	Visibility
	[image: image8.png]@
“& Loads

	Sample Software Architecture Document (version 0.1)
	

Sample Software Architecture Document
Visibility Application
White Data Systems
SAD Revision History
	Date
	Version
	Description
	Author

	13/11/2018
	1.0
	Initial Version
	Raghunathan, Ameer Thahir, Anil Kumar, Annadurai, Siva Sankar

	14/11/2018
	1.1
	Review Fixes Updated
	Gokulan Jayaram

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents
1.
Introduction
4
1.1
Purpose
4
1.2
Scope
5
1.3
Definitions, Acronyms and Abbreviations
5
1.4
References
5
1.5
Overview
5
2.
Architectural Representation
6
3.
Architectural Goals and Constraints
6
3.1
Technical Platform
7
3.2
Transaction
7
3.3
Security
7
3.4
Persistence
8
3.5
Reliability/Availability (failover)
8
3.6
Performance
8
3.7
Workflow Engine
8
 3.8
ORM
8

4.
Use-Case View
9
4.1
High Level Overview
9
4.2
Use-Case Realizations
11
5.
Logical View
11
5.1
Overview
11
5.2
Architecturally Significant Design Packages
12
6.
Process View
13
7.
Deployment View
13
8.
Implementation View
14
8.1
Overview
14
8.2
Layers
15
9.
Data View
15
Will be updated with ER diagram.
15
10.
Size and Performance
15
11.
Quality
16

1. Introduction

This document provides a comprehensive architectural overview of the system, using a number of different architectural views to depict different aspects of the system. It is intended to capture and convey the significant architectural decisions which have been made on the system.

	Architectural activities
	Software Architecture Document

	Step 1 - Identify and prioritize significant Use-Cases
	Section 4

	Step 2 - Define the candidate architecture
	Section 3, 5.1, 10, 11

	Step 3 - Define the initial Deployment Model
	Section 7

	Step 4 - Identify key abstractions
	Section 9

	Step 5 - Create an Analysis Model
	Section 5

	Step 6 - Create the Design Model
	Section 5

	Step 7 - Document concurrency mechanisms
	Section 6, 7

	Step 8 - Create the Implementation Model
	Section 8

1.1 Purpose

The various aspects of the systems are explained in different views based on the audience. The views are as follows

· Logical view

· Process view

· Implementation view

· Deployment view

· use-case view

In order to depict the software as accurately as possible, the structure of this document is based on the “4+1” model view of architecture [KRU41].

[image: image1.png]Logical Implementation
View View

Use-Case
View

Process Deployment
View View

The “4+1” View Model allows various stakeholders to find what they need in the software architecture.
1.2 Scope

The Application is to be developed using JAVA(1.8). Spring Boot framework is used which provides microservice implementation. Optical Character reorganization(OCR) is implemented using Python. Camaunda workflow is a light-weight workflow engine which is used for implementing workflow. Keycloak is the authentication server that is to be used for authenticating the user and implement SSO.

1.3 Definitions, Acronyms and Abbreviations

RUP: Rational Unified Process

UML: Unified Modeling Language

SAD: Software Architecture Document

JWT: JSON Web Token

OCR: Optical Character reorganization

1.4 References

[KRU41]:
The “4+1” view model of software architecture, Philippe Kruchten, November 1995, http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/Pbk4p1.pdf
[RSA]:

IBM Rational Software Architect

 http://www-306.ibm.com/software/awdtools/architect/swarchitect/index.html
1.5 Overview

In order to fully document all the aspects of the architecture, the Software Architecture Document contains the following subsections.

Section 2: describes the use case of each view

Section 3: describes the architectural constraints of the system

Section 4: describes the functional requirements with a significant impact on the architecture

Section 5: describes the most important use-case realization. Will contain the Analysis Model and the Design Model

Section 6: describes design’s concurrency aspects

Section 7: describes how the system will be deployed. Will contain the Deployment Model

Section 8: describes the layers and subsystems of the application

Section 9: describes any significant persistent element. Will contain the Data Model

Section 10: describes any performance issues and constraints

Section 11: describes any aspects related to the quality of service (QoS) attributes

2. Architectural Representation

This document details the architecture using the views defined in the “4+1” model [KRU41], but using the
RUP naming convention. The views used to document the Visibility application are:

Logical view
Audience: Designers.

Area: Functional Requirements: describes the design's object model. Also describes the most important use-case realizations.

Related Artifacts: Design model

Process view
Audience: Integrators.

Area: Non-functional requirements: describes the design's concurrency and synchronization aspects.
Related Artifacts: (no specific artifact).

Implementation view
Audience: Programmers.

Area: Software components: describes the layers and subsystems of the application.

Related Artifacts: Implementation model, components

Deployment view
Audience: Deployment managers.

Area: Topology: describes the mapping of the software onto the hardware and shows the system's distributed aspects.
Related Artifacts: Deployment model.

Use Case view
Audience: all the stakeholders of the system, including the end-users.
Area: describes the set of scenarios and/or use cases that represent some significant, central functionality of the system.

Related Artifacts : Use-Case Model, Use-Case documents

Data view (optional)
Audience: Data specialists, Database administrators

Area: Persistence: describes the architecturally significant persistent elements in the data model
Related Artifacts: Data model.

3. Architectural Goals and Constraints

This section describes the software requirements and objectives that have some significant impact on the architecture

3.1 Technical Platform

The Visibility SAAS application will be deployed onto a J2EE application server (Tomcat 8). The technologies with the respective versions are mentioned below.

	Technology
	Version

	Java
	1.8

	Python
	3.6

	Tomcat
	8

	Spring Boot
	2.0.5.RELEASE

	Spring Cloud
	Finchley.SR1

	React JS
	16.4.2

	Keycloak
	4.4.0.Final

	Flask
	1.8

	Node
	8.9

	Camunda Workflow
	7.6.0

3.2 Transaction

The visibility application is transactional, leveraging the technical platform capabilities. Transaction management model of the Spring Transaction management will be used extensively.

Spring Framework provides a consistent abstraction for transaction management that delivers the following benefits:

· Provides a consistent programming model across different transaction APIs such as JTA, JDBC, Hibernate, JPA, and JDO.

· Supports declarative transaction management.

· Provides a simpler API for programmatic transaction management than a number of complex transaction APIs such as JTA.

· Integrates very well with Spring's various data access abstractions.

3.3 Security

The system must be secured, so that a customer can make online payments over and above the transactions handling.

The application must implement basic security behaviors:

· Authentication: Login using at least a user name and a password

· Authorization: according to their profile, the users menu access and actions are available in the system.

For internet access, the following requirements are mandatory

· Confidentiality: sensitive data must be encrypted (credit card payments)

· Data integrity : Data sent across the network cannot be modified by a tier

· Auditing: Every sensitive action can be logged

· Non-repudiation : gives evidence a specific action occurred

Keycloak server and Spring Security Framework will be used as a part of the authentication. Based on the authentication, authorization is provided by our own authorization server which has all the configured access and menu configurations. Spring security framework also provides the following features

1. Authentication and Authorization.

2. Supports BASIC, Digest and Form-Based Authentication.

3. Supports LDAP Authentication.

4. Supports OpenID Authentication.

5. Supports SSO (Single Sign-On) Implementation.

6. Supports Cross-Site Request Forgery (CSRF) Implementation.

7. Supports “Remember-Me” Feature through HTTP Cookies.

8. Supports Implementation of ACLs

9. Supports “Channel Security” that means automatically switching between HTTP and HTTPS.

10. Supports I18N (Internationalization).

11. Supports JAAS (Java Authentication and Authorization Service).

12. Supports Flow Authorization using Spring Web Flow Framework.

13. Supports WS-Security using Spring Web Services.

14. Supports Both XML Configuration and Annotations. Very Less or minimal XML Configuration.

3.3.1 Application Level Security
Authentication Gateway for providing secured access to Microservices. It describes how the Gateway uses JSON Web Token(JWT) for authenticating clients that want to access web service endpoints available as different Microservices.
Signature

The signature is created by signing the encoded header & encoded payload with a secret key using the algorithm specified in the header. e.g. For HMAC SHA256 algorithm, the signature will be created as below:
HMACSHA256(base64UrlEncode(header) + "." +base64UrlEncode(payload),secret)
After combining all JWT components together, a typical JWT token looks like below.

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.

eyJ1c2VySWQiOiJiMDhmODZhZi0zNWRhLTQ4ZjItOGZhYi1jZWYzOTA0NjQifQ.

-xN_h82PHVTCMA9vdoHrcZxH-x5mb11y1537t3rGzcM

The JWT token should be sent in the Authorization header using the Bearer schema for accessing a protected resource as shown below:

Authorization: Bearer <JWT token>
3.3.2 JWT Advantages
· JWT uses JSON which is less verbose than XML & therefore smaller in size making it more compact than Security Assertion Markup Language Tokens (SAML)

· It is easier to work with JWT than SAML assertions as JSON parsers are common in most programming languages but XML doesn’t have a natural document-to-object mapping.

System Architecture

The system is implemented as a bunch of Spring Boot applications communicating with each other. Apache Maven is used as a dependency & build tool for the applications. The system components are best understood from the below workflow diagram.
[image: image2.png]Gientz

TWT Security

Zuul Proxy Ribbon- GATEWAY

SPRING BOOT Micro zervices

Authorizations (Keycloak SSO)

LOGGER

L/
Apache - FLASK

Keycloak SERVER- Wildfly

Workflow - CAMUNDA

AWS - Linux [UBUNTU]

System Components & description:
· Client
It can be any Web service consumer on any platform. Simply put it can be another Webservice, UI application or Mobile platform which wants to read-write data in a secure way with an Application having various Microservices. Typically, the Client requests shown in the above workflow diagram can be REST API requests invoked from any REST client.

· Eureka Service Registry
The Eureka service registry is another Microservice that primarily handles the communication of different Microservices. As each Microservice registers itself in the Eureka server, it must be highly available since every service communicates with it to discover other services. Below is the configuration for a typical Eureka server.

pom.xml
<dependencies>

<dependency>

<groupId>org.springframework.cloud</groupId>

<artifactId>spring-cloud-starter-eureka-server</artifactId>

</dependency>
</dependencies>
application.yml
server:
 port: ${PORT:8761}
 eureka:
 instance:
 hostname: localhost
 client:
 registerWithEureka: false
 fetchRegistry: false
 serviceUrl:
 defaultZone: http://${eureka.instance.hostname}:${server.port}/eureka/
@SpringBootApplication
@EnableEurekaServer
public class EurekaServerApplication {
 public static void main(String[] args) {
 SpringApplication.run(EurekaServerApplication.class, args);
 }
}
Navigating the browser to http://localhost:8761 shows the Eureka dashboard, where one can inspect the registered Microservice instances & other status information.

· MicroServices Authorization and Scanning
These are the Microservices that host various REST endpoints namely GET/POST/PUT/DELETE for different resources of the application. Each Microservice is a Eureka client application & must register itself with the Eureka Server. Below is the configuration for MicroserviceA that is hosted on port 8082 with some REST endpoints.

pom.xml
<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
 </dependency>
</dependencies>
application.yml
server:
 port: ${PORT:8082}
spring:
 application:
 name: greeting-service
eureka:
 client:
 fetchRegistry: true
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/
@SpringBootApplication
@EnableDiscoveryClient
@RestController
@RequestMapping("/greetings")
public class MicroServiceA {
 @GetMapping
 public String fetchGreeting() {
 return "Hello from MicroServiceA";
 }
 @PostMapping
 public String addGreeting(@RequestBody String greeting) {
 // Business logic to save the greeting typically to a DB table
 return "Greeting successfully saved";
 }
 public static void main(String[] args) {
 SpringApplication.run(MicroServiceA.class, args);
 }
}
On similar lines, MicroserviceB can be configured on another port to host other REST endpoints.

Authentication Gateway
The Gateway is implemented as a Microservice using Spring Cloud Zuul Proxy & Spring Security APIs. It handles centralized authentication & routing client requests to various Microservices using the Eureka service registry. It acts as a proxy to the clients abstracting the Microservices architecture & must be highly available as it works as a single point of interaction for different operations be it user sign up, user credentials authentication, generating & verifying JWT tokens & handling the client business requests by communicating to relevant Microservice endpoints. In short, it is a Request router that doubles up as an Authentication Microservice.
Alternatively, the User management features including different authentication mechanisms (JWT, OAuth) can also be hosted as a separate ‘User Management’ Microservice. In that case, the Gateway can just work as a lightweight request router & communicate with it for user authentication via the JWT tokens.
Below is the configuration for the Authentication Gateway.
pom.xml
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zuul</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>io.jsonwebtoken</groupId>
 <artifactId>jjwt</artifactId>
 <version>0.6.0</version>
 </dependency>
 <!—- Other dependencies -- >
application.yml
server:
 port: ${PORT:8081}
eureka:
 client:
 fetchRegistry: true
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/
zuul:
 routes:
 serviceA:
 path: /greetings-api/**
 serviceId: greeting-service
 serviceB:
 path: /tasks-api/**
 serviceId: task-service
application.properties
jwt.security.key=j3H5Ld5nYmGWyULy6xwpOgfSH++NgKXnJMq20vpfd+8=t
The JWT secret key is used during a signing of the JWT token

@SpringBootApplication
@EnableDiscoveryClient
@EnableZuulProxy
public class ApiGatewayApplication{
 public static void main(String[] args) {
 SpringApplication.run(ApiGatewayApplication.class, args);
 }
 @Bean
 public BCryptPasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder(); // For encrypting user password
 }
}
3.3.3 JWT Authentication Workflow
· Client registers with Authentication Gateway by supplying the username & password through the POST URI /users/signup (which is permitted for public access without any security)

Web security configuration
@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {
 @Resource(name = "userService")
 private UserDetailsService userDetailsService;
 @Autowired
 private JwtAuthenticationEntryPoint unauthorizedHandler;
 @Autowired
 private BCryptPasswordEncoder passwordEncoder;
 @Override
 @Bean
 public AuthenticationManager authenticationManagerBean() throws Exception{
 return super.authenticationManagerBean();
 }
 @Autowired
 public void globalUserDetails(AuthenticationManagerBuilder auth) throws
 Exception {
 auth.userDetailsService(userDetailsService)
 .passwordEncoder(passwordEncoder);
 }
 @Bean
 public JwtAuthenticationFilter authenticationTokenFilterBean() throws
 Exception {
 return new JwtAuthenticationFilter();
 }
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.cors().and().csrf().disable()
 .authorizeRequests()
 .antMatchers("/token/*","/users/signup").permitAll()
 .anyRequest().authenticated()
 .and()
 .exceptionHandling().authenticationEntryPoint(unauthorizedHandler)
 .and()
 .sessionManagement()
 .sessionCreationPolicy(SessionCreationPolicy.STATELESS);
 http.addFilterBefore(authenticationTokenFilterBean(),
 UsernamePasswordAuthenticationFilter.class);
 }
}
UserController
@RestController
@RequestMapping("/users")
public class UserController {
 @Autowired
 private UserService userService;
 @PostMapping("/signup")
 public User saveUser(@RequestBody LoginUser user){
 return userService.save(user);
 }
 // Other methods
}
Here UserService is an implementation of Spring Security’s UserDetailsService & the password is encrypted using BCryptPasswordEncoder before storing it into the DB.

@Service(value = "userService")
public class UserServiceImpl implements UserDetailsService, UserService {
 @Autowired
 private UserRepository userDao;
 @Autowired
 private BCryptPasswordEncoder passwordEncoder;
 @Override
 public User save(LoginUser user) {
 User newUser = new User();
 newUser.setUsername(user.getUsername());
 newUser.setPassword(passwordEncoder.encode(user.getPassword()));
 return userDao.save(newUser);
 }
 public UserDetails loadUserByUsername(String userId) throws
 UsernameNotFoundException {
 User user = userDao.findByUsername(userId);
 if(user == null){
 throw new UsernameNotFoundException("Invalid username or password.");
 }
 return new org.springframework.security.core.userdetails.User(
 user.getUsername(), user.getPassword(), getAuthority());
 }
 // Other service methods
2.Client requests an ‘Access token’ from Authentication Gateway through the POST URI /token/generate-token by sending their credentials.

3.The Authentication Gateway verifies the credentials & upon successful authentication generates a JWT access token containing user details and permissions. This token is sent as a response to the client.

AuthenticationController
@RestController
@RequestMapping("/token")
public class AuthenticationController {
 @Autowired
 private AuthenticationManager authenticationManager;
 @Autowired
 private JwtTokenUtil jwtTokenUtil;
 @Autowired
 private UserService userService;
 @RequestMapping(value = "/generate-token", method = RequestMethod.POST)
 public ResponseEntity<?> generateToken(@RequestBody LoginUser loginUser)
 throws AuthenticationException {
 final Authentication authentication = authenticationManager.authenticate(
 new UsernamePasswordAuthenticationToken(
 loginUser.getUsername(),
 loginUser.getPassword()
)
);
 SecurityContextHolder.getContext().setAuthentication(authentication);
 final User user = userService.findOne(loginUser.getUsername());
 final String token = jwtTokenUtil.generateToken(user);
 return ResponseEntity.ok(new AuthToken(token));
 }
}
JwtTokenUtil
@Component
public class JwtTokenUtil implements Serializable {
 @Value("${jwt.security.key}")
 private String jwtKey;
 private String doGenerateToken(String subject) {
 Claims claims = Jwts.claims().setSubject(subject);
 return Jwts.builder()
 .setClaims(claims)
 .setIssuer("http://jwtdemo.com")
 .setIssuedAt(new Date(System.currentTimeMillis()))
 .setExpiration(new Date(System.currentTimeMillis() +
 ACCESS_TOKEN_VALIDITY_SECONDS*1000))
 .signWith(SignatureAlgorithm.HS256, jwtKey)
 .compact();
 }
 // Other methods
}
Here client will invoke below POST request to obtain an access token having a validity of configured time (few minutes to few hours):

http://localhost:8081/token/generate-token
Sample Request Body:

{
 "username": "admin",
 "password": "password"
}
JWT access token returned by Authentication Gateway

eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsInNjb3BlcyI6W3siYXV0aG9yaXR5IjoiUk9MRV9VU0VSIn0seyJhd
XRob3JpdHkiOiJST0xFX0FETUlOIn1dLCJpc3MiOiJodHRwOi8vand0ZGVtby5jb20iLCJpYXQiOjE1MTg3NjM0N
TUsImV4cCI6MTUxODc4MTQ1NX0.t8UUBrhYx6lUAunl5R-s17IxZXOZ1yYGLwV0Sdiw4QY
 4.Client then sends the Access token in an Authorization header in each REST API request to the Authentication Gateway.

e.g. To access the GET URI ‘greetings’ using below details:

URL: http://localhost:8081/greetings-api/greetings

Authorization Header: Bearer

eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsInNjb3BlcyI6W3siYXV0aG9yaXR5IjoiUk9MRV9VU0VSIn0seyJhd
XRob3JpdHkiOiJST0xFX0FETUlOIn1dLCJpc3MiOiJodHRwOi8vand0ZGVtby5jb20iLCJpYXQiOjE1MTg3NjM0N
TUsImV4cCI6MTUxODc4MTQ1NX0.t8UUBrhYx6lUAunl5R-s17IxZXOZ1yYGLwV0Sdiw4QY
5.Authentication Gateway retrieves the access token from Authorization header in the client request and validates the signature. If the signature is valid it routes the request to the matching endpoint (Microservice) based upon the routes which are configured in application.yml or application.properties. Microservice level authorization can also be handled through the JwtAuthenticationFilter.
JwtAuthenticationFilter
@public class JwtAuthenticationFilter extends OncePerRequestFilter {
 @Autowired
 private UserDetailsService userDetailsService;
 @Autowired
 private JwtTokenUtil jwtTokenUtil;
 @Override
 protected void doFilterInternal(HttpServletRequest req, HttpServletResponse
 res, FilterChain chain) throws IOException, ServletException {
 String header = req.getHeader(HEADER_STRING);
 String username = null;
 String authToken = null;
 if (header != null && header.startsWith(TOKEN_PREFIX)) {
 authToken = header.replace(TOKEN_PREFIX,"");
 try {
 username = jwtTokenUtil.getUsernameFromToken(authToken);
 } catch (IllegalArgumentException e) {
 logger.error("An error occured during getting username from
 token", e);
 } catch (ExpiredJwtException e) {
 logger.warn("Token is expired and not valid anymore", e);
 } catch(SignatureException e){
 logger.error("Authentication Failed. Username or Password not
 valid.");
 }
 } else {
 logger.warn("Couldn't find bearer string, will ignore the header");
 }
 if (username != null &&
 SecurityContextHolder.getContext().getAuthentication() == null) {
 UserDetails userDetails =
 userDetailsService.loadUserByUsername(username);
 if (jwtTokenUtil.validateToken(authToken, userDetails)) {
 UsernamePasswordAuthenticationToken authentication = new
 UsernamePasswordAuthenticationToken(userDetails, null, null);
 authentication.setDetails(new
 WebAuthenticationDetailsSource().buildDetails(req));
 logger.info("Authenticated user " + username + ", setting security
 context");
 SecurityContextHolder.getContext().setAuthentication(
 authentication);
 }
 }
 chain.doFilter(req, res);
 }
}
6.The gateway can also send extra parameters in the request header (JWT token, other user information etc.) through custom Zuul Filters.

PreFilter
public class PreFilter extends ZuulFilter {
 private static Logger log = LoggerFactory.getLogger(PreFilter.class);
 @Override
 public String filterType() {
 return "pre";
 }
 @Override
 public int filterOrder() {
 return 1;
 }
 @Override
 public boolean shouldFilter() {
 return true;
 }
 @Override
 public Object run() {
 RequestContext ctx = RequestContext.getCurrentContext();
 HttpServletRequest request = ctx.getRequest();
 // Add a custom header in the request
 ctx.addZuulRequestHeader("Authorization",
 request.getHeader("Authorization"));
 log.info(String.format("%s request to %s", request.getMethod(),
 request.getRequestURL().toString()));
 return null;
 }
}
7.The Micro service then can optionally authorize the request & provides the response to the Authentication Gateway.

For Authorization, the Microservice would need the JWT access token to be passed to it. It can then verify the JWT token & extract the user roles from the claims & accordingly allow/deny the request for the concerned endpoint.

e.g. For authorizing only users with ADMIN role to access the REST endpoint for ‘addGreeting’ in MicroServiceA, it can be annotated as below.

 @PostMapping
 @PreAuthorize("hasRole('ROLE_ADMIN')")
 public String addGreeting(@RequestBody String greeting) {
 // Business logic to save the greeting typically to a DB table
 return "Greeting successfully saved";
 }
8.The Gateway then can optionally add any other header to the response using a ‘post’ Zuul filter & send it back to the client.

JWT Authentication Gateway provides very a useful approach for securing Microservices applications with minimal impact to the Microservices code. Thus, application developers can focus on the core business logic without worrying about the security mechanism that guards the application. It can be independently scaled and deployed for performing load testing & maintaining high availability. It can also serve as a centralized entity for other cross-cutting concerns like Microservices monitoring, routing rules etc.

3.4 Persistence

Data persistence will be addressed using a relational database.

3.5 Reliability/Availability (failover)

The availability of the system is a key requirement by nature, as it is a selling system. The candidate architecture must ensure failover capabilities. Reliability/Availability will be addressed through the J2EE platform

Targeted availability is 16/7: 16 hours a day, 7 days a week

The time left (8 hours) is reserved for any maintenance activities

3.6 Performance

The response time for all the screens unless a huge report will be less than 5 seconds.

3.7 Workflow Engine

A workflow engine is a software application or tool designed to help users enforce a series of recurring tasks that make up a 'business process' or a 'workflow'. They take cues from the workflow's design, and guides the process through its various steps. This is done by task routing, also called workflow automation.

Workflow engines mainly have three functions:

· Verification of the current process status: Check whether it is valid executing a task, given current status.

· Determine the authority of users: Check if the current user is permitted to execute the task.

· Executing condition script: After passing the previous two steps, the workflow engine executes the task, and if the execution successfully completes, it returns the success, if not, it reports the error to trigger and roll back the change.

3.8 ORM

Object-relational mapping (ORM, O/RM, and O/R mapping tool) in computer science is a programming technique for converting data between incompatible type systems using object-oriented programming languages. This creates, in effect, a "virtual object database" that can be used from within the programming language.

In addition to the data access technique, ORM's benefits also include:

· Simplified development because it automates object-to-table and table-to-object conversion, resulting in lower development and maintenance costs

· Less code compared to embedded SQL and handwritten stored procedures

· Transparent object caching in the application tier, improving system performance

· An optimized solution making an application faster and easier to maintain

4. Use-Case View

This section lists use cases or scenarios from the use-case model if they represent some significant, central functionality of the final system.

4.1 High Level Overview

The below diagram depicts the various actors and the high level representation of the entire iloads SAAS System requirements.

4.2 Use-Case

[image: image8.png]
4.3 Realizations

Refers to section 5.2 to see how design elements provide the functionalities identified in the significant use-cases.

5. Logical View

5.1 Overview

The visibility application is divided into layers based on the N-tier architecture

[image: image3.png]Client Layer

Browser]

PDA/ Mobile

Presentation Layer

Presentation Logic
Processing

Session Management.

Business Layer

Application Logic
Processing

Business Model

=

Integration Layer

Data Access

Messaging

Service Integration

The layering model of the visibility application is based on a responsibility layering strategy that associates each layer with a particular responsibility.

This strategy has been chosen because it isolates various system responsibilities from one another, so that it improves both system development and maintenance.

 The iloads application also interacts with Tracking Services to track vehicles involved in delivery of the consignments. Workflow services support the change in workflow for each tenant.

[image: image4.png]Architectural Layer Dependencies

<use»
2 presentation
<use»
<use»
control
2 2 Common Elements
<use»
“use»
«use»
£ resource & domain

«use»

Each layer has specific responsibilities.

· The presentation layer deals with the presentation logic and the pages rendering

· The control layer manages the access to the domain layer

· The resource layer (integration layer) is responsible for the access to the enterprise information system (databases or other sources of information)

· The domain layer is related to the business logic and manages the accesses to the resource layer.

· The Common Elements layer gathers the common objects reused through all the layers

5.2 Architecturally Significant Design Packages

5.2.1.1 Web Services
This Package contains all of the Web Services that are provided by the application layer and consumed by the presentation layer

5.2.1.2 Business Objects
This package contains all of the objects which provide the Business logic for the system.

5.2.1.3 Data Access Objects (DAO)
This Package contains all of the objects which are used to communicate with the database. Each object contained in this package has a table or tables representing it in the database.

Design Model

6. Process View

The request processing life cycle has been described as in the below diagram. Springs MVC framework deployed over a servlet engine has a dispatcher servlet acting as the controller framework.

[image: image5.png]incoming request

Return Respor ni

Front Controller

lew Template

Delegate Request

Handle Request

Create Model

1. The client sends a request to web container in the form of http request.
2. This incoming request is intercepted by Front controller (DispatcherServlet) and it will then tries to find out appropriate Handler Mappings.
3. With the help of Handler Mappings, the DispatcherServlet will dispatch the request to appropriate Controller.
4. The Controller tries to process the request and returns the Model and View object in form of ModelAndView instance to the Front Controller.
5. The Front Controller then tries to resolve the View (which can be JSP, Freemarker, Velocity etc) by consulting the View Resolver object.
6. The selected view is then rendered back to client.
7. Deployment View

Global Overview
[image: image6.jpg]Web Server

Detailed deployment model with clustering
[image: image9.png]Complete
Task

%Execute
Service Decision

Start
Workflow

Workflow
Completed

Wait for
Message

· One Apache HTTP Server will dispatch requests to two different Jboss / Wildfly servers (load balancing + clustering)

· A Mysql Database stores all the information related to visibility system

8. Implementation View

8.1 Overview

8.1.1 Critical Components of Architecture:
Using REACT JS
For our software architecture development – we have React Js as the front end framework ,which will be our client code that is found in /var/www/html, and this framework have reusable components and has been designed by material template which will be reusable in all view template.
	React JS - Framework

	Version
	16.0.4

	Local Server
	Http://13.126.173.6:3000

	Live Server
	Http://13.126.173.6/build

	Web path
	/var/www/html

	Doc Root
	/var/www

React JS – Authentication
Using key clock authentication – we have single sign on concept were the different client side code will have same username/password, in such a case – react framework will authorize our client user based on the key clock configurations.
Authorization
Authorization plays vital role in our framework – were for each client user we will be configuring the menu groups required for that user, Based on the user who logging in – we will be showing the required authorization menu items.
For each User based on the authorities we got earlier from the api call and framework containing routing configuration has to be matched accordingly, additionally here comes the important aspect of authorizations - for each view we will be having privilege(create,read,update,delete) to access the same, based on the privilege the user can access the menu items.
Project Structure
Our client code react js framework has been widely created by below project structure where the complete development is build using the npm package and deployed to the default apache port pointing to /public/index.html, core dom view of the project will be /src/index.js and the core rendering root part of the view will be /src/App.js.
Main Project structure -
│ ├── build - Build bundle for our project
│ ├── node modules - All npm package will be here
│ ├── public - root folder of the project containing index.html
│ ├── package.json - core file of the project
│ ├── package-lock.json - core/dev dependencies
| ├── .env - Environment configurations
├── src - source folder of the project
│ ├── views - Contains all the view of project
│ ├── asserts - image,css of the project
│ ├── containers/component - static component
│ ├── _nav

- Our dynamic/static routing configurations

│ ├── App.js

- Root rendering of the project
│ ├── index.js

- Configuring the react dom
│ ├── routes.js

- json containing the routing part
Generic Test Case
· After authentication and authorization – we followed the test case for cross verifying the logic behind accessing the api via gateway, additionally getting the optical character reconization (OCR) scrapping of the uploaded documents.
· Document wise (aadhar,voterid,drivinglicence, pan card) – OCR scrapping will be done and displayed the same.
· For the response ocr data, and other fields related to test cases. we generate 1d bar code with minimal characters or 2d bar code with more characters and viewed the same in our client side to scan them via smart phones to get the details in hand about the data available in generated barcode.
· Input and output json will be varying for each api we access via gateway- which will be handled via script framework.
Key Cloak:

Key cloak is an open source Identity and Access Management solution aimed at modern applications and services. It makes it easy to secure applications and services.

Key cloak provides customizable user interfaces for login, registration, administration, and account management. It can use Key cloak as an integration platform to hook it into existing LDAP and Active Directory servers.
Features:
· Single-Sign On and Single-Sign Out for browser applications.
· OpenID Connect support.
· Admin Console for central management of users, roles, role mappings, clients and configuration.
· Account Management console that allows users to centrally manage their account.
· Login flows - optional user self-registration, recover password, verify email, require password update, etc.
· Client adapters for JavaScript applications, WildFly, JBoss EAP, Fuse, Tomcat, Jetty, Spring, etc.
SSO Implementation:
 Key cloak is a separate server that manage on network. Applications are configured to point to and be secured by this server. Key cloak uses open protocol standards like Open ID Connect or SAML 2.0 to secure the applications. Here we can use open ID Connect protocol .
 A user clicks from a public page to navigate to a protected area within the application. The link to this protected area is in your application settings in key cloak admin console.
 The user will be redirected indeed to the Key cloak authentication page. After providing User name and password, Key cloak redirects the user back to application again with a code that is valid to a very short period of time.
 The application communicates this code to Key cloak along with the Application ID and the Application secret, then Key cloak replies with the Access token, ID token, and a Refresh token, Application will need only one of these tokens to see which claims the user has, and according to the claims, the user will be granted or denied access to protected URL(s).
Here we only use centralized user management system for authentication with mysql database supports.
[image: image10.png]

Core Concepts and Terms:
Users:
 Users are entities that are able to log into system. They can have attributes associated with themselves like email, user name, address, phone number, and birth day. They can be assigned group membership and have specific roles assigned to them.

Authentication:
 The process of identifying and validating a user.

Credentials:
 Credentials are pieces of data that Key cloak uses to verify the identity of a user. Some examples are passwords, one-time-passwords, digital certificates, or even fingerprints.
Realms:
 A realm manages a set of users, credentials, roles, and groups. A user belongs to and logs into a realm. Realms are isolated from one another and can only manage and authenticate the users that they control.

Clients:
 Clients are entities that can request Key cloak to authenticate a user. Most often, clients are applications and services that want to use Key cloak to secure themselves and provide a single sign-on solution. Clients can also be entities that just want to request identity information or an access token so that they can securely invoke other services on the network that are secured by Key cloak.

Client adapters:
 Client adapters are plug ins that you install into your application environment to be able to communicate and be secured by Key cloak. Key cloak has a number of adapters for different platforms that you can download. There are also third-party adapters you can get for environments that we don’t cover.
Micro services:
Microservice architecture, or simply microservices, is a distinctive method of developing software systems that has grown in popularity in recent years. In fact, even though there isn’t a whole lot out there on what it is and how to do it, for many developers it has become a preferred way of creating enterprise applications. Thanks to its scalability, this architectural method is considered particularly ideal when you have to enable support for a range of platforms and devices—spanning web, mobile, Internet of Things, and wearable or simply when you’re not sure what kind of devices you’ll need to support in an increasingly cloudy future.

Pros
· Microservice architecture gives developers the freedom to independently develop and deploy services

· A microservice can be developed by a fairly small team

· Code for different services can be written in different languages (though many practitioners discourage it)

· Easy integration and automatic deployment (using open-source continuous integration tools such as Jenkins, Hudson, etc.)

· Easy to understand and modify for developers, thus can help a new team member become productive quickly

· The developers can make use of the latest technologies

· The code is organized around business capabilities

· Starts the web container more quickly, so the deployment is also faster

· When change is required in a certain part of the application, only the related service can be modified and redeployed—no need to modify and redeploy the entire application

· Better fault isolation: if one microservice fails, the other will continue to work (although one problematic area of a monolith application can jeopardize the entire system)

· Easy to scale and integrate with third-party services

· No long-term commitment to technology stack

Spring Boot:
Spring Boot builds on top of Spring Framework, and it makes it easier to use Spring Framework. Over time Spring had grown to be this incomprehensible mess of loosely connected building blocks. Building loosely connected building blocks is a great idea except when you have hundreds of them and it’s hard for anyone to keep track of which building block should be used when. Spring Boot cleans up the mess, and provides an easier way of connecting the building blocks together.

Features of Spring boot:

Auto-Configuration - No need to manually configure dispatcher servlet, static resource mappings, property source loader, message converters etc.

Dependency Management- The different versions of commonly used libraries are pre-selected and grouped in different starter POMs that we can include in your project. By selecting one Spring Boot version we are implicitly selecting dozens of dependencies that we would have to otherwise select and harmonize our self. Example-

Advanced Externalized Configuration- There is a large list of bean properties that can be configured through application.properties file without touching java or xml config.

Production support - We get health checking, application and jvm metrics, jmx via http and a few more things for free.

Runnable Jars - We can package your application as a runnable jar with embedded tomcat included so it presents a self-contained deployment unit

Bar Code:
 A bar code is an optical,machine-readable, representation of data; the data usually describes something about the object that carries the bar code. Bar codes were only scanned by special optical scanners called bar code readers and application software available for devices that could read images, such as smart phones with cameras.
Benefits:
 Quickly identified and automatically reordered.
 Real time data to be collected accurately and rapidly with the help of bar code readers.
 Fast data entry operations with less errors.
 Mature and proven technology.
 Less expensive,smaller and lighter.
 Types:
 One Dimensional or Linear (1D) .
 Two-dimensional (2D).
1D:
 Bar codes representing data in the widths (lines) and the spacings of parallel lines such as Code128, Code 39, and UPC, are referred to as Linear or 1D (one-dimensional) bar code symbologies. It holds less than 85 characters (symbology specific character limit).
2D:
 Two-dimensional (2D) bar codes, such as QR Code ,Data Matrix and PDF417, may have patterns of squares, dots, hexagons and other geometric patterns. While maintaining a fairly small size, these bar code types hold much more data than linear bar codes. 2D bar codes can hold hundreds of characters.

Library Used:
 Here ZXing (Zebra Crossing) Library used for generation and as well Decode bar code images. ZXing ("zebra crossing") is an open-source, multi-format 1D/2D bar code image processing library implemented in Java, with ports to other languages. It supports both 1D and 2D formats such as Code 39, Code 93,Code 128 and QR Code.
We use Code 128 formats for 1D and QR code for 2D .
Version:
 Application uses 3.3.2 Zxing core and javase
Example:
QR Code:
[image: image11.png]

Code 128:
[image: image12.png]User Management.
Customer SetUp

Warehouse SetUp | €—ou

Integration Set Up
Box and Arrow Engine

Label Management
inbound Process

Document
Handiing

Scanning and

X

System Admin

Customer

Warehouse
Internal Usen

X

Labeling Supplier
Outbound Process
Transportation ; ;

Handing copplier

Reporting
Module

Optical character recognition(OCR):

objective: Extract Text From Different images like (Small adharcard,pan card,voutercard and long Adharacard)

Framework: Flask

Falsk:

Flask s a micro web frame work written by python It is classified as a micro web framework it does not require particular tools or libraries It has no database abstraction layer, form validation, or any other components where per-existing third-party libraries provide common functions. However, Flask supports extensions that can add application features as if they were implemented in Flask itself. Extensions exist for object-relational mappers, form validation, upload handling, various open authentication technologies and several common framework related tools Extensions are updated far more regularly than the core Flask program easily create api

Input api: http://ip:8089/api/get_string/text

Input JSON:

{

"image":" image url",

"doctype":" below doctype numbers"

}

for example doc type is1) Voter ID 2) Small Aadhar Card 3) Long Aadhar card 4) Pan card

How to developed code is theoretical using python:

Input images comprises of 3 channels namely B(blue), G(green), R(red) which has 0-255 pixels. These coloured images are converted to grayscale images. The pixels of the grayscale image will be 0 or 1. If the current scanned pixel is 0 the colour will be black and if it is 1 then the colour will be white. The system applies various threshold on the grayscale images and extract the text from the images using pytesseract package’.

Output JSON: {"ocr_number": ocr_number, "image_url": "imageurl", "Name": "name of customer", "DocType": document type}

Required packges: numpy ,opencv(cv2),PIL ,urlib and pytesseract
Camunda Workflow Engine:

Camunda is a Workflow and Decision Automation Platform, which is a Open source platform for workflow and decision automation that brings business users and software developers together. It can be use to

· Create BPMN workflow diagrams and DMN decision tables in an editor that both business users and developers love to use.

· Execute your workflows and decisions in powerful engines that are paired with essential applications for process automation projects.

Camunda comprises of the following compononts:

BPMN Workflow Engine:

The Workflow Engine executes most of the symbols defined in the BPMN 2.0 standard. With BPMN, you can express reliable service orchestration, human task flows, event handling and much more in diagrams that are technically executable yet easy to understand for everyone.

DMN Decision Engine:

The Camunda Decision Engine executes business-driven decision tables. This engine is pre-integrated with the workflow engine but you can also use it as a stand-alone application. With DMN, business stakeholders can define and maintain executable business rules themselves thereby providing great flexibility and convenience.

Modeler:

The Camunda Modeler is an easy-to-use app for editing BPMN process diagrams and DMN decision tables. You can deploy the created files to the Camunda Engines in order to execute them.Apart from visual modeling, Camunda Modeler allows you to edit all properties necessary for technical execution. Since the Camunda Modeler works directly on the BPMN and DMN XML files, developers can easily combine it with their preferred IDE (for example Eclipse, Netbeans, IntelliJ).

Cockpit:

With Camunda Cockpit you can monitor workflows and decisions in production to discover, analyze and solve technical problems. Cockpit is the perfect tool for technical process operations. Cockpit provides a dashboard of running BPMN process models that allows you to quickly see what’s going on and find specific process instances based on different criteria. Technical incidents are highlighted. You can inspect them in order to understand the root cause.

Optimize:

Use Camunda Optimize to create beautiful reports and arrange them in a dashboard for business monitoring. Configure alerts that fire when performance goals are missed and use advanced analytics to identify process bottlenecks. With Optimize, your business stakeholders can easily create and customize insightful reports.

For example, they can display the number of process instances grouped by days, the average duration of process instances by hour. Reports can be shared with others even if they do not have a user login for Optimize. And you can embed a report in other websites such as Atlassian Confluence to provide up to date information to your stakeholders. You can also export your report data as CSV files in order to open them in tools like Microsoft Excel.

 Pros:
· Camunda BPM is a light-weight, open-source platform for Business Process Management.

· It is integrated with Spring Boot and can be deployed as a microservice.

· You can access the Workflow Engine via REST in order to start process instances, complete tasks and much more.

· Calling Java Code from within a BPMN workflow is super simple thanks to Java Delegates.

 Sample Business Process:
[image: image13.png])
User's database ~ *

Authentication Service ~—

Mobile 01

Hibernate:
Hibernate ORM enables developers to more easily write applications whose data outlives the application process. As an Object/Relational Mapping (ORM) framework, Hibernate is concerned with data persistence as it applies to relational databases (via JDBC). In addition to its own "native" API, Hibernate is also an implementation of the Java Persistence API (JPA) specification. As such, it can be easily used in any environment supporting JPA including Java SE applications, Java EE application servers, Enterprise OSGi containers, etc.
Pros:
· Hibernate is database independent. You can work with any database you want like oracle,mysql,db2,sql server ,etc. Using hibernate you won't worry about writing database specific queries and syntax. It's provides HQL (Hibernate Query Language), which is compatible with any database server. You just need to write queries in HQL, at the end hibernate converts HQL to underlying database and executes it.

· In ORM, you will map a database table with java object called "Entity". So once you map these,you will get advantages of OOP concepts like inheritance, encapsulation,etc.

· Caching mechanism (1st level & 2nd level cache) provided hibernate means you don't need to hit database for similar queries, you can cache it and use it from buffered memory to improve performance.

· Hibernate supports JPA annotations, which means the code is portable to other ORM frameworks.

· You do not need to handle exceptions.Hibernate allows database management (for example creating tables), JDBC can only work with existing DB tables.

Elasticsearch
Elasticsearch is an option that adds search capabilities on top of your database.
This option has some limitations:
· It only works with SQL databases. MongoDB and Cassandra support will be added in the future.

· There is no consistency between your database and Elasticsearch, so you might have out-of-sync data. This is normal, as Elasticsearch is not a real database. As a result, you will probably need to write some specific code to synchronize your data, for example using the Spring @Scheduled annotation, to run every evening.

When the Elasticsearch option is selected:
· Spring Data Elasticsearch is being used, and is automatically configured by Spring Boot (here is the documentation).

· By default, we use an embedded Elasticsearch in development, and try to connect to a local cluster in production. This can be configured by the standard Spring Boot properties, in the application.yml file.
When using the dev profile, the embedded Elasticsearch is configured to store data files under the target folder, a simple mvn clean will destroy the persisted indices.

· The “repository” package has new subpackage, called “search”, that holds all ElastiSearch repositories.

The Architecture Overview:
[image: image7.jpg]Config Server

8761

Browser

8080

Gateway

Zuul Proxy

Ribbon

S —

Access

Control Users
Roles

The Implementation view depicts the physical composition of the implementation in terms of Implementation Subsystems, and Implementation Elements (directories and files, including source code, data, and executable files).
Usually, the layers of the Implementation view do fit the layering defined in the Logical view
8.2 Layers

8.2.1 Presentation Layer

The Presentation layer contains all the components needed to allow interactions with an end-user. It encompasses the user interface

8.2.2 Control Layer

The Control layer contains all the components used to access the domain layer or directly the resource layer when this is appropriate.

8.2.3 Resource Layer

The Resource layer contains the components needed to enable communication between the business tier and the enterprise information systems (Database, external services, ERP, etc…)

8.2.4 Domain layer

The Domain layer contains all the components related to the business logic. It gathers all the subsystems that meet the needs of a particular business domain. It also contains the business object model.

.

8.2.5 Common Elements Layer

The Common Element layer contains the components re-used within several layers.

9. Data View

Will be updated with ER diagram.
10. Size and Performance

Volumes:

· Estimated online Transactions: 1000 a day, with peaks in the evening

· iloads Inc registered individual Trucks : about 1000

· iloads Load Providers: about 1000

Performance:

· Time to process and online payment (credit card validation + confirmation) : less that 10 seconds required

11. Quality

As far as the iloads application is concerned, the following quality goals have been identified:

Scalability:

· Description : System’s reaction when user demands increase

· Solution : J2EE application servers support several workload management techniques

Reliability, Availability:

· Description : Transparent failover mechanism, mean-time-between-failure

· Solution : : J2EE application server supports load balancing through clusters

Portability:

· Description : Ability to be reused in another environment

· Solution : The system be fully J2EE compliant and thus can be deploy onto any J2EE application server

Security:

· Description : Authentication and authorization mechanisms

· Solution : J2EE native security mechanisms will be reused

	Confidential
	White Data Systems, 2018
	Page 2 of 40

[image: image14.png]Client

DEPLOYMENT

SONAR QUBE

SPRING BOOT Embedded SPRING BOOT Embedded SPRING BOOT Embedded
Tomcat container [JAR] Tomcat container [JAR] Tomcat container [JAR |
REGISTRY EUREKA GATEWAY CONFIG Server

t RIBBON HISTRIX LOAD BALANCER

SPRING BOOT Embedded SPRING BOOT Embedded
Tomcat container [JAR] MICRO Tomeat container [JAR] MICRO
services services

Linux demon services

KEYCLOAK G

REACT JS FLASK

