143988   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Liab bol  */

  /* 88 = Buyback. Then Termin shall be 8 = quarter afterwards. */

  88(1.00 0.0487902   0.000362 0.00001377 0.0472   0.000362 0.000008181745 0.0472) /* Buyback   */

)

terminer(

 999 1.00   /* Unknown              */

   1 1.020  /* full-year advance    */

   2 1.010  /* half-year advance    */

   3 1.002  /* months advance       */

   4 1.005  /* quarterly advance    */

   5 0.998  /* months afterwards    */

   6 0.980  /* full-year afterwards */

   7 0.990  /* half-year afterwards */

   8 0.995  /* quarterly afterwards */

)
Example of a line in the input file:

1250 '34-8-00047-96' 53 2 19560824 2006 20070101   26900 5 20210823    14998 5       0     0 0

Calculates capital values of (claim) annuities or death one-time amounts in the file infil(). The inputfile must have a variable description var() with syntax according to Proc Taran. Delimiter between variables can be blank, semicolon, or tab character. The proc determines which it is from the first input line.
Necessary variables in var()

belopp1 foddat fomdat1|fomdaf1 grupp kon termin1 tomdat1|tomdae1.

Meaning:

  belopp1   annual amount
  foddat    date of birth
  fomdat1   from-and-inclusive-date for the annual amount
  fomdaf1   day before from-and-inclusive-date, alternative to fomdat1
  grupp     integer valued distribution argument och table entry to grupper()
  kon       sex: 1 and M is man, other values are woman
  termin1   payment term, table entry to terminer()
  tomdat1   to-and-inclusive-date for the annual amount
  tomdae1   day after to-and-inclusive-date, alternative to tomdat1

More specific variables

  kapbel   lump sum if the annuitant lives at kapdat
  kapdat   date of lump sum payment
  ovfdat   transfer-date, which is used for fomdat1 if does not exist
  dkapflg  flag for life- or death insurance:

             0: Life only, incl liability annuities. The amounts are annual amounts.

             1: Death Insurance. The amounts are paid for death in [fomdat,tomdat].

             2: Life + Death. As 1, plus payment of the amount at tomdat if the

                policyholder lives then.

           For Death Insurance the payout ratio Utbf is used, but no payment term factor.

All dates shall be in the form YYYYMMDD.

Max 50 sets (beloppj,fomdatj|fomdafj,terminj,tomdatj|tomdaej), j = 1, ... , 50. We write now below fomdat(1), fomdat(2), ... instead of fomdat1, fomdat2, ... , etc.
Derivation of missing variables from other ones
If neither fomdat(j) or fomdaf(j) exist for j > 1, then is set fomdat(j) = tomdae(j-1) if the variable exists, otherwise the day after tomdaf(j-1).

If neither fomdat1 or fomdaf1 exists, then is set fomdat1 = ovfdat if the variable exists, otherwise fomdat1 = perdat.

By analogy, when neither tomdat(j) or tomdae(j) exist, then if possible is used either fomdat(j+1) or fomdaf(j+1) adequately.

If termin(j) does not exist, then is used termin(i) for the highest i < j where termin(i) exists.

Parameters beyond var()

  firstobs() The first line of data to be processed, eg 2 if the first line is a header

  grupper()  See the example in Livgrund.Rpp. Group number, followed in parentheses by:

               payment factor

               delta = interest intensity = log(1+ [yearly interest rate in percent]/100)

               a, b, k2 for man

               a, b, k2 for female

                 where the death intensity is µ(x) = a + b*10^(k2*x)

  headerline If given the outputfile gets a first header line.

  infil()    File with data with variable description var().

  listfil()  Summary of capital values per group and the calculation parameters.

  livrid()   Variable providing ID for an annuity such as social security number,

             affecting listfil().

  perdat()   Date at which capital values are calculated, either a numeric date YYYYMMDD

             or the name of a variable that contains perdat, eg ovfdat.

  terminer() See the example in Livgrund.Rpp. Term number and factor for this.

  utfil()    File with the output, content as infil with a last variable capital value.

If you give a group number in grupper() respectively a term number in terminer() that does not appear in the data, such as 999, then those parameters are used for data lines that have group number respectively term number not found in the parameter set for grupper() respectively terminer().

The equity value calculated from delta,a,b,k2 is multiplied with the term factor as far as annuites are concerned. For a lump sum kapbel there is no such multiplication. Finally, capital value is multiplied by the payout factor belonging to the group.
Proc Map

Example:

Include C:\Rapp\Rpp\Init.Rpp
Proc Map intervals(1 3 4 5 6 7 8 9 10 12 13 14 17 18 19 20 21 22 23 24)

  coordfil(Sweden.txt) coordidcol(4) coordsegcol(5) coordxcol(6) coordycol(7) alfaid(j)

  rpfil(Sverige2.txt) rpidcol(3) rpcol(2) labelidcol(5)

  labelfil(Sverige2.txt) labelrpcol(2) rp(j) labelcol(4)

/*labels('1' '3' '4' '5' '6' '7' '8' '9' '10' '12' '13' '14' '17' '18' '19' '20' '21'

  '22' '23' '24' '25') */

  colors(GREEN1 .5/.5/0/rgb GREEN3 brown Green5 GREEN6 .3/.6/.9/hsb RED4 GREY5 0/.6/1/Rgb

     BLUE1 BLUE3 0/1/0.6/rgb scarlet YELLOW RED1 RED3 RED5 PINK CYAN BROWN GOLD)

  titles('Sveriges kommuner länsvis' '2007-01-01' ) // max 3 titles at the top
  scalefact(5e-3) midx(1097867) midy(2341169) pdffil(a.pdf) visa

ENDPROC

where the first lines of the specified files are
Sweden.txt

  1   1 850  114   1 1613700   6601000

  1   0 850  114   1 1615000   6602700
Sverige2.txt

850   1  114 STOCKHOLMS_LÄN   UPPLANDS-VÄSBY

850   1  115 STOCKHOLMS_LÄN   VALLENTUNA

The proc is used to make a map in PDF with different colors for different areas. In addition, roads, railways and rivers can be plotted.
Parameters

  alfaid()     Optional. If given with the value j or J, the ID field is alphanumeric,

               otherwise a floating point number with max 15 digits in the mantissa.
  colors()     Optional. Colors for risk premium intervals n:o 1, 2, .... If not given,

               default colors are used.

               The following are defined in Rapp. BLUE1 - BLUE6 are in order from lighter

               to darker, ditto GREEN, GREY, RED.

                 BLACK BLUE BLUE1 BLUE2 BLUE3 BLUE4 BLUE5 BLUE6 BROWN CYAN DARKBLUE

                 DARKRED GOLD GREEN GREEN1 GREEN2 GREEN3 GREEN4 GREEN5 GREEN6 GREY GREY1

                 GREY2 GREY3 GREY4 GREY5 GREY6 LIGHTGREEN MARIN PINK RED RED1 RED2 RED3

                 RED4 RED5 RED6 SCARLET WHITE YELLOW

               In addition, colors by RGB or HSB-principle (RED, GREEN, BLUE respectively

               (HUE,SATURATION,BRIGHTNESS) can be given in the form x/y/z/rgb and and

               x/y/z/hsb respectively, by the example. If a number is given, it will be

               the index for the subsequent color, eg 7 Scarlet 12 Marin.

  coordfil()   Required. One or more files with ID-field, segment, x-coordinate,

               y-coordinate, Files with blanks inside the name shall be surrounded by

               double quotes. Example:

                 Coordfil(Bolgrans.Txt "Sjöar i Sverige.Txt" "Gator i Sverige.Txt")

               If areas or lines overlap, later appearing coordinates have priority, so

               that "Gator i Sverige.Txt" have priority over Bolgrans.Txt.
  coordidcol() Optional. Column number 1, 2, ... for ID i the coordinate file, default 1.

               An alphanumeric ID can be max 40 characters. It is case dependent.
  coordsegcol(), coordxcol(), coordycol(): Optional column numbers for segment,

               x-coordinate, y-coordinate. If not given assumed to follow directly after

               the ID-column.

  intervals()  Optional. Upper limits for grouping of a numerical accounting value. The
               names below starting with rp are chosen because the accounting values of
               applications are often factors or risk premium or similar concepts. A last

               group are values exceeding the last given. In the example the 21:st and

               last group is for values larger than 24. If intervals() was not given,

               then all existing values are displayed.

  labelcol()   Mandatory if labelfil() was given. Column number 1, 2, ... for label-text

               in labelfil. Represent blanks with underscore.

  labelfil()   Optional. File with texts for the accounting values.

  labelidcol() Optional. Provides column number in rpfil for text describing the ID. If

               given > 0 texts are displayed in the map with the beginning (TP=R), the

               end (TP=L) or the middle (TP=C) of the text on the approximate midpoints

               of the areas. The midpoints must then exist as two additional columns in

               the coordinate file in the first line of each area. Alternatively, with

               TP=S the text is written repeatedly on the borderline (road, river etc).

  labelrpcol() Required if labelfil() was given. Column n:o in labelfil() of accounting

               value, alternatively indices 1, 2, ..., by intervals(). See also rp().
  labels()     Optional. Texts in the bottom for the accounting value in ascending order.

               If labels() and labelfil() were given simultaneously labelfil() has

               priority.

  lakecolor()  Optional. Color of lakes and the sea according to landfil(), default ocean

               blue. Valid colors according to colors().

  landfil()    Optional. A file like coordfil with coordinates. The area not in landfil

               is colored with lakecolor. Intended for a height contour that gives a

               certain height above sea level, such as five meters, and illustrates the

               area still land following a rise in sea level to that height. The column

               numbers must be according to overcoordidcol, overcoordsegcol,

               overcoordxcol, overcoordycol.
  landscape    The map is made as "landscape", ie with larger width than height. While 

               non-landscape ("portrait") is best for eg Sweden, landscape is best for eg

               Indonesia and the United States.
  leftfoot()   A footnote at bottom left. Example: leftfoot('2015, Stig Rosenlund').

  lefthead()   A header text at top, like leftfoot().
  meterperunit(): Optional. Number of meters for one unit in the x- or y-coordinate.

               If given, a scale with text eg 100 kilometer will be given in the bottom

               right corner. In the coordinate system RT90 one unit is one meter.
  midx()       Optional. The map's center will get that x-coordinate value if given.

  midy()       Optional. The map's center will get that y-coordinate value if given.

  noborders    Optional. Suppresses the border lines of areas.
  nolabels     Optional. Suppresses texts for the accounting value at the bottom.
  nonlogo      Optional. Suppresses company logo at top left.

  nonsymprop   Optional. Symbols and line widths keep their sizes in mm after a change of

               scale instead of being changed by the same factor as the surfaces.
  overalfaid() Optional. If given with value j or J, the ID field in overcoordfil is

               alphanumeric, else numeric.

  overcolor()  Optional. Color of areas given by overcoordfil. No color if not given.

  overcoordfil(): Optional. A file like coordfil with coordinates whose district

               boundaries are drawn with dotted lines - - - -.

  overcoordidcol(), overcoordsegcol(), overcoordxcol(), overcoordycol(): Optional.

               Provide column numbers for overcoordfil and landfil. If those files were

               given but not these column numbers, then the same column numbers as for

               coordfil are adopted.

  parmcol()    Optional. Column number (word number) in rpfil for the parameters

               described below under rpfil. Alternatively, the parameters can be given in

               the Rapp-program as addition to rpfil after a slash, eg, for all lines in

               Roads2-ID.Txt with

                 rpfil(Roads1.Txt Roads2-ID.Txt/_AL_AC=none_LC=grey4_LW=0.0118_LT=0)

               Parameters in rpfil have priority over such parameters in the program.

  pdffil()     Required. The PDF file that the map is created in.

  rightfoot()  A footnote at bottom right. Example: rightfoot('2015, Stig Rosenlund').

  righthead()  A header text at top, like rightfoot().
  rpfil()      Required. One or more files with the ID concept and a numerical accounting

               value, such as a risk premium factor, which shall be illustrated in the

               map. Files with blanks inside the name shall be surrounded by double

               quotes. Additional optional parameters for accounting are given in one

               blank-delimited word in the parmcol:th column in the file or in the

               program after a / according to

                 _AL_RD_AC=areacolor_LC=linecolor_LER_LT=linetype (the word continues)

                 _LW=linewidth_TC=textcolor_TF=font_TFS=charwidth_TP=textplace

               With _AL is indicated that what is in the coordinate files for this ID is

               plotted on the map after the area not in landfil was colored with

               lakecolor.

               With _RD is indicated that duplicate line segments need to be removed. Two

               line segments are considered duplicates if they have the same endpoints

               and the same linewidth. If only same endpoints are to be used for

               identifying duplictates, write _RDI, where I is for Independently of

               linewidth. Later appearing line segments have priority.

               With AC=none (or ac=NONE, etc) is indicated that the field with that ID

               shall not be colored. AC=(ID=x) indicates color as for areas with ID x.

               Give x in single or double quotes if ID is alphanumeric and can include

               right parentheses but not quotes. Eg AC=(ID="N1:(37)"). AC=(RP=x)

               indicates color as for areas with risk premium x. If the area is not an

               area and its coordinates give the corners of a road, railway, river, brook

               etc, give AC=none. Alternatively, TP=S for the same effect.
               After _LC= you give the color that the road etc gets in the map. The

               colors above and arbitrary rgb/hsb-colors in the forms x/y/z/rgb and

               x/y/z/hsb can be used.

               Give _LER_ (Line Ends Round) for rounded line ends. Otherwise the lines

               will be squared off at the end. The line length will be somewhat larger

               with rounded ends. The parameter causes the execution of the PostScript

               statement "1 setlinecap" for the line or area boundary.
               After LT= you give line type, where 0 is a solid line, a number x < 0

               gives alternating gray and colored lines with length -x, and a number x >

               0 gives alternating colorless and colored bars with length x. If the first

               character after the number x is m or M, eg 1.23m, then x (or -x) is taken

               to be meters in the real world. Otherwise x is millimeters in the map on

               A4-paper, ie |x|/2.83465 points, provided xgfact() and ygfact() in Proc

               Init were given as 1. Negative x and white line color may be suitable for

               railways. For meters, the size of one coordinate unit must be known. If

               meterperunit() is given, this is used. If not, one coordinate unit is

               supposed to be one meter, as in RT90.
               After _TC= give color for text describing the ID. As for all colors in

               proc Map, it can be given as x/y/z/rgb or x/y/z/hsb.

               After LW= give line width. As for LT= an m or M after the number means

               real-world meters for real proportions, otherwise millimeters in the map,

               depending on xgfact() and ygfact() in Proc Init.
               After _TF= give b, o, bo for respectively Bold, Oblique, BoldOblique text.

               Give u for uppercase. The order of b, o and u has no effect. The monospace

               font Courier is used.

               After _TFS= give text character width in millimeters, depending on

               xgfact() and ygfact() in Proc Init. Then all texts describing the ID will

               have the same font size, unless a U is given. Otherwise the texts will

               have the same total length, so that eg Landskrona with 10 characters will

               have half the font size of Malmö with 5 characters. Give a U after the

               width, eg _TFS=0.5u, if the text shall be no wider than the width computed

               without the _TFS= parameter. Do not normally use this parameter for routes

               and water flows which have TP=S, for then the text within the lines of the

               ID might not fit. Without _TFS= Rapp computes the proper fontsize for

               exact fit for routes.
               After TP= give placement of the text in column no labelidcol: C = Center

               for centering around the midpoint, L = Left for extension to the left of

               center, R = Right for extension to the right, and S = Street for placement

               in the line of route.

               Example railway line, with the statement: parmcol(3) labelidcol(2):

                 0.01 _ AC=none_LC=white_LW=2.5m_LT=-0.3937

               Example European route:

                 0.02 E4 TP=S_LC=white_LW=1.2_LT=0_TF=Bu
  rpidcol(), rpcol() Required. Column no for ID and a numeric accounting value in rpfil.

               See below for how to give column numbers specific to a particular file.
  rp(j)        Optional. Value n or N indicates that the indices 1, 2, ... are in the

               accounting value column of labelfil. If another value was given, then the

               values in the column n:o labelrpcol() are divided into intervals according

               to intervals().

  scalefact()  Optional. Scale factor = (number of points per coordinate unit) to be used

               instead of the default computed by Rapp and shown at parameter scalewrite.
  scalewrite   Optional. If given, Rapp writes on the screen the factor by which Rapp

               converts the coordinates to points in PostScript, and x- and y-coordinates

               for the midpoint.

  symbfil()    Optional. One or more files with coordinates for items to be displayed

               with a particular symbol, and possibly a text that is located close to the

               symbol. Give one of NE, N, NW, W, SW, S, SE, E for placement of text

               northeast, north etc of the symbol after the textwidth parameter in

               symbols() without blanks in between. Default is NE. See the syntax for

               symbols() below). Files with blanks inside the name shall be surrounded by

               double quotes. Example of a line in symbfil:

                 1414017 6249652 1 Åköping

               With the symbol()-statement as the example below, the text Åköping will be

               displayed with overall width 10 mm, just northwest of a green triangle

               with 0.4 meters height.

               The parameters can also be given as line-parameters in the 5:th

               blank-separated word in symbfil(). See below. They will then be applied

               only to the line they are written, while parameters in symbols() apply to

               all symbols with the same symindex, eg 1 above and below for a green

               triangle. Line-parameters have priority over parameters in symbols().

  symbols()    Optional. Provides color, shape, symbolheight in mm or meters, textwidth

               in mm, angle counterclockwise in 360-degrees-scale, for points in symbfil,

               if no scale change with scalefact() was made.

               At scale change symbol height and textwidth are changed proportionately.

               unless the parameter nonsymprop was given.

               Syntax:

                 symbols(symindex (symcolor[_textcolor] form symbolheight[m]

                   [textwidth[c][placement][_[b][o][u]]] angle) ... )

               where symindex must be an integer >= 0. If symbolheight ends with m or M,

               it is real-world meters, otherwise millimeters in the map on A4-paper,

               depending on xgfact() and ygfact() in Proc Init. See above at LT=. Give c

               or C after textwidth if the width of one character is given. Placement is

               one of NE, N, NW, W, SW, S, SE, E. Give b, bo, o after an underscore for

               bold and/or oblique text. Give u for uppercase. It is not necessary to

               have a text. Give an underscore in column 4 if none is wanted but you have

               line-parameters in column 5.
               Example:

                 symbols(

                   0(blue_.1/.2/.3/hsb circle 1.2 7W_bu) 1(green triangle 0.4m 10Nw)

                   2(red bar) 3(blue bar 0.4 10s -45) 4(- Risym 2 10cSW) 5(- Fig7 1 5 90)

                 )

  symbol line-parameters: They are written in one word, the 5:th. If you do not want any

               line parameters for a line, but want a comment in it, then write a single

               underscore as the 5:th word and your comment in the 6:th etc.

               Syntax:

                x-coordinate y-coordinate symindex text _SA=angle (the word continues)

                _SC=color_SH=symbolheight[m]_TC=color_TF=font[u]_TP=place_TW=textwidth[c]

               where angle, color, symbolheight, place and textwidth work as the

               like-named parameters of symbols(), while font works as described above

               under rpfil(). Give _TF=0 for non-bold, non-oblique text. Give a u for

               uppercase. The _TC= color is for the text, eg red for provinces.

               Example:

                 1414017 6249652 1 Åköping _TP=nw_SH=0.4m_TW=_10_SC=green_TF=ub_SA=-45

               Colors as shown above under colors().

               The forms, including logos for certain insurance companies and Rapp, are:
               airplane arrow bar check circle clubs cross diamonds disym eight five

               flower flower2 flower3 flower4 flower5 flower6 Fosym four Gosym halfcircle

               hand hand2 hand3 heart hearts ifsym LFsym Mosym nine one pen pencil Rasym

               Risym scissors seven Sisym six snow spades square square2 star star2 star3

               star4 star5 star6 starcircle Svsym Swsym tape telephone ten three triangle

               triangle2 Trsym two. Also 1001- and user-defined PostScript figures

               Fignnn. See Proc Figadj. Most symbols are ZapfDingbats letters.
               Default values:

                 Color blue, form circle, symbolheight 0.8 mm, textwidth 0 mm, angle 0°.

               If angle is given, then the symbol is turned counterclockwise around its

               center, for example 90 for the symbolen HAND makes the hand point up

               instead of right. Also logos can be rotated (as of 2013-07-21).

               Notes. Symbol heights and textwidths in meters are of course appropriate

               only for large-scale maps, eg 1:5000. Text placement can be adjusted with

               underscores. These will be invisible but take space on the map. Eg, if the

               text Åköping northwest of the symbol obscures something at the ending ng,

               then give the text Åköping__. 

  titles()     Optional. Max three strings each max 94 characters at the top of the page.

  titletran()  Optional. Moves titles and logo the given number millimeters up.

  txtprop      Optional. Text sizes are changed after a change of scale.
  visa         Optional. Shows pdffile in the default Pdf reader.

If text only is desired, give the symbol blank. Other symbols airplane ... two are shown below in PDF. Parameter S was given after textwidth in 2.2cS. 

[image: image3.emf]Symbols.Pdf


The files shall have blank separated columns up to and including the highest colum number given by the *col()-parameters for the file in question.

The position and scale of the coordinates have no effect, provided the same scale factor applies to x and y. That is, if (x,y) is replaced by (a1+b×x,a2+b×y) in the coordinate file the result will be the same.
Specific column numbers per riskpremium file

You may want to combine different rpfil:s where ID, risk premium, ID label and parameters in parmcol are located in different columns. Then you can give the column numbers in the same word (= sequence of characters without a blank) as the rpfil after an angle < with an underscore before all column numbers. An example, where _parmcol(99) indicates that there are no parameters in the file:

rpfil(

  ...

  S1pva-ID.Txt/_AL_LW=.001<_rpidcol(1)_rpcol(5)_labelidcol(2)_parmcol(99)

  S1phy-ID.Txt<_rpcol(5)_labelidcol(2)_parmcol(99)/_AL_TP=S_LC=marin_LW=0.3937_LT=0

  ...

)

The column numbers not specified for a certain file are replaced with the general parameter. For example rpidcol for S1phy-ID.Txt becomes that indicated by rpidcol() preceded by at least one blank.
Purpose of the parameters scalewrite, scalefact, midx, midy

You may wish to determine the scale yourself, either to enlarge the map and show some part of it or to make a series of maps of various areas with a common scale factor, which may usefully be the smallest of the series of default scale factors.

Example:

We want to show magnified the municipality Heby 0331. Run a program for all Swedish municipalities with scalewrite set. Note the computed scale factor s1 and run again with midx(1097867) midy(2341169), which is Heby's approximate center coordinates, and with scalefact(s2) where s2 = s1×(height of map)/(height of Heby municipality).
More examples

Include C:\Rapp\Rpp\Init.Rpp
Proc Map visa coordfil(Sverige-bol-land.Txt) overcoordfil(Sverige-lan-land.Txt)

         rpfil(Bol.Txt) rpidcol(1) rpcol(1) labelidcol(1)

         labelfil(Bol.txt) rp(j) labelrpcol(1) labelcol(2)

  titles('Sweden per county company' 'County border lined with - - - - ') pdffil(a.pdf)
ENDPROC

Proc Map coordfil(Sverige-bol-gator.Txt) overcoordfil(Sverige-lan-land.Txt)

  symbfil(symtst.txt) symbols( (red starcircle 1) (green circle 1 5)

    (brown flower3 1 5) (cyan bar 1 5) )

   rpfil(Sverige-bol-gator-ID.Txt) rpidcol(1) rpcol(1) parmcol(4)

     labelidcol(3) nolabels pdffil(a2.pdf) visa

ENDPROC

In the example below surfaces, lines and points are drawn in the following order, as determined partly by the order in which the coordinate files are provided, and partly by the parameter _AL in the rpfil:s.
Sverige-bol-land.Txt   County companies including Gotland.

Rroads.Txt             Railways.

Roads1.Txt             European routes and highways.

Land1.Txt              What is not in the land contours is white, including Gotland.

Lakes.Txt              Lakes.

Islands.Txt            Islands, including Gotland and Öland which are now shown again.

Roads2.Txt             Road class under highways.

S1port.Txt             Points for urban areas.
Include C:\Rapp\Rpp\Init.Rpp
// Proc Init ps2pdf(Copy) Endproc  activate to make pdffil a PS-file.
Proc Map coordfil(Sverige-bol-land.Txt Rroads.Txt Roads1.Txt

    Lakes.Txt Islands.Txt Roads2.Txt)

  landfil(Land1.Txt) lakecolor(white)

  rpfil(Bol.Txt Rroads-ID.Txt Roads1-ID.Txt

    Lakes-ID.Txt Islands-ID.Txt Roads2-ID.Txt)

  rpidcol(1) rpcol(1) labelidcol(2) parmcol(3)

  labelfil(Bol.txt) rp(j) labelrpcol(1) labelcol(4)

  symbfil(S1port.Txt) symbols( 0(red square 0.41 1.2) 1(grey5 star 0.4 1)

                        2(grey5 circle 0.25 0.5) 3(x lfsym 0.6 2) )

  titles('Sweden per company' 'With roads, railroads, municipalities'
         '©Stig Rosenlund 2008')

  pdffil(Sverige.Pdf) visa

Endproc
Examples of lines in the rpfil:s. Underscore in an ID label will be blank.
Bol.Txt                                      Rroads-ID.Txt_______________________________
02 02 _ 02_Blekinge                          0.401 _ AC=none_LC=black_LW=0.0397_LT=-0.157
03 03 _ 03_Dalarna                           0.402 _ AC=none_LC=black_LW=0.0397_LT=-0.157
04 04 _ 04_Älvsborg                          0.403 _ AC=none_LC=black_LW=0.0397_LT=-0.157
Roads1-ID.Txt                          ___       Lakes-ID.Txt_____________
0.001 E10       TP=S_LC=white_LW=0.0591_LT=0     0.0008702 _  _AL_AC=white

0.002 E10/RV_45 TP=S_LC=white_LW=0.0591_LT=0

0.003 E12       TP=S_LC=white_LW=0.0591_LT=0
Islands-ID.Txt              ___             Roads2-ID.Txt_______________________________
0.000001 _ _AL_AC=GREY_LW=.00787            0.15001 _ _AL_AC=none_LC=black_LW=.0157_LT=0

0.000002 _ _AL_AC=GREY_LW=.00787            0.15002 _ _AL_AC=none_LC=black_LW=.0157_LT=0

0.000003 _ _AL_AC=GREY_LW=.00787            0.15003 _ _AL_AC=none_LC=black_LW=.0157_LT=0
S1port.Txt________________________

1514213.590 6803407.980 2 Alfta

1306520.980 6427537.350 1 Alingsås
Proc Match

Example:

Include C:\Rapp\Rpp\Init.Rpp
Proc Match unmatch(t) umvalue(X) stats ;

Masterfil fil(Forsakr.Txt)

  var(Xkod Bilmärke $ Bolag Forsnr Hj $ Kon Radnr Geografi $ Fromdat Foddat Dur Prem)

  dvar(

    Ålder  = min(99,|[(Fromdat-foddat)/10000]|)

    Könåld = 100*(kon-1)+ålder

  )

  Key(Bolag Forsnr Hj Radnr) Timekey(Fromdat)

  firstobs(2) delimiter(';') ;

Transfil fil(Skador.Txt) var(Skkost Xkod Skadedat Bolag Forsnr Hjsiffra $ Radnr)

  dvar(Antskad = 1 Kvadr = Skkost*Skkost)

  Key(Bolag Forsnr Hjsiffra Radnr) Timekey(Skadedat)

  firstobs(2)

  urval(Skkost > 0)

  delimiter(';') ;

Utfil fil(Skadormatchade.txt) Headerline delimiter(9) noq

  var(Skkost M.Xkod Antskad Kvadr Bilmärke Kon Geografi $ Ålder Skadedat Könåld Fromdat);

ENDPROC

This proc matches a transfil (transaction file), such as claims, against a masterfil (master file), such as insurance versions. Transfil and masterfil need not be sorted by key fields. The proc is not as universal as eg SQL, but in return, adapted to claim statistics. There are certain restrictions on the match keys, see below.

Syntax, similar to Proc Taran, and how the proc works is shown in the example. The general rules for Rapp apply, such as case insensitivity, and that line breaks and the number of blanks between words is irrelevant.
Parameters of the main clause Proc Match, shall be completed with semi-colon
  alphasize() Optional. As in Proc Taran.

  arr(), begperiod(), endperiod() Optional. As in Proc Taran.

  q           Optional. Specifies that the match shall be made in memory with hashing

  quick       instead of alternating reads of sorted files. The masterfil keys and

              outfields are placed in RAM, which must be sufficiently large. If it is

              not, Rapp will interrupt with a message about it. This match type can be

              significantly faster than alternating reads of sorted files, provided the

              masterfil is small enough. For a sufficiently large masterfil it is slower.

              The outputfile has the same sort as the transfil. The parameter is not used

              with parameter timekey(). If the latter is given, then alternating reads of

              sorted files is used regardless of Quick.
  stats       Prints on the screen: The number of lines in the masterfil and transfil,

              number of matched lines in the transfil and the number of lines in the

              outputfile.

  umvalue()   Field value for unmatched transfil-lines, default "0".

  unmatched   The outputfile obtains one line per line in the transfil if unmatched is

  unmatch(t)  given. Otherwise, one line per line in transfil that was matched against

              the masterfil on the keys in Key(). Unmatched transfil lines get the value

              in umvalue() in the outputfile's masterfil fields.

  unmatch(m)  If given, then unmatched lines in the masterfil are written to the

              outputfile, with 0 in the transfil fields. But only one of several

              unmatched masterfil lines with the same combination of keys is output. Thus

              not symmetrical treatment of master and trans, because all matched transfil

              lines, and unmatched ones if unmatched or unmatch(t) was given, are output.

              Unmatched master lines obtain the corresponding values of the masterfil key

              fields in the transfil key fields, for those of the latter that have been

              included in the outputfile. The parameter is not intended for use when

              timekey() (see below) is given.
Parameters and syntax in the statements Masterfil and Transfil, closed with a semicolon

Same as for the statement Infiler in Proc Taran, with the addition of parameters Key() and Timekey() and removal of the parameters associated with utfilink(). The latter are generated internally in the creation of a temporary Proc Taran used for matching.

key()         Required. The keys for matching. They shall correspond word for word in the

              masterfil and transfil. An alphanumeric key in one file must be

              alphanumeric in the other file. The datatype of a numeric key in one file

              can be different from that of the corresponding key in the other file. The

              datatypes integer and floating point are OK, but the values must be

              integers. If a numeric key field can be of absolute value larger than

              2147483647, it must be declared as floating point with R and then it may

              have a maximum of 15 digits (or 16 digits with a leading figure not more

              than 5), since the mantissa of an 8-digit floating point number allows a

              maximum of 15 significant digits without risk of error. Also with negative

              numeric key values the outputfile will get the order from lower to higher

              key values (new from 2015-04-04). With alphanumeric keys containing å, ä,

              ö, Å, Ä, Ö, the outputfile is not in order from lower to higher key values

              in the Swedish order of characters, because the key comparison concerns the

              characters alphanumeric scheme, where for example Ä < Å. The files need not

              be sorted on keys. Rapp performs sorting of temporary files if necessary.

timekey()     Optional. If given it shall relate to an 8-digit date in each file. Then

              the transfil line is matched against the masterfil line, with the right

              keys in the Key(), which has the greatest date that is less than or equal

              to the transfil line's date. If no such date exists, the matching masterfil

              line with minimum date is used. The matched or unmatched condition is

              determined solely by Key(). This is the proper way to match claims with

              Timekey = claimdate. against insurance versions with Timekey = fromdate of

              the version, if you want get the best insurance information transmitted to

              the claims. 8-digit dates from the year 1000 are positive and fill eight

              characters, so this is right even with the alphanumeric comparison

              described above.

Parameters and syntax in the statement Utfil, preceded by and completed with a semicolon

delimiter()  Optional. Delimiter between fields in the outputfile. If not given the

dlm()        fields will be blank separated. For example dlm(9) for tab separated

             fields.

fil()        Required. Outputfile in text format.

headerline   Optional. If given the outputfile gets an initial header. It must then be

             skipped. at a later reading in Proc Taran with firstobs (2).

noempty      An alpha-numeric field will never be empty. If it would have been empty 

             without the parameter, it will contain one blank. The purpose is to admit

             input into SAS in Proc Sasin.
noq          Optional. Removes the qualificators M. and T. from the header line, if

             headerline was given.

var()        Required. The outfile fields. Must be in transfil or masterfil. If a field

             is in both of these files, it is taken from the transfil, if it was not

             stated with M. before the field name that it is to be taken from the

             masterfil. In the example, Xkod was given as M.Xkod so that it is taken from

             the masterfil. Type declarations may be present.
Proc Matrix
Example:

Include C:\Rapp\Rpp\Init.Rpp

Proc Matrix Inv

  Infil(Matr1.Txt) Utfil(Matr2.Txt) Detfil(Matrdet.Txt) Sympos Format(S)

Endproc

Proc Matrix Inv Infil(Matr1.Txt) Utfil(Matr1.Txt) Detfil(Matr1.Txt) Endproc

Proc Matrix Inv Infil(Matr1.Txt) Utfil(Matr1.Txt) Detfil(Matr1.Txt) LU Endproc

Proc Matrix Mul

  InfilL(MatrLeft.Txt) InfilR(MatrRight.Txt) Utfil(C:\Rapp\Txt\Result.Txt) Format(S)

Endproc

Proc Matrix Trp Infil(Matr1.Txt) Utfil(Matr1.Txt) Endproc

Performs matrix inversion, multiplication, transpose and determinant computation on matrix infiles in text format. Matrix elements can be delimited by blanks, semicolons or tab characters.

Parameters

Detfil()            File for determinant, if Inv was given. If the same as Utfil(), the
                    first line of it will contain the determinant.

Format()            If Format(S) or Format(s) is given, the elements of the out matrix

                    are written in the shortest possible form that preserves precision,

                    eg -0.001350923141374722. Otherwise the elements are written in

                    scientific notation with 16 digits in the mantissa, eg

                    -1.350923141374722E-003. Elements are right justified.

Infil() | InfilL()  Matrix infile. For multiplication it contains the left matrix.

InfilR()            Right matrix for multiplication.

Hh                  Given Inv, the inversion is made with Householders method. It might

                    be preferable for some dense matrices.
Inv                 Inversion to be performed. The Gauss-Jordan method is used, unless

                    parameters HH, LU or Sympos are given. If the matrix is singular,
                    Rapp exits with an error message.

Lu                  Given Inv, the inversion is made with LU decomposition. A determinant

                    can now be computed, from 2017-10. If Sympos is given, Rapp tests for
                    symmetric positive-definiteness and gives a messages if this is not
                    the case. The matrix is inverted anyway if it is possible.
Mul                 Multiplication to be performed.
Sympos              Given Inv and that Lu was not given, the inversion is made by
                    Choleski's method. Works if the matrix is symmetric positive-
                    definite, such as Fisher's information matrix I. If Rapp finds that
                    this is not the case, the Gauss-Jordan method is tried after a

                    message is given.

Sympostest          Tests for symmetric positive-definiteness and writes the answer in

                    utfil. If symmetric positive-definiteness holds and detfil was given,

                    the determinant is written there. This takes shorter time than

                    performing an inversion with keywords Lu Sympos or only Sympos.
Trp                 Transpose to be performed.

Utfil()             The out matrix is written here. Blank delimited elements.
Assume that the matrix is symmetric positive-definite and you want the fastest method. Use Choleski’s method if the number of rows is at most 1230, otherwise LU decomposition without parameter Sympos. If you are not sure of symmetric positive-definiteness, besides Sympostest you can use LU decomposition with parameter Sympos if the number of rows is more than 1380, otherwise Choleski’s method with parameter Sympos without LU.The numbers 1380 and 1230 should maybe be some other numbers depending on the matrix.
For a complete programming package with matrix calculus, see the next Proc Mbasic.

Proc Mbasic
Syntax

Proc Mbasic [skiplinenoinfo]

statements

Endproc

Parameter skiplinenoinfo skips info on interpretation of line numbers in error messages.
Comments in the code are written as in Rapp elsewhere, ie with // last on a line or enclosed in /* and */.

Way of running: In addition to command Rapp you can make this bat file:

Mbasic.Bat

@echo off

if (%1) == () (

  echo Give Mbasic-program excluding extent .Txt.

  GOTO THEEND

)

if not exist "%1.Txt" (

  echo %1.Txt was not found.

  GOTO THEEND
)

Rapp Mbasic n cha §01 "%1%

:THEEND

and this Rapp program

Mbasic.Rpp

Include C:\Rapp\Rpp\Init.Rpp

Proc Mbasic skiplinenoinfo

Include §01.Txt

Endproc

and then run a text file, not including Proc Mbasic and Endproc, with command (in the command prompt) Mbasic file, where extent .Txt is omitted. 
See also the info on the special editor for Mbasic and Rapp in general given at the beginning of this manual.
Example 1:

Include C:\Rapp\Rpp\Init.Rpp

Proc Mbasic skiplinenoinfo

double i1 i2

mouble m1 m2 Ma[3][3]

m1 = 0 m2 = 1

Ma = { 1.23 4.56 7.89  2.34 5.67 8.90  3.45 6.78 9.01 }

/* Accomplishes the same as:

   Ma[1][1] = 1.23 Ma[1][2] = 4.56 Ma[1][3] = 7.89

   Ma[2][1] = 2.34 Ma[2][2] = 5.67 Ma[2][3] = 8.90

   Ma[3][1] = 3.45 Ma[3][2] = 6.78 Ma[3][3] = 9.01 */
For i1 = 1 to 100 by 3

  m1 = m1 + 1

  m2 = m2*(m1+4)

  if m2 > 1234567890123456789012345678901234567890 then

    print 'm2 too large.'

    break

  endif
Next i1

print m1 \n

print to 'C:\Rapp\Txt\moutput.txt' // print statements directed to file.

m2 = log(Ma[3][1]) // log(3.45)

print m2\n // prints +1.23837423104326838876677449E+0

m2 = exp(1E19) print m2 \n

m1 = probnorm(0.975)

print m1 \n

m2 = probnin(m1)

print 'm2 =',%1.3 m2 \n // prints m2 = 0.975

print to

close 'C:\Rapp\Txt\moutput.txt'

m1 = probnin(0.975)

print 'm1 =',%1.9 m1 \n // prints m1 = 1.959963985

Read m1 // Reads from keyboard. If preceded by Read from file, the input is from file.

m2 = probnin(m1)

print 'm2 =',%1.3 m2 \n

i1 = 0  i2 = 20

do

  i1 = i1+1

  i2 = i2 - 3

  if 10 <= i1 then break
  elsif i1 = 5 6 7 8 or i2 < 4 then i1 = i1 + 3

  else continue endif
  i1 = i1 + 2

endo
print i1 \n

Endproc

That example does nothing useful. The following example does.

Example 2:

N Include C:\Rapp\Rpp\Init.Rpp

// Computes Eulers constant 0.5772156649015... . Computation time

// increases rapidly with n, but n <= 15 will not take too long.

// Due to rounding errors the last few (about six) digits will be wrong.

// If you want k correct digits, set digits to k + 9 or so.

Proc Mbasic

digits 306 // Maximum with Rapp - larger maximum with Rapp1008 etc.

double m n

mouble Hm One Sum Sumold Two Two_raised_to_n e_raised_to_Two_raised_to_n m01

Read n // The computation will have a remainder term O(1/(2**n * exp(2**n)).

One = 1

Two = 2

Sum = 1

Hm = 1

m01 = 1

Two_raised_to_n = Two**n

e_raised_to_Two_raised_to_n = exp(Two_raised_to_n)

For m=1 to 999999999999999 // Infinite loop interupted by condition below.

  // Mouble variable One is needed for mouble precision.

  Hm = Hm + One/(m+1) // Harmonic series 1 + 1/2 + 1/3 + 1/4 + 1/5 + ...

  m01 = m01*Two_raised_to_n/(m+1)

  Sum = Sum + m01*Hm

  if Sum = Sumold then break endif // When the addition of m01*Hm is too small.

  Sumold = Sum

Next m

// log(Two) is needed since log(2) will only yield double precision.

Sum = Sum*Two_raised_to_n/e_raised_to_Two_raised_to_n - n*log(Two)

print "Approximate value of Euler's constant is:" \n,%1.300 Sum \n

print to 'Euler.Txt'

print %1.300 Sum

print to

Endproc
Here is an Mbasic program that computes the Gauss integration constants for mouble, and a sample integration program. See under “Built-in constants” later.

Example 3:

N Include C:\Rapp\Rpp\Init.Rpp

Proc Mbasic

// Computes Gauss x- and w-values by simple interval halving. See Abramowitz & Stegun

// p. 887. Epsilon cannot be too small. The last one or two digits of the results are

// generally in error, so choose somewhat more digits than required for the results.

digits 72

double i signleft signmidl

mouble a b epsilon ten x x02 x04 x06 x08 x10 y z Gaussxm[10] Gausswm[10]

ten = 10

For i = 6 to 10

  a = Gaussxd[i]*0.9999

  b = Gaussxd[i]*1.0001

  epsilon = a*ten**(1-digitsnum)
  x = a   Gosub P10   if y > 0 then signleft = 1 endif else signleft = -1 endif

  Do

    x = (a+b)/2   Gosub P10   if y > 0 then signmidl = 1 endif else signmidl = -1 endif

    if signmidl = signleft then a = x endif else b = x endif

    if b - a < epsilon then break endif

  Endo

  x = (a+b)/2

  Gaussxm[i] = x

  Gosub P10w

  Gausswm[i] = y

Next i

Gaussxm[1] = - Gaussxm[10]

Gaussxm[2] = - Gaussxm[ 9]

Gaussxm[3] = - Gaussxm[ 8]

Gaussxm[4] = - Gaussxm[ 7]

Gaussxm[5] = - Gaussxm[ 6]

Gausswm[1] =  Gausswm[10]

Gausswm[2] =  Gausswm[ 9]

Gausswm[3] =  Gausswm[ 8]

Gausswm[4] =  Gausswm[ 7]

Gausswm[5] =  Gausswm[ 6]

print to 'Gaussxw.Txt'

print Gaussxm \n,Gausswm \n

Close 'Gaussxw.Txt'

Stop

P10:

  x02=x*x x04=x02*x02 x06=x02*x04 x08=x04*x04 x10=x04*x06

  y = -252 + 13860*x02 - 120120*x04 + 360360*x06 - 437580*x08 + 184756*x10

  y = y/1024

Return

P10w:

  x02=x*x x04=x02*x02 x06=x02*x04 x08=x04*x04

  y = 27720 - 480480*x02 + 2162160*x04 - 3500640*x06 + 1847560*x08

  y = x*y/1024

  y = 2/((1-x02)*y*y)

Return
Endproc
Example 4:

N Include C:\Rapp\Rpp\Init.Rpp

Proc Mbasic

// Uses Gauss x- and w-values for numerical integration. See Abramowitz & Stegun  p. 887.

digits 63

double i j n

mouble a0 a b b0 bmaB2 bpaB2 h sqr2pi_inv Result x  y Gaussxm[10] Gausswm[10]

sqr2pi_inv = 1/sqrt(2*Pim)

Read from 'Gaussxw.Txt'

Read Gaussxm,Gausswm

Close 'Gaussxw.Txt'

Read from

Read a0,b0, n // n is the number of intervals. The larger n the more exact.

h = (b0-a0)/n

For j = 1 to n

  a = a0 + h*(j-1)

  b = a0 + h*j

  bmaB2 = (b-a)/2   bpaB2 = (b+a)/2

  For i = 1 to 10

    x = bmaB2*Gaussxm[i] + bpaB2

    Gosub FUNC

    Result = Result + Gausswm[i]*y

  Next i

Next j

Result = Result*h/2

print 'Result from',%9.5 a0,'to',%9.5 b0,'is',nb Result,'.' \n

print 'Comparison with exact value:         ',probnorm(b0) -  probnorm(a0) \n

Stop

FUNC: // You can put the function computation in an include file and use Rapp cha.

  y = sqr2pi_inv*exp(-x*x/2)

Return

Endproc
The following program performs portfolio optimization. It is very simple. I asssume that programs made by commercial financial software companies are much better. See Appendix 11 for the formulas used.

Example 5:
N Include C:\Rapp\Rpp\Init.Rpp

Proc Mbasic

double E1 alfa1 alfa2

       F_4 G_4 H_4 H1_4[1][4] H2_4[1][4] V_4[4][4] Vinv_4[4][4]

       c_4[4][1] e_4[4] etr_4[1][4] m01_4 mu_4[4] mutr_4[1][4]

       F_3 G_3 H_3 H1_3[1][3] H2_3[1][3] V_3[3][3] Vinv_3[3][3]

       c_3[3][1] e_3[3] etr_3[1][3] m01_3 mu_3[3] mutr_3[1][3]

e_4 = { 1 1 1 1 }

mu_4 = { 1.100 1.100 1.175 0.850 }

V_4 = {

  0.030000  0.030000  0.030000 -0.030000

  0.030000  0.060000  0.030000 -0.030000

  0.030000  0.030000  0.076875 -0.030000

  0.030000 -0.030000 -0.030000  0.037500

}

etr_4 = trp(e_4)

mutr_4 = trp(mu_4)

Vinv_4 = invsp(V_4)

H1_4 = etr_4*Vinv_4

H2_4 = mutr_4*Vinv_4

F_4 = H1_4*e_4

G_4 = H1_4*mu_4

H_4 = H2_4*mu_4

m01_4 = G_4*G_4 - F_4*H_4

e_3 = { 1 1 1 }

mu_3 = { 1.100 1.100 1.175 }

V_3 = {

  0.030000  0.030000  0.030000

  0.030000  0.060000  0.030000

  0.030000  0.030000  0.076875

}

etr_3 = trp(e_3)

mutr_3 = trp(mu_3)

Vinv_3 = invsp(V_3)

H1_3 = etr_3*Vinv_3

H2_3 = mutr_3*Vinv_3

F_3 = H1_3*e_3

G_3 = H1_3*mu_3

H_3 = H2_3*mu_3

m01_3 = G_3*G_3 - F_3*H_3

print to 'Portopt.Txt'

print '           Standard' \n

print 'Expected  deviation          Distribution percent' \n

print '   yield    percent     Ass1   Ass2   Ass3   Ass4' \n

for E1 = 1.005 to 1.175 by 0.005

  alfa1 = (G_4*E1 - H_4)/m01_4

  alfa2 = (G_4 - E1*F_4)/m01_4

  c_4 = Vinv_4*(alfa1*e_4+alfa2*mu_4)

  if not(c_4[1][1] >= 0 and c_4[2][1] >= 0 and c_4[3][1] >= 0 and c_4[4][1] >= 0) then

    // Asset no 4 is excluded. The one to exclude was simply determined by running

    // first without these conditional statements, which gave negative c_4[4][1].

    alfa1 = (G_3*E1 - H_3)/m01_3

    alfa2 = (G_3 - E1*F_3)/m01_3

    c_3 = Vinv_3*(alfa1*e_3+alfa2*mu_3)

    c_4 = c_3

  endif

  print %8.3 E1,  %10.2 100*sqrt(trp(c_4)*V_4*c_4), ' ', %6.2 100*trp(c_4)

next E1

print to

Endproc
Overview
Mbasic is a mathematical language within the language Rapp. The M in Mbasic stands for Multiple precison, ie you choose the number of correct decimal digits up to 306 for a floating data type called mouble with Rapp.Exe. (I made such a language in 1981 with the technology then available.) The last digit in a mouble result of an operation is correctly rounded. Internally Rapp uses arithmetic with some more digits than the chosen number, in order to compensate for rounding errors. This holds also if you choose 306 digits. The common double data type with an 8-byte storage is also available.
See the section "Location of program and how to write and run Rapp code" for other variants of Rapp with other maximums than 306. Computing speed is not much affected by choosing a larger variant than needed for a given precision, but the number of array elements you can store with a given RAM is of course affected.
Also M stands for Matrix Basic, since it has powerful matrix operations.

All variables and arrays are visible between Proc Mbasic and Endproc regardless of their place of declaration. There are no classes such as global, static and automatic as in C, although all such classes are used in the C program interpreting Mbasic code. Mbasic is simple in this respect, which however does not hinder advanced numerical calculations.
You can largely use the same syntax as in classical Basic (such as For / Next, Gosub etc). Some C syntax is also employed. Conditional statements if / elsif / else can be stated as complex as you like. I have implemented all elementary and inverse circular functions and some more. Common matrix operations, including four methods of inversion, are also implemented.

The purpose of Mbasic is to furnish mathematical capabilities. It has no string handling facilities, except for printing texts within single or double quotes and for executing system command strings. For string manipulation while transforming and matching text files, use Proc Data and Proc Match.

Mbasic is case independent, like the rest of Rapp. It does not use semicolons or other delimiters between statements, only one or more blanks. A statement can span over arbitrarily many lines of code. Several statements can be written on a line; only ease of code understanding motivates linebreaks.

The Mbasic code is given between Proc Mbasic and Endproc. A variable in the code cannot be named Proc, Endproc or Include. Keywords for statements like break are not either allowed as names of variables.

Below a scalar is a real-valued constant, variable, array element or function return value. A constant is written in the standard way, with decimal point or in scientific E-notation. Both upper- and lower-case E is accepted.

An item in a syntax description within [ and ] is optional. (Might possibly cause confusion since [ and ] are used in arrays, but the context should make clear what is intended.) An | separating items denotes choice. These conventions are standard.
Description in alphabetical order

Arithmetical operations for arrays
Arithmetical operations for matrices

Arithmetical operations for scalars

Break statement

Built-in constants, variables and arrays
Close statement
Complex variables, arrays, matrices and functions
Conditional statements

Continue statement

Data types

Declarations

Digits statement

Do loops

Error messages

Exit statement

For/Next loops

Free statement

Functions of one scalar

Functions of two scalars
Functions of three scalars

Gosub statement

Goto statement
Helpmatricesfree statement

Print to statement

Printing arrays

Printing scalars

Printing text

Pseudo-random numbers

Read from statement

Read line statement

Reading data from a file

Reading data from keyboard

Redim statement

Return statement

Sort statement

Sortd statement

Stop statement

System statement
Arithmetical operations for arrays
These are defined for arrays with arbitrary dimensions up to 30. See Declarations later. An array with at most two indices (at most dimension 2) is called a matrix. More operations are defined for these. See next section.
The operations, their notations and restrictions are standard.

As far as the operations below are concerned, the first index for all dimensions is considered to be 1 regardless of the declaration, as described under Declarations below. For example A[3:5] is considered to be the same as A[1:3] and A[3]. But for assigments of scalars to array elements or vice versa, the declarations matters. Eg for A declared A[3:5][-2:4] and B declared B[3][7], the statement B[1][1] = A[3][-2] transfers the upper left corner element of A to the corresponding element of B. Assigment type IDN, defined for matrices below, will however be performed with all first indices considered to be 1. Letting the first index be 0, eg with declaration B[0:2][0:6], might sometimes be convenient.

The indices are scalars; variables, constants or array elements.

An array declared A[n] is regarded as the same as A[n][1] and an array declared A[n][1] is regarded as the same as A[n] for the purpose of matrix calculus. However, printing an array (see Printing arrays later) declared A[n] will print the elements on the same line, while an array declared A[n][1] will have the elements printed on separate lines.

Assigment of scalars to array elements
  1. Elements one by one. Eg A[2][3]=1.23  A[2][3]=x1  A[2][3]=D[7][3]

  2. In the form A = { a11 a12 a13   a21 a22 a23 }, where the elements within { and }

     are constants (not variables) listed in order fist index varying most slowly, etc.
     For matrices this is called row-major order. The elements are separated by any
     number of blanks. The braces need not be followed or preceded by a blank.
  3. A = CON fills the array with 1's.

  4. A = ZER fills the array with 0's. (Initially all arrays are filled with zeroes.)
Operation___________________Example
Assigment                   B = A

Addition                    C = A + B

Subtraction                 C = A - B

Negation                    B = -A

Multiplication with scalar  B = A*x1 or B = x1*A
The dimensions and index limits need not be the same. The array of all involved arrays with the smallest number n of elements decides which elelements go to the out array. Elements n+1 etc in the out array are set to 0, if the out array has more than n elements. The statement B = A with declarations A[2][3][4] and B[2][4][4] might not put the elements in B where you want them, though.
My intention is that array operations can be combined in ANY manner. Should you find an example where this is not true, please report it to me: stig.ingvar.rosenlund@gmail.com.

Ordinary priority rules for operations hold. These can be overridden by parentheses. Example:

A=(-B-C+D)*1.23

Double and mouble arrays can be freely mixed. 

The operations are defined also for complex arrays. Arrays can be mixed real and complex.
Arithmetical operations for matrices

These are defined for arrays with at most two indices. Such an array is called a matrix. All operations for arrays described above can be used for matrices. Below we describe the extra operations for matrices.
The operations, their notations and restrictions are standard, except for the notation for inversions. There are four inversion operations. The differences between these are explained after the operations table.

In this description Lim1(A) denotes the number of allowed integer indices for the first dimension. The first index is 1. Lim2(A) is the number for the second dimension. For example, a matrix declared as double A[5] with one dimension has Lim1(A) = 5, where A[1], ... , A[5] can be accessed as simple variables. A matrix declared as mouble B[4][9] with two dimensions has Lim1(B) = 4 and Lim2(B) = 9, where B[1][1], ... , B[4][9] can be accessed as simple variables.

Assigment of scalars to matrix elements
A = IDN fills the matrix with 1 in the diagonal and 0 elsewhere; identity matrix.

Operation       Example       Restrictions

Multiplication  C = A*B       Lim2(A) = Lim1(B), Lim1(C) = Lim1(A), Lim2(C) = Lim2(B)

Transpose       A = trp(B)    Lim1(A) = Lim2(B), Lim2(A) = Lim1(B)

Inversion 1     A = invgj(B)  Lim1(A) = Lim2(A) = Lim1(B) = Lim2(B), ie square matrices

Inversion 2     A = invsp(B)  same as Inversion 1

Inversion 3     A = invl1(B)  same as Inversion 1

Inversion 4     A = invl2(B)  same as Inversion 1
Inversion 5     A = invhh(B)  same as Inversion 1

Sympostest      t = sympostest(B) B a square matrix

The return value t of sympostest() is a scalar. The function tests if B is symmetric positive-definite. The return is 0 if that is the case, 1 otherwise. If B is double and t is mouble, then B is converted to mouble in a temporary matrix on which the test is performed. When rounding errors present a problem, letting t be mouble and setting digits high enough can overcome the problem.
A sympostest expression can be combined in arithmetics with other expressions, such as "t=1+sympostest(B)". It can be used in an if/elsif-clause. Eg "if sympostest(A+B) = 0 then …". The data type of the expression will be mouble if at least one of the operands in sympostest() is mouble.
A determinant is computed after each inversion and, for real matrices, is found in the variable d_determinant if the left side matrix is double, and as m_determinant if the left side matrix is mouble. For complex matrices (see below) it is found in d_determinantc = d_determinantc[1] + i*d_determinantc[2], and m_determinantc, respectively.
A determinant is also computed with sympostest(), provided the return value is 0. If both B and t is double, the result is in d_determinant. If at least one of B and t is mouble, the result is in m_determinant.

Properties of inversion operations

Inversion 1  Invgj()  Gauss-Jordan elimination.
Inversion 2  Invsp()  Choleski inversion for a symmetric positive-definite matrix.

Inversion 3  Invl1()  LU decomposition. Right side matrix B is preserved, unless A = B.

Inversion 4  Invl2()  LU decomposition. Right side matrix B is changed by the operation.
Inversion 5  Invhh()  Householder method.
Note. It can happen that Invgj() gives an error message that the determinant is 0, ie the matrix is singular, but Invl1() goes trough.
Invgj(), Invsp() and Invhh() are not available for complex matrices.
My intention is that matrix operations can be combined in ANY manner. Should you find an example where this is not true, please report it to me: stig.ingvar.rosenlund@gmail.com
Ordinary priority rules for operations hold. These can be overridden by parentheses. Example:

A=(-B*C*(Invsp(A) - Trp(D)))*1.23

A scalar variable can be given on the left side of a matrix expression, if the right side has dimension [1] or [1][1]. Such matrix expressions can also be used as scalars in some instances, such as functions or one or two variables where these variables are matrix expressions with dimension [1] or [1][1]. But I have not managed to cover all cases of use of matrix expressions as scalars. If such use is not possible, Rapp will give an error message, so that you can modify the program to use an intermediate scalar. 
Apart from some instances, a scalar as left side and a matrix expression with dimension [1] or [1][1] as right side must stand by itself and cannot be combined in arithmetics with other expressions. Eg "t=1+B" is not allowed, but "t=B t=t+1" goes through, if B was declared [1] or [1][1]. Such an expression cannot either be used in an if/elsif-clause.
Double and mouble matrices can be freely mixed, if the dimension requirements are met.
The operations are defined also for complex matrices, with the exception of Invgj(), Invsp() and Sympostest(). Matrices must be either all real or all complex.

Arithmetical operators for scalars

The basic operations addition, subtraction, multiplication and division, their notations and priorities are standard. Priorities can be overridden by parentheses. Optional number of blanks between operators. Up to 999 operations can be combined in a statement. Exponentiation is made with **, eg 2**5 is 32 = 25. It has priority. It can also be accomplished with the function pow( , ), see the section on functions of two scalars.

As in Proc Data, the absolute value of x can be obtained by |x| and the floor value by [x]. Thus [ ] has several uses, but Rapp can tell which one is intended. You can also accomplish | | with the function abs() and [ ] with the function floor().

Division by zero will give zero and not cause a crash. Exponentiation x**y = xy gives the right answer for any x, if y is an integer in (… ,-2,-1,0,1,2 …). For non-integer y and negative x the result is strictly undefined, but 1 will be returned.
Example:

  m4 = |x1| - ([m2**63] – 3.14*A[1][1]**x2/m3)

which is the same as

  m4 = abs(x1) - (floor(pow(m2,63)) – 3.14*pow(A[1][1],x2)/m3)
Break statement

Causes the execution of the For- or Do-loop to end, ie the first statement following the loop is executed and so on.

Built-in constants, variables and arrays
The number Pi = 3.14159265358979323846... is avaliable as the double variable Pid and the mouble variable Pim. The double variable digitsnum holds the number of digits. It is a multiple of 9. The abscissas xi and weights wi for n = 10 in Abramowitz & Stegun (25.4.29) p. 887, for Gaussian type integration, are available as the double arrays Gaussxd[10] and Gausswd[10]. See Example 3 and 4 above for how to make and use mouble variants. Results from the function bessjy() are in the double variables d_bessJ, d_bessY, d_bessJp, d_bessYp and the mouble variables m_bessJ, m_bessY, m_bessJp, m_bessYp. Results from bessik() are given in analoguous variables. Determinants of matrices are given in d_determinant and m_determinant at matrix inversions. The complex variables cuberootd1, cuberootd2, cuberootd3, cuberootm1, cuberootm2, cuberootm3 will hold the results of the function cube(), see below.
Close statement

Syntax
Close 'file'

If the file closed is a print file, then printing to it again with print to will overwrite its content. If it is a read file, then reading from it again with read from will read it from the beginning.

If you want to copy the content of a print file to another file, then close it first.
Complex variables, arrays, matrices and functions
A complex variable or array of type double or mouble (see Data types and Declarations later) is declared with the keyword complex after it. For example:

mouble C complex D[66][77] complex

You can mostly treat these as real arrays with [2] appended, as if declared, using the example:

mouble C[2] D[66][77][2].

The real part is in the first number and the imaginary part is in the second number of the last dimension. Eg  C = C[1] + i*C[2] and D[33][44] = D[33][44][1] + i*D[33][44][2], where i is the imaginary unit such that i² = -1. The last [1] can be written .re and the last [2] can be written .im. Eg D[33][44].re = 3.14 is the same as D[33][44][1] = 3.14.

The difference, between writing complex or [2] after a variable or array, is in how they are treated in matrix operations.
The operations + - * / and ** are implemented for complex variables and follow the standard rules. Eg 
mouble Y complex   double X[3] complex

X[2] = {1 -3}   Y = {1-i*3}   Y = X[2]**Y
Assignment to a complex variable or array element with complex constants within { and } can be in the form of two real numbers, like X[2] above, or in the form of a word x+i*y or x-i*y without embedded blanks, where y is non-negative and i is in lower case, like Y above. If the array is real, two real numbers are assigned. See 'Reading data from a file' below.  
All operations defined for arrays that are not matrix operations can be performed on complex variables or arrays as if the were real arrays with [2] declared last, except for the CON assignment which sets every complex member to 1 + i*0 (not 1 + i). Eg
However, only one complex array member (real and imaginary part) can be assigned within braces { and }, unless the whole array is filled as previously described.
The operations + and –, and multiplication with a real scalar or with a complex number, are defined for a complex array of any dimension. Eg X = 3*X or X = Y*X.
All operations defined for real matrices can be performed on complex matrices, with the exception that only LU decomposition inversion is implemented for complex matrices, as of now. That is, invl1(A) and invl2(A) are implemented, but not invgj(A) and invsp(A), for a matrix A declared double|mouble A[r][r] complex. If you would have use for invgj(), send me a request. 
A = IDN fills the matrix with 1 + i*0 in the diagonal and 0 elsewhere; identity matrix.

The data types double and mouble can be freely mixed. In matrix operations in addition to those defined for all real arrays, all matrices must be either all real or all complex.

The polar representation z = r eiof xy2pol() uses -, affecting log(). All arithmetics and functions in Mbasic, except pol2xy(), assume the ordinary form z = x+i*y.
Functions of complex variables (see descriptions later for real arguments and return)
abs       Absolute value is put in the real part and the imaginary part is set to 0.
asin      Formula by Abramowitz & Stegun, (4.4.37) with k = 0, but with change of sign of

          output imaginary part, if imaginary part of input is negative. See Appendix 10.
asinh     asinh(z) = -i*asin(i*z)

atan      Formula by Abramowitz & Stegun, (4.4.39) with k = 0.
atanh     atanh(z) = -i*atan(i*z)

ceil      Ceiling is applied to both parts.
conjugate Input x + i*y, output x - i*y.
cos

cosh

cot

coth

exp

floor     Floor is applied to both parts.
log

pol2xy    Input is number in polar form, output is number in ordinary form.

pow       pow(z1,z2) = z1**z2 = exp(z2*log(z1)).
sin

sinh
sqrt,sqr  sqrt(z) is the same as pow(z,0.5+i*0).
tan

tanh

xy2pol    Input is a number in ordinary form, output is a number in polar form with r in

          the real part and  in the imaginary part.
Some functions not listed above can be obtained from the ones listed. Eg
  acos(z) = /2 – asin(z), acot(z) = atan(1/z) for z  0 and acot(0) = /2.
The function pow(z1,z2)) computes faster and more accurately when z2 takes one of the special values -1.5, -1, -0.5, 0, 0.5, 1, 1.5. Eg pow(z,-1.5+i*0) = 1/(z*sqrt(z)).
Conditional statements
Syntax
if condition1 then

  statement(s)
[endif]
elsif condition2 then

  statement(s)
[endif]
elsif condition3 then

  statement(s)
[endif]
else

  statement(s)
endif

None or any number of elsif blocks can be given. The else statement is optional. For convenience you can write elseif instead of elsif (but not else if, since that starts nested conditional statements). Also end if instead of endif. Note that else is concluded by endif. Statements under an if or elsif must be concluded by endif if no elsif or else comes directly after, but is optional otherwise, since in the latter case Rapp can understand what is meant. See the [endif]:s above. Nesting conditional statements within conditional statements is allowed.
The condition operators, with their synonyms, are the same as in Proc Data / Urval().
  Relational operators       Symbol
  equality                   =   ==  EQ

  inequality                 ^=  !=  <>  ><  NE  NQ

  less than:                 <   LT

  greater than               >   GT

  less than or equal to      <=  LE  LQ

  greater than or equal to   >=  GE  GQ
  Logical operators          Symbol 
  conjunction                AND &

  disjunction                OR  !

  negation                   NOT ^ !

The exclamation mark ! has several meanings, but Rapp can tell which one is intended.

Several values can be stated after equality and inequality operators.

Any number of conditions can be combined with the logical operators above, with parentheses to override normal priorities. Scalar variables and constants can appear on both the left and right side of a relational operator. (As opposed to Proc Data / Urval(), where the left side of a relational operator must be a variable and the right side cannot contain a variable.)

As you can see, conditional statements can be written as in Visual Basic.

Continue statement

Causes the execution of the For- or Do-loop to go to its beginning, thus bypassing the remaining statements before Next or Endo.
Data types

There are two data types, double and mouble. Both are floating point types.

Below ** means "raised to".

Double is the same as double in most C-compilers and also as the SAS Rb8. format, namely with an 8-byte storage. The storage is binary. Translating the number of binary digits in the mantissa to decimal ones gives approximately 15.8 digits.

Approximate range for a double variable d is this. It depends on the implementation in the C math libary. This one is for Microsoft C.
1.1125369292536E-308  |d|  1.797670120615949E+308
An operation with a double result that would be smaller in absolute value than the left side will give 0 as result. If the result would be larger in absolute value than the right side, then ±(the right side) will be given as result.
Mouble is specific to Mbasic. In Rapp.Exe a mouble occupies 152 bytes of storage regardless of the number of chosen digits, see section Digits later. The chosen number of digits affects the speed of execution. The number will be at least 27, ie 71 % more than with double. This is the default. And it will be at most 306. In Rappmultiprecision.zip there are additional variants of Rapp for other maxvalues for digits. The storage is decimal. The exponent is stored in 8 bytes. These are the limits for a mouble variable m.
10**(-9223372036854775800)  |m| < 10**9223372036854775816

Maximal value m such that exp(m) and exp(-m) are computed correctly is 21237598959199934491.4100942 = 2.12375989591999344914100942*10**19

There are no integer data types; double variables have to be used for integer-valued variables. The loss in speed from this omission is negligible, since Microsoft C computes doubles very fast.

A constant, eg 3.14159, is stored in a double if it has 15 digits in the mantissa (ie not including digits in an exponent) and has absolute value inside the range for double stated above. Otherwise it is stored in a mouble. This will mostly store the constant with its exact value, but for many non-integer values, such as 0.009, there will be a difference due to the binary representation of a double. A statement m01 = 0.009 will give m01 the value 0.008999999999999999, since 0.009 is first passed to a double and then to a mouble. Avoid this by writing  16 digits in the number, apart from an exponent. Writing m01 = 0.009000000000000, m01 = 00.00900000000000, m01 = 0000000000000.009 will give m01 the value 0.009.
For an expression where the left side is mouble and the right side contains double variables, including constants assigned to double, the following holds. In a simple expression with only one of the + - * / operators or only a single function computation, the double variables will be converted to mouble before the operation. With several such operators this is not guaranteed, so make sure that you do not lose precision by operations on doubles that cannot have an exact result within double. Examples:
m01 = 1/3                      will give digitsnum correct digits
m01 = 10*(1/3)                 will not give digitsnum correct digits

m01 = 10*(1/3.000000000000000) will give digitsnum correct digits

m01 = log(2)                   will give digitsnum correct digits
m01 = 10*log(2)                will not give digitsnum correct digits

m01 = 10*log(0000000000000002) will give digitsnum correct digits
Declarations

A statement beginning with double declares double variables and arrays. The variable names are blank delimited. A name can have several thousand of characters. It shall start with a letter and contain only letters and digits. An array is declared with its index limits within [ and ]. Eg [2:7] means that you must have 2  index  If only one limit is given, then it is the upper limit and the lower limit will be 1. Eg [3] means [1:3]. Th limits can be given in E-notation, eg [2:1e2]. The dimension can be up to 30, ie there can be up to 30 indices. Eg A[2][3][4][2][8][5] defines the dimension as 6 with 1920 elements. An element is accessed with eg A[2][1][3][2][6][3].
A statement beginning with mouble declares mouble variables and arrays in the same way.

The dimension limits can be given as variables. However, with no such declarations and with no Redim-statements (see later) more errors in your program can be detected at an early stage (corresponding to compile stage in C) instead of at a time when the program has been running for a while.
If an index value falls outside the limits range, Rapp interrupts with an error message. (As opposed to C programs where speed is more important than informative error messages.)
There can be any number of declaration statements placed anywhere in the program, except that declarations with variable dimension limits must be placed after statements where those variables are assigned to valid numbers. The variables and arrays declared are available also before the point where they are declared, except that variable dimension limits are not in effect before the variables are assigned; before that point the dimension limits are 1:1. In the example below only Mc[1][1] is avalaible before i1 and i2 are set.

An array is allocated the memory space it needs when it is first used. If the first use is as input, of the whole array or only one element, all elements will be 0. If the first use is as output, all elements not referenced will be 0. If it is never used, no space will be occupied. If the total memory use would be very large, consider freeing arrays when they are not needed. See the Free statement later.
Example:

double i1 i2

mouble m1 m2 Ma[-1:3][0:3] Mb[3][4][5]
i1 = 7  i2 = 3
mouble Mc[2:i1][i2]
Digits statement

Syntax
digits number of digits

Gives the number of correct digits in the mantissa of a mouble.

Example:

digits 54

At least 27 digits will be set by Rapp. It will be a multiple of 9. If you do not give a multiple of 9, the number of digits will be adjusted upwards to closest multiple that is  306. In Rappmultiprecision.zip there are variants for other maxvalues of digits than 306. See section “Location of program and how to write and run Rapp code”. If you give several digits statements, the largest one will take effect. But it is normally best to give one digits statements at the top.
Do loops

Syntax
Do

  statement

  statement

  ...

endo

The statements between do and endo are repeated indefinitely until a break, goto or exit statement is executed. You can write end do and enddo instead of endo, if that is more convenient by resembling other languages you use.
Error messages

Errors are described in messages and the faulty code line(s) listed. Split the code where the error occurs on several lines to better understand what the error is.
Exit statement

Causes the execution to end. Stop is a synonym.
For/Next loops

Syntax
For variable = startvalue to endvalue [by increment]

  statements
Next variable

See initial example. Increment will be 1 if omitted. This is as classical Basic. Variable after Next is really superfluous, but I haven’t come around to admit its omission.
These examples are equivalent:

For i1 = 3 to 100 by 3

  statements

Next i1

i1 = 3

Do

  if i1 > 100 then break endif

  statements

  i1 = i1 + 3

Endo
Free statement

Syntax
Free array

Free helpmatrices
Example:

Free Ma
Execute this to free all memory occupied by an array after you no longer need it, to make more space for other arrays. You can use the array again, but all previous content was discarded.

The word helpmatrices after free has a special meaning, namely that all help matrices created for non-trivial matrix expressions are freed. Use this after a loop with convoluted matrix calculations. See also statement Helpmatricesfree.

All arrays will anyway be freed at termination of Proc Mbasic.
Functions of one scalar

Argument and return value can be both double and mouble, and the data types can be mixed.

Explanations are given for functions with non-standard notation.
Function     Explanation / comment
abs

asin         acos(x) = /2 – asin(x)
asinh
atan         acot(z) = atan(1/z) for z  0 and acot(0) = /2.
atanh
ceil         smallest integer value that is  argument

ceiling      synonym to ceil

cos

cosh

cot          1/tan – somewhat unnecessary but saves you a division

coth         1/tanh

erf

erfc         1 – erf**
erfin        inverse of erf

exp

floor        largest integer value that is  argument

gam          gamma function (x)*
log          negative argument gives result 0
log10        negative argument gives result 0
loggam       logarithm (base e) of gamma function (x)*
probnin      inverse -1 of normal distribution function probnorm. Remark: Not guaranteed 

             to give 15 correct digits if both input and output are declared double

probnorm     normal distribution function  with mean 0 and variance 1. Same Remark.
probnormc    1 – probnorm**
probnormmp5  probnorm - 0.5**
psi          derivative of loggam; psi(x) = (x) = ’(x)/(x)*
readlinew(x) word number x in string readline
sgn          sign: sgn(x) = -1 if x < 0, 0 if x = 0, 1 if x > 0
sin

sinbyx       sin(x)/x; the difference is a slight gain in accuracy and value 1 for x = 0
sinh
sinhbyx      sinh(x)/x; same difference as for sinbyx

sqr          square root

sqrt         synonym to sqr

tan

tanh
*Remark on gam(x), loggam(x) and psi(x) for mouble return value. Return has maximal precision 306 digits, since the functions become increasingly difficult to implement as precision increases, unless x is a positive multiple of 0.5 (which is easy to implement). For x < 0 and sin(x) < 0, log(|(x)|) is given for loggam(x), while gam(x) will be negative as it should. If the absolute value of the return value for gam(x) would be larger than 10**9223372036854775800, that number or its negative is returned. For 0 < x < 5.333669791026345338999251E17 (approximately), gam(x) will be returned OK. If loggam(x) and gam(x) are not defined, eg for x = 0, 0 is returned. For x = n + k/10 (n = 0, … , 100; k = 1, … , 10), (x) are computed once and stored for rapid returns. The purpose is to facilitate simulations, where these decimal values 0.1, 0.2, … , 0.9, 1.0, … 100.9, 101.0 are sufficient for the study.
The function erf is standard. It holds erf(x) = 2*probnorm(sqr(2)*x) - 1.

**Y1 = 1 - probnorm(x) and Y2 = probnormc(x) will generally be different numbers. The precision for Y2 will be related to itself, but the precision of Y1 will be related to probnorm(x). For example, with default digits 27 and x = 15 you get Y1 = 0 since probnorm(x) will be 1 - epsilon with epsilon so small that it does not affect the 27:th digit of probnorm(x). You get Y2 = epsilon = 3.67096619931275088578608966E-51, however. Analogously for probnorm(x) - 0.5 versus probnormmp5(x) and 1 - erf(x) versus erfc(x).
Functions of two scalars

Arguments and return value can be both double and mouble. The data types can be mixed. The order of the first and second argument might at places seem inconsequential, but that is the way it often is with mathematical function notation. For example bessik(x,) and gamdist(a,x), where in applications x varies for fixed and a, respectively. Trying to have a unified order will lead to other problems, such as inconsistency with notation in the literature.
Explanations are given for functions with non-standard notation.
Function         Explanation / comment
atan2(x,y)       atan(y/x) if x > 0. For x 0 see Wikipedia.
bessik(x,)      Modified Bessel functions. The "Numerical Recipes in C" algorithm used.

bessiks(x,)     For negative x all results are set to 0. The return value bessik(x,) is

                 0 if the computation succeeded (albeit with possibly wrong results if x

                 and/or  are too large). Return value is 1 if it failed, and then all

                 results are set to 0. The results are given in built-in variables of

                 Mbasic. If both x and  are double, the results from bessik() are in

                   d_bessI  = I(x)        d_bessK  = K(x)

                   d_bessIp = I'(x)       d_bessKp = K'(x)

                 The results from bessiks() are scaled with ex, ie

                   d_bessI  = I(x)e-x     d_bessK  = K(x)ex
                   d_bessIp = I'(x)e-x    d_bessKp = K'(x)ex
                 If at least one of x and  is mouble, the results are given in likenamed

                 variables with prefix m_ instead of d_, ie m_bessI etc;  306 digits.

bessjy(x,)      Bessel functions of the first and second kind. Built-in functions jn()

                 and yn() of C are sometimes used for integer  and both x and  double,

                 otherwise the "Numerical Recipes in C" algorithm. Both x and  can be

                 negative, but 0 is given as result if the function is not defined. The

                 return value bessjy(x,) is 0 if the computation succeeded (albeit with

                 possibly wrong results if x and/or  are too large). Return value is 1

                 if it failed, and then all results are set to 0. The results are given
                 in built-in variables of Mbasic. If both x and  are double, results are
                 in

                   d_bessJ  = J(x)     d_bessY  = Y(x)

                   d_bessJp = J'(x)    d_bessYp = Y'(x)

                 If at least one of x and  is mouble, the results are given in likenamed

                 variables with prefix m_ instead of d_, ie m_bessJ etc;  306 digits.

                 Use x and  double is speed is important and accuracy is not. Often
                 there will be only 12 correct digits in the mantissas of the double
                 results.
chi2(r,x)        2 distribution, see gamdist() below.
chi2c(r,x)       1 - chi2(r,x); see remark for probnormc().
chi2inv(r,p)     2 distribution inverse

chi2invc(r,p)    chi2inv(r,1-p); not analogous to betadistinvc(a,b,x)
gamdist(a,x)     gamma distribution function of x with mean and variance a; the 2
                 distribution with r degrees of freedom is gamdist(r/2,x/2);  306 digits
                 unless a is a multiple of 0.5.

gamdistc(a,x)    1 - gamma distribution function; see remark for probnormc().
gamdistinv(a,p)  gamma distribution function inverse

gamdistinvc(a,p) gamdistinv(a,1-p) ; not analogous to betadistinvc(a,b,x)
hypot(x,y)       sqrt(x*x+y*y); a trivial function, but included in the C math library.
max(x,y)

min(x,y)

poisson(,x)     Poisson distribution function of x with mean 
poissonc(,x)    1 - poisson(,x); see remark for probnormc().
poissoninv(,p)  Poisson distribution function inverse; Returns min{k:P(X<=k)>=p} for X
                 Poisson distributed (
pow(x,y)         exp(log(x)*y); see comment for x**y = xy
readline(x,y)    number starting at column x for y columns of string readline

tdist(x,)       Student's t-distribution function of x with  degrees of freedom defined

                 for -< x < , and approximately probnorm(x) if  is large. The result
                 has mouble precision if the variable receiving the return is mouble.

tdistc(x,)      1 - tdist(x,); see remark for probnormc().
tdistinv(p,)    inverse of Student's t-distribution. Full precision per 2016-11-28.
Functions of three scalars

Arguments and return value can be both double and mouble. The data types can be mixed.

Explanations are given for functions with non-standard notation.
Function            Explanation / comment

betadist(a,b,x)     distribution function for the frequency function C xa-1(1-x)b-1, where
                    0  x  1, a > 0, b > 0. Here C = (a+b)/[(a)(b)]. The return value
                    is 0 if invalid values  0 are given for a and/or b. Max 306 digits
                    unless both a and b are multiples of 0.5.   
betadistc(a,b,x)    1 - betadist(a,b,x); see remark for probnormc().
betadistinv(a,b,x)  inverse of betadist() 
betadistinvc(a,b,x) 1 - betadistinv(a,b,x)
bindist(n,p,x)      P(N  x) where N is binomial (n,p).
bindistc(n,p,x)     1 - bindist(n,p,x); see remark for probnormc().
bindistinv(n,p,z)   inverse of binomial (n,p); Returns min{k:P(N<=k)>=z}. Due to rounding

                    errors z = bindist(n,p,x) and x1 = bindistinv(n,p,z) will not always

                    give x1 = x.
cube(A,B,C)         solves the equation x3 + A x2 + B x + C = 0. The roots are given in the

                    built-in complex variables cuberootd1, cuberootd2 and cuberootd3 if

                    all of A, B and C are double. If at least one of them is mouble the

                    roots are given in cuberootm1, cuberootm2 and cuberootm3. If all
                    roots are real they are sorted in ascending order. If two roots are
                    complex, the first root is the real one, and the following two are
                    the complex ones sorted in ascending order of the imaginary parts.
                    The cases exactly zero or exactly two real roots do not exist. The

                    imaginary part cuberootd1[2] will always be 0. Return value is 1 if

                    there are three distinct real roots, 2 if there are three real roots

                    whereof at least two are equal, and 3 if there is only one real root.
                    A 2-degree equation  x2 + D x + E = 0 is solved from x3 + D x2 + E x = 0,

                    ie you set A = D, B = E, C = 0, and disregard a root 0.
fdist(x,1,2)      F-distribution function with v1 and v2 degrees of freedom 
fdistc(x,1,2)     1 - fdist(x,v1,v2); see remark for probnormc().
fdistinv(x,1,2)   inverse of fdist(). 

max(x,y,z)          maximum of x, y and z

min(x,y,z)          minimum of x, y and z
So max() and min() are defined for two or three scalars. At present it is too complicated to admit more than three scalars as arguments. You will have to combine functions, ie max(max(x,y,z),max(t,u)).

For these functions except cube(): If all arguments and the variable receiving the return value are double the calculation is carried out with only double variables and functions. If at least one of them is mouble, the calculation is done in mouble and, if the variable receiving the return value is double, the result is converted from mouble to double. For cube() this holds for the arguments as stated above, but the type of the return variable does not influence this.
Some explanations of the algorithms behind functions
These are designed to give the right answer with the chosen precision, including correct rounding, in the shortest possible time. This often means using several algorithms for a function, choosing the best one depending on the arguments and the precision. 
Example: For probnorm(), probnormc() and probnormmp5() which compute the normal distribution , Rapp uses the four formulas (26.2.10), (26.2.11), (26.2.12) (26.2.14) on p 932 of Abramowitz & Stegun (1955), Handbook of Mathematical Functions, Dover Publications, New York. (26.2.10) is used for small positive x. (26.2.11) is used for somewhat larger x. (26.2.14), even part as described in "Numerical Recipes in C", is used for still larger x in probnormc(x). (26.2.12), finally, is used for the largest x in probnormc(x), where it can give the right answer considering the remainder term Rn. These four intervals depend on the chosen precsion. "Numerical Recipes in C" formula (6.2.8) for erf(), using the gamma distribution, can be adapted to compute (). But I do not use it for mouble, since it is much slower than the combination of methods above. For double I use it for large enough x, since it is then more accurate. 
For probnin(), which computes the normal distribution function inverse, Rapp uses a combination of Abramowitz & Stegun (26.2.23) and Boris Moro’s and Peter J. Acklam’s method for an initial aproximation. After that starts an iterative solution by the Acklam method of a Taylor approximation up to degree 2 around successive approximations. If this iterative solution does not converge, Rapp switches to rootfinding of (y) = x by the bisection. (Note. For very small x, decreasing below the double range, the Moro-Acklam method deteriorates, so that the simpler formula Abramowitz & Stegun (26.2.23) actually becomes preferable.) 
For (x) and its logarithm, Abramowitz & Stegun formulas (6.1.15), (6.1.17), (6.1.33) and (6.1.40) are used. (6.1.15) and (6.1.40) are used together. From (6.1.15) it follows that log (x) = log (x+K) - log((x(x+1)...((x+K-1)) for any positive integer K. Applying (6.1.40) to z = x+K we can get the error arbitrarily small in absolute value for any n in (6.1.42) by choosing K large enough. The maximal n used is 169. Rapp is optimized to use the best pair (n,K) if this method is used. Also Rapp is optimized to use the best of this method and (6.1.33). The latter can be applied to any x by using (6.1.15), but for too large x the number of multiplications will be too time-consuming. (6.1.33) must be used for x close to 1 or 2 in order to get the desired relative accuracy in a reasonable time. The maximal n used in (6.1.33) is 335.

For bessik(x,) and bessjy(x,) the functions beschb() and chebev() of "Numerical Recipes in C", §6.7, are, in the mouble algorithm, replaced by series developments obtained from Abramowitz & Stegun (6.1.33). This satsifies the demand that the calculation is sufficiently accurate for  close to 0.
For more info on the ways the functions are computed, send me a mail.
Gosub statement

Syntax
gosub label

Meaning as in classical Basic. Transfers execution to the statement after label, where label shall be a word ending with a colon. After that statement shall be a return statement that transfers execution to the statement after the gosub statement.

Example:

d01 = 2 Gosub Routine print d01

goto L01

Routine: d01 = exp(d01) Return

L01:

To prevent execution while passing Routine, put a goto and label around Routine, as in the example. Or put Routine last and terminate the program with Exit or Stop before it.
Goto statement

Syntax
goto label

Meaning as in classical Basic. Transfers execution to the statement after label, where label shall be a word ending with a colon.

Example:

goto L01

L01:
Helpmatricesfree statement
Syntax
Helpmatricesfree
If you do not use matrix calculus for very large matrices, you do not need to read this. If you do create large matrices, Rapp will give you instructions to read this section of the manual in case Rapp aborts due to too much memory use. The statement frees the memory occupied by help matrices, created by Rapp, directly after their use. If desired, place the statement at the top before or after the digits statement. See statement Free with parameter helpmatrices for freeing at particular points.

Help matrices are created for storing intermediate results in non-trivial matrix expressions, such as A = trp(invgj(A*B+C*E)). Rapp does not automatically apply Helpmatricesfree, since such a matrix expression might appear in a loop that is executed many times. If Helpmatricesfree is in effect, then Rapp increases and decreases the memory for helpmatrices each time the loop is excuted. The caclulation goes through, but takes unneccessarily long time. If such loops that are executed more than a few times do not exist, then you should use Helpmatricesfree. If such loops exist, you can use the statement Free helpmatrices after the loops, see statement Free above.
Print to statement

Syntax
print to [file]

If a file within single or double quotes is given, the output from print statements will be directed to this file until another print to is given. Print to without a file directs the output (again) to the screen. If you run a program with Mbasic progfile > file, the output (but not all of it depending on your program) will be to this file.
Printing arrays

Syntax
print [nb|complex] [%[+][0][n[.m]]] array [\n]

Examples:

print Ma

print %9.2 Ma\n,Mb \n

print %+09.2 Ma\n

print %09.2 3*(Ma-MB) \n

Several array expressions are printed with the same print statement if separated by commas. 

All elements of Ma will be printed with sort order first index, second index, ... , last index. When the last index reverts to 1 a linebreak takes place. When the next last index reverts to 1 one more linebreak takes place.

If a format string %n.m is given, the number will print in at least n columns right-justified, of which m will be decimals preceded by a point. The format %n is the same as %n.0, unless n = 0. See below for info on scientific format printing.
If nb (meaning no blank) is not given directly after print, printed numbers on a line will be separated by one blank, in addition to blanks filled in left to have numbers occupy n positions. This is mostly what you want, but otherwise you give nb to print items with no blanks between them, not counting those filled in to the left of items.

If the keyword complex is written directly after print, complex variables and arrays have their values printed as re+i*im if im  0 and as re-i*|im| if im < 0. The values in the last complex dimension (the next last dimension if considered as real arrays) will be written on the same row. This printing is for easier understanding of a complex variable or array; it is not intended for subsequent use in the program. Real variables and arrays are not affected. The keyword cannot be given together with nb.   
If r = (number of integers including leftfill) + (one position for decimal point) + (number of decimals) > n, the r positions will print and the following numbers on the same line will be printed r-n columns more to the right.

If a format string %0n.m is given, the left filling to obtain right-justification will be with zeroes. If a plus sign + is given directly after %, possibly followed by a zero 0, all numbers will be printed with the sign + or – first. If not, only negative numbers will be printed with the minus sign – first.
These rules are those governing printing in C with %n.mf. Here the f last is omitted.
If no format string is given, all numbers will print in scientific format concluded by an exponent. All numbers will be printed with the sign + or – first. The format string %0 causes scientific format printing with a leading sign only for negative numbers.
If \n is given a linebreak takes place.

The program

mouble Ma[4][2][3]

Ma = {

  01 02 03.16

  04 05 06

  07 08 09

  10 11 12.04

  13 14 15

  16 17 18

  19 20 21

  22 23 24

}

print %6.1 Ma \n

will produce the output

   1.0    2.0    3.2

   4.0    5.0    6.0

   7.0    8.0    9.0

  10.0   11.0   12.0

  13.0   14.0   15.0

  16.0   17.0   18.0

  19.0   20.0   21.0

  22.0   23.0   24.0
Printing scalars

Syntax
print [nb] [%[+][0][n[.m]]] scalar [\n]

Examples:

print x

print %9.2 x,%10.0 y \n

print 3.14\n,6.28\n
Several scalars are printed if separated by commas. Printing scalars, matrices and texts can be combined in the same print statement. 
Here only one number is printed. See Print arrays above for formats and linebreaks. With nb, no blank will be put after the number.
Example with printing of array elementwise:
mouble Ma[3]

Ma = { 1.22 2.33 3.44 }

print %02.2 Ma[1] print %02.2 Ma[2] print %02.2 Ma[3] // same output as print %02.2 Ma
Printing text

Syntax
print [nb] ['text'] [\n]

Several text strings are printed if separated by commas. 

Up too 5000 character long texts can be printed.

Single or double quotes can be used around the text. Use single quotes if the text contains double quotes and vice versa. Without \n for linebreak the next printed number or text will be on the same line. With one blank in between unless nb was given.

The text can be omitted, and then only a blank or a linebreak is printed.

Only constant texts can be printed, not alphanumeric variables. (Mbasic is intended for mathematics, not text handling. It has no alphanumeric variables.)

Example:

print 'Result of operation :' print m2 \n
Pseudo-random numbers

The double variable RND will take a new value, uniformly and randomly distributed in (0,1), every time it is used. Successive values will be independent.

The mouble variable MRND works in the same way and should have all digits independent and randomly distributed, but I am not sure about this.

Although these numbers are pseudo-random like all such numbers generated by computers, in practice they can be regarded as random. The mechanism period is said to be > 2*1018. The mechanism is the same as that used for Procs Bich and Sample, namely the one of "Numerical Recipes in C", Ch. 7, routine ran2 in double and mouble, respectively.
Read from statement

Syntax
Read from [file]

If a file within single or double quotes is given, the input from read statements will be from this file until another read from is given. Read from without a file causes input (again) to come from the keyboard = what you type.

Example:

Read from 'C:\Rapp\Data\minput.txt'

Read m1

Read from
Read line statement

Syntax
Read line

Reads a line from keyboard or a file depending on the last preceding Read from. The line content is accessed with the functions readlinew(x) and readline(x,y) described above.
Reading data from a file

Syntax
Read scalar | array

Before the statement, a statement Read from file shall have been executed. Reads the scalar or array with blank-separated elements from the file.

For a complex variable or array, the file can have either two words for the real and imaginary parts, or a word (without embedded blanks) in the form x+i*y or x-i*y, where x and y are numbers and y is non-negative. The imaginary unit i must be given in lower case. For a complex array with n elements, the file can have either n numbers or n/2 words in the form x+i*y or x-i*y. This allows you to store data in a file with print complex in the form x+i*y and read them again from the same file, thus removing uncertainty as to the type of content in the file. Rapp does not check that the variable or array is complex. If it is a real array, two numbers x and y or –y will be read.
The next Read will get the next blank-separated number in the file, unless the file is closed in between.

Several items (scalars or arrays) can be read with the same read statement if separated by commas.

Example: See above.
Reading data from keyboard

Syntax
Read variable | array

Several items (scalars or arrays) can be read with the same read statement if separated by commas in the statement.
Complex numbers and arrays can be given as a sequence of numbers or a sequence of words in the form x+i*y or x-i*y, as stated above under 'Reading data from a file'.
Either no Read from statement shall have been executed before this, or the last Read from preceding this shall have been without a file.

You are prompted for the input by the name of the variable(s) or array followed by =>. Press enter after giving the number of items prompted for, blankseparated.
Redim statement

Syntax
Redim array[scalar][scalar] ... [scalar]

Example:

Redim Ma[d1][3]

Expands or shrinks the array to a new size, taking up more memory or freeing some if the array has been used.

The number of scalars within [ and ] shall be the same as the number of dimensions initially declared for the array. 
If the array was used before, elements with indices  than largest of the old and new dimension lower limits and  than the smallest of the old and new dimension upper limits are preserved. That is, elements with indices valid both in the old and the new array. New elements get the value 0.
Return statement

Syntax
Return

Example: See under Gosub statement.

Causes the statement efter the calling Gosub to be executed.
Sort statement

Syntax
Sort array

Sort array[scalar]

Examples:

Sort Mc

Sort Mc[2]

Sort Mc[d1]

Sorts the elements of the array in ascending order from and including the scalar index given. If no index is given it will be the lower index limit, which is 1 if you did not write [lower:upper]. Valid for one-dimensional arrays.
Sortd statement

As Sort with descending order.
Stop statement

Synonym to Exit.
System statement

Syntax
system 'text'

where text shall be enclosed in single or double quotes. If the text contains single quotes, enclose it in double quotes and vice versa.

Executes the system command in the text.

Example:

system 'copy "file no 1.Txt" C:\Rapp\Txt\moutput.txt'
Proc Ovelim

Example:

Include C:\Rapp\Rpp\Init.Rpp

Proc Ovelim

  prog(C:\Rapp\Rpp\Ov.Rpp) run

  Infil("C:\Rapp\Data\temp2.Txt" "C:\Rapp\Data\temp3.Txt") dlm(9)

  Var(F01 $ F02 $ F03 $ F04 $ F05 $ F06 $ F07 $ F08 $ F09 $ F10 $ F11 $
      F12 F13 F14 $ F15 $ F16 $ F17 $ F18 $ F19 $ F20 $ F21 $ F22 $)

  Fromdatevar(F12) Untodatevar(F13) key(F01 F03)

  Utfil(C:\Rapp\Data\temp4.Txt) Noempty
Endproc

Overlap Elimination: Creates a Rapp-program for eliminating policy period overlaps.

In insurance production systems successive policy cover periods often overlap. For example, a policy period might have begun 20120101 with an intended untodate (date after last day of cover) 20130101. Say that in the middle of the year the policy holder changes the policy terms by expanding the cover. This generates a new policy cover period starting at 20120701, with untodate 20130101 or 20130701. But the previous period's untodate remains 20130101 in the production system. A statistical data warehouse would be better served by changing it to 20120701, thus eliminating the overlap. This proc performs such overlap elimination by lowering untodates if warranted.

The created Rapp-program consists of two Proc Data steps. The first one sorts the indata to a temporary file by the ID-variables and Fromdate. The second one reads the temporary file and compares the given Untodate with the Fromdate of the next line, provided that the next line has the same ID. If this next Fromdate of the same ID is lower than Untodate, then the latter is lowered to this Fromdate in the outfile. The Next() function, described under Statement infiler of Proc Taran, is used. The function is applicable also to Proc Data, Proc Match and Proc Sum.
The input files temp2.Txt and temp3.Txt are merged into temp4.Txt, where untodate F13 has been replaced by a corrected, ie sometimes lowered, untodate.

Parameters

  Dlm()          Delimiter, as in Proc Taran et al.

  Dvar()         Derived variables, as in Proc Taran et al. If Untodate is used it will

                 be the corrected date.
  Firstobs()     First line included, as in Proc Taran et al.

  Fromdatevar()  The variable for fromdate.

  Headerline     Gives a header in the outfile, as in Proc Taran et al.

  Infil()        Infiles. Syntax as in Proc Durber, ie if there is more than one file

                 each must be enclosed in double quotes.

  Key()          This parameter contains the ID-variables defining a specific policy.

  Noempty        As in Proc Taran et al.

  Prog()         The generated Rapp-program. If not given, a temporary Rapp-program is

                 created and deleted after the proc.

  Run            If given the generated program is run directly. If not given, then

                 Prog() must be given, since it is meaningsless to generate and delete

                 a program without running it.

  Untodatevar()  The variable for untodate.

  Urval()        Selection of records as in Proc Taran et al.

  Utfil()        Outputfile.

  Uvar()         Outfile variables. If not given, all infile variables, including derived

                 ones, will be moved to the outfile. If given, untodate must be included

                 and will be replaced by the corrected date in the outfile. (The proc is

                 meaningless without inclusion of the corrected untodate.) Type

                 declarations are not required.

  Var()          The infile variables as in Proc Taran et al. No type means integer

                 numeric. For other types type declarations are required. Fromdate and

                 untodate have to be numeric, ie cannot be marked by $ as alphanumeric.

                 A numeric ID-variable can be marked as alphanumeric, if it is not used

                 in dvar() and if a specific value cannot have different appearances,

                 such as "2", " 2", "02" for the value 2. Apart from the dates and the

                 ID-variables, any variable not used in dvar() can be taken as

                 alphanumeric. In the example all variables except the dates are marked

                 by $ for simplicity.
There is a menu for overlap elimination in Rappmenus, using the proc.
Proc Percen

Example:

Proc Percen infil(Fors1.Txt) utfil(Result.Txt) columns(5 11) firstobs(2) Endproc

Adds the values in the columns specified in columns() - separated by delimiter space, tab, or semicolon - and calculates 100 percentile values where percentile 0 is the lowest percentile and percentile 100 the maximum value for the sum per line of the column values. Number of lines and average value is also given. Percentile values can differ slightly from those of a strict calculatation.
The example has all parameters. See Proc Durber for explanation of like-named parameters.
Proc Print

Example:

Proc Print listfil(C:\xx\lista1.txt) Endproc

If a printer has been given in Proc Init, the listfile listfil is sent to that one, otherwise to the default Windows printer. In the former case the printer must be able to take PostScript. The listfile can be an outputfile from Proc Graf with embedded SAS code for the graphics. Can also be an arbitrary textfile such as a SAS program. At difficulties to get this proc to work, print inside a PDF file created by Proc Graf.
Proc Reschl
Example:

Include C:\Rapp\Rpp\Init.Rpp
Proc Reschl Infil(Tri1.Txt) Utfil(Ut1.Txt) Futfil(Futj1.Txt) Textfil(Datafil.Txt) Endproc

Example of syntax, where the parameters in [] are optional, and | indicates alternatives. Any order. All parameters are case independent. More parameters are described below. Mixed Swedish-English language as in Rapp elsewhere.
PROC Reschl

  infilskk(fil1)|infil(fil1) [infilbet(fil2)] [parmfil(pfil)]

  utfil(fil3)

  [textfil(fil4)]

  [xutfil(fil5)]

  [futfil(fil6)] [ftextfil(fil7)] [gamma]

  [ackskk|ack] [ackbet]

  [exd]

  [nsvansskk(m)|nsvans(m)] [nsvansbet(m)]

  [svansskk(A|E|G|W)|svans(A|E|G|W)] [svansbet(A|E|G|W)]

  [nmseinfskk(m)] [nmseinfbet(m)]

  [arsranta(interest rate[:interestratefile/Lastclaimdate/FlagIncurredFlagPaid])] 
  [tidssort(D|W|M|Q|H|Y)] [munich] [sigPnm1(s1)] [sigInm1(s2)]
ENDPROC
Parameters

  ackbet               If specified, the payments are cumulative.

  ackskk|ack           Ditto for known claim cost (Incurred).

  arsranta()           Annual interest rate per annum percentage, eg 3.5. Default 0.

                       New 2018-04: For tidssort(M), optionally after a colon a file

                       contaning interest rates per month with lines on the form Month

                       Rate, eg 201801 2.75. A Lastclaimdate that is the now time epoch

                       shall be given after a slash. After yet a slash shall be 1 if the

                       file applies to Incurred, otherwise 0. After that 1 or 0 if the

                       file applies to Paid or not. For more explanation, use the

                       application Rappmenus / Reserves, read the right-click

                       documentation there and look at the generated Rapp program. These

                       optional parameters should be used in conjunction with optional

                       parameter interestratefile in parameter Pricefile() to Proc

                       Restri, as is the case in the Rapp program generated by Rappmenus

                       / Reserves.
  cnmseinfbet()        Number of claim back periods for least squares estimation, where

                       the last is (maximum claim period index) - cxmseinfbet().

                       Default all.

  cnmseinfskk()        Ditto for known claim cost.

  cnmseusebet()        Number of claim back periods for curve fitting, where the last is

                       (max claim period index) - cxmseusebet(). Default all. The fitted

                       curve is a continuation backwards of the tail determined by

                       svansbet(m), m = A, E, G, W. The curve replaces IBNS-values in the

                       unknown triangle, which would otherwise have been calculated by

                       chainladder or smoothing of factors with GLM.
  cnmseuseskk()        Ditto for known claim cost.

  cxmseinfbet()        Number of claim periods backwards not to be used for least squares

                       estimation. Default 0.

  cxmseinfskk()        Ditto for known claim cost.

  cxmseusebet()        Number of claim periods back where curve fitting is not to be

                       used. Default 0.

  cxmseuseskk()        Ditto for known claim cost.

  dec()                Number of decimals in outputfiles utfil() and xml file from

                       utfil().

  dnmseinfbet()        Number of pay development periods backwards for least squares

                       estimation, with the last being (maximum payment period index) -

                       dxmseinfbet(). Default 6.

  dnmseinfskk()        Ditto for known claim cost.

  dnmseusebet()        Number of pay development back periods for curve fitting, where

                       the last is (max payment period index) - dxmseusebet(). Default 0.

                       The fitted curve is a continuation backwards of the tail

                       determined by svansbet(m), m = A,E,G,W. The curve replaces

                       IBNS-values in the unknown triangle, which would otherwise have

                       been calculated by chainladder or smoothing of factors with GLM.

  dnmseuseskk()        Ditto for known claim cost.

  dt()                 Specifies the time for discounting to 'then'; where in the claim 

                       period. Values B, M, E for Beginning, Middle, End. Default E.
  dxmseinfbet()        Number of pay development periods of backwards not to be used for

                       least squares estimation. Default 0.

  dxmseinfskk()        Ditto for known claim cost.

  dxmseusebet()        Number of pay periods of development back where curve fitting is

                       not to be be used. Default 0.

  dxmseuseskk()        Ditto for known claim cost.

  exd                  Specifies that the inputfiles were created by copying triangles

                       in Excel and paste in textfiles. A line of such a textfile is

                       either a line of text that clearly shows that it does not contains

                       the numerical triangle values, or else it contains triangle values

                       separated by blanks, semicolon or tab character.

  ftextfil()           Semicolon separated textfile for the output of smoothing factors

                       from GLM.

  futfil()             Report with the output based on smoothing factors.

  futfilipc()          File for use as listfilut() in Proc Graf.

  fxutfil()            Report output in reverse order of arguments and claim period.

  gamma                If the specified gamma loglink is used in smoothing factors.

  genhead()            General heading for the reports within single or double quotes.

                       Maximum 80 characters.
  incpaid()            Specifies what the input data represent. Default 0. Needed for the

                       right headlines in graphs.

                         0 incurred and paid

                         1 number of claims: Payment-date shall then be report-date and

                           the paid amount set to 1. Then the reports are interpreted as

                           IBNR analysis of the number of claims.

                         2 Paid only

                         3 incurred only

                       With value of 1,2,3, the same inputfile shall be specified for

                       payment and changes in known claim cost.

  infilbet()           Triangle file for payments in the form in which they are made by

                       Proc Restri.

  infilskk()|infil()   Ditto for known claim cost.

  kilo                 Excel-inputfile xlmfilinput() has monetary amounts in thousands.

  macksefultimbet()    Manual estimate of the standard error for the development factor

                       from the last column of the triangle to the tail. Applies to Paid.

                       The parameter that was set to 0.02 in the final section of

                       Mack (1999). Default 0.02.

  macksefultimskk()    Ditto for Incurred.

  mackseperiodbet()    Manual estimate of the standard error of individual development

                       factor for an average claim period. Applies to Paid. The parameter

                       was set to 0.03 for claim period 3 in Mack (1999). Default 0.03.
  mackseperiodskk()    Ditto for Incurred.

  mackvolbet()         Accumulated end value of the triangle for the average claim

                       period. The one that Mack (1999) set to 5608000. Default value is

                       the average over all claim periods. Applies to Paid.

  mackvolskk()         Ditto for Incurred.

  mega                 Excel-inputfile xlmfilinput() has monetary amounts in millions.

  munich               Munich Chain Ladder (MCL) is used.

  nsvansbet()          Number of pay development periods forward when the tail is

                       computed. If 0 no tail is calculated. Default 0.
  nsvansskk()|nsvans() Ditto for known claim cost. Default 0.
  parmfil()            Gives parameter estimates for MCL to be used in place of the

                       computed ones. Also gives the combinations of claim time index and

                       development period index (both with base 1, not 0) to be excluded

                       in the calculation of variance estimates and correlation

                       coefficients.

  sigInm1()            Value of I(n-1)->n, if not given it will be set to 0. 
                       (Quarg & Mack p. 627)
  sigPnm1()            Value of P(n-1)->n, if not given it will be set to 0.

  svansbet()           Method for tail estimates for Incurred = known claim cost. Values,

                       where c_ij is the increment for claim period i and development

                       period j and V[i] = Sum_j c_ij over those j used for the

                       estimates.

                         A  E[c_ij] = alfa*V[i]/[1 + q(ß+j)^p]               Algebraic

                         E  utvecklingsfaktor = 1 + ß*exp(-lambda*j)         Exponential

                         G  E[c_ij] = alfa*V[i]*q^j                          Geometric

                         W  E[c_ij] = alfa*V[i]*[(j+1)^(ß-1)]*[q^((j+1)^ß)]  Weibull

                       For A p can be chosen by the user with expskk(p) respectively

                       expskk(p), eg expskk (8). Default is p that minimizes the sum of

                       square deviations. Default method is E. For adjustment of the

                       payment tail to the right level taking into account the known

                       claim cost, see below. See also Appendix 5.
  svansskk()|tail()    Ditto for known claim cost.

  tailcorr()           Indicates the method for adjustmen of the tails so that this

                       equality is obtained:

                         Incurred(known + IBNS + tail) = Paid (known + IBNS + tail)

                       0: None. 1: Paid tail adjusted. 2: Incurred tail adjusted.

  tailfact()           Factor for adjusting the Incurred-tail, default 1. Equal factor 

                       for all claim periods and development periods > n. The factor

                       aplies to the tail values computed in the first place. See below

                       for order of priority.
  tailpctlastbet()     Provides the required percent of the final cumulative value

                       including IBNS for Paid-tail. See below for priority with other.

                       parameters that affect the tail size.

  tailpctlastskk()     Ditto for Incurred-tail.

  textfil()            Semicolon separated textfile for the report output.

  tidssort()           Period length for the inputfiles' claim and development periods

                       in months, or code D, W, M, Q, T, H, Y. Eg tidssort(4) is the same

                       as tidssort(T), ie Tertial = four months. Needed for correct

                       summary to rolling-12-month figures and for discounting() if the

                       annual interest rate arsranta() > 0.

  userfil()            Optional. Textfile with additional data shown in (f)utfil(), and
                       (f)textfil() after regular calculated data per claim period. First
                       word of a line of data must be either an index 0 ... n (1 ... n+1)
                       or a notation such as 2003H1 occurring as first word in the

                       files mentioned. Thereafter, any number of blank-separated

                       columns. Data for different blocks (such as different business

                       lines) are separated by one or more non-data lines, such as blank

                       line. Can eg contain book value per claim period. See instruction

                       further down for adapting a report file.
  usernames()          Optional. Field names for userfil, eg usernames(Premium Clsetcst).
  utfil()              Report output with various undiscounted and discounted values.

                       This parameter determines also the name of an outputfile with

                       standard errors, according to Thomas Mack, "The standard error of

                       chain ladder reserve estimates: Recursive calculation and

                       inclusion of a tail factor" Astin Bulletin. Vol. 29. No 2. 1999.

                       361-366. The report with standard errors is always created and

                       gets -mack in the name before the point. Eg utfil(Reslist01.Txt)

                       gives Reslist01-mack.Txt.

  utfilapc()           File as utfilipc below, but with accumulated values.

  utfilipc()           File for use as listfilut() in Proc Graf. For example,

                         Proc Reschl ... utfilipc(Inc-per-skper.Txt) ... Endproc

                         Proc Graf listfilut(Inc-per-skper.Txt) Pdffil(Inc1.Pdf) Endproc

                       gives graphs of increments with different colors for true values,

                       chainladder estimated values, tail values. One graph per claim

                       period.
                       If utfilapc() but not utfilipc() is given, then Rapp creates a

                       file with content as utfilapc() and name utfilipc() with-Ack

                       appended. Conversely, if utfilipc() but not utfilapc() is given,

                       then Rapp creates a file with content as utfilipc() and name

                       utfilipc() with -Inc added.

  visachl              If given, IBNS by chainladder is shown simultaneously with curves

                       for parametric values. The parametric values are the ones used in

                       the reports.

  xmlfilinput()        Input from previously created xml file at parameter xmlinput.

  xmlinput             Input is taken from previously created xml file.

  xutfil()             Report output in reverse order of arguments and claim period.

This proc works with at most two triangle files such as those made with Proc Restri or manually produced. If there are pure upper development triangles in the files, then (Munich) chainladder calculation is made with computation of tails after the last available development period.

If also lower future prediction triangles are in the files, then those values are taken at face value, shown and summed up in the output as IBNS. Thus the RDC method can be used with Proc Reschl (despite the 'chl' in the proc name referring to chainladder, with which it was originally made). With parameter Uttri() to Proc (Bich) a file is created that can be used by Proc Reschl in that way.
Manually made files
Option 1

Mark a line of data by letting it begin with two integers and then a space and a colon (:). The first integer is just text information in the outputfiles and can be for example a quarter notationn such as 20083. The second integer is the index of claim periods, which may begin with 0 or 1. Examples from "Munich Chain Ladder" by Gerhard Quarg & Thomas Mack (2003), first payment file, then known-claim-cost file.
 Paid accumulated

   20011  1 :      576     1804     1970     2024     2074     2102     2131

   20012  2 :      866     1948     2162     2232     2284     2348

   20013  3 :     1412     3758     4252     4416     4494

   20014  4 :     2286     5292     5724     5850

   20021  5 :     1868     3778     4648

   20022  6 :     1442     4010

   20023  7 :     2044
 Incurred accumulated

   20011  1 :      978     2104     2134     2144     2174     2182     2174

   20012  2 :     1844     2552     2466     2480     2508     2454

   20013  3 :     2904     4354     4698     4600     4644

   20014  4 :     3502     5958     6070     6142

   20021  5 :     2812     4882     4852

   20022  6 :     2642     4406

   20023  7 :     5022

Option 2

Copy one or more triangular blocks in Excel, only the columns with known-claim-cost-changes and payments. Between two blocks there should be at least one line of text, ie a line that cannot be data. Paste it into a textfile such as Notepad. Rapp then sets the index 1, 2, 3, ... on the claim and payment periods. Blank fields may occur separated by delimiter semicolon or tab after the diagonal of the triangle.

Examples with the same numbers as above:
 576;1804;1970;2024;2074;2102;2131

 866;1948;2162;2232;2284;2348;

1412;3758;4252;4416;4494;    ;

2286;5292;5724;5850;    ;    ;

1868;3778;4648;    ;    ;    ;

1442;4010;    ;    ;    ;    ;

2044;    ;    ;    ;    ;    ;

 978;2104;2134;2144;2174;2182;2174

1844;2552;2466;2480;2508;2454;

2904;4354;4698;4600;4644;    ;

3502;5958;6070;6142;    ;    ;

2812;4882;4852;    ;    ;    ;

2642;4406;    ;    ;    ;    ;

5022;    ;    ;    ;    ;    ;

Examples of parmfil at MCL

Parameters as the first word on a line (possibly preceded by tab or ;) means new block.

After fP etc you give a sequence of development period indices and replacement value. The

lines need not appear in the order below.
 lambdaP 0.636  lambdaI 0.436

   fP       1   2.437           3 1.029

   fI       1   1.652           3 1.000                    6 0.996

 sigP       1  13.456  2 3.666  3 0.482  4 0.210  5 0.479  6 0.100

 sigI       1   9.727  2 2.544  3 1.004  4 0.120  5 0.860  6 0.100

    q       1   0.533  2 0.849  3 0.928           6 0.960  7 0.980

 rhoP                  2 4.990  3 2.167  4 1.619  5 1.791  6 0.236

 rhoI       1   5.711  2 3.819  3 1.918  4 1.461  5 1.637  6 0.222

Under Ex (exclusions) is given on a line for a specific time period

  Claim-period-index i = 1, 2, ...

    [Development-period-index s = 1, 2, ...]. If no development-period-index is given, 

            the word after claim period index refers to all development periods.

    Words containing:

    I if I(i,s+1)/I(i,s) shall be excluded from the calculation of fI and sigI.

    P if P(i,s+1)/P(i,s) shall be excluded from the calculation of fP and sigP.

    Q on Q(i,s) shall be excluded from the calculation of q, rhoP and rhoI.

 Ex

    3     1 IP   3 Q

    5     1 IPQ  2 IPQ  3 IPQ  4 IPQ  5 IPQ  6 IPQ  7 IPQ

    7     IP

End of example of parmfil at MCL

Also without actual Munich Chain Ladder exclusions can be made. Namely, if only one inputfile infil is given, which is interpreted to contain payments = known-claim-cost-changes, at the same time as parameter Munich is given.

If futfil() is given then is made, parallel with the chain ladder estimates, also reserve estimates with factor smoothing by gamma loglink if gamma was given, otherwise the marginal-totals-method, on
  1. the distribution argument that the triangles in the inputfile are separated on,

     such as line of business.

  2. claim period.

  3. development period.

Here are used all the cells of the distribution argument, claim period and development period with known outcomes, with the exception of the value Total of the distribution argument. The latter is supposed to give a summation of the previous triangles. Risk outcome, corresponding to claim cost in tariff analysis, is here payment amount alternatively known-claim-cost-change. Exposure is set to the risk outcome of development period 0 for the claim period that such a cell with known outcome belongs to. This smooths random fluctuations in the triangular cells over the distribution argument. If some risk outcome is negative, then the classical iterative marginal-totals-method is used. If RDC or Schnieper was given to Proc Restri, also predicted outcomes are used.
Factor smoothing with marginal-totals for only claim period and development period is the same as chain ladder calculation. So if there is only one triangle in addition to the Total-triangle, then this gives no new info. This even if some risk outcome is negative.

With two inputfiles one shall be a file of payments and the other a file of known-claim-cost-changes, identified by respective infilbet() and infilskk(). Without parameter Exd, they must be correspond line by line. Thus, line r in one shall refer to exactly the same claim period and the same development periods as line r in the other, or be a line of text without payment/changeamounts in both files. With parameter Exd, there may be any number of lines between the blocks, different numbers for the two files; however, the number of blocks shall be equal. Then the last non-blank line of text before a block is taken as the title for the block. The intended use of the proc is partly for files produced by Proc Restri without parameter Exd, and partly for files copied and pasted from Excel with parameter Exd.

With only one inputfile specified as infil() or infilskk(), it is assumed to relate to known-claim-cost-changes in terms of column headers in the outputfiles. However, the output is relevant for a payment file as input if the column headers are interpreted properly.

If ackbet respectively ackskk is given, then a triangle-value for development period j is assumed to be the cumulative amount up to j. Otherwise, the triangle-values are assumed relate to payments respectively known-claim-cost-changes during period j.

Yearly interest rate is expressed as a percentage, eg arsranta(3) gives the discounted value at that interest rate. Default is 0.

With tidssort is indicated length of claim and development periods in the inputfiles, where D is for days, M for months, Q for quarter, T for tertial and Y for years. Default is years. Also, it is used for summation to rolling 12-month figures in columns I and J.

The outputfile() will contain a list of undiscounted and discounted reserves. The discounted values are meaningful only if there is a payment file, because if only one file with known-claim-cost-changes exists, then one cannot know how they are distributed as payments and adjustments of claim-handler reserve.

If textfil() is given, then a semicolon delimited textfile is made that is suitable for input into Excel or SAS, containing: Distribution arguments (if any), period of time, claim period indices 0,1,2, ..., reserve factor for the final accumulated value, reserve, claim cost, tail, and several other concepts that are available in utfil().
For reserve calculation with factor smoothing, futfil() has the same role as utfil(). And ftextfil() has the same role as textfil().
Tail adjustment

If tailcorr(1) or tailcorr(2) is given, then the tails are adjusted so that this equality holds, for each time period separately, for undiscounted values in three terms regarding known triangle, unknown triangle and tail after unknown triangle:

(Known Incurred) + (IBNS Incurred) + (Tail Incurred) =

(Known Paid)     + (IBNS Paid)     + (Tail Paid)

Shorter written  KI + II + TI = KP + IP + TP

tailcorr(1): Paid tail is adjusted and Incurred tail is left unchanged.

tailcorr(2): Incurred tail is adjusted and Paid tail is left unchanged.

Proc Reschl thus fills out a possible gap between the known claim cost and payments so that the total claim cost including IBNS and tail will be the same regardless of whether known claim cost or payments are considered.

At tailcorr(1) the following rule is used. Analogously at tailcorr(2).

If (Tail payments) is 0 before this adjustment, then is set

  TP = KI + II + TI - KP - IP

Otherwise, ie if (Tail payments) is not 0 before this adjustment, then is set

  F = (KI + II + TI - KP - IP)/(TP before adjustment)

and

  TP = F×(TP before adjustment)

The factor F is multiplied to all individual tail values (before this adjustment) for each development period to provide adjusted individual tail values.
Priority order low to high of tailcorr(), tailfact(), tailpctlastbet(), tailpctlastskk()

1. tailfact() is applied to Incurred if given. Equal factor for all claim periods.

2. tailpctlastbet() and tailpctlastskk() are applied if given. For example tailpctlastskk(5) implies total Incurred tail for claim period j = 0.05×(Incurred + IBNS claim period j). Then tailfact() is superseded.

3. tailcorr() is applied if given 1 or 2. For example, at 2 the Incurred tail is adjusted and tailpctlastskk() becomes void.
Example, where Mclp.Txt is payment file and Mcli.Txt is the known-claim-cost file above.

Proc Reschl Infilbet(Mclp.Txt) Infilskk(Mcli.Txt) ackbet ackskk

  nsvansskk(0) nsvansbet(0) tidssort(q) arsranta(4.5)

  Munich sigPnm1(0.100) sigInm1(0.100)

  Utfil(Mcllist1.Txt) Xutfil(Mcllist2.Txt)

  parmfil(Mclparm01.Txt)

ENDPROC
An example with selection of small claims in preparatory stages in Proc Data

/* The first lines of Resb0.txt. Company and business line written

   together with comma in between.

28,30 19940103 19940121 000002840;000006000;000005000;000005430;

28,30 19940109 19940225 000004247;000001500;000001300;000007250;

28,30 19940109 19940616 000046423;000125645;000033000;000051675;

*/

Include C:\Rapp\Rpp\Init.Rpp
Proc Data textfil(Resb0-sma.Txt) var(f1) ;

infiler fil(Resb0.txt) var(f1 $ Ures Kres Utbet) dlm(';')

  dvar(Skkost = Kres + Utbet)  urval(Skkost < 1000000) ;

Endproc

Proc Data textfil(Resk0-sma.Txt) var(f1) ;

infiler fil(Resk0.txt) var(f1 $ Ures Kres Utbet) dlm(';')

  dvar(Skkost = Kres + Utbet)  urval(Skkost < 1000000) ;

Endproc

Proc Restri

  infil(C:\CKOD\Resb0-sma.Txt) utfil(C:\CKOD\Resb30t.Txt) argname(Bb) urval(4_2_30_30)

  Firstclaimtime(19940101) Lastclaimtime(20090630) Lastpaytime(20090630) Timeconv(h)

Endproc

Proc Restri

  infil(C:\CKOD\Resk0-sma.Txt) utfil(C:\CKOD\Resk30t.Txt) argname(Bb) urval(4_2_30_30)

  Firstclaimtime(19940101) Lastclaimtime(20090630) Lastpaytime(20090630)

  Timeconv(h)

Endproc

Proc Reschl Infilbet(C:\CKOD\Resb30t.Txt) Infilskk(C:\CKOD\Resk30t.Txt)

  svansskk(a) svansbet(a) expskk(1) expbet(1)

  nsvansskk(16) nsvansbet(16)

  dnmseinfskk(12) dxmseinfskk(0)    dnmseinfbet(12) dxmseinfbet(0)

//cnmseinfskk(10) cxmseinfskk(2)    cnmseinfbet(10) cxmseinfbet(2)

  tidssort(h) arsranta(3.5) Munich sigPnm1(0.100) sigInm1(0.100)

  Utfil(Mclt7-1.Txt) Xutfil(Mclt7-2.Txt) Utfilipc(Mclt7-3.txt)

Endproc

Proc Graf visa listfilut(Mclt7-3.txt) Endproc
Graphics

Proc Graf can be used with parameter pos[], where listfil() = utfil(), xutfil(), futfil(), fxutfil(). From column B the startpos is increased by 15 for each column.
Startpositions s in pos[... ... s text]

Undiscounted values

  16  B = Paid

  31  C = Claimhandlers reserve

  46  D = IBNS:Incurred

  61  E = Tail:Incurred

  76  F = B+C Incurred

  91  G = B+C+D+E Totcost

 106  H = F accumulated 1 year

 121 I = G accumulated 1 year

 136 J = IBNS:Paid

 151 K = Tail:Paid

 166 L = J + K

Discounted values to 'now' = end of last claim period in triangle

 181 M = IBNS:Paid

 196 N = Tail:Paid

 211 O = M + N

Discounted values to 'then' = beginning, middle or end of respective claim period as determined by dt()

 226 P = Paid

 241 Q = IBNS:Paid

 256 R = Tail:Paid

 271 S = P + Q + R

User data in userfil()

 286 T = User01 (User01, User02, ... are column headings in Excel unless names are given)

...

Example:

Proc Graf listfil(Resout1.Txt) pdffil(a1.Pdf) visa

  pos[0 1_pie_1%  46 IBNS-reserv  16+31 Känd§skadekostnad§exkl§IBNS 286 Bokförd§reserv]

  pos[0 A_vbar_color=black,green,red,blue_pattern=x1,l2,solid,solid

        76 Känd§skadekostnad§exkl§IBNS  46 IBNS-reserv

        61 Svans§över§IBNS  211 Diskonterad§reserv§till§'nu']
Endproc
Proc Graf listfil(Resout1-mack.Txt) pdffil(Resout1-mack-skk.Pdf)

  genhead('Prediction intervals Mack (1999) KNOWN CLAIMCOST') sw boxplot

  pos[ 0 A_vbar_pattern=solid_color=green 16-(1.96*54) § 16+(1.96*54)

       95§%§with§normalapprox§(±1.96×stderr)]

Endproc
Userfil() instructions

Take an Utfil from a previous run and modify it. Example of the left part of a summary block up to and including the field Paid:
                            B

 Claimperiod             Paid

+____________________________

 201201   1 :]       25852045

 201202   2 :]       25001332

 201203   3 :]       25425739

 201204   4 :]       25241922

 201205   5 :]       23878859

 201206   6 :]       23833887

 201207   7 :]       22644009

 201208   8 :]       19093987

 201209   9 :]       17705484

 201210  10 :]       12636243

 201211  11 :]        9955345

 201212  12 :]        5118419

+____________________________

 Total              236387271
Delete the Total line and everything to the right of :]. You can blank out or keep the period index (1, … ,12) and :]. Put your variables after the location of :]. Make as many blocks as there will be argument values with one block per value. You can omit the block for the Total. Eg if there are two argument values denoting for example two regions, make two blocks with your variables for each one. The report will have three blocks, where the Total will have the sum of your variables. Make at least one line without period data between the blocks. You can put the argument values above the blocks for clarity. Example - the right aligment and the headings are only for clarity. They are not necessary.
 [Region: 07

 Claimperiod    Premium Clsetcost

 201201   1 :] 34567890   3456789

 201202   2 :] 45678901   3333333

 201203   3 :] 56789012   2222222

 201204   4 :] 12345678   1111111

 201205   5 :] 23456789   2222222

 201206   6 :] 87654321   3333333

 201207   7 :] 76543210   4444444

 201208   8 :] 65432109   5555555

 201209   9 :] 54321098   6666666

 201210  10 :] 22223333   5555555

 201211  11 :] 55556666   4444444

 201212  12 :] 33331111   3333333

 [Region: 38

 Claimperiod    Premium Clsetcost

 201201   1 :] 14567890   1456789

 201202   2 :] 25678901   2333333

 201203   3 :] 36789012   3222222

 201204   4 :] 42345678   4111111

 201205   5 :] 53456789   5222222

 201206   6 :] 67654321   6333333

 201207   7 :] 56543210   5444444

 201208   8 :] 45432109   4555555

 201209   9 :] 34321098   3666666

 201210  10 :] 22223333   2555555

 201211  11 :] 15556666   1444444

 201212  12 :]  3331111    333333
Proc Restea
Extends a triangle with chain ladder and aggregates. Triangle Extend Aggregate. Intended use is for calendar year reserving before the year is over. Example:

1. A triangle file with monthly values 200401-200910 exists, ie, 70 claim and development periods. The proc then extends to 72 claim- and developmental periods, so that 200911 and 200912 are added as further periods with 0-values. Then the development factors for the 71st and 72nd development period are set to 1. Then this is aggregated to one out-period per 12 in-periods.

  Proc Restea infil(f1.txt) utfil(f2.txt) inpadd(2) inpperutp(12) Endproc

2. A triangle file with two-month values 200401-200910 exists, ie, 35 claim and development periods. The proc then extends to 36 claim- and developmental periods, so that 200911+200912 is an additional period with 0-value. Then the development factor for the 36th period of development is set to 1. Then this is aggregated to one out-period per 6 in-periods. The inputfile f1.txt is outputfile.

  Proc Restea infil(f1.txt) inpperutp(6) Endproc
Proc Restri
Example:

Include E:\Riskanalys\Rapp\Init.Rpp

Proc Restri Infil(Indat1.Txt) Utfil(Triangel.Txt) Argname(Produkt) Urval(1_2_2_50)

  Firstclaimtime(19910101) Lastclaimtime(20051231) Lastpaytime(20051231) Timeconv(q)

ENDPROC

Proc Restri Infil(Bichsim5x.Txt) Utfil(b222.Txt)

  segments(71_1) argname(Season)

  Timeconv(M) Firstclaimtime(20090101) Lastclaimtime(20091231) Lastpaytime(20091231)

  Colnpaybel(2) Colnpaytime(3) Colnsettime(4) Colnreptime(5) Colncltime(6)

  RDC maxW(999) quantlimit(999) quantno(100)

ENDPROC
Syntax, where parameters in [] are optional, and | indicates alternatives. Any order. All parameters are as always in Rapp case independent.

PROC Restri

  infil(fil1) utfil(fil2) [argname(name)] [Firstclaimtime(timepoint1)]

  [Lastclaimtime(timepoint2)] [Lastpaytime(timepoint3)] [Colncltime(colnno1)]

  [Urval(m1_m2_a3_a4_n1_n2_b3_b4)] [Timeconv(D|I|M|Q|H||Y|)]

  [Pricefile([fil3[/interestratefile])] 
  [Basepricetime(timepoint4)] [Colnpricetime(colnno2)] [Colnprice(colnno3)]

  [colnreptime(colnno4) utfild(fil4) utfiln(fil5)]

ENDPROC
Creates one or three triangle files from a textfile with one line per payment amount or change amount of known claim cost. A line must contain claim time, payment time and payment amount blank-, tab- or semicolon-separated in that order. Rapp determines if the fields are separated by spaces, tabs or semicolons from the presence of a semi-colon or tab or not. Time can be given as date YYYYMMDD, month YYYYMM, quarter YYYYQ, halfyear YYYY00H, year SSAA or non-negative integer indices. If argname() is given, by default the first column is taken as a distribution argument, such as product code. If the distribution argument is not the first delimiter separated word, then you can enter sparg() and nparg() or segments() for the starting position and number of positions for it. If colncltime() is given, claim timepoint is assumed to be in that column. Otherwise, in the first column if argname() is not given, else the second column.

Three files are created if Colnreptime() but not RDC and not Schnieper is given, to make possible an analysis according to R. Schnieper "Separating true IBNR and IBNER claims", Astin Bulletin 1991, vol 21(1), p. 111-127. See below under Colnreptime(). If parameter Schnieper is given, the parameter estimates and reserve predictions are computed in Rapp.
Parameters

  Argname()        Indicates that a distribution argument with that name shall be used

                   for splitting into several triangles.

  Basepricetime()  Time period to which payments are up-indexed using price index in the

                   textfile PriceFile. Eg Basepricetime(2007) converts all amounts. in

                   the inputfile to the year 2007 from the price level at payment time.

                   (This is, however, perhaps not appropriate when there are changes in

                   known claim cost in Infil, for those changes may be affected by

                   predicted inflation.)

  Benktander       See Proc Bich.

  Bornhuetter-Ferguson See Proc Bich.

  Cape-Cod         See Proc Bich.

  Colncltime()     Column no (blank-, tab- or semicolon-separated) for claim time.

  Colnpaybel()     Column number for payment in Infil().

  Colnpaytime()    Column number for payment time in Infil().

  Colnprice()      Column number (space separated) of the price index in the textfile

                   Pricefile.

  Colnpricetime()  Column number (space separated) for time period in Pricefile. The

                   time period can be given in any format of YYYYMMDD, YYYYMM, YYYYQ,

                   SSAA; it is converted by Rapp to format according to Timeconv.

  Colnreptime()    If given, the column no (blank-, tab- or semicolon-separated) for

                   customer claim report time. The format shall be as the format of claim

                   time. Ie YYYYMM if claim time is given as month in that format,

                   YYYYMMDD if claim time is given as date in that format, etc. If also

                   utfild() and utfiln() are given (unless also RDC or Schnieper are

                   given) utfild() will contain the D-triangle(s) and utfiln() the

                   N-triangle(s) according to Schnieper (1991). The claim report time

                   will determine this; if it is within the development period, the

                   payment will be added to the N-triangle for that development period.
  Colnsettime()    Column number for settlement-time in Infil(). Necessary for RDC.
  Delimiter()      Delimiter as in Proc Taran. If not given, then delimiter is

  Dlm()            determined from the inputfile's first line. Is there a tab or

                   semicolon, then this becomes the delimiter.

  DiscountToClaimperiodRate() See button Info1 in first screen of Rappmenus.Exe.

  Firstclaimtime() Lines with claim-time < Firstclaimtime are not included.

  Futureprices     See button Info1 in first screen of Rappmenus.Exe.

  Infil()          Inputfile with detailed data on payments / claim cost changes.

  Lastclaimtime()  Lines with claim-time > Lastclaimtime are not included.

  Lastpaytime()    Lines with pay-time > Lastpaytime are not included.

  Listfil()        Report listfile for RDC and Schnieper.

  Ndec()           The number of decimals for increments. Default 0.
  Nparg()          If given, it is the number of positions for the distribution argument.

  Premium()        See Proc Bich.
  Pricefile()      Textfile with price index. A line is eg "2007 290.1" or "2007 290,1".

                   New 2018-04: For Timeconv(M), optionally after a slash a file

                   contaning interest rates per month with lines on the form Month Rate,

                   eg 201801 2.75. See under Proc Reschl, parameter arsranta(). For more

                   explanation, use the application Rappmenus / Reserves, read the

                   right-click documentation there and look at the generated Rapp

                   program. This optional parameter should be used in conjunction with

                   optional parameter interestratefile to Proc Reschl, as is the case in

                   the Rapp program generated by Rappmenus / Reserves.

  Priorultimate()  Se Proc Bich.
  RDC              If given the RDC method is employed as in Proc Bich, see this proc.

                   A first variable with a unique claim-ID, Colnreptime() and

                   Colnsettime() must then be present for the infile. Other parameters

                   relevant for object claims in Proc Bich can be used, with -akt

                   optionally removed. Then quadrats with upper development triangles and

                   future prediction triangles by RDC are produced. These can be input to

                   Proc Reschl, which then takes the predictions for good. See example

                   above. Timeconv(month) with month not 1, 3, 4, 6, 12 cannot then be

                   given. A report file as Utfil() in Proc Bich is also created. If

                   Listfil() was given it will be the report file. Otherwise a file with
                   -Report inserted before the point in the name of Utfil().
  Resfil()         If specified with RDC, this file gets one line per claim in

                   Infil() with claim-ID, claim period (1, 2, ...), report delay w,

                   quantile q, segment and statistical reserve. Also Rapp creates a file

                   with -IB before the extent with IBNR calculation of the numbers of

                   unknown claims, reserve per unknown claim and reserve = product of

                   these two, and RBNS-reserve in the same way. Eg

                   resfil(Res-TPL-200912.Txt) gives IBNR file Res-TPL-200912-IB.Txt. A

                   file with -IBtri before the extent, giving partitions of IBNR and RBNS

                   on development periods, is also created.

  Schnieper        If given, the method used is the one by R. Schnieper "Separating true
                   IBNR and IBNER claims", Astin Bulletin 1991, vol 21(1), p. 111-127.

                   Colnreptime() is required for this. Listfil() works as for RDC.
  Schnieperexposure() A file with exposures E_i for Schnieper's method. If not given or

                   given as D, the first development period reported claim numbers are

                   exposures. See Proc Bich.
  Segmname()       Synonym for Argname(). 

  Segments()       As Segments-akt() in Proc Bich. Alternative to Sparg() and Nparg(). 

                   Instead of Sparg(63) Nparg(5) you can give Segments(63_5).
  Sparg()          If given, the starting position for the distribution argument.

  Timeconv()       Time conversion. The times are converted from the format of indata to

                   the right period length and notations in the triangles.

                     A no conversion

                     D date YYYYMMDD

                     H half year YYYYHj,  j=1,2

                     I integer index

                     M month YYYYMM

                     Q quarter YYYYQj, j=1,2,3,4

                     T tertial (four months) YYYYTj, j=1,2.3

                     Y year YYYY (default)
                   Mnemonics for A is that it means ASIS ("as it is"). One can also give

                   period length in number of months. For example Timeconv(4) is the same

                   as Timeconv(T), ie four months. Any integer > 0 accepted for chain-

                   ladder. For Schnieper and RDC only 1,3,4,6,12 are supported for now.
  Urval()          If the strings a3 and a4 have the same length m2, then only lines with

                   'a3' <= X <= 'a4' are included, where X is a string that is at

                   start-position m1 and m2 positions forward. Otherwise a3 and a4 are

                   interpreted as integer numeric values, between which the numeric value

                   at start-position m1 and m2 positions forward must be. X is

                   positional, not determined by column number for space separated

                   columns. Likewise optionally for n1, n2, b1, b2. If given, the

                   selections are combined with logical AND.
  Utfil()          Outputfile with triangles.

  Utfild()         See above under Colnreptime().

  Utfiln()         See above under Colnreptime().

When Lastclaimtime() is not the end-date for a normal period according to Timeconv(), the payments (known-claim-cost-changes) are summarized on broken periods, where the last one's last date is Lastclaimtime(). Then the input is assumed to be dates on the form YYYYMMDD. Eg at Timeconv(Q) for quarter, Lastclaimtime(20090331) is the end-date of a normal period, but Lastclaimtime(20090131) is not. The last period is then 20081101-20090131. Then Firstclaimtime() should be the start of a broken period of the same displacement, such as Firstclaimtime(19940201). Period names in the outputfile are then given as the first included month followed by an f for following. In the example 199402f, 199405f, ... , 200811f.

Lastpaytime() may be later than the Lastclaimtime(), for example:

  Firstclaimtime(19940101) Lastclaimtime(20081231) Lastpaytime(20090630) Timeconv(h)

Example semicolon separated input fields

02 01;19880523;20020715;  514

02 02;19880101;19880103;  302
Proc Rskilj
Example:

Proc Rskilj listfil(C:\xx\lista1.txt) Endproc

Listfil must be an outputfile listfil from Proc Taran, or an edited file with layout as a listfile from Proc Taran. In each argument block are placed at the far right under the double-bars (====) the measures Rskilj and Rsjbst. The denote risk separation capacity, on the one hand Rskilj for real portfolios and on the other Rsjbst, which is what it would be at quite evenly distibuted portfolio with the same medelfbel or medelndur. If the risk premium factor estimates have large sampling errors, it is advisable to use a listfile where the "Factors riskprem" were replaced with estimates modified with assessments. This is an approximate method that works well, however, unless some arguments covary very strongly with each other. In the latter case, these measures exaggerate risk separation ability. Bengt Eriksson's method is better from the covariation viewpoint but is, on the other hand, difficult to modify in the light of sampling errors and using assessments. Neither is there an equivalent to Rsjbst in Bengt's method. Bengt's method is implemented as parameter Rskilj() in Proc Taran.
Proc Sample

Example:

Include C:\Rapp\Rpp\Init.Rpp
Proc Sample infil(Skador.Txt) utfil(Skador-urval.Txt) firstobs(2) size(100) Endproc

Makes a simple random sample of size lines from a textfile in Windows, according to a random number generator I found on the Internet described as the best in the world. A "long period (> 2×1018) random number generator of L'Ecuyer with Bays-Durham shuffle and added safeguards". It is not the fastest of all acceptable generators, but fast enough; 10 million random numbers uniformly distributed in (0.1) takes a second to produce on a computer with 2GHz processor. Parameter firstobs has same meaning as in other places.
Proc Sas

Example:

Include C:\Rapp\Rpp\Init.Rpp
PROC Sas

libname Bibl 'F:\B99STI\SAS\Data';

filename in 'skattningar.txt';

DATA Bibl.Rappskattn;

  INFILE in DLM=';' FIRSTOBS=2;

  INPUT Argnamn $ Nivnamn $char10. Anr Ninr Dur Fbelndur Prem Antskad Skkost

    Ospmu Osp Basff Basfm Basfr Faktf Faktm Faktr Ospf Ospm Ospr Tarf

  ; RUN; quit;

Endproc

In Proc Sas you write code as in a SAS program.
Proc Sasin

Example:

Include C:\Rapp\Rpp\Init.Rpp
Proc Sasin libname(C:\xx\sas\data) tabell(parmtab1) textfil(parmfil1.txt) lrecl(500)

satser(if Antskad ^= 0; keep Anr Ninr Dur Prem;)

firstobs(2) dlm(';') Var(

  Argnamn $char20. @32 Nivnamn $char10. Anr Ninr Dur R Fbelndur Prem Antskad Skkost

  Ospmu Osp Basff Basfm Basfr Faktf Faktm Faktr Ospf Ospm Ospr Tarf

) rbort endproc

Proc Sasin libname(C:\xx\sas\data) tabell(parmtab1) textfil(parmfil1.txt)

satser(if Antskad ^= 0;) Endproc

Proc Sasin libname(C:\sas) tabell(Ag1) textfil(Ag1.txt) ctyp(7 9 21 22) Endproc

Imports a textfile to a SAS table. Parameter libname is given without quotes. A delimiter can be given as above. Delimiter, firstobs() and the list of variables var() may be omitted if the textfile has a first header (eg if it is created with Proc Match, Proc Sum or Proc Data with parameter Headerline). Rapp then reads the first and second lines to determine names and datatypes. If an alphanumeric variable can have a numeric value in the textfile's second line, you indicate with parameter ctyp() that it is alphanumeric. The last example indicates that the 7th, 9th, 21st and 22nd variables are alphanumeric.

In satser() can be written an optional set of SAS statements, which is executed after loading the textfile into SAS but before addition to the table. Above are included only lines with Antskad not 0. It is understood that any parentheses in the SAS-statements will, as usual, appear as ( followed by ), such as in conditions. A ) alone without a corresponding ( leads to Rapp stopping the generation of SAS-statements there.

At some lengths for Argnamn (above with $char20.), the scanning of Nivnamn will be wrong if you do not position to Nivnamn with @32. A bug in SAS (2009 - possibly corrected since then). Nivnamn always begins in column 32 in a semicolon delimited textfile produced by Proc Taran. With the parameter RBORT the type declaration R can occur in var().
Proc Sasut

Example:

Include C:\Rapp\Rpp\Init.Rpp
Proc Sasut libname(C:\xx\sas\data) tabell(tabell1) textfil(Rappdat1.txt) lrecl(500)

satser(if zzz = 'ABC';) var(bolag dur R riskpremie skfrek msk kvadr a01 $ a02 a03)

dlm(';') rbort endproc

Exports a SAS table to a textfile. Parameter libname given as in Proc Sasin. The advantage of the proc rather than produce an entire SAS program and use Proc Sas is that it becomes easier to make a textfile with fields separated by a delimiter such as semicolon. It is a bit cumbersome to do it in pure SAS. Unlike Proc Sasin one can besides a character within quotes provide a binary code, such as 9 for the tab character with delimiter(9), in the same manner as in Infiler in Proc Taran. Type decarations $ may be found in var(). Type decaration R is allowed, if the parameter RBORT is given in the proc. If not, Rapp believes that R is a SAS variable.

In satser() can be written an optional set of SAS statements, which is executed before writing to textfile from SAS. Above are included only lines with zzz = 'ABC'. Variables can be changed and new variables can be made here and be included in var(). Regarding possible parentheses in the SAS statements, Rapp assumes as above in Proc Sasin.
Example 1:

satser(if hv_pool = ' ' then hv_pool = 'N';

if boyta = 0 then biprom = 0; else biprom = floor(1000*biyta/boyta + 0.5);)
Example 2:

satser( if hv_pool = ' ' then hv_pool = 'N';

  if boyta = 0 then biprom = 0; else biprom = floor(1000*biyta/boyta + 0.5); )
Proc Sort
Example:

Include C:\Rapp\Rpp\Init.Rpp

Proc sort Stats sortin(file n:o 1.txt) sortout(f2.txt) parms(12 7 nd 1 5) Endproc

Sorting of textfile with fixed positions for sorting fields. Initial order for lines with the same value of the sort keys can not be guaranteed.

Parameters

  Collatingsequence() Optional. Either a string with a collating sequence, where the

                      first word starts with a colon (:), or a file with a collating

                      sequence, divided in arbitrarily many lines. Rapp reads the

                      sequence either as characters written as they are, binary with

                      three characters, or hexcode. Three characters are needed for

                      binary not to be taken as hexcode. Those characters are placed

                      first in a collation sequence. Thereafter are put the characters

                      not given by the user, in their original order. Sorting fields are

                      converted with the help of the collating sequence before sorting.

                      For example, if the character & is written first, then the lines

                      whose first sort field begins with & get to be on top. Represent

                      blanks with its hexcode 20. For example

                        Collatingsequence(: & 20 61  A 246  :)

                        Collatingsequence(:26 20  a 41   ö 3a)

                      These two examples accomplish the same thing.

  Longline            Optional. Give the parameter if you know or think that the file has

                      at least one line longer than 65535 characters, not including

                      linebreak characters CRLF, CR or LF (1310, 13 or 10). If that is

                      the case, the sorting takes somewhat less time than without the

                      parameter. Conversely, if you give the parameter for a file with

                      all lines at most 65535 characters, the sorting goes through but

                      takes somewhat more time.

  Parms()             Required. A sequence of starting positions and number of positions,

                      in sort order. After the number of positions can be written a third

                      parameter for the sort field as d, n, nd, dn, optionally with

                      lowercase or uppercase. Here d means sorting in descending order

                      and n that sorting shall be done with å ä ö Å Ä Ö according to

                      Swedish standards (National). See example. An n is overrun by

                      Collatingsequence().

  Sortin()            Required. Infile

  sortout()           Required. Outfile, can be the same as infile.

  Stats               Optional. Gives file and RAM statistics, including longest line

                      length.
Proc Split
Splits a file by values (maximum 30 characters) in a given column. That column can be given with splitcol() or with var() and splitvar(), where var() follows the syntax of Proc Taran, Proc Data et al. Delimiter is determined by the first line of the inputfile. The first observation that shall be read is given with firstobs(), default 1.

Example:

Proc Split infil(fil.txt) utfil(abc .txt) splitcol(7) firstobs(2) Endproc

alternatively

Proc Split infil(fil.txt) utfil(abc .txt) splitvar(F12) firstobs(2)

  var(f1 $   f3   f5 4   f77 r   v9 C  x14   f12   a0   a7) Endproc

Creates  abc0.txt abc2.txt abcVV03M370.txt abc36.txt if 0 2 VV03M370 36 is in column 7.
Proc Sum
Example:

Include C:\Rapp\Rpp\Init.Rpp
Proc Sum Textfil(Skadsum.txt) Headerline stats delimiter(9) Sumvar(Antskad Skkost Kvadr);

Infiler fil(Skadormatchade.txt)

  var(Skkost Xkod Antskad Kvadr Bilmärke $ Kon Geografi $ Ålder Skadedat Könåld Fromdat)

  Key(Geografi Ålder Kon Bilmärke) firstobs(2) delimiter(';') ;

ENDPROC

or

Include C:\Rapp\Rpp\Init.Rpp
Proc Sum;

Infiler fil(Skadormatchade.txt)

  var(Skkost Xkod Antskad Kvadr Bilmärke $ Kon Geografi $ Ålder Skadedat Könåld Fromdat)

  Key(Geografi Ålder Kon Bilmärke) firstobs(2) delimiter(';') ;
Utfil fil(Skadsum.txt) Headerline stats delimiter(9) Sumvar(Antskad Skkost Kvadr);
ENDPROC

Creates an aggregated file Skadsum.Txt with fields:

  Geografi Ålder Kon Bilmärke Antskad Skkost Kvadr

The file has one line per combination of (Geografi,Ålder,Kon,Bilmärke) [= (geography, age, gender, carmake)] and contains the sums of Antskad, Skkost and Kvadr [= square] in Skadormatchade.txt for that combination. The inputfile is the outputfile that was made in the example of the Proc Match.

The parameters of the main clause Proc Sum in the example has the same meaning as like-named parameters in Proc Match. Instead of Sumvar() one can write Var() as in Proc Match.
Other parameters

  q           Optional. Indicates that the summation shall be made in memory with hashing

  quick       instead of reading with break logic of a sorted file. The summation file's

              keys and summands are placed in RAM, which must be sufficiently large. If

              it is not, Rapp will interrupt with a message about it. Given that the

              memory requirement can be met, quick summation is usually much faster than

              sort/break. To ensure that the outfile is sorted on the keys, give

              parameter sort. Compare with parameter q = quick in Proc Match. 
  sort        The outputfile is sorted on the keys.

The syntax for the statement Infiler is the same as for the statement Transfil in Proc Match except Timekey(). That is to say as for the statement Infiler in Proc Taran plus Key parameter() and the elimination of the parameters associated with utfilink(). Dvar parameter() can be used. Statements arg(), arrays and functions ind0() and inx() can be used, as in Proc Data.
Proc Svg2co

Examples:

Include C:\Rapp\Rpp\Init.Rpp

Proc Svg2co svgfil(Komm.svg) coordfil(Sverige-kommun.Txt) kk idnum ENDPROC

Proc Svg2co svgfil(Fors.svg) coordfil(Sverige-forsaml.Txt) ff idnum ENDPROC

// 1. Points (circle) - use Idfil() as a symbfil() for Proc Map.
Proc Svg2co svgfil(S1port.svg) coordfil(S1port.Txt)

  ID4prefix(Orte) Idvar(x y typ namn) Idfil(S1port-ID.Txt) visaattribut

ENDPROC

// 2. Lines (roads, railroads, rivers)

Proc Svg2co svgfil(S1pvg1.svg) coordfil(Roads1.Txt)

  Left2RightText fnonl ID4prefix(Road) Idvar(ID IDold typ)

ENDPROC

Proc Svg2co svgfil(S1pvg2.svg) coordfil(Roads2.Txt)

  fnonl ID4prefix(Road) Startno(105) Idvar(ID typ)

ENDPROC

Proc Svg2co svgfil(S1pjv.svg) coordfil(Railroads.Txt)

  fnonl ID4prefix(Rroa) Idvar(ID)

ENDPROC

Proc Svg2co svgfil(S1phy.svg) coordfil(S1phy.Txt)

  Left2RightText fnonl ID4prefix(Rive) Idvar(ID namn)

ENDPROC

// 3. Areas

Proc Svg2co svgfil(S1pva.svg) coordfil(S1pva.Txt) ID4prefix(Vatt) Idvar(ID namn) ENDPROC

Proc Svg2co svgfil(S1pmk.svg) coordfil(Mark.Txt)  ID4prefix(Mark) Idvar(ID) ENDPROC

Proc Svg2co svgfil(S1pto.svg) coordfil(S1pto.Txt)

  ID4prefix(Tato) Symindex(7) Idvar(ID x y Symindex namn befolkning)

ENDPROC

Converts an SVG file (Scalar Vector Graphics) to a coordinate file according to the requirements of Proc Map. Creates also an ID-file, eg Sverige-forsaml-IX.Txt. You can edit it eg for better names.
Parameters

  Alfa2num()     Optional. Can be given as one or two numbers, alfa2num(b) or

                 alfa2num(a b). For example alfa2num(0.001) and alfa2num (0.2 0.0001). If

                 given, ID is converted to numerical values a+b, a+2×b, a+3×b, a+4×b, ...

  Attribut()     Optional. Can be given arbitrarily many times for attributes in svgfil.

                 Eg attribut(name) if svgfil contains attribut:name, for example as in

                 attribut:name="Steiermark". These will be given last in the ID-file. To

                 know the attributed, use Proc Copy with for() and forcol() to make a

                 smaller file which can be inspected in Notepad.
  Ff             If given svgfil() is assumed to have been made from

                 Sverige1000plus\ArcView8.x\s1pfg.shp and relate to the Swedish parishes.

                 Cannot be used with parameter Idvar().

  Fnonl          If given no final record is created with x, y as the first per

                 ID,segment.

  Id4prefix()    If given ID will begin with these four characters in upper case, after

                 which an 8-digit number starting with Startno() follows. Has priority

                 over Alfa2num().

  Idnum          If given, any non-digits are removed from the ID in svgfil.

  Idfil()        If given the name of the output ID-file. If not given, the ID-file will

                 have name as Coordfil() with -IX before the extension, eg S1port-IX.Txt.

  Idvar()        If given, it has priority over Attribut(). Gives the variables in the

                 output ID-file. The variables that can be given are ID, IDold, Symindex,

                 x, y and any attributes. x and y are the midpoint x and y. IDold is the

                 ID of the SVG file. ID is IDold if neither one of Alfa2num() or

                 Id4prefix() was given. Otherwise the ID determined by those parameters.

  Infil()        Input SVG file.

  Kk             If given svgfil() is assumed to have been made from

                 Sverige1000plus\ArcView8.x\s1pkn.shp and relate to the Swedish

                 municipalities. Cannot be used with parameter Idvar().

  Left2RightText If given, the order of certain items is swapped so that embedded texts

                 are read from left to right. Refers to roads, rivers, etc. in Proc Map.

                 For such files Fnonl should be given.

  Startno()      See under Id4prefix(). Default 1.

  Symindex()     An arbitrary integer that can be a variable in Idfil().

  Utfil()        Outfile with ID, segment, x, y. Midpoint x and midpoint y are added for

                 the first line of an ID.

  Visaattribut   If given the attributes are shown on the screen. Can only be used with

                 parameter Idvar().
Column numbers for ID, segment, x-coordinate, y-coordinate will be 1, 2, 3, 4. The first line for an (ID,segment) will contain in column 5 and 6 (max-x-coordinate + min-x-coordinate)/2 and (max-y-coordinate + min-y-coordinate)/2. That usually provides an approximate center of the area (ID,segment) where labels for ID can be written if labelidcol > 0 is given in Proc Map. For hook-shaped areas, however, the point might fall outside the area.

To convert an shp-file (Shape-file) to an svgfil, use free programs on

http://www.carto.net/papers/svg/utils/shp2svg
There is found a manual for these two programs (subject to change):

http://www.carto.net/papers/svg/utils/shp2svg/ogis2svg.exe
http://www.carto.net/papers/svg/utils/shp2svg/binary_win/shp2pgsql.exe
Proc Taran

Synonym: Proc Jung

Example:

Include C:\Rapp\Rpp\Init.Rpp
Proc Taran listfil(a1.txt) textfil(a2.txt) nummetod(N) rub62 'Test example n:o 01';

infiler fil(Rappdat1.txt) fil(Rappdat2.txt) delimiter(9)

  var(bolag Kod Bilmärke $ Geografi $ dur fbel/dur antskad skkost Kvadr Byggtyp a2)

  urval(skkost>0 & bolag = 4 10 & kod ^= 7) ;

arg(Code) rub30 'Code' rub110 'Some code' bas(1) antniv(7);

arg(A2) rub30 'Kod2' rub110 'Another code' bas(1)

  niv('Kod 01' 1.00 'Kod 02' 1.17); /* Class name 'Kod 01' etc max 10 characters. */

  /* 1.00 och 1.17 tariffen */

arg(byggtyp) rub30 'Btyp' rub110 'Bebyggelsetyp' bas(1)

niv(

 ( 4,1-9 'Övrigt' 1.00)

 ( 1,1:2 'Enplanshus' 1.00)

 ( 2,3-4 'Tvåplanshu' 1.32)

 ( 3,5   'Treplan'    1.40)

 ( 2,7 9 'Tvåpl spec' 1.32) ) ;

arg(Bilmärke) rub30 'Bilmärke' rub110 'Bilmärke Volvo eller Jaguar' bas(2);

arg(Geografi) rub30 'Tät- eller glesbygd' rub110

'Enligt SCB:s klassifikation från 1998' bas(0) tar(1 1.23 0.86 0.56);
TEXT

"Factors frequency" and "Factors riskprem" have been obtained from a system of equations,

which clears the influence of other arguments than the tabulated. "Factors riskprem" is

suitable for rating, albeit with regard to the column Rfactucpct (uncertainty in %). Few

and/or unevenly size distributed claims give a high percentage of uncertainty, making the

risk premium factors less usable for commercial rating.

Endproc

The proc consists of a number of statements, each with different parameters in any order.
Main statement directly after Proc Taran, ending with a semicolon

Parameters specified in the statement: they can be given in any order:

  alphasize() Optional. Default 2000 for 32-bit and 100000 for 64-bit. Minimum value 10.

              All alphanumeric fields are truncated to a maximum of alphasize characters

              in string constants and selection conditions in the Rapp-program and the

              outputfile. If less than 10 is set, it will be 10. Arguments always have

              at most 10 characters.

  arr()       Optional. Sets up a two-dimensional floating point number array. The

              minimum array index value is 0. The numbers are separated by commas or

              spaces. Intended for eg norming or price-indexing. Example:

                arr(0(12.3,14.4, 77.89e-1) 3(1.3   1.45   55  123.67 1.87255))

              Used in dvar() with arr(index1,index2). For example, arr(0,0) is assigned

              the value 12.3 and arr(3,2) is assigned the value 55 above. If an element

              is not assigned a value, there will be a warning, and value 0.

  assm,assmL  Optional. Provides association measures. AssmL gives list form. See

              Appendix 7.

  begperiod() Optional. First date of the period for which duration shall be calculated,

              if any of durb1() or durb2() is used for calculating duration in dvar() in

              the statements Infiler. Example 20020101. If not given, dur is calculated

              from the beginning of time. However, if a sequence of variable firstdate

              and enddate [see below under endperiod()] are to be used, then this can be

              done in parameter dvar() on the form

                durb1(frdk + firstdate/100000000 , todk + enddate/100000000)

              and likewise for durb2().

  BE-metod    Optional. Can be given at the same time as S-GLM and Tweedie(). If given,

  EVW         then before the risk premium estimates are made the observations are

              weighted with estimated real variances per tariff cell according to a model

              proposed by Bengt Eriksson. If the listfil is given as nnn.Txt, then a

              listfil is produced without the parameter and is given as nnn-orig.Txt. For

              example, if listfil(LL01.txt) was given, then LL01.txt will contain the

              estimates worked out with BE-metod and LL01-orig.Txt will contain the

              estimates worked out without BE-metod. All columns in the listfil except

              Factors riskprem are the same in the two listfils. Eg the variance

              estimates have not been adjusted. A textfil given with textfil() will

              contain parameter estimates from the -orig listfil. Recommended only for at

              most three arguments.

  chi2min     Optional. Gives the multiplicative solution that minimizes the exposure-

              weighted sum, over all tariff cells, of

                [(observed riskprem) - (estimated riskprem)]²/(estimated riskprem)

              The method is historically interesting, but does not provide useful

              solutions. Restrictions as for nummetod(K) described below.
  complfil()  Optional. A file with content as the insurance infile(s) and three added 

              fields last, namely multiplicatively computed expected number of claims,

              mean claim and multiplicatively computed expected claim cost. Delimiter

              between fields as the infile's. Only lines that were selected for tariff

              analysis, i.e. with excluded lines removed.
  crossarg()  Optional. The arguments to be cross-tabulated in crosslist(). Here the

              tabulation order has the first given argument innermost etc. If

              crosslist() but not crossarg() is given, then the first four arguments are

              tabulated, or those who exist if there are fewer than four arguments.

  crossblocks() Optional. Number of blocks ,for different values of the next innermost

              argument, per page. If not given Rapp calculates an appropriate value.

  crosslines() Optional. Number of lines per page. Default 78. Crossblocks is computed

              from that.

  crosslist() Optional. File in text format with univariate cross-tabulation of claim

              statistics for a maximum of four arguments given in crossarg(). Without

              parameter crossvar() the tabulation gives the univariate columns in the

              usual listfile listfil(), and then Proc Graf works. Run a few variations

              of this parameter and crossarg() to see how it works. Example:

                Proc Taran crosslist(cross01.txt) crossarg(Bolag Hustyp) nummetod(u) ...

              The listfile is made to PDF with Proc Graf, just as other listfiles, eg

                Proc Graf listfil(cross01.txt) pdffil(a.pdf) s u visa ENDPROC

              The parameter can be used with all other parameters. However, if the only

              purpose of the execution is to obtain a cross-tabulation, then nummetod(u)

              should be set to minimize run time.

  crossout()  Optional. Indicates together with crossvar() the variables to be tabulated

              and an optional format indication on the form ,#ofchars.#ofdecimals. If a

              format indication is not specified, it will be 0 decimals and the maximum

              number of characters found for printing of the variable, plus 1 for the

              initial blank. Number of chars shall include an initial blank and a

              possible decimal point. With a comma character in a format indication,

              thousands are comma separated. In the report, the level names of the

              innermost argument are given in 11 characters that are preceded by a blank.

              This format shall not appear in crossout() but is to be understood.

  crossrub()  Optional. Not more than four headers for the blocks in crosslist() when

              crossvar() was given.

  crossvar()  Optional. Indicates summation variables. If there are two infile-sets in

              two statements Infiler they must be prefixed by 1. or 2. where 1 or 2 gives

              the set of files that the variables are in. See example below. Furthermore

              one can give, after all the above summation variables and on the form

              bervar = ..., computed variables that are functions of the summation

              variables, of the six special variables Dur Fbel Prem Antskad Skkost Kvadr,

              and of variables with prefix tot. which are the sum over the innermost

              argument of the variable after the prefix. Eg tot.1.simulerad_skkost is the

              sum (innermost argument) of the variable simulerad_skkost in the first set

              of files. Then 100*1.simulerad_skkost/tot.1.simulerad_skkost is the percent

              of the total for respective argument value. The percent for ordinary claim

              cost is, in the same way, 100*skkost/tot.skkost.

  endperiod() Optional. Final date of the period that duration shall be calculated for,

              if any of durb1() or durb2() is used for calculating duration in dvar() in

              statements Infiler. Example 20041231. If not given, dur is computed to the

              end of time. See also above under begperiod() for ways to handle a sequence

              of variable firstdate and enddate.

  hprec       Optional. Gives six decimals in the risk premium factors in the listfil.

  inffil()    Optional. File in text format in which the Fisher information matrix and

              its inverse are put, for claim frequency and risk premium (mean claim), if

              the parameter is specified.

  listfil()   Required. File in text format, where the report will come.

  mellagg()   Optional. Values J, N. At J an insurance middle file is aggregated to a new

              file used in the iterations of the equation solution, but not at N. If

              mellagg not is given, such aggregation occurs only when Rapp estimates that

              the total CPU time would shrink by aggregation. Give this parameter if you

              found that Rapp's assessment of sorting needs to be replaced by your own

              assessment.

  mse         Optional. Produces the square root of an MSE (mean square error) estimate

              in listfil after the text "MSE-estimate square root:". This MSE estimate is

              the exposure weighted sum, over all tariff cells, of

                [(observed risk premium) - (estimated risk premium)]²
              Our experience is that the marginal totals method will mostly give the

              smallest such estimate. In simulations this was found to be true, even if

              the Standard GLM method had the smallest expected value of an estimate as

              this one, but with observed risk premium replaced by true risk premium.
  msemin()    Optional. Gives the multiplicative solution that minimizes the exposure-

              weighted sum, over all tariff cells, of

                [(observed riskprem) - (estimated riskprem)]²(observed riskprem)p
              where the exponent p is given in parentheses, eg msemin(0). With p = 0 is

              minimized the MSE-value described in the preceding parameter. The method,

              however, will usually not give the minimum expected value of an estimate

              like this, but with the observed risk premium replaced by true risk

              premium. Restrictions as for nummetod(K) described below.
  nofreq      Optional. Factor smoothing not made for claim frequency. Can be applied to

              shorten run times for simulations of eg the Tweedie methods' confidence

              intervals, or to other cases where frequency smoothing is not needed.

  noriskp     Optional. Factor smoothing not made for risk premium. Shortens run times

              for simulations where only the claim frequency is interesting.

  nummetod()  Optional. Values:

                K = Classical method.

                N = Newton-Raphson method is used.

                U = No GLM factor smoothing is made, only univariate accounting.

              If the parameter is not specified, N is selected if its running time is max

              the one of K plus a few minutes, or if K can not be used due to more than

              20 arguments or more than 2147483646 combinations. Otherwise K, ie if

              Newton-Raphson's method would give more than a few minutes longer running

              time than the classical method and the number of arguments and number of

              argument combinations fall within the technical limitations of the

              classical method. If K is chosen the confidence intervals will be according

              to the coarse adhoc method (1984) instead of the partial adhoc method

              (MVW). In most cases the difference has no practical significance.
  phi()       Optional. At s-GLM and the Tweedie model that value is used, if given, as

              dispersion parameter . If not given  is estimated with Pearson's

              ²-estimate for s-GLM. For the Tweedie model the Pearson estimate is used

              if PEARSON was given, otherwise the expression (8) in Appendix 4. If the

              sum of squares Kvadr per tariff cell is available, as is the case if

              individual claims are given as input to Proc Taran, the best estimate is

              calculated for s-GLM. The Tweedie model Pearson estimate depends on the

              input data: If idgrupp() is given as in Rapp multiclass analysis, the data

              are aggregated on the arguments and the ID-variables before the

              -calculation. If idgrupp() is not given, data are aggregated on the

              arguments if there are separate insurance- and claim-files, but if there is

              a set of combined claim-insurance files, there is no aggregation before the

              -calculation.

  rskilj()    Optional. There one can give arguments for which a measure of the risk

              separation capability according to Bengt Eriksson shall be calculated, eg

              Rskilj(KKL Zon Försäkringstagarålder). Rskilj(all) gives all. Shown in

              listfil just before the table of contents. The measure is 50(sum |premium

              difference| with and without the argument)/(total premium) = 100(total

              premium reallocated because of the argument)/(total premium). All factor

              solutions with one argument removed are made with marginal-totals, but the

              one with all arguments is made with the selected primary method, such as

              S-GLM. In the latter case the whole risk premium level flows, so one would

              need to recompute all total risk premiums to the same value = (total

              claim-cost)/(total exposure). That has not been done in Rapp. Therefore, it

              is preferable to select as primary method marginal totals, which gives the

              same total risk premium automatically. Otherwise, the interpretation is

              not clear.

  rub62       Optional. The main heading in the report, at most 62 characters. Default

              "Rubrik" (Swedish for Heading). Example rub62 'xxx' and rub62('xxx'), ie

              optionally with and without parentheses around the title in the way of the

              examples. The same applies to rub30 and rub110 relating to the arguments.

  s-GLM       Optional. If given, standard GLM (Poisson claim numbers and

              gamma-distributed claim amounts) is used, which gives a special listfile

              and graphs in Proc Graf in English in accordance with the GLM theory.

              Graphs for the univariate concepts of claim percent and marginal risk

              premium are shown as relations (ratios) between the levels and the base

              level. For example, if level 1 is the base level with claim percent 53 and

              level 2 has claim percent 84, then Claim perct 1.5849 = 84/53 is shown for

              level 2.

  textfil()   Optional. File in text format for the factor estimates and sums in

              semicolon-separated fields. Imported easily into SAS and Excel.

  Tweedie()   Optional. If given, a Tweedie model for risk premium with exponent p is

              used, where p is given in parentheses, eg Tweedie (1.5). Has priority if

              given at the same time as s-GLM. Claim frequency is analyzed with Poisson

              loglink. List layout as for MMT method. For graphs of mean claim factors,

              the square of the coefficient of variation is calculated as the difference

              of the corresponding squares for risk premium and claim frequency.

              However, note that I advice against using the Tweedie model in my article

              http://www.tandfonline.com/doi/abs/10.1080/03461238.2012.760885.
Examples of the use of crosslist() with crossout(), crossrub() and crossvar():

  Proc Taran crosslist(cross01.txt) crossarg(Bolag Hustyp) nummetod(u)

    crossvar(

      2.skkost1000 2.skkost2000 1.premproposal

      clpct = 100*skkost/prem

      ucpct = 100*sqr(kvadr)/skkost

      sjrpct1000 = 100*2.skkost1000/skkost  /* assumed < 99.5 */

      sjrpct2000 = 100*2.skkost2000/skkost  /* assumed < 99.5 */

    )

    crossout(dur 10.  prem  1.premproposal 14  clpct 9.2  ucpct .2

      sjrpct1000 sjrpct2000)

           /*  12345678901 234567890          12345678901234 23456789 12.45 12 12 */

    crossrub('                Number                            Claim Uncer Sj Sj'

             ' Bolag         ins yrs   Premium Premiumpropos  percent tntpc p1 p2') ;

For standard-GLM and Tweedie there must be base levels with uncertainty 0. If no base level is set, Rapp sets the levels with largest exposure to base levels. Newton-Raphson method is always used with Fisher's "scoring" method to replace H with -I. (Rapp is so fast that it no use to experiment with more complex algorithms.)

The Tweedie model's Pearson estimation can cause lost claims if you give an ID group at too low level, eg idgrupp (company,forsnr,hj,lineno,fromdat) where lineno is defined by dvar(lineno = Recno). A claim can have been matched against an insurance version that has never been valid, ie with fromdat = tomdat (up-to-not-incl-date), or against a version in force before the period covered. In those cases the point estimates will be more correct if no idgrupp() is given. It may be useful to first run with idgrupp() to get a -estimate, and then set that -value of phi() in a run without idgrupp().
Statement infiler, ending with a semicolon

One or two such statements must be given. If only one, it shall include both insurance- and claim-information. If two, then it is most natural that one contains insurance- and the other one claim-information. Uou can also use the other one for eg only premium information. The words variable and field below indicate the same thing.
String constants can be given as x' followed by hex numbers and concluded by '. Eg x'23BD2BBC' is the same as '#½+¼'.
Parameters specified in the statement; they can be given in any order:

  delimiter() Optional. If not specified or empty, the fields in the inputfiles of the

  dlm()       statement shall be blank separated. If a character in quotes is specified,

              eg. delimiter (';'), then the fields are separated by that character. If a

              numeric value is givent, such as delimiter(9), then the fields are

              separated by the character with that binary code. Tab has binary code 9 in

              Windows. Proc Sasut can export a SAS table to a textfile that is separated

              by delimiters such as tab or semicolon.

  delimiterut() Optional. Delimiter between fields in the outputfile utfilink(). Default

  dlmut()     is the same delimiter as for the inputfile. Eg delimiterut (9) for tab

              separated fields.

  dvar()      Optional. Provides derived variables from expressions in fields of the

              inputfile or from other variables in dvar(). A derived variable is a

              floating point number in 8 bytes, if it is clear that it is numeric from

              the variables and functions it uses, otherwise alphanumeric with maximum

              alphasize characters like other alphanumeric variables. These variables are

              used in the same way as fields in the inputfile, for all purposes:

              arguments, selection variables, summation variables, ID variables for

              multiclass analysis. As arguments numerical derived variables are

              truncated to integers like other floating-point arguments. The names of

              these variables and the fields they use may not contain + - ! , * / so that

              arithmetic expressions are not misinterpreted. Otherwise the same rules as

              for var(). Division by 0 produces result 0. If the terms are complex, Rapp

              generates internally additional derived variables for intermediate results.

              If, however, the expressions use no more than three quantities (constants

              or variables), uses at most one parenthesis pair, and the functions are

              alone or preceded by minus sign in the expression, then no additional

              variables are generated. Total number of ordinary and derived variables

              shall be maximum 600. If not, Rapp interrupts with an error message.

              Format

              dvar(variable = expression    variable = expression ...)

              Example, where frdk, todk, birthdate, sex (1/2/3) are numeric fields in the

              inputfile. As is seen, the order does not matter; Rapp computes anyway Age

              before sexage, because sexage requires that these are computed.

              dvar(Carm3 = Carm2  sexage = 100*(sex-1) + age

                   Carm2 = substr(Carmake,1,2) Age = min(99,|[(frdk - birthdate)/10000]|)

                   Carmodell='M-'!!Carm2!!Carmkod   Datum = 'D'!!chr(indatum)

                   dur = durb1(frdk,todk)  Månad = num(substr(Datum,6,2)) )

              Operators and functions for numerical derived fields

              + - * / || []    plus minus times division absoluteval integerpart (floor)

              arr()            array eg arr(0,inx(Age))
         
              chr()            converts a number to string

              durb1() durb2()  functions for duration calculation

              ind0()           ind0(x) = 1 if x = 0, else ind0(x) = 0

              indi() two   arg indi(x,y) = 1 if 0 <= x <= y, else 0

              indi() three arg indi(x,y1,y2) = 1 if y1 <= x <= y2, else 0

              indp()           indp(x) = 1 of x > 0, else indp(x) = 0

              For indsi1() ... indslt(), y1 y2 ... are numeric constants, not variables

              For indsle(), indslt() is assumed y0 = -oo (minus infinity)

              indsi1()         indsi1(x,y1 y2 ... yn) = 1 if x = yk for some k, else 0

              indsik()         Simple use
                                 indsik(x,y1 y2 ... yn) = k if x = yk for some k, else 0

                               Use with special number &IX as first y

                               (&IX = 899441271765394E271, a random number not appearing

                               naturally in data/constants) and a pair sequence.
                                 indsik(x,&IX y11 y12  y21 y22  y31 y32 ... yn1 yn2)

                               gives order number of of last pair k such that

                               yk1 <= x <= yk2. Set yi1 = yi2 if a hit for one single

                               number is appropriate for index i. It is not required that

                               yi1 <= yj1 for j > i, iepairs need not be ordered. Returns

                               0 if no hit.
                               Use with × interspersing values/valueintervals. Then

                               indsik() returns the order number of the last ×-delimited

                               sequence where a hit occurs. A colon between two values

                               denotes an interval. Parallell to indci() for alphanumeric

                               constants given below. Example

                                 indsik(x, × 1 2 3 4 × 5:8 12:15 × 16:22 × 25:28)

                                 is 1 if x = 3,  2 if x = 12,  3 if x = 17,  4 if x = 28.

                               Otherwise as above. Returns 0 if no hit.
              indsle()         indsle(x,y1 .. yn) = k om y(k-1) < x <= yk for some k,

                               n+1 else. Mnemonics: INDex in Sequence Less than or Equal.

              indslt()         indslt(x,y1 .. yn) = k if y(k-1) <= x < yk for some k,

                               n+1 else. Mnemonics: INDex in Sequence Less Than.

              min() 2-3 arg    minimum of the arguments 

              max() 2-3 arg    maximum of the arguments 

              maxv()  one arg  maximum value of the argument of records read so far and

                               not excluded. Eg maxv(Yearlyprem) gives the largest

                               occurring yearly premium. Used together with endshow.

              maxv()  two arg  as above but initiated to -1072 when 2:nd argument is 0.

              perinx()         gives period index. Use:

                                 perinx(date,startdate,daysperperiod)

                               Example: daysperperiod = 90 means quarterly periods

                               and perinx then gives quarter index  1 for date when

                               startdate is the first date in period 1. Thus

                                 perinx(20050101,20050101,90) =  1

                                 perinx(20050315,20050101,90) =  1

                                 perinx(20050401,20050101,90) =  2

                               If date < startdate then perinx  0. I.e. 

                                 perinx(20041231,20050101,90) =  0

                                 perinx(20041001,20050101,90) =  0

                                 perinx(20040930,20050101,90) = -1

                                 perinx(20030930,20050101,90) = -5
              sumv()  one arg  sum of values of the argument of records read so far and

                               not excluded. Eg sumv(Yearlyprem) gives premium portfolio.

                               Used together with endshow.

              sumv()  two arg  as above but initiated to 0 when 2:nd argument is 0.

              The function durb1() refers to 360- and durb2() to 365-day calculation of

              duration in two arguments fromdat and todk (up-to-not-including-date).

              Addition of begperiod/100000000 to fromdat and endperiod/100000000 to todk

              gives duration within [begperiod,endperiod], eg

              durb1(fromdat+.20080101,todk+.20081231).

              Functions beginning with ind are used to derive indices of various kinds.

              Mathematics for the numerical derived fields

              asin() atan() cos() exp() log() log10() loggam() max() min() probnin()

              probnorm() sin() tan() sqr() sqrt() x**y    where
              loggam(x) = log (x)  probnin(x) = -1(x)  probnorm(x) = (x)  x**y = xy
              The number  is represented by &PI (case independent - &pi also possible).

              Random numbers and simulations

              A random number uniformly distributed on (0.1) is obtained by ranuni. With

              probnin() you obtain then a normally distributed random number, because

              F-1(X) has distribution function F if X is distributed U(0,1). Example with

              E[x3] = 10, Var[x3] = 4:

                dvar( x1=ranuni x2=probnin(x1)  x3=10+2*probnin(ranuni) )
              Operators and functions for alphanumeric derived fields

              !!        Concatenation

              cha()     cha(str,tostr,fromstr) cha(f1,"AAO","ÅÄÖ") ÅÄÖ to AAO

              dat()     gives a numerical date YYYYMMDD from a string with the first word

                        Y-M-D (ISO), M/D/Y (USA) or D.M.Y (EUR). M and D can have one or
                        two figures. Eg dat("2009-5-7 13:24:45") = 20090507. Will also

                        come out right, if month is given as Jan, jan, etc, in a field.
              indc()    indc(str1,str2) = 1 if str1 = str2, else 0

              indci()   After comma is given a sequence of alphanumeric constants, not

                        variables.
                        Simple use
                          indci(str1,str2) = 1 if str1 exists in str2, else 0

                        Use with special character × (hex D7) first in str2 followed by a

                        sequence of alphanumeric values within single quotes, where a

                        colon between two values means an interval. Enclose the whole of

                        str2 in double quotes.

                          indci(str1,"×'value1'[:'value2'] ...") gives order number of

                            last value/valueinterval equal to/enclosing str1.

                          Eg: indci(Geo,"×'G-000' 'G-075' 'G-030' :'G-060' 'G-100'") =

                                1 if Geo = 'G-000'

                                2 if Geo = 'G-075'

                                3 if 'G-030' <= Geo <= 'G-060', eg 'G-043'

                                4 if Geo = 'G-100'

                                0 if no hit for any of the conditions above

                          Swedish comparison, ie 'z' is less than 'å', 'ä', 'ö' and 'Z'

                          is is less than 'Å', 'Ä', 'Ö'. Otherwise the Windows ASCII

                          character representation order. Ie digits come before letters,

                          and capitals before lower case letters. Eg '9' < 'A' < 'a'.

                        Use with ×, in addition, interspersing values/valueintervals.

                        Then indci() returns the order number of the last ×-delimited

                        sequence where a hit occurs.

                          Eg: indci(Geo,"×'G-000'×'G-075' 'G-030' :'G-060' × 'G-100'") =

                                1 if Geo = 'G-000'

                                2 if Geo = 'G-075'

                                2 if 'G-030' <= Geo <= 'G-060', eg 'G-043'

                                3 if Geo = 'G-100'

                                0 if no hit for any of the conditions above

                        The special uses might not be employed by many Rapp users

                        directly, but they are employed in the Visual Basic application

                        Tariff analysis.

              left()    x = left(str,i1) gives i1 chars from the beginning of str. If

                        str's length is less than i1, then x is padded to the right with

                        blanks. At x = left(str,i1,'z') x is padded to the right with the

                        character z.

              len()     gives length of the field

              num()     gives a numeric variable from an alphanumeric expression

              remove()  remove(str,tkn) removes the char tkn from str, eg remove(f1,'-')

              replace() replace(str,tostr,fromstr)

                        replace(f1,"AAO","ÅÄÖ") replaces Å,Ä,Ö with respectively A,A,O

              right()   x = right(str,i1) gives i1 chars from the end of str. If

                        str's length is less than i1, then x is padded to the left with

                        blanks. At x = right(str,i1,'z') x is padded to the left with the

                        char z.

              strip()   x = strip(str,'B',' ')  x = strip(str,'B')  x = strip(str)

                        Third argument: char that shall be removed from beginning

                        and/or end av str, default blank.

                        Second argument, default 'B':

                          'B','b' (Both) remove from beginning och end

                          'L','l' (Leading) remove from beginning

                          'T','t' (Trailing) remove from end

              substr()  x = substr(str,i1,i2) gives i2 chars from and including n:o i1

              subword() x = subword(str,i1,i2) gives i2 blank separated words from and

                        including n:o i1
              Operators for Look-back and Look-ahead, numeric and alphanumeric

              prev(variable) returns the value of a variable in the previous line

              next(variable) returns the value of a variable in the next line

              Can be used to identify first and last line of several with equal values

              of ID fields. Values 0 if no previous respectively next line exists.
              Functions for arguments, numeric and alphanumeric

              inx() gives the level number 1, 2, ... in the listfile for the argument as

              it is determined in the statement arg(). For example, in the introductory

              example

                arg(byggtyp) ... niv( ... ( 2,3-4 'Tvåplanshu' 1.32) ...) ;

              inx(byggtyp) gets the value 2 when byggtyp is 3, 4. Intended for norming of

              specific arguments in multiclass analysis, in conjunction with arr(), in

              Proc Data. See the section on norming in the multiclass analysis section.

              With derived variables and the above functions Proc Taran can be used for

              mathematical calculations. Make a file Dum1.Txt with only one line of

              content "1 1 1" and a Rapp-program that looks something like this:

                Include C:\Rapp\Rpp\Init.Rpp
                Proc Taran listfil(a.txt) nummetod(u) ;

                infiler fil(Dum1.Txt) var(Dur Skkost Dum)

                  dvar( x1 = log(sqrt(2*3.141592653589793)) )

                  utfilink(Ut.txt) utfilinkp( headerline drop(Recno Dur Skkost Dum) ) ;

                arg(Dum);

                ENDPROC

              The file Ut.txt then gives the value of x1.
              Use of Rapp as calculator. Write this Rapp-program:
              Calc.Rpp

              N

              Include C:\Rapp\Rpp\Init.Rpp
              system(Kalk.Txt)

              Proc data ;

              infiler fil(Dum1.Txt) var(Dum) // Dum1.Txt is one line "1 1 1".
                dvar( x =

                 Include Kalk.Txt

              );
              utfil fil(Ut.Txt) var(x);
              ENDPROC

              system(Ut.Txt)
              Make the file Kalk.Txt with a blank line.
              With the execution of Calc.Rpp is obtained a screen, where Kalk.Txt is

              filled out with a mathematical expression consisting of the operators and

              functions above. After close of Kalk.Txt the result is obtained on the

              screen.

  endshow()   Optional. In that parameter you give variables whose final value you want

              to get on the screen. Intended primarily for variables defined with sumv()

              or maxv(). Example: Endshow(Recno maxkund maxobj sumskkost) together with

              Dvar(maxkund = maxv(kund) maxobj = maxv(obj) sumskkost = sumv(skkost))

  fil()       Mandatory with at least one, but any number can be entered which are then

              concatenated. Specifies an inputfile in text format.

  firstobs()  Optional. If specified, lines with consecutive number < firstobs are not

              used. Eg firstobs(2) if the first line contains headers, firstobs(3) if the

              first and second line contains headers.
    urval()   Optional. If given only those records that meet the selection conditions

              are used. Conditions are specified for variables given in var() and dvar(),

              in the form

                variable condition-operator value [value [value ...]].

              A negative value is written in one word, eg -3 and not - 3. Conditions for

              multiple variables can be combined with AND or & (logical AND) and OR or !

              (logical OR). Parentheses can be used in arbitrarily many nestings.

              Negation of condition is written ! or NOT before a condition, a simple one

              or an expression in parentheses. A variable can be used several times in

              the same urval(). Max 250 selection conditions. After equality = or

              inequality ^= can be specified one or more values. There are several

              condition-operators for the same thing, so that users of eg SAS can write 

              like they use to. EQ GE GT LE GQ LQ LT NE NQ shall be surrounded by blanks.
                equality:      =   ==  EQ

                inequality:    ^=  !=  <>  ><  NE  NQ

                less than:     <   LT

                greater than:  >   GT

                less than or equal to:     <=   LE  LQ

                greater than or equal to:  >=   GE  GQ

              Example: urval(not(Bolag=4 10 OR (not Sktyp = 'TP' 'TE' ! ras>="KATT")

                       and !skkost=0) and promr ne 'A1' 'A2')

              Alphanumeric selection values are given, separated by at least one blank,

              within single or double quotes. Swedish standard is used for å - Ö in

              comparisons. Trailing blanks are not included in a comparison, for instance

              Rapp believes that "A" is equal to "A ". All condition-operators given

              above can be used.

  utfilink()  Optional. Specifies an output file of selected records in text format. Used

              to see if urval() is right and to create a new file with all or certain

              fields, including derived ones, dependent on the parameter utfilinkp().

              Delimiter is given by delimiterut(), otherwise it the file gets the

              delimiter between fields that is used in the input file - blank if no

              delimiter was given or semi-colon if delimiter(';') was given. Floating

              point numbers are represented as compactly as possible given maximum

              accuracy, in order to optimize the file for further use in Proc Taran.

  utfilinkp() Optional. Here you give the fields for utfilink() and if a first header

              shall be given. If not given, all fields including derived ones are put in

              utfilink(). With keep() are indicated fields that shall be included. With

              drop() are indicated fields that shall not be included. A first header is

              included if headerline is given. One can give keep(), drop() and headerline

              in any order. The fields come in the order they are in keep() if given,

              otherwise in the inputfile order.

              Syntax:

                utfilinkp([headerline] [keep(Field1 ...)] [drop(Field1 ...)]).

              Examples

                utfilinkp(headerline keep(Age brand dur prem))

                utfilinkp(drop(date_of_birth frdk todk))

              With dvar(), utfilink() and utfilinkp() one can come a long way in mangling

              data like SAS. With headerline and delimiter(';') is obtained a file that

              can be entered into Excel with Proc Excel. Without headerline is obtained a

              file for further use in Proc Taran. For example, one can calculate dur and

              age once and for all in a Proc Taran with nummetod(u) and some arbitrary

              argument.

  utfilexk()  Optional. Specifies an outputfile with non-selected lines in text format.

  var()       Required. Record description of the file's fields. Each field shall be

              given with a word of up to 30 characters. Up to 600 fields. No distinction

              on lower and capital letters, ie Field1 is the same as fiEld1. A field name

              may not be N,I,R,D,F,A,C,$, may not contain the characters ( ) ; & < > = '

              " and must not only contain numbers and comma point + - e E. Synonym to

              var() is post().
              The fields can be divided into five categories:

                1. Accounting fields for duration, etc

                2. Arguments

                3. Pure selection fields

                4. ID fields for multiclass analysis - see that section

                5. Fields not used by Proc Taran

              The system field Recno is also available and can be used for any purposes -

              as argument, for selection, etc. It is of integer typ and is increased by 1

              for each line in the inputfile. It has the value 1 for line no firstobs.

              For example, line 3 gets Recno = 1, if there are two headers in the

              inputfile and therefore one has set firstobs(3). The field is included in

              a possible utfilink, unless keep() is given for a collection of fields

              where Recno is not included or drop() is given for a collection of field

              where Recno is included.

              After a field can be specified one or two of these parameters, optional

              lowercase or uppercase letters:

                Datatype N,I, R,D,F, A,C,$. Optional, N if not specified.

                N,I indicates an integer in 4 bytes between -2147483648 and 2147483647.

                R,D,F indicates a floating-point number in 8 bytes (Real, Double, Float).

                A,C,$ indicates an alphanumeric variable. It may not have embedded blanks

                      if the fields are blank separated, but may otherwise have blanks,

                      eg at tab separation.

                Number of decimal places, eg, 3. Optional, 0 if not set. For example,

                  Field1 r 3 means that 123456 is loaded as the float number 123.456.

                  Field2 3 means that 123456 is read as the integer 123.

              Decimal comma and decimal point accepted, but not thousands delimiter. For

              example, space between thousands must be removed with remove(field,' ').

              Integer values with datatype N in format Zoned Decimal made with COBOL or

              Easytrieve in the mainframe are accepted after transfer of data to Windows.

              For floating point data with type R, the format Zoned Decimal is accepted

              only for negative integer values. (Non-negative integer values in format

              Zoned Decimal are never produced by Easytrieve.) Selection fields (see

              below) can be numeric or alphanumeric, and they may be floats. Accounting

              fields and arguments can be used for selection.

              Accounting fields: The following seven concepts are available for the

              report's account, where the optional ones are is given within []. Optional

              lowercase or uppercase.
                Dur [Fbel] [Ndur] [Prem]    [Antskad] Skkost [Kvadr]

              There may be several lines with the same set of fields. Data need not be

              aggregated.
              The insurance concepts

              Dur = sum of insurance years for the fields of category 2-5 on the line.

              Fbel (= sum insured under yearly risk) can not be given simultaneously with

              Ndur (= normed duration). They are treated the same way, ie as the

              exposure measure that applies in place of Dur. Here Fbel, Ndur, Prem shall

              have been calculated under yearly risk. For example Prem shall be earned

              premium, so that a certain policy is added to the Prem with its Dur×(annual

              premium) when indata is made to Proc Taran. If sum insured repectively

              annual premium are in the infiles, they shall be given as Fbel/Dur

              repectively Prem/Dur. In that case Rapp performs the multiplication with

              Dur. See below.

              One can calculate Dur and other summed variables, see above under dvar().

              Premium would then be given as Prem/Dur (annual premium) and (Sum insured)

              as Fbel/Dur. Alternatively in dvar(), for example:

                dvar( Dur=durb1(frdk,todk)    Fbel=Fbelopp*Dur   Prem = annual_prem*Dur )

              Here then the inputfile has one line per insurance version. A line can be

              eg. frdk = 20011201, todk = 20030301, giving duration 1.25. If begperiod

              and/or endperiod is not given, then duration is computed from the beginning

              and / or to the end of [frdk,todk). Note however how Proc Durber computes

              duration.
              The claim concepts

              Antskad (= number of claims), Skkost (= claim cost for the Antskad claims)

              and Kvadr (= square of claim cost) shall be calculated separately for each

              claim, in which Kvadr = Skkost×Skkost, and can be aggregated up to the set

              of fields of category 2-5 that the line refers to. The line does not have

              to be aggregated: One can let each line refer to a single policyholder or a

              single claim, with the only difference that the run time will be slightly

              longer. The claim concepts can be recorded together with the insurance

              concepts in one line or in a separate file for claims specified in one of

              two statements Infiler. They can be calculated in dvar().

              Antskad may be omitted, if the specified set of files given with a

              statement Infiler, where Skkost is, has one line per claim. This holds also

              for Kvadr, which in that case is computed as Skkost*Skkost for each line.
              The accounting fields, except Dur, can alternatively be given as average

              values if the inputfile is structured so. These averages can be given:
                Fbel/Dur

                Ndur/Dur

                Prem/Dur

                Antskad/Dur

                Skkost/Dur

                Kvadr/Dur

                Skkost/Antskad

                Kvadr/Antskad
              For example, if a file has been produced for SAS Proc Genmod it contains a

              field for claim frequency. That field is then given in Rapp as Antskad/Dur.

              A field for risk premium is given as Skkost/Dur. Mean claim is given as

              Skkost/Antskad. This means for example that SAS-tables for input to SAS

              Proc Genmod with Pearson's -estimate on non-aggregated claim data, with

              one line per claim, can be used directly in Rapp through a short program

              section. A file with one line per claim is then given as input in one of

              two statements Infiler.
Statement arg(), ended with semicolon

Between 1 and 99 such statements must be available. They describe arguments for factor smoothing with GLM or the classical method.

Parameters specified in the statement, they can be given in any order:

  antniv()    Optional. Specifies the number of levels (classes) for numeric arguments.

              Should be used only when niv() is not given, which is variant 1 below.

              Execution will then be faster.

  arg()       Required. A field given in the descriptions of all inputfiles. Arbitrary

              datatype N,R,A. It shall be understood to have the same meaning in both of

              two infile sets, if two are given.

  bas()       Optional. Value 0 if not set. Specifies the base level in the argument that

              will be given factor 1 for risk premium, mean claim and claim frequency. If

              0 is given through bas(0) or by default, the average value of the factors

              will be 1, weighted with fbel or ndur if any of those fields exists,

              otherwise weighted with dur. If the argument has only two levels (Yes or

              No), it may be advantageous to account for both modes by two runs of Proc

              Taran on the same input data and arguments. With one of the levels as base

              level, the hypothesis that the levels differ in risk is easier examined

              graphically.

  bas(/label) If label is specified last within bas(), such as bas(Yes/label),

              bas(25-29 yrs/label), bas(99/label), then what is before label is the

              actual value of the input data that shall have the base level. For example,

              if there are seven values 1 5 8 12 14 88 99 and we want to have value 88,

              the 6th, as base level. With bas(88/label) this is achieved, and it is

              synonymous with bas(6).

              Alternative use of bas(): Like the parameter bas=_ in Proc Graf. One can

              instead of a base class provide a special factor, such that all factor

              estimates for the risk premium are multiplied by the special factor, after

              the factor estimates are calculated so that the mean becomes 1. It is

              written with a decimal point to distinguish it from a base class. Example:

              bas(2856.0) means that all risk premium factor estimates are multiplied by

              2856 while the constant in the list is divided by 2856. The frequency

              factors are not affected. (A practical problem with this may be that the

              risk premium factors in the list become too large so that the text

              protrudes too far to the right.) In the semi-colon separated textfile and

              in the graphs the mean claim factor estimates are also multiplied by the

              special factor, since they are ratios of risk premium and frequency factor

              estimates. Was that done we should not have a special factor in Proc Graf,

              for that would be cake on cake.

  niv()       Optional. Describes levels and possible tariff factors. See below.

  rub110      Optional. Long title <= 110 characters within single or double quotes.

              Becomes equal to "Argument argument name" if not set. Example

              rub110('Bebyggelsetyp som de klassifierats av SCB 2001-01-01')

  rub30       Optional. Short title not exceeding 30 characters within single or double

              quotes. Becomes equal to the argument name if not set. Example

              rub30 'Bebyggelsetyp enl. SCB-klasser'

  tar()       Optional. Provides tariff factors. Takes over possible tariff factors given

              within the niv()-parameter.

  The parameters antniv() and niv() are related. There are four variants.

  - Variant 1-2 requires for numerical argument values that they be between 1 and 65535.

  - Variant 3 requires for numerical arguments that the diff between the largest and

              lowest values are not too large, depending on available RAM.

  - Variant 4 requires either integer values between and -999999999 and 2147483647 or

              that the argument has datatype A (C,$) and has values up to 10 characters.

  1. Parameter niv() not given, antniv() given

     See introductory example:

       arg(Code) rub30 'Code' rub110 'Some code' bas(1) antniv(7);

     If the argument is numeric, lines with the argument < 1 or > antniv are thrown away.

     If alphanumeric, lines with values of the argument over the antniv:th value are

     thrown away.

  2. Parameter niv() given on the formen below, antniv() given or not given

       niv('nivnamn' tarfakt 'nivnamn' tarfakt ... )

     See introductory example: niv('Kod 01' 1.00 'Kod 02' 1.17) Here nivnamn is a string

     of 10 characters giving level names and, optionally, tarfakt = tariff factor in an

     existing or recommended multiplicative tariff. With N = antniv if given, otherwise

     the number of class names given within single or double quotes, the following

     applies: If the argument is numeric, lines with the argument < 1 or > N are thrown

     away. If alphanumeric, lines with values of the argument over the N:th value are

     thrown away.

  3. Parameter niv() given on the form below, antniv() given or not given.

       niv( (n, argv argv ... argv:argv argv argv ... 'nivnamn' tarfakt) ... )

     See introductory example:
       niv(

        ( 4,1-9 'Övrigt' 1.00)

        ( 1,1:2 'Enplanshus' 1.00)

        ( 2,3-4 'Tvåplanshu' 1.32)

        ( 3,5   'Treplan'    1.40)

        ( 2,7 9 'Tvåpl spec' 1.32)

       )

     and this example for an alpha-numeric argument:

       niv(

        ( 4,'A0'-'Z9'   'Övrigt'     1.00)

        ( 1,'E11':'E12' 'Enplanshus' 1.00)

        ( 2,'E21'-'E29' 'Tvåplanshu' 1.32)

        ( 3,'E31'       'Treplan'    1.40)

        ( 2,'E27' 'E29' 'Tvåpl spec' 1.32)

       )

     Also here nivnamn is a string of 10 characters that provides level name and,

     optionally, tarfakt = tariff factor in an existing or recommended multiplicative

     tariff. If tarfakt is not given it will be 0. If given it must be preceded by a

     nivnamn within single or double quotes, to not be confused with a number as argument

     value.

     Subsequently written levels have priority over the previous ones. Eg in the first

     example above only the argument values 6 and 8 remain in the Övrigt (Other) group

     with index value 4. If( 4,1-9 'Övrigt' 1.00) had been written last, the whole

     argument had ended up in the Övrigt group.

     The difference from Variant 2 is that

       - Each level is indicated in parentheses.

       - The level index 1,2, ... can be given after the first left parenthesis relating

         to the level. If not given the index counts up from 1 for first level and by 1

         for each new level. In this case, a comma shall be given after the first left

         parenthesis relating to the level, eg (, 3-4 'Tvåplanshus').

       - Level-name nivnamn, within single or double quotes, is optional for numeric

         arguments but mandatory for alpha-numeric arguments. It receives as its value

         the first given argument value in the last line that gives the index level, if

         not given.

       - The argument is assumed given with integer values ... -2, -1, 0, 1, 2, ... after

         the first comma if numeric. Alphanumeric argument values shall be given within

         single or double quotes. If a sequence of characters gives two integers or

         strings that have a hyphen, without surrounding blanks, or colon between them,

         such as -69--60 or -69:-60 or -69 : -60 or 'CBS':'NIS', then it means that these

         two values and all values in between shall give the level's index. Eg (7, 3 6

         123:457 36) means that the values 3, 6, 36, 123, 124, ... 456, 457 shall provide

         index 7. The integers must have values between -2100000000 and 2100000000, and

         the difference D between maximum and minimum value should not be too large. How

         large D that can be accepted depends on available RAM. There is need for D bytes

         of memory if the number of levels is at most 254, and 2D if the number of levels

         is 255-65535. Sum of D or 2D or for all arguments by Variant 3 shall be

         accommodated within the RAM.

     Lines in the input files with different values from those given in the

     niv()-parameter are thrown away.

     Number of levels is antniv if this is given and is less than the highest given level

     within parentheses, otherwise the highest level given within parentheses. Up to

     65535 levels.
  4. None of the parameters niv() and antniv() given. 
     See introductory example:

       arg(Bilmärke) rub30 'Bilmärke' rub110 'Bilmärke Volvo eller Jaguar' bas(2);

     The argument shall be either an integer with values between -999999999 and

     2147483647, or be alpha-numeric (datatype A,C,$) and have values with a maximum of

     10 characters. The presence of the arguments of this type causes Rapp to first scan

     the insurance file(s) to determine the value set, in order to subsequently be able

     to place the argument levels into indices 1.2 ... . The order of levels in the

     report will be Swedish with å,ä,ö last in the alphabet, if the argument datatype is

A. At most 65535 levels are allowed.
Statement TEXT, must be last in the proc

Optional. Shall begin with TEXT in capital letters alone on a line. What is written in the following lines before Endproc appear as text in the report after a table of contents. The concluding Endproc is case insensitive but shall be alone on its line and shall not be preceded by a blank.
Proc Taran multiclass: OJ2010, SR 2018
Syntax in statement Proc Taran, where parameters in [] are optional and | indicates alternatives. Any order, also before or embedded among other parameters given in the manual for Proc Taran. All parameters are case independent.

  Proc Taran 

    (previously listed parameters in the manual, excluding listfil which is given below)

  multiarg(multiargname) | multiarg(multiargname1 multiargname2)

  [multigrupp(argname1 argname2 ...)]

  multimetod( // The indented parameters below shall appear inside multimetod().

    e|s [srkorr] [Bsaps] [Bsxzw] [Poisson] // Poisson is a new parameter 2019-01-27.
    [fr-exp number] [fr-maxit number]
    [ms-exp number] [ms-maxit number]

    [rp-exp number] [rp-maxit number]

    [regrfexp number] [q number] [qM number] 
    [Freqmcl] [Nonpseudo|NonpseudoM] [NonpseudoF]
    Distfree | Gamma | Lognormal | Mix // New parameters 2015-07-27 for SR:s method.      

  )

  listfil(listfil-excl-multiarg)

  multilist1(listfil-incl-multiarg-univariate)

  multilist2(multiarg-accounting-with-texts)

  multilist3(multiarg-accounting-without-texts) multiheader // For column headings A,B,..
  multilist4(listfil-excl-multiarg-after-iterations-with-multiarg)

  [multilist5(semicolon-separated-textfile-content-as-multilist4)]

[idgrupp(variablename1 variablename2 ...)] ;
There must be at least one argument in addition to the one or two credibility arguments. This can be a dummy, e.g. the variable dummyvar set by dvar(dummyvar = 1) for the insurance-, claim- or insurance-claim infiles.

Important parameters

multimetod()         First character: e for one of Esbjörn Ohlssons methods, s for Stig

                     Rosenlunds method as described in Appendix 2. Also s is for the
                     hierarchical method with a slight twist.   
multiarg()           One or two credibility arguments with few or no claims in many

                     classes. Two arguments apply to Esbjörn Ohlssons hierarchical

                     method, of which the first one is the argument denoted Sector and

                     the second one is the argument denoted Group.

multigrupp()         Optional. Argument(s) that are functions of the multi-argument(s),

                     ie two lines of data in the insurance infile with the same value for

                     the multi-argument(s) can not have different values for an argument

                     in multigrupp(). Otherwise, Rapp gives an error message and stops.

                     These arguments are called "auxiliary rating factors" in OJ2010.

freqmcl              Separate analysis of claim frequency and mean claim in the Stig

                     Rosenlund method.

regrfexp             Exponent for flattening the factor ladder for the credibility

                     argument in the Stig Rosenlund method. This is needed due to the

                     regression effect - regression to the mean.

fr-exp, ms-exp,      Exponents in Tweedie-like variance assumptions. See below. For Stig

rp-exp               Rosenlunds method with parameter freqmcl for separate analysis of

                     claim frequency and mean claim, these parameters are not used. The

                     exponents will then always be 1 for claim frequency and 2 for mean

                     claim, since in practice no other values are suitable.

fr-maxit, ms-maxit,  Maximal number of iterations between credibility and ordinary GLM.

rp-maxit             Set 0 for no iterations.
Poisson              If given for multimetod e claim numbers are assumed Poisson, meaning

                     that 2/µp = 2/µ will be set to 1. New parameter 2019-01-27.
See the Applicability table below for these and other parameters.
Below the expression riskp,meancl means mean claim, if parameter S-GLM for Standard GLM was given to Proc Taran. Otherwise it means risk premium.
The listfiles' meaning

listfil    Tariff analysis results with the multi-argument(s) completely excluded

multilist1 Univariate accounting, ie without estimated factors, for all arguments

multilist2 multiclass analysis report with estimates, normed exposure, credibility

           weights and credibility factors, with texts

multilist3 multiclass analysis report with credibility factors, without texts, for

           further processing with programs. For the methods below are given

           1 OJ2010/4.2  A  Index j = 1,2, ... for the multiclass argument's levels

                         B  Name as in multilist1 for the multiclass argument's levels

                         C  µ^(-1)Y~-(.j.) experience-value for claim-frequency by (4.23)

                         D  Ûj for claim-frequency by (4.24)

                         E  c0c(j) = Ûj(factorproduct for auxiliaries) for claim-
                                     frequency by Table 4.3 including a constant

                         F  µ^(-1)Y~-(.j.) experience-value for riskp,meancl by (4.23)

                         G  Ûj for riskp, meancl by (4.24)

                         H  c1c(j) = Ûj(factorproduct for auxiliaries) for riskp,meancl
                                     by Table 4.3 including a constant
                         I  fr-Ûj×ms-Ûj if riskp,meancl = mean claim under S-GLM
                         J  fr-c0c(j)×ms-c1c(j) if riskp,meancl = mean claim under S-GLM
           2a OJ2010/4.4 A  Index j = 1,2,... for sector level

           hierarchical. B  Name as in multilist1 for sector level

           2b with       C  Index k = 1,2,... for group level with start 1 in each sector

           multimetod s. D  Index 1,2,... for group level independent of sector

                         E  Name as in multilist1 for group levels independent of sector

                         F  Ûj for claim-frequency

                         G  Ûjk for claim-frequency

                         H  ÛjÛjk for claim-frequency

                         I  c0c(jk) = ÛjÛjk(factorproduct for auxiliaries) for claim- 
                                      frequency by section 4.4.2 including a constant

                         J  Ûj for riskp,meancl
                         K  Ûjk for riskp,meancl
                         L  ÛjÛjk for riskp,meancl
                         M  c0c(jk) = ÛjÛjk(factorproduct for auxiliaries) for riskp/
                                      meancl by section 4.4.2 including a constant
                         N  fr-ÛjÛjk×ms-ÛjÛjk if riskp,meancl = mean claim with S-GLM

                         O  fr-c0c(jk)×ms-c0c(jk) if riskp,meancl = mean claim with S-GLM
           3 Rosenlund   A  Index j = 1,2, ... for the multiclass argument's levels

             2018        B  Name as in multilist1 for the multiclass argument's levels

                         C  Y(j)    = risk premium per normed exposure = experience-value
                                      by (C.1)
                         D  µ^(k_j) = factor-smoothed risk premium =

                                      constant×(factor-product for auxiliaries) by (C3)
                         E  (j)   = predictor (estimate) of credibility factor by (C6)

                         F  (j)  = predictor corrected for regression effect by (C7)

multilist4 och multilist5: See the syntax description above.
1 If the first non-blank character following multimetod( is e or E, and also multiarg(multiargname)  was given, then the technique used is the one in section 4.2 of OJ2010. Both claim frequency and riskp,meancl are treated, where riskp,meancl = mean claim if S-GLM was given. For the marginal totals and the Tweedie methods riskp,meancl = risk premium. The parameter p of equation (4.19) for frequency is specified after fr-exp, p for mean claim after ms-exp, and p for risk premium after rp-exp. If p is not given, then default 1 is used for frequency, 2 for mean claim and parameter p in Tweedie(p) for that method. For marginal totals the default is p = 1.5 for risk premium. After fr-maxit, ms-maxit and rp-maxit are specified the maximum number of iterations between on one hand the determinations of Û-factors and on the other hand factor estimates according to the chosen GLM method on all arguments, except the multiclass argument that is written in multiarg(). Default values are fr-maxit = ms-maxit = rp-maxit = 0.
The variables in idgrupp() are the ID variables used for the OJ2010 method. If S-GLM was given it is not used for mean claim, only for claim frequency. They must be numeric. If such a variable has more than nine digits, it must have type R ie float. A maximum of 15 digits can be stored in a floating point number. In OJ2010 there is an index t, which refers to any repetition within the cell. The classical one in credibility is calendar year, but here is meant insurances or insurance versions. In OJ2010 variance estimates are made by summaries of squared deviations over t in a certain way. If you write eg in home insurance idgrupp(company forsnr), data are first summarized over that concept of identity, ie different versions with different helpnumbers and fromdates are pooled. With idgrupp(company forsnr helpno fromdate), each version and time period gets its own t. If idgrupp() is omitted and there are separate insurance- and claim-infiles, there will be a maximum aggregation within the method of OJ2010, which means that it will be at most one t per combination of all arguments, including ordinary arguments such as policy-holder age, "auxiliary rating factors" and the multi-argument(s). If the insuranceas are aggregated on the multi arguments and there is only a dummy ordinary variable with value 1, the estimated 2 for claim frequency will be 0. With separate insurance- and claim-infiles, you can avoid problems by the parameter Poisson, to get 2 = µ for claim frequency, and by having one line per claim in the claim file.
If you have one combined insurance-claim-file, then its line number is taken as the id in idgrupp(). This is parallell to the treatment of the Tweedie model in ordinary GLM.
The notation in OJ2010 has a base-factor µ which depends on the base levels defined for the arguments. The OJ2010 method can however be applied without such a base-factor defined. The parameters that are estimated in Rapp will then be
  2/µp  2/µ2  The square root estimates given (truncated to  0):  /µ0.5p  /µ
2018-09-11. The scaling to 2/µp instead of 2/µ2 is better and was effected this date. For p = 2 (normal mean claim value) they are the same. 
In the formula (4.27) for mean claim 2 Rapp uses the number of groups with claims as J in the factor (J-1) for the 2-estimate. This was changed 2014-01-04.

For the OJ2010 method are specified Srkorr, Bsaps, Bsxzw for three corrections. Srkorr is a recalculation of the credibility factors after an iteration. Bsaps is that µ-22 is estimated with Bichsel-Straub’s estimator Apseu and not with med OJ2010’s expression (4.27). Bsxzw means that the z-weighted mean value XZW is used instead of Y~-(...) for the computation of Ûj. See F. E. De Vylders bok "Advanced Risk Theory" (1996), Editions de l’Université de Bruxelles, III.Ch.3 - Theorem 15 for XZW and Theorem 18 för Apseu. Here we have A = 2. See Appendix 3.

2a, 2b If the first non-blank character following multimetod( is e, E, s, S, while at the same time multiarg(multiargnamn1 multiargnamn2) was given, then Rapp uses the hierarchical model in section 4.4 of OJ2010. Here multiargnamn1 is OJ2010/4.4:s sector and multiargnamn2 is OJ2010/4.4:s group. These arguments may have datatype and value set as other arguments. For example multiarg(company LKF). Rapp recalculates company to sector 1,2,3, .. and LKF to group 1,2,3, ... starting with 1 in each sector, in line with OJ2010/4.4:s notation. Both sector and group are written to the listfiles multilist2 and multilist3 with both these positive integer indices and the original values, eg 011401, 011402, ... for LKF. Both frequency and riskp,meancl are treated. Parameters idgrupp(), fr-exp, ms-exp, rp-exp, fr-maxit, ms-maxit, rp-maxit, srkorr have the same meaning and default values as for the OJ2010/4.2 method. However, bsaps and bsxzw do not (yet) apply to the hierarchical model. OJ2010/4.4 does not describe iterations between determinations of the Û-factors and the factor estimates for all arguments excluding sector and group, but such iterations are implemented in Rapp. The norming factors that correspond to Ûj in Step 1 of section 3.1 is for the hierarchical case ÛjÛjk, which I perceive to be the correct interpretation of the model. A warning however that one may get unstable factor estimates at iterations in the hierarchical case.
2b, which takes effect with multimetod s, is the same as 2a, with the exceptions that parameter Poisson is always implied, riskp,meancl means mean claim, , zero cost claims are counted, and the iterations use MMT. The parameter S-GLM has no effect. With 2a you have to give Poisson explicitly. 2b is essentially by Esbjörn Ohlsson, but these twists motivate to denote this method, with two multi arguments, multimetod s. 
OJ2010/4.4 contains like OJ2010/4.2 a base factor µ. For application of the OJ2010/4.4:s method without the need to define such a base-factor, Rapp estimates the parameters

  2/µp  2/µ2  2/µ2  Square root estimates given (though  0):  /µ0.5p  /µ  /µ
2018-09-11. The scaling to 2/µp instead of 2/µ2 is better and was effected this date.
3 If the first non-blank character following multimetod( is s or S, then Rapp uses the method of Credibility pseudo-estimators, Appendix 2 (Scandinavian Actuarial Journal 2018). The number after rp-maxit is used in the same way as for OJ2010:s method. The number after q is the factor q present in an earlier version of Stig's paper, default 0. The number after qM is the factor qM in the earlier paper, default 0. The number of rp-exp is the exponent p in assumption A4 in the earlier paper, default 1.5. If freqmcl (see below) is given, exponents p_F = 1 and p_M = 2 are used. I now recommend freqmcl, so q, qM and p are obsolete. The number after regrfexp (default 0.8) is  in (C7) and is used for a corrected column "Regression fallcorr rp" which is expression (C7). With 0 < regrfexp < 1 then is obtained a flatter factor sequence, which is intended to be a better factor estimation with regard to the "Regression fallacy". By that I mean that the factor values to a part are influenced by multiclass levels, which in reality are rather normal, by chance happening to get lower or higher values than they deserve. Selecting regrfexp is (so far for me) entirely a matter of intuition. In my practice, I have clearly seen that there is a regression effect, in the sense that a subsequent analysis of multiclass classifications on new data independent of those used for classification gave flatter ladders for factor estimates than the original, if these were not corrected in this way.
F2 and M2 are the claim frequency and mean claim versions, respectively, of the generic parameter 2 in Assumption 1 of Appendix 2. The generic estimator of the parameter is given in Theorem 5.2.
In Appendix 2, Section 1.3, it is stated that I haven't been able to show that the equations for the pseudo-estimators of 2 for claim frequency and mean claim, respectively, have at most one positive solution. While my intution tells me that this is so, I have nevertheless defined the psedo-estimate as the largest of possibly several solutions. Despite this, Rapp gives a solution that possibly might be lower than the largest one. I have not found it worthwhile to seek a possibly larger solution. 
Method 3 is now implemented for the MMT and the S-GLM methods of estimating µk_j.
New functionality 2014-02-26 and 2014-04-24: Parameter Nonpseudo or NonpseudoM means that the 2-estimator for mean claim will be 2/µ2 by OJ2010, as described under 1. I have found that it is sometimes preferable to use my pseudo-estimator and sometimes preferable to use the OJ2010 non-pseudo-estimator. This is described in Appendix 2. Parameter NonpseudoF means that the claim frequency 2-estimator will be 2/µ2 by OJ2010, but modified by taking 2 = µ, thus using the Poisson assumption. This is sometimes preferable over the pseudo-estimator, but less often than in the mean claim case. -- In Rappmenus, give CrRonpF, CrRonpM or CrRonpFM for Method. Freqmcl is implied with any of these three Methods.
New functionality 2015-07-27: Parameters Distfree or Gamma or Lognormal or Mix added. They have effect with Freqmcl. See below.

A summary of how the parameters are applicable (marked with Y) in the three methods:
Applicability table

Applicable in       Method

Parameter Default   1  2  3 Remark
bsaps     not used  Y  -  -

bsxzw     not used  Y  -  -

distfree  not used  -  -  Y  Distribution-free estimator of M2, See Appendix 2.
fr-exp        1     Y  Y  -
fr-maxit      0     Y  Y  -
freqmcl   not used  -  -  Y  Separate claim freq and mean cl analyses, exponents 1 and 2.
gamma     not used  -  -  Y  Gamma-assuming estimator of M2, See Appendix 2.
lognormal not used  -  -  Y  Lognormal-assuming estimator of M2. 

mix       not used  -  -  Y  Mixed Gamma-lognormal-assuming estimator of M2.
ms-exp        2     Y  Y  -
ms-maxit      0     Y  Y  -
nonpseudoF          Y  -  -  See above. Non-pseudo-estimator used for claim frequency.

nonpseudoM          Y  -  -  See above. Non-pseudo-estimator used for mean claim.

q             0     -  -  Y  q
qM            0     -  -  Y  qM
regrfexp    0.8     -  -  Y  
rp-exp      1.5     Y  Y  Y
rp-maxit      0     Y  Y  Y
srkorr    not used  Y  Y  -

Example

Proc Taran listfil(L1.Txt) nummetod(n) rub62 'Villaförsäkring version 15'

  multiarg(Bolag LKFkod) multimetod( Esbjörn fr-exp 1 rp-exp 1.5 fr-maxit 5 rp-maxit 4)

  multigrupp(Tätortsgrad Medianinkomst boendeform Befintligt-Område) idgrupp(bolag

  forsnr) multilist1(M1.Txt) multilist2(M2.Txt) multilist3(M3.Txt) multilist4(L2.Txt);

Proc Taran listfil(L1.Txt) textfil(Texttest1.Txt) nummetod(n)

  rub62 'PPF Lastbil Vagnskada version 15' Multiarg(LKFkod)

  Multimetod(Stig rp-maxit 4 regrfexp 0.6) multigrupp(Tätortsgrad Medianinkomst

  boendeform Befintligt-Område) multilist1(M1.Txt) multilist2(M2.Txt) multilist3(M3.Txt)

  multilist4(L2.Txt) multilist5(T5.Txt) ;

Normed exposure exposure = sum of exposure*(factor product for the ordinary variables) is written in multilist2 for all methods. The factor product is exclusive base premium factor. All factor ladders for an argument has average 1 weighted with exposure. The base premium factor is instead in the "Factorest riskpremium = multiplicative risk premium from Auxiliaries, per unit normed exposure", that is written in the reports by Stig's method Appendix 2.
Example program

Include C:\Rapp\Rpp\Init.Rpp
Proc Taran listfil(t0.txt) S-GLM multiarg(kundnr) multimetod(e /*srkorr*/ bsaps bsxzw

fr-maxit 5 ms-maxit 5) multilist1(t1.txt) 
multilist2(t2.txt) multilist3(t3.txt) multilist4(t4.txt) multilist5(t5.txt) ;

infiler fil(C:\s\busscase2.txt) var(zon bussald kundnr antavt dur antskad 
skkost dum1 dum2)   urval(kundnr ne 145);

arg(bussald) bas(5); arg(zon) bas(4); arg(kundnr);

ENDPROC

Rapp-program that makes a PDF file, shown i colour below, from the Rapp-program above

Include C:\Rapp\Rpp\Init.Rpp
Proc graf pdffil(a.pdf) listfil(Mtst1.Rpp) visa endproc
Include C:\Rapp\Rpp\Init.Rpp
Proc Taran listfil(t0.txt) S-GLM multiarg(kundnr) multimetod(e /*srkorr*/ bsaps bsxzw 

fr-maxit 5 ms-maxit 5) multilist1(t1.txt)

multilist2(t2.txt) multilist3(t3.txt) multilist4(t4.txt) multilist5(t5.txt) ;

infiler fil(C:\s\busscase2.txt) var(zon bussald kundnr antavt dur antskad

skkost dum1 dum2)   urval(kundnr ne 145);

arg(bussald) bas(5); arg(zon) bas(4); arg(kundnr);

ENDPROC
Note that multiclass parameters are brown, so that you can verify that you spelled it right - a misspelled parameter becomes black.
The first three lines of the input file busscase2.txt

1 0  15   2  1.585216   0       0   0   0

1 0 145  47 12.062971 377  294556 377 377

1 0 184   6  3.321013   4   22152   4   4
Norming

When dealing with arguments, ordinary or in multigrupp() (ie "Auxiliary rating factors"), with many levels and uncertain outcomes, you may want to replace point estimates obtained in multilist4 with assessments. For example, if five years of age sticks up by chance (large claim), you can take a risk premium factor value between them for ages 4 and 6 years but let other risk premium factors be left unchanged. Then we norm for age according to the example of Proc Data. In multiclass analysis with Proc Taran then Ndur is used as exposure, and the argument age is omitted as arg()-clause.
Proc Xlmerg

Example: Proc Xlmerg Infiler("C:\Ut\A1.xml" "a2.xml") Utfil(a2.xml) Names(- Sh02) Endproc

Copies all sheets to Utfil(). Eg if C:\Ut\A1.xml has 2 sheets and a2.xml has 3 sheets, then a2.xml will get 5 sheets. If Names() is omitted the original sheet names are kept, unless Rapp needs to change duplicate names. A hyphen, like the first entry of Names() in the example, also means that the original name is kept. Works for all Xml files that were created by Rapp and not changed manually after that.
Swedish to English glossary for reserved words

anmdat    report-date when a customer reports a claim

antmb     number of megabytes; antal = number

antniv    number of levels (classes)

Antskad   number of claims

arsranta  yearly interest rate

bet       relating to payment; betalning. In parameters in Proc Reschl.

Dur       duration; exposure unless Fbel is given

durber    duration computation; ber = short för beräkning = computation

Fbel      sum insured under yearly risk

fil       file

Kvadr     square

livr      relates to life annuity; livränta = life annuity

mellagg   aggregation in between; mellan = between

Ndur      normed duration

niv       level; nivå = level (class)
Prem      earned premium

riktnh    direction to the right

rskilj    risk differentiating; skilja = differentiate

rub       header; rubrik = header

s         claim cost in percent of premium; skadeprocent. Parameter in Proc Graf.

sats      statement

satser    statements

skadat    date when the claim occurred

skadedat  date when the claim occurred

skk       relating to incurred claim cost; skadekostnad. In parameters in Proc Reschl.

Skkost    claim cost

sludat    date when the claim was settled

slutdat   date when the claim was settled

svans     tail. In parameters in Proc Reschl.

tal       number

tid       time

tidssort  time unit

tutb      total paid up to now

urval     selection

ut        out

utfil     outfile

visa      show
Note. Rapp expects numbers without blanks or commas. Give decimal points if appropriate. Scientific notation such as 1.23e-45, 98E+7 and 65.4e3 is accepted.
Examples of Rapp programs (not multiclass analysis) for Windows
Example 1:

Edited in an editor (SPF) with syntax dependent colors that recognize the extent .Rpp. (Here is written Proc Jung, who is an older term for Proc Taran.).
[image: image4.png]% Top of File wex
“Include Init.ing

Proc Sasut libnane(1:\SAK\Data\BI9STI) tabell(Vi0lfs2)

textfil(C:\s\albin. txt) var(

a01 02 203 a04 a05 al6 207 a0 ad9 all all al? al3 ald all

dur skir riskp

)
ENDPROC

/x Kyadratsumna finns e, sé da berdknas kvadr som skkostxskkost
On higst en skada per rad i infilen ger det ritt resultat. x/

Proc Jung listfil(alS.tzt) testfil(albs.txt) numnetod(N
rubs2 &

infiler £11(C:\s\alSin.tzt) post(
a01 b2 203 a04 a0S al6 207 a0 ad9 all all al? al3 ald all

dur antskad/dur skkest/dur
)

arg(adl) bas( 2): arg(a2) bas(

arg(ads) bas(10): arg(a6) bas(

arg(ad9) bas( 2): arg(ald) bas(

arg(al3) bas( 3): arg(ald) bas(

ENDPROC

5):
7
4
4

arg(ad3) bas(24): arg(add) bas( 2):
arg(ad?) bas( 9): arg(a08) bas( 2):
arg(all) bas( 3): arg(al?) bas( 2):
arg(als) bas( §):

PROC Sasin libnane(F:\B99STINGAS\Data) tabell(Villfs2skattn)

) firstobs(2)

satser(drop Argnamn Nivnann Fhelndur Prem Tarf:)

var(Argnann Schar3. @32 Nivnamn Scharl0. Anr Ninr Dur Fbelndur Prem
Antskad Skkost Ospnu Osp Bastf Basim Basfr Faktf Faktn Faktr

textfil(albs.txt) deliniter(

Ospf Ospn Ospr Tarf)
ENDPROC

systen(del C:\s\alSin.txt)
xxx Bottom of File xxx

Astart || [T & [ || Etokkommando | FLFTex(LFusert.
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Example 2:

[image: image5.png]S PRISAS tst

“Include Init.ing

Froc Sasut libnane(G:\Sak\Forsakringsekonomi\B3dsti\sss\data) tabell(Skadstabell)
textfil(z1.txt) var(skadkast standard0l standardd? standard03) ENDPROC

Proc Sasut libnane(G:\Sak\Forsskringsekonomi\B3dsti\sss\data) tabell(Forsskad)
textfil(z2.txt) var(dur standarddl standard02 standard03) ENDFROC

Proc Jung listfil(Ptstl tst) textfil(Ptstls txt) nunnetod(N)
rubs2 ﬁ

/x Argunenten har bara siffror och kan vara numerisks hir. *
infiler £il(zl.txt) var(skkost standarddl standard0? standard03)
infiler £il(z2.txt) ver(dur standarddl standard02 standard03)

org(stendard0l) bas(l) niv( (1,99 'Men') (2,2 'Kvimna') (3.3 'Jur—person') )
ub30 “
ub110

tar(l 0.85 1.1)

arg(standard02) bas(2) niv( (1.1 F) (2.99 'Kk1 3%) (3.3 'Kkl 45') )

rub30 rub110
tar(0.90 1 1.25)
arg(standardd3) bas(4) niv(

(11 )
(2. 2 )
(3.3 )
(4.99 )
) rub3o rub110
tar(1.2 1.1 1.2 1.0
TEXT

rensar bort inflytandet fran andra argument &n det tabulerade. Kolumnen
aktater siokput i Linplis att amvinda fin prenioedtening, duck aed hinsyn
till kolumnen Rfaktospct (osskerhet i %). F& och/eller ojamnt storleksfsrdelade

skador ger en hig ostkerhstsprocent, vilket gbr riskpremistaktorsrna mindre
anvindbars for premiesittning

ENDPROC
systen(del zl txt & del 22.tst)
Proc Graf listfil(Ptstl.tzt) pdffil(Ptstl.pdf) /% Nornalférdelning utom for T =/ ‘

T R2_bas=1_2 4 £2_ba:
xxx Botton of File xxx

2 4 2 bas=12 4 u2 bas=12 4 a visa ENDPROC

Start £ 6e 4 Jungman.




The program in PDF from Rapp statement: PROC Graf listfil(PRISAS-tst1.Rpp) pdffil(a.pdf) ENDPROC If you do not have an editor with the ability to color adjust file types to a language syntax, then PROC Graf offers instead the possibility to check the syntax of a Rapp-program under development in this way.
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“Include Init.
Proc Samit 1ibname(G: \Salk\Forsakringsekoncmi\B99sti\sas\data) tabell (Skadetabell)
textfil(zl.txt) var(skadkost standard0l standard02 standard03) ENDPROC

Proc Sasut libname(G:\Sak\Forsakringselonomi\B99sti\sas\data) tabell (Forsskad)
textfil(z2.txt) var(dur standard0l standard02 standard03) ENDPROC

Proc Jung listfil (Ptstl.txt) textfil (Ptstls.txt) mumetod (N)
rub62 'PRISAS-exempel';
/* Argumenten har bara siffror och kan vara mmeriska hir. */
infiler £il(zl.txt) var(skkost standard0l standard02 standard03) ;
infiler £il(z2.txt) var(dur standard0l standard02 standard03) ;
arg(standard0l) bas(1) niv( (1,99 'Man') (2,2 'Kvinma') (3,3 'Jur-person') )
rub30 'Kén / juridisk persen'
rubl10 'Frin personmumer/orgmumer, minadssiffroma och ndst sista siffran’
tar(l 0.85 1.1) ;
arg(standard02) bas(2) niv( (1,1 'Kkl 1-2') (2,99 'Kkl 3') (3,3 'Kkl 4-5') )
rub30 'Kérstrackeklass' rubll0 ' '
tar(0.90 1 1.25) ;
arg(standard03) bas(4) niv(

(1, 1 'Brecbj 00')

(2, 2 'Brecbj 01')

(3, 3 'Brecbj 02')

(4,99 'Brecbj 03')

) rub30 'Boende’ rubll0 'Brecbj 00 = ej boendefSredkrad i Lénsforsdkringar'
tar(l.2 1.1 1.2 1.0) ;
TEXT
"Faktorer frekvens” och "Faktorer riskprem" har fatts ur ekvationssystem, scm
rensar bort inflytandet fran andra argument &n det tabulerade. Kolumen
"Falctorer riskpren ar lanplig att anvinda for premiesittning, dock med hinsyn
i1l kolumen Rfaktospct (osdkerhet i %). Fa och/eller 2
skador ger en hdg osakerhetsprocent, vilket gér riskpremiefaktorerna mindre
anvandbara f£or premiesittning.
ENDPROC
system(del zl.txt & del z2.txt)
Proc Graf listfil (Ptstl.txt) pdffil(Ptetl.pdf) /* Nommalférdelning utam £6r T */
T R2bas=124 f2bas-124 m2bas-124 u2bas-124 a viea ENDPROC
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Example 3:
/* Rapp-program to check a few things, including how SAS imports and

    exports an estimate file. */

Include C:\Rapp\Rpp\Init.Rpp /* Innehåller en Proc Init */

/* Namn på nivåer   skall alltid ha högst 10 tecken.

   Namn på argument skall alltid ha högst 30 tecken. */

Proc Cmd

@echo off

G:\b99sti\hf.exe  Rappskad1.txt  b99sti.Jskad1.dat w

G:\b99sti\hf.exe  Rappfors1.txt  b99sti.Jfors1.dat w

Endproc

Proc Taran listfil(rapp1.txt) textfil(skattningar.txt) nummetod(N)

  rub62 'Test exempel n:o 01';

infiler fil(Rappfors1.txt) delimiter() var(Kod Bilmärke $ Geografi $ dur prem) ;

infiler fil(Rappskad1.txt) delimiter() var(Bilmärke $ Geografi $ Kod Skart A

  antskad skkost/antskad kvadr/antskad) urval(!skkost=0 & skart >='110');

arg(Kod) rub30 'Kod' rub110 'Någon kod' bas(1) niv('Kod 000001' 1.00

  'Kod 02' 1.17); /* 1.00 och 1.17 = tariffen */

arg(Bilmärke) rub30 'Bilmärke text' rub110 'Bilmärke Volvo eller Jaguar' bas(1);

arg(Geografi) rub30 'Tät- eller glesbygd'

  rub110 'Enligt SCB:s klassifikation från 1998' bas(0)

  tar(1 1.23 0.86 0.56); /* Alternativt sätt att ge tariffaktorer */

TEXT

"Faktorer frekvens" och "Faktorer riskprem" har fåtts ur ekvationssystem, som rensar

bort inflytandet från andra argument än det tabulerade. "Faktorer riskprem" är lämplig

att använda för premiesättning, dock med hänsyn till kolumnen Rfaktospct. Få och/eller

ojämnt storleksfördelade skador ger hög osäkerhetsprocent, så att riskpremiefaktorerna

blir mindre användbara för premiesättning.

ENDproc

PROC Rskilj listfil(rapp1.txt) Endproc

PROC Graf listfil(rapp1.txt) pdffil(a.pdf)

   T_bas=1_1_0  R_bas=1_1_0  F_bas=1_1_0 M_bas=1_1_0 U S A visa ENDPROC

PROC Graf listfil(rapp1.txt) pdffil(b.pdf) T_bas=1_1_0  R_bas=1_1_0  F_bas=1_1_0 M_bas=1_1_0 U S A ENDPROC 

PROC Sas

libname Bibl 'F:\B99STI\SAS\Data';

filename in 'skattningar.txt';

DATA Bibl.Rappskattn;

  INFILE in DLM=';' FIRSTOBS=2;

  INPUT Argnamn $ Nivnamn $char10. Anr Ninr Dur Fbelndur Prem Antskad Skkost

    Ospmu Osp Basff Basfm Basfr Faktf Faktm Faktr Ospf Ospm Ospr Tarf

  ; RUN; quit;

ENDPROC

PROC Sasut libname(F:\B99STI\SAS\Data) tabell(Rappskattn)

  textfil(skattningar2.txt) delimiter(';')

  var(Argnamn Nivnamn Anr Ninr Dur Fbelndur Prem Antskad Skkost Ospmu Osp

    Basff Basfm Basfr Faktf faktm Faktr Ospf Ospm Ospr Tarf)

ENDPROC

PROC Sasin libname(F:\B99STI\SAS\Data) tabell(Rappskattn2)

  textfil(skattningar.txt) delimiter(';') firstobs(2)

  var(Argnamn $ @32 Nivnamn $char10. Anr Ninr Dur Fbelndur Prem Antskad Skkost

    Ospmu Osp Basff Basfm Basfr Faktf Faktm Faktr Ospf Ospm Ospr Tarf)

ENDPROC

PROC Sasut libname(F:\B99STI\SAS\Data) tabell(Rappskattn2)

  textfil(skattningar3.txt) delimiter(';')

  var(Argnamn Nivnamn Anr Ninr Dur Fbelndur Prem Antskad Skkost Osp

    Basff Basfm Basfr Faktf Faktm Faktr Ospf Ospm Ospr Tarf)

ENDPROC

/* system(del rapp1.txt)  behöver sparas */

system(del a.pdf) /* behöver inte sparas */

Example 4:

Data mangling in the two Rapp-programs, based on text files directly from statistical databases. The second statement Proc Init ... Endproc is there to enable execution with double click on Mangla.Rpp in Windows Explorer.

Mangla. Rpp

Include E:\Riskanalys\Rapp\Init.Rpp

Proc Init pathdir(C:\Tariffanalys\Rapp) Endproc /* Där Rapp.Exe finns. */

system(Rapp Mangla1 x cha §01 HAST §02 20050401)

system(Rapp Mangla1 x cha §01 HUND §02 20050501)

system(Rapp Mangla1 x cha §01 KATT §02 20050501)

/* Gör SAS-tabeller av de större försäkringsfilerna och skadefilerna. */

Proc Sasin libname(C:\sas) ctyp(6 14 15 16 17 18 21 33 35 47 48) tabell(Agrskad_HAST)

  textfil(Agrskad_HAST.txt) Endproc

Proc Sasin libname(C:\sas) ctyp(6 14 15 16 17 18 21 33 35 47 48) tabell(Agrskad_HUND)

  textfil(Agrskad_HUND.txt) Endproc

Proc Sasin libname(C:\sas) ctyp(6 14 15 16 17 18 21 33 35 47 48) tabell(Agrskad_KATT)

  textfil(Agrskad_KATT.txt) Endproc

system(del tmpf1.txt & del tmpf2.txt &  del tmps1.txt & del tmps2.txt & del tmps3.txt)

Mangla1. Rpp

/* Exekveras från Mangla.Rpp */

Include E:\Riskanalys\Rapp\Init.Rpp

/* 1. Försäkringsversioner. Extrahera vissa fält och gör om datum, t ex 2005-05-01 till

      20050501. Sortera på Kund Avt Obj Momrad Fromdat Åtgdat. */

Proc Data ;

Infiler fil(UUIG_STATBESTÅND_§01.TXT) dlm(9)

  var(

    Kund Avt Obj Åtgdatin $ Åtgkod $ Momrad Avttyp $ Objtyp $ Fp $ Mtyp $ Mvillk $

    Ffdatin $ Fromdatin $ Slutdatin $ Nytedatin $ Tdatin $ Föddatin $ Postnr $ Termin $

    Bolag $ Ombud $ Provisionsbolag $ Provisionsombud $ Kön $ Anvkod $ Ras $ Annuorsak $

    Tlän $ Tariffkommun $ Premiekl Antdekl $ Regnr $ Sjrp Rabtyp1 $ Rabtyp2 $ Rabtyp3 $

    Rabtyp4 $ Rab_kr Fbel Premiekod $ Årspremie Antal_djur_areal R Vikt_år_0 R

    Vikt_år_m1 R Vikt_år_m2 R Vikt_år_m3 R Vikt_år_m4 R Vikt_år_m5 R Vikt_rull_tolv R

  )

  dvar(

    Fromdat = remove(Fromdatin,'-')

    Åtgdat  = remove(Åtgdatin,'-')

    Ffdat   = remove(Ffdatin,'-')

    Nytedat = remove(Nytedatin,'-')

    Tdat    = remove(Tdatin,'-')

    Föddat  = remove(Föddatin,'-')

  )

;

Utfil fil(tmpf1.txt) dlm(9)

  var(

    Kund Avt Obj Momrad Fromdat Åtgdat

    Åtgkod $ Avttyp $ Objtyp Fp $ Mtyp Mvillk

    Ffdat Nytedat Tdat Föddat Postnr

    Termin Bolag Kön Anvkod Ras $

    Annuorsak $ Sjrp Fbel Årspremie

  )

  sort(Kund Avt Obj Momrad Fromdat Åtgdat)

;

Endproc

/* 2. Försäkringsversioner. Unik ID för en post i Statbestånd är

      (Kund,Avt,Obj,Momrad,Fromdat,Åtgdat). Av poster med samma

      (Kund,Avt,Obj,Momrad,Fromdat) skall man endast använda den

      med högst Åtgdat och kasta bort övriga. */

Proc Data ;

Infiler fil(tmpf1.txt) dlm(9)

  var(

    Kund Avt Obj Momrad Fromdat Åtgdat

    Åtgkod $ Avttyp $ Objtyp Fp $ Mtyp Mvillk

    Ffdat Nytedat Tdat Föddat Postnr

    Termin Bolag Kön Anvkod Ras $

    Annuorsak $ Sjrp Fbel Årspremie

  )

  dvar(

 /* Sammaidindikator = 1 om nästa rad har samma värden på Kund ... Fromdat, 0 annars. */

    Sammaidindikator = Ind0(Kund-next(Kund))*Ind0(Avt-next(Avt))*Ind0(Obj-next(Obj))*

                       Ind0(Momrad-next(Momrad))*Ind0(Fromdat-next(Fromdat))

  )

  urval(Sammaidindikator = 0)

;

Utfil fil(tmpf2.txt) dlm(9)

  var(

    Kund Avt Obj Momrad Fromdat

    Åtgkod $ Avttyp $ Objtyp Fp $ Mtyp Mvillk

    Ffdat Nytedat Tdat Föddat Postnr

    Termin Bolag Kön Anvkod Ras $

    Annuorsak $ Sjrp Fbel Årspremie

  )

;

Endproc

/* 3. Försäkringsversioner. Härledning av det datum som en försäkringsversion gällt

      intill i Statbestånd. Det kallas nedan för Todk (TomDatumKorrigerat).

      Unik ID i tmpf2.txt är (Kund,Avt,Obj,Momrad,Fromdat).

      Todk sätts enligt följande:

        A) Om det finns en annan post med samma (Kund,Avt,Obj,Momrad)

           och högre Fromdat, sätt Todk = den andra postens Fromdat.

        B) Om inte A) gäller, kolla om åtgärdskoden Åtgkod = 040. Sätt

           i så fall Todk = Fromdat, i annat fall Todk = Ffdat.

      Åtgärdskoder Åtgkod

        020 ändring

        040 annullation

        070 förnyelse

        090 nyteckning */

Proc Data;

Infiler fil(tmpf2.txt) dlm(9)

  var(

    Kund Avt Obj Momrad Fromdat

    Åtgkod $ Avttyp $ Objtyp Fp $ Mtyp Mvillk

    Ffdat Nytedat Tdat Föddat Postnr

    Termin Bolag Kön Anvkod Ras $

    Annuorsak $ Sjrp Fbel Årspremie

  )

  dvar(

 /* Sammaidindikator = 1 om nästa post har samma värden på Kund t o m Momrad, 0 annars.

    Annullationsindikator = 1 om posten är annullerad, 0 annars. */

    Sammaidindikator = Ind0(Kund-next(Kund))*

                       Ind0(Avt-next(Avt))*

                       Ind0(Obj-next(Obj))*

                       Ind0(Momrad-next(Momrad))

    Annullationsindikator = Indc(Åtgkod,"040")

    Todk  = Sammaidindikator*next(Fromdat) + (1-Sammaidindikator)*

            (Annullationsindikator*Fromdat+(1-Annullationsindikator)*Ffdat)

    Ålder = min(99,|[(Fromdat-Föddat)/10000]|)

  )

;

Utfil fil(Agrfors_§01.txt) dlm(9) headerline

  noempty /* med noempty läggs en blank ut i stället för ett tomt fält, för Proc Sasin */

  var(

    Kund Avt Obj Momrad Fromdat Todk

    Avttyp $ Objtyp Fp $ Mtyp Mvillk

    Ffdat Nytedat Tdat Föddat Postnr

    Termin Bolag Kön Anvkod Ras $

    Annuorsak $ Sjrp Fbel Årspremie Ålder

  )

;

Endproc

/* 4. Skador. Extrahera vissa fält och gör om datum, t ex 2005-05-01 till 20050501.

      Sortera på Kund Avt Obj Momrad Skadedat Diagnos3, där sista sortfältet är de tre

      första tecknen i Diagnos. */

Proc Data ;

Infiler fil(UUIEX_STATSKADOR_§01.TXT) dlm(9)

  var(

    Ersår Skadenr Hjs Momrad Delmom Delersnr Kund Avt Obj Skadedatin $

    Bruttoers Nettoers Sktyp $ Avttyp $ Objtyp Fp $ Mtyp Mvillk Orsakskod $

    Diagnos $ DjurklinikB $ DjurklinikO $ Avvisad $ AvvisadRad $ Kön Anvkod $

    Ras $ Bolag $ Provisionsbolag $ Provisionsombud $ Postnr $ Tlän $

    Tariffkommun $ Premiekl Sjrp Ålderdgr Utbetdatin $ Statskadedatin $ Ffdatin $

    Fromdatin $ Nytedatin $ Tdatin $ Födelsedatin $ Betäcktdatin $ Fbel

    Fölatdatin $ Manber $ Antal_djur_areal Sjrkr Utvslaktv Proratap Reduktionp

    Skadad_gröda_kg Sjrantal Ant_ersbara_djur Regnr $ Objverdatin $ Objverkod $

    Uppläggningsdatin $ Län $ Kommun $ Församling $ Justering $ Sjrrab

  )

  dvar(

    Skadedat        = remove(Skadedatin,'-')

    Utbetdat        = remove(Utbetdatin,'-')

    Statskadedat    = remove(Statskadedatin,'-')

    Uppläggningsdat = remove(Uppläggningsdatin,'-')

    Diagnos3 = substr(Diagnos,1,3)

  )

;

Utfil fil(tmps1.txt) dlm(9)

  var(

    Kund Avt Obj Momrad Skadedat Diagnos3 $

    Ersår Skadenr Hjs Delmom Delersnr Bruttoers Nettoers Sktyp $ Orsakskod $

    Diagnos $ DjurklinikB $ DjurklinikO $ Utbetdat Statskadedat Manber $ Sjrkr

    Proratap Reduktionp Sjrantal Uppläggningsdat Sjrrab

  )

  sort(Kund Avt Obj Momrad Skadedat Diagnos3)

;

Endproc

/* 5. Skador. Summera på ersättningsbeloppen på ID Kund Avt Obj Momrad Skadedat Diagnos3.

      Skador med samma ID skall betraktas som samma skada. Fälten får namnen Bruttoerstot

      och Nettoerstot i nästa proc. En indikator Raknas visar vilka poster som skall

      representera den enda skadan. */

Proc Sum ;

Infiler fil(tmps1.Txt) dlm(9)

  key(Kund Avt Obj Momrad Skadedat Diagnos3)

  var(

    Kund Avt Obj Momrad Skadedat Diagnos3 $

    Ersår Skadenr Hjs Delmom Delersnr Bruttoers Nettoers Sktyp $ Orsakskod $

    Diagnos $ DjurklinikB $ DjurklinikO $ Utbetdat Statskadedat Manber $ Sjrkr

    Proratap Reduktionp Sjrantal Uppläggningsdat Sjrrab

  )

;

Utfil fil(tmps2.txt) dlm(9) Var(Bruttoers Nettoers) ;

Endproc

/* 6. Skador. Summerade ersättningsbeloppen överförs till alla skadeposter. */

Proc Match;

Masterfil fil(tmps2.Txt) dlm(9)

  key(Kund Avt Obj Momrad Skadedat Diagnos3)

  var(Kund Avt Obj Momrad Skadedat Diagnos3 $ Bruttoerstot Nettoerstot)

;

Transfil fil(tmps1.Txt) dlm(9)

  key(Kund Avt Obj Momrad Skadedat Diagnos3)

  var(

    Kund Avt Obj Momrad Skadedat Diagnos3 $

    Ersår Skadenr Hjs Delmom Delersnr Bruttoers Nettoers Sktyp $ Orsakskod $

    Diagnos $ DjurklinikB $ DjurklinikO $ Utbetdat Statskadedat Manber $ Sjrkr

    Proratap Reduktionp Sjrantal Uppläggningsdat Sjrrab

  )

  dvar(

    /* Raknas = 1 för en enda post, den första, av flera med samma

       Kund Avt Obj Momrad Skadedat Diagnos3. Annars 0. */

    Raknas = 1 - Ind0(Kund - prev(Kund))*

                 Ind0(Avt - prev(Avt))*

                 Ind0(Obj - prev(Obj))*

                 Ind0(Momrad - prev(Momrad))*

                 Ind0(Skadedat - prev(Skadedat))*

                 Indc(Diagnos3,prev(Diagnos3))

  )

;

Utfil fil(tmps3.txt) dlm(9)

  var(

    Kund Avt Obj Momrad Skadedat Diagnos3 $

    Ersår Skadenr Hjs Delmom Delersnr Bruttoers Nettoers Sktyp $ Orsakskod $

    Diagnos $ DjurklinikB $ DjurklinikO $ Utbetdat Statskadedat Manber $ Sjrkr

    Proratap Reduktionp Sjrantal Uppläggningsdat Sjrrab

    Raknas Bruttoerstot Nettoerstot

  )

;

Endproc

/* 7. Skador. Överför försäkringsinfo och beräkna periodindex. */

Proc Match ;

Masterfil fil(Agrfors_§01.txt) dlm(9)

  key(Kund Avt Obj Momrad) timekey(Fromdat)

  var(

    Kund Avt Obj Momrad Fromdat Todk

    Avttyp $ Objtyp Fp $ Mtyp Mvillk

    Ffdat Nytedat Tdat Föddat Postnr

    Termin Bolag Kön Anvkod Ras $

    Annuorsak $ Sjrp Fbel Årspremie Ålder

  )

  firstobs(2)

;

Transfil fil(tmps3.Txt) dlm(9)

  key(Kund Avt Obj Momrad) timekey(Skadedat)

  var(

    Kund Avt Obj Momrad Skadedat Diagnos3 $

    Ersår Skadenr Hjs Delmom Delersnr Bruttoers Nettoers Sktyp $ Orsakskod $

    Diagnos $ DjurklinikB $ DjurklinikO $ Utbetdat Statskadedat Manber $ Sjrkr

    Proratap Reduktionp Sjrantal Uppläggningsdat Sjrrab

    Raknas Bruttoerstot Nettoerstot

  )

  dvar( Periodinx = Indi(Skadedat,§02,§02+9999) +

            2*Indi(Skadedat,§02+10000,§02+19999) + 3*Indi(Skadedat,§02+20000,§02+29999) )

;

Utfil fil(Agrskad_§01.txt) dlm(9) headerline noq

  noempty /* med noempty läggs en blank ut i stället för ett tomt fält, för Proc Sasin */

  var(

    /* 1. Ursprungliga skadefält */

    Kund Avt Obj Momrad Skadedat Diagnos3 $

    Ersår Skadenr Hjs Delmom Delersnr Bruttoers Nettoers Sktyp $ Orsakskod $

    Diagnos $ DjurklinikB $ DjurklinikO $ Utbetdat Statskadedat Manber $ Sjrkr

    Proratap Reduktionp Sjrantal Uppläggningsdat Sjrrab

    /* 2. Härledda räknas-indikator och aggregerade skadebelopp */

    Raknas Bruttoerstot Nettoerstot

    /* 3. Försäkringsversionsfält */

    Fromdat Todk

    Avttyp $ Objtyp Fp $ Mtyp Mvillk

    Ffdat Nytedat Tdat Föddat Postnr

    Termin Bolag Kön Anvkod Ras $

    Annuorsak $ Sjrp Fbel Årspremie Ålder

    /* 4. Periodindex 1-3 */

    Periodinx

  )

;

Endproc

/* 8. Skador. Ny fil med bara de poster som har Raknas = 1. Var() utelämnad i

      utfilsatsen och då tas alla fält. Filen skall gå in i Proc Taran. */

Proc Data;

Infiler fil(Agrskad_§01.txt) dlm(9)

  var(

    Kund Avt Obj Momrad Skadedat Diagnos3 $

    Ersår Skadenr Hjs Delmom Delersnr Bruttoers Nettoers Sktyp $ Orsakskod $

    Diagnos $ DjurklinikB $ DjurklinikO $ Utbetdat Statskadedat Manber $ Sjrkr

    Proratap Reduktionp Sjrantal Uppläggningsdat Sjrrab

    Raknas Bruttoerstot Nettoerstot

    Fromdat Todk

    Avttyp $ Objtyp Fp $ Mtyp Mvillk

    Ffdat Nytedat Tdat Föddat Postnr

    Termin Bolag Kön Anvkod Ras $

    Annuorsak $ Sjrp Fbel Årspremie Ålder

    Periodinx

  )

  firstobs(2)

  urval(Raknas = 1)

;

Utfil fil(Agrskad_raknas_1_§01.txt) dlm(9) headerline ;

Endproc

Example 5

Include C:\Rapp\Rpp\Init.Rpp

Proc Match ;

Masterfil fil(C:\Rapp\Data\Breeds.Txt) dlm(9) firstobs(2)

  var(cBreedDescription $ Breedgroup Groomn Lifeage) key(cBreedDescription) ;

Transfil fil(C:\Rapp\Data\Fors0.Txt) dlm(9) firstobs(2)

  var(

    Include PolicyPremiumYear3.Rpp

    cPostcode $

    Area

  )

  key(cBreedDescription)

;

Utfil fil(C:\Rapp\Data\tmpf1.Txt) dlm(9) headerline unmatched noq stats

  var(

    Include PolicyPremiumYear3.Rpp

    cPostcode $

    Area

    Breedgroup

    Groomn  /* 0: Okänd  1: Little  2: Moderate  3: Considerable */

    Lifeage

  )

;

Endproc

Proc Data ;

Infiler fil(C:\Rapp\Data\tmpf1.Txt) dlm(9) firstobs(2)

  var(

    Include PolicyPremiumYear3.Rpp

    cPostcode $

    Area

    Breedgroup

    Groomn

    Lifeage_in

  )

  dvar(

    Age = min(99,|[(nfrdk-nAnimalDateOfBirth)/10000]|)

    IncAge = min(99,|[(nPolicyInceptionDate-nAnimalDateOfBirth)/10000]|)

    Kastrat = min(1,max(0,|lAnimalSpayed|,|lAnimalNeutered|))

    /* 0 ej kastrat, 1 kastrat */

    Sexx = replace(cAnimalSexID,"MF","mf")

    SexCastr = Sexx!!chr(kastrat)

    /* M0 hane ej k, M1 hane kastrat, F0 hona ej k, F1 hona kastrat, */

    Birthyear   = [nAnimalDateOfBirth/10000]

    Renewalyear = [nFrdk/10000]

    Lifeage = 10*Ind0(Lifeage_in) + Lifeage_in

    /* Om Lifeage_in = 0 är det en omatchad rad och då skall värdet vara 10 år. */

    Lifecover = Indp(Birthyear+Lifeage-Renewalyear)

  )

;

Utfil fil(C:\Rapp\Data\tmpf2.Txt) dlm(9) headerline

  var(

    nAnimalTypeID /* 1 Hund, 2 Katt */

    nFrdk

    nTodk

    nArsprem R

    /* Premie för API + BO före skatt. 0.95*nArsprem är premien efter skatt. */

    Breedgroup

    Groomn  /* 0: Okänd  1: Little  2: Moderate  3: Considerable */

    Age

    IncAge

    SexCastr $

    Area

    cPaymentFrequencyID $

    Lifecover

  )

;

Endproc

Proc Durber infil(C:\Rapp\Data\tmpf2.txt) utfil(C:\Rapp\Data\Fors1.txt) firstobs(2) headerline

  var(

    nAnimalTypeID

    nFrdk

    nTodk

    nArsprem R

    Breedgroup

    Groomn

    Age

    IncAge

    SexCastr $

    Area

    cPaymentFrequencyID $

    Lifecover

  )

  frdkvar(nFrdk) todkvar(nTodk) ypremvar(nArsprem) /* datum(20000101 360 9) */

Endproc

system(del C:\Rapp\Data\tmpf1.Txt & del C:\Rapp\Data\tmpf2.Txt)
Examples of graphs in PDF
Example 1:
Risk premium factors for age ranges
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Example 2:
Portfolio exposure breakdown of age ranges
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Example 3: 

Interval assignment of insurance coverage, list section for Proc Graf with parameter B, regression analysis of risk premium SEK as a linear or broken linear function of fbel. Here linear, with all points (medelfbel, risk premium factor) included.
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Example 4: 

Interval assignment of sum insured, graph.
[image: image10.png]8 Adobe Reader - [ARO01A4F.pdf]

|5] Ferskringsbelopp intervall

Phratkringsbslopp interval

B13: regres

Riskp

o> Anvanda.?

HASE/GBITIE 001, anv/NTYE-001, riskir 1993-2003

Bt i einearvall
Y R e

Red. punktsksten PARRHi T TA
e B P s

Avsnitt fér allmanna dtgérder

Markera och kopiera text
Kopiera text och grafil till Urklipp.

Ange egenskaper for verktyg och
obiekt

Mavigera i granssnittet

Mavigera i ett PDF-dolument med
feralager

Lasa eBook-avenitt




To not have negative premiums we recommended a minimum insurance amount 10 thousand SEK.
Quick guide - short manual by example
A. Getting started
1. Installing LaTeX at your employer
Make sure that LaTeX is approved as supplementary program and install it.
2. Installing LaTeX at home
See AllInOne.htm at my site. Or Google MiKTeX and install MiKTeX, which contains LaTeX, from one of the sites that come up.
3. Make C:\Rapp\Rpp\Init.Rpp
Make the file C:\Rapp\Rpp\Init.Rpp with this or modified content:
Proc Init

  pathdir(C:\Rapp\Pgm)

  // SAS interpreter: example - remove if SAS not available.

  sasexe(C:\Program Files\SAS\SAS 9.1\sas.exe)

  logo(ri) tempmapp(C:\Rapp\Jt) antmb(SYSTEMINFO) prioffset(0) erralarm(5)

  pdfoffset(14) xgfact(1.03) ygfact(1.03) xgtran(-15) ygtran(3)
Endproc
Rapp creates the folder within tempmapp() if it does not exist. Change tempmapp(C:\Rapp\Jt) to another one if C:\Rapp\Jt is not appropriate. The tempmapp should reside on the C-disk, otherwise Rapp will run much slower.
Within sasexe() shall be the program used to run SAS with, if you need to run SAS inside Rapp via the procs Sas, Sasin, Sasut.
4. Make Rapp.Exe executable with command Rapp at the Command prompt
Go to the Command prompt. In the folder you come to, make Br.Bat (mnemnonics for Begin Rapp) by writing Notepad Br.Bat.

C:\Users\Youruser\Br.Bat

------------------------

@echo off
echo You run exe-files primarily from C:\Rapp\Pgm.
set "FromCmdPrompt=Yes"
path=C:\Rapp\Pgm;%PATH%
CD C:\Rapp\Rpp
An instruction how to do it and a way to write Rapp programs:
[image: image11.emf]Rappenv.pdf

 
See also C:\Rapp\Dok\Rapp-run-and-edit.pdf for more info.
Can be accomplished with C:\Rapp\Pgm\Adapt.Exe after Rapp.Zip is unpacked:
Running C:\Rapp\Pgm\Adapt.Exe requires administrator status. It is harmless to run, provided you answer N at the prompt. Answering Y accomplishes what is described below. I cannot guarantee that it will not harm the computer, although I have run it myself without problems. Possible harm might result from bungled authorizations, but should not occur if Adapt.Exe and the generated program Assoc.Bat are run by a user with full administrator authorizations.
5. Associate extent .Rpp to Rapp.Exe in Windows Explorer
(Right)click in Windows Explorer on a Rapp-program with extent .Rpp (for example Init.Rpp), select Open / Choose Program / Browse / locate Rapp.Exe and tick Always use this program. Then you can run a Rapp-program by click + return in Windows Explorer.
6. Change opening program for .rpp at click and return in Windows Explorer
If you moved Rapp.Exe to a different folder than where it was at step 4, do this. Take care so nothing is sabotaged. Double-click icon for pictures:


[image: image12.emf]Changepath.pdf


Description in words. Assume we made Rapp.Exe default opening program for files type .rpp.

1. Right-click cmd.exe in C:\Windows\System32. Select Run as administrator. At a workplace it must probably be an IT-person.

2. Command Regedit.
3. In the list that pops up, select HKEY_CLASSES_ROOT.

4. Then you get a list of a number of filextents where .rpp is and then a number of names in more plain language where Rpp_auto_file is.

5. Locate Rpp_auto_file\shell\open\command.

6. Right click the entry (Default) and select Modify to change the path in Edit String.

7. Close a few times.
7. Change icon and description for extension .rpp in Windows 7

This is not needed for the function but can make the appearance in the Explorer look flashier. Since Rapp is not installed this task is up to the user. See picture. The icon file Rapp.ico is in the folder C:\Rapp\Pgm. 
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Change alternative opening program shown at right-click / Open with

Assume we made Rapp.Exe alternative opening program for a collection of file types such as .txt and .sas.

1. As above.

2. As above.
3. In the list that pops up, select
HKEY_CLASSES_ROOT\Applications\Rapp.Exe\shell\open\command
4. Right click the entry (Default) and select Modify to change the path in Edit String.

5. Close a few times.
End - can be accomplished with C:\Rapp\Pgm\Adapt.Exe.
If you want your own icon, make a BMP file and rename it to extent .ico. For making icons that can be favicon.ico on a web site you can use this link. It seems to work best with PNG files. http://ico.bradleygill.com/index.php
B. Making input data for Rapp from Excel

[image: image14.emf]Making-data-for-Rap p.pdf


C. Using Proc Taran and Proc Graf - user manual with examples
Example 1, combined insurance and claim data

A SAS table Forsskad in the folder J:\AA\BB contains combined insurance and claim data and has among others the variables

  kkl kon frdk foddat boende fordald bmkl mvikteff

  dur durprem skadkost skadkvadr skfr Major durprem skadkost skadkvadr skfr

Here skadkvadr is summed squares of individual claim costs. For example, if antskad = 2 and skadkost = 20000, which is the sum of 12800 and 7200, then skadkvadr = 12800² + 7200² = 215680000. The variable skfr contains antskad/dur, ie claim frequency.

The variable boende is alphanumeric and can contain letters, while all other variables are either numeric or alphanumeric with only figures as content.

Of the arguments we want to group the vehicle age fordald to fewer classes than in the data, while the other arguments are presented with all values in the data.

In Proc Sasut we then create a text file with semicolon separated fields, which is necessary if certain fields can contain only or interspersed blanks.

In Proc Taran we name the sum- and average-fields by the right reserved field names, which are
Dur       duration

Fbel      sum-insured-duration (insurance coverage under yearly risk)

Ndur      normed duration

Prem      duration premium (earned premium)

Antskad   number of claims

Skkost    claim cost

Kvadr     square sum of individual claim costs

and some ratios of these, for example Skkost/Antskad.

Required of these are only Dur and Skkost. If Antskad does not exist as a field, then is assumed that each line contains one claim. Similarly if Kvadr does not exist.
Rapp-program

Include C:\Rapp\Rpp\Init.Rpp
Proc Sasut libname(J:\AA\BB) tabell(Forsskad) delimiter(';')

textfil(C:\s\z1.txt) var(kkl kon frdk foddat boende fordald bmkl mvikteff

  dur durprem skadkost skadkvadr skfr)

Endproc

Proc Taran listfil(v1.txt) textfil(v2.txt) crosslist(v4.txt) crossarg(kkl bmkl) nummetod(n) rub62 'Exempel 1';

infiler fil(C:\s\z1.txt) var(kkl kon frdk foddat boende $ fordald bmkl mvikteff

  dur prem skkost kvadr antskad/dur)

  dvar(

    Ålder    = min(99,|[(frdk-foddat)/10000]|)

    Könålder = 100*(kon-1)+ålder

  )

  delimiter(';') ;

arg(kkl) ;

arg(Könålder) ;

arg(boende) ;

arg(fordald) rub30 'Fordonsålder'

  niv(

      ( , 0:2 '0-2')

      ( , 3 '3')

      ( , 4 '4')

      ( , 5 '5')

      ( , 6 '6')

      ( , 7 '7')

      ( , 8 '8')

      ( , 9 '9')

      ( ,10 '10')

      ( ,11:99 '11-')

  ) ; 

arg(bmkl) ;

arg(mvikteff) ;

TEXT

"Faktorer frekvens" och "Faktorer riskprem" har fåtts ur ekvationssystem, som

rensar bort inflytandet från andra argument än det tabulerade. "Faktorer

riskprem" är lämplig att använda för premiesättning, dock med hänsyn till

kolumnen Rfaktospct (osäkerhet i %). 

ENDPROC

Proc Graf listfil(v1.txt) pdffil(v1.pdf)

  r f m u s pos[13 1_pie_2% 13 Antal§försår]

ENDPROC
Example 2, separate insurance and claim data
A SAS table Forsakr in the folder J:\AA\BB contains insurance data and has the variables

  kkl konald boende fordald bmkl mvikteff dur durprem

A SAS table Skad in the folder J:\AA\BB contains claim data and has the variables

  kkl konald boende fordald bmkl mvikteff antskad mskad mskadkvadr

where mskad is mean claim = skkost/antskad and mskadkvadr is mean claim square = kvadr/antskad.
Rapp-program
Include C:\Rapp\Rpp\Init.Rpp
Proc Sasut libname(J:\AA\BB) tabell(Forsakr) delimiter(';')

textfil(C:\s\z1.txt) var(kkl konald boende fordald bmkl mvikteff dur durprem)

Endproc

Proc Sasut libname(J:\AA\BB) tabell(Skad) delimiter(';')

textfil(C:\s\z2.txt) var(kkl konald boende fordald bmkl mvikteff

   antskad mskad mskadkvadr)

Endproc

Proc Taran listfil(v1.txt) textfil(v2.txt) nummetod(n) rub62 'Exempel 2';

infiler fil(C:\s\z1.txt) var(kkl konald boende $ fordald bmkl mvikteff dur prem)

  delimiter(';') ;

infiler fil(C:\s\z2.txt) var(kkl konald boende $ fordald bmkl mvikteff

  antskad skkost/antskad kvadr/antskad) delimiter(';') ;

arg(kkl);

....

Example 3

Here an example that can be run to verify that the technical stuff works after LaTeX was installed and C:\Rapp\Rpp\Init.Rpp was made. Export the following as text files to the working directory with the names given.
f1.txt

Kod Bilmärke Tätgrad     Dur Intjprem

1   Jaguar   Tätgr-000  2500 3345090

1   Jaguar   Tätgr-025  5000 5578000

1   Jaguar   Tätgr-050   750  600000

1   Jaguar   Tätgr-100  2345 1678050

1   Volvo    Tätgr-000  4000 4000000

1   Volvo    Tätgr-025  2000 1500000

1   Volvo    Tätgr-050   500  750000

1   Volvo    Tätgr-100  1000  223450

2   Jaguar   Tätgr-000  3500 1489045

2   Jaguar   Tätgr-025  1234  254500

2   Jaguar   Tätgr-025  3300 2254500

2   Jaguar   Tätgr-050   850  445000

2   Jaguar   Tätgr-100  2800 1906508

2   Volvo    Tätgr-000  4060 4500000

2   Volvo    Tätgr-025  1400 1345000

2   Volvo    Tätgr-050   400  250000

2   Volvo    Tätgr-050   400  250000

2   Volvo    Tätgr-100   500  750000

s1.txt

Kod Bilmärke Tätgrad    Antskad  Skkost         Kvadr

1   Jaguar   Tätgr-000     250  1500000   18000000000

1   Jaguar   Tätgr-000     250  1500000   18000000000

1   Jaguar   Tätgr-025    1500 18000000  432000000000

1   Jaguar   Tätgr-050     560  7345000  192675089285

1   Jaguar   Tätgr-100     240  7645000  487050208333

1   Volvo    Tätgr-000     400  4000000   80000000000

1   Volvo    Tätgr-025     310  6000000  232258064516

1   Volvo    Tätgr-050     150  4312000  247911253333

1   Volvo    Tätgr-100     240  6000000  300000000000

2   Jaguar   Tätgr-000     500  3000000   36000000000

2   Jaguar   Tätgr-025    1120  9500000  161160714285

2   Jaguar   Tätgr-050     560  7005000  175250089285

2   Jaguar   Tätgr-100     240  7645000  487050208333

2   Volvo    Tätgr-000     300  3000000   60000000000

2   Volvo    Tätgr-025     310  6000000  232258064516

2   Volvo    Tätgr-050     120  2342000   91416066666

2   Volvo    Tätgr-100     120  3000000  150000000000

2   Volvo    Tätgr-100     120  2345500  124780000000
a.Rpp
Include C:\Rapp\Rpp\Init.Rpp
Proc Taran listfil(a.txt) rub62 'Test av Rapp';

infiler fil(f1.txt) var( Kod Bilmärke $ Geografi $ dur prem )

  urval( Bilmärke ne 'Bilmärke' );

infiler fil(s1.txt) var(Kod Bilmärke $ Geografi $ antskad skkost kvadr)

  urval(Bilmärke ne 'Bilmärke');

arg(Kod) tar(1.05 1.23); arg(Bilmärke) tar(0.6 1.2);

arg(Geografi)                      

  niv(

    (,'Tätgr-000':'Tätgr-025' 'Glesbygd')

    (,'Tätgr-050' 'Tätgr-100' 'Tätort')

  ) 
  tar(0.75 1.25)
;
TEXT

Test av Rapp
Endproc

Proc Graf listfil(a.txt) pdffil(a.Pdf) t r f m u s visa

  pos[ 13 1_pie_2% 13 Antal§försår]

  pos[ 13 A_vbar  39 Skadefrekv  53 Medelskada  68 Riskpremie ]

  pos[ 13 1_color=red,green,blue,yellow 13

       Antal§försår  85 Intjänt§premie

       22 Antal§skador  30 Skadekostnad ]
Endproc

Proc Excel listfil(a.txt) xlmfil(a.xlm) visa Endproc

Example 4

Deductible simulation.
Include C:\Rapp\Rpp\Init.Rpp
Proc Taran listfil(a1.txt) nummetod(u)

    crosslist(a2.txt)

    crossarg(Ålder Kön)

    crossvar(

      skkost1000 skkost2000 Bruttoerstot /* Primära summationsvariabler */

      sjpct1 = 100*skkost1000/Bruttoerstot /* Sekundära härledda variabler */

      sjpct2 = 100*skkost2000/Bruttoerstot

      Skk_kkr = Bruttoerstot/1000

      Antpct = 100*Antskad/Tot.Antskad

      Skkpct = 100*Bruttoerstot/Tot.Bruttoerstot

    )

    crossout(Antskad 7,  Antpct 8.2   Skk_kkr 10   Skkpct 8.2   sjpct1 7.2   sjpct2 7.2)

           //  12345678901 234567 2345.78 234567890 2345.78 234.67 234.67
    crossrub('              Antal Procent    Skkost Procent   Proc   Proc'

             ' Ålder       skador av tot.       kkr av tot.   1000   2000')

rub62 'Självrisksimulering demo';

Infiler fil(C:\s\Agria\Agrskad_raknas_1_HAST2.txt)

  var(

    Skadedat Diagnos3 $ Ersår Delmom Sktyp $ Orsakskod $ Diagnos $ Sjrkr

    Sjrrab Bruttoerstot Nettoerstot Fromdat Todk Mtyp Mvillk Postnr Bolag

    Kön Anvkod Ras $ Sjrp Fbel Ålder Periodinx Fbelintervall Omfinx

  )

  delimiter(9)

  dvar( dur = 1 skkost = 1 // Dummies since dur and skkost must be present.
    skkost1000 = max(0,Bruttoerstot-1000)

    skkost2000 = max(0,Bruttoerstot-2000)

  )

;

arg(Kön) ; arg(Ålder) ;

ENDPROC

Proc Graf listfil(a2.txt) pdffil(a2.Pdf) visa ENDPROC

D. Enter estimates into SAS
Include C:\Rapp\Rpp\Init.Rpp
PROC Sasin libname(J:\AA\BB) tabell(Skattn)

  textfil(v2.Txt) delimiter(';') firstobs(2)

  satser(drop Fbelndur Tarf;) /* Fbelndur, Tarf (tariffaktor) är 0 här. */

  var(Argnamn $char30. @32 Nivnamn $char10. Anr Ninr Dur Fbelndur Prem Antskad

    Skkost Ospmu Osp Basff Basfm Basfr Faktf Faktm Faktr Ospf Ospm Ospr Tarf)

ENDPROC

E. Enter estimates into Excel

Include C:\Rapp\Rpp\Init.Rpp
Proc Excel textfil(v2.txt) xlmfil(Skattn.xml) visa endproc

F. Other GLM-methods than MMT / marginal totals
Standard-GLM

Proc Taran s-glm ...

Tweedie model for risk premium
Proc Taran Tweedie(1.5) idgrupp(riskar bolag forsnr) ... 
Proc Graf works also for list files from these methods.

Appendices - confidence intervals, multiclass analysis
Appendix 1 is from Scandinavian Actuarial Journal 2014:8.
Appendix 2 is from Scandinavian Actuarial Journal 2018:9, with an additional appendix 3.
Appendix 4 is from Astin Bulletin 40(1), May 2010. Statement by ASTIN’s rules:

Copyright 2010 by ASTIN Bulletin and PEETERS s.a. Reproduced with Permission.
Appendix 6 is from Astin Bulletin 42(1), May 2012. Same statement applies with year changed to 2012. Some elaborations after printing of the paper are included.
Appendix 8 treats Poisson approximation, no new results however.

Appendices 1, 2, 4 and 6 are made by the author. They have the same page breaks but not the same line breaks as the Pdf's made by Taylor & Francis and PEETERS s.a., respectively. A few misprints have been corrected in Appendix 6. They are listed at the end.
Open jpg’s by double-click.

Open Pdf’s by either right-click / Acrobat document or double-click.
If the embedded Pdf’s do not open, follow this procedure. Or some other way appropriate for new versions of Word.
Disabling Protected Mode in Adobe Reader X to enable reading embedded objects
  1. Open Adobe Reader X.

  2. From Edit (Redigera) menu select Preferences (Inställningar). Preferences

     dialog box appears.

  3. Select General category (Allmänt) on the list, uncheck or remove tick mark

     for "Enable protected mode at startup (Aktivera skyddat läge vid start)".

  4. Close and reopen the application and the embedded object should now open.
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Change path of opening program in the Explorer in Windows XP and Vista 


2011-03-03, Stig Rosenlund 


Change path of opening program for .rpp at click and return  


Assume we made Rapp.Exe default opening program for files type .rpp. 


1. Right-click cmd.exe in C:\Windows\System32. Select Run as administrator. At a workplace it 


must probably be an IT-person. 


 


2. Command Regedit. 


 
 


3. In the list that pops up, select HKEY_CLASSES_ROOT. 


 


 


4. Then you get a list of a number of filextents where .rpp is and then a number of names in more 


plain language where Rpp_auto_file is. 


 







5. Locate Rpp_auto_file\shell\open\command. 


 
 


6. Right click the entry (Default) and select Modify to change the path in Edit String. 


 


7. Close a few times. 


 


Change path of alternative opening program shown at right-click / Open with 
 


Assume we made Rapp.Exe alternative opening program for file types such as .txt and .sas. 


Step 1 and 2 as above. 


 


3.  In the list, choose HKEY_CLASSES_ROOT\Applications\Rapp.Exe\shell\open\command.  Right 


click the entry (Default) and select Modify to change the path in Edit String. 
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Converting an Excel sheet to a tab-delimited text file (Excel dialog in Swedish). 


2014-04-25, Stig Rosenlund 


1. Save as / other formats. 


 


 


2. Choose tab-delimited text. 


 


  







3. Save. 
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Länsförsäkringar Alliance, Aktuarie Sak (retired), Stockholm, Sweden


We treat a model with independent claim numbers and claim amounts, conditional on stochastic parameters.


Groups are categorized into a smaller number of classes, which likely differ in risk premium. The collective


claim frequency and mean claim for a group are modeled as those of the class the group belongs to. For each


group we find the Best Linear Predictor (BLP), also known as Credibility Estimator, in a generic model


covering claim frequency and mean claim, as a weighted mean of the group’s individual estimate and the


collective estimate. Assuming Poisson distributed claim numbers and some distributional properties of claim


amounts, we find estimators of variance components, estimation errors of the collective claim frequency and


mean claim and covariances between observations, estimators and stochastic parameters. Pseudo-estimators,


i.e. estimators which are defined by expressions that contain them and which must be solved numerically,


are given for between-groups variance components. Simulation results, where some of the assumptions are


violated, indicate when they are preferable over non-pseudo-estimators.
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1. Introduction and summary of results


In tariff analysis we use the term multi-level factor (MLF) for a rating factor, where some classes have


too few claims to admit basing the premium on the class alone. An example is geographical parish,


when there are several thousands of those. Credibility analysis should be used for this argument. To


distinguish the MLF from arguments (rating factors) with sufficiently many claims in each class, we


call a class in it a group.


We have a prior categorizing of groups into a smaller number of classes by some property, which we


have prior reasons to believe affects the risk premium. An example of groups is geographical parishes


with the property population density in five classes, where higher population density likely implies


higher risk premium. We call the classes of this property an auxiliary argument, or Auxiliary. We use


the term of Ohlsson & Johansson (2010), Section 4.2.3, page 87. These authors treat there the same


setting as we do.


The input is claims and exposures for some time period. Best Linear Predictors1 (BLPs) are de-


duced. Under an essentially Compound Poisson assumption and some suitable distributional assump-


tions for claim amounts we also derive estimators of between-groups variance components.


*Corresponding author. E-mail: stig.ingvar.rosenlund@gmail.com


1 What is predicted is the expected claim frequency or mean claim of a group, conditional on


a random effect that occurred in the past and will not change. Thus the word predictor seems


disingenuous. The actuarial tradition is to call the BLP the Credibility Estimator, but the word


estimator for a random variable, such as this conditional expectation, is also disingenuous. See


Ohlsson & Johansson (2010), Section 4.1, page 75, for a discussion of terminology.
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The paper is organized as follows. Section 2 recapitulates credibility models found in the literature.


Section 3 summarizes and gives reasons for our model. Section 4 states the notation. Section 5 sets up


a generic model covering both claim frequency and mean claim. Section 5.1 gives the BLP. We take


account of how estimators’ variances and covariances with observations and stochastic parameters (i.e.


random effects) affect the BLP, thereby arriving at a possibly new and more exact expression than has


been known so far. Section 5.2 gives a pseudo-estimator for the variance component between groups,


which is optimal under certain conditions. A pseudo-estimator is one that is defined by an expression


that contains the estimator itself, which thus must be found by numerical root finding. In Section 6 the


specifics of claim frequency are treated under the assumption of Poisson distributed claim numbers.


Section 7 treats the specifics of mean claim under assumptions of some distributional properties of


claim amounts. In Section 8 the separate claim frequency and mean claim results are combined to


risk premium results. Section 9 describes simulation results for the goodness of estimators of between-


groups variance components, when some assumptions are violated to test robustness. Appendix 1 gives


proofs. Appendix 2 gives tables from the simulations.


The free language Rapp for credibility by this paper and other methods, GLM for non-life in-


surance pricing, claim reserve algorithms, bignum multiprecision computing, etc., is found here:


www.stigrosenlund.se/rapp.htm.


2. Overview of some credibility models


Bühlmann & Straub (1970) give the classical Bühlmann-Straub estimator for a non-parametric cred-


ibility model with one MLF and no other rating factors. Norberg (1980) treats best linear unbi-


ased prediction in empirical Bayes credibility. Campbell (1986) combines the MLF with groupings


of it by auxiliary arguments which are functions of the MLF, e.g. median income and population


density for parishes, and weight and power for car models. The grouping is made by cluster anal-


ysis. In the example rendered, exposure is normalized duration. For the Bühlmann-Straub model


De Vylder (1996) III, Chapter 3, Section 3.4.7, gives pseudo-estimators credited to Bichsel & Straub.


Frees (2003) treats credibility with a multivariate approach to groupings into different lines of business.


Overviews of credibility are found in Bühlmann & Gisler (2005), including the Poisson model for claim


numbers and a pseudo-estimator for Pareto credibility, and in Kaas et al. (2009). Ohlsson (2008) and


Ohlsson & Johansson (2010), Chapter 4, treat a setting with multiplicative rating factors including the


MLF and auxiliary arguments, without a Poisson assumption. We cite Ohlsson & Johansson (2010)


frequently below due to its use as a textbook in actuarial education, although the results might have


been found by other authors before them.


3. Summary of and reasons for model


For some of our results we assume that, conditional on stochastic parameters (random effects), the


claim cost of any group of the MLF is Compound Poisson distributed, with the slight weakening


that individual claim amounts are independent and have the same mean and variance, not necessarily


identically distributed. Therefore we write essentially Compound Poisson above.


We have available a categorization of the groups, called the Auxiliary. Given independent random


effects per group with mean 1 and the same variance, the expected claim frequency or mean claim is


the product of a factor specific to the auxiliary and the random effect.


See Rosenlund (2010) for reasons to use pure Poisson in tariff analysis rather than Overdispersed


Poisson for claim numbers, even with macroscopic fluctuations affecting large parts of the portfolio


in the same way. It is also a mistake to assume Negative Binomial – Mixed Poisson with a gamma


mixing distribution – for claim numbers. While the Negative Binomial distribution is appropriate if


we draw a customer at random from the portfolio, it is inappropriate if used for tariff analysis and


predictions of next year’s claim numbers. We should instead condition with respect to the different


customers’ mixing variables, whether we regard them as stochastic or not. In this paper we condition



www.stigrosenlund.se/rapp.htm
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with respect to stochastic parameters, which were realized in the past and do not change. So we


get the pure Poisson distribution. Negative Binomial would only be right if all customers were to


leave at year-end and be replaced by a random sample of customers, distributed as this year’s sample


and independent of it. Normally only a fraction of the customers leaves each year, making the claim


number distribution somewhat more dispersed than Poisson, but not like Negative Binomial. This


thought experiment suffices to clarify the matter.


4. Notation for observables


We define the following observables. Subscripts F and M denote claim Frequency and Mean claim,


respectively.


J = number of groups, (4.1)


ej = exposure in group j, assumed > 0 for all j ∈ {1, . . . , J}, (4.2)


Nj = number of claims in group j, (4.3)


Zjr = individual claim amounts in group j ∈ {1, . . . , J}, r ∈ {1, . . . , Nj}, (4.4)


YFj = Nj/ej = observed claim frequency in group j, (4.5)


YMj =


Nj∑


r=1


Zjr/Nj = observed mean claim in group j, (4.6)


kj = the class of group j in the Auxiliary, (4.7)


eAk =
∑


j:kj=k


ej = sum of exposure over class k of the Auxiliary, (4.8)


NA


k =
∑


j:kj=k


Nj = sum of claim numbers over class k of the Auxiliary. (4.9)


With no Auxiliary we set kj ≡ 1. Then eA
1
is the total exposure and NA


1
is the total number of claims.


5. Generic BLP and pseudo-estimator


A generic notation will be employed to deduce a BLP and a pseudo-estimator. Certain functionals


and their estimators will then be specified for claim frequency and mean claim. This notation is as


follows.


Generic wj wA


k Yj


Claim frequency ej eAk YFj


Mean claim Nj NA


k YMj


We condition on Nj and on Nj > 0 for mean claim. This conditioning is implicit and is not written


out below. See the remarks in Section 8 for a justification.


Here wj and wA


k are generic exposures. For mean claim the claim numbers take the role of exposures.


Yj is the generic claim rate. We make the following assumptions.


Assumption 1: Conditional on stochastic variables Θj (j = 1, . . . , J), with expectation E[Θj] = 1


and variance Var[Θj ] = τ2, Yj has expectation µkj
Θj , where µk is the expected claim rate of Auxiliary


class k.


Assumption 2: (Θ1, Y1), . . . , (ΘJ , YJ ) are independent.


Objective. To predict µkj
Θj as well as possible.
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Here µkj
= E[Yj ] and τ2 is a between-groups variance component.


Let


Λj = µkj
Θj, claim rate group j conditional on Θj . (5.1)


Define these functionals. (5.2) and (5.3) are used both for the BLP and the pseudo-estimator, while


(5.4) and (5.5) are used only for the pseudo-estimator.


ν2k =
1


wA


k


2


∑


j:kj=k


w2


j (σ
2


j + µ2


kτ
2), (5.2)


σ2


j = E[Var[Yj | Θj]], within-groups variance component, (5.3)


ρj(τ
2) = Var[(Yj/µkj


− 1)
2
], (5.4)


αj(τ
2) = 1{wj>0}


(
σ2


j /µ
2


kj
+ τ2


)2
/ρj(τ


2). (5.5)


Estimators are named as the corresponding functionals with a ̂ above them. They are obtained by


plugging estimators into the expressions above.


The most laborious work in deducing a new pseudo-estimator is establishing an estimator for ρj(τ
2)


by (5.4). This is done in sections 6.1 and 7.1.


Define the estimator


µ̂k =
1


wA


k


∑


j:kj=k


wjYj . (5.6)


It is immediate that E[µ̂k] = µk. It will be shown in Appendix 1.1 that


ν2k = Var[µ̂k]. (5.7)


5.1. Best linear predictor


We establish first a non-observable predictor of Λj in the form


Λ∗
j = zjYj + (1− zj)µ̂kj


(5.8)


for an optimal zj . Having established this predictor, we obtain an observable estimated predictor in


the form


Λ̂j = ẑjYj + (1− ẑj)µ̂kj
, (5.9)


where ẑj is a suitable estimator of zj .


We seek the best linear combination of the observations Yj to predict µkj
Θj in L2-norm, i.e. the


BLP or Credibility Estimator. It is shown in Appendix 1.1 to be in the form (5.8). That is, zj is to


be determined so that E[(Λ∗
j − µkj


Θj)
2
] is minimized. Then Λ∗


j is the BLP. The following is proved


in Appendix 1.1.


Theorem 5.1. If Assumptions 1 and 2 hold, then Λ∗
j by (5.8) is the BLP of Λj if we set zj = 0


when wj = 0, otherwise


zj =


µ2


kj
τ2 − wj


wA


kj


(
σ2


j + 2µ2


kj
τ2
)
+ ν2kj


(
σ2


j + µ2


kj
τ2
)(


1− 2wj


wA


kj


)
+ ν2kj


. (5.10)


We obtain ẑj from zj by replacing unknown functionals with suitable estimators. We name such an


estimator as the corresponding functional with a ̂ above it. For τ2 an estimator named with a ˜
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or an * above it can also be used. We find µ̂k above in (5.6). The remaining ones will be specified for


claim frequency and mean claim later.


Some terms of (5.10) are part of the classical Bühlmann & Straub (1970) estimator, while other


terms might be new. See Remark A1.


The exposure-weighted total of the non-observable predictors is easily shown to be unbiased. The


replacement with estimators in the observable predictors can cause a bias. It is corrected by first


computing the simple expression
∑J


i=1
wiYi/


∑J


i=1
wiΛ̂i and then multiply that to each Λ̂j .


5.2. Pseudo-estimator


We give a τ2-estimator that contains itself, i.e. a pseudo-estimator in the sense of Bichsel & Straub.


See De Vylder (1996) III, Chapter 3, Section 3.3.7, for a description of a pseudo-estimator in a simple


setting. Equation (5.11) must be solved numerically, and the solution is the pseudo-estimator. We


have to find a zero of the rather complicated function of τ̂2 given by the left side of (5.11) minus the


right side.


The reason for a pseudo-estimator is to be able to use inverse variance weighting of squared de-


viations of observations from means, so that a minimum variance estimator can be obtained. These


inverse variances require the variance component itself, hence the need for numerical root finding. This


is laid out in Appendix 1.2. Non-pseudo estimators cannot make use of such weighting. Sufficiently


many groups and observations are needed for a pseudo-estimator to be better than a non-pseudo one,


however.


See Appendix 1.3 for the solution. We define τ̂2 as the largest solution. It can be 0, indicating no


variance between groups. We give a sufficient condition for a positive solution, but could not prove its


uniqueness or that the condition is necessary.


The iterative procedure for pseudo-estimators described in the literature is not suitable for finding


the solution. Bisection (interval halvings) or some faster more complicated method should be used.


We need the concept of excess e(·) as defined in Cramér (1946), Chapter 15, Section 15.8, equation


(15.8.2), and in De Vylder (1996) III, Chapter 2, Section 2.1.2. Namely


e(X) =
E[(X − µ)4]


E[(X − µ)2]
2
− 3 for a random variable X with E[X ] = µ.


We will assume that the 3:rd central moment and the excess of Θj are 0. These assumptions admit a


relatively simple and mathematically consistent estimator, and they imply approximate optimality of


the estimator for a large number J of groups. However, in Section 9 we study by simulations how the


estimator performs when J is not so large and when these moment assumptions are not true.


Theorem 5.2. Let Assumptions 1 and 2 be true. Let ν̂2kj
, σ̂2


j and α̂j be estimators, to be specified


later, of the corresponding functionals in (5.2), (5.4) and (5.5). Define the pseudo-estimator


τ̂2 =


J∑


j=1


α̂j(τ̂
2)


α̂1(τ̂
2) + · · ·+ α̂j(τ̂


2)
τ̂2


[(
σ̂2


j + µ̂2


kj
τ̂2
)(


1− 2wj


wA


kj


)
+ ν̂2kj


]−1


(Yj − µ̂kj
)2. (5.11)


It holds E[τ̂2] ≈ τ2. If E[(Θj − 1)3] = 0 and e(Θj) = 0, then τ̂2 is approximately optimal in the


sense of having the smallest mean square error of estimators in the form of a linear combination of


(Yj − µ̂kj
)2.


6. Claim frequency specifics


Here we have wj = ej , w
A


k = eAk and Yj = YFj . We use the first two ones below, while retaining the


generic notation for the rest. In addition a specific function vF(, ) is introduced.
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Assumption 3: Conditional on Θj, Nj is Poisson distributed.


The properties of the Poisson distribution entail the following.


ν2k =
1


eAk
2


∑


j:kj=k


e2j(µk/ej + µ2


kτ
2), (6.1)


σ2


j = µkj
/ej , (6.2)


αj(τ
2) =


(
1/[µkj


ej] + τ2
)2
/ρj(τ


2). (6.3)


6.1. Variance of squared observation deviations


To use (5.11) we must have an estimator α̂j(τ̂
2), which requires an estimator of ρj(τ


2).


Lemma 6.1. Let Assumptions 1, 2 and 3 be true and assume that E[(Θj − 1)3] = 0 and e(Θj) = 0.


Let


vF(x, y) = y3 + (7x+ 2)y2 + 4xy + 2x2. (6.4)


Then ρj(τ
2) by (5.4) is


ρj(τ
2) = vF(τ


2,
1


µkj
ej
). (6.5)


As before, plug in estimators in (6.5) to get ρ̂j(τ̂
2) and then α̂j(τ̂


2), using (6.3).


6.2. Non-pseudo-estimator


With N0 = the total number of claims, define a non-pseudo-estimator by


τ̃2 = max




0,


J∑


j=1


µ̂kj
ej(Yj/µ̂kj


− 1)2 − (J − 1)


N0 −
J∑


j=1


µ̂2


kj
e2j/N0






. (6.6)


The adaptation of (4.27) in Ohlsson & Johansson (2010) into τ̃2 by (6.6) is this. On page 82, firstly we


set p = 1 and σ2 = µ, in accordance with the Poisson assumption. Secondly, we divide the expression


by the square of an estimate of the base factor µ. This is necessary, since we deal with claim frequency


estimates without specifying them into base factors and argument factors. Thirdly we truncate the


estimator from below to 0. This will decrease its mean square error. One might think that this would


entail a positive bias, but our simulations nevertheless showed a negative bias.


7. Mean claim specifics


Here we have wj = Nj, w
A


k = NA


k and Yj = YMj . We use the first two ones below, while retaining the


generic notation for the rest. In addition a specific function vM(, , , , ) is introduced.


We need the following assumptions. Assumption 4 implies the generic Assumption 1.


Assumption 4: Conditional on stochastic variables Θj (j = 1, . . . , J), with expectation E[Θj] = 1


and variance Var[Θj ] = τ2, for any specific j the Zjr are independent with expectation µkj
Θj, where


µk is the expected mean claim of Auxiliary class k.


Assumption 5: Var[Zjr | Θj] = φ(µkj
Θj)


p for some φ > 0 and 1 ≤ p ≤ 2, with E[Θp
j ] independent


of j.


Here Assumption 5 implies Var[Yj | Θj ] = φ(µkj
Θj)


p/Nj. In Rosenlund (2014) we argued against


such an assumption in ordinary non-credibility multiplicative tariff analysis. But when many groups


have few claims we risk overparametrization without the assumption.
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We fix p in Assumption 5 initially. Normally p = 2 is suitable by virtue of giving claim amounts a


constant coefficient of variation (CV), conditional on Θj.


We refer to Ohlsson & Johansson (2010) for the following three expressions.


Define the functional


σ2 = φE[Θp
j ]. (7.1)


Then it holds


σ2


j = σ2µp
kj
/Nj. (7.2)


The assumptions entail the following estimator.


σ̂2 =


J∑


j=1


µ̂ −p
kj


Nj∑


r=1


(Zjr − Yj)
2


J∑


j=1


1{Nj≥2}(Nj − 1)


. (7.3)


7.1. Variance of squared observation deviations


To be able to use (5.11) we must have an estimator α̂j(τ̂
2). It is much more complicated for mean


claim than for claim frequency.


We make this assumption. For t = 2 it follows from Assumption 5 if p = 2.


Assumption 6: For t = 2, 3, 4 it holds µ−t
kj


E[(Zjr − µkj
Θj)


t | Θj ] = φtΘ
t
j for some φt > 0, with


E[Θt
j ] independent of j.


The assumption implies Assumption 5 with p = 2. It is true if Θj are only random IID scale factors


for IID claim amounts Wjr with E[Wjr ] = 1 such that Zjr = Θjµkj
Wjr .


Here φtΘ
t
j are the central moments of Zjr/µkj


conditional on Θj , and φ2 is φ in Assumption 5.


We use estimators of φtE[Θ
t
1] based on the sample central moments for t = 2, 3, 4. This can be done


without first or simultaneously estimate τ2, which is an advantage. The standard credibility procedure


to estimate φE[Θp
j ] uses σ̂2 by (7.3), which is a combination of sample central moments of order 2.


The advantage of this procedure extends to higher order central moments.


The following lemma is a counterpart to Lemma 6.1 for claim frequency. It uses functions of x and


y, where x will take the value τ̂2 and y the value Nj .


Lemma 7.1. Let Assumptions 1, 4 and 6 be true and assume that E[(Θj − 1)3] = 0 and e(Θj) = 0.


Set


γt = φtE[Θ
t
1]. (7.4)


Let the sample central moments per j be


mtj =
1


Nj


Nj∑


r=1


(Zjr − Yj)
t, (t = 2, 3, 4). (7.5)


Set


γ̂2j =
Nj


Nj−1


m2j


µ̂2


kj


,


γ̂3j =
N2


j


(Nj−1)(Nj−2)


m3j


µ̂3


kj


,


γ̂4j =
Nj(N


2


j −2Nj+3)


(Nj−1)(Nj−2)(Nj−3)


m4j


µ̂4


kj


− 3Nj(2Nj−3)


(Nj−1)(Nj−2)(Nj−3)


m2


2j


µ̂4


kj


.


(7.6)
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Then E[γ̂tj ] ≈ γt. In Appendix 1.6.1 are given unobservable estimators γ̃tj, where the true values


µkj
are used. They are shown to be unbiased estimates of γt.


Define the weighted totals of these expressions, the overall estimators of γt, to be


γ̂t =


J∑


j=1


1{Nj≥t}(Nj − t+ 1)γ̂tj


J∑


j=1


1{Nj≥t}(Nj − t+ 1)


. (7.7)


Furthermore, let


φ̂2 =
γ̂2


τ̂2 + 1
, φ̂3 =


γ̂3
3τ̂2 + 1


, φ̂4 =
γ̂4


3τ̂4 + 6τ̂2 + 1
. (7.8)


In Appendix 1.6.1 we show that φ̂t are suitable estimators of φt = γt/E[Θ
t
1
]. They are not in general


unbiased due to the substitution of µ̂kj
for µkj


and of τ̂2 for τ2.


Let also


f2(x, y, φ2) = y−1(φ2 + y)(x+ 1),


f3(x, y, φ2, φ3) = y−2(φ3 + 3yφ2 + y2)(3x+ 1),


f4(x, y, φ2, φ3, φ4) = y−3(φ4 − 3φ2


2
+ 3yφ2


2
+ 4yφ3 + 6y2φ2 + y3)(3x2 + 6x+ 1).


(7.9)


Now define a counterpart to (6.4), namely


vM(x, y, φ2, φ3, φ4) = f4(x, y, φ2, φ3, φ4)− 4f3(x, y, φ2, φ3) + 8f2(x, y, φ2)− f2(x, y, φ2)
2 − 4. (7.10)


Then ρj(τ
2) by (5.4) is


ρj(τ
2) = vM(τ


2, Nj, φ2, φ3, φ4). (7.11)


As before, plug in estimators in (7.11) to get ρ̂j(τ̂
2) and then α̂j(τ̂


2), using (5.5).


7.2. Pseudo-estimator for gamma-lognormal mixture


If specific parametric forms hold for the conditional claim amount distribution, we can get better


τ2-estimators.


We give an estimator
∗
τ2 under the following assumption, which covers a range of distributions


between short-tailed and long-tailed ones.


Assumption 7: Assumption 5 is true and its exponent p = 2. Conditional on Θj , Zjr is distributed


as a mixture of a gamma distribution and a lognormal distribution with probability q for gamma,


both with mean µkj
Θj.


Then Assumption 6 in Section 7.1 is true. For gamma and lognormal distributions the 3:rd and


4:th moments are determined by the 1:st and 2:nd ones. The idea is to use the empirical 3:rd central


moment to estimate q, which then is used to estimate the 4:th central moment. We refer to Appendix


1.7 for the computations.


Corollary 7.1. Let Assumptions 1, 4 and 7 be true. Let


q̂ = min


(
1,max


(
0,


φ̂3


2
+ 3φ̂2


2
− φ̂3


(φ̂2 + 1)φ̂2


2


))
, (7.12)


φ∗
3


= q̂ 2φ̂2


2
+ (1− q̂ )(φ̂3


2
+ 3φ̂2


2
), (7.13)


φ∗
4


= q̂ (6φ̂3


2
+ 3φ̂2


2
) + (1− q̂ ){(φ̂2 + 1)3[(φ̂2 + 1)3 − 4] + 6φ̂2 + 3}, (7.14)


∗
ρj(


∗
τ2) = vM(


∗
τ2, Nj, φ̂2, φ


∗
3, φ


∗
4). (7.15)
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Define the pseudo-estimator
∗
τ2 by replacing τ̂2 with


∗
τ2 and ρ̂j(τ̂


2) with
∗
ρj(


∗
τ2), as given in (7.15), in


the estimator of αj(τ
2) in (5.5) and in (5.11). It holds E[


∗
τ2] ≈ τ2. If E[(Θj − 1)3] = 0 and e(Θj) = 0,


then
∗
τ2 is approximately optimal in the sense of having the smallest mean square error of estimators


in the form of a linear combination of (Yj − µ̂kj
)2.


Remark 7.1. The use of the 4:th central moment can cause unstable τ̂2, if there are too few claims.


The simulation results of Section 9 illustrate this. Even if Assumption 7 is only remotely satisfied,
∗
τ2


can be preferable over τ̂2 if the latter is unstable.


7.3. Non-pseudo-estimator


With N0 = the total number of claims, as in the claim frequency non-pseudo-estimator, and J0 = the


number of groups with claims, we define this non-pseudo-estimator.


τ̃2 = max




0,


J∑


j=1


Nj(Yj/µ̂kj
− 1)2 − (J0 − 1)σ̂2


N0 −
J∑


j=1


N2


j /N0






. (7.16)


The adaptation of (4.27) in Ohlsson & Johansson (2010) into τ̃2 by (7.16) is this. Firstly, we specialize


p on p. 82 to p = 2, in order to have a suitable classical estimator to compare the pseudo one to in


simulations. Secondly, we divide the expression by the square of an estimate of the base factor µ in


Ohlsson & Johansson (2010), like the claim frequency non-pseudo-estimator. Thirdly we truncate the


estimator from below to 0. As for claim frequency, our simulations nevertheless showed a negative


bias. Note that the denominator in (7.16) is similar to the one in (6.6).


8. Combining claim frequency and mean claim


The claim frequency and mean claim predictors are combined, if we wish to use these results for risk


premium. To demonstrate this, we put subscripts F and M into the Θj and Λ̂j . We then define


Λ̂FMj = Λ̂FjΛ̂Mj . (8.1)


It can be corrected by the simple factor
∑J


i=1


∑Ni


r=1
Zir/


∑J
i=1


eiΛ̂FMi to make the exposure-weighted


total of estimated predictors unbiased. It serves as final rating factor for risk premium.


We have to assume that {ΘFj}J1 and {ΘMj}J1 are independent. Claim numbers are S-ancillary for


the mean claim parameters in the Compound Poisson model. This property implies that inference for


{ΘMj}J1 shall be made conditionally on the claim numbers. Together with independence it justifies


(8.1).


9. Robustness test simulations


9.1. Setup of comparison


To get guidelines for choice of estimator, depending on the situation, we have compared our pseudo-


estimators with the non-pseudo classical type ones. We used as the non-pseudo-estimator τ̃2, given


for claim frequency by (6.6) and for mean claim by (7.16).


The basic model stated in Assumptions 1–6 was obeyed. But, except for the case of zero τ2, we


did not let the distributions of Θj , for both claim frequency and mean claim, have zero excess or even


mostly third central moment zero, as our pseudo-estimator theorems presuppose. From a practical


viewpoint these are artificial assumptions, but ones that admit relatively simple and mathematically


consistent pseudo-estimators. These estimators have to be reasonably robust against departures from


the assumptions in order to be useful, though.
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Three J-values 200, 1000 and 2000 were studied. For each value a fictitious insurance file was made


with very varied exposure sizes per group j. An Auxiliary with five classes was assigned to each j.


Certain expected claim frequencies and mean claims per class were fixed. We set the base factor


for claim frequency to 0.01, the base factor for mean claim to 2000, and the following class factors.


Class 1 2 3 4 5


Claim frequency factor 1 2 3 4 5


Mean claim factor 1.0 1.5 2.0 2.5 3.0


The Auxiliary was assigned to the groups successively with 1, 2, 3, 4, 5, 1, 2, 3, ... .


Exposures per group j were assigned by the algorithm k = 1 + (j − 1)%100 and exposure =


100k − 90, where %100 gives the remainder after division by 100. I.e. in an arithmetic series 10, 110,


210, ... starting from the beginning at j = 1, 101, 201, ... .


One simulation generated about 30,200 claims for J = 200 and about 302,000 claims for J = 2000.


We made as many simulations as were necessary to establish the best method, unless run times would


have been too long.


As measure of the goodness of an estimate we used an estimate of expected mean square deviation


of the estimate from the true parameter. These measures, in the form of 1000×(square root), are


tabulated in Tables 1–3. Let δ1 = (τ̂2 − τ2)2 be the observed square deviation of τ̂2 and let δ2 =


(τ̃2 − τ2)2. Set δ0 = δ1 − δ2 and let δ0t be the value of the t:th simulation. We estimated E[δ0] by∑S
t=1


δ0t/S, where S is the number of simulations. If this is negative, then τ̂2 is denoted as Best and


vice versa. If the 99 % level confidence interval for E[δ0] contains 0, then a question mark is added.


9.2. Distributions and results


The results are given in Tables 1–3 in Appendix 2. Our pseudo-estimator τ̂2 is denoted by Ps, the


non-pseudo one τ̃2 by Nps.


Let U(a,b) be a random variable having the uniform distribution on (a,b).


Let (α, β) be the usual gamma distribution parameter, such that the mean is α/β and the variance


is α/β2. Let Θ0


k have the gamma distribution of (k, k).


The table below lists Θ-distributions D1, . . ., D9 in ascending CV order.


Distribution of Θj Meaning τ2


D1 1 always 0.000000


D2 U(0.875,1.125) 0.005208


D3 0.25Θ0


4
+ 0.75 0.015625


D4 0.25Θ0


2
+ 0.75 0.031250


D5 0.25Θ0


1
+ 0.75 0.062500


D6 U(0.500,1.500) 0.083333


D7 Θ0


4
0.250000


D8 Θ0


2
0.500000


D9 Θ0


1
1.000000


We let claim amounts be distributed as U(meanclaim/50.5,meanclaim×100/50.5) with CV 0.56592,


or lognormally distributed with CV = 1, conditional on the Θs.


We give an estimate of 1000×
√
mean square deviation of estimate from true value.


For τ2 = 0 the confidence intervals (confidence level 95 %) are for 105×parameter. This is marked


with a †. Otherwise confidence intervals (95 %) are for the biases in percent of the Ps and Nps


τ2-estimates, i.e. for 100(estimate - truevalue)/truevalue.
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9.3. Conclusions from simulations


The pseudo-estimators for mean claim have mixed positive and negative biases. Otherwise almost all


estimators have negative bias, except of course for zero τ2. This is remarkable for τ̃2, since they were


truncated from below to 0. The estimator with the smaller absolute bias has mostly the smaller mean


square deviation.


Overall, the advantage of the pseudo-estimators over the classical estimators increases with increas-


ing J , in line with Remark 7.1.


9.3.1. Claim frequency


In Table 1 it is seen that the pseudo-estimator τ̂2 is generally the best one, except for some cases with


small τ2. For the smaller number of groups J = 200 it is possibly worse than the τ̃2 also for the large


τ2 in distribution D9. A guideline would be to recommend that τ̂2 is used, unless J is small and the


suspected τ2 is also small.


9.3.2. Mean claim


For the light-tailed uniform conditional claim amount distribution of Table 2, the classical estimator


τ̃2 is best for the smaller J-numbers 200 and 1000 when τ2 is large. This holds also for the heavy-tailed


lognormal distribution of Table 3 when J = 200. In a typical mass consumer credibility application J


is 2000 or larger, and the conditional claim amount distribution is more heavy-tailed than the uniform


distribution. For those applications the pseudo-estimators can be recommended, while for applications


with a few large customers the case is not so clear.


10. Conclusion


We give sharp results for the BLP (Credibility Estimator) in a generic credibility model covering claim


frequency and mean claim. The model has an auxiliary argument, which is a function of a multi-level


factor. An optimal pseudo-estimator for the between-groups variance component is given under some


moment conditions for random parameters. The pseudo-estimators are shown to be reasonably robust


against departures from the moment assumptions.
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Appendix 1. Proofs


Below an estimator to be plugged into an expression is written with a ̂ above it. This can also mean


an estimator marked with a ˜ or an * in the previous sections, depending on assumptions and the


suitability of different estimators in different situations.


Appendix 1.1. Proof of Theorem 5.1


The optimality of the BLP form of (5.8), as a linear combination of the individual and the collective


mean, is a key result in basic credibility. For an extension to the case with Auxiliaries, see e.g.


Ohlsson & Johansson (2010), Section 4.2, Theorem 4.3, which applies to the present model. Their


final rating factor µγiÛj for group j following (4.24) is in the form (5.8). The difference between


methods is how to arrive at the zj.


The resulting expression (A4) can be applied to total claim cost, letting Yj =
∑Nj


r=1
Zjr/ej and


interpreting functionals accordingly.


We now compute zj . Since only one j is treated at a time, we drop the subindex j in setting z =


zj, Y = Yj , µ = µkj
, µ̂ = µ̂kj


, and Θ = Θj. From (5.8) we get


E[(Λ∗
j − µkj


Θj)
2
] = E[(Λ∗


j − µΘ)
2
]


= E[{zY + (1− z)µ̂− µΘ}2]


= E[{z(Y − µΘ) + (1 − z)(µ̂− µΘ)}2]


= z2E[(Y − µΘ)2] + 2(z − z2)E[(Y − µΘ)(µ̂− µΘ)] + (1− z)2E[(µ̂− µΘ)2].


Set 1/2 of the derivative of this expression with respect to z equal to 0. The resulting linear equation


in z has only one solution, which gives the minimum. We obtain


zE[(Y − µΘ)2] + (1 − 2z)E[(Y − µΘ)(µ̂− µΘ)] + (z − 1)E[(µ̂− µΘ)
2
] = 0. (A1)


To simplify (A1), note that from Assumption 1 we get


E[Y | Θ] = µΘ, E[Y ] = µ. (A2)


For any stochastic variable X and σ-algebra F the following identities hold.


E[X ] = E[E[X | F ]],


Var[X ] = E[Var[X | F ]] + Var[E[X | F ]].


Below we will use these identities with F = σ(Θ), the σ-algebra induced by Θ.


First term of (A1)


We obtain
E[(Y − µΘ)2]


= Var[Y − µΘ]


= E[Var[Y − µΘ | Θ]] + Var[E[Y − µΘ | Θ]]


= E[Var[Y − µΘ | Θ]]


= E[Var[Y | Θ]]


= σ2


j .


Second term of (A1)
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By using E[Y ] = E[µ̂] = µ we obtain


E[(Y − µΘ)(µ̂− µΘ)]


= E[(Y − µ+ µ− µΘ)(µ̂− µ+ µ− µΘ)]


= E[(Y − µ)(µ̂− µ)] + E[(Y − µ)(µ− µΘ)] + E[(µ− µΘ)(µ̂− µ)] + E[(µ− µΘ)
2
]


= Cov(µ̂, Y )− µCov(Y,Θ)− µCov(µ̂,Θ) + µ2τ2.


It holds


Cov(Y,Θ) = E[E[(Y − µ)(Θ − 1) | Θ] = E[(Θ− 1)(µΘ− µ)] = µτ2. (A3)


Therefore


E[(Y − µΘ)(µ̂− µΘ)] = Cov(µ̂, Y )− µCov(µ̂,Θ).


Third term of (A1)


We have


E[(µ̂− µΘ)
2
]


= E[(µ̂− µ+ µ− µΘ)
2
]


= E[(µ̂− µ)2 + 2(µ̂− µ)(µ− µΘ) + (µ− µΘ)2]


= E[(µ̂− µ)
2
]− 2µE[(µ̂− µ)(Θ − 1)] + µ2E[(Θ− 1)


2
]


= Var[µ̂]− 2µCov(µ̂,Θ) + µ2τ2.


Thus (A1) reduces to


zσ2


j + (1− 2z) {Cov(µ̂, Y )− µCov(µ̂,Θ)}+ (z − 1)
{
Var[µ̂]− 2µCov(µ̂,Θ) + µ2τ2


}
= 0


i.e.
z
{
σ2


j − 2Cov(µ̂, Y ) + 2µCov(µ̂,Θ) + Var[µ̂]− 2µCov(µ̂,Θ) + µ2τ2
}


= −Cov(µ̂, Y ) + µCov(µ̂,Θ) + Var[µ̂]− 2µCov(µ̂,Θ) + µ2τ2


i.e.


z
{
σ2


j +Var[µ̂] + µ2τ2 − 2Cov(µ̂, Y )
}
= Var[µ̂] + µ2τ2 − Cov(µ̂, Y )− µCov(µ̂,Θ).


Reinstating the subindex j, again writing zj for z etc., we get


zj =
Var[µ̂kj


] + µ2


kj
τ2 − Cov(µ̂kj


, Yj)− µkj
Cov(µ̂kj


,Θj)


σ2


j + Var[µ̂kj
] + µ2


kj
τ2 − 2Cov(µ̂kj


, Yj)
. (A4)


We can compute the variances and covariances. Assumption 1 gives


Var[Yj ] = E[Var[Yj | Θj]] + Var[E[Yj | Θj ]] = σ2


j +Var[µkj
Θj] = σ2


j + µ2


kj
τ2. (A5)


Hence by the independence condition Assumption 2


Var[µ̂k] = Var



 ∑


j:kj=k


wjYj


wA


k



 =


∑


j:kj=k


w2


j


wA


k


2
Var[Yj ] =


1


wA


k


2


∑


j:kj=k


w2


j (σ
2


j + µ2


kτ
2) = ν2k . (A6)


Thus we have proved (5.7).
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Again by the independence condition Assumption 2, for Cov(µ̂kj
, Yj) we can eliminate all terms in


µ̂kj
not containing Yj . Therefore


Cov(µ̂kj
, Yj) = Cov(


wjYj


wA


kj


, Yj) =
wj


wA


kj


Var[Yj ] =
wj


wA


kj


σ2


j +
wj


wA


kj


µ2


kj
τ2. (A7)


In the same way we obtain from (A3)


Cov(µ̂kj
,Θj) = Cov(


wjYj


wA


kj


,Θj) =
wj


wA


kj


µkj
τ2. (A8)


Inserting (A6), (A7) and (A8) in (A4) we obtain


zj =


ν2kj
+ µ2


kj
τ2 − wj


wA


kj


σ2


j −
2wj


wA


kj


µ2


kj
τ2


σ2


j + ν2kj
+ µ2


kj
τ2 − 2wj


wA


kj


σ2


j −
2wj


wA


kj


µ2


kj
τ2


. (A9)


This gives (5.10) after some rearrangement.


Remark A1. The Var- and Cov-terms in (A4) might be new. We could not find them in the litera-


ture, even with no Auxiliary. However, since the literature on credibility is so large, they are possibly


already known. The Bühlmann & Straub (1970) estimator is retrieved by omitting them. The terms are


often small in applications. The premise of credibility analysis is normally that the collective observed


mean µ̂kj
has so small variance, that it can be equated with the true mean µkj


for practical purposes.


If j’s Auxiliary class (the whole sample with no Auxiliary) comprises sufficiently many claims and the


exposure wi of each group in the Auxiliary class of j is sufficiently small relative to the total exposure


wA


kj
of its Auxiliary class, the premise is justified.


Appendix 1.2. Proof of Theorem 5.2


For the optimal pseudo-estimator, we note that by (A2) and (A5)


E[Yj/µkj
] = 1, Var[Yj/µkj


] = σ2


j /µ
2


kj
+ τ2.


Define the random variables


Tj = τ2
(
σ2


j /µ
2


kj
+ τ2


)−1
(


Yj


µkj


− 1


)2


, with expectation E[Tj ] = τ2.


We seek the optimal estimator of τ2 in the form of a linear combination


J∑


j=1


ajTj, where


J∑


j=1


aj = 1.


Since Tj are independent the minimum variance standard solution is aj = const/Var[Tj], for j with


wj > 0. (For mean claim we can have wj = Nj = 0.) We obtain


Var[Tj] = τ4
(
σ2


j /µ
2


kj
+ τ2


)−2


Var


[(
Yj


µkj


− 1


)2
]
= τ4


(
σ2


j /µ
2


kj
+ τ2


)−2


ρj(τ
2).


Here the factor τ4 cancels out. Thus, with αj(τ
2) given by (5.5), we have


aj = αj(τ
2)/[α1(τ


2) + · · ·+ αJ (τ
2)].
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The optimal estimator of τ2 using unknown true parameters is then, with some rewriting,


J∑


j=1


ajTj =


J∑


j=1


ajτ
2


(
σ2


j /µ
2


kj
+ τ2


)−1
(


Yj


µkj


− 1


)2


=


J∑


j=1


aj
τ2


σ2


j + µ2


kj
τ2


(Yj − µkj
)2. (A10)


It is unbiased. Substituting estimators for true values in the right sides of (5.5) and (A10) we can


obtain α̂j(τ̂
2) from αj(τ


2) and an estimator τ̂2 of τ2. This estimator will be biased.


One source of bias that can be dealt with is the use of µ̂kj
in (Yj−µ̂kj


)2 after plugging in estimators.


We have
E[(Yj − µ̂kj


)2] = E[(Yj − µkj
+ µkj


− µ̂kj
)2]


= E[(Yj − µkj
)2] + 2E[(Yj − µkj


)(µkj
− µ̂kj


)] + E[(µ̂kj
− µkj


)2]


= Var[Yj ]− 2Cov(µ̂kj
, Yj) + Var[µ̂kj


] = Var[Yj ]− 2wj


wA


kj


Var[Yj ] + ν2kj


= (σ2


j + µ2


kj
τ2)


(
1− 2wj


wA


kj


)
+ ν2kj


,


where we used equations (A5), (A7) and (A6). Define


Vj =
τ2


(σ2


j + µ2


kj
τ2)
(
1− 2wj/w


A


kj


)
+ ν2kj


(Yj − µ̂kj
)2.


Then from the above it holds E[Vj ] = τ2. Other bias effects on the expectation from plugging in


estimators are not so easy to reduce.


Here Vj is similar to Tj , but uses an estimate µ̂kj
in one place and has an extra factor and term


in the denominator. An estimator based on Vj is likely to have normally less absolute bias and less


mean square error than the estimator of τ2 obtained by substituting estimators for true values in Tj .


Let α̂j(τ̂
2) be obtained from αj(τ


2) according to (5.5) by plugging in estimators. We are content


to use these weights, since a more precise estimate of Var[Vj ] than approximating it with Var[Tj ] is


difficult to compute, and since Vj are dependent within Auxiliary classes.


The final estimator will then be, after plugging in estimators,


τ̂2 =
J∑


j=1


(
α̂j(τ̂


2)


α̂1(τ̂
2) + · · ·+ α̂J(τ̂


2)


)
τ̂2


(σ̂2


j + µ̂2


kj
τ̂2)
(
1− 2wj/w


A


kj


)
+ ν̂2kj


(Yj − µ̂kj
)2. (A11)


This gives Theorem 5.2. There we use the ≈ symbol and write approximately, due to the plugging


in of estimators. These statements could be formulated as limit theorems as J → ∞, provided some


conditions were imposed to guarantee that the influence of any individual j vanishes in the limit.


For use in the next section we note that ν̂2kj
can be written as a linear expression in τ̂2 as


ν̂2kj
=



 1


wA


kj


2


∑


i:ki=kj


w2


i σ̂
2


i



+



 1


wA


kj


2


∑


i:ki=kj


w2


i µ̂
2


ki



 τ̂2 = d1j + d2j τ̂


2, (A12)


as is seen in (A6).


Appendix 1.3. Solutions of pseudo-estimator equations


We seek solutions of (5.11).


We will rewrite equation (A11) in a way showing the dependence on τ̂2 in a simplified form. With


d1j and d2j the coefficients of the partitioning of ν̂2kj
in equation (A12), let


h1j = σ̂2


j


(
1− 2wj/w


A


kj


)
+ d1j , h2j = µ̂2


kj


(
1− 2wj/w


A


kj


)
+ d2j .
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Set


bj(x) = α̂j(x)/[α̂1(x) + · · ·+ α̂J (x)], cj = h1j/h2j, Uj = (Yj − µ̂kj
)2/h2j.


With x = τ̂2 we have to solve the equation


f(x) = x−
J∑


j=1


bj(x)
x


h1j + h2jx
(Yj − µ̂kj


)2 = x−
J∑


j=1


bj(x)
x


cj + x
Uj = 0.


Here x = 0 is a solution. For possible positive solutions, let g(x) = f(x)/x, i.e.


g(x) = 1−
J∑


j=1


bj(x)
Uj


cj + x
.


Let cmin = min
wj>0


{cj}, Umax = max
wj>0


{Uj} and R = Umax − cmin. Then g(x) ≥ 1 − Umax/(cmin + x)


= (x − R)(cmin + x). Hence lim
x→∞


g(x) = 1, and g(x) > 0 for x > R. If R ≤ 0 no positive solution


exists. If R > 0 we can take R as right endpoint of the interval where the solution is. The left endpoint


is 0. The solution is in the closed interval [0,R].


If we can show that g(x) is strictly increasing for x > 0, then g(x) = 0 has at most one positive


solution. This is not obvious. All simulated cases in Appendix 2 have g(x) strictly increasing. We


challenge researchers to prove that this is always true, or else find a counter-example.


From the definition (5.5) and some calculations we get for claim frequency


g(0) = 1−






J∑


j=1


Ujc
−1


j (cj + 2)−1








J∑


j=1


(cj + 2)−1






−1


.


A more complicated expression for g(0) holds for mean claim. If g(0) is negative a positive solution


exists. It remains to show that there is no positive solution if g(0) ≥ 0. Also it remains to show that


a positive solution is unique, or else that there are cases with several positive solutions.


Remark A2. The upper limit R = Umax−cmin might be too large for computation of g(R) for numerical


reasons. Instead we use the classical estimator τ̃2. If g(τ̃2) ≤ 0 we search, by stepping up, for an upper


limit x not too far from τ̃2, where g(x) > 0. If g(τ̃2) > 0 the upper limit is taken as τ̃2.


Appendix 1.4. Higher moments of stochastic parameters


If Θj has 3:rd central moment 0 and excess 0, then its moments of order 2 to 4 are easily shown to be


these. The second order moment is always as stated.


E[Θ2


j ] = τ2 + 1, E[Θ3


j ] = 3τ2 + 1, E[Θ4


j ] = 3τ4 + 6τ2 + 1. (A13)


We will in the sequel make frequent use of the Cramér (1946) formulas (15.10.4) and (15.10.5), connect-


ing moments and central moments via semi-invariants, up to order 4, in order to establish estimators


for ρj(τ
2), for both claim frequency and mean claim. The addition property of semi-invariants for


sums of independent variables is here very useful.


Appendix 1.5. Proof of Lemma 6.1 for claim frequency


We show here that Var[(Yj/µkj
− 1)2] = vF(τ


2, 1
µjej ), with vF(, ) as defined in (6.4).


Suppressing j and introducing some expressions to simplify calculations, we set


N = Nj , m = µkj
ej , ∆ = mΘj , a = m2τ2.


From (A13) we obtain


E[∆] = m, E[∆2] = a+m2, E[∆3] = 3am+m3, E[∆4] = 3a2 + 6am2 +m4.
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Now N | ∆ ∼ Poi(∆). All Poisson semi-invariants are equal to the mean. From equation (15.10.4) in


Cramér (1946), which gives moments in terms of semi-invariants, we get


E[N | ∆] = ∆,


E[N2 | ∆] = ∆+∆2,


E[N3 | ∆] = ∆+ 3∆2 +∆3,


E[N4 | ∆] = ∆+ 7∆2 + 6∆3 +∆4.


Since E[N t] = E[E[N t | ∆]], we obtain


E[N ] = E[∆] = m,


E[N2] = E[∆ +∆2] = m+ a+m2,


E[N3] = E[∆ + 3∆2 +∆3] = m+ 3(a+m2) + 3am+m3,


E[N4] = E[∆ + 7∆2 + 6∆3 +∆4] = m+ 7(a+m2) + 6(3am+m3) + 3a2 + 6am2 +m4.


For the 2:nd and 4:th central moments of N we have


E[(N −m)2] = E[N2]−m2,


E[(N −m)4] = E[N4]− 4mE[N3] + 6m2E[N2]− 3m4.


We are interested in


Var[(N −m)2] = E[(N −m)4]− E[(N −m)2]
2


.


After some calculations we arrive at the comparatively simple expression


Var[(N −m)2] = m+ 7a+ 2m2 + 4am+ 2a2.


Therefore we get, replacing a with m2τ2,


Var


[(
N


m
− 1


)2
]
=


1


m4
Var[(N −m)2] =


1


m4
(m+m2(7τ2 + 2) + 4m3τ2 + 2m4τ4).


Returning completely to the original notation, we have N/m = Yj/µkj
and m = µkj


ej, which gives,


with vF(, ) by (6.4),


ρj(τ
2) = Var[(Yj/µkj


− 1)
2
] =


1


µ3


kj
e3j


+
7τ2 + 2


µ2


kj
e2j


+
4τ2


µkj
ej


+ 2τ4 = vF(τ
2,


1


µkj
ej


).


Appendix 1.6. Proof of Lemma 7.1 for mean claim


Appendix 1.6.1. Central moment estimators


We will develop estimators of φt, which are defined in Assumption 6. These are suitable for computing


an estimator of ρj(τ
2). We have


E[Zjr/µkj
| Θj] = Θj , E[(Zjr/µkj


−Θj)
t | Θj] = φtΘ


t
j, (t = 2, 3, 4).


We use the sample central moments for j ∈ {1, . . . , J}. Let mtj be as defined in expression (7.5). Then


mtj/µ
t
kj


are the sample central moments for Zjr/µkj
, albeit containing the unknown functionals µkj


.
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Cramér (1946), p. 352, gives unbiased central moment estimators of order t ≤ 4 for a sample of IID


random variables. Using these we define


γ̃2j =
Nj


Nj − 1


m2j


µ2


kj


,


γ̃3j =
N2


j


(Nj − 1)(Nj − 2)


m3j


µ3


kj


,


γ̃4j =
Nj(N


2


j − 2Nj + 3)


(Nj − 1)(Nj − 2)(Nj − 3)


m4j


µ4


kj


− 3Nj(2Nj − 3)


(Nj − 1)(Nj − 2)(Nj − 3)


m2


2j


µ4


kj


.


By Assumption 6 and Cramér (1946), p. 352, it holds


E[γ̃tj | Θj ] = φtΘ
t
j


and hence


E[γ̃tj ] = φtE[Θ
t
j ] = γt,


where γt is defined by (7.4).


When weighting γ̃tj together for total estimators γ̃t, albeit with unknown functionals in them, we


observe that γ̃tj is defined only for Nj ≥ t. So we use weights Nj − t+ 1, giving the estimators


γ̃t =


J∑


j=1


1{Nj≥t}(Nj − t+ 1)γ̃tj


J∑


j=1


1{Nj≥t}(Nj − t+ 1)


,


with E[γ̃t] = φtE[Θ
t
1
] (recall that E[Θt


j ] is independent of j).


Since µkj
are unknown we use estimates µ̂kj


, giving γ̂tj by (7.6). They will be approximately


unbiased estimators of φtE[Θ
t
j ]. We employ the weights Nj−t+1 for γ̃t also here, giving the estimators


γ̂t by (7.7).


Using Nj − 1 as weight for t = 2 we obtain γ̂2 = σ̂2 by (7.3), which illustrates the feasibility of the


weighting. We are, however, uncertain as to whether some other weighting, presumably equal to this


one when specialized to t = 2, might be generally better without imposing more assumptions.


For φt we obtain the non-observable estimators γ̂t/E[Θ
t
j ] and, for suitable estimators Ê[Θt


j ], the


observable ones


φ̂t = γ̂t/Ê[Θ
t
j]. (A14)


The assumption of Lemma 7.1 is that E[(Θj−1)3] = 0 and e(Θj) = 0. Then we get estimates by using


τ̂2 for τ2 in (A13), e.g. Ê[Θ3


j ] = 3τ̂2 + 1. It follows that φ̂t in (A14) will be those stated in (7.8).


Appendix 1.6.2. Variance estimator using semi-invariants


We shall compute an estimate ρ̂j(τ̂
2) of ρj(τ


2) = Var[(Yj/µkj
− 1)


2
]. For shortness we suppress indices


etc. in the notation below. Let


Θ = Θj ,


N = Nj ,


V = Yj/µkj
= N−1


N∑


r=1


Zjr/µkj
.


It holds E[V ] = 1. We seek


Var[(V − 1)2] = E[(V − 1)4]− E[(V − 1)2]
2


.


Now (V − 1)4 = V 4 − 4V 3 + 6V 2 − 4V + 1 and (V − 1)2 = V 2 − 2V + 1. This yields


Var[(V − 1)2] = E[V 4]− 4E[V 3] + 8E[V 2]− E[V 2]
2 − 4. (A15)
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Let κt(Θ) the semi-invariants of Zjr/µkj
conditional on Θ. Cramér (1946) gives these in terms of


central moments in (15.10.5). We obtain


κ1(Θ) = Θ,


κ2(Θ) = φ2Θ
2,


κ3(Θ) = φ3Θ
3,


κ4(Θ) = φ4Θ
4 − 3φ2


2
Θ4.


The semi-invariant of order t for NV conditional on Θ is Nκt(Θ), by virtue of the addition property


of semi-invariants for sums of independent variables. We deduce the moments of NV conditional on


Θ from its semi-invariants, again with the help of (15.10.4) in Cramér (1946). This gives


E[NV | Θ] = NΘ,


E[(NV )2 | Θ] = (Nφ2 +N2)Θ2,


E[(NV )3 | Θ] = (Nφ3 + 3N2φ2 +N3)Θ3,


E[(NV )4 | Θ] = (Nφ4 − 3Nφ2


2 + 3N2φ2


2 + 4N2φ3 + 6N3φ2 +N4)Θ4.


The unconditional moments of V are thus N−tE[E[(NV )t | Θ]].


To go further we need the moment assumptions for Θ, namely that E[(Θ− 1)3] = 0 and e(Θ) = 0.


Then the moments of Θ are given by (A13). Hence, with ft as defined in (7.9) with x = τ2 and y = N ,


we obtain


E[V 2] = N−1(φ2 +N)(τ2+1) = f2(τ
2, N, φ2),


E[V 3] = N−2(φ3 + 3Nφ2 +N2)(3τ2+1) = f3(τ
2, N, φ2, φ3),


E[V 4] = N−3(φ4 − 3φ2


2
+ 3Nφ2


2
+ 4Nφ3 + 6N2φ2 +N3)(3τ4+6τ2+1) = f4(τ


2, N, φ2, φ3, φ4).


We have from (7.10) the following expression, where we write Nj for N again.


vM(τ
2,Nj ,φ2,φ3,φ4) = f4(τ


2,Nj ,φ2,φ3,φ4)− 4f3(τ
2,Nj ,φ2,φ3) + 8f2(τ


2,Nj ,φ2)− f2(τ
2,Nj,φ2)


2 − 4.


Then by (A15) we have


ρj(τ
2) = Var[(V − 1)2] = vM(τ


2, Nj , φ2, φ3, φ4)


The estimator ρ̂j(τ̂
2) of Var[(Yj/µkj


− 1)
2
] is obtained by plugging in estimators.


Remark A3. There are high powers and mixed positive and negative terms in the expressions above.


This will cause severe numerical problems in ordinary computer arithmetic. Multiprecision arithmetic


must be used.


Appendix 1.7. Proof of Corollary 7.1 for gamma-lognormal mixture


Assumption 7 implies that the distribution of Zjr/(µkj
Θj), conditional on Θj , is a gamma distribution


with probability q and a lognormal distribution with probability 1−q, both with mean 1. Let W1 be a


gamma distributed and letW2 be a lognormally distributed random variable, with E[W1] = E[W2] = 1.


Let W be distributed as Zjr/(µkj
Θj). We then have


φt = E[(W − 1)t] = qE[(W1 − 1)t] + (1− q)E[(W2 − 1)t]


The following expressions, giving the 3:d and 4:th moments as functions of the 2:nd one, can be


deduced from the properties of the two distributions. The φt = E[(W1 − 1)t] under Gamma are those


valid for q = 1, and the φt = E[(W2 − 1)t] under Lognormal are those valid for q = 0.


Gamma Lognormal


φ3 = 2φ2
2, φ3 = φ3


2 + 3φ2
2,


φ4 = 6φ3
2 + 3φ2


2, φ4 = (φ2 + 1)3[(φ2 + 1)3 − 4] + 6φ2 + 3.


For the mixture we thus have


φ3 = q 2φ2


2
+ (1− q)(φ3


2
+ 3φ2


2
),


φ4 = q (6φ3


2
+ 3φ2


2
) + (1− q)[(φ2 + 1)3[(φ2 + 1)3 − 4] + 6φ2 + 3].
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We can solve q from the expression for φ3, namely


q = (φ3


2
+ 3φ2


2
− φ3)/[(φ2 + 1)φ2


2
].


The moment method, consisting of estimating a parameter, which is a function of the moments of the


distribution, with the same function of the moment estimates, is here the most practical one. Using


the estimates φ̂2 and φ̂3 in (A14) of Appendix 1.6.1 thus gives a q-estimate. It has to be truncated


to at least 0 and at most 1. Thus we get estimates given by expressions (7.12), (7.13) and (7.14) in


Corollary 7.1. Due to the truncation of q̂ to [0,1], φ∗
3
is not always equal to φ̂3.


The desired estimate of ρj(τ
2) = Var[(Yj/µkj


− 1)
2
] is then given by (7.15), to be used in the


pseudo-estimator
∗
τ2 that follows from Corollary 7.1.


An estimate of ρj(τ
2) under the assumption that p = 2 and Zjr is purely gamma-distributed is


obtained by setting q = 1 identically regardless of the value of φ3. The pure lognormal case is obtained


by setting q = 0.


Appendix 2. Simulation results


Pseudo-estimators are denoted by Ps, non-pseudo-estimators by Nps. MSE is mean square deviation


of estimate from true value. The tables are further explained in Section 9.


Table 1. Claim frequency comparison of τ2-estimates.


Θj Ps: τ̂2 Nps: τ̃2


distri- 1000 — Bias in percent — 1000 — Bias in percent —


J bution Best
√
MSE Lo95 Point Up95


√
MSE Lo95 Point Up95


200 D1 Nps 0.54 28.4† 28.7† 29.0† 0.43 20.8† 21.0† 21.2†
200 D2 Nps 1.33 0.6 0.8 1.0 1.18 -5.2 -5.0 -4.9


200 D3 Ps 2.93 -0.3 -0.2 -0.1 2.97 -3.8 -3.7 -3.6


200 D4 Ps 5.52 -1.0 -0.9 -0.8 6.08 -3.9 -3.8 -3.7


200 D5 Ps 12.00 -2.1 -2.0 -1.9 13.94 -4.6 -4.4 -4.3


200 D6 Ps 8.54 0.8 0.9 0.9 8.89 -2.3 -2.3 -2.2


200 D7 Ps 32.12 -0.2 -0.1 0.0 35.85 -3.5 -3.4 -3.3


200 D8 Ps 70.79 -0.2 -0.1 -0.1 76.43 -4.2 -4.1 -4.0


200 D9 Ps? 169.30 -0.2 -0.2 -0.1 169.60 -5.6 -5.5 -5.4


1000 D1 Nps 0.22 12.0† 12.3† 12.5† 0.21 10.7† 11.0† 11.2†
1000 D2 Nps 0.59 -0.0 0.1 0.3 0.52 -1.1 -1.0 -0.9


1000 D3 Ps 1.31 -0.2 -0.1 0.0 1.33 -0.9 -0.8 -0.7


1000 D4 Ps 2.49 -0.3 -0.2 -0.1 2.77 -0.9 -0.7 -0.6


1000 D5 Ps 5.51 -0.5 -0.4 -0.3 6.51 -1.0 -0.9 -0.8


1000 D6 Ps 3.73 0.1 0.2 0.2 3.93 -0.5 -0.4 -0.4


1000 D7 Ps 14.14 -0.1 0.0 0.1 16.24 -0.7 -0.6 -0.5


1000 D8 Ps 31.28 -0.1 -0.1 0.0 35.12 -0.9 -0.8 -0.7


1000 D9 Ps 74.35 -0.1 -0.0 0.0 79.86 -1.3 -1.2 -1.1


2000 D1 Nps 0.16 8.5† 8.7† 9.0† 0.15 7.9† 8.2† 8.4†
2000 D2 Nps 0.41 -0.1 0.1 0.3 0.37 -0.6 -0.5 -0.3


2000 D3 Ps 0.94 -0.2 -0.1 -0.0 0.95 -0.6 -0.5 -0.4


2000 D4 Ps 1.77 -0.2 -0.1 0.0 1.97 -0.5 -0.3 -0.2


2000 D5 Ps 3.91 -0.4 -0.2 -0.1 4.56 -0.7 -0.5 -0.4


2000 D6 Ps 2.62 0.0 0.1 0.2 2.76 -0.3 -0.2 -0.2


2000 D7 Ps 9.96 -0.1 -0.0 0.0 11.43 -0.5 -0.4 -0.3


2000 D8 Ps 22.30 -0.1 0.0 0.1 25.14 -0.5 -0.4 -0.3


2000 D9 Ps 52.69 -0.1 -0.0 0.0 57.09 -0.7 -0.6 -0.5
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Table 2. Mean claim comparison of τ2-estimates.


Uniform conditional claim distribution


Θj Ps: τ̂2 Nps: τ̃2


distri- 1000 — Bias in percent — 1000 — Bias in percent —


J bution Best
√
MSE Lo95 Point Up95


√
MSE Lo95 Point Up95


200 D1 Nps 0.17 9.1† 9.2† 9.4† 0.13 6.2† 6.4† 6.5†
200 D2 Nps 0.77 0.2 0.3 0.5 0.69 -3.4 -3.3 -3.2


200 D3 Ps 2.38 -0.5 -0.3 -0.2 2.64 -3.6 -3.4 -3.2


200 D4 Ps 5.00 -1.2 -1.0 -0.8 5.83 -4.3 -4.1 -3.9


200 D5 Ps 11.61 -2.1 -1.9 -1.7 13.91 -5.6 -5.4 -5.2


200 D6 Ps 7.81 0.9 0.9 1.0 8.72 -2.0 -1.9 -1.8


200 D7 Ps 34.18 0.5 0.6 0.7 38.92 -4.2 -4.0 -3.9


200 D8 Nps? 87.61 2.1 2.2 2.4 86.91 -5.5 -5.3 -5.2


200 D9 Nps 295.43 8.5 8.7 8.9 209.15 -8.0 -7.8 -7.7


1000 D1 Nps 0.07 3.8† 3.9† 4.0† 0.06 3.2† 3.3† 3.4†
1000 D2 Nps 0.34 -0.1 0.0 0.1 0.30 -0.8 -0.7 -0.6


1000 D3 Ps 1.07 -0.2 -0.1 0.1 1.19 -0.9 -0.7 -0.6


1000 D4 Ps 2.26 -0.3 -0.2 -0.0 2.70 -1.0 -0.9 -0.7


1000 D5 Ps 5.25 -0.5 -0.4 -0.2 6.47 -1.4 -1.2 -1.0


1000 D6 Ps 3.35 0.1 0.2 0.2 3.83 -0.5 -0.4 -0.3


1000 D7 Ps 14.80 0.1 0.2 0.3 17.76 -1.0 -0.8 -0.7


1000 D8 Ps 36.96 0.3 0.4 0.5 41.60 -1.4 -1.3 -1.1


1000 D9 Nps 110.14 1.7 1.9 2.1 104.40 -2.1 -1.9 -1.7


2000 D1 Nps 0.05 2.6† 2.7† 2.8† 0.04 2.3† 2.4† 2.5†
2000 D2 Nps 0.24 -0.3 -0.1 0.0 0.21 -0.6 -0.5 -0.3


2000 D3 Ps 0.76 -0.1 0.0 0.1 0.86 -0.5 -0.3 -0.2


2000 D4 Ps 1.59 -0.4 -0.2 -0.1 1.87 -0.7 -0.5 -0.3


2000 D5 Ps 3.69 -0.4 -0.3 -0.1 4.57 -0.8 -0.6 -0.4


2000 D6 Ps 2.39 0.0 0.1 0.2 2.71 -0.3 -0.2 -0.1


2000 D7 Ps 10.41 -0.0 0.1 0.2 12.66 -0.5 -0.4 -0.2


2000 D8 Ps 25.99 0.1 0.2 0.4 30.13 -0.7 -0.6 -0.4


2000 D9 Ps 76.60 0.8 0.9 1.0 77.75 -1.1 -1.0 -1.0
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Table 3. Mean claim comparison of τ2-estimates.


Lognormal conditional claim distribution


Θj Ps: τ̂2 Nps: τ̃2


distri- 1000 — Bias in percent — 1000 — Bias in percent —


J bution Best
√
MSE Lo95 Point Up95


√
MSE Lo95 Point Up95


200 D1 Ps? 12.23 137.5† 145.9† 154.4† 24.36 248.5† 265.3† 282.1†
200 D2 Ps 4.08 3.0 3.7 4.5 12.26 0.6 2.9 5.2


200 D3 Ps 6.41 -1.1 -0.7 -0.3 14.02 -10.0 -9.2 -8.3


200 D4 Ps 11.02 -2.1 -1.8 -1.4 17.70 -8.0 -7.5 -6.9


200 D5 Ps 17.90 -3.5 -3.2 -3.0 24.32 -7.5 -7.2 -6.8


200 D6 Ps 13.63 0.4 0.5 0.7 18.19 -4.0 -3.8 -3.6


200 D7 Ps 44.04 -0.9 -0.7 -0.6 52.05 -5.0 -4.8 -4.6


200 D8 Ps? 98.03 -0.3 -0.2 -0.1 102.37 -6.0 -5.9 -5.8


200 D9 Nps? 469.63 2.5 2.8 3.1 237.64 -8.0 -7.8 -7.7


1000 D1 Ps 1.15 60.8† 62.7† 64.6† 7.47 156.8† 171.1† 185.3†
1000 D2 Ps 1.89 0.2 0.9 1.6 6.08 -3.3 -1.0 1.3


1000 D3 Ps 2.91 -0.5 -0.2 0.2 6.33 -3.5 -2.7 -2.0


1000 D4 Ps 4.55 -0.8 -0.5 -0.2 8.51 -2.2 -1.7 -1.2


1000 D5 Ps 8.88 -0.8 -0.6 -0.3 10.56 -1.9 -1.5 -1.2


1000 D6 Ps 5.98 -0.1 0.0 0.2 10.62 -1.0 -0.7 -0.5


1000 D7 Ps 20.27 -0.3 -0.2 -0.0 24.27 -1.3 -1.1 -0.9


1000 D8 Ps 44.47 -0.3 -0.1 0.0 51.28 -1.6 -1.4 -1.2


1000 D9 Ps? 116.23 0.5 0.6 0.7 121.14 -2.1 -2.0 -1.9


2000 D1 Ps 0.76 39.9† 41.7† 43.5† 4.24 115.4† 126.7† 137.9†
2000 D2 Ps 1.35 -0.6 0.2 0.9 7.28 -1.3 2.6 6.5


2000 D3 Ps 2.04 -0.5 -0.2 0.1 7.04 -2.2 -1.3 -0.3


2000 D4 Ps 3.24 -0.5 -0.2 0.1 5.48 -1.8 -1.3 -0.8


2000 D5 Ps 6.03 -0.7 -0.5 -0.2 7.94 -1.2 -0.8 -0.5


2000 D6 Ps 4.29 -0.0 0.1 0.3 8.70 -0.4 -0.1 0.1


2000 D7 Ps 14.46 -0.3 -0.1 0.1 16.82 -0.7 -0.5 -0.3


2000 D8 Ps 31.31 -0.2 0.0 0.2 34.18 -0.8 -0.7 -0.5


2000 D9 Ps 83.31 0.2 0.3 0.5 86.65 -1.2 -1.1 -0.9
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Appendix 3. Use with GLM and some cautionary notes


This Appendix instructs in the use of Rapp, gives non-pseudo τ2-estimators for several Auxiliaries,


and is for the rest mostly common sense. It is not part of the published paper.


Rapp use


To compute τ̂2 for mean claim by Theorem 5.2, write Distfree within multimetod(s ).


To compute
∗
τ2 by Corollary 7.1, write Mix within multimetod(s ).


Write Gamma within multimetod(s ) for setting q = 1 in Assumption 7.


Write Lognormal within multimetod(s ) for setting q = 0 in Assumption 7.


As exposure ej we can use normalized duration defined by multiplying ordinary duration with a risk


premium estimate obtained from GLM analysis on some ordinary arguments like policyholder age. I.e.


ej = (some constant)×∑(estimated risk premium for ordinary arguments)×duration,


where the sum is over all objects belonging to group j.


Normalized duration can be generalized to normalized sum insured under yearly risk.


See Rosenlund (2014) for an investigation into the suitability of different GLM methods.


The distribution on the two entities normalized duration and factor estimated collective risk pre-


mium is undetermined. One can multiply normalized duration with c and divide factor estimated risk


premium with c for an arbitrary c – the end result will be the same. Pedagogically it is suitable to let


summed normalized duration be equal to summed duration.


In Section 4 we defined kj as the class of group j in the Auxiliary. Here we have several Auxiliaries.


Hence kj is multidimensional, the combination of Auxiliaries for group j.


We consider here risk premium. We use subscripts F and M for Θj , Λj and Λ̂j, as in Section 8.


We use these subscripts also for µk in Assumption 1 and its estimator µ̂k in equation (5.6). Here


k is multidimensional and µkj
is the collective mean of group j, as determined by its Auxiliaries


in a multiplicative model. The µ̂k are obtained from GLM simultaneously with factors for ordinary


arguments.


Thus we define
Yj = YFjYMj , (C1)


µkj
= µFkj


µMkj
, (C2)


µ̂kj
= µ̂Fkj


µ̂Mkj
, (C3)


Θj = ΘFjΘMj , (C4)


Λj = ΛFjΛMj , (C5)


In the generic notation the left hand quantities pertain to either claim frequency or mean claim, but


here they pertain to risk premium.


The bias-corrected risk premium factor is obtained from Section 8 the following way.


Λ̃j = Λ̂FMj


J∑


i=1


Ni∑


r=1


Zir


J∑


i=1


eiΛ̂FMi


. (C6)


We use here the factor product estimates for ordinary arguments, that are part of normalized duration,


as if they were deterministic constants, as in Ohlsson & Johansson (2010). This is often justifiable,


since in typical applications normalized duration for a group is a sum of many approximately inde-


pendent stochastic variables with a small CV compared to µ̂kj
.


For pricing we wish to use a predictor of µkj
Θj as a risk premium factor per normalized duration


for the value j of the credibility argument. It consists of the multiplicative risk premium µkj
, the


same for all groups with the same values of the group properties, and the specific factor Θj . We have


to multiply the predictor of µkj
Θj with a factor product for ordinary arguments, e.g. policy holder
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age, in order to obtain the risk premium per ordinary duration for a specific object. The normalized


duration ej is a sum of such factor products, each multiplied with ordinary duration.


Appendix 3.1. Regression to the mean


When doing credibility analysis it is easy to succumb to the ’Regression Fallacy’. With that is meant


that factor values Λ̃j partly are affected by credibility levels, that really are rather normal, having


randomly obtained lower or higher values than they deserve. How to correct for this is a matter of


intuition. In our practice at WASA Insurance and Länsförsäkringar Alliance we have clearly found


that there is a regression effect, since a subsequent analysis of credibility argument classes on new


data independent of those that have been used for the grouping of classes by risk, has given flatter


ladders for the factor estimates than the original analysis, if the latter has not been corrected with


respect to this phenomenon. This problem with grouping by the outcome of a random variable is of


course worse if credibility is not used.


To exemplify the phenomenon, assume that the groups’ Λj take the discrete values 1, . . . , 9 with


the distribution of exposures on Λj and discrete predictions Λ̃j according to Table C1. The middle


values of Λj have larger portfolio, which explains the phenomenon. Although the predicted value Λ̃j


is unbiased for any given Λj, the average Λj will be lower than Λ̃j for high values of the latter and


higher for low values.


Table C1. Portfolio distribution of predicted risk premium depending on real


risk premium, and mean real risk premium per predicted risk premium value.


Portfolio distribution of Λ̃j


Λj


∑
ej 1 2 3 4 5 6 7 8 9


1 0 0 0 0 0 0 0 0 0 0


2 60 15 30 15 0 0 0 0 0 0


3 80 0 25 30 25 0 0 0 0 0


4 100 0 0 30 40 30 0 0 0 0


5 140 0 0 0 45 50 45 0 0 0


6 100 0 0 0 0 30 40 30 0 0


7 80 0 0 0 0 0 25 30 25 0


8 60 0 0 0 0 0 0 15 30 15


9 0 0 0 0 0 0 0 0 0 0


Mean Λj 2.00 2.45 3.20 4.18 5.00 5.82 6.80 7.55 8.00


A way of correction is with a suitable exponent δ ∈ (0, 1), and k0 such that the total sum property


is kept, in the formula
˜̃
Λj = k0Λ̃


δ
j . (C7)


The order is kept, but the premium differences are smaller. Of course this is only ad hoc, but better


than taking the Λ̃j as they are for pricing.


Appendix 3.2. Model errors


Appendix 3.2.1. Iterations between factor estimation and credibility


As in Ohlsson & Johansson (2010), section 4.2.2, it is often suitable to iterate between the factors from


the factor estimation and the credibility predictors, i.e. backfitting in the language of these authors.


It should be noted that this is due to model error. When we use normalized duration as ej we treat


factor product estimates for ordinary arguments, such as policy holder age, as deterministic constants,


i.e. as having zero variance.


In practice, however, the ordinary factor product estimates often have non-zero covariances with


the ΘFj and ΘMj , so that their variances are positive to a degree that should be dealt with. E.g. if
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the groups j, where Θj happened to be large, have a disproportionate number of dangerous young


customers, then the factor estimates for age will be affected. This can be a problem.


Now if every j has the same portfolio distribution of ordinary argument combinations the problem


does not exist. Also if J is large and and every j has a small part of the portfolio the problem can be


neglected, provided Assumption 2 holds for both claim frequency and mean claim. In the first case the


ordinary factor estimates will be unaffected by the outcomes of Θj. In the second case the ordinary


argument combinations will have approximately the same portfolio distribution of ordinary argument


combinations for different intervals of Θj outcomes. This will work for the ordinary factor estimates


in the same way as in the first case, approximately.


In these two cases iterations will have no (or little) effect, since ordinary factor estimates will not


change (much). If neither of the two holds, we should iterate. The procedure is this.


Multiply all ordinary durations (not the normalized ones) with


Θ̂j = Λ̃j/µ̂kj
. (C8)


for every individual object, where j is the value of the credibility argument for the object. Θ̂j is the


predicted specific factor for group j. Do a new GLM factor estimation with this duration and with


all arguments, ordinary and group properties, that were part of the initial factor estimation. That


gives new ej and µ̂kj
for credibility analysis, where we factor µ̂kj


into µ̂Fkj
and µ̂Mkj


in a suitable way.


Continue so e.g. five times for a total of six GLM and subsequent credibility analyses.


If the iterations have effect, this model error exists. Otherwise not. It is observable.


As well in the Ohlsson & Johansson (2010) method, model error motivates the need for iterations,


since they also treat factor product estimates for ordinary arguments as deterministic.


Appendix 3.2.2. Errors in the multiplicative model


The multiplicative hypothesis of GLM log link analysis is an approximation to reality. With many


arguments it is unavoidable that a multiplicative risk premium, that is fitted in the best way, will


still differ, sometimes significantly, from the true risk premium for individual j. See Rosenlund (2014),


section 2.1. That means that the weights ẑFj and ẑMj really should be larger, i.e. put more weight on


the individual risk premium Yj , than according to the algorithm given here. (That collides with the


wish to keep down the variance of the risk premium factor predictor and hence increase its stability


over time. Generally, though, it is advisable to try to get as correct risk premium estimates as possible,


while stabilizing premiums with proper marketing considerations.)


This feature of the multiplicative design speaks for combining group property arguments to one.


This is unless some group property values will have too few groups after combining, for then µ̂kj
will


be too unstable.


This model error is not observable.


Appendix 3.3. Non-pseudo estimators


When we have several Auxiliaries and a GLM model for them, the expressions for non-pseudo esti-


mators are somewhat more involved. Set N0 = the total number of claims and J0 = the number of


groups with claims, as in Section 7.3. For clarity we put subscripts F and M also on τ2 and σ2 and


their estimators.


Then we have the following for claim frequency. Expression (6.6) is a special case.


ỸF = N0/


J∑


j=1


µ̂Fkj
ej ,


τ̃2
F


= max




0,


J∑


j=1


µ̂Fkj
ej(YFj/µ̂Fkj


− ỸF)
2 − (J − 1)


J∑


j=1


µ̂Fkj
ej −


J∑


j=1


µ̂2


Fkj
e2j/


J∑


j=1


µ̂Fkj
ej






, estimator of τ2
F
, (C9)
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an adaptation of (4.27) in Ohlsson & Johansson (2010) for p = 1.


The following, of which (7.16) is a special case, holds for mean claim.


ỸM =
1


N0


J∑


j=1


NjYMj/µ̂Mkj
,


τ̃2
M


= max




0,


J∑


j=1


Nj(YMj/µ̂Mkj
− ỸM)


2 − (J0 − 1)σ̂2


M


N0 −
J∑


j=1


N2


j /N0






, estimator of τ2
M
, (C10)


an adaptation of (4.27) in Ohlsson & Johansson (2010) for p = 2.


Stig Rosenlund


Västmannagatan 93


S-113 43 Stockholm


Sweden


E-mail: stig.ingvar.rosenlund@gmail.com
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Changing icon and description for extension .rpp in Windows 7 


Open Regedit, HKEY_CLASSES_ROOT, as in "Change opening program 


for .rpp at click and return" steps 1-5. In the folder 


Rpp_auto_file, right-click for New and select Key. Rename the 


Key (a folder-like entry) to DefaultIcon. In DefaultIcon, 


right-click for Modify and write in C:\Rapp\Pgm\Rapp.ico or 


the full path of some other icon file. (These steps were 


already done in the pictures below.) 


 


Picture 1  


 


Picture 2 


 


 


To change the description of a Rapp program in the Explorer, 


right-click Default for Rpp_auto_file in Picture 1 for Modify 


and write Reserve and Price Program. This will be the 


description for files with extent  .rpp, like the descriptions 


Text Document for .txt and Application for .exe.  
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Running and writing Rapp programs 
2014-12-02, Stig Rosenlund 


 


First download MiKTeX as described in AllInOne.htm. 


 


A. Creating an environment for running Rapp 
1. Create the folder C:\Rapp from the downloaded zipfile Rapp.zip or Rapp.zipx. 


 


2. Startmenu / All programs / Accessories / Command prompt 


 


I illustrate how to do it below. In Swedish Accessories is Tillbehör and Command 


prompt is Kommandotolken. 


 
 


3. Copy the four lines below. 


 


@echo off 


echo You run exe-files primarily from C:\Rapp\Pgm. 


set "FromCmdPrompt=Yes" 


path=C:\Rapp\Pgm;%PATH% 


CD C:\Rapp\Rpp 


 


At the prompt >, write  


 


    Notepad Br.Bat 


 


Answer Yes to Create new file?  


 


Write the five lines into the new file Br.Bat. Close up right and save. 


 


Place a shortcut to the Command prompt on the desktop or the Startmenu. 


 


Henceforth when you are going to run a Rapp program, go into the Command prompt 


and write Br and press Enter. 


 


For example there is a simple program C:\Rapp\Rpp\Helloworld.Rpp. Run it at the 


Command prompt by 


 


Rapp Helloworld 


 


 


B. Editing Rapp programs 
Rapp programs are text files. Excel and Word are not suitable, since they might 


insert characters alien to Rapp. I have a text editor that I bought. Notepad can 


be used. Here I describe how to use Wordpad.  


 


Right-click a Rapp program in the Explorer file list of C:\Rapp\Rpp. Choose Open 


and then Wordpad from a menu. Choose the font Courier New and check the box for 


no folding of lines (Automatic linebreak / No linebreak). Then you have an 


environment for modifying Rapp programs. 
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Inference in multiplicative pricing


STIG ROSENLUND*


Länsförsäkringar Alliance, Aktuarie Sak (retired), Stockholm, Sweden


In multiplicative pricing of non-life insurance, we report a simulation study of mean square errors (MSEs)


of point estimates by 1) the marginal totals method, and 2) the Standard GLM method of Poisson claim


numbers and gamma distributed claim severities with constant coefficient of variation. MSEs per tariff cell


are summed with insurance exposures as weights to give a total MSE. This is smallest for Standard GLM


under the multiplicative assumption. But with moderate deviations from parameter multiplicativity, the


study indicates that the marginal totals method is typically better in the MSE sense when there are many


arguments and many claims, i. e. for mass consumer insurance. A method called MVW for confidence in-


tervals, using only the Compound Poisson model, is given for the marginal totals method. These confidence


intervals are compared with the ones of Standard GLM and the Tweedie method for risk premiums in a


simulation study and are found to be mostly the best. The study reports both cover probabilities, which


should be close to 0.95 for 95 % confidence intervals, and interval lengths, which should be small. The


Tweedie method is found to be never better than Standard GLM.


Keywords: Confidence intervals; GLM; Marginal totals method; Multiplicative tariff; Point estimates


1. Introduction


GLM models and methods for multiplicative pricing are commonly used in non-life


insurance. Software is available with algorithms using the numerical Newton-Raphson


method, which is very fast even with many rating factors (arguments). Appendix A.1


defines the methods MMT (Method of Marginal Totals), S-GLM (Standard GLM),


and Tweedie with exponent p ∈ [1, 2]. Exponent p = 1, the Overdispersed Poisson


model, gives the same point estimates as MMT. The S-GLM and Tweedie models yield


confidence intervals for rating factor estimates. Insurance exposure weighted MSE (=


Mean Square Error) is defined in Appendix A.2.1.


The purposes of this paper are to


(1) Give for MMT a variance estimate method, giving confidence intervals, that is


better than using the Overdispersed Poisson model. It is described in Appendix


C. We call the method


MVW = MMT Variance estimates under Weak assumptions.


(2) Compare the methods’ point estimate MSEs for simulated cases under some mod-


erate deviations from parameter multiplicativity. Results are given in Section 3.


*E-mail: stig.rosenlund@sverige.nu
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(3) Compare the methods’ confidence interval accuracy for simulated cases with pa-


rameter multiplicativity and varying degrees of departure from the S-GLM as-


sumptions. Results are given in Section 4.


All GLM theory needed for this article can be found in Ohlsson & Johansson (2010)


and in Rosenlund (2010), where also references to original GLM contributions can be


found.


The paper is organized this way. Section 2.1 argues for the importance to consider


deviations from parameter multiplicativity and summarizes simulation results for point


estimates. Section 2.2 stresses the need to consider deviations from the S-GLM claim


severity variance function and summarizes simulation results for confidence intervals.


Section 3 gives detailed simulation results for point estimates and Section 4 gives de-


tailed simulation results for variance estimates and confidence intervals. After a conclu-


sion in Section 5, the GLM methods and the new MVW method for variance estimates


are summarily described in Appendix A.1. Appendix A.2 gives basic assumptions and


notation. Of the appendices only A is needed to understand the simulation results.


In Appendix B a detailed description is given for the MMT and S-GLM point esti-


mate equations. This description is a starting point for the development of MVW in


Appendix C. This development is hard to understand. It is necessarily a mixture of


rigorous mathematics, complicated algorithms and approximations with roots in time-


honoured actuarial tradition, and heuristics. MVW has been used for many years by


the author and other actuaries at Länsförsäkringar Alliance. A simpler method, intro-


duced by the author in that company 1984, is one of the building blocks of the MVW


development and is also described.


Free program for GLM, MVW etc.: www.stigrosenlund.se/rapp.htm


2. Summary of simulation results


2.1. Point estimates


In real applications with many arguments one cannot avoid substantial departures from


risk premium multiplicativity. Not all or even most such interactions can be handled by


combining arguments, e. g. sex and age. Even so a multiplicative tariff is very often the


only feasible rating rule. The degree of sensitivity to departures is important. Hence


we are concerned with robustness against the multiplicativity assumption.


We report here simulation results indicating that the MMT method is often prefer-


able to S-GLM and to the Tweedie method, even though the variance function v(µ) = µ


is too flat to be realistic for claim cost. Namely, if risk premium is not strictly mul-


tiplicative, we show, for a series of simulation cases with increasing degrees of non-


multiplicativity, how the MMT method becomes more and more preferable as measured


by exposure-weighted MSEs, squared deviations, of estimated risk premiums from true


risk premiums. In the MSE sense the MMT method is more likely to be preferable


for mass consumer insurance with many arguments and many claims than it is for


insurance with few arguments and few claims. The MMT method has minimum bias 0


on the marginals, so a fair guess is that it normally has minimum bias compared with


other GLM methods in the tariff cells as well, implying minimum MSE for sufficiently



www.stigrosenlund.se/rapp.htm
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many claims. This guess is substantiated by our simulations. The variances of the


S-GLM point estimates will however typically be smaller.


We do not here give detailed results for the method of directly minimizing the


exposure-weighted sum of squared deviations of estimated multiplicative risk premi-


ums from observed risk premiums per tariff cell. This is excruciatingly slow to use with


many tariff cells. The Newton-Raphson method cannot be used for these etimates.


An iterative solution like the classical non-GLM one for MMT must be used. See


Mildenhall (1999). We have made simulations, which probably will not be published,


for a moderate number of tariff cells, i.e. less than 5,000,000. Counter-intuitively, com-


pared to MMT and S-GLM the method mostly yielded a larger expected value of


the MSE as defined here, i.e. the corresponding exposure-weighted sum with true risk


premiums used instead of observed ones.


2.2. Confidence intervals


The assumption that a variance function exists, i. e. that homoscedasticity (equal


variance) holds for a transformation of claim cost or claim severity, is strong. It cannot


be justified as more than a crude approximation of reality. What can be said is this: If


a variance function v(µ) = µp must be used for claim severity (= claim amount), then


p = 2 as in S-GLM is the best choice. It means that a claim amount Z has Var[Z/E[Z]]


and thus its CV (coefficient of variation) constant. But when there are large claims,


which are more frequent in some classes than in others, this assumption is likely to be


considerably violated.


So there is a need for methods which give confidence intervals and are fast to use


without a homoscedasticity assumption. Such methods would entail far less need to


truncate large claim amounts to get not too unreasonable inference. The weaker as-


sumptions the better. In particular this is needed for the MMT method in view of


the alternative to use the unrealistic variance function v(µ) = µ. We will give such a


method here. It gives confidence intervals where all classes have positive widths, whose


interpretation will be explained. Intervals with width 0 for a base class per argument,


like the GLM variance function based intervals, are also given in the new method. We


call this the MVW method, where W stands for weak as in weak assumptions.


The Poisson assumption for claim numbers is however kept. See Rosenlund (2010)


for an investigation and time-honoured references. There it is shown that it is wrong


to use an Overdispersed Poisson model for claim numbers, with a dispersion parame-


ter independent of time length and of exposure generally, due to random independent


claim frequencies. All Overdispersed Poisson process claim number models are Com-


pound Poisson. Also, for mass consumer insurance a model with random independent


frequencies, giving e. g. claim numbers with negative binomial distributions, is shown


to be an unnecessary complication. The simple Poisson model gives the same results


for practical purposes. This is due to a result by Grigelionis (1963).


Simulation results are reported for confidence intervals with the methods MVW, the


1984 method preceding MVW, S-GLM and Tweedie with suitably chosen exponent. For


S-GLM the χ2-based Pearson dispersion parameter estimate using individual claims is


used. For a motivation, see Ohlsson & Johansson (2010), Chapter 3. We report cover


probabilities for 95 % intervals and mean interval widths. The closer to 0.95 the former
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are, and the shorter the latter are, the better. Although mean interval widths are smaller


for S-GLM because of this method’s smaller point estimate variances, we conclude that


the MVWmethod is mostly the best. Also we conclude that the Tweedie method should


not be used. It is never better than S-GLM and necessitates additional work to estimate


the exponent.


3. Simulations of MSEs of risk premium point estimates


S-GLM risk premium estimates can be expected to have smaller variances than those of


MMT in real applications. See next last paragraph of Appendix B. As exposure → ∞


with a factor c → ∞ common to all tariff cells, we can expect an MMT estimate to


have variance k1/c and the S-GLM estimate for the same tariff cell to have variance


k2/c, with k1 > k2.


However, if risk premium is not exactly multiplicative, the mean square deviation


of a tariff cell risk premium estimate from the true value will converge to a value > 0


as c → ∞, not converge to 0 along with variances. Thus we study the MSE measure


defined in expression (A.1) Let the exposures be defined, like in (3.1), as


eu = ce0u,


and define the MSEs


MM(c) = M(MMT, {ce0u}),


MS(c) = M(S-GLM, {ce0u}).


We conjecture that typically the limiting MSEs as c→ ∞, i.e. the squared biases, obey


lim
c→∞


MM(c) < lim
c→∞


MS(c).


If this is true, then there should be an indifference value c0 of c where MM(c) = MS(c),


below which MM(c) > MS(c) and above which MM(c) < MS(c). If variances k1/c


for MMT and k2/c for S-GLM, where k1 > k2, hold asymptotically also for c → 0,


then this would follow from the identity ”(mean square error) = variance + (square


of bias)” generalized to the collection of all tariff cells. (We disregard the possibility


that the equation MM(c) = MS(c) might have several solutions c > 0.) We give


simulation results of four cases corroborating this conjecture. It is shown that the more


deviations from risk premium multiplicativity in the case, the smaller is the indifference


value c0. Judging by the expected total numbers of claims, the MMT method should


be preferable in a typical consumer insurance application in a middle-size to large


company.


The inequality above is not, however, universally true. We have made calculations for


the simple 2×2 case, and in one of about 10 cases we found the reverse inequality. This


case had multiplicative mean claim, which speaks for S-GLM, and non-multiplicative


claim frequency.


We describe the cases in detail. Thus our simulations can be repeated and checked.


There are six arguments denoted T1, T2, T3, T4, T5 and T6, each ∈ {1, . . . , 13}. Define


arrays
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k 1 2 3 4 5 6 7 8 9 10 11 12 13


fk 0.50 0.58 0.67 0.75 0.83 0.92 1.00 1.08 1.17 1.25 1.33 1.42 1.50


gk 0.54 0.62 0.69 0.77 0.85 0.92 1.00 1.08 1.15 1.23 1.31 1.38 1.46


hi,k =


{
fk, i ≤ 6,


gk, i ≥ 7,
and d


(1)
i,k = 1/(1+ |i− k|) correctly rounded to four decimals.


eu = ce0u = c 3.74 d
(1)
T1,T2


fT3fT4fT5fT6 = exposure in tariff cell u = (T1, . . . , T6). (3.1)


That is, exposure is non-multiplicative in (T1, T2) and otherwise multiplicative.


Claim frequencies and mean claims are defined in four cases.


Case Claim frequency Mean claim


1 0.2fT1fT2fT3fT4fT5fT6 5000fT1fT2fT3fT4fT5fT6


2 0.2fT1hT1,T2fT3fT4fT5fT6 5000fT1hT1,T2fT3fT4fT5fT6


3 0.2fT1hT1,T2hT2,T3fT4fT5fT6 5000fT1hT1,T2hT2,T3fT4fT5fT6


4 0.2fT1hT1,T2hT2,T3hT3,T4fT5fT6 5000fT1hT1,T2hT2,T3hT3,T4fT5fT6


In Case 1 claim frequency and mean claim are strictly multiplicative. In Case 2 there


is a deviation from multiplicativity such that, if T1 ≤ 6 then the factor series fk applies


for T2, but if T1 ≥ 7 then the slightly less steep factor series gk applies for T2. In Case


3, in addition to Case 2, the less steep factor series applies for T3 if T2 ≥ 7. In Case 4,


in addition to Case 3, the less steep factor series applies for T4 if T3 ≥ 7. The cases are


thus ordered with respect to increasing degree of deviation from multiplicativity.


The claim severity distribution is that claims are exponentially distributed except


when T1 = 5 or T2 = 9. This exponential distribution function is 1 − e−βx with β =


1/(mean claim). When T1 = 5 or T2 = 9, then with probability p0 = 0.95 and with a


= 0.1 the claim has distribution function 1 − e−(β/a)x and with probability 1 − p0 the


claim takes the value (mean claim)(1− p0a)/(1− p0) = (mean claim)18.1. This leaves


mean claim unchanged, but introduces large claims for some tariff cells. For realism


the claims should not be too well behaved.


In Table 1 estimates M̂M(c) and M̂S(c) are given with standard errors and the best


method that can be inferred. ”Best” means here the method with smallest MSE. A


question mark indicates that the standard errors are too large relative to the difference


in MSE for large certainty of the best method. E.g. for Case 4, line 2, we can compute


confidence intervals 139, 381±1.96×704 for MMT and 139, 719±1.96×736 for S-GLM.


They overlap substantially, so no conclusion as to the best method can be drawn. If a


stated best method precedes the question mark, as for Case 3, lines 2 and 3, then we


have a moderate certainty of the best method. This is somewhat vague, but we do not


want to burden the account in Table 1 with the formal apparatus of tests.


The lines with c = ∞ in Table 1 were obtained by setting exactly (number of claims)


= (claim frequency)(exposure) and (claim amount) = (mean claim), not by simulating


Poisson claim numbers and random claim amounts.
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Table 1. MSEs


Number of MMT Standard S-GLM Standard Best Average number


Case repetitions c M̂M (c) error M̂S(c) error method of claims


1 200 1.00 9,081 147 7,906 140 S-GLM 1,624,001


1 1 ∞ 0 0 S-GLM


2 800 0.40 25,781 176 24,767 159 S-GLM 644,932


2 800 0.50 21,634 148 21,099 140 S-GLM 806,203


2 2000 0.60 18,745 75 18,654 76 S-GLM? 967,413


2 800 0.70 16,697 103 16,921 97 MMT? 1,128,747


2 800 0.80 15,063 87 15,497 88 MMT 1,289,873


2 1 ∞ 4,448 6,383 MMT


3 800 0.05 170,200 1455 159,064 1363 S-GLM 80,190


3 800 0.10 89,694 679 87,604 671 S-GLM? 160,410


3 200 0.15 61,440 807 63,970 972 MMT? 240,575


3 800 0.20 48,641 353 51,898 379 MMT 320,780


3 200 0.25 39,973 559 43,490 643 MMT 400,998


3 1 ∞ 7,880 16,040 MMT


4 800 0.03 269,793 2182 257,429 2064 S-GLM 47,847


4 2000 0.06 139,381 704 139,719 736 ? 95,692


4 800 0.08 106,412 871 111,121 910 MMT 127,594


4 800 0.10 87,159 641 94,227 766 MMT 159,478


4 200 0.20 50,829 652 60,971 841 MMT 319,013


4 1 ∞ 11,491 25,844 MMT


The MSEs for the Tweedie method for risk premium with exponent p ∈{1.0, 1.1, . . . , 2.0}


have also been studied, but only for c = ∞. The reason for excluding studies for finite


c is obvious from Table 2. For Case 1 the MSEs are 0. For p = 1 the values for MMT


are reproduced, since the point estimates are here the same as those of MMT. For


p = 1.5 the values for S-GLM are nearly exactly reproduced. The series from 1.0 to


2.0 is increasing for each Case 2-4. So the closer the Tweedie method is to MMT, the


better it is with many claims and the worse with few claims. Also it is obvious that


exponent 2, the ”direct” method, should not be used.


We summarize the results of Table 1 in Table 3 with a rough estimate of the indif-


ference value c0 of c where MM(c) = MS(c) and an approximate expected number


Table 2. Asymptotic MSEs for the Tweedie method


p Case 2 Case 3 Case 4


1.00 4,448 7,880 11,491


1.10 4,711 8,751 12,958


1.20 5,023 9,887 14,917


1.30 5,398 11,380 17,534


1.40 5,841 13,369 21,076


1.50 6,383 16,046 25,860


1.60 7,050 19,663 32,360


1.70 7,882 24,548 41,231


1.80 8,925 31,190 53,338


1.90 10,254 40,208 69,801


2.00 11,952 52,369 92,151


S-GLM 6,383 16,040 25,844
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Table 3. Limits for best method


Case Indifference value ĉ0 Average number of claims


1 ∞


2 0.65 1,048,000


3 0.12 192,500


4 0.06 95,692


of claims at c0. The more deviations from multiplicativity, the smaller are c0 and


the expected number of claims at c0. This implies that, for mass consumer insurance


with many arguments and many claims, the MMT method is best in the sense of this


section. The ability to obtain variance estimates and confidence intervals for the MMT


estimates under weak assumptions with the MVW method, which will be described in


Appendix C, is another and unrelated reason for preferring the MMT method in many


situations.


4. Simulations of confidence intervals


4.1. Overview


We are here studying 95 % level confidence intervals in the GLM form, i.e. zero width


for a base class with factor 1 is applied to make possible a comparison of the methods.


Base class 1 is used. For MVW the form is expression (C.30) using Equation (C.27).


Claim frequency and mean claim are multiplicative, since we do not want to bur-


den the comparisons by having to ascertain what parameters – different for different


methods – we are estimating. See the end of Appendix C.1.


We compare MVW, the 1984 method, S-GLM and Tweedie.


In Section 4.3 we study six simulation cases where the claim frequency and mean


claim factor series are equal. The Tweedie model with exponent p = 1.5 can here


be shown to be true when the S-GLM model is true. For its confidence intervals we


used the Pearson χ2 dispersion parameter estimate, since the simulation cases resemble


Case 4 in Section 4.2 of Rosenlund (2010). The results were the same as for S-GLM.


Exponents 1 and 2 were also studied. They gave worse results than S-GLM regardless


of whether the Pearson estimate or the estimate of Equation (8) of Rosenlund (2010)


were used. The Tweedie results are not tabulated.


We also studied a case with constant claim severity CV where all mean claim factors


are 1, which can be shown to imply that the Tweedie model with exponent p = 1 (ODP


= Overdispersed Poisson) is true. Also we studied a case with constant claim severity


CV where all claim frequency factors are equal to 1, implying that the Tweedie model


with exponent p = 2 is true. The results were as S-GLM with the correct p and the


proper dispersion parameter estimate used. Using p = 1.5 gave worse results. S-GLM


was equal to MVW in the first case and better than MVW in the second case. These


cases are not tabulated.
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4.2. Variations in distributional form


The cases 1, 3, 5 below have exponential claim severity distribution with constant CV.


For the cases 2, 4, 6 this distribution is modified with a large claim probability for some


argument classes. The distributional form might conceivably influence the results.


Therefore we have also studied cases equal to case 1, except that the claim severity


Γ-distribution has mean θu and variance θ2u/α for α ∈ {0.5, 1.5, 2}. When α = 1 it


is the exponential distribution. The results were not different from the results for the


corresponding cases with exponential distribution. Mean interval widths and cover


probabilities were not affected.


We studied also cases equal to cases 3 and 5 respectively, except that claims Z are dis-


tributed as z0e
T , where T has distribution function 1−e−αt, with α = 2.1. That is, (Eu-


ropean) Pareto distributed claims with distribution function 1−(z/z0)
−α, z > z0. Here


the CV is constant, but the distribution is far more heavy-tailed than the Γ-distribution.


Distributions in applications have mostly heavier tails than the Γ-distribution. If the


Pareto distribution has parameter α ≤ 2, it has no variance. So the value 2.1 is the


smallest multiple of 0.1 that gives the claim amounts finite variance. The Γ- and Pareto


distributions are examples of about the most light-tailed (excluding the trivial case of


constant claim amounts) and heavy-tailed distributions with constant CV that are


realistic in applications.


The Pareto results, for mean interval widths and cover probabilities, of comparisons


between the MVW, 1984 and S-GLM methods were not very different from the results


for the corresponding cases with exponential distribution. Cover probabilities were the


same. Mean width for MVW in percent of the one for S-GLM was somewhat smaller,


namely 108.9 instead of 116.2 for Case 3 and 117.8 instead of 120.5 for Case 5. The


form of claim severity distribution is not important for the S-GLM confidence intervals


to be valid, only the assumption of constant CV.


The case as 3, except that Pareto was used, was studied also for Tweedie with expo-


nent 1.5. This gave too small cover probabilities and interval widths. Mean cover prob-


ability was 0.943, which is significantly below 0.95, and width 97.7 percent of S-GLM.


4.3. Six cases where claim frequency factor equals mean claim factor


The cases studied resemble Case 1 of Section 3, but exposure is fixed for every case.


We use the notation of Section 3 and also


d
(2)
i,k = 1/(1 + 4(i− k)2),


correctly rounded to four decimals, for instance d
(2)
2,7 = 1/(1 + 4(2 − 7)2) = 1/101 =


0.0099. We define exposure by means of this expression in some cases, in order to


introduce strongly non-multiplicative exposure. This will test the MVW method.


Confidence intervals on the 95 % level for risk premium factors γBjk = γjk/γj1 (k =


2, . . . , 13) were studied. See Section A.2 for the definition of risk premium factors. All


cases have six arguments with 13 classes each, as in Section 3. Claim frequency and


mean claim are as in Case 1 of Section 3. The claim severity distribution functions are


as follows.


F1 1− e−βx with β = 1/(mean claim). This satisfies the S-GLM assumptions.
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F2 as in Section 3, i. e. with a large claim probability if T1 = 5 or T2 = 9. The CV is


not constant, so S-GLM is not satisfied.


The cases are defined by the following table. Half of them satisfy the S-GLM as-


sumptions. One third have strongly non-multiplicative exposure in two thirds of the


arguments. Our experience is that real applications typically satisfy the S-GLM as-


sumptions to a lesser degree and have more multiplicative exposure.


The total expected number of claims is between 161,000 and 169,000.


For Case 1, the three confidence interval methods MVW, 1984, and S-GLM can be


expected to give cover probabilities 0.95 for all risk premium factors on the 95 % level.


Case df CV Exposure multiplicativity Exposure expression


1 F1 Constant Multiplicative 0.1fT1
fT2


fT3
fT4


fT5
fT6


2 F2 Non-constant Multiplicative 0.1fT1
fT2


fT3
fT4


fT5
fT6


3 F1 Constant Non-multiplicative 0.374d
(1)
T1 ,T2


fT3
fT4


fT5
fT6


4 F2 Non-constant Non-multiplicative 0.374d
(1)
T1 ,T2


fT3
fT4


fT5
fT6


5 F1 Constant Strongly non-multiplicative 0.8156 d
(2)
T1,T2


d
(2)
T3,T4


fT5
fT6


6 F2 Non-constant Strongly non-multiplicative 0.8156 d
(2)
T1,T2


d
(2)
T3,T4


fT5
fT6


4.3.1. Cover probabilities


In Case 1, 1000 repetitions showed that all cover probabilities were 0.95 as expected.


We made 8000 repetitions for each of the remaining cases. If a cover probability for


an argument and a class is 0.95, then the cover number = (number of experiments


N where the true parameter is in the confidence interval) is binomially distributed


(8000,0.95). By the normal approximation, the hypothesis that the cover probabil-


ity is 0.95 is rejected with significance level 0.05 against a two-sided alternative, if


|N/8000 − 0.95| ≥ 1.96
√
(0.95 0.05)/8000 = 0.00478. If the hypothesis is true, the


probability is 0.0000406 that |N/8000−0.95| ≥ 0.01, i. e. that the cover frequency is <


0.94 or > 0.96. We report here the arguments with those deviating cover frequencies,


which are highly significant as well as of some importance. We give the cover percent


= 100N/8000.


Case 2. The higher claim severity CV for T1 = 5 and T2 = 9 results in too low cover


percents implying too narrow S-GLM confidence intervals for these classes, and too


high cover percents implying too wide S-GLM intervals for other classes in arguments


n:o 1 and 2. Other arguments for S-GLM, and all arguments for the MVW and 1984


methods, gave results ∈ [94, 96].


Case 3. One deviating cover percent 93.95 was found, for the 1984 method.


Case 4. Same phenomenon as in Case 2 for S-GLM. The MVW method gave results


all ∈ [94, 96], while the 1984 method gave six results ∈ [93.8, 94).


Case 5. Since the S-GLM assumptions are satisfied, its results were all ∈ [94, 96].


Strongly non-multiplicative exposure gave results /∈ [94, 96] for the MVW and 1984


methods. The MVW method sometimes understated and sometimes overstated con-


fidence intervals somewhat, while the 1984 method understated them considerably. This
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Table 4. Case 2 S-GLM cover percentages


2 3 4 5 6 7 8 9 10 11 12 13


T1 96.9 96.8 96.7 86.5 96.8 96.8 96.6 96.9 96.8 96.9 97.0 97.1


T2 98.0 98.4 98.4 98.2 98.4 98.4 98.4 92.4 98.6 98.2 98.4 98.3


Table 5. Case 4 S-GLM cover percentages


2 3 4 5 6 7 8 9 10 11 12 13


T1 98.5 98.4 98.3 88.0 97.9 97.7 97.8 97.2 97.9 98.2 98.0 97.9


T2 98.0 97.8 97.5 96.7 97.8 98.0 98.3 91.2 98.2 98.0 98.2 98.5


Table 6. Case 5 MVW cover percentages


2 3 4 5 6 7 8 9 10 11 12 13


T1 93.5 93.1 92.9 93.4 94.0 94.5 94.7 95.8 96.1 96.6 96.8 97.4


T2 93.1 92.5 92.8 93.5 93.5 94.3 94.9 95.8 96.1 96.4 96.9 97.1


T3 93.3 93.1 92.9 93.2 94.0 94.5 95.5 95.8 96.0 96.6 97.2 97.3


T4 93.7 93.3 92.9 93.7 94.3 94.6 95.2 95.8 96.1 96.6 96.9 97.2


Table 7. Case 5 1984 cover percentages


2 3 4 5 6 7 8 9 10 11 12 13


T1 89.6 85.9 84.3 82.7 81.5 80.8 80.3 79.8 79.4 78.6 78.0 76.8


T2 89.3 86.1 83.7 83.1 81.0 80.4 79.9 80.0 78.9 78.4 77.9 77.0


T3 89.4 86.1 84.2 83.2 82.3 81.2 80.5 80.1 79.0 78.7 77.7 77.9


T4 89.7 86.4 84.3 83.3 82.2 82.0 80.4 80.4 79.8 79.3 78.9 77.8


Table 8. Case 6 MVW cover percentages


2 3 4 5 6 7 8 9 10 11 12 13


T1 92.3 90.6 90.4 99.1 91.5 92.9 96.5 99.8 96.4 94.1 93.9 94.0


T2 92.1 91.7 93.5 98.4 93.2 91.4 91.1 99.975 91.6 91.9 93.1 93.4


T3 93.0 92.4 92.6 93.2 93.6 94.7 95.6 96.1 96.4 97.2 97.3 97.7


T4 93.1 92.6 92.7 93.4 93.7 94.6 95.2 96.0 96.2 96.8 97.5 97.7


Table 9. Case 6 1984 cover percentages


2 3 4 5 6 7 8 9 10 11 12 13


T1 88.6 83.3 79.6 87.2 77.5 76.6 76.9 80.7 73.9 72.8 72.1 70.9


T2 88.4 84.2 82.6 86.5 78.4 77.3 76.0 81.7 74.0 73.2 73.1 72.4


T3 89.6 86.0 83.8 82.6 81.7 81.1 80.4 79.4 78.7 78.5 77.6 77.2


T4 89.6 86.3 84.4 82.9 81.5 81.0 80.9 79.8 80.0 79.1 78.6 77.8
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Table 10. Case 6 S-GLM cover percentages


2 3 4 5 6 7 8 9 10 11 12 13


T1 99.2 99.0 98.7 93.6 98.3 97.9 97.9 97.1 97.6 97.9 97.9 97.7


T2 99.0 98.4 97.7 96.2 97.4 97.6 97.5 95.1 97.7 97.7 97.8 97.8


Table 11. Mean confidence interval widths and cover percentages


Mean width % of S-GLM Mean cover percentages


Case MVW 1984 MVW 1984 S-GLM


1 113.6 113.6 95.50 95.50 95.22


2 103.9 103.9 94.85 94.85 95.82


3 116.2 115.7 94.94 94.82 95.06


4 104.8 104.2 94.78 94.65 95.70


5 120.5 86.6 94.99 86.16 94.96


6 106.3 74.2 94.57 85.04 95.96


applies to the arguments T1, T2, T3 and T4 where exposure is non-multiplicative. The


other arguments gave results ∈ [94, 96]. T1 - T4 have the same cover probability series


due to symmetry.


Case 6. S-GLM assumptions are not satisfied and exposure is strongly non-multiplicative.


Here all methods fail to some degree in arguments T1 and T2. The MVW method fails


to some degree also in T3 and T4. The 1984 method fails in the same way as in Case 5.


Overall the MVW method gave the best results in Case 6, if measured by the mean


percentages in Table 11. However, the method can be improved in view of the high


values in Table 8 for classes 5 and 9 in arguments T1 and T2, respectively. The highest


percentage 99.975 corresponds to an interval width about twice as large as it should be.


4.3.2. Mean widths and cover percentages


We give mean widths as percentages of the ones of S-GLM, averaged over all arguments


and classes ≥ 2 per case, and mean cover percentages. Cases 1, 3, 5 satisfy the S-GLM


assumptions.


5. Conclusions


The simulations of Section 3 show that with strict parameter multiplicativity the S-


GLM point estimates are best in the MSE sense. Allowing moderate deviations from


parameter multiplicativity the MMT point estimates are best with sufficiently many


arguments and claims.


The simulations of Section 4 show that the MVW variance estimate method is mostly


the best, due to the weaker assumptions imposed by it.


The Tweedie method for risk premium is never better than S-GLM and sometimes


worse. So it should not be used. This holds when the exponent p is known and hence à


fortiori when it must be estimated. As a corollary, Overdispersed Poisson (Tweedie with


exponent 1) and the ”direct” method (Tweedie with exponent 2) should not be used.


There is room for improvement of the estimate v̂MVW(ρ̂jk) in Equation (C.26) and as


a corollary v̂MVW(γ̂jk) in Equation (C.27). Such improvement, valid for sufficiently many
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claims and using only strict mathematics with no other conditions than the Compound


Poisson assumption and multiplicativity of claim frequency and mean claim, would be


very desirable.
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Appendix A: Concepts and notation


As in Ohlsson & Johansson (2010), CV is the coefficient of variation of a random vari-


able.


A.1. Methods


A.1.1. Point estimate methods


The following notation will be used for three methods of obtaining point estimates in


multiplicative pricing, namely MMT, S-GLM and Tweedie.


MMT. Method of Marginal Totals. Solves a system of equations defined by prescribing


that the sum of multiplicatively computed estimated claim costs over any argument


class be equal to the empirical claim cost of the argument class.


S-GLM. Standard GLM method. A model that claim numbers are Poisson and mean


claim severities are gamma distributed with constant CV yields a set of GLM Poisson


log link equations for claim frequencies and a set of GLM gamma log link equations for


mean claim severities. The estimated multiplicative claim frequency and claim severity


per tariff cell are multiplied to give a point estimate for risk premium.


Tweedie. An exponent p ∈ [1, 2] is attached to the method. A GLM model that


claim cost has variance function v(µ) = µp gives point estimates for risk premium. The


case p = 1, Overdispersed Poisson, gives the same point estimates as MMT. The case


p = 2 was historically denoted the ”direct” method.
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A.1.2. Variance estimate methods


The GLM models giving point estimates by S-GLM and Tweedie also give variance


estimates, so we use the notation S-GLM and Tweedie for these variance estimate


methods as well. For MMT the Overdispersed Poisson model for claim cost is however


not realistic. Instead we attach the following variance estimate methods to MMT.


1984. A Compound Poisson model for the claim cost of a tariff cell is assumed. Simple


estimated CVs for marginal (univariate) claim numbers, mean claims and claim costs


are taken as valid for factor estimates. Entails a normally slight negative bias. 1984


was the first year the method was used at Länsförsäkringar Alliance. We describe it in


Appendix C.


MVW. Same Compound Poisson model as for 1984. W is for weak assumptions. The


GLM Poisson log link model for claim numbers follows from that model, so we use the


S-GLM claim frequency variance estimates. The mean claim variance estimates of the


1984 method are adjusted upwards by factors resembling the ratios of S-GLM claim


frequency variance estimates to 1984 claim frequency variance estimates. Description


in Appendix C.


A.2. Basic assumptions and notation for parameters and random variables


We deal with a finite number of arguments, each with a finite number of classes. Let


s = number of arguments,


mj = number of classes for argument j, j = 1, 2, . . . , s.


A combination of classes, where risk premium is constant, is called a tariff cell. Let


n = m1m2 . . .ms = number of tariff cells.


We will index the tariff cells with u = 1, . . . , n. The classes in argument n:o 1 will


vary slowest with u and the classes in argument n:o s will vary fastest. Let


eu = exposure in tariff cell u,


Nu = observed number of claims in tariff cell u,


Yu = observed total claim cost in tariff cell u,


and


νu = E[Nu/eu] = claim frequency,


θu = E[Yu/Nu | Nu > 0] = mean claim,


τu = E[Yu/eu] = νuθu = risk premium.


We assume throughout a Poisson distribution for Nu and a Compound Poisson dis-


tribution for Yu. Variables for different u are assumed to be independent.
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Define the following parameters and random variables for argument j and class k.


The factors have meaning if multiplicativity holds for νu, θu and τu, respectively. If two


are multiplicative, then the third one is also multiplicative and it holds γjk = ψjkρjk.


We assume multiplicativity for our method for confidence intervals and for the sim-


ulations on these. For the simulations of MSEs of point estimates we assume some


moderate deviations from multiplicativity.


ψjk = claim frequency factor,


ρjk = mean claim factor,


γjk = risk premium factor,


ejk = marginal exposure = sum of exposure for tariff cells in class k of argument j,


Njk = marginal claim number = total claim number for tariff cells in class k of argu-


ment j,


Zjki = claim amount n:o i, i = 1, . . . , Njk,


Sjk =
Njk∑


i=1


Zjki = marginal claim cost,


Zjk = Sjk/Njk = marginal mean claim.


Let Tj(u) = class number ∈ {1, 2, . . . , mj} for tariff cell u in argument n:o j. Then the


multiplicative assumptions are that there are constants ψ0, ρ0 and γ0 = ψ0ρ0 such that


νu = ψ0


s∏


j=1


ψjTj(u), θu = ρ0
s∏


j=1


ρjTj(u), τu = γ0
s∏


j=1


γjTj(u).


The estimates of νu and τu by the GLM Poisson log link (= MMT) method will be


denoted ν̂u and τ̃u, respectively. A deduced estimate of θu is then θ̃u = τ̃u/ν̂u.


The estimate of θu by the GLM gamma log link method will be denoted θ̂u. A


deduced estimate of τu in S-GLM is then τ̂u = ν̂uθ̂u.


Estimates of the factors by the MMT method will be denoted ψ̂jk, ρ̂jk and γ̂jk. We


will not need notation for factor estimates by other methods.


A.2.1. Insurance exposure weighted MSE measure


Consider a method X with estimates τ̇u of τu. The MSEs per tariff cell have to be


summed using weights of some kind, giving a total MSE measure. It is natural to use


exposures as weights to obtain the average over the business of the MSEs. Thus we


define the following exposure weighted MSE, which we use as a measure of goodness-


of-fit. To suit its use in Section 3, we let the dependence on exposure be explicit in the


notation, while other properties are implicit.


M(X, {eu}) = E


[
n∑


u=1


eu(τ̇u − τu)
2


]
/


n∑


u=1


eu. (A.1)
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Appendix B: Equations for MMT and S-GLM point estimates


Denote the number of free parameters by


r = 1 +
s∑


j=1


(mj − 1).


We follow Ohlsson & Johansson (2010), Chapter 2, in defining the design matrix


X = {xuj} (u = 1, . . . , n; j = 1, . . . , r).


The equations for the MMT estimates ν̂u and τ̃u are, for j = 1, . . . , r,


n∑


u=1


xuj [Nu − euν̂u] = 0, (B.1)


n∑


u=1


xuj [Yu − euτ̃u] = 0. (B.2)


For S-GLM equations (B.1) are used together with mean claim equations, namely


n∑


u=1


euν̂uxuj =
n∑


u=1


Nuxuj and
n∑


u=1


Yu
1


θ̂u
xuj =


n∑


u=1


Nuxuj . (B.3)


See Ohlsson & Johansson (2010), Equation (2.30) with p = 1 and p = 2 respectively.


The right hand side is the same. Replace in (B.3) the right hand side of the first set of


Equations with the left hand side of the second set. Then


n∑


u=1


xuj


[
Yu − euν̂uθ̂u


θ̂u


]
= 0, (B.4)


or equivalently, since τ̂u = ν̂uθ̂u,


n∑


u=1


xuj


[
Yu − euτ̂u


θ̂u


]
= 0. (B.5)


The S-GLM equations (B.5) are similar to the MMT equations (B.2) but put more


weight on observations where estimated mean claim is small and less weight where


it is large. This indicates that the variances of risk premium estimates from S-GLM


typically will be smaller than the variances of MMT risk premium estimates, since it


is realistic to assume that the variance of a claim amount is larger the larger its mean


is.


If observed risk premiums Yu/eu are exactly multiplicative or if all observed mean


claims Yu/Nu are Equal, then it is seen that the risk premium solutions to Equations


(B.2) and (B.5) are the same. (This implies that, if the true risk premiums are mul-


tiplicative, risk premium estimates converge almost surely to the true values for both


S-GLM and MMT, as exposure tends to infinity with a factor c common to all tariff


cells.) If not they are in general not the same. In many applications they are however


very similar.
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Appendix C: MVW variance estimates and confidence intervals


C.1. Overview of variance estimates built on the 1984 method


Let us start with taking simple estimated CVs for marginal (univariate) claim numbers,


mean claims and claim costs as valid for factor estimates, given that the CVs of the


factor estimates can be positive for all classes (see below). Only the Compound Poisson


distribution is used. We call this the 1984 method, since it was first used that year at


Länsförsäkringar Alliance.


This method gives approximate confidence intervals for factor estimates for risk


premium, claim frequency and mean claim. They have been shown to be good approx-


imations of the proper ones in theoretical and simulation studies, unless the exposure


is extremely non-multiplicative (unevenly distributed) with respect to the arguments.


Multiplicativity for exposure is defined in the same way as it is for risk premium, i. e.


exposure in tariff cell n:o u is obtained by multiplying a constant ǫ0 with factors ǫjk
for j = 1, 2, . . . , s, with k the class that the tariff cell belongs to in argument j. (If we


consider the argument classes as random variables realized when a policy is chosen at


random from the portfolio, then exposure multiplicativity means that these classes are


independent for different arguments.) To show this approximation, first observe that


risk premium factor estimates over an argument are proportional to univariate risk


premium estimates, if exposure is multiplicative. This is a property of the marginal


totals method, see below under Equation (C.7). Likewise for claim frequency, and thus


also for mean claim. So in this case the 1984 method is completely justified. Secondly,


analyze how deviations from exposure multiplicativity affect CVs of factor estimates.


It can be shown that even rather large such deviations hardly affect these CVs. The


bias in confidence interval width from using this approximation is negative, with size


dependent on the degree of exposure non-multiplicativity.


We will try to eliminate in the MVW method, as far as possible, even the typically


small bias of the 1984 method. Rewrite (B.2) as MMT mean claim equations by using


τ̃u = ν̂uθ̃u.
n∑


u=1


xuj
[
Yu − euν̂uθ̃u


]
= 0 (j = 1, . . . , r). (C.1)


Solving first ν̂u from (B.1) and then θ̃u from (C.1) we get the same solution τ̃u as from


(B.2).


We will use the Fisher information matrix I in GLM Poisson log link theory and its


estimate Î. These matrices are indexed by F , M and R for frequency, mean claim and


risk premium, respectively, and defined as follows. Let diag(du) be the diagonal n×n


matrix with element du in row and column u. Then for the claim frequency equations


(B.1) we have


IF = X′diag(euνu)X, (C.2)


ÎF = X′diag(euν̂u)X, (C.3)


and for the mean claim and risk premium Equations (C.1) and (B.2), respectively, it


holds


IM = X′diag(euνuθu)X = IR = X′diag(euτu)X, (C.4)


ÎM = X′diag(euν̂uθ̃u)X = ÎR = X′diag(euτ̃u)X. (C.5)
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We will follow these three steps in the construction of the MVW method.


(1) Partition the square of the estimated CV for a risk premium factor estimate


in the 1984 method in terms of claim frequency and mean claim.


(2) Replace the claim frequency term with an expression derived from the GLM


theory for the Poisson distribution with log link, using ÎF of (C.3).


(3) Multiply the original mean claim term with an enlargement factor resembling


the ratio between the new and the original claim frequency term, but using ÎM
of (C.5). We let this factor go only halfway. We surmise that the enlargement


factor will work about as well as the corresponding one for claim frequency.


This is supported by simulations. The method is, however, heuristic and a


strict method is desirable.


The new estimated CV of step 2 is used for claim frequency, and the one of step 3 is


used for mean claim. The square root of the sum of their squares is our new estimated


CV for a risk premium factor estimate.


For claim frequency the step 2 replacement by GLM theory and adjustment to confi-


dence intervals with positive widths for all argument classes is well justified. It removes


the bias of the 1984 method as far as claim frequency is concerned.


In step 3 we will not require homoscedasticity in some form. Like the 1984 method


the MVW method will give correct confidence intervals under the Compound Poisson


assumption with enough claims, when exposure is multiplicative. When exposure is


markedly non-multiplicative, the MVW method is intended to adjust the mean claim


part upwards relative to the 1984 method in order to compensate the negative bias of


the latter method.


No base class with factor 1 is specified for γjk, ψjk, ρjk.


CVs are here formulated as functionals vx() with estimates v̂x(), where x = 1984


denotes the 1984 estimate, x = MVW the new estimate and x = GLM an estimate from


GLM Poisson log link.


We will let v̂1984() and v̂MVW() take positive values for all estimated factors (unless, for


mean claim, all Zjki as defined above happen to be equal for some j and k). This is


in contrast to GLM methods with zero confidence interval width for a base class with


factor 1.


These all-positive CVs can be used for confidence intervals for factor estimates com-


puted so that their mean value weighted by exposure over an argument j is 1. This


can be done if the total number of claims for all classes is so large that the total claim


cost has a sufficiently small CV. See C.3.


If one still prefers to use CVs and confidence intervals with values and widths zero


for the base class and larger than the all-positive variants for other classes, then these


are obtained from the all-positive ones by Equation (C.30).


When risk premium is not multiplicative the confidence intervals should be inter-


preted as pertaining to the almost sure limiting values of the factor estimates as expo-


sure → ∞ with a factor c equal for all tariff cells. Those limiting values are in general


different for the MMT and S-GLM methods and depend also on the distribution of


exposure. Likewise for claim frequency and mean claim.
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C.2. Properties of MMT point estimates related to the 1984 method


Let


e(t1, t2, . . . , ts) =


{
exposure eu for tariff cell u that is the combination of the


classes t1, t2, . . . , ts for arguments 1, 2, . . . , s, respectively,


and


Ejk =
m1∑


t1=1


...


mj−1∑


tj−1=1


mj+1∑


tj+1=1


...


ms∑


ts=1


e(t1, ... , tj−1, k, tj+1, ... , ts)γ̂1t1 ...γ̂j−1,tj−1
γ̂j+1,tj+1


...γ̂sts. (C.6)


With aj =
∑mj


k=1 ejk/
∑mj


k=1Ejk we call ajEjk normed exposure for argument j and


class k. The norming is with respect to the estimated risk premium factors for other


arguments than j. The formula for Ejk seems unwieldy, but it has long been used


by actuaries working with multiplicative tariffs. Here aj is set to make total normed


exposure equal to total exposure.


It follows from the marginal totals equations in the classical non-GLM form that


γ̂jk = SjkcjEj1/Ejk for some cj not depending on k. (C.7)


Here we could have written just cj rather than cjEj1 for Equation (C.7) to be true,


but the formulation given serves to explain relations and approximations in the sequel.


If exposure is multiplicative, then Ej1/Ejk = ej1/ejk i. e. non-stochastic. Because, if


e(t1, t2, . . . , ts) = ǫ0
s∏


j=1


ǫjtj ,


then


Ejk = ǫ0


(
m1∑


t=1


ǫ1tγ̂1t


)
· · ·


(mj−1∑


t=1


ǫj−1,tγ̂j−1,t


)
ǫjk


(mj+1∑


t=1


ǫj+1,tγ̂j+1,t


)
· · ·


(
ms∑


t=1


ǫstγ̂st


)
,


and so


Ej1/Ejk = ǫj1/ǫjk.


For multiplicative exposure it holds


ejk = ǫ0


(
m1∑


t=1


ǫ1t


)
· · ·


(mj−1∑


t=1


ǫj−1,t


)
ǫjk


(mj+1∑


t=1


ǫj+1,t


)
· · ·


(
ms∑


t=1


ǫst


)
,


and this implies


ej1/ejk = ǫj1/ǫjk = Ej1/Ejk.


So risk premium factor estimates over an argument are proportional to univariate


risk premium estimates, if exposure is multiplicative. Likewise for claim frequency and


mean claim. This is actuarial knowledge from long before GLM theory was developed.


Even if exposure deviates from multiplicativity rather much, the Ejk will be sums of


approximately independent variables and furthermore Ej1 and Ejk will be positively
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correlated. Hence, if we let cj be non-stochastic, the CV of γ̂jk will be dominated by


the one of Sjk. Estimating the former CV with an estimate of the latter one gives a


negative bias with ordinarily small absolute value, with size dependent on the degree


of exposure non-multiplicativity. But if exposure deviates from multiplicativity very


much this bias can be non-negligible. See Tables 7 and 9 in Section 4.3.


If we replace γ̂jk in the left side of (C.7) with γ̂
(B)
jk , denoting factors with base class


1, then cj = 1/Sj1. Then ordinarily the CV of γ̂
(B)
jk will be dominated by the one of


Sjk/Sj1.


C.3. Approximate confidence intervals with all-positive widths


We will now describe the use of all-positive CVs in confidence intervals for factor


estimates with exposure-weighted mean 1. Let Ejk above be defined from some set of


risk premium factor estimates, for example with value 1 for a base level. Define a new


set of γ̂jk such that its exposure-weighted mean over all k is 1. That is, let


γ̂jk = (Sjk/Ejk)


(mj∑


t=1


ejt


)(mj∑


t=1


ejtSjt/Ejt


)−1


, (C.8)


in order to obtain


mj∑


k=1


ejk
ej1 + · · ·+ ejmj


γ̂jk = 1.


Then for likewise exposure-weighted true risk premium factors we have


γjk ≈ E[Sjk/Ejk]


(mj∑


t=1


ejt


)(mj∑


t=1


ejtE[Sjt/Ejt]


)−1


. (C.9)


If the total number of claims is large enough and if exposure is not too strongly non-


multiplicative, then all components except Sjk in (C.8) have negligible CVs. Hence


E[γ̂jk] ≈ γjk and an estimate v̂jk of the CV of Sjk can be applied to γ̂jk and used in


confidence intervals, for example


P(γ̂jk(1− 1.96v̂jk) < γjk < γ̂jk(1 + 1.96v̂jk)) ≈ 0.95. (C.10)


If exposure is multiplicative, then normed exposure is proportional to exposure. Then


Ejk can be changed to ejk in the expression for γ̂jk and the approximate expression


(C.9) will be exact.


Instead of a simple univariate CV-estimate v̂jk we can use the CV v̂MVW(γ̂jk) of (C.27)


in (C.10). This will correct the negative bias mentioned above.


C.4. Partitioning the 1984 estimate


We assume that the marginal number of claims Njk > 0 and claim cost Sjk > 0. (In


cases where this is not so, the system of equations has to be reformulated by eliminating


classes with no claims or claim cost, respectively. This is done in practice but is beside


the point here.)







Scandinavian Actuarial Journal 709


The original 1984 CV estimates, positive for all k, are equal to the ones of the


corresponding marginal statistics. Here the squares are considered.


v̂1984(ψ̂jk)
2 =


1


Njk
, (C.11)


v̂1984(γ̂jk)
2 =




Njk∑


i=1


Z2
jki



 /S2


jk, (C.12)


and with a natural estimate for mean claim CV


v̂1984(ρ̂jk)
2 =



 1


Njk



 1


Njk


Njk∑


i=1


(Zjki − Zjk)
2





 /Z2


jk, (C.13)


we have


v̂1984(γ̂jk)
2 = v̂1984(ψ̂jk)


2 + v̂1984(ρ̂jk)
2. (C.14)


The numerator in the expression (C.13) is equal to the square of the customary standard


error for the arithmetic mean of Njk IID random variables except that the latter has
1


Njk−1
rather than 1


Njk
within the parentheses ( and ), but this difference is negligible


if Njk is not too small.


A further illumination is the following. Using S-sufficiency and S-ancillarity and an


independence condition in the prior distribution of the claim frequency and mean claim


parameters in a Bayesian setup, we can treat ψ̂jk and ρ̂jk as if they were independent


random variables. With v() the ordinary CV and T and U independent random vari-


ables, we have


v(TU)2 = v(T )2 + v(U)2 + v(T )2v(U)2. (C.15)


If both v(T ) and v(U) are not too large the last term is negligible. If for example v(T )


and v(U) are both less than 0.4, then 1 < v(TU)2/[v(T )2 + v(U)2] < 1.08.


For large Njk the CVs of ψ̂jk and ρ̂jk are small, so that the identity (C.14) for CV


estimates corresponds to an asymptotic identity for CVs.


C.5. Adjusted claim frequency CVs


Let superindex (B) denote claim frequency factors with base class 1, i. e.


ψ
(B)
jk = ψjk/ψj1. (C.16)


In practice any class k can be used as a base class. Class 1 is here used for simple


notation.


Let c
(F )
jk be the diagonal element of Î


−1


F by (C.3) pertaining to argument j and class


k for k ≥ 2, setting c
(F )
j1 = 0. Now c


(F )
jk is in GLM theory an estimate of Var[logψ


(B)
jk ]


and since


Var[log T ] ≈ v(T )2 if v(T ) is small,


we can form a GLM CV estimate from


v̂GLM(ψ̂
(B)
jk )2 = c


(F )
jk . (C.17)
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We now proceed by writing an analogous expression (C.18) for estimated CVs of factor


estimates with base class 1, using the original 1984 method. (C.18) can be transformed


back to (C.11). The same transformation is applied to Equation (C.17), so that we


get adjusted GLM CVs for claim frequency with positive value also for k = 1. Here


subindex 1984B for the CV estimate means that the 1984 method is modified so that


class 1 is used as base class.


v̂1984B(ψ̂
(B)
jk )2 =


{
0, k = 1,
1


Njk
+ 1


Nj1
, k ≥ 2.


(C.18)


The rationale for this transformation is this approximation, valid if the Poisson dis-


tributed variables Njk are large and their CVs hence are small. Here v̂() is a general


CV estimate.


v̂


(
1


Nj1


)2


≈ v̂(Nj1)
2 =


1


Nj1
. (C.19)


By the expression (C.15) above


v̂


(
Njk


Nj1


)2


≈
1


Njk
+


1


Nj1
, k ≥ 2. (C.20)


It is seen that Equation (C.11) is obtained from Equation (C.18) by adding 1/Nj1 for


k = 1 and subtracting 1/Nj1 for k ≥ 2.


Analogously, for a new type of CV estimate with positive values for all k, modify


Equation (C.17) by adding 1/Nj1 for k = 1 and subtracting 1/Nj1 for k ≥ 2. This


applies to CV estimates for ψ̂jk with no specified base class.


v̂MVW(ψ̂jk)
2 =







1
Nj1


, k = 1,


c
(F )
jk − 1


Nj1
, k ≥ 2.


(C.21)


It is somewhat arbitrary why, when no base class is specified, class k = 1 or any


specified class should have the same value in v̂1984() and v̂MVW() and the other values of k


should get larger values in v̂MVW(). However, this facilitates a transformation of the CV


estimates obtained to estimates relevant when a base class with factor 1 is specified.


We now define a variable N
(G)
jk called Adjusted Claim Number. It is not an integer,


but can be used instead of Njk in new versions of Equations (C.11) and (C.14), to get


better CV estimates for risk premium factor estimates.


N
(G)
jk =







Nj1, k = 1,


(
c
(F )
jk − 1


Nj1


)
−1
, k ≥ 2.


(C.22)


It is immediate that


c
(F )
jk =







0, k = 1,
1


N
(G)
jk


+ 1
Nj1


, k ≥ 2, (C.23)
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v̂MVW(ψ̂jk)
2 =


1


N
(G)
jk


=
Njk


N
(G)
jk


v̂1984(ψ̂jk)
2. (C.24)


It can be shown that if exposure is multiplicative, then N
(G)
jk = Njk. This is because, see


above under Equation (C.7), with multiplicative exposure estimated claim frequency


factors are proportional to estimated univariate claim frequencies, i. e.


ψ̂
(B)
jk =


Njk/ejk
Nj1/ej1


.


From this identity we can deduce that, if exposure is multiplicative,


c
(F )
jk = v̂1984B(ψ̂


(B)
jk )2 = v̂GLM(ψ̂


(B)
jk )2.


C.6. Adjusted mean claim CVs


In Equation (C.24) we can call Njk/N
(G)
jk an enlargement factor correcting the negative


bias in the original CV estimate due to non-multiplicativity in exposure. An analogous


enlargement factor for mean claim should be useful. This is heuristic and must be


justified by simulations.


Let c
(M)
jk be the diagonal element of Î


−1


M by (C.5) pertaining to argument j and class


k for k ≥ 2, with c
(M)
j1 = 0. Superindex (M) denotes mean claim.


Define, analogously to Equation (C.22), a variable S
(G)
jk called Adjusted Claim Cost.


S
(G)
jk =







Sj1, k = 1,


(
c
(M)
jk − 1


Sj1


)
−1
, k ≥ 2.


(C.25)


We could, analogously to Equation (C.24), define (Sjk/S
(G)
jk )v̂1984(ρ̂jk)


2 as the square of


an adjusted mean claim CV. However, in simulations we found a positive bias from


this, while an expression halfway between this and the 1984 expression gave mostly


approximately a zero bias. So we let


v̂MVW(ρ̂jk)
2 =


1


2



1 +


Sjk


S
(G)
jk



 v̂1984(ρ̂jk)2. (C.26)


If exposure is multiplicative, then S
(G)
jk = Sjk.


C.7. Adjusted risk premium CVs


The partitioning identity applied to the new claim frequency and mean claim terms


gives


v̂MVW(γ̂jk)
2 = v̂MVW(ψ̂jk)


2 + v̂MVW(ρ̂jk)
2. (C.27)


The claim frequency part v̂MVW(ψ̂jk)
2 is rigorously justified, while the mean claim part


v̂MVW(ρ̂jk)
2 is heuristic. Unfortunately, not half of the risk premium CV is rigorously


justified, since in typical real applications the claim frequency CV is small compared


to the mean claim CV.
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C.8. Confidence intervals


Three CV estimates by MVW are now available:







Claim frequency v̂MVW(ψ̂jk) in (C.24)


Mean claim v̂MVW(ρ̂jk) in (C.26)


Risk premium v̂MVW(γ̂jk) in (C.27)


Let ηjk be anyone of ψjk, ρjk, γjk and let v̂jk be the corresponding CV estimate.


The immediate confidence interval, with positive widths for all argument classes, is


obtained using a normal approximation, if there are sufficiently many claims. With


multiplicative exposure the central limit theorem can be applied for ψjk, ρjk, γjk. For


claim frequency the GLM theory gives a normal approximation in any case. The same


should hold also for mean claim and risk premium. See (C.10) in C.3 for a use of (C.28).


ηjk = η̂jk(1± 1.96v̂jk) (95%). (C.28)


Since a lognormal approximation is better if the normal approximation will give nega-


tive lower confidence limits, we might also use


ηjk = η̂jk exp{±1.96v̂jk} (95%). (C.29)


In Länsförsäkringar Alliance practice the 95 % level is, somewhat ad hoc, reduced to 90


% in order to compensate for aberration from normality and the additional uncertainty


introduced by substituting v̂jk for the unknown vjk.


A confidence interval strictly relating to factors for other classes than 1 when class


1 has factor 1 by definition, as in S-GLM, can be written for k 6= 1


η
(B)
jk = η̂


(B)
jk exp{±1.96


√
v̂2j1 + v̂2jk} (95%). (C.30)


No interval for class 1 shall be given with this way of computing confidence intervals.


Superindex (B) denotes factors with base class 1. See (C.16) in C.5 for claim frequency.


Class 1 can be replaced with some other class taken as the base class. When η
(B)
jk = ψ


(B)
jk ,


the claim frequency factors, Equation (C.30) can be shown to be the S-GLM claim


frequency confidence interval.


The disadvantage of (C.30) compared to (C.28) and (C.29) is that a large v̂j1 for


class 1 will obscure the comparison between two other classes.


The reasoning leading to Equation (C.30) is similar to the reasoning leading to


Equation (C.20), namely that for a ratio of two independent random variables we add


the squares of their CVs to approximately obtain the square of the CV of the ratio, if


the CVs are reasonably small.


The accuracy of these confidence intervals depend on the claims in the various classes.


If there are few claims and/or unevenly distributed claim amounts in a certain class the


confidence intervals for this class will be uncertain. Typically, however, these confidence


intervals are then large anyway, so that no very useful estimate can be obtained in any


case. An exception to this is if there are just a few claims in a class, who happen to


be nearly equal. Then the confidence intervals for this class will be misleadingly small. It
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is thus advisable to check classes with few claims and small confidence intervals to see


if this exception holds for these.
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Why use C for making Rapp?

2018-11-04, Stig Rosenlund

I have been asked: Would Rapp be faster if made in C++? The
answer is No. It would be slower. Some posts from Quora:

Is there any type of programming
where C is a better choice than C++?

Robbie Hatley, Computer Programmer,
Electronics Technican, Musician
Answered Aug 14

Yes. Any program that requires[fast execution speed;]
or small program file size on disk, or small
executable image size in RAM, or little-or-no
dependence on run-time support (such as
“dynamically linked libraries” or DLL files for short),
should be done in C rather than C++ if possible.

Embedded programming (programs running on CPU
chips on application-specific circuit boards, as
opposed to programs running on general-purpose
computers) is usually done in C rather than C++,
because there is no operating system and no hard
disk and no run-time support, so the program needs
to be truly self-sufficient. Even the code to boot the
system (BIOS + OS) has to be included as part of the
program, making up its first few dozen bytes of
machine-language code. C compilers exist for most
embedded microcontrollers, but most of them don’t
have C++ compilers available.

I also like to use|C to solve math problems|(such as
those in Project Euler) because|C is good for doing a
lot of calculations in a hurry{whereas C++ typically

On the differences between C, C++ and C#
Tyler Johns, Self-taught programmer

C

While these are all different language, C is still the
granddaddy of them all. C was designed in AT&T’s
Bell Labs, primarily by Dennis Ritchie. C was
designed to replace the interpreted language B for
Unix. This history leads to C becoming almost a
portable assembler with a few conveniences and
simplifications.

C’s design comes down to assuming the programmer
has a solid idea of what they are doing. C provides
very few high-level data structures or algorithms in
its standard library, leaving the programmer to make
them. C is also known for its ability to deal with
memory at a low level and weak type system. This
means that C code is more prone to vulnerabilities
and bugs, but can be made and deal
with low-level aspects of your machine.

Today, C is frequently used when you need to write
glue code between different languages or to extend
higher-level languages. You will also find most
operating system kernels are partially or entirely
written in C. Finally, C is still very common in
embedded systems due to its low footprint
compared to most modern languages.

takes longer because of the “extra baggage” it’s
carrying (OOP, STL, templates, RTTI, etc).

Another case where C is better is programs which
make heavy use of libraries which were written in C
and use C-style interfaces. While you can link such
libraries to a C++ program, the difference in styles of
code is jarring, so it’s easier to write if you just do the
whole thing in C.

So yes, there are plenty of situations where Cis a
better choice than C++.

‘ Sadam Husain, works at Cognizant @l
Answered Oct 10,2014

C is still used in operating systems, compilers,
database engines, etc.

C is not going to vanish in near future. When it
comes to performance C takes the spot, so those

To answer your question, C will continue to
exist atleast as a base of C++ if not on its own.

C++

Don’t be fooled by the name, C++ is not C. C++ was
initially created by Bjarne Stroustrup as an extension
of C, but that is about as far as being a true superset
went. Early versions of C++ were preprocessor hacks
to fake object oriented design, but eventually
became its own language.

C++ deviates heavily from C’s design. C++ comes
closer to including the batteries, giving you
implementations of some data structures and
algorithms in its standard library. If the standard
library does not satisfy your needs, you are given the
tools to roll your own in at least a dozen different
styles. Finally, C++ has a much stronger type system.
You can no longer implicitly convert one type to
another unless a conversion exists, though the
language will tend to assume you know what you are
doing if you explicitly cast. This difference leads to
many valid C programs not compiling under C++.

C++ is frequently used when performance is
necessary, but C would take too much time to write.
This includes professional software suites, 3D
games, and user applications where performance is
an issue. C++ is typically not used in OS kernels or
embedded systems because the language is
somewhat feature-bloated. Your OS can’t just stop
because C++ decided to throw an exception!
Nevertheless, C++ is a solid choice when it comes to
performance-sensitive user applications.

Francesco Iovine, K&R C was my @1
playground.
Answered Jan 2, 2016

Because C has smaller runtime requirements.

C++ for the very reason of being an object
oriented language adds transparently a certain
amount of runtime requirements that in some
situations add an overhead. Look at this
discussion about virtual function calls Virtual
functions and performance - C++

If you use a somewhat limited hardware, as it is
normally the case in embedded programming,
C uses better your processor, even considering
that the limited memory footprint or other
considerations could suggest not to allocate
memory at runtime and use only static
variables.

C#

C# came around when Microsoft saw Java’s success.
Due to Java being able to run anywhere, they
decided they needed a similar language that was
exclusive to the Microsoft ecosystem. However, C# is
now available on most platforms through either
Mono or .NET Core.

C# borrows a lot from Java’s design philosophy. C# is
a heavily object-oriented language that comes with a
rich standard library all while protecting
programmers from their own stupidity when
possible. This gets rid of C and C++ features like
manual memory management and low-level access
for the most part. C# has a strong type system, as
well as garbage collection to get rid of unused
memory.

C# is primarily used in the Windows ecosystem, as
previously noted. Due to its large standard library
and conveniences, it is used when you need to ship
your software and are willing to sacrifice some
performance and low-level control to do so. C# is
also prominent for web development with the use of
ASP.NET

Posters on Quora also state that C programs are
easier than C++ programs to read, and therefore
to maintain.




_1603224794/Tom.Txt

_1566941643.pdf


Simple portfolio optimization with Mbasic
2017-09-14, Stig Rosenlund


The problem is to minimize the variance of the yield of a portfolio composed of n assets, given a desired
expected yield. Having solved the problem, a table of the minimal variance (or standard deviation for
better understanding) for different expected yields gives a basis for choosing the composition of the
portfolio. I.e. it illustrates the trade-off between yield and risk.


Each asset unit is worth 1 dollar. The value efter one year for asset i is Xi with P(Xi ≥ 0) = 1.
Set


µi = E[Xi] > 0, (i = 1, 2, . . . , n)


vrk = Cov(Xr,Xk)


Put ci dollars in asset i, with ci ≥ 0.


Search c1, c2, . . . , cn so that Var


[


n
∑


i=1


ciXi


]


is minimal, under the restrictions


n
∑


i=1


ci = 1 (1 dollar available in total)


E


[


n
∑


i=1


ciXi


]


=


n
∑


i=1


ciµi = E1


We must have min{µ1, . . . , µn} ≤ E1 ≤ max{µ1, . . . , µn}.
Let


e = [1 1 · · · 1]T


µ = [µ1 µ2 · · · µn]
T


V = {vrk}


c = [c1 c2 · · · cn]
T


We have


Var


[


n
∑


i=1


ciXi


]


= c
T
Vc =


n
∑


r=1


n
∑


k=1


crckvrk


Using Lagrange multiplicators we set


F (c) = c
T
Vc+ λ1(1− c1 − c2 − · · · − cn) + λ2(E1 − c1µ1 − c2µ2 − · · · − cnµn)


Solve


∂F (c)


∂ci
=


n
∑


r=1


n
∑


k=1


vrk
∂(crck)


∂ci
− λ1 − λ2 µi = 0, i = 1, 2, . . . , n


under the restrictions. The condition ci ≥ 0 for all i is not included in the restrictions, since this is
a simple application. Instead the sample Mbasic program handles possible ci < 0 by optimizing on a
subset of the i’s.


We obtain


∂F (c)


∂ci
= 2


n
∑


r=1


vricr − λ1 − λ2 µi


Put







α1 = λ1/2


α2 = λ2/2


b =






































α1 + α2µ1


α1 + α2µ2


. . .


α1 + α2µn−1


α1 + α2µn






































Thus, we have


b = α1e+ α2 µ


Solve


Vc = b


e
T
c = 1


µ


T
c = E1


That gives, if V is nonsingular,


c = V
−1


b


e
T
c = e


T
V


−1
b = 1


µ


T
c = µ


T
V


−1
b = E1


so that


e
T
V


−1[α1e+ α2 µ] = 1


µ


T
V


−1[α1e+ α2 µ] = E1


i.e.


α1e
T
V


−1
e+ α2 e


T
V


−1
µ = 1


α1µ
T
V


−1
e+ α2 µ


T
V


−1
µ = E1


where, since V
−1 is symmetric,


µ


T
V


−1
e = e


T
V


−1
µ


Set


F = e
T
V


−1
e


G = e
T
V


−1
µ


H = µ


T
V


−1
µ


Then we get the linear equations


α1F + α2G = 1


α1G+ α2H = E1


with solution


α1 =
GE −H


G2 − FH


α2 =
G− EF


G2 − FH


and finally the desired solution


c = V
−1[α1e+ α2 µ]
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BOOTSTRAPPING INDIVIDUAL CLAIM HISTORIES


by


Stig Rosenlund


Abstract


The bootstrap method BICH is given for estimating mean square prediction errors
and predictive distributions of non-life claim reserves under weak conditions. The
dates of claim occurrence, reporting and finalization and the payment dates and
amounts of individual finalized historic claims form a claim set from which samples
with replacement are drawn. We assume that all claims are independent and that
the historic claims are distributed as the object claims, possibly after inflation ad-
justment and segmentation on a background variable, whose distribution could have
changed over time due to portfolio change. Also we introduce the new reserving func-
tion RDC, using all these dates and payments for reserve predictions. We study three
reserving functions: chain ladder, the Schnieper (1991) method and RDC. Checks
with simulated cases obeying the assumptions of Mack (1999) for chain ladder and
Liu and Verrall (2009) for Schnieper’s method, respectively, confirm the validity of
our method. BICH is used to compare the three reserving functions, of which RDC
is found overall best in simulated cases.


Keywords


BICH, Bootstrap, Claim reserve, RDC, Stochastic reserving.


1. Introduction


For claim reserve MSEP (Mean Square Error of Prediction) calculations, the analytic
method of Mack (1999) is available for chain ladder under certain mean, variance and
independence assumption. Liu and Verrall (2009) give assumptions and algorithms
enabling analytic MSEP computations for the Schnieper (1991) reserves. See also
Section 10.2 of Wüthrich and Merz (2008).


Other stochastic reserving methods use bootstrapping in the form of drawing
random upper triangles, �r of development history and lower triangles, � r of
future development (outcomes in the bootstrap world), by sampling with replace-
ment from standardized residuals within a development triangle. On each such
random triangle a reserving method is applied to obtain a reserve prediction.
This yields MSEP estimates transferable to the real world. The model of


Astin Bulletin 42(1), 291-324. doi: 10.2143/AST.42.1.2160744 c© 2012 by Astin Bulletin. All rights reserved.
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this method is usually that the residuals are the deviations from estimated mean
values in a GLM (Generalized Linear Model) that assumes that the increments
X obey Var[X] = φE[X]p, with p usually assumed to be either 1 (Poisson) or 2
(Gamma). See Björkwall et al. (2009) for an overview, contributions and further
references.


Norberg (1993) and Norberg (1999) introduced the individual claim loss model
as marked Poisson processes. The model is studied in Larsen (2007). Several Pois-
son and other parametric models are assumed and their parameters estimated. A
bootstrap procedure is sketched, but not implemented in practice, as step 2 p. 131.


Zhao and Zhou (2010) used semi-competing risks copula and semi-survival copula
models to fit the dependence structure of the claim occurrence times with reporting
delays in the individual claim loss model of Larsen (2007) and Taylor et al. (2008),
in order to study IBNR reserves. Also here a Poisson arrival process is assumed.


An overview of the area is given by Wüthrich and Merz (2008).
In this paper we describe how to use sampling with replacement from a set of


detailed complete claim histories for claims that are finalized. Applying a reserving
method to each such sample, using only payments up to relevant development peri-
ods, we get predictions in the bootstrap world that can be compared to the known
outcomes of these finalized claims. The model is essentially that claims are IID and
that the historic claims are distributed as the object claims, apart from inflation.
Here ’object’ refers to the set of partly non-finalized claims whose future we wish
to predict. This allows variance estimates and also estimates of the full predictive
distributions for the object claim reserves. The method is computer-intensive, since
a large set of claim histories is read into memory and used repeatedly for sampling.
In return it does not need much mathematical-statistical theory. We call it


BICH= Bootstrapping Individual Claim Histories


BICH can rank reserving methods by their MSEPs under weak conditions. A re-
serve model is one thing and a reserving method another thing. A method derived
under a model can perform well even if the model is not true. BICH measures this.


We also give a new reserving method using all claim numbers of and payments on
both open and settled individual claims without any distributional assumptions. It
is a generalization of the PPCF (expected Payments Per Claim Finalized) method.
See Fisher and Lange (1973) and Sawkins (1979). The parameters of the claim dis-
tribution are broken down in many small details while conditioning on observable
variables with many combinations. It is described in Appendix A. We call it


RDC = Reserve by Detailed Conditioning


The reserving methods studied with BICH in the sequel are the chain ladder,
the Schnieper (1991) method and RDC. In comparing reserving methods we
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can choose the best one. Also, variable parameters in RDC can be calibrated
to give the smallest MSEP. Overall we find that RDC is best for the situations
studied.


BICH and RDC are intended for cases where many claims are reported in the first
development period, say at least a couple of hundreds. Then it is normally better
to not use insurance exposures to generate claims in bootstrapping or to compute
reserves by using e.g. a Poisson process, since claim frequencies mostly oscillate in
a not completely predictable manner. Thus we can avoid stochastic process theory.
Our study concerns IBNR (Incurred But Not Reported) and RBNS (Reported But
Not Settled) claims. We do not study the UPR (Unearned Premium Reserve) of
covered but not yet incurred claims, which would need insurance exposure.


Since the reserve of a business line is, in our model, a sum of the reserves of several
independent claims, a CLT (central limit theorem) can be invoked unless a few large
claims dominate the overall development. Hence the variance estimates are useful.
They can e.g. be used to compute the variance for the sum of reserves from several
business lines. Moreover, the full predictive distributions are given in the form of
eleven important percentiles in the author’s program.


As observed in Larsen (2007) and Zhao and Zhou (2010), distributions for
payment delays and sizes may change over time, making the use of covariates de-
sirable. We take account of such heterogeneity by segmentation on a background
variable.


The word payment in the sequel can be replaced by change of incurred (pay-
ment sum plus claims-handler reserve). So payments can be both positive and neg-
ative.


Large claims, as judged at reporting, might have to be excluded from the ana-
lysis.


The organization of the paper is as follows. Section 2 introduces the claim info that
is supposed to be available, assumptions and perspectives on these. The bootstrap
procedure is described in Section 3. Section 4 deals with application guidelines. In
Section 5 the segmentation mechanism is described. Section 6 gives estimates and
tests. In Section 7 the necessary data are described and four numerical examples
are given, where Section 7.7 gives results of benchmark tests to validate BICH and
Section 7.8 compares reserving methods. After a conclusion in Section 8, the RDC
method is described in Appendix A.


Free program for BICH, RDC, GLM etc.: www.stigrosenlund.se/rapp.htm


2. Model assumptions


We consider claim periods i ∈ {1, . . . , n}, for which we want to predict future pay-
ments, and development periods j ∈ {1, . . . , n}. The present time is at the end of
period n or in other words at the beginning of claim period n+ 1.


In Section 5 we describe a mechanism for segmentation by a background
variable. For simplicity this mechanism will not appear in the notation of
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sections other than Section 5 and Section 7.6, where segmentation is applied in
Example 4.


First we formulate historic and object claims, not including segmentation.


2.1. Historic claims for bootstrap


Let Z = {Z1, Z2, . . . , ZK} be a set of K historic finalized claims which occurred more
than n+s−1 time periods ago, i.e. in periods −s+1,−s,−s−1, . . . . Their payments
are thus known up to and including development period n + s. Here s ∈ {0, 1, . . .}
is the length of a maximal tail time after n. A claim is here a set


Zr = {W (r), F (r), Y (r, 1), . . . , Y (r, F (r))}, (2.1)


whereW (r) is the period index of the customer claim reporting date, F (r) the period
index of the claim finalization date, and Y (r, j) the payment sum for development
period index j. Period index is defined so that the claim occurrence date falls in the
period with index 1. The notation W (r) is chosen since this variable can be called
waiting-for-report period or reporting delay, albeit with smallest value 1 instead of
0. Henceforth period will mean period index, for shortness.


A claim reported at occurrence thus has W (r) = 1. If it is reported one period
later, e.g. in the following month if month is the time unit, then W (r) = 2, etc. The
payment sum made in the claim occurrence period has j = 1. The claim occurrence
dates of these claims do not appear in this notation – only the report, finalization
and development periods. The claims in Z will be used for bootstrapping.


2.2. Object claims


Let T i = {T i(1), T i(2), . . .} be a set of finalized and non-finalized claims from the
claim occurrence period i ∈ {1, . . . , n}. Claims in T i are defined by the common
occurrence period i, the report and finalization periods, and a sequence of payments
per development period. As in (2.1), with i added as superscript. Thus, using the
form of (2.1),


T i(k) = {W i(k), F i(k), Y i(k, 1), . . . , Y i(k, F i(k))} (2.2)


is the k:th claim in T i. The whole collection of sets is T = {T 1, . . . , T n}. The
payments are known only up to and including development period n − i + 1
for claims in claim period i. Our objective is, for each i, to predict the sum of
remaining payments and estimate the MSEP from the real remaining sum for
these claims. The claims for i that are finalized could be part of Z. If the business
is special and so new that data are available only back to the first finalized
period, then only the claims of T 1 can be used for bootstrap. Let (Ω,F ,P)
denote the probability space. Define the known history of claim development
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in T up to and including calendar period n as a σ-algebra G ⊂ σ{T}. Here σ{T}
denotes the σ-algebra induced by T . Let F i′(k) = F i(k) if F i(k) ≤ n+1−i, otherwise
0. Then F i′(k) is known even if F i(k) is not, and thus set


G = σ{W i(k), F i′(k), Y i(k, 1), . . . , Y i(k, n−i+1); 1≤ i≤n; W i(k)≤n−i+1}.


Consider a G-measurable reserving function


R̂i = reserve-ex-ante for claim period i ∈ {i = 1, . . . , n}, (2.3)


which is a prediction computed before the actual remaining payment sum is known.
BICH is in the program currently equipped with these R̂i functions: chain ladder


(possibly combined with an exponential tail predicting payments at n+1, . . . , n+s),
the Schnieper (1991) method and RDC.


For claim set T i we define these further random variables.


Mi = number of reported claims now, i.e. with W i(k) ≤ n− i+ 1 (2.4)


Ni = total number of claims in T i, not known at the end of claim period n (2.5)


Yij =


Ni∑


k=1


Y i(k, j) = payment sum for i and j over all claims T i(k) (2.6)


Hi =


n−i+1∑


j=1


Yij = sum of known payments per claim period (2.7)


Ri =
n+s∑


j=n−i+2


Yij = reserve ex-post = unknown remaining payment sum


= outstanding loss liabilities, see (1.17) in Wüthrich and Merz (2008). (2.8)


Qi = Ri/R̂i = ratio of reserve-ex-post to reserve-ex-ante (2.9)


τ2i = E[(Ri − R̂i)
2 | G] = MSEP of period i (2.10)


The MSEP τ2i is the main object of our study.


2.3. BICH assumptions and a hypothesis


In Section 3 we describe bootstrap images G(ν) of G and τ
(ν)2
i of τ2i using Z, where ν


is the bootstrap repetition of sample index. Assumption A5 deals with these images.


A1. All claims are finalized after development period n + s, i.e. Y i(k, j) = 0 for
j > n+ s. For methods Schnieper and RDC we require that s = 0.


A2. Z1, Z2, . . . , ZK are IID random vectors with variable size of the form (2.1).


A3. T i(1), T i(2), . . . , T i(Ni) are IID random vectors of the same form (2.2).
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A4. T i(1) is distributed as Z1 after multiplying T i(1):s payments by ci, for con-
stants ci > 0. For method RDC we require that ci ≡ c for some c.


A5. There are subsets G(ν)∈G(ν) with P(G(ν))>0 such that c2iE[τ
(ν)2
i |G(ν)] = τ2i .


A5 states that all particular possible bootstrap upper triangle outcomes in G(ν), as
far as can be judged beforehand, give the same information on the MSEPs of reserves-
ex-ante from actual reserves-ex-post. The sets G(ν) would normally in applications
make these upper triangle outcomes similar to the object triangle, after adjustment
by the factor ci. In practice this means that the bootstrapped claims shall not differ
too much from object claims in the properties of the latter that are known and that
can be judged to influence the MSEPs.


We need many claims reported in the first development period for A5 to hold,
although this might not be sufficient. We discuss further requirements in Section 4.


Given A5 we can estimate the MSEPs. See Section 6.1, expressions (6.1)–(6.4).
We want the reserve-ex-post to have the reserve-ex-ante as expected value, i.e. R̂i


should reflect the best-estimate values for Ri. We formulate it as a hypothesis, not as
an assumption. Its truth depends on the situation and the reserving function used.
For chain ladder, the Mack (1999) condition CL1 implies its truth. We describe how
to test the hypothesis in Sections 4 and 6.


H0: E[Ri | G] = R̂i or equivalently E[Qi | G] = 1 (application dependent truth)


2.3.1. Perspectives on assumptions


BICH assumes IID claims, after inflation adjustment and segmentation. This is
a natural and weak assumption for the intended use of bootstrapping individual
claims, with many claims reported initially and no insurance exposure use. BICH
predictions for claim period i are in the price level of i. Predictions in the price
level at the end of n are obtained by multiplying the reserves and MSEP square
roots by ĉn/ĉi for estimates ĉi. See expression (6.2). If the price levels of the times
of future payments are desired in the predictions (not implemented), then further
assumptions on future inflation are needed.


Other authors mentioned in the introduction place various assumptions on aggre-
gated triangle data. Formally the BICH assumptions are not weaker than the latter
ones, or the other way around, since they are set up in quite different frameworks.
One may ask whether a set of assumptions for aggregated triangle data found in the
literature for a method M can be satisfied by a construction of IID claims, such that
MSEP estimates computed by BICH are the same as those computed by M. If that
is the case, then in a loose sense the BICH assumptions are weaker. As is seen in
Example 1, this holds for the CL1, CL2, CL3 conditions of Mack (1999). Similarly,
construction of IID claims such that triangle increments follow a specified GLM, as
described in Björkwall et al. (2009), is also possible.
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The Liu and Verrall (2009) assumptions for the Schnieper (1991) model are slightly
different. Assumption 4 of the former states uncorrelatedness between development
periods. In particular increments from new claim reportings are assumed to be un-
correlated. The BICH assumptions are not weak enough to cover this, since the
total number of claims given the number reported now is negatively binomial with
the latter as parameter. See Sections 3 and 7.4 below. BICH admits any kind of
dependence between development periods for individual claims. But it cannot admit
independence between development periods for the totality of all claims, unless all
claims are reported in the first development period, i.e. unless P(W = 1) = 1, where
W = W (r) as defined in (2.1).


However, in the Schnieper (1991) and Liu and Verrall (2009) model all distribu-
tions are conditional on the history, where the first development period j = 1 is
known for all claim periods. So we can regard the first increment as non-stochastic.
Thus the BICH and Liu and Verrall (2009) conditions can coexist, if all claims are
reported in the claim occurrence period or the next period. In other words, we can
employ BICH under the Liu and Verrall (2009) conditions if P(W ≤ 2) = 1. For e.g.
most quarterly consumer insurance data, this covers the reporting delay.


The Larsen (2007) algorithm would resemble the one presented here, but since
it would augment uncertainty from outcomes of experiments with parameters for
Gamma, Pareto etc., with parameter estimation uncertainty, it would use stronger
assumptions than we use here.


3. The BICH bootstrap procedure


We describe how to make a bootstrap image of the claims of T using Z. The seg-
mentation described in Section 5 does not appear in the notation of this section, but
it is to be understood that it can be used. First we present an overview in five steps
S1–S5, which is outlined in more detail below.


S1. Identify a set Z of finalized claims distributed as the object claims after infla-
tion adjustment. Also identify possible suitable subsets G(1) as in Sections 4.1
and 4.2.


S2. Draw a random sample, numbered ν, with replacement from Z such that the
number of bootstrapped claims reported ’now’ per claim period i equals the
corresponding number of object claims Mi.


S3. Provided G(ν) occurred, compute the bootstrap images of (2.3), (2.5)–(2.9)
and add to sums that shall be used for estimates.


S4. Go back to S2 until S2 and S3 have been repeated B times with G(ν) occurring.
Set B = 2, 000 for example.


S5. Compute MSEP estimates, etc., and statistics for test of H0 in Section 6.


We make B0 IID repetitions of this image. All performed repetitions are num-
bered consecutively with index ν. By Assumption A5 we might want to use only
some of these repetitions by conditioning on some sets G(ν) of outcomes.
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The number of used repetitions where G(ν) occurred, which will be fixed, is denoted
B. (Then B0 is a random variable, having a negative binomial distribution NB(B, p)
with moment generating function E[etB0 ] = (pet/[1− (1− p)et])B , if the probability
is p in every repetition that the outcome will be used. Recall that the number of
trials in IID repetitions until a given number of successes is obtained is a negative
binomial variable.) The used repetitions are found in the subsequence ν1, ν2, . . . , νB .
We index it by t, writing νt (t = 1, . . . , B). Since the repetitions are IID, the subsets
G(ν) should be defined in the same way, with all P(G(ν)) equal.


In each repetition we draw, with replacement and separately for each i, successive
claims from Z until exactly Mi of them have report period W (r) ≤ n − i + 1, i.e.
have been reported ’now’ in the bootstrap world. In the sequel, when writing ’now’
we refer to this report condition in the bootstrap world. Writing now without quotes
concerning reporting we refer to the object claims. Define


N
(ν)
i = total number drawn, of which Mi are reported ’now’. (3.1)


By Assumption A4, it is immediate that the conditional distribution of N
(ν)
i | Mi


is a bootstrap approximation of the conditional distribution of Ni | Mi in the real


world, since N
(ν)
i as well as Ni is a negatively binomial random number of claims,


realized from an infinite sequence of IID random entities, until Mi of them have
satisfied the reported ’now’ condition.


As prediction we can use


N̂i =
1


B


B∑


t=1


N
(νt)
i (3.2)


Now recall that K is the number of claims that can be used for bootstrap. If we
sample at random a claim from {Z1, Z2, . . . , ZK} with probability 1/K, then it can
represent any object claim. Let for i ∈ {1, . . . , n} and ν ∈ {1, 2, . . . , B0}


U
(ν)
i,1 , . . . , U


(ν)


i,N
(ν)
i


(3.3)


be IID integer valued and uniformly distributed on {1, . . . ,K}. Namely,


P(U
(1)
1,1 = r) = 1/K, r = 1, . . . ,K. (3.4)


We use the finalized claims


Z
U


(ν)
i,1


, . . . , Z
U


(ν)


i,N
(ν)
i


as an image of the claim set T i of claims that occurred in claim period i.


In other words, we draw with replacement


B0∑


ν=1


n∑


i=1


N
(ν)
i claims from Z with equal


probability for each r = 1, . . . ,K in each drawing. For the examples of Section 7
this is about 5,000 million claims.
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We will use the superindex (ν) for bootstrap variables, with (1) for the first vari-
able of the repetitions as a representative of the sequence of IID bootstrap variables.
Averages will have superindex (-).


A bootstrap image of the Y i(k, j) of T i is Y (U
(ν)
i,k , j) = payment sum in develop-


ment period j of the k:th claim drawn from Z to represent claim period i. See (2.1).
Let F ′(i, r) = F (r) if F (r) ≤ n−i+1, otherwise 0. The bootstrap image of G is


G(ν) =


σ{W (U
(ν)
i,k ), F


′(i, U (ν)
i,k ), Y (U


(ν)
i,k , 1), . . . , Y (U


(ν)
i,k , n−i+1); 1≤ i≤n; W (U


(ν)
i,k )≤n−i+1}.


The reserve-ex-ante of this image is obtained by using the same function on G(ν)


as was used on G to get R̂i in (2.3).


R̂
(ν)
i = bootstrap reserve-ex-ante for claim period i, i = 1, . . . , n (3.5)


Bootstrap images of the random variables of (2.6) – (2.10) are


Y
(ν)
ij =


N
(ν)
i∑


k=1


Y (U
(ν)
i,k , j) (3.6)


H
(ν)
i =


n−i+1∑


j=1


Y
(ν)
ij (3.7)


R
(ν)
i =


n+s∑


j=n−i+2


Y
(ν)
ij (3.8)


Q
(ν)
i = R


(ν)
i /R̂


(ν)
i (3.9)


τ
(ν)2
i = E[(R


(ν)
i − R̂


(ν)
i )


2
| G(ν)], (3.10)


where the last one is unobservable and determined by which events in G(ν) occur.
In Section 6 we will explain how to use this mean square deviation measure


together with an adjustment factor ci reflecting possible inflation.
The approach is to generate prescribed numbers of claims reported ’now’. It works


if those numbers are large enough. This eliminates the need for insurance exposures
and too much modeling. For example, claim sizes could depend on reporting delays,
but we can ignore this possible dependence. Say that 90 percent of claims finally
below 10,000 EUR, but only 10 percent of claims finally at least 10,000 EUR, are
reported immediately at occurrence. Regardless, the bootstrapped sample for any
claim period will, under our assumptions, contain small and large claims propor-
tionally to their frequencies in the object claim data set.
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4. Application guidelines


We do not here distinguish between estimation error and prediction error. Since Z
forms a discrete empirical distribution that is an estimate of an underlying one,
there is however an estimation error, which is hard to quantify. So A4 and A5
cannot be exactly true. For K sufficiently large the empirical distribution is a good
approximation, see Section 4.3.


In applications where Z and T are from the same line of business and where we
have access to the full history and where we judge the claim and payment processes
to be sufficiently time-homogeneous, we want to use all claims back to the earliest
finalized claim period in order to make the best possible prediction, thus setting
s = 0. Choosing s > 0 by not going back that far, BICH can however shed light on
the performance of tail prediction methods.


The real n+s might be large, but payments after some moderate n+s negligible,
e.g. less than one percent of the total claim cost.


Hypothesis H0 can be tested in the bootstrap world by computing the empirical


distribution of Q
(ν)
i = R


(ν)
i /R̂


(ν)
i conditional on G(ν). Let Q


(−)
i be the mean of this


distribution and 0.01s(Q
(−)
i ) its standard error. See (6.13) and (6.14) in Section 6.1


below. If the confidence interval [Q
(−)
i −1.96×0.01s(Q


(−)
i ), Q


(−)
i +1.96×0.01s(Q


(−)
i )]


contains 1, then H0 can be accepted at the 95 percent level, if B is large enough for
CLT use. Normally B = 2, 000 suffices.


H0 states that the reserve prediction is the mean of the finally realized reserve.
If true, then


√
Var[Ri | G] = τi (4.1)


The purpose of ci in Assumption A4 is to adjust for inflation or deflation. The
adjustment by a factor dependent only on claim-period is a simplification of reality,
since the development period also could influence the degree of inflation in the
payments. For the present purpose the simplified model normally suffices. If not, the
claim payments can be adjusted before the BICH algorithm is run.


4.1. Subsets with reserves close to mean reserves


A class of subsets G(ν) that is implemented in the program for BICH is the fol-


lowing: in a first run R̂
(−)
i , the empirical bootstrap mean reserves-ex-ante per claim


period, are computed to sufficient closeness to their expectations, i.e. after sufficient
convergence. See (6.7) below. In a second run two factors b1 < b2 are used to bound
the outcomes. Namely, so that all outcomes ν are thrown away that do not have


every R̂
(ν)
i (i ∈ {1, . . . , n}), the bootstrap reserve-ex-ante per claim period, within


the interval with endpoints b1R̂
(−)
i and b2R̂


(−)
i . For example we can take b1 = 0.80


and b2 = 1.25. If b1R̂
(−)
i is positive then it is the left endpoint, and if it is negative


it is the right endpoint. If the probability for an outcome to be used and not thrown
away is p then we have to make about B0 = B/p repetitions to obtain B useful
samples.
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The randomness in this bootstrap can however, decrease too much with too narrow
sets G(ν), so this needs to be done carefully.


4.2. Subsets with fixed numbers of claims per known reporting period


Another kind of subsets G(ν) is defined by letting all bootstrapped claim reporting
numbers per known development period be equal to the corresponding numbers of
the object claim set. Namely, letting Aiw be the number of claims reported in devel-


opment period w ≥ 1, the corresponding bootstrapped numbers A
(ν)
iw in repetition ν


should be these for w ≤ n − i + 1. This is sometimes a reasonable bounding of the
bootstrap outcomes to make them more like the object outcome. In other cases this
bounding can decrease the randomness of bootstrap too much.


Since the waiting time between such bootstrap outcomes will be long, the actual
procedure is as follows. Claims with W = w≤n−i+1 are drawn until Aiw have been
obtained. After that they are rejected. Claims with W > n− i+1 are drawn until
the number drawn with W ≤n−i+1, including rejected ones, is Mi. This creates a
bootstrap distribution equal to the one obtained by using G(ν) as literally defined.


4.3. When will BICH work?


When will BICH work, assuming A1 – A4 and that we try to determine sets G(ν)


for A5 as best as possible? That is, when can we make A5 hold? We have stated
that, with at least a couple of hundred claims reported initially BICH outperforms
using insurance exposures. This would not, however, always be sufficient for A5.


The number K of finalized claims in Z should be sufficiently large to adequately
represent the claim distribution, considering its dispersion.


Take the extreme case of all payments being 1000 EUR and always made in devel-
opment periods W,W + 1,W + 2, where W is the development period of reporting.
Then K = 200 would be sufficient.


On the other hand, suppose there are large claims above the 0.1 percentile, which
constitute half of expected claim cost (= sum of payments) and are highly variable.
If the payment made in the reporting period says little about the final claim cost,
then K might need to be at least 1 million. If the representativeness of Z for large
claims is in doubt, then a table of percentiles for Z should be made and compared
to percentile tables for several other business lines in addition to the one under
consideration, or for several competing companies, such that this total business can
be regarded as having about the same tail distribution as the sets T i of object claims.
If the compared tail percentile tables are about the same, then Z should do.


5. BICH segmentation


The finalized claims in Z could have a different distribution of some background
variables than the sets T i of object claims. For example, the proportion of historic
claims coming from business line 7 might be 0.03 in the finalized claims, while it is
0.08 for claim period 12 in the set of object claims.
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Another cause of such discrepancy can be seasonal variations. Say that claims
occurring in August are on the average more expensive and their payments more
drawn out than in other months. If the Zr are evenly distributed over the year,
then bootstrapping from all these for the object claim period 8 (August) could be
misleading if the time unit of the analysis is month.


Therefore BICH has an option for segmentation by a background variable, which
possibly is a combination of many such variables. This works so that, separately per
claim period, the proportions of the background variable values in the claims of the
bootstrapped sample that have been reported ’now’ will be equal to the proportions
in the set of object claims reported now.


The model is then that the assumptions of Section 2 hold separately per segment.
This is the non-parametric way to model dependence on background variables. It
works if there are sufficiently many claims in each discrete segment. This is analogous
to stratified survey sampling aiming to make estimates and forecasts more accurate.


However, there is a caveat in that we cannot have too few historic claims per
segment. Also sufficiently many, say at least one hundred, object claims should
be reported in the first development period. In the bootstrap, each segment is a
discrete distribution of claims with finitely many points in the space of Z. The
fewer points in this discrete distribution, the less similarity to the real corresponding
distribution. The latter would normally be best represented by a distribution on an
infinite set of points. In the extreme case that each segment has just one historic
claim all randomness disappears. The percentile analysis recommended in Section
4.3 is appropriate for each segment separately.


The generalization of the procedure of Section 3 is the following:


Mvi = number of claims in T i reported in segment v, v ∈ {1, . . . , s0},
where


∑s0
v=1 Mvi = Mi


Zvr (v = 1, . . . , s0; r = 1, . . . ,Kv) are the claims of Z in segment v,
where Kv ≥ 1 and


∑s0
v=1 Kv ≤ K. Segment variable values in the historic claims


not found in the object claims cannot be used. If there are such values, then∑s0
v=1 Kv < K.


The segmentation bootstrap is to draw Mvi reported claims with replacement from


the Zvr. Totals N
(ν)
vi ≥ Mvi, including claims not reported ’now’, are then used


to compute reserves separately per segment. These are added and mean square
deviation estimates are computed, as described in Section 6.1. The segmentation
mechanism has not appeared in the preceding sections and will not appear in the
following sections other than Section 7.6, but is to be understood to be available.


6. Inference from BICH bootstrap


6.1. Estimates


The idea is now to estimate c2iE[τ
(1)2
i | G(1)], equal to τ2i under our assumptions, by


sample statistics of the sample of B repetitions ν1, . . . , νB where G(ν) occur.
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We transfer the bootstrap mean square error estimates to MSEP estimates for
the object reserve predictions R̂i. Define the estimate


τ̃i =


√√√√ 1


B


B∑


t=1


(
R


(νt)
i − R̂


(νt)
i


)2
. (6.1)


To make the variance of τ̃i sufficiently small is only a matter of making B sufficiently
large and computations time.


Estimate the conditional prediction error of Ri | G by first making an inflation
estimate equal to the ratio of payments, see (6.6) below, namely for chain ladder
and Schnieper


ĉi = Hi/H
(−)
i (6.2)


and, in accordance with Assumption A4, for RDC


ĉi =
n∑


r=1


Hr/
n∑


r=1


H(−)
r (6.3)


and then a transfer of the bootstrap estimate to the real world by


τ̂i = ĉiτ̃i (6.4)


for which we give an approximate 95 % confidence interval of


τi =
√


τ̂2i ± 1.96 d(τ̂2i ), (6.5)


where, treating ĉi as fixed due to its small variance, we compute


d(τ̂2i ) = ĉ2i


√√√√ 1


B(B − 1)


B∑


t=1


[(
R


(νt)
i − R̂


(νt)
i


)2
− τ̃2i


]2
.


The bootstrap distribution of Q
(νt)
i = R


(νt)
i /R̂


(νt)
i is an estimate of the distribution


of the real world ratio of (reserve-ex-post)/(reserve-ex-ante). Björkwall et al. (2009)
remark, in the context of triangle-only bootstraps, that the 99.5 percentile might be
unreliable. BICH should yield better high percentile estimates, at least for consumer
insurance with thousands of claims per year, provided our model assumptions are
sufficiently satisfied, in particular so that sufficiently many large claims are repre-
sented in Z. See the discussion in Section 4.3.


For confidence intervals for quantiles, see Wilcox (1997), p. 87. We give a simple


way to compensate for quantile uncertainty. Let qp be the p-quantile for Q
(νt)
i and


let q̂p be the empirical p-quantile obtained with B samples. Let p0 = P(Q
(νt)
i ≤ q̂p).


Let us regard X = pB = number of observations ≤ q̂p as random and q̂p as fixed.
Then X is binomial (B, p0), and with a normal approximation we can state with
approximately 95 % confidence that p0 ≥ pu = p − 1.6449


√
p(1− p)/


√
B. This is
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equivalent to qpu ≤ qp0 = q̂p (95 %). Taking p = 0.996034 and B = 10,000 gives pu =
0.995, so that the true 99.5 percentile is ≤ the empirical 99.6034 percentile with ∼ 95
% confidence. We can determine B from pu and p as B = 1.64492p(1− p)/(p− pu)


2.
Taking e.g. pu = 0.995 and p = 0.9955 yields B = 48,481.


Let v(X) denote 100 times the CV (coefficient of variation) of a random variable
X, i.e. the CV in percent. Let v̂(X) denote its estimate. The following averages,
standard errors (except (6.10)) and CV-estimates to illuminate the model are then
calculated with BICH:


H
(−)
i =


1


B


B∑


t=1


H
(νt)
i (6.6)


R̂
(−)
i =


1


B


B∑


t=1


R̂
(νt)
i (6.7)


R
(−)
i =


1


B


B∑


t=1


R
(νt)
i (6.8)


D̂[R̂
(ν1)
i ] =


√√√√ 1


B − 1


B∑


t=1


(
R̂


(νt)
i − R̂


(−)
i


)2
(6.9)


D̂[R
(ν1)
i ] =


√√√√ 1


B − 1


B∑


t=1


(
R


(νt)
i −R


(−)
i


)2
(6.10)


v̂(R̂
(−)
i ) = 100


√
1


B
D̂[R̂


(ν1)
i ]/R̂


(−)
i (6.11)


v̂(R
(−)
i ) = 100


√
1


B
D̂[R


(ν1)
i ]/R


(−)
i (6.12)


Q
(−)
i =


1


B


B∑


t=1


Q
(νt)
i =


1


B


B∑


t=1


R
(νt)
i /R̂


(νt)
i (6.13)


s(Q
(−)
i ) = 100


√√√√ 1


B(B − 1)


B∑


t=1


(
Q


(νt)
i −Q


(−)
i


)2
. (6.14)


The ratio Q
(−)
i of mean (reserve-ex-post)/(reserve-ex-ante) in bootstrap and its stan-


dard error 0.01s(Q
(−)
i ) serve to judge whether Hypothesis H0 is sufficiently true, and


if not give ideas for improvement of the reserving function R̂i.


6.2. Test for similarity of bootstrap and object triangles


The mean value estimate R̂
(−)
i in (6.7) and the standard deviation estimate


D̂[R̂
(ν1)
i ] in (6.9) can be used to judge if the realized bootstrap images νt are
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sufficiently like the outcome of G, after multiplication by the constant ci of Assump-
tion A4.


We propose also the following test. We define a metric of distance between incre-
ment triangles that admits different general levels, reflecting Assumption A4. Thus
we measure the difference between two normalized triangles. Let �1 and �2 be tri-
angles of known development, where


�1 = {Vij , i ∈ {1, . . . , n}, j ∈ {1, . . . , n − i+ 1}},
�2 = {Wij , i ∈ {1, . . . , n}, j ∈ {1, . . . , n− i+ 1}}.


Then set


ρn(�1, �2) =
∑


i,j


| Vij


|∑k,r Vrk|
− Wij


|∑k,r Wrk|
|, (6.15)


with sums over {i ≥ 1, j ≥ 1, i+j ≤ n+1} and {k ≥ 1, r ≥ 1, k+r ≤ n+1}.
We define �0 as the object triangle and �t as the bootstrap triangles, i.e.


�0 = {Yij , i ∈ {1, . . . , n}, j ∈ {1, . . . , n− i+ 1}}


�t =
{
Y


(νt)
ij , i ∈ {1, . . . , n}, j ∈ {1, . . . , n − i+ 1}


}
for t ∈ {1, 2, . . . , B}.


The arithmetic mean bootstrapped triangle, which is computed as the triangle of
arithmetic means of the elements, is


�− =
1


B


B∑


t=1


�t ≈ E[�1] (6.16)


where the ≈ holds for sufficiently large B by the strong law of large numbers.
We would ideally like to have �t = �− = �0 for all t, since all relevant randomness


in the real world is conditional on G, of which �0 is a function. In applications
however, this would destroy the randomness of the lower future triangles � t. And
volatility is also necessary to judge parameter uncertainty. We tried experiments
with G(ν) defined by ρn(·), but they were not successful.


We propose to compare ρn(E[�1], �0) to the distribution of ρn(E[�1], �t). If the
former is less than e.g. the 95 % percentile of the latter, then �0 can be assumed to
have been drawn from the distribution of �t.


We have to compute the value ρn(�−, �0) and percentiles for the empirical dis-
tribution of ρn(�−, �t) in two bootstrap stages. The first one for computing �− to
sufficient closeness to its expectation E[�1], and the second one for percentiles.


7. Data and examples with tables of BICH applications


7.1. Real data


BICH requires detailed data of possibly many millions lines of claim info, in
contrast to the triangle-only methods. This presupposes that large claim tables
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with one line per payment are available, which we strongly recommend at least for
middle-size to large insurance companies.


7.2. Simulated data


We give four examples. For secrecy reasons only simulated data are used. The boot-
strapped claims had the same distribution as the object claims. The number of boot-
strap repetitions was B = 10, 000 for all examples. The subsets G(ν) with boundaries
b1 and b2, described in Section 4.1, had no effect for Examples 1, 3 , 4 so we set
G(ν) to the whole sample space of experiment ν. For Example 2, the mechanism
generating G(ν) described in Section 4.2 was used.


The values of ρn(�−, �0) were as expected for simulated data which obey our
assumptions, i.e. most below the 90 % percentile.


We have also computed examples with real data (from Länsförsäkringar Al-
liance) for change of incurred, where claims-handler practice had changed over time.
For those the value of ρn(�−, �0) was above the max-value of the distribution of
ρn(�−, �t). So for those cases the ρn-test proved its power to show when BICH is not
appropriate. These examples are not rendered here.


Table 3 gives a comparison of standard errors by Mack (1999) and by BICH, and
of


√
MSEPs by the Schnieper (1991), Liu and Verrall (2009) method and by BICH.


We give detailed tables only for Example 1 with chain ladder. Then in Section
7.8 we compare chain ladder, the Schnieper (1991) method and RDC side by side.
We give reserve predictions, MSEP square roots and, for Example 4, the ratios of
mean (reserve-ex-post)/(reserve-ex-ante). In all cases the confidence interval widths
and standard errors are so small that the differences between methods are certain,
except for the


√
MSEPs 233,891, 231,280, 1,347,084 and 1,359,985 in Table 6.


The time period is month. For Examples 1, 3, 4 we simulated 1,000,000 claims
with probability 1/24 for each one of the claim occurrence months 2008-01, ... , 2009-
12. For Example 2 we simulated 50,000 claims for each one of the claim occurrence
months 2008-01, ... , 2009-12. The claims of 2009 are the object claims and those of
2008 are the bootstrap claims. Thus n = 12.


For claim periods i such that all claim reportings are known, i.e. such that the
largest possible value of W is ≤ n− i+1, the Schnieper (1991) reserves are the same
as the chain ladder reserves. Thus we do not give Schnieper results for those i.


The exposures required for the Schnieper reserves are for all examples the number
of claims reported in the first development period, as given by (7.7), also when
P(W > 2) > 0. This should be the best choice, even if insurance exposures are
known.


7.3. Example 1 satisfying the Mack assumptions


Tables 1 and 2 give output from BICH applying chain ladder. The assumptions of
Mack (1999) hold with α = 1 and wik = 1.
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Report month was supposed to be the same as occurrence month. I.e. no IBNR
(taken as distinct from RBNS) was constructed, so that Ni = Mi. (The Mack as-
sumptions cannot be satisfied for an individual claim reported in a later period
than the claim period without all payments being 0 with probability 1.) No tail was
assumed, i.e. all claims are finalized within the first twelve development periods.


For each claim, 12 increments for development periods j = 1, . . . , 12 paid in
the months claim-month+j − 1 were recursively simulated with expectations and
variances determined by these vectors


j 1 2 3 4 5 6 7 8 9 10 11


fj 1.60 1.50 1.40 1.35 1.30 1.25 1.20 1.15 1.10 1.07 1.01


σ2
j 60 50 40 35 30 25 20 15 10 7 1


in this way. The first increment Ci1 was drawn from a uniform distribution on
(0,100), i.e. with mean 50. Then for j = 1, . . . , 11 the increment Ci,j+1 − Ci,j was
drawn from a lognormal distribution with mean (fj − 1)Ci,j and variance σ2


jCi,j.
Thus the development factors Fi,j = Ci,j+1/Ci,j and the cumulative amounts Ci,j


satisfy the conditions (CL1), (CL2), (CL3), with fj and σ2
j having the same meaning,


in Mack (1999).
Table 1 gives object variables and the transferred prediction error estimate τ̂i by


(6.4) from the bootstrap world.
Table 2 gives bootstrap variables. The two rightmost columns can be made arbi-


trarily small by taking B arbitrarily large. Hypothesis H0 is true. Hence τ̂i is also a
standard error, i.e. an estimate of the standard deviation of Ri conditional on G.


The program also gives a table of percentiles of the predictive distribution of the
ratio (reserve-ex-post)/(reserve-ex-ante), but it is not rendered here.


7.4. Example 2 satisfying the Liu and Verrall assumptions


The Schnieper method is to partition the increments in claim period i and devel-
opment period j into increments Nij from new claims reported in j and increments
−Dij from claims reported before j, where 1 ≤ i, j ≤ n. (The minus sign of the
latter reflects the concrete reinsurance case considered in Schnieper (1991), where
the claims-handler reserve presumably typically was set too high for an individual
claim.) The total increment is then Nij −Dij . Assumptions for means and variances
of the distributions of Nij and Dij , and for dependence and correlation, are stated.
An exposure number Ei per claim period i is supposed to be available and used for
the distribution of Nij . For details, see Schnieper (1991) and Liu and Verrall (2009).


As remarked in Section 2.3, the BICH and Liu and Verrall (2009) conditions
can coexist, if all claims are reported in the claim occurrence period
or the next period. So, for Example 2, we assume that P(W ≤ 2) = 1. We can
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TABLE 1


Example 1 object statistics and estimates


Mi N̂i Hi R̂i τ̂i Conf.interval for τ̂i


i (2.4) (3.2) (2.7) (2.3) (6.4) (6.5)


1 41,697 41,697 25,264,318 0 0 0 0


2 41,363 41,363 24,632,778 246,737 6,483 6,392 6,572


3 41,578 41,578 23,180,702 1,854,974 16,733 16,497 16,964


4 41,689 41,689 21,384,930 4,017,889 25,061 24,717 25,400


5 41,602 41,602 18,332,901 6,707,639 32,381 31,926 32,829


6 41,962 41,962 15,604,248 9,960,468 42,949 42,350 43,540


7 41,862 41,862 12,230,428 12,810,982 51,732 51,005 52,448


8 41,914 41,914 9,524,612 15,816,812 63,980 63,106 64,843


9 41,631 41,631 6,935,343 17,988,816 77,279 76,204 78,340


10 41,623 41,623 4,971,429 20,041,740 93,787 92,489 95,068


11 41,861 41,861 3,339,478 21,842,293 116,764 115,141 118,365


12 41,614 41,614 2,075,695 22,931,216 144,441 142,462 146,393


TT 500,396 500,396 167,476,861 134,219,568 314,510 310,079 318,879


TABLE 2


Example 1 bootstrap statistics and estimates


H
(−)
i


R̂
(−)
i


R
(−)
i


D̂[R̂
(ν1)
i


] Q
(−)
i


s(Q
(−)
i


) v̂(R̂
(−)
i


) v̂(R
(−)
i


)


i (6.6) (6.7) (6.8) (6.9) (6.13) (6.14) (6.11) (6.12)


1 25,220,947 0 0 0 0.0000 0.0000 0.0000 0.0000


2 24,772,169 244,265 244,228 4,812 1.0002 0.0267 0.0197 0.0198


3 23,275,940 1,872,850 1,872,685 15,287 0.9999 0.0090 0.0082 0.0095


4 21,215,806 4,002,615 4,002,171 27,468 0.9999 0.0062 0.0069 0.0080


5 18,405,531 6,757,415 6,757,088 44,368 1.0000 0.0048 0.0066 0.0074


6 15,469,705 9,912,876 9,912,563 62,433 1.0000 0.0043 0.0063 0.0070


7 12,347,380 12,973,470 12,973,036 80,089 1.0000 0.0040 0.0062 0.0070


8 9,506,985 15,842,589 15,842,691 92,538 1.0000 0.0040 0.0058 0.0066


9 6,991,668 18,187,886 18,187,235 103,609 1.0000 0.0043 0.0057 0.0067


10 4,995,341 20,177,470 20,176,366 109,673 0.9999 0.0047 0.0054 0.0067


11 3,347,400 21,971,247 21,971,925 104,154 1.0000 0.0053 0.0047 0.0066


12 2,080,615 23,089,631 23,091,563 81,190 1.0001 0.0063 0.0035 0.0065


TT 167,629,487 135,032,312 135,031,551 359,368 1.0000 0.0023 0.0027 0.0024


deduce the values of λ2 and σ2
2, as defined in A′


1 of Schnieper (1991) and (2.3),
(2.5) of Liu and Verrall (2009). We can also set suitable values for Ei. This will
enable us to construct a claim set obeying the BICH and Liu and Verrall (2009)
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assumptions and to compute the exact parameter and MSEP values for this set. Let


Aiw = number of claims reported in development period w, w ∈ {1, 2} (7.1)


Let p = P(W = 1). Then Ai1 + Ai2 | Ai1 is negatively binomial NB(Ai1, p). From
the properties of this distribution (see Section 3 after the overview) we get


E[Ai2 | Ai1] = Ai1(1− p)/p Var[Ai2 | Ai1] = Ai1(1− p)/p2. (7.2)


Let Xik, k ∈ {1, . . . , Ai2}, be the payments for those claims in claim period i and
development period 2 that have W = 2. In the BICH model, these are IID and
independent of the past history. Let µ = E[Xik] and σ2 = Var[Xik]. Then


Ni2 =


Ai2∑


k=1


Xik, (7.3)


E[Ni2 |Ai1, Ni1] = E[E[Ni2 |Ai2] |Ai1, Ni1] = E[µAi2 |Ai1, Ni1] = µAi1(1−p)/p, (7.4)


Var[Ni2 | Ai1, Ni1] = Var[E[Ni2 | Ai2] | Ai1, Ni1] + E[Var[Ni2 | Ai2] | Ai1, Ni1]


= Var[µAi2 | Ai1, Ni1]+E[σ2Ai2 | Ai1, Ni1] = µ2Ai1(1−p)/p2+σ2Ai1(1−p)/p. (7.5)


Thus {
E[Ni2 | Ai1, Ni1] = Ai1µ(1− p)/p


Var[Ni2 | Ai1, Ni1] = Ai1(µ
2 + pσ2)(1 − p)/p2


(7.6)


If we proceed like this for Ni3, Ni4, . . . when P(W ≥ 3) > 0, we get similar but more
complicated expressions showing how Ni1, Ni2, . . . , Nin are dependent.


Now we regard Ai1 and Ni1 as non-stochastic, as described at the end of Section
2.3. So if we take


Ei = Ai1 (7.7)


the conditions for the Schnieper (1991) and Liu and Verrall (2009) model are satis-
fied. Here λ2 and σ2


2 are given by the coefficients for Ai1 in (7.6).
A similar construction cannot be applied for j ≥ 3 when P(W ≥ 3) > 0.
We let P(W = 1) = p = 0.75 and P(W = 2) = 1 − p = 0.25. All claims had


their last payment in development period 12. The payment at development periodW
was uniformly distributed on (50,70). At subsequent development
periods j, the incremental payment had a uniform distribution with mean −δjX
and variance τ2j X, where X was the claim’s cumulative payment before j. The
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δj and τ2j are given below and have the same meaning as in A′
1 of Schnieper (1991)


and (2.3), (2.5) of Liu and Verrall (2009).


j 2 3 4 5 6 7 8 9 10 11 12


δj -0.40 0.10 -0.06 -0.07 0.05 0.06 -0.03 -0.03 0.02 -0.02 0.01


τ2j 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.07 0.05 0.03 0.00


Using (7.6) we compute:


j 1 2


λj µ = 60 µ(1− p)/p = 20


σ2
j σ2 = 400/12 = 33.3333... (µ2 + pσ2)(1− p)/p2 = 1611.1111...


Results are given only in Table 3. Section 7.8 does not deal with Example 2. The
Schnieper method should be best here, but no significant difference between it and
the chain ladder could be found, even with 40,000 bootstrap repetitions. No signif-
icant differences could either be found between the Schnieper and RDC methods,
although the latter presupposes only the general BICH assumptions and contains
no mean or variance structures.


The exact MSEP values were obtained by using the real parameter values above
for λj, σ


2
j , δj and τ2j in the MSEP formulas of Liu and Verrall (2009), version ”L &


V Original”. The reserves themselves were computed using estimates.
Version ”L & V Original” was used also for the MSEP estimates. Version ”L & V


with adjustment” gave the same results after rounding to integers. Version ”Mack’s
Approximation” differed only, after rounding to integers, in the value for i = 12.
That version’s


√
MSEP was 8,234, hardly distinguishable from 8,239.


7.5. Example 3


With probability 0.6 a claim is reported in period 1, i.e. in the claim occurrence
month. With probability 0.2 in period 2, with probability 0.1 in period 3 and with
probability 0.1 in period 4. (This gives IBNR factors 1.6667, 1.2500 and 1.1111 for
the last claim month, next last month and the month before that.)


The total claim amount for a claim was simulated in two steps. First a random
mean claim µ was drawn from a uniform distribution on (0,100), i.e. with mean
50. Then a lognormal claim amount X with mean µ and variance µ2 was gen-
erated. These were then simulated to be paid in Q equal payments X/Q in the
months {report-month, report-month+1, . . . ,report-month+Q − 1 }, with P(Q =
j) = 1/9 (j = 1, . . . , 9). Thus no payment was made later than month 12.
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7.6. Example 4


Two segments of claim were simulated, with the segment 1 claims occurring in
months 01–03 and the segment 2 claims occurring in months 04–12. Thus, we use
segmenting with s0 = 2, as described in Section 5. For the RDC method to work
there should be at least some finalized object claims with the last possible F in each
segment. Otherwise there will be a negative bias. So we let the segment 1 claims
have F ≤ n = 12, making the month 01 claims finalized. And we let the segment 2
claims have F ≤ n− 3 = 9, making the month 04 claims finalized.


First we simulated the reporting delay W . Then given W , we simulated the life
length L = F −W + 1. The probabilities were these. P under w means P(W = w)
and P under λ means P(L = λ).


Seg w 1 2 3 4 λ 1 2 3 4 5 6 7 8 9


1 P 0.60 0.20 0.10 0.10 P 0.00 0.00 0.30 0.10 0.10 0.10 0.10 0.10 0.20


2 P 0.70 0.15 0.15 P 0.00 0.60 0.10 0.10 0.05 0.05 0.10


The monthly payments, counted with index h ≥ 1 from reporting, are Y (r, h +
W −1). We follow here expression (2.1) for bootstrap claims. Analogously for object
claims. They were constructed recursively from a sequence of random means µh to
be lognormal with mean µh and variance µ2


h, conditional on µh.
First µ1 was drawn from a uniform distribution, conditional on L.


µ1 ∼ U(0, 100
√
L− 1) for segment 1,


µ1 ∼ U(0, 100/
√
L− 1) for segment 2.


Then for h = 2, . . . , L


µh = Y (r, h − 1 +W − 1)(1 + 0.1(W − 1)) for segment 1,
µh = Y (r, h − 1 +W − 1)(1 − 0.1(W − 1)) for segment 2.


7.7. Benchmark tests of BICH


For Example 1, Table 3 compares the standard errors τ̂i with those of Mack (1999)
and with the exact standard deviations. The latter were computed by using the real
fj and σ2


j , not their estimates, in the Mack formulas. Condition CL1 of Mack (1999)
is satisfied, so the standard deviations are the same as the MSEP square roots.


For Example 2, the comparison is between τ̂i, the Liu and Verrall (2009) MSEP
square roots for the Schnieper (1991) reserves and the exact values, as described in
Section 7.4. The total over all claim periods for the latter was omitted, due to the
computational complexity.
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It is seen that τ̂i is closer to the true values than the estimates of Mack (1999)
and Liu and Verrall (2009), respectively. This is a natural consequence of the former
being computed using millions of lines of detailed data and the latter being com-
puted using only a few aggregated numbers. If only a few hundred claims had been
available, the comparison could have been reversed.


The value of Table 3 is as a benchmark for the BICH method. The implication,
albeit vague, is that we trust BICH to give correct prediction errors in other situ-
ations with about the same number of claims and the same variation of payments.


TABLE 3


Comparing standard errors and MSEPs


Example 1 Example 2


Exact τ̂i Liu and


τ̂i Mack standard Schnieper BICH Verrall Exact


i (6.4) s.e.(Ĉin) deviation reserve
√
MSEP


√
MSEP


√
MSEP


1 0 0 0 0 0 0 0


2 6,483 3,646 6,992 -37,713 0 0 0


3 16,733 9,273 17,250 36,386 407 214 404


4 25,061 24,530 25,253 -39,280 647 543 648


5 32,381 25,595 33,337 70,669 858 590 856


6 42,949 40,981 42,934 177,981 1,086 630 1,085


7 51,732 47,473 52,506 -49,094 1,456 1,127 1,466


8 63,980 55,950 64,592 -247,514 1,871 1,481 1,865


9 77,279 65,797 77,637 13,427 2,182 1,966 2,226


10 93,787 81,563 94,404 224,620 2,592 2,302 2,631


11 116,764 107,167 116,842 -165,387 3,151 2,877 3,131


12 144,441 141,901 146,029 1,477,940 8,263 8,239 8,448


TT 314,510 281,812 316,165 1,462,034 11,154


7.8. Using BICH to compare reserving methods


For Examples 1, 3, 4 we now compare chain ladder, Schnieper and RDC using their
BICH MSEPs. Example 2 showed no significant MSEP differences. For RDC we used
q0 = 500 for the number of quantile intervals of paid up to ’now’. The difference
in results between q0 = 100 and q0 = 500 was not large. No upper limit w0, as
described in Section A.2, was set for Examples 1 and 4. For Example 3, a couple of
BICH bootstraps showed that we should set w0 = 1, which is in line with the claim
simulation construction.


As can be seen from Table 4, chain ladder is only slightly better than RDC
for Example 1, although the simulated claims were tailor-made for chain ladder.
When we made a PPCF type computation, using only finalized claims for mean
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TABLE 4


Example 1 comparison


Chain ladder RDC


i R̂i τ̂i R̂i τ̂i


1 0 0 0 0


2 246,737 6,483 247,337 6,510


3 1,854,974 16,733 1,853,444 17,244


4 4,017,889 25,061 4,010,803 25,847


5 6,707,639 32,381 6,710,155 34,172


6 9,960,468 42,949 9,955,997 43,979


7 12,810,982 51,732 12,831,583 53,120


8 15,816,812 63,980 15,848,494 65,843


9 17,988,816 77,279 18,006,636 80,318


10 20,041,740 93,787 20,018,086 96,109


11 21,842,293 116,764 21,862,177 119,753


12 22,931,216 144,441 22,940,208 146,503


TT 134,219,568 314,510 134,284,919 325,508


TABLE 5


Example 3 comparison


Chain ladder Schnieper RDC


i R̂i τ̂i R̂i τ̂i R̂i τ̂i


1 0 0 0 0


2 2,758 257 2,440 18


3 10,752 590 10,020 156


4 30,383 1,055 same 30,503 354


5 77,833 1,723 as 79,320 667


6 157,909 2,611 chain 160,583 1,183


7 278,019 3,821 ladder 274,719 1,888


8 448,487 5,360 443,958 2,788


9 666,052 7,434 672,901 3,844


10 979,091 10,957 979,568 10,651 969,195 7,051


11 1,332,668 15,485 1,331,496 14,230 1,327,760 9,850


12 1,707,369 24,276 1,708,036 19,355 1,713,257 13,349


TT 5,691,321 36,237 5,691,292 32,109 5,684,656 20,929


payment estimates, we obtained total prediction error about 535,000, which is much
worse than 325,508 for RDC. For Examples 3 and 4 RDC was better. The Schnieper
method performed between chain ladder and RDC.
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TABLE 6


Example 4 comparison


Chain ladder Schnieper RDC


i R̂i τ̂i Q
(−)
i


R̂i τ̂i Q
(−)
i


R̂i τ̂i Q
(−)
i


1 0 0 0 0


2 781,236 639,083 1.1615 743,633 635,319 1.1967


3 1,951,032 928,295 1.0388 2,146,695 886,785 1.0591


4 0 0 0.0000 same 0 0 0.0000


5 16,185 8,858 1.1186 as 18,791 9,567 2.0326


6 73,082 19,854 1.0229 chain 71,237 21,881 1.2023


7 448,671 56,890 1.0057 ladder 444,991 51,257 1.0249


8 1,057,292 99,351 1.0022 1,052,013 90,488 1.0089


9 2,072,212 136,817 1.0008 2,168,135 123,484 1.0056


10 4,496,636 171,564 1.0003 4,466,886 156,713 1.0016


11 8,463,515 213,716 1.0002 8,471,478 209,846 1.0006 8,487,404 190,951 1.0008


12 15,771,619 242,177 1.0000 15,817,473 233,891 1.0004 15,888,240 231,280 0.9999


TT 35,131,481 1,347,084 1.0002 35,185,297 1,359,985 1.0014 35,488,026 1,295,050 1.0042


Run time for RDC was about five hours, while chain ladder takes less than an hour.
For MSEP estimate precision it will not in practice be necessary to make B = 10, 000
repetitions, which we made here to be certain of our results. For these examples
B = 2, 000 repetitions should suffice. Larger B might be needed for quantiles, see
Section 6.


In Table 6, for Example 4 with segmentation, we give also the mean ratios Q
(−)
i


of reserve-ex-post to reserve-ex-ante. These were not close to 1 for all claim periods,
as they were for Examples 1 and 3.


8. Conclusion


We have shown that BICH gives good prediction error estimates under the natural
conditions of essentially IID claims with sufficiently many finalized ones. A new
method RDC, also derived for IID claims, is integrated into BICH and compared
with chain ladder and the Schnieper method in BICH bootstraps.
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Appendix A: RDC method


A.1. The RDC framework


We describe the RDC (Reserve by Detailed Conditioning) method for reserving using
customer waiting-for-report periods W , finalization periods F and payments Y (·) of
individual claims. Payments on open and settled claims are pooled in a way that we
surmise is optimal or near optimal. The assumption is that all claims in Z and T ,
respectively, are IID. RDC can be used without bootstrapping, in which case Z is
not needed. In other words we require that ci ≡ c for some c in Assumption A4. In
practice this means that payments must have been adjusted for inflation beforehand.
We also assume no tail, i.e. P(F ≤ n) = 1. We do neither consider the possibility of
reopening a finalized claim.


No other assumptions are made. No likelihood expressions will appear in the
sequel. We do not even prescribe a mean value or variance structure. The method is
intended to be unbiased and give small mean square prediction errors in any situation
with IID claims without tails, possibly after segmentation as described in Section 5.
If special assumptions are applicable – such as independence of individual payments
or independence of the sequence of individual payments and F – algorithms using
these will be better. But we aim to show that the RDC method will then only be
marginally worse while notably better in other situations.


Besides offering an alternative to chain ladder and other methods at the aggregate
level, a purpose of RDC is to offer a much enhanced PPCF method for reserving
individual claims, using both finalized and non-finalized claims for estimates of claim
life length and payment parameters, while avoiding the bias that a naive use of non-
finalized claims can entail. Thus, RDC can replace claims-handler reserves for claim
types with some volume, not too long development and not too large payments.
In the sequel payments are primarily intended to mean payments, not changes in
incurred (payment sum plus claims-handler reserve).


Broadly, we break down the parameters of the distribution of a claim, as formu-
lated in (A.1) below, in many small details while conditioning on observable variables
with many combinations. The form of the probability estimates in Section A.3 and
Theorem A.1 for mean payments show that RDC gives consistent reserve predic-
tions for large numbers of claims. Still, with finite samples we might risk instability
from overparametrization. However, we contend that the adding of many individual
claim reserves will, by the law of large numbers, often make the total RDC reserve
for a claim period more stable than other reserving functions such as chain ladder
and Schnieper’s method. BICH bootstraps will help to set parameters for maximal
stability. The contention was corroborated by BICH bootstraps on simulated data
in Section 7.8.


Consider a claim in the object claim set T as described by (2.2). We suppress the
claim period superscript i ∈ {1, . . . , n} and the claim number k below. Thus


{W,F, Y (1), . . . , Y (F )} (A.1)
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is a claim with some distribution, the parameters of which we attempt to infer.
Recall that W = 1 if the claim is reported in the claim occurrence period. Likewise
F = 1 if finalized in the claim occurrence period. Define


L = F −W + 1 = life length of claim. (A.2)


The following terminology will be used:


• W ≤ n−i+1: the claim is reported;
• L ≤ n−i−W+2: the claim is finalized, i.e. settled. Then it is also reported;
• W ≤ n−i+1 and L > n−i−W+2: the claim is reported but still open.


Define the sum of amounts paid up to and including period t from reporting as


H(t) =
t∑


h=1


Y (h+W − 1), t ∈ {0, 1, . . . , n}, (A.3)


where h is counted from reporting with the reporting period W having h = 1.
Then H(0) = 0, H(L) is the total claim cost and H(n−i−W+2) is the payment


sum up to and including the now development period n − i + 1. It follows that
H(L) − H(n−i−W+2) is the remaining payment sum for a reported open claim
after development period n− i+ 1, i.e. the reserve-ex-post.


We want to predict the expected remaining payment sum from the known sum.
Consider this expression.


E[H(L)−H(t) | L > t,H(t),W ] (A.4)


For t = n−i−W+2 an estimate of (A.4) gives the RBNS (Reported But Not Settled)
reserve of a reported open claim. For t = 0 we obtain the IBNR (Incurred But Not
Reported) reserve per claim.


The assumption in Wüthrich and Merz (2008), Chapter 10.1.2 under Predicting


Reported Open Claims, the
(d)
= expression, is that, in our notation, H(t) without


Y (·) suffices for inference. This might or might not be true, but any model using the
individual payments Y (·) would need special and questionable assumptions to be
workable. Hence we will not use the individual payments Y (·) summing to H(t). If
the Wüthrich and Merz (2008) assumption is not true our calculus is valid anyway,
but the reserve estimates could have smaller variances if Y (·) were used individually.


In the sequel, any ratio with denominator 0 is defined to be 0.


A.2. Parameters and observable variables used in conditioning


There is no parametric model in the RDC method for the dependence of the
reserve on H(t). Therefore we must approximate the conditioning variable H(t)
with its empirical quantile intervals for reported claims in T that have L > t.
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Let q0 be the number of even-spaced quantile intervals fixed in advance. Then q0 = 1
means no conditioning with respect to H(t). With q0 = 2 we condition with respect
to whether the quantile of H(t) is at most 0.5 or not. With q0 = 3 with respect to
which one of the intervals (0, 13 ], (


1
3 ,


2
3 ], (


2
3 , 1] the quantile of H(t) belongs to, etc. In


simulations we have used up to q0 = 500. Let Q0 ≡ 1 and for t > 0


Qt = interval number of the quantile of H(t) for L > t, Qt ∈ {1, . . . , q0} (A.5)


At some point the prediction error τi in (2.10) will stop decreasing noticeably with
increasing q0. Taking note of Wüthrich and Merz (2008), last paragraph of Chapter
10, we risk overparametrization with too large q0. In our simulated examples with
a clear dependence on H(t) we have, however, not found any qmax


0 such that τi
increases for q0 > qmax


0 .
For W it might not be feasible to condition with respect to all its possible values,


if the distribution of the sequence Y (W ), Y (W + 1), . . . , Y (W + L − 1) does not
depend much or at all on W . Therefore we might want to fix a number w0 ≥ 1 in
advance and condition with respect to W∧w0, the minimum of W and w0. BICH
bootstraps will indicate the proper value of w0. If we do not fix w0 in advance, then
w0 will be the largest number w such that P(W = w) > 0. Anyway w0 ≤ n, since we
assume no tail. The distribution of W itself is not studied or used in any other way
than via chain ladder predictions of future numbers of claims per W , see (A.31).


We define the underlying reserve for a claim as


R(q, w, t) = E[H(L)−H(t) | L > t,Qt = q,W∧w0 = w], (A.6)


whose value we wish to estimate. For


0 ≤ t ≤ n− 1 t+ 1 ≤ λ ≤ n t+ 1 ≤ h ≤ λ


define probabilities and expected payments


pλ(q, w, t) = P(L = λ | L > t,Qt = q,W∧w0 = w), (A.7)


µλh(q, w, t) = E[Y (h+W − 1) | L = λ,Qt = q,W∧w0 = w]. (A.8)


Then, we have


R(q, w, t) =


n∑


λ=t+1


λ∑


h=t+1


pλ(q, w, t)µλh(q, w, t). (A.9)


A.3. Probability estimates


Probability estimates are obtained via estimates of the probabilities for finalization
in a period, given that the claim was not finalized before that. I.e. with


rλ(q, w, t) = P(L = λ | L ≥ λ,Qt = q,W∧w0 = w) (A.10)
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it holds, with an empty product defined as 1,


pλ(q, w, t) = rλ(q, w, t)


λ−1∏


k=t+1


[1− rk(q, w, t)]. (A.11)


This is shown by chaining successive conditional survival probabilities. Namely, sup-
pressing q and w we can write (A.11) in this equivalent way.


P(L = λ | L > t) =


(
λ−1∏


k=t+1


P(L > k | L ≥ k)


)
P(L = λ | L ≥ λ) (A.12)


An estimate of (A.10) is obtained from making the observations







IFλ(q, w, t) = number of finalized claims with L = λ,Qt = q,W∧w0 = w


Jλ(q, w, t) = number of reported claims with L ≥ λ,Qt = q,W∧w0 = w
(A.13)


and using as estimates







r̂n(q, w, t) = 1


r̂λ(q, w, t) = IFλ(q, w, t)/Jλ(q, w, t), λ < n,
(A.14)


which give the estimates p̂λ of pλ


p̂λ(q, w, t) = r̂λ(q, w, t)
λ−1∏


k=t+1


[1− r̂k(q, w, t)]. (A.15)


This indirect way allows us to use both finalized and open claims. If only finalized
claims were used, the estimates would have larger variance than possible.


The discrete distributions defined above is a way to structure our observations
into an empirical distribution.


A.4. Mean payment estimates


For estimates of µλh(q, w, t) we shall combine payments from open and finalized
claims. Only known payments, i.e. with h ≤ n− i−W+2, are used. The sums of
Y (h+W − 1) is over all reported claims in all claim periods i ∈ {1, . . . , n}. With


YF
λh(q, w, t) =


∑


{L≤n−i−W+2,L=λ,Qt=q,W∧w0=w}
Y (h+W − 1) (A.16)


an estimate of µλh(q, w, t) using only finalized claims is YF
λh(q, w, t)/I


F
λ (q, w, t).
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But we also want to use the open claims. Thus we observe the following variables
derived from open claims for t ≤ n − 2. They are not defined and not used for
t = n− 1, where (A.22) alone determines (A.27). For


0 ≤ t ≤ n− 2 t+ 1 ≤ r ≤ n− 1 t+ 1 ≤ h ≤ r


define claim numbers and payment sums for open claims known to be open at period
r, i.e. L>r, (counted from reporting) but not known to be open later than r.


IOr (q, w, t) = number of claims with n−i−W+2 = r, L>r,Qt=q,W∧w0=w, (A.17)


YO
rh(q, w, t) =


∑


{n−i−W+2=r,L>r,Qt=q,W∧w0=w}
Y (h+W − 1). (A.18)


Below we drop (q, w, t) from the notation, since these parameters are fixed in equa-
tions (A.19) – (A.42).


We compute the predicted number of open claims at r with L = λ as


IOrλ =
p̂λ


p̂r+1 + . . . + p̂n
IOr , λ = r + 1, . . . , n. (A.19)


It is easy to see that it holds, with the degree of approximation depending on the
precision of the estimates p̂λ,


E[YO
rh | IOr ] ≈


n∑


λ=r+1


IOrλ µλh. (A.20)


Now we have a non-trivial problem in distributing YO
rh among the possible L-values


r + 1, . . . , n. Namely, we need predicted payment sums YO
rλh with L = λ such that


n∑


λ=r+1


YO
rλh = YO


rh. (A.21)


We propose an involved procedure, which is unfortunately hard to understand. But
it is one that has shown itself to yield good results in BICH bootstraps. We de-


fine claim number sums I
(r)
λ (normally not integers but real numbers) and pay-


ment sums Y
(r)
λh that are computed recursively in r, starting at r = λ and go-


ing down to r = h. In each step the results of the previous steps are used. We


use the appropriate I
(r)
λ and Y


(r)
λh for an estimate of µλh that uses both final-


ized and open claims in a way that can be presumed optimal or near optimal.
The recursion is downwards because YO


rλh can be predicted with higher precision
for larger r. For r = n − 1 only λ = n is possible, so that a prediction using
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YO
n−1,n,h/I


O
n−1,n is as good as one obtained from finalized claims with the same number


of claims in the denominator. And so on.
Define for


0 ≤ t ≤ n− 1 t+ 1 ≤ λ ≤ n t+ 1 ≤ h ≤ λ


initial values determined by finalized claims







I
(λ)
λ = IFλ


Y
(λ)
λh = YF


λh


(A.22)


and the recursion







I
(r)
λ = I


(r+1)
λ + IOrλ


Y
(r)
λh = Y


(r+1)
λh + YO


rλh


r = λ−1, λ−2, . . . , h (A.23)


where, with


βrh = YO
rh


(
n∑


ν=r+1


Y
(r+1)
νh IOrν/I


(r+1)
ν


)−1


(A.24)


we distribute YO
rh so that, for fixed h, a new mean payment estimate that can be


made at this step, separately for open claims at this r alone, is proportional to the
previous estimate using all r gone through from the top so far, namely


YO
rλh


IOrλ
= βrh


Y
(r+1)
λh


I
(r+1)
λ


, which gives YO
rλh = βrh


Y
(r+1)
λh


I
(r+1)
λ


IOrλ, (A.25)


provided βrh is defined, i.e. at least one of its terms within ()−1 has both numerator
and denominator not 0. If this is not the case, we let all new mean payment estimates,
separately for this r alone, for fixed h be equal, namely


YO
rλh =


p̂λ
p̂r+1 + . . .+ p̂n


YO
rh (if βrh is not defined). (A.26)


The constructions (A.25) and (A.26) satisfy (A.21).
The final mean payment estimates will be


µ̂λh =
Y


(h)
λh


I
(h)
λ


, h = t+1, . . . , n; λ = h, . . . , n (A.27)


We now state that, under natural conditions, the estimate µ̂λh converges almost
surely (with probability one) to µλh as the sample of claims increases to infinity.
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If this is true, convergence of E[µ̂λh] to µλh follows, provided we assume some reason-
able bounding of each absolute payment |Y (j)|, as defined by (A.1), that guarantees
that convergence almost surely implies convergence in mean, by the dominated con-
vergence theorem.


Let N = N1 + . . . + Nn be the number of claims as defined by (2.5). When we
write N → ∞ we let all Ni → ∞. With a.s. is meant convergence almost surely.


Theorem A.1. Assume that one or both hold of these two conditions


(i)


n∑


ν=r+1


pνµνh 6= 0 for h ≤ r ≤ λ


(ii) P(Y (h+W − 1) ≥ 0 | L = ν,Qt = q,W∧w0 = w) = 1 for ν > h


Then lim
N→∞


µ̂λh = µλh almost surely.


The proof is given in Section A.6.


A.5. Total reserve per claim and claim period


We use the building blocks computed to get the final reserve estimate per claim


R̂(q, w, t) =
n∑


λ=t+1


λ∑


h=t+1


p̂λ(q, w, t)µ̂λh(q, w, t). (A.28)


We can now obtain the IBNR reserve R̂I
i and the RBNS reserve R̂R


i for claim period
i. These together give the reserve per claim period as defined by (2.3)


R̂i = R̂I
i + R̂R


i . (A.29)


A.5.1. IBNR reserve


R̂(1, w∧w0, 0) = reserve of an unreported claim with W = w. (A.30)


We predict the number of such claims per claim period i very simply with chain
ladder applied to claim reportings. More precisely, a claim contributes 1 to the
increment of development period W in the chain ladder algorithm. With


{
Aiw = number of claims reported in development period w


Âiw = chain ladder prediction of Aiw for w ≥ n−i+2,
(A.31)


we obtain the IBNR reserve for claim period i as


R̂I
i =


n∑


w=n−i+2


ÂiwR̂(1, w∧w0, 0). (A.32)
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A breakdown into development periods j is obtained by taking h+w−1 = j i.e.
h = j−w+1 in µ̂λh of (A.28), giving for j ≥ n−i+2


R̂I
ij =


j∑


w=n−i+2


n∑


λ=j−w+1


Âiwp̂λ(1, w∧w0, 0)µ̂λ,j−w+1(1, w∧w0, 0). (A.33)


A.5.2. RBNS reserve


For RBNS in claim period i we have


R̂(Qn−i−W+2,W∧w0, n−i−W+2) = reserve of an open claim. (A.34)


Let for claim period i


IO(i,q,w) = number of open claims with W = w and Qn−i−W+2 = q. (A.35)


Then the RBNS reserve for claim period i is


R̂R
i =


n−i+1∑


w=1


q0∑


q=1


IO(i,q,w)R̂(q, w∧w0, n−i−w+2). (A.36)


Like the IBNR reserve, a breakdown into development periods j is obtained from
h = j−w+1 in (A.28), giving for j ≥ n−i+2


R̂R
ij =


n−i+1∑


w=1


q0∑


q=1


n∑


λ=j−w+1


IO(i,q,w)p̂λ(q,w∧w0,n−i−w+2)µ̂λ,j−w+1(q,w∧w0,n−i−w+2). (A.37)


A.6. Proof of Theorem A1


We use induction in the form of downwards recursion. Namely, we shall show that
(A.39) implies (A.42). First note that


lim
N→∞


YO
rh


IOr
=


n∑


ν=r+1


pν
pr+1 + . . .+ pn


µνh a.s. (A.38)


Assume


lim
N→∞


Y
(r+1)
λh


I
(r+1)
λ


= µλh, λ = r + 1, . . . , n a.s. (A.39)


If (i) holds βrh will be defined for N large enough. Then


lim
N→∞


βrh = lim
N→∞


YO
rh


IOr


(
n∑


ν=r+1


Y
(r+1)
νh


I
(r+1)
ν


p̂ν
p̂r+1 + . . .+ p̂n


)−1


= 1 a.s. (A.40)
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Hence by (A.25)


lim
N→∞


YO
rλh


IOrλ
= µλh a.s. (A.41)


Thus, suppressing r, λ, h in the right side of (A.23) and writing its terms as functions


of N only, we have I
(r)
λ = I1N + I2N and Y


(r)
λh = Y1N + Y2N where Y1N/I1N → µλh


and Y2N/I2N → µλh a.s. Hence


lim
N→∞


Y
(r)
λh


I
(r)
λ


= µλh a.s. (A.42)


Now assume that (i) is not true for some r = r0 but that (ii) holds. Then for ν > r0
the probability is 0 of observing any non-zero payment with life length L = ν, and
we must have µνh = 0. Then (A.42) holds with value 0.


By the strong law of large numbers (A.39) holds for r+1 = λ, since the numerator
and denominator are given by (A.22) and use finalized claims only.


Going down to r = h finishes the induction proof. �
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Errors of print in the printed article
Page 303 formula (6.4): τ̂i = ĉiτ̂i shall be τ̂i = ĉiτ̃i.
Page 324 line 2: 40(1) shall be 40(2).


Some questions I have received are answered in the following four sections, which
were not included in the printed paper.
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Appendix B: Elaborations


B.1. (A.32) is consistent with (A.33) in the RDC model


This is an elaboration of Bootstrapping Individual Claim Histories, ASTIN
Bulletin 2012(1), 291-324. Apart from verbal deliberations, I mainly elaborate
Section A.5.
On p. 317 I state:


”For W it might not be feasible to condition with respect to all its possible
values, if the distribution of the sequence Y (W ), Y (W +1), . . . , Y (W +L− 1)
does not depend much or at all onW . Therefore we might want to fix a number
w0 ≥ 1 in advance and condition with respect to W∧w0, the minimum of W
and w0. BICH bootstraps will indicate the proper value of w0. If we do not fix
w0 in advance, then w0 will be the largest number w such that P(W = w) > 0.
Anyway w0 ≤ n, since we assume no tail.”


The development distribution can thus depend on W for W ≥ w0, but to
condition with respect to such values individually might still give an increase
of MSEP due to overparametrization.
Overparametrization is present when there are parameters in the model


whose estimates have so large variances that the MSEP is larger with these
parameters than without them. This can be the case even if the use of the true
parameter values would decrease or at least not increase the MSEP. Consider
polynomial regression. If this model is true and the true degree of the regression
curve is p, the use of the true parameters also for degrees > p will be as good
as the use of the parameters for degrees ≤ p only, since all coefficients for
degrees > p will be zero. But the estimates of these coefficients will generally
not be zero, which entails larger MSEP. By a continuity argument it can be
seen that we can have non-zero true coefficients for high degrees, but still get
larger MSEP with estimated coefficients for these high degrees than with the
use of zero coefficients for them.
The proper value of w0 depends on the degree of dependence of the develop-


ment distribution onW and the number of claims per W . A strong dependence
speaks for a large w0. So do large numbers of claims for large W by decreasing
the parameter estimate variances.
The simulated claim set of Example 3 in Section 7.5, p. 310, has the devel-


opment distribution independent of W . Here n = 12. Since P(W ≤ 4) = 1, i.e.
the highest W -value is 4, and there is no tail, we have P(L ≤ 9) = 1 for the
life length L. In the paper I set w0 = 1 for this example. No claim can have a
life length L = n− w0 + 1 = n = 12. If we change this to P(L = 12) > 0, the
obvious solution is to include more periods by setting n ≥ 15, e.g. n = 24 to
even out seasonal variations if period length is one month.


In this context the question arises whether the expression (A.32) for the IBNR
reserve for claim period i is consistent with the breakdown into development
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periods given by expression (A.33). I give a derivation showing that this is
indeed so.


Proposition. With R̂I
i given by (A.32) and R̂I


ij given by (A.33), it holds


R̂I
i =


n∑


j=n−i+2


R̂I
ij .


Proof. By (A.33)


n∑


j=n−i+2


R̂I
ij =


n∑


j=n−i+2


j∑


w=n−i+2


n∑


λ=j−w+1


Âiw p̂λ(1, w∧w0, 0)µ̂λ,j−w+1(1, w∧w0, 0).


Change the summation order in the two first
∑


of the right side. (Draw a
graph depicting the values of j and w contributing to the sum.) Namely


n∑


j=n−i+2


j∑


w=n−i+2


=
n∑


w=n−i+2


n∑


j=w


.


Hence


n∑


j=n−i+2


R̂I
ij =


n∑


w=n−i+2


Âiw


(
n∑


j=w


n∑


λ=j−w+1


p̂λ(1, w∧w0, 0)µ̂λ,j−w+1(1, w∧w0, 0)


)
.


Change the summation order in the inner double sum. Make the variable sub-
stitution h = j − w + 1, j = h + w − 1.


n∑


j=w


n∑


λ=j−w+1


p̂λ(1, w∧w0, 0)µ̂λ,j−w+1(1, w∧w0, 0)


=


n∑


λ=1


n∧(λ+w−1)∑


j=w


p̂λ(1, w∧w0, 0)µ̂λ,j−w+1(1, w∧w0, 0)


=
n∑


λ=1


n∧λ∑


h=1


p̂λ(1, w∧w0, 0)µ̂λ,h(1, w∧w0, 0)


=


n∑


λ=1


λ∑


h=1


p̂λ(1, w∧w0, 0)µ̂λ,h(1, w∧w0, 0).


By (A.28) we recognize the last expression as R̂(1, w∧w0, 0). Thus


n∑


j=n−i+2


R̂I
ij =


n∑


w=n−i+2


ÂiwR̂(1, w∧w0, 0) = R̂I
i .


�
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B.2. Bootstrap ex-post reserve as object reserve


I held a lecture at the Swedish Actuarial Association on 2013-10-22, describing
my article Bootstrapping Individual Claim Histories, ASTIN Bulletin 2012(1),
291-324. A question was asked whether the mean bootstrap ex-post reserve


R
(−)
i = 1


B


B∑


t=1


R
(νt)
i


given in expression (6.8) on p. 304 could be used as object reserve. It could, but
its expectation and almost sure limit as B → ∞ would be better. And that can
be computed. It is a PPCF (expected Payments Per Claim Finalized) reserve,
since all claims in the set Z used for bootstrap must be finalized. Furthermore,
they must all belong to claim periods where all claims are finalized. Newly
occurred and finalized claims cannot be used. Thus the MSEP will be larger
than necessary. In contrast, the chain ladder, Schnieper and RDC methods
treated in the paper all use payments on non-finalized claims as well.
To compute this PPCF reserve, consider the historic claim set Z with K


claims defined in Section 2.1, p. 294, and pretend that they all occurred in
claim period i ∈ {1, . . . , n}. For simplicity, assume no segmentation and no
inflation. Also assume that G(ν) of Assumption A5 is the whole sample space
of experiment ν, so that νt = t. Define


Ei =


K∑


r=1


∑


j>n−i+1


Y (r, j) = total ex-post reserve in Z,


Ki =
K∑


r=1


1{W (r)≤n−i+1} = number of claims reported ’now’ in Z.


In the BICH bootstrap procedure we draw a random number N
(ν)
i of claims


until Mi are reported ’now’. Here Mi is the number of object claims reported


now, see (2.4) p. 295. Then obviously N
(ν)
i has the negative binomial distribu-


tion NB(Mi, Ki/K), with mean MiK/Ki.
For each randomly drawn claim, pretended to have occurred in claim period


i, its expected ex-post reserve is of course Ei/K. Since N
(ν)
i is a stopping time


(see below for definition), by Wald’s theorem we thus obtain


E[R
(−)
i ] = E[R


(ν)
i ] = E[N


(ν)
i ]Ei/K =


MiK


Ki


Ei


K
=


MiEi


Ki


.


This is the PPCF reserve that could be used. It is unbiased but not suitable.
The bootstrap sample Z of claims is just a sample of the real claim distribution.


By N
(ν)
i being a stopping time is meant that the event {N (ν)


i = k} is inde-
pendent of the sequence of random drawings (if they were to continue) n:os
k+1, k+2, k+3 . . . .
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A simple account
Pretending that all claims in Z occurred in period i, we can compute the
remaining payment sum Ei and the number Ki of claims reported ’now’, i.e.
known. Then Ei/Ki is the mean reserve per known claim. Hence


(number of known object claims)× (mean reserve per known claim) =MiEi/Ki


is the object reserve with this PPCF method.


Available claims
There are not more claims available for these reserves, since we could include
the claims used for bootstrap also in the set Tused for object (actual) reserves.
I state on p. 294, line 4 from bottom, that ”The claims for i that are finalized
could be part of Z.” The converse is also true, namely that the claims of Z
could be part of T . We do not always, however, want to include all claims of
Z in T , due to practice changes.


B.3. Addendum to paper


In (6.10) I gave the standard deviation estimate


D̂[R
(ν1)
i ] =


√√√√ 1
B−1


B∑


t=1


(
R


(νt)
i − R


(−)
i


)2
.


Since the mean is known, a better estimate is


D∗[R
(ν1)
i ] =


√√√√ 1
B


B∑


t=1


(
R


(νt)
i − MiEi


Ki


)2


,


if G(ν) of Assumption A5 is the whole sample space of experiment ν.
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B.4. From (A.6) to (A.9)


Suppress q, w, t, L > t in the notation. They do not change from (A.6) to (A.9).
Now (A.3) gives


H(L)−H(t) =
L∑


h=t+1


Y (h+W−1).


Then


R = E[H(L)−H(t)] =


L∑


h=t+1


E[Y (h+W−1)],


pλ = P(L = λ),


µλh = E[Y (h+W−1) | L = λ].


We want to show


R =


n∑


λ=t+1


λ∑


h=t+1


pλµλh.


A change in the order of summation gives


n∑


λ=t+1


λ∑


h=t+1


pλµλh =
n∑


h=t+1


n∑


λ=h


pλµλh =


n∑


h=t+1


n∑


λ=h


P(L = λ)E[Y (h+W−1) | L = λ] =


n∑


h=t+1


n∑


λ=1


P(L = λ)E[Y (h+W−1) | L = λ] =


n∑


h=t+1


E[E[Y (h+W−1) | L]] =
L∑


h=t+1


E[Y (h+W−1)],


where the change from λ=h to λ=1 from the 3:rd to the 4:th equation member,
and the change from n to L from the 5:th to the 6:th member, can be done
since Y (h+W−1) = 0 for L < h. �


B.5. Modification of quantile intervals for RDC


In Rapp I have changed the grouping into quantile intervals so that each group
per q, t, w contains at least one finalized claim. If a group initially contains only
open claims it is merged with the group with the same t, w and nearest lower
q with finalized claims, if such a group exists. If not, it is merged with group
with the same t, w and the nearest higher q with finalized claims. If not even
such a group exists, Qt is set to 1.
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B.6. Corrections of bugs in Rapp concerning RDC


Heartfelt thanks are due to (in alphabetical order) Ari Dwi Hartanto, Mu-
jiati Dwi Kartikasari and Rinjani Pebriawan at Universitas Gadjah Mada, Yo-
gyakarta, Indonesia, for exposing bugs, thereby enabling me to correct them.
The latest of them was corrected 2016-04-28. It was an error in the implemen-
tation of equation (A.36).
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DISPERSION ESTIMATES FOR POISSON AND TWEEDIE MODELS


by


Stig Rosenlund


Abstract


As a consequence of pointing out an ambiguity in Renshaw (1994), we show that
the Overdispersed Poisson model cannot be generated by random independent
intensities. Hence Pearson’s chi-square-based estimate is normally unsuitable for
GLM (Generalized Linear Model) log link claim frequency analysis in insurance.
We propose a new dispersion parameter estimate in the GLM Tweedie model
for risk premium. This is better than the Pearson estimate, if there are suffi-
ciently many claims in each tariff cell. Simulation results are given showing the
differences between it and the Pearson estimate.


Keywords


Generalized Linear Model, GLM log link, ODP, Overdispersed Poisson, Tweedie.


1. Model and perspectives for claim frequency


1.1. Model


In GLM log link theory for claim frequency, the ODP (Overdispersed Pois-
son) model is used. In this theory tariff cells u are combinations of categorical
covariates, called arguments. Let Nu be the number of claims occurring in tariff
cell u during some period of time. The mean and variance of Nu depend on an
exposure eu, namely


A. E[Nu] = νueu
B. Var[Nu] = φνueu


Here νu, called claim frequency, is multiplicative in the arguments. That is,
νu is a product of a base constant and a factor for each argument. The number
φ ≥ 1 is an unknown constant called the dispersion parameter. The same num-
ber applies for all u and for any time period regardless of length. This means
that Var[N ] = φE[N ] for any claim number N . For pure Poisson φ = 1, while
the case φ > 1 is denoted overdispersion.
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Three basic assumptions are made in this GLM theory, namely


1) Independence between insurance policies
2) Independence between disjoint time intervals (independent increments)
3) Exposure homogeneity


See e. g. Ohlsson & Johansson (2010), section 1.2. These assumptions imply the
linear dependence of variance on exposure in B above. Without the independent
increments property B is hard to justify. Time heterogeneity can be brought
back to time homogeneity by the concept of operational time. It is just that the
assumption 3) is convenient for avoiding unnecessarily complicated notation.


In section (6.2.4) of McCullagh & Nelder (1989) the χ2-based Pearson φ-
estimate is suggested. Renshaw (1994) applies GLMs to multiplicative models
in insurance. The Pearson estimate (2.16) of φ is there denoted φ̂. Let


n = number of tariff cells
r = n:o of free parameters = 1 +


∑


arguments
[(n:o of classes per argument) - 1]


ν̂u = estimate of the claim frequency νu in the GLM Poisson log link model.


The number of degrees of freedom is n − r, denoted ν in Renshaw (1994). It
holds


φ̂ = (n− r)−1


n
∑


u=1


eu


(


Nu


eu
− ν̂u


)2


/ν̂u (1)


1.2. Generalized Poisson


Consider the Generalized Poisson case Nu =
∑Au


i=1
Zui. Here Au is Poisson and


independent of Zui. The Zui are, for a specific u, IID positive integer random
variables. They count claims occurring at the same time from the same cause.
This is an ODP model, provided that φ = E[Z2


u1]/E[Zu1] is the same for different
u. Assume that the Zs can be observed directly. Then it will follow from sections
3 and 4, by specializing the Tweedie model to p = 1, that the simple quotient
∑


u,i Z
2


ui/
∑


u,i Zui is preferable to the Pearson estimate φ̂. If direct observation
is not possible, and if we wrongly assume that the Zui claims occurring at the
same time arrive in an ordinary Poisson process, then it is wrong to use the
dispersion parameter φ = 1. The Pearson estimate is then useful.


Cases in insurance where the Zs cannot be observed directly are rare. For
example regarding claims from storm damage, great care is traditionally taken
to ascertain direct observability by identifying simultaneous claims arising from
the same cause (storm). The practical actuarial handling in insurance, for the
purpose of variance estimates, is to add the claim amounts Xuij associated with


Zui to a sum Xui =
∑Zui


j=1
Xuij per time point. Then these simultaneous claims


count as a single claim. So we retrieve the pure Poisson process with φ = 1 for
claim occurrences.
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1.3. Random independent claim frequencies


Another mechanism to generate ODP is suggested in Renshaw (1994), section
3. Namely that claims are generated by processes that are Poisson, conditional
on random independent claim frequencies λu. In A and B above then νu =
E[λu]. However, that the ODP model seems to follow from Renshaw’s calcula-
tions is due to an ambiguity, described in the next section. The ambiguity gives
rise to the apparent paradox that random claim arrival rates generate ODP
processes with φ > 1 having the independent increments property, while time-
homogeneous unit-step jump processes with independent increments are pure
Poisson, see Parzen (1962), 4-2. In straightening out the ambiguity we can see
that the asymptotic theory for confidence intervals in the GLM ODP log link
theory cannot be applied to the random intensities case. This theory presup-
poses that Var[Nu/eu] = φνu/eu → 0 as eu → ∞. But this is not so with random
intensities, see (2) below.


1.4. Superpositions of many independent point processes


On the other hand, in collective claim frequency analysis of mass consumer in-
surance one can apply a general limit theorem for superpositions (sums) of point
processes by Grigelionis (1963). This theorem states that under weak conditions
the superposition of many independent unit-step claim occurrence processes,
each one contributing a small part to the total, is approximately Poisson. This
holds even for random intensities. For instance, when analyzing a portfolio of
60,000 customers with variances of the same order of magnitude, the introduc-
tion of 60,000 random independent intensities for conditional Poisson processes
is an unnecessary complication. For practical purposes, the pure Poisson as-
sumption will give the same results.


1.5. Random intensities in bonus/malus analysis


The analysis of individual customer claim freqencies for bonus/malus purposes
is another matter. There the model of random intensities, Γ-distributed for con-
venience, is useful.


1.6. Macroscopic fluctuations


Observed claim frequencies are often found to fluctuate more from year to year
than what follows from the Poisson assumption. This holds also for mass con-
sumer insurance. This is due to macroscopic variables (e. g. crime waves, business
cycles, the weather) affecting large parts of the portfolio in the same way. Here
the assumption 1) of independence between policies does not hold. So, for an-
alyzing collective claim frequencies in mass consumer insurance, the model of
random independent claim frequencies gives no help.


For analyzing price relativities, our 25-year experience with practical pricing
is that it is mostly best to condition with respect to these macroscopic variables.
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Thereby we retrieve the Poisson process (although time-heterogeneous). It is
seldom feasible to model how the effects of the macroscopics differ between
tariff cells. Relying on e. g. theft expert judgments is better than augmenting
the mathematical model.


2. Renshaw’s ambiguity on random intensities


Independent response variables Yu are defined in Renshaw (1994) for tariff
cells u. For claim frequency analysis claim numbers Nu, exposures eu and (possi-
bly stochastic) claim rates λu are introduced. On p. 271 line 8 in Renshaw (1994)
the responses are defined as Yu = Nu. On p. 272 line 23 the notation is changed
to Yu = Nu/eu. Renshaw writes ”Focus on the weighted Poisson responses
Yu (= Nu/eu) with Yu ∼ Poi(λu) so that


(3.2) E(Yu) = E{E(Yu|λu)} = E(λu),


Var(Yu) = E{Var(Yu|λu)} + Var{E(Yu|λu)}


and hence


(3.3) Var(Yu) = E(λu) + Var(λu).”


Both parts of (3.2) are correct. Assuming Yu|λu ∼ Poi(λu), then (3.3) is also
correct. But this assumption is not, unless eu = 1, consistent with the definition
Yu = Nu/eu and not with the word ”weighted”. Because on p. 271, lines 4-7, Nu


was defined as a random claim number, with realization nu, such that Nu|λu ∼
Poi(euλu). Hence there is an ambiguity as to what Yu is. The definition given for
Nu and the subsequent definition Yu = Nu/eu are necessary for an investigation
using (3.2) of whether the ODP model holds for random intensities. Adhering
to these definitions, we will show that (3.3) must be corrected. A crucial factor
1/eu is missing in the first term of the right side of (3.3). A corrected version of
(3.3) is as follows.


The first term of the right side of the second part of (3.2):


Var[Nu | λu] = euλu


Var[Yu | λu] = Var[Nu/eu | λu] = euλu/e
2


u = λu/eu


E[Var[Yu | λu]] = E[λu]/eu


The second term of the right side of the second part of (3.2):


E[Yu | λu] = E[Nu/eu | λu] = euλu/eu = λu


Var[E[Yu | λu]] = Var[λu] (as correctly given in (3.3))
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and hence
Var[Yu] = Var[Nu/eu] = E[λu]/eu +Var[λu] (2)


Var[Nu] = e2uVar[Yu] = euE[λu] + e2uVar[λu]


Var[Nu]/E[Nu] = 1 + euVar[λu]/E[λu] (3)


Expression (2) does not → 0 as eu → ∞, unless Var[λu] = 0.
From the correction just made it follows that random intensities, while en-


tailing Var[N ] > E[N ] for any claim number N , does not give the ODP model,
since this model assumes that the left side of eq. (3) is a constant φ, the same
for all u. If the λu are IID, the expression (3) would be larger for larger ex-
posures eu. Renshaw’s expression (3.3) together with mistaking Yu for Nu (the
first definition of Yu), on the other hand, implies the same constant φ for all u
in the left side of eq. (3).


3. New dispersion parameter estimate in Tweedie’s risk


premium model


3.1. Model


In the Tweedie model for risk premiums with exponent p, the assumptions 1),
2) and 3) of section 1.1 are supposed to be true. In addition to the definitions
of section 1.1, let


Xui (i = 1, . . . , Nu) = independent claim amounts, distributed as Xu1 in class u
Su =


∑Nu


i=1
Xui


τu = E[Su/eu] = risk premium
τ̂u = estimate of the risk premium τu in the GLM Tweedie log link model


The model is the following. For φ ≥ 1, the same for all u and for any time
period.


Var[Su] = φeuE[Su/eu]
p or equivalently Var[Su/eu] = φE[Su/eu]


p/eu (4)


See Jørgensen & Paes de Souza (1994). As pointed out by Venter (2007), section
4.1, the link between claim frequency and claim severity is problematic in this
model. The Pearson estimate is


φ̂ = (n− r)−1


n
∑


u=1


eu


(


Su


eu
− τ̂u


)2


/τ̂pu (5)
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3.2. New dispersion parameter estimate


If the claim occurrence processes are unit-step (one claim at a time) they are
pure Poisson, as follows from the preceding sections. So, assuming unit-step, φ̂
does not have an advantage by catching a possible overdispersion in the claim
occurrence processes. A φ-estimate utilizing that the claim occurrence processes
are Poisson is useful, i. e. sometimes better than φ̂. (An appropriate measure
of goodness is the mean square deviation of the estimate from φ.) We propose
such an estimate. It will be better if there are sufficiently many claims in all
tariff cells that have claims.


From (4) we get
φ = ep−1


u E[Su]
−pVar[Su]


The mean and variance of these Compound Poisson distributions are


E[Su] = E[Nu]E[Xu1] Var[Su] = E[Nu]E[X
2


u1]


Hence for any u this is the (problematic) link between frequency and severity:


φ = ep−1


u E[Nu]
−pE[Xu1]


−pE[Nu]E[X
2


u1] = E[Nu/eu]
1−pE[Xu1]


−pE[X2


u1]


This suggests a u-specific φ-estimate


φ̂u = (Nu/eu)
1−p


(


1


Nu


Nu
∑


i=1


Xui


)−p(


1


Nu


Nu
∑


i=1


X2


ui


)


= [eu(Su/eu)
p]−1


Nu
∑


i=1


X2


ui (6)


which will converge a. s. to φ when eu → ∞ as time → ∞. The φ̂u are inde-
pendent, so a linear combination


∑n
u=1


αuφ̂u with αu ≥ 0 and
∑n


u=1
αu = 1 can


give a better estimate than any single φ̂u. The standard solution for this situ-
ation, which gives the estimate the smallest variance, is αu ∝ 1/Var[φ̂u]. Here
Var[φ̂u] must be estimated, which is difficult to do exactly. We have attempted
approximations for large E[Nu]. The resulting φ-estimate was only marginally
better than the estimate below in expression (8), when all expected numbers of
claims E[Nu] = νueu per tariff cell were large (the limiting case eu → ∞). And
when νueu were small, then it was worse, even for p = 1.


We propose the following weights, appropriately larger for cells with more
claims,


αu = eu(Su/eu)
p








n
∑


j=1


ej(Sj/ej)
p








−1


(7)


so that our proposed new φ-estimate, converging almost surely to φ when
eu → ∞, is
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φ̂0 =
n
∑


u=1


αuφ̂u =


∑n
u=1


∑Nu


i=1
X2


ui
∑n


u=1
e1−p
u Su


p
(8)


3.3. Dispersion parameter estimate for Overdispersed Poisson


For the Overdispersed Poisson model p = 1 the expression (8) specializes to


φ̂0 =


∑n
u=1


∑Nu


i=1
X2


ui
∑n


u=1


∑Nu


i=1
Xui


(p = 1) (9)


Here φ̂0 = U2/U1 with U1 =
∑n


u=1


∑Nu


i=1
Xui and U2 =


∑n
u=1


∑Nu


i=1
X2


ui. If the
total number of claims


∑n
u=1


Nu is moderately large, then with high probability
U1 ≈ E[U1] and U2 ≈ E[U2] = φE[U1]. Hence φ̂0 is a good estimate for p = 1,
even if every tariff cell has at most one claim. That is not true for p > 1, as
is shown by the simulation result Case 4 of the next section. If we let all Xui


= 1 in addition to p = 1, we get Var[Nu] = φE[Nu] as in section 1.1. Then φ̂0


simplifies to 1, as it should.


4. Comparison of dispersion parameter estimates


in the Tweedie model


4.1. Remarks on estimate properties


First a few remarks on the differences between the χ2 Pearson type estimate φ̂
and our new estimate φ̂0. We consider φ̂ as written in expression (5). General-
izations are possible by subdivision of the time interval covered by the analysis
in several intervals and/or by taking individual policy periods as the summands
in (5). However, a practical consideration against that is that seasonal varia-
tions in claim frequency will enlarge the estimate undesirably. Policies will have
renewal dates scattered over the year and will often have less than yearlong time
periods that would be parts of a generalized φ̂, particularly if calendar year is
an argument. Retrieving time homogeneity from heterogeneity by operational
time might not be feasible.


We can then list these differences which argue for our new estimate.


(i) φ̂ is not defined for only one argument. In contrast φ̂0 is.


(ii) φ̂ uses only the aggregated data Su, leading to unnecessarily large variance
of φ̂. This is analogous to using only the between-cell variation and throw
away the within-cell variation in ANOVA (analysis of variance). In contrast
φ̂0 uses also the sums of squares X2


ui.
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On the other hand, for p > 1 the following point argues for the Pearson esti-
mate φ̂.


(iii) φ̂ works well when there are so many tariff cells that each one has only a
few claims, while φ̂0 does not for p > 1. With more than, say, 15 arguments,
there will typically be at most one claim in a tariff cell. The almost sure
convergence when eu → ∞ as time → ∞ described above does not apply
to this situation.


But then again, when each tariff cell has at most one claim and at most one
(partial) policy period, seasonal variations will enlarge φ̂ undesirably.


4.2. Simulation results


Secondly the results of a simulation study. We generated independent Poisson
claim numbers Nu and independent Γ-distributed claims Xui with mean αθu
and variance αθ2u. For all cases we set α = 1. Multiplicative claim frequencies
and mean claims obeying the Tweedie assumptions were used. For each of six
cases, we give here results of five simulated samples and subsequent observa-
tions of the two estimates (pairwise on the same sample). GLM Tweedie log
link equation solutions were made for each sample, since the Pearson estimate
requires this, by expression (5). The observations are given as percentages of the
true value. The latter is unimportant in itself in this context. The five observa-
tion pairs give interesting information on the pros and cons of the two estimates.


p = 1 (ODP)
Case 1. n = 4 826 809.


∑n
u=1


Nu ≈ 2 400 000. Typical Nu = 1, if > 0.


φ̂ and φ̂0 have mean φ and almost the same small variance.


Case 2. n = 216.
∑n


u=1
Nu ≈ 20 000. Typical Nu ≈ 100.


100φ̂/φ 103 106 103 97 105
100φ̂0/φ 99 100 100 100 100


Case 3. n = 27.
∑n


u=1
Nu ≈ 8 000. Typical Nu ≈ 300.


100φ̂/φ 145 138 205 182 113
100φ̂0/φ 100 101 100 101 100


p = 1.5 (Tweedie)
Case 4. n = 4 826 809.


∑n
u=1


Nu ≈ 550 000. Typical Nu = 1, if > 0.


100φ̂/φ 100 100 100 101 100
100φ̂0/φ 52 51 53 51 51
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Case 5. n = 216.
∑n


u=1Nu ≈ 74 000. Typical Nu ≈ 350.


100φ̂/φ 84 93 98 114 114
100φ̂0/φ 100 100 100 99 100


Case 6. n = 27.
∑n


u=1
Nu ≈ 8 000. Typical Nu ≈ 300.


100φ̂/φ 120 132 112 126 36
100φ̂0/φ 102 101 102 101 97
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Bichsel-Straub’s pseudo-estimator and credibility weighted mean


in Rapp multiclass


Stig Rosenlund


2011-05


1. Optimality of estimators and Rapp multiclass


Section 4.2 in Ohlsson and Johansson (2010) deals with credibility estima-
tors in multiplicative models. The variance component estimate σ̂2 of σ2 for
within-group variation is given in formula (4.26) and the estimate τ̂2 of τ2


for between-groups variation in formula (4.27). We have E[σ̂2] = σ2 and
E[τ̂2] = τ2 ≥ 0.


A base constant μ, initially considered known, appears in the model. In
practice it is replaced with an estimate μ̂, just as the relativity products γi
are replaced with estimates as stated at the end of these authors’ section
4.2.1.


These estimates can be replaced by optimal estimators in theory. In prac-
tice σ̂2 cannot be improved in a distribution-free model. But μ̂, if given as
a weighted average with exposure weights (like total claim frequency, mean
claim or risk premium), and τ̂2 can.


The multiclass analysis part of the programming language Rapp im-
plements section 4.2 in Ohlsson and Johansson (2010) for claim frequency,
mean claim and risk premium. For the latter the marginal-totals or the
Tweedie equations can be used. For mean claim these authors’ recommended
method, namely the Γ-GLM application to claim severities, is implemented.
The default exponent p is then 2.


Rapp has options to use either τ̂2 or an improved estimate, and also to use
either μ̂ = base factor or an improved estimate. We will give a background
and describe the improved estimates.


In addition Rapp implements our own (quite different) multiclass method,
which however will not be treated in the sequel.


2. Overview of optimal estimators


De Vylder (1996) III.Ch.3 gives a discussion for the ordinary Bühlmann-
Straub model without a multiplicative model. The discussion is transferable
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to the Ohlsson and Johansson (2010) application of credibility to multiplica-
tive models. If the Ohlsson and Johansson (2010), section 4.2, model is spe-
cialized to one argument with one class, i.e. R = (# of i) = 1, the ordinary
Bühlmann-Straub model is retrieved.


De Vylder (1996) gives a credibility-weighted statistic XZW which in the
Bühlmann-Straub model is a better estimate of μ than μ̂, unless they are
equal as is the case for equal weights. A statistic Apseu is the optimal esti-
mate of τ2 under the conditions of no contract excesses. See De Vylder (1996)
III.Ch.3, section 3.4.7, where an unpublished work by Bichsel and Straub is
cited and credited with Apseu. Here excess = kurtosis = Fisher’s coefficient
γ2 involving the 2:nd and 4:th central moments. Namely


e(X) =
E[(X − μ)4]
E[(X − μ)2]2


− 3 for a random variable X with E[X] = μ.


It is safe to say that Apseu would almost always be better than τ̂2.


3. Details of optimal estimators


In Rapp Proc Taran multiclass the options Bsaps and Bsxzw are available.
Here Bsaps implements Apseu and Bsxzw implements XZW. Before explain-
ing how we will give a translation of the notation of De Vylder (1996) to
Ohlsson and Johansson (2010) and express Apseu and XZW in the notation
of the latter. An alternative notation for XZW is given to clarify its meaning
in the Ohlsson and Johansson (2010) context.


De Vylder Ohlsson and Johansson


μ μ
σ2 σ2


a τ2


XWW Ỹ ...


XZW


J∑
j=1


zj
z1 + · · · + zJ


Ỹ .j. = ỸWZW


S2 σ̂2


A τ̂2


Apseu
1


J − 1


J∑
j=1


zj
(
Ỹ .j. − ỸWZW


)2


Here Apseu is a pseudo-estimator in the sense that the defining sum con-
tains a = τ2, which Apseu shall estimate. This means that Apseu has to be
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computed iteratively. Take a starting estimate for a, preferably the classical
estimator τ̂2. Compute Apseu in the first iteration as the sum above with
this estimate for a. Put this value as a in the sum and compute a new Apseu


in the second iteration. And so on. The algorithm converges fast.


Optimality of Apseu assuming no contract excesses


Optimality means that Apseu has the smallest variance of possible estima-
tors. See De Vylder (1996) III.Ch.3, section 3.4.7, Theorem 18.


In sections 3.3.7 and 3.4.5 De Vylder (1996) also has clarifying discussions
of the bias of the estimators Apseu and A = τ̂2 related to the non-negativity
of a = τ2 and the fact that the estimators can furnish negative values.


Optimality of XZW


See De Vylder (1996) III.Ch.3, section 3.4.4, Theorem 15.


4. Rapp implementation


Option Bsaps for variance pseudo-estimator in Rapp


Apseu is used in formula (4.24) of Ohlsson and Johansson (2010) for Ûj . For
practical purposes this can be deemed to be an improvement for all cases.


Option Bsxzw for credibility weighted mean in Rapp


ỸWZW is used in formula (4.24) of Ohlsson and Johansson (2010) for Ûj . This


is done by multiplying z̃j
Ỹ .j.
μ with Ỹ .../ỸWZW, where an estimate μ̂ of μ is


used.
For one argument with one class, R = (# of i) = 1, it is immediate that


this is an improvement. With γ1 = 1 the estimate of μ used in (4.24) of


Ohlsson and Johansson (2010) without option Bsxzw is μ̂ = Ỹ ..., so that
(4.24) is


Ûj = z̃j
Ỹ .j.


Ỹ ...


+ (1− z̃j) (1)


With option Bsxzw is used instead


Ũj = z̃j
Ỹ .j.


ỸWZW


+ (1− z̃j) (2)


and this is the optimal expression (though with zj replaced by its optimal
estimate) given in De Vylder (1996) III.Ch.3, section 3.4.4, Theorem 16.
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In other cases there might be drawbacks due to the properties of the
multiplicative solutions intertwined with credibility, e.g. a lack of robustness.


5. Comparison of estimates


We use the bus case of section 4.5 in Ohlsson and Johansson (2010). Here
GLM Poisson log link is combined with credibility. KUNDNR 145 was ex-
cluded. We include also the pseudo-estimator of τ2 that was implemented in
Rapp prior to April 2011. It was obtained from an iterative solution similar
to the one for Apseu, but with a direct term in σ̂2 whose coefficient was


set to depend on the coefficients for
(
Ỹ .j. − ỸWZW


)2
in a certain way. This


estimator has been removed from Rapp, since Apseu is better. It is of some
interest to see just how wrong it was. We denote it by τ̃2.


We compare the estimates for a = τ2. The estimates for σ2 also differ when
the backfitting algorithm of section 4.2.2 in Ohlsson and Johansson (2010) is
used, with iterations between credibility and ordinary GLM. These estimates
are not so interesting.


In Table 1 we state the results when the backfitting algorithm was not
used, and in Table 2 when it was used with a maximum of five iterations.
That was also the actual number of iterations.


Table 1. no backfitting


τ̂ /μ̂ τ̃ /μ̂ A
1
2
pseu/μ̂


0.5407 0.5164 0.5172


Table 2. Five iterations


Bsxzw τ̂/μ̂ τ̃ /μ̂ A
1
2
pseu/μ̂


Not used 0.5996 0.5363 0.5380
Used 0.7723 0.6253 0.6566
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POISSON LIMIT OF SUMS OF INDEPENDENT


NON-NEGATIVE INTEGER RANDOM VARIABLES


By Stig Rosenlund
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We deduce the limit distribution for sums of independent non-
negative integer random variables, such that the sequence of sum ex-
pectations converges to a positive number and such that in the limit
each summand is infinitesimally small and at most 1, in a certain
sense. This limit distribution is Poisson. The well-known rare events
theorem is a special case. Our results are compared to the Poisson
process limit result of Grigelionis (1963). Applications to mixed Pois-
son distributions and to renewal processes are given. Implications for
insurance claim number distributions are stated. ∗


1. Introduction. We consider here a triangular array in the sense of
Feller (1971), VI.3, Definition 2, i.e. a double sequence of random variables
NKi (i = 1, . . . ,K; K = 1, 2, . . .) such that the NK1, . . . , NKK of the Kth
row are independent. The variables need not be defined on the same proba-
bility space for different K. When we write P, E and Var it is implicit that
these functionals are defined on the probability space where NKi is defined.
This is unambiguous since in any formula below only one K is present. We
assume NKi to be non-negative and integer-valued. We study weak conver-
gence of the row sums to the Poisson distribution as K → ∞.


Here NKi can be thought of as counting some kind of events, e.g. claim
occurrences on an insurance policy, in a certain time interval, whose length
will be fixed initially. Later we will discuss increasing time lengths with
special reference to insurance claims.


In section 5 implications are stated for applications, especially insurance
claim number distributions. The point is – for many sources, each contribut-
ing little to the total – that the mixed Poisson distribution (customarily with
a gamma claim frequency giving a negative binomial claim number) is an
unnecessary complication and that the simple Poisson distribution suffices.


In Theorem 2.1 of section 2 we give a rather short self-contained proof of
the limiting Poisson distribution of a sum with expectation converging to a
positive number, under two simple conditions implying infinitesimally small


AMS 2000 subject classifications: Primary 60F05; secondary 91B30
Keywords and phrases: GLM log link, Mixed Poisson, Poisson limit, Rare events theo-


rem, Renewal process.
∗These results are to a large extent known already, so the paper cannot be published.
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independent summands each being, in the limit, at most 1. Theorem 2.1 is a
generalization of the ’rare events’ result for independent 0/1 Bernouilli vari-
ables with possibly unequal probabilities for the value 1. See the comment
after the proof. Koopman (1950) gave necessary and sufficient conditions
for the result. The subject is classical and the ’rare events’ result has been
generalized in different directions. See e.g. Meyer (1973), where further ref-
erences can be found. The present result, where the variables can take any
non-negative values, is new. It is simple, strong and useful. In Theorem 3.1
of section 3.2 the two conditions are verified to hold for mixed Poisson dis-
tributions of NKi under boundedness conditions. A result with the weaker
condition that variance/mean converges to 1, using the properties of mixed
Poisson, is also given as Theorem 3.2 of section 3.3. In Theorem 4.1 we use
Theorem 2.1 to give conditions for superpositions of renewal point processes
to give a Poisson distribution in the limit for a fixed time interval.


Grigelionis (1963) showed weak convergence of superpositions of counting
processes to a Poisson process under various conditions, which imply that
in the limit each process contributes infinitesimally little to the total and
at most one point, if at all, in any finite time interval. The scopes of these
results are broader than ours in that we do not consider a whole process.
On the other hand we can make do with weaker conditions. Take processes
over a fixed time interval, e.g. a year, where our conditions and results hold,
but where the bulk (e.g. 80 percent) of the total number of points occur
alternatingly in the first half and the second half of the interval as the
number K of processes increases. Then the finite-dimensional distributions
of the sum process for collections of time points do not all converge.


2. Poisson limit of a sum of small summands. Define a triangular
array of independent variables, for example claim numbers on policies,


NKi = non-negative integer-valued random variable for i ∈ {1, . . . ,K}


The sum of these and its mean, assumed to converge, are


NK =
K
∑


i=1


NKi


E[NK ] → λ (K → ∞) for a fixed number λ > 0.


Theorem 2.1. Assume that uniformly in i ∈ {1, . . . ,K}


(i) lim
K→∞


P (NKi = 0) = 1


(ii) lim
K→∞


P (NKi = 1)/E[NKi] = 1 (define the ratio to be 1 if E[NKi] = 0)


Then the distribution of NK → Poisson(λ) as K → ∞.







POISSON LIMIT OF SUMS 3


Proof. We will show that for s > 0 the Laplace transform E[e−sNK ] →
exp{λ(e−s − 1)}. See Feller (1971), XIII.1 Theorem 2, for the continuity


theorem for Laplace transforms. Let ǫ
(j)
Ki be numbers that → 0 and δ


(j)
Ki be


numbers that → 1, uniformly in i. The assumptions


P (NKi = 0) = δ
(1)
Ki and P (NKi = 1) = E[NKi]δ


(2)
Ki


imply


E[NKi] = P (NKi = 1)/δ
(2)
Ki ≤ P (NKi ≥ 1)/δ


(2)
Ki


= (1− δ
(1)
Ki)/δ


(2)
Ki = ǫ


(1)
Ki


P (NKi ≥ 2) ≤
∞
∑


r=2


rP (NKi = r) = E[NKi]− P (NKi = 1)


= E[NKi](1− δ
(2)
Ki) = E[NKi]ǫ


(2)
Ki


P (NKi = 0) = 1− P (NKi = 1)− P (NKi ≥ 2)


= 1− E[NKi]δ
(2)
Ki − E[NKi]ǫ


(3)
Ki = 1− E[NKi]δ


(3)
Ki


and thus


E[e−sNKi ] = P (NKi = 0) + P (NKi = 1)e−s +
∞
∑


r=2


e−srP (NKi = r)


= 1− E[NKi]δ
(3)
Ki + E[NKi]δ


(2)
Kie


−s + E[NKi]ǫ
(4)
Ki → 1


uniformly in i


which means


logE[e−sNKi ] = E[NKi]δ
(4)
Ki


(


−δ
(3)
Ki + δ


(2)
Kie


−s + ǫ
(4)
Ki


)


since log(1 + x)/x → 1 as x → 0


so for the sum


logE[e−sNK ] = logE


[


exp{−s
K
∑


i=1


NKi}


]


= logE


[


K
∏


i=1


e−sNKi


]


= log
K
∏


i=1


E[e−sNKi ] =
K
∑


i=1


logE[e−sNKi ]


=
K
∑


i=1


E[NKi]δ
(4)
Ki


(


−δ
(3)
Ki + δ


(2)
Kie


−s + ǫ
(4)
Ki


)


→ λ(e−s − 1)
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The uniform convergence in (i) and (ii) is crucial. As a counter-example
for (i), consider the case P (NKK = 1) = 1 − P (NKK = 0) = 0.5 and
P (NKi = 1) = 1−P (NKi = 0) = 0.5/(K−1) for i < K, so that E[NK ] = 1.
Then P (NKi = 0) → 1 for any i, but Poisson convergence does not hold.


For the special case P (NKi ≥ 2) = 0, where (ii) holds automatically,
Theorem 2.1 is the ’rare events’ Poisson convergence result for 0/1 variables.


In the following we will simplify the setting by letting the sum have a
fixed expectation E[NK ] = λ. All results below will hold for E[NK ] → λ
with obvious modifications, such as replacing λ with λ(1+ǫK) where ǫK → 0.


3. Independent mixed Poisson variables. Conditional on indepen-
dent variables ξ1, . . . , ξK with E[ξi] = µi and Var[ξi] = σ2


i , let NKi be
independent Poisson variables with E[NKi] = hKξi. Let NK be defined as
before and let its mean be fixed to λ. We have


λ = E[NK ] = E


[


K
∑


i=1


NKi


]


= hK


K
∑


i=1


µi


(3.1) hK = λ


(


K
∑


i=1


µi


)−1


We compute the variance of NK and hence its dispersion parameter. Then
we give two derivations of the Poisson limit as K → ∞. First we derive The-
orem 3.1 using Theorem 2.1 under two boundedness conditions. Then we
give Theorem 3.2, using the special properties of the mixed Poisson distri-
bution under a weaker condition. Theorem 3.1 thus follows from Theorem
3.2, but is justified since its proof illustrates the use of Theorem 2.1.


3.1. Dispersion parameter. Define the dispersion parameter φK as the
ratio Var[NK ]/E[NK ]. Its excess over 1 measures the degree of overdispersion
compared to the pure Poisson distribution, which has φK = 1. It holds


(3.2) Var[NKi] = E[Var[NKi|ξi]] + Var[E[NKi|ξi]]


= E[ξihK ] + Var[ξihK ] = µihK + σ2
i h


2
K


(3.3) φK =
Var[NK ]


E[NK ]
=


1


λ


K
∑


i=1


Var[NKi] =
1


λ


K
∑


i=1


(µihK + σ2
i h


2
K)
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= 1 +
h2K
λ


K
∑


i=1


σ2
i = 1 + λ


(


K
∑


i=1


σ2
i


)(


K
∑


i=1


µi


)−2


Example. Take K = 100,000 insurance policies in one year with claim
frequency (mean claim number per policy and year) 0.07, so that λ = 7,000.
Take all µi = 10 and all σ2


i = 50. Then φK is close to 1, although σ2
i is large.


φK = 1 + 7000 × 100000 × 50/(100000 × 10)2 = 1.035


3.2. Poisson limit result using Theorem 2.1. We shall prove that the con-
ditions for Theorem 2.1 are true if the ξis’ means are bounded away from 0
and∞ and their variances are bounded away from∞. These assumptions are


3-A1. 0 < a1 ≤ µi ≤ a2 < ∞


3-A2. 0 ≤ b1 ≤ σ2
i ≤ b2 < ∞


and imply


(3.4)
λ


Ka2
≤ hK ≤


λ


Ka1


For the dispersion parameter 3-A1 and 3-A2 imply


(3.5) 1 +
λb1
Ka22


≤ φK ≤ 1 +
λb2
Ka21


where the inequalities are equalities if all µi = a1 = a2 and all σ2
i = b1 = b2.


Theorem 3.1. If 3-A1 and 3-A2 hold, the distribution of NK → Poisson(λ)
as K → ∞.


Proof. Condition (i) that P (NKi = 0) → 1 uniformly in i is verified by


1 > P (NKi = 0) = 1− P (NKi ≥ 1) ≥ 1− E[NKi] = 1− hKµi ≥ 1−
λa2
Ka1


For condition (ii) that P (NKi = 1)/E[NKi] → 1 uniformly in i, observe that
e−x ≥ 1− x. Thus


1 ≥
P (NKi = 1)


E[NKi]
=


E[hKξie
−hKξi ]


hKµi


≥ µ−1
i E[ξi(1− hKξi)]


= µ−1
i (E[ξi]− hKE[ξ2i ]) = µ−1


i (µi − hK [µ2
i + σ2


i ])


= 1− hK


(


µi +
σ2
i


µi


)


≥ 1−
λ


Ka1


(


a2 +
b2
a1


)
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3.3. Poisson limit result using mixed Poisson properties. The conditions
for Theorem 3.1 are unnecessarily retrictive. Take the case µ1 = λ, σ2


1 = 0
and µi = 0 for i > 1. For ξi that are not stochastic NKi will be Poisson, so
those µi can be large without decreasing the degree of Poisson approxima-
tion.


We derive the Poisson limit under the weaker condition that the dispersion
parameter converges to 1. By (3.5) the conditions 3-A1 and 3-A2 together
imply this condition, so Theorem 3.2 is stronger than Theorem 3.1.


Theorem 3.2. If φK in (3.3) → 1 as K → ∞, the distribution of NK →
Poisson(λ) as K → ∞.


Proof. Set ηK = hK


K
∑


i=1


ξi = the sum of all random Poisson means. Then


NK |ηK ∼ Poisson(ηK). Now


E[ηK ] = hK


K
∑


i=1


µi = λ and Var[ηK ] = h2K


K
∑


i=1


σ2
i = λ(φK−1) → 0 ⇒ ηK


p
→ λ


Hence


E[e−sNK ] = E[E[e−sNK |ηK ]] = E[exp{ηK(e−s−1)}] → exp{λ(e−s−1)}


3.4. Insurance claim number distribution for long time length. Consider
the insurance claim number application. Assuming the uniform boundedness
conditions 3-A1 and 3-A2, φK−1 is essentially proportional to the expected
number of claims per policy, i.e. λ/K, as is seen from (3.5). Consider a time
interval (0, t) and let λ = νt, where t increases while K is kept fixed. Here
we drop the condition that λ is fixed. Let us preserve the construction of
variables ξi with fixed means and variances and assume that exposure of
every policy increases linearly with time. E. g. a customer insured for half the
year will continue so. Then hK = νt/


∑K
i=1 µi where the µi do not change.


If b1 > 0 then limt→∞ φK = ∞, so that the distribution of NK deviates
increasingly from Poisson. The more the expected number of claims per
policy increases, the more violated both conditions (i) and (ii) for Theorem
2.1 will be.


How should the mixed Poisson model be applied to forecast the future
when statistics collected in a long time period are used?


In e. g. automobile insurance consumers mostly change insurer within
a couple of years. The number K in our model is the number of distinct
customers, which thus would tend to increase approximately proportionally
to t, even if the total portfolio at any given time point stays the same.
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On the other hand, consider a faithful customer. We can model its claims
to follow mixed Poisson distributions based on a sequence of random intensi-
ties for time periods (years) ∈ {1, 2, . . .}, with non-negative autocorrelation.
Or we can assume a single random intensity. Either way, whether a faithful
customer included in the statistics increases or decreases the Poisson close-
ness of the claim number distribution, for practical purposes, depends on
whether the customer will or will not be part of the portfolio in the future
that we forecast. A single random intensity for a customer that stays in the
future would obviously best be considered to be a non-stochastic unknown
claim frequency, making its claims follow a pure Poisson distribution. In
our model we can set its σ2


i = 0 and hence it contributes 0 to (φK − 1) in
Theorem 3.2. Bonus/malus calculation for an individual customer is another
matter and requires the mixed Poisson model.


The worst case for the Poisson approximation is a customer that was
faithful in the past but will not be part of the future portfolio. For instance,
if the claim statistics for one insurer is used to forecast the future or set the
prices for another insurer.


4. Superpositions of renewal processes. Feller (1971), XI.4 Exam-
ple (a), treats the waiting time for the first renewal following epoch 0, in a
sum of many independent renewal processes, and shows that it is approxi-
mately exponentially distributed. There are also results showing asymptot-
ically exponential distributions for waiting times between points in renewal
processes under thinning mechanisms, such that the expected number of
points in any finite interval tends to zero. See Rosenlund and R̊ade (1974),
Theorems 1 and 2.


We will now use Theorem 2.1 to show a Poisson approximation for the
number of points in a finite time interval.


Define random variables X0 with distribution function G and X with
distribution function F . For process i ∈ {1, . . . ,K}, let the waiting time to
the first point be distributed as X0/(hKµi) and the following waiting times
as X/(hKµi), where all waiting times are independent. That is, the points
come inK independent delayed renewal processes as defined in Feller (1971),
VI.6 Definition 3. We shall let hk → 0 and K → ∞, i.e. we add successively
more processes each of which has successively fewer points per time interval.


If we let G be the limiting residual waiting time distribution function for
a renewal process with inter-arrival distribution function F


G(x) = E[X]−1
∫ x


0
[1− F (τ)] dτ


the expected number of points in the time interval (0, t) will be linear in t for
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every i, if F is non-arithmetic. See Feller (1971), XI.4. But we will consider
arbitrary G, such as G = F .


Let NKi and their sum NK be defined as before and pertain to the number
of points in the interval [0, t] for some t > 0. We assume the following for
our limit result, meaning that we could as well write (0, t].


4-A1. F (0) = 0


4-A2. G(x) ∼ c xp as x ↓ 0 for some c > 0 and p > 0


4-A3. µi ≤ a2 < ∞


4-A4.
∞
∑


i=1


µp
i = ∞


Theorem 4.1. Assume 4-A1, 4-A2, 4-A3 and 4-A4. Set hK if possible
so that E[NK ] = λ, with λ fixed, for a time interval [0, t]. It is possible for
large enough K. Then as K → ∞ the distribution of NK → Poisson(λ) and


hK ∼
1


t
(λ/c)


1


p


(


K
∑


i=1


µp
i


)


−1


p


Proof. Let ⋆ denote convolution. We denote by F r⋆ the r-fold convolu-
tion of F , i.e. the distribution function of r independent random variables
distributed as X. By G⋆F (x) we mean H(x) where H = G⋆F , etc. By
Feller (1971), XI.4 (4.2), and from the definitions


E[NKi] =
∞
∑


r=0


G⋆F r⋆(hKµit)


P (NKi > r) = G⋆F r⋆(hKµit)


P (NKi = r) = P (NKi > r−1)− P (NKi > r)


= G⋆F (r−1)⋆(hKµit)−G⋆F r⋆(hKµit), r ≥ 1


P (NKi = 0) = 1−G(hKµit)


P (NKi = 1) = G(hKµit)−G⋆F (hKµit)


For K large enough we can set hK so that E[NK ] = λ for any λ > 0.


Namely, VK(h) = E[NK ] =
K
∑


i=1


∞
∑


r=0


G⋆F r⋆(hµit) is a non-decreasing and


right-continuous function of h with VK(0) = 0 and VK(∞) = ∞. If there
exists h such that VK(h) = λ, then set hK = h. If not, i.e. if VK(·) jumps
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from below to above λ at some point h, which then must be positive, then
set hK = 0.9h. Hence hK is well defined and E[NK ] ≤ λ. We shall show
that hK → 0. Then for large enough K the continuity of G⋆F r⋆ at 0 implies
E[NK ] = λ.


Assumption 4-A2 implies that G(x) ≥ 0.9c xp for x < x0 where x0 > 0,
hence G(x) ≥ 0.9c[min(x, x0)]


p. We proceed by contradiction. Assume that
hK > h > 0 for infinitely many K. Now for those K we have E[NKi] ≥
G(hKµit) ≥ G(hµit) ≥ 0.9c[min(hµit, x0)]


p = 0.9c(ht)p[min(µi,
x0
ht


)]p. With


x1 =
x0
ht > 0 we have for those K


λ ≥
K
∑


i=1


E[NKi] ≥ 0.9c(ht)p








∑


{i:1≤i≤K, µi≤x1}


µp
i +


∑


{i:1≤i≤K, µi>x1}


xp1








Either µi > x1 for infinitely many i, in which case the right sum → ∞ for
the K in question. Or there is K0 such that µi ≤ x1 for i ≥ K0, in which case
the left sum → ∞ by assumption 4-A4. Hence by contradiction hK → 0.


By 4-A3 we have P (NKi = 0) ≥ 1 −G(hKa2t) → 1, hence condition (i)
for Theorem 2.1 that P (NKi = 0) → 1 uniformly in i is satisfied.


Now we have to assert condition (ii) that P (NKi = 1)/E[NKi] → 1 uni-
formly in i. It holds {X + Y ≤ x} ⊂ {X ≤ x} ∩ {Y ≤ x} for non-negative
random variables, so if they are independent we have P (X + Y ≤ x) ≤
P (X ≤ x)P (Y ≤ x). Thus G⋆F (x) ≤ G(x)F (x) and F r⋆(x) ≤ F (x)r, for
example.


Let K be so large that F (hKa2t) < 1. Using 4-A1 and 4-A3 we obtain


G(hKµit) ≤ E[NKi] ≤ G(hKµit)
∞
∑


r=0


F (hKµit)
r =


G(hKµit)


1− F (hKµit)


1 ≥
P (NKi = 1)


E[NKi]
≥ [G(hKµit)−G(hKµit)F (hKµit)]


(


G(hKµit)


1− F (hKµit)


)−1


= [1− F (hKµit)]
2 ≥ [1− F (hKa2t)]


2 → 1


which proves that condition (ii) holds.


As before, let δ
(j)
Ki be numbers that → 1, uniformly in i. By 4-A2 we get


the following, from which the asymptotic expression for hK is deduced.
K
∑


i=1


E[NKi]=
K
∑


i=1


G(hKµit)δ
(1)
Ki =


K
∑


i=1


c (hKµit)
p δ


(2)
Ki=c hpKtp


K
∑


i=1


µp
i δ


(2)
Ki =λ


If in 4-A3 we make the stronger assumption that 0 < a1 ≤ µi ≤ a2 < ∞,
as in 3-A1, then 4-A4 is implied.
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With F non-arithmetic and G the limiting residual waiting time distri-
bution we have c = E[X]−1 and p = 1. Then E[NKi] = hKµiE[X]−1t.
The asymptotic expression for hK in Theorem 4.1 will then be exact. If we
scale X so that E[X] = t, then the numbers hK and µi will have the same
meaning for E[NKi] as in section 3.


5. Conclusions for applications. Much actuarial literature concerns
generalizations of the simple Poisson model for claim number distributions.
It has been thought that independent random Poisson intensities generate
the so called Overdispersed Poisson model, where φ = Var[N ]/E[N ] > 1
for a claim number N and φ is the same number for all claim numbers
regardless of time length and background variables. See Renshaw (1994).
This misconception was laid to rest in Rosenlund (2010).


A more general notion is that the mixed Poisson model has to be used
in order to allow for overdispersion. See e.g. Ohlsson and Johansson (2010),
Remark 2.2 and section 3.4. However, our results here show that this is
an unnecessary complication for an insurance line with moderately many
policies and a small claim frequency. The simple Poisson model will suffice
here. Estimating overdispersion in the mixed Poisson model, assuming in-
dependent policies and using Pearson’s χ2, may be misleading. What will
be estimated will, for these insurance lines, likely be a measure of fluctua-
tions affecting many policies in the same way. It can be seasonal variations,
in which case the variability of the claim numbers between calendar years
tends to be overestimated. And/or it can be a measure of other macroscopic
influences such as business cycles and crime waves, which should be analyzed
by other methods.


These conclusions can be applied to other models for occurrences of
events, where many sources contribute to the total and each source con-
tributes little and almost at most one event, in the sense of this paper. For
instance customer arrivals at queueing systems such as telephone exchanges.
Letting each source have a random Poisson intensity, independently of other
sources, will still result in an approximative Poisson distribution for the to-
tal. Either mixed Poisson with a mixing variable common to all sources,
or else pure Poisson – possibly after conditioning with respect to a mixing
variable – should be used.


Finally, consider GLM log link analysis of claim numbers for an insurance
multiplicative tariff. See Ohlsson and Johansson (2010), section 2.3. With
many tariff cells most will contain at most one policy, to which our results
are not applicable. But the GLM Poisson log link claim frequency parameter
point estimates are computed only from the marginal numbers of claims in
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the different arguments. They are the same as the marginal totals method
estimates, which depend only on claim statistics summed to the marginals.
So in order to justify the pure Poisson model, it suffices that the marginals
contain claims from sufficiently many independent policies, of which each one
contributes little to the distribution of the marginal number of claims and
has at most one claim in the sense of Theorem 2.1 . It is not neccessary that
all marginals satisfy this condition. A marginal with only a few policies will
have a small effect on the parameter estimates of those with many policies.
In a typical mass consumer application there will be many arguments and
tariff cells, but most marginals will have many policies.
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Parametrization of the generalized Pareto distribution


2013-05-05, Stig Rosenlund


For x ≥ 0 we have


Form 1: F (x)= 1−
(


1− γ
x


σ


)
1
γ
, (σ > 0, γ ≤ 0) (1)


Form 2: F (x)= 1−


(


α


α+ x


)δ


, (α > 0, δ > 0) (2)


Form 3: F (x)= 1− (1 + βx)
−
1
φ, (β > 0, φ > 0) (3)


For γ = 0 we interpret F as the exponential distribution:
F (x) = 1− e−x/σ.


Form 1 is according to Nader Tajvidi (1996). Form 2 is according
to lectures notes at SU by Björn Johansson. Form 3 is according


to Stig Rosenlund (2000).


For γ > 0 the following relations hold.


A. Parameters by Forms 2 and 3 in terms of those of Form 1


α = −
σ
γ β = −


γ
σ


δ = −
1
γ φ = −γ


B. Parameters by Forms 1 and 3 in terms of those of Form 2


σ = α
δ


β = 1
α


γ = −
1
δ


φ = 1
δ







C. Parameters by Forms 1 and 2 in terms of those of Form 3


σ =
φ
β


α = 1
β


γ = −φ δ = 1
φ


2
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