

The Adventure Works Corp

[image: image13.jpg]

100 Adventure Rd
AdventureTown, WI 12345
608-123-1234
http://www.sqlrqanger.com
SQL Server Standards and Conventions
By Mr. or Ms. Stan Dard, MCSE
Contents

3Introduction

3Benefits of Implementing Database Naming Conventions

3Potential Problems with Common Naming Practices

5Transact-SQL Coding Standards

5Guidelines for Transact-SQL Coding

8Guidelines for Database Object Naming

12Database Access Standards

12Guidelines for Database Access

14Development Process Standards

14Guidelines for Deployment Process

17Database Security Standards

17Guidelines for Authentication Modes and Logon Security

18Guidelines for Securing Endpoints

20Guidelines for Securing the SQL Server Agent Service

21Guidelines for Securing Instance-Level DDL Events

22Guidelines for Permissions and Data Access

23Guidelines for Monitoring

24Guidelines for Security Exceptions

25Guidelines for Evaluating the Impact of Exceptions

26Database Backup Standards

26Guidelines for Database Backups and Restores

29Guidelines for Analyzing Business Requirements for Data Recovery

30Guidelines for Criteria of Categorizing Databases for Backup and Restore

31Guidelines for Protecting Backups

32Disaster Recovery Standards

32Guidelines for Maintaining a Recovery Plan

34Guidelines for Components of a Database Disaster Recovery Plan

36Guidelines for Creating a Disaster Recovery Decision Tree

38Guidelines for Documenting a Decision Tree

39Database Maintenance Standards

39Guidelines for Maintaining Updated Hot Fixes or Service Packs

40References

40Templates

40Forms

41External References

Introduction
Database conventions and standards help to organize the server infrastructure and make the database administrator and developer teams more productive. Good standards that are consistently applied grow in usefulness over time because they serve to make even unfamiliar databases easier to understand.

Transact-SQL Coding Standards

Database code such as stored procedures, triggers, and scripts often implement critical portions of database applications. It is important to treat Transact-SQL code as true source code.

Database Access Standards

Databases can be accessed in many ways, and it is helpful to have standardized access patterns.

Development Process Standards

Application deployment is a complicated process and often involves several teams. Deployment standards help reduce complexity and make procedures clear when unexpected events occur.

Database Security Standards

Setting standards for database security can help reduce the complexity of the entire infrastructure.

Database Backup Standards

A data recovery strategy at the infrastructure level includes more than individual database backup and restore techniques. It involves classifying and organizing the needs of all of the databases so that general rules can be applied to develop a systematic approach.

Disaster Recovery Standards

A good disaster recovery plan reduces the likelihood of error and makes it easier to make critical decisions during the recovery process. A good database disaster recovery plan is coordinated with other departments within the organization, such as operations management and network operations, and with any off-site storage and collocation vendors.

Database Maintenance Standards

Creation of regular database maintenance plans helps to ensure proper operation of the database as well as its coexistence with the infrastructure.

References
Links to templates, forms, and external references.

Introduction
Benefits of Implementing Database Naming Conventions

· Staff members who use or maintain the database can easily identify an object's purpose, type, and function. For example, a database administrator can easily identify the type of object causing blocking scenarios, or a database developer can easily identify the integrity constraints affecting a table.

· Database naming conventions enable better integration of new database developers into the development team. The learning curve gets shortened because good naming conventions make database code easier to read and understand.

· Conventions also improve communication with vendors by providing them with standards to work with. It is especially critical to have good naming standards when outsourcing development work; otherwise, the resulting database design can be very hard to maintain.

Potential Problems with Common Naming Practices

· Using the “sp_” prefix in user-stored procedure names
· If you use the “sp_” prefix for a user-stored procedure, SQL Server will search for this prefix in the master database each time the procedure is invoked, before looking in the local database.

· If a stored procedure with the same name exists in both the master and the local database, and it is marked as a system-stored procedure, SQL Server executes the stored procedure in the master database.

· If it is not marked as a system-stored procedure, SQL Server executes it in the current database.

· In addition, if you use this prefix, or even use “sp” without the trailing underscore character, it becomes difficult to distinguish between your own stored procedures and the system-stored procedures supplied with SQL Server.

· Using uppercase and lowercase alphabets inconsistently in object names.

· For user-created objects such as tables, columns, indexes, and constraints, using mixed case results in more readable names than using all uppercase or all lowercase alphabets. Mixed case is particularly useful when you have compound names. For example, you can recognize object names by combining lowercase and uppercase alphabets, such as OrderDetails or CustomerAdresses. Two examples of common conventions are PascalCase and camelCase. The standard at Adventure Works is to use Pascal Case If you install a database or an application on a case-sensitive server, operations that do not exactly match the case used by identifiers will fail.

· Using spaces or non-alphanumeric characters in object names

· Using spaces in object names complicates the code and forces you to use delimiters around identifiers, such as square brackets (“[” and “]”) or double quotation marks around the table and column names. Instead, you should use some other character, such as the underscore, as a word separator. Alternatively, you can use Pascal case or camel case to name objects.

· Non- alphanumeric characters, such as regional or accented characters, might not be available on some keyboard configurations, and should therefore be avoided.
· Using underscores within names

· Underscores should be avoided within the object names themselves. Use underscores only to prefix or suffix a name.

· Using the “tbl” prefix for tables
· This prefix is commonly used by Microsoft Access database developers to avoid ambiguity. However, in SQL Server, the presence of table names in the FROM clause of a SELECT statement makes the table names unambiguous. The “tbl” prefix adds no clarity to table management, and many developers find the “tbl” prefix redundant.

· Including a data type abbreviation in a column name

· If you change the data type of a column, you need to change the column name, or else the convention becomes meaningless. For example, if you change the data type of an integer column named “intCustID” to “varchar,” you need to change the name of the column to something like “vcharCustID.” This impacts integrity constraints, views, stored procedures, triggers, and other objects in the database that use this column. This is an expensive and time-consuming operation, and requires significant retesting of code in the database and of applications that use the database.

· Using short or abbreviated object names

· Some older databases were hosted on operating systems that supported a limited number of characters in identifiers, resulting in the use of abbreviated object names, such as “PD” for a table containing product details. If you migrate such a database to SQL Server, you should replace the short identifiers with more meaningful names. Failure to do so can result in queries that are difficult to read and therefore difficult to maintain.

· Using reserved words as object names

· Using reserved words such as TABLE or DATABASE as object names can cause queries to fail if you do not delimit identifiers with square brackets or double quotation marks. The resulting code is not easy to read, and might make some SQL commands difficult to maintain.

Transact-SQL Coding Standards
Guidelines for Transact-SQL Coding

· Use Templates

· Use templates for each type of object, such as stored procedures, user-defined functions, views, triggers, etc. These templates can contain predefined code that guides the developer through the items to be implemented. They can also contain boilerplate sections for descriptions, the name of the author, date of creation, and a log of changes and the reasons for the changes

· Stylistic Standards

· The following stylistic standards improve the readability of Transact-SQL code:

· Prefix every reference to a database object with the name of the schema it belongs to.

· Indent every block of code appropriately.

· Use uppercase for all SQL and SQL Server keywords

· Functional Standards

· For database code objects, whether based on Transact-SQL or managed code, functional standards include the following:

· Ensure that code in triggers can handle multiple data manipulation language (DML) statements such as inserts, updates, or deletes, rather than handling a single row.

· Database Integrity

· Define integrity at the most “automated” level

· Referential integrity should be defined via cascading updates and deletes if appropriate, then triggers, and then lastly stored procedures.

· Entity integrity should be defined using indexes (all tables must have a clustered index), unique constraints, primary key constraints, or identity properties.

· Domain integrity should be enforced through the use of foreign keys, check constraints, default definitions, not null definitions, and rules.

· Do not use Transact-SQL user-defined functions (UDFs) to perform searches on other tables by executing a lookup for some value based on a key. If a UDF is used as a part of a SELECT query that returns many records, it will perform poorly.

· Avoid using cursors inside stored procedures. Cursors are poor replacements for set-based queries, and you should only use them when they are absolutely required.
· Stored procedures should avoid creating and using temporary tables unless doing so improves performance.

· Use a TRY…CATCH construct to perform error handling. This can simplify the logic of a Transact-SQL block, which might otherwise have to perform repeated tests by using the @@ERROR function
· Normalize to at least the third normal form. Denormalize only if it becomes necessary to satisfy query performance.

· Use comments generously whenever something is not obvious.

· Do not use SELECT *. Always write the required column names after the SELECT statement.

· Avoid wildcard characters at the beginning of a LIKE search.

· Performance should always be in the forefront when designing a database. Use SHOWPLAN to analyze queries. Avoid index and table scans

· SET NOCOUNT ON at the beginning of stored procedures, SQL batches and triggers

· Use ANSI-Standard joins

· Avoid storing binary and image data in the database. Instead store a path to the file on the server
· Use the CHAR data type for a column only when the column is non-nullable. If a CHAR column is nullable, it is treated as a fixed length column. CHAR(100), when NULL, will use 100 bytes, resulting in space wastage. Use VARCHAR(100) in this situation

· Avoid dynamic SQL statements. Dynamic SQL tends to be slower than static SQL, as SQL Server must generate an execution plan every time at runtime. IF and CASE statements can be used to avoid dynamic SQL. Another major disadvantage of using dynamic SQL is that it requires users to have direct access permissions on all accessed objects, like tables and views. Generally, users are given access to the stored procedures which reference the tables, but not directly on the tables. In this case, dynamic SQL will not work

· Use Unicode data types, like NCHAR, NVARCHAR, or NTEXT, if your database is going to store a variety of languages. Use these datatypes only when they are absolutely needed as they use twice as much space as non-Unicode data types
· Always use 4 digit years in dates
· Avoid deadlocks

· Always access tables in the same order in all stored procedures

· Keep transactions a short as possible

· Touch as few data points as possible during a transaction

· Never wait for user input in the middle of a transaction

· Do no use higher lock level hints or restrictive isolation levels unless absolutely necessary

· Do not call functions repeatedly within your stored procedures, triggers, functions and batches. For example, you might need the length of a string variable in many places of your procedure, but don't call the LEN function whenever it's needed, instead, call the LEN function once, and store the result in a variable, for later use.
· Make sure your stored procedures always return a value indicating their status. Standardize on the return values of stored procedures for success and failures. The RETURN statement is meant for returning the execution status only, but not data. If you need to return data, use OUTPUT parameters.

· Avoid using GOTOs.
Guidelines for Database Object Naming
· Databases

· Databases typically store information from objects that have a common relationship, for instance sales, customer or commerce. A database name should be both accurate and descriptive. The name should identify the relationship of the entities that will be stored within the database. You should use singular names for clarity.

· <DatabaseName>

· Customer

· AdventureWorksDotCom

· ExpressDiagnosticStuff
· Tables

· Tables typically represent entities such as Customer or Invoice. A table name should be both accurate and descriptive. The name can identify the entity that the table represents. A three letter prefix is acceptable if the tables reside in a shared database to help to further differentiate the tables, although a better method might be to use separate schemas to further identify the objects. You should use plural names to signify that the table contains multiple instances of an entity.

· <TableName> or <prefix>_<TableName>

· Orders

· OrderLineItems

· sls_Invoices
· Columns

· Columns describe attribute data values from the logical database model. You should retain the same meaningful name for each column in the database. Use descriptive names to make your SQL code more readable.

· <ColumnName>

· CustomerCode

· InvoiceDate

· SalesLineDescription
· Views

· Views typically combine several tables or other views to generate or summarize information. You should use names that indicate the purpose of the information that a view returns. For example, YearlySalesPerClient could be the name of a view that returns yearly sales grouped by client
· <ViewName>

· TitleAuthor

· ProductSalesByYear

· PriorYearInvoices
· Stored Procedures

· Stored procedures express actions. You should use a meaningful name that combines verbs and objects that describe the action. You should not use the “sp_” prefix. For example, PlaceOrder could be the name of a stored procedure that an application uses to create an order in the Sales database.

· <ProcedureName>

· GetCustomerDetails

· InsertCustomerInformation

· WriteCustomerRecord
· UDFs (User-defined Functions)

· User-defined functions calculate values. As with stored procedures, you should use meaningful names that describe the calculations performed
· <UDFName>

· SumCustomerInvoice

· SubtractDiscount

· LookupCustomerSale
· Triggers

· A trigger performs an automatic action when an event occurs in a table. You should combine the trigger event and trigger type with the name of the table. Including the action in the name can also be helpful. For example, a trigger named Employee_deltrg would handle the delete event on the Employee table, and the Employee_ValidateSalary_updtrg trigger would validate any Salary change caused by an Update event on the Employee table. You can also indicate whether the trigger is an AFTER or INSTEAD OF trigger by including “After” or “InsteadOf” in the name—for example, Employee_After_deltrg
· <TableName>_<Title>_<After/InsteadOf>_<Function (ins/upd/del)><trg>

· Customers_Validate_instrg
· Orders_Audit_After_instrg

· Products_Refresh_InsteadOf_updtrg
· Indexes

· Index names commonly combine the name of the table and the names of the columns, and may include a suffix such as “idx.” Add a suffix to indicate whether the index is clustered or nonclustered (C/NC), a unique index (U/N). For example, the index Employee_ManagerID_U_Cidx column spans the ManagerID column in the Employee table, is unique and clustered. This makes index names self-documenting, but can result in lengthy names. However, you rarely refer directly to the name of an index in your applications or SQL commands.
· <TableName>_<ColumnName(s)>_<Uniqueness (U/NU)>_<Clustered (C/N)><idx>

· Orders_OrderID_U_Cidx

· Products_ProductIDProductDetail_NU_Cidx

· ProductDetails_ProductID_U_Nidx
· Constraints

· Constraints specify the rules that the data in a column or set of columns in a table must conform to. You should name the constraint after the business rule it enforces or the column it operates on. You can also add a prefix that indicates the type of constraint (check, primary key, foreign key, unique constraint, and so on). For example, the check constraint MaritalStatus_ck validates the marital status as it is entered
· <ConstraintName>_<Type (chk/def/pk/fk)>
· GetDateToday_def

· Customer_pk

· ValidDate_chk
· Schemas

· Schemas are used to group database objects by functionality and to partition objects into protected domains. However, you might confuse schema names with tables. In the AdventureWorks database provided with SQL Server, Sales is the name of a schema. However, many databases also have a table named Sales
· <SchemaName>

· dbo

· Sales

· Customers
Database Access Standards
Guidelines for Database Access

· Access a database only through stored procedures

· Accessing a database by using stored procedures has many advantages, including the following:

· Applications do not rely on a fixed table and column structure. You can modify the structure of tables without affecting the application. You only need to update the stored procedure to use the new schema for returning the same results with the same parameters.

· Stored procedures can encapsulate operations that might otherwise expose sensitive data that should not be accessed by a user or an application.

· Query optimization and tuning is easier to execute. If you find that certain code does not perform adequately, you can modify the stored procedure’s logic to access indexed views, aggregate tables, or some other structure in place of a complex join, without affecting applications that use the stored procedure. The applications do not need to be modified.

· Using stored procedures can reduce network traffic by encapsulating the logic on the server rather than in the client applications. SQL Server can also generate, optimize, and reuse query execution plans when the same stored procedure is used repeatedly.

· Access data only through views and not directly

· You can create a view for each table, and you can also create views that join several tables or generate summary data. The following are some of the advantages of using views to access data:

· Views can hide complex SQL logic from applications and reduce the conflict between an application and a database, allowing you to modify the underlying tables without modifying the application.

· Applications can be selective in the data that they retrieve. Unlike using a stored procedure, using a view enables an application to retrieve only the columns required to implement the functionality. For example, an application that displays the hiring and termination dates of employees does not have to retrieve the salaries of employees even if this data is available through the view.

· Views are less useful than stored procedures for reducing network traffic. The amount of logic that you can encapsulate in a view is limited compared to that available to stored procedures, and therefore requires that you place more logic in client applications.

· Avoid using generic user accounts to access the database directly

· It is advisable to not use generic user accounts to access the database directly. Components and applications running in the middle tier of an N-tier system frequently run by using the identity of a generic user account. If you use this account without any supporting information to connect to the database, it is almost impossible to detect the identity of an end user who makes a given set of changes, and you cannot easily incorporate auditing mechanisms.

· If you must allow a generic login from the middle-tier component, ensure that the identity of the original user is passed as a parameter to each stored procedure call so that all connections to the database are secure. If possible, use the Windows identity of the user account running the application whenever the middle-tier component connects to the database.

Development Process Standards

Guidelines for Deployment Process

· Role of development, testing, and production databases
· Developers should create scripts that build or modify the development database, and initially test them on the development server. When development is complete, the scripts can be transferred to the test server and used to construct or update the test database. If the testing fails at any point, developers can update the scripts in the development environment before sending them back for testing. When the testing is complete, the same scripts can be used to build or update the production environment

· To ensure the validity of the development and test environments, the development and test databases should be built from backups of the production database, with sensitive data protected ort removed, if necessary

· A source control system should be used to maintain the latest versions of table schemas, stored procedures, and all database code objects. The database source code should be versioned and labeled following the style adopted for the overall application development project. You should also save all deployment scripts, including those implementing schema changes and data modifications, in the same source control system

· Methods for protecting production data during the deployment process. The following are some ways to ensure the integrity of the production database:

· Only production database administrators may access the production database. This provides a chain of responsibility and ownership. By using database administrators who are familiar with the production environment, the scope for errors can be reduced.

· Make changes to the database by using Transact-SQL scripts. You can use the SQLCMD utility to run Transact-SQL scripts from the command line or from command scripts. You can also set and apply parameters for Transact-SQL scripts. This provides you with a reliable mechanism for running the same commands in the development, test, and production environments, and for repeating the changes, if necessary. You should perform a thorough unit and integration testing of these scripts

· All affected databases should be backed up before you begin deployment. It is easy to forget a step as obvious as this under the stress of a deployment operation, so you should ensure that you explicitly document it as a step in the deployment process
· Always have a rollback plan for deployment. If the deployment fails, you should not find it necessary to improvise. Often, fixing the problem without a plan will only make the problem worse. Sometimes, a rollback may involve restoring the database from a backup. However, if critical new data has been added, you may need to develop and test scripts that perform the rollback operation

· Define the roles and responsibilities for each step of the deployment plan

· A deployment plan should clearly indicate the role responsible for executing each step. The documentation should contain the exact order of the steps, and a decision tree detailing the options available for each step if it succeeds or fails. The plan must also indicate the duration of the deployment process, and any dependencies that other production systems might have on the database. If the deployment necessitates a period of service unavailability, ensure that the document identifies the staff that should be notified, and the estimated time of unavailability.
· Changes recorded to the production environment in a run book

· A run book logs all actions taken by a database administrator that affect production databases. This includes actions that modify the database or server configuration, and any specific changes made to data based on user requests.
· The run book will be maintained as a document in the source control utility so that there is access to all the versions. The run book will give a precise record of all the changes made to the database, including the date and time, and will also help to reproduce or undo these changes, if necessary. Most importantly, a run book can help to determine whether an error was introduced by your actions or by some external event.
Deployment Process Flow

[image: image1.emf]Developers create/

alter scripts in

development

Scripts are

checked in to

Source Safe

SQL Group

schedules

changes to

Staging

Changes are

made to Staging

and requestors

notified

Requestors test

changes in staging

and give final OK

to move to

production

Code is moved to

production

Scripts

Changes are code

reviewd by SQL

team

Source

Safe

Developer notifies

SQL team via

Request for

Change Form

Request for

Change Form

OK?

OK?

Code is scheduled

to move to

production

YES

NO

YES

NO

Start

Stop

Staging

Production

Database Security Standards
Guidelines for Authentication Modes and Logon Security
· Use Windows authentication

· When a user tries to log on to SQL Server using Windows authentication, a trusted connection is established between the user and SQL Server. In such a trusted connection, the user's security context is sent to SQL Server by authentication methods such as Windows NT LAN Manager (NTLM) or Kerberos V5 authentication protocol. Using Windows authentication is more secure than using SQL Server logons when you do not want to send logon information, such as user names and passwords, over the network. Windows authentication includes logon security policy features such as password length, password complexity, and account locks. In addition, Windows authentication supports Kerberos protocol, which is also a secure authentication mechanism.
· Encrypt communications for the logon process

· SQL Server has the following authentication features:

· By default, SQL Server authentication uses encrypted communications for the logon process. This feature has been implemented by using a self-signed certificate to encrypt the user name–password packet.

· You can integrate the Windows password policy and apply it to SQL Server logons consistently.

· Using these features, a company can have a policy that is applicable for multiple scenarios. For example, if the Windows account lock threshold of five logon attempts is reached, the SQL logon account can be blocked when a SQL Server logon tries to log on for the sixth time.
· Implement password aging

· SQL Server supports password aging. For example, when Microsoft Windows requests a password change in the next logon, the password aging feature is also implemented for SQL Server logons. Implementing password aging includes the capability of requesting a password change the next time a SQL Server logon tries to connect to the database.

· Apply the principle of least privilege

· When adding a new logon to SQL Server, you can define the server roles for that logon. You should apply the principle of least privilege to ensure that the logon is implemented securely and is compliant with the security policy.
Guidelines for Securing Endpoints
· You can create an endpoint by executing the CREATE HTTP ENDPOINT Transact-SQL DDL statement.

· When an endpoint is created, only members of the sysadmin role and the owner of the endpoint can connect to the endpoint. You must grant a connect permission for other users to access the endpoint. You can do so by using the GRANT CONNECT ON HTTP ENDPOINT Transact-SQL DDL statement.

· Endpoints should be secure by design. To make the endpoint secure, it should be explicitly created and specified. There should not be any default endpoints or Web methods.

· The next security consideration for endpoints is to apply security checks to objects. For example, to execute a stored procedure, a user should have connect permissions on the endpoint and execute permissions on the stored procedure.

· Another security consideration is that all requests must be authenticated. Clients must authenticate against SQL Server principals to submit requests.

· HTTP endpoints support authentication mechanisms such as Basic, Digest, NTLM, Kerberos, and Integrated.

· The Basic authentication mechanism is made up of an authentication header that contains the base64-encoded user name and password, separated by a colon.

· When using Basic authentication, the PORTS value cannot be set to CLEAR, and credentials sent as basic HTTP authentication must be mapped to a valid Windows login.

· You can use Basic authentication in scenarios in which the user that is granted permissions to the endpoint is a local user on the server computer.

· Digest authentication is made up of the user name and password. This is then hashed with MD5, a one-way hashing algorithm, and sent to the server.

· The server has access to either the raw password or a stored MD5 hash that was created when the password was set. The server can then compare the stored calculated value with the one provided by the client.

· The credentials that are sent as a part of a Digest authentication over HTTP must be mapped to a valid Windows domain account. Local user accounts are not supported by Windows-based Digest authentication.

· The NTLM authentication mechanism is a challenge-response protocol that offers stronger authentication than either Basic or Digest authentication. NTLM is implemented in Windows 2000 and later versions by a Security Support Provider Interface (SSPI).

· Kerberos authentication is supported in Windows 2000, and later versions, by an SSPI. When Kerberos authentication is used, the instance of SQL Server must associate a Service Principal Name (SPN) with the SQL Server Service account it is running on.

· Endpoints that are configured to support integrated authentication can respond with Kerberos or NTLM authentication as a part of the authentication challenge.

· In an Integrated authentication configuration, the server tries to authenticate the client by using whichever mechanism the client uses for requesting authentication.

· If the process fails for one integrated authentication type, the server terminates the connection for the client without trying the other authentication types.
Guidelines for Securing the SQL Server Agent Service
· Execute the SQL Server Agent service under a Windows security context

· The SQL Server Agent service is a separate administrative process in Windows and must run under a Windows security context. In SQL Server 2000 and earlier versions, the security context of SQL Server Agent is the Local System account. This security context is a violation of the principle of least privilege because the Local System account has more permissions than those required by the SQL Server Agent service
· Create a local or domain Windows low-privilege account

· Objects created in SQL Server Agent run under different security contexts, depending on the type of user who creates the object. For example, if the creator of the job is a member of the Sysadmin group, the job executes under the context of the SQL Agent service account or the user needs to specify a proxy account

· Use subsystems to restrict access

· In SQL Server, you can create multiple proxy accounts for multiple subsystems in SQL Server Agent. Subsystems include tasks such as SQL Server Integration Services Package Execution and Analysis Services Query. You can restrict access to a specific set of tasks and create multiple proxy accounts for each activity

· Define a proxy account

· A proxy account is usually assigned to a subsystem, and a user is associated with the proxy account. If a user creates a step in a job and wants to run the step under the context of a specific proxy, it is possible only if the user is associated with the proxy account. You can control the security configuration by defining which user has the ability to use which proxies. By using this definition, a user can execute specific subsystem tasks under the context of a specific proxy

· Control access to SQL Server Agent

· The SQL Server Agent service includes a new security model to control access to this service. There are three new database roles created in the msdb system database to control access to SQL Server Agent: SQLAgentUserRole, SQLAgentOperatorRole, and SQLAgentReaderRole. Users with logons that belong to SQLAgentUserRole can create and add job steps. By default, no logon is a part of this database role.

Guidelines for Securing Instance-Level DDL Events
· Data definition language (DDL) triggers are an extension of data modeling language (DML) triggers. A DDL trigger is activated when a DDL event for which the trigger was created occurs on the server. Triggers have the ability to roll back operations, which supports the process of securing the server. A trigger also provides information related to the event. Use the following guidelines for securing instance-level DDL events

· Use DDL triggers to prevent DDL events.

· You can use DDL triggers in the same way in which they are used in a DML operation. For server or database events, you can include ROLLBACK and cancel the operation that fired the trigger

· Use DDL triggers to audit security.

· When structural changes occur, the administrator can include features inside the DDL trigger definition for sending an e-mail message using Database Mail, writing a log table, or for any other notification or auditing mechanism

· The instance-level DDL events that can be used to fire a DDL trigger are listed below:

· ALTER_AUTHORIZATION_SERVER

· CREATE_DATABASE

· ALTER_DATABASE

· DROP_DATABASE

· CREATE_ENDPOINT

· DROP_ENDPOINT

· CREATE_LOGIN

· ALTER_LOGIN

· DROP_LOGIN

· DROP_LOGIN

· GRANT_SERVER

· DENY_SERVER

· REVOKE_SERVER

Guidelines for Permissions and Data Access
· Define permissions at various levels
· When defining the granularity of permissions, you should apply access permissions at the object level. Defining permissions at the object level allows you to control, in a very granular and specific way, the principles that access specific resources.

· Reduce the administrative overhead by using scopes

· If there are generalizations in your permission sets, you can use the higher levels (scopes) in the permission hierarchy to reduce the administrative overhead involved when using object-level permissions. For example, if you need to grant EXECUTE permissions to all stored procedures in a schema, you do not need to grant EXECUTE permissions to each stored procedure individually. Instead, you can grant EXECUTE permissions at the schema level. The same concept is valid if you need to grant EXECUTE permissions to all schemas—you can grant EXECUTE permissions at the database level, which will be applicable across all schemas.

· Choose appropriate permissions

· Whether you choose permissions at the object level, schema level, or database level, you must keep in mind that the most restrictive permission takes precedence over other permissions. For example, a DENY permission at any level overrides permissions set at higher or lower granularity levels.

· Discourage ad hoc user access

· Accessing tables directly implies that users and applications understand the internal structure of the database. If you need to implement schema changes on tables, the process of determining the impact of these schema changes becomes complex. This is because there is no centralized place to make changes, and these changes must be made for each user and application.

· Create stored procedures to access data

· Database administrators (DBAs) who are responsible for data security should create stored procedures to access the data in a database. Many business requirements and government regulations require DBAs to restrict access to sensitive data in their databases. Permitting ad hoc access violates these requirements and does not allow users or applications to use predefined stored procedures or views

· Use predefined procedures or views to restrict data access

· DBAs are responsible for users or applications that do not use predefined views or stored procedures.
Guidelines for Monitoring
· Using Data Definition Language (DDL) statements

· These statements include sentences such as CREATE ENDPOINT, which could change the general parts of your instance configuration, such as the components or configuration of SQL Server. For example, you might use a DDL statement to create new communication ports to which an attacker could connect.

· Creating Logins

· One method of attacking a server is by privilege escalation. In some cases, these attacks occur by creating new logons and adding them to high-privileged, fixed server roles such as the sysadmin role.

· Creating Databases

· You must monitor the creation of new databases and the elimination or alteration of existing databases. An attempt to destroy a specific database in an instance by dropping or altering that database so that users can no longer use the database is a form of a denial-of-service (DoS) attack. Another example of a malicious database attack is altering a database by adding extra file groups to give the attacker a place to store specific information.

· Database Users

· The same model of attacking by privilege escalation that can be used at the server level can also be used at the database level by adding new users and placing those users in high-privileged database roles. To control this, you should monitor which users are allowed to access the database, and the roles to which they belong.

· Objects

· One of the methods used in database attacks is to transform legitimate business code into attack code. This form of code-tampering is dangerous because the database management teams do not notice it. Another form of database attack is to create new objects to execute dangerous routines or to store specific information gathered by the attacker. This form of attack often follows an attack by code-tampering. You should include a review of sensitive data in your database to verify that data has not been corrupted by an attacker.

· Object Permissions

· You should also consider the permissions that are applied to specific objects. For example, a stored procedure that decrypts credit card numbers must not have permissions for the public role. An attacker might create a new set of permissions for database objects to attack the database again.

Guidelines for Security Exceptions
· Determine Exceptions

· After you have gathered the business and regulatory requirements and detected the variations, you must determine which requirements and variations will be a part of your security policy as exceptions. The exceptions need to be documented and approved by the stakeholders
· There is a basic difference between variations and exceptions. Variations are deviations from the security policy that are not approved, whereas exceptions are approved and documented modifications to the security policy
· Convert Variations to Exceptions

· You must examine each variation and determine whether the variation exists because of a requirement or because it is an implementation of the security policy. When variations are derived from a requirement, you must determine whether it is possible to address the requirement by following the security policy rules. If this is not possible, you must convert the variation to an exception. However, to keep exceptions to a minimum, you should not convert all variations to exceptions

· Keep exceptions to a minimum
· As a best practice, you should keep exceptions to a minimum. A large number of exceptions make the policy difficult to manage because of the risks and management overhead that exceptions introduce. Before granting an exception, you must evaluate the business and regulatory requirements and try to accommodate these requirements into the existing policy. Ensure that there is no low-cost solution other than the exception, and also ensure that the risk associated with the exception is acceptable. For example, consider a departmental application that requires a local desktop modem to be installed on a user’s computer. Rather than adding an exception if this requirement is not permitted in the security policy, you could determine a server-based solution that does not violate your security policy.

Guidelines for Evaluating the Impact of Exceptions
· Determine the security risk and cost of exceptions

· Exceptions can impact your security policy in terms of security and cost. For example, an accounting application might require that application users have owner rights on the SQL Server database. By addressing this requirement, you can assign a high permission level to these users. This permission level provides users with the ability to perform administrative operations in the database. This is a risk that can impact security.

· Determine the Exception Period

· When you accept each exception, your security policy document should identify the exception period. For example, if an external consultant requires sysadmin access to SQL Server, you can define a temporary exception for the duration of the consultant’s work. You can then revise this temporary exception when the consultant’s work is completed.

· Obtain Approval for Exceptions from Management

· Inform the business owners about the impact of the exceptions. Your SQL Server security policy should include the necessary approval from the organization’s stakeholders.

· Document the Exceptions

· Define a process to document the exceptions. Each exception should be documented along with the business process that requires it. You should analyze requirements to determine whether exceptions are approved. If you are not able to identify an alternative solution that meets the security policy requirements and the risk is minimal, the exception may be granted. Each granted exception should be reviewed periodically to determine whether the exception is still necessary to meet the requirements.

 Database Backup Standards
Guidelines for Database Backups and Restores
· Analyze Business Requirements
· For each database, determine the volume of data loss that is acceptable to the organization, and the amount of time that the organization can afford to spend on recovering the lost data. For this purpose, you should consult with the business stakeholders, who determine the value of the data for the organization's operations. For example, consider whether it would be necessary to halt applications and take a database offline to recover two rows containing order information, and if so, compare the value of this data with the time taken to recover it. Also, consider the option of recovering this data at a later time, when the system is less busy

· Categorize Databases

· A large organization could contain hundreds or even thousands of databases. There is no simple way to manage such complexity and develop a global data recovery strategy without categorizing these databases according to some criteria. You can classify your databases based on the criticality of data, but you should also consider the size and volatility of the information that they contain. Give each category a meaningful label, such as “Mission-critical database with high activity,” “Mission-critical database with low activity,” or “Non-critical database,” and ensure that you can place each database in the appropriate category

· Assign a Recovery Model for Each Category

· You should assign a recovery model for each category that you have identified. When assigning a recovery model, it is a good practice to evaluate the following requirements for each category:

· Minimize data loss.

· For the most critical databases, where you must minimize the effects of any data loss, you should use the full recovery model. This will enable you to recover data quickly and efficiently if you have the appropriate database and transaction log backups available

· Maximize performance of bulk operations

· If the database makes extensive use of bulk operations, you should use the bulk-logged recovery model to maximize performance. However, recovery times in the event of data loss can be longer than when using the full recovery model.

· Minimize maintenance costs

· For databases with less critical recovery and performance requirements, you can use the simple recovery model. This enables you to minimize the administrative overhead associated with these databases, but at the risk of losing the changes made after the last backup was taken

· Specify the Backups Required to Support Each Category

· To keep recovery times within business constraints, different categories of databases might require different combinations of backups and varying backup schedules. However, all recovery models require that you take a full database backup at regular intervals. You can then take combinations of transaction log and differential database backups according to the requirements of each category.

· For example, databases in the “Mission-critical database with high activity” category might require transaction log backups in addition to the full database backup, but no differential backups because these databases are very active and these backups would grow too quickly. However, databases in the “Mission-critical database with low activity” category might require less frequent full database backups, and regular differential backups
· Specify a Backup Frequency Policy for Each Category

· Specify a periodically repeating backup schedule. For example, databases in the “Mission-critical database with low activity” category might require you to take a full database backup once a week, a differential backup daily, and transaction log backups every 30 minutes

· Decide on a rotation strategy for stored backups that meets business needs and complies with the relevant laws and regulations. Regulatory requirements might need you to keep, for an indefinite period, backups containing environmental records or data that is the basis for financial statements. When trying to conserve storage media resources, you should only overwrite data that you do not need to retain permanently. For example, if you are storing backups on tape, you can keep full database backups for six months and differential database backups for one month, and then reuse the tapes as the space on them is freed

· You should back up the master database before adding a new database or deleting an existing database, and before making any global configuration changes to Microsoft SQL Server because these operations change the contents in the master database. In case the transaction goes wrong, this backup will help you restore SQL Server to the point where it was before the change was attempted. Additionally, in case you need to rebuild the entire server at some point in the future, you should back up the master database again after successfully adding or dropping a database

· Determine the Backup Security Policy for Each Category

· For each category of database, you should establish a policy for ensuring backup security. The policy should address all aspects of the backup process, including creating the backups, temporarily storing backups on-site, and transporting and storing backups in an off-site location. This is known as maintaining a chain of custody. The financial auditors will audit the chain of custody records for financial data

· Document the Backup Strategy

· You must document the backup strategies you have created so that you can communicate them to the administrators. For each database category, make sure that you include the scheduled backup frequency, the database recovery model, references to the external storage locations that contain the backup copies, and any other information required for performing restore operations. These documents are also of interest to financial auditors, who will assess the adequacy of the procedures for safeguarding the financial records of a company

· Do not include passwords in your documentation. You cannot be certain who will have access to the documentation, and thereby have access to the passwords and then the data

· Create a Validation and Testing Policy

· For each database category, you should create a validation and testing policy. This policy must include frequent checks of database restore procedures (at least once a week) and a verification that you can perform a full server restore at least once a year.

Guidelines for Analyzing Business Requirements for Data Recovery
· In the event of a server failure or a corrupt database, your data recovery strategy should ensure that you can recover missing data as quickly as possible. Some databases will be more critical than others, and in some cases it might not be necessary to recover lost data. You must be alert to management expectations and be prepared to clarify recovery requirements during the design of your strategy. The best way to obtain management commitment is to conduct a thorough analysis and present the true cost of compliance with the requirements. If you also present your solution in terms of its cost, management can decide on an acceptable policy for handling data loss and recovery in the event of a disaster. Use the following guidelines to analyze the business requirements for data recovery

· Determine the acceptable cost of potential data loss

· The value of the data and the impact of its loss will vary from database to database. Find out from business sources and the database stakeholders how critical such data loss might be to the business, and whether loss of data could result in legal or regulatory problems. After you interview these stakeholders, confirm your findings with management

· The best approach is to quantify the cost of such data loss in monetary terms, if possible. Such numbers are always estimates, but if you can provide or locate evidence that confirms this cost, it gives you a measure by which you can compare databases and prioritize their recovery needs

· Determine the time and cost of server downtime

· It takes time to recover a database, and depending on the recovery strategy you use, the database might not be available for some time. For each database, determine the maximum time period for which it can be unavailable without significantly affecting the organization’s functioning. For example, critical data must be recoverable immediately, whereas less important data can often be recovered after some delay. Quantifying the recovery time as a monetary cost helps you to estimate the value of the data.
Guidelines for Criteria of Categorizing Databases for Backup and Restore
· There are many ways of categorizing databases. You can develop a classification system for the backup and restore of your databases based on the data recovery requirements you have determined for them. If the number of databases in your organization is large, using a classification system can clarify your backup and restore strategies and help to simplify your database backup and restore tasks, resulting in lower administrative costs. The following are the most important criteria for classifying databases

· Value

· You should determine the significance of the data held in a database, and identify those databases that are the most critical. Take into consideration the role that the data plays in the organization, and the estimated cost of data loss and data unavailability during recovery. The end result might be categories such as “Mission-critical databases,” “Department-critical databases,” or “Non-critical databases.” Mission-critical and department-critical databases might both require backups of transaction logs, but non-critical databases might require only database backups

· Volatility

· Very active databases might require a different backup and restore strategy than relatively inactive databases. For a database with constantly changing data, differential backups are less useful than regular full database backups and transaction log backups

· Size

· The size of a database can impact the options available for performing backup and restore operations. Large databases can take a long time to back up and restore. You can use the size of a database (small, medium, or large, for example) to determine the proper combinations of backups you should take as a part of your backup strategy. A large database might be backed up only once per week, or might have different filegroups backed up each night. A smaller database might be fully backed up each night.

Guidelines for Protecting Backups

· Ensure that the off-site storage locations are secure and available

· Your off-site storage locations must be physically secure and available whenever required. For example, if you have a contract with a secure off-site storage facility, make sure that they can retrieve your data quickly and at any time. The storage facility should be far enough from your production location so that it is not vulnerable to the same type of disaster, but it should be close enough for you to obtain your backup storage media in a reasonable amount of time

· Use a Secure Method of Delivery to the Backup Storage Destination

· When you deliver your backups to an off-site storage location, make sure that the delivery process is secure. Using common carriers and freight handlers to deliver backups might not be a secure method of delivery. Instead, use a carrier that guards data appropriately and takes security procedures into account when in transit

· Protect Your Backups by Using Passwords

· You can protect your database backups by assigning a password to them. However, this does not guarantee the security of the backup because a password-protected backup tape or file can still be read at the binary level, bypassing the password

· Encrypt Your Backup Files and Tapes

· This is probably the most effective method that you can use to protect your backup data. SQL Server does not provide a mechanism for directly encrypting backups. However, several third-party products enable you to encrypt backups, and you can apply encryption to a backup file when it is on disk. Additionally, Microsoft Windows Server 2003 offers an encryption service called Encrypting File System (EFS) for encrypting backups. Encrypted data has the advantage of not being subject to regulations such as California’s Senate Bill 1386, which requires public disclosure when confidential personal information is compromised.

Disaster Recovery Standards
Guidelines for Maintaining a Recovery Plan
· Communicate the Recovery Plan
· You should ensure that the database disaster recovery plan is available to all the concerned people in your department or organization. You should consider giving your database administrators copies of the plan on secure USB keys, which you can periodically refresh. When you have multiple copies of the plan in circulation, you should ensure that you have one place, such as a source code control system, where the original and the latest copy of the plan are kept

· Establish a Policy for Periodically Rehearsing the Recovery Plan

· The time required to execute a particular step in a disaster recovery plan might differ when the steps are executed under stress. The best way to ensure a smooth recovery process is to properly rehearse the recovery plan. You should make this a high-priority task and establish policies that rehearse the plan regularly enough to keep it up to date. However, you should ensure that the rehearsals do not interfere with normal work requirements

· Your plan will work much better if the staff is thoroughly familiar with the steps involved. Rehearsing the plan regularly will also help you to assess how well the steps in the recovery plan actually work. When rehearsing the plan, you should vary the disaster scenarios to determine how well your plan works in different situations. Based on your observations from the rehearsals, you can update the recovery plan

· Establish a Policy for Periodically Validating the Recovery Plan

· Verify that a database restore was successful

· It is not enough to verify that you can query the database. You must also verify that users can log on to the server and access the correct data

· Verify that the correct and most recent data was restored

· Consider including Transact-SQL scripts in the plan to verify the timeliness of the restored data. This means that you need to verify that the most recent or up-to-date data was restored

· Determine and communicate the extent of any data loss

· In some cases, you might not be able to restore data to the exact point of the disaster. You might lose data that was entered or changed during a certain period. For example, if you are using log shipping and you were not able to save the active part of the transaction log before the disaster, you might lose some data

· Validate recovery success criteria

· The only certain method of verifying that the recovery was successful is to have clear criteria that you can apply to test the resulting databases for integrity. You should ensure that the resulting recovery supports the required applications. You might also need to coordinate with the organization's broader recovery plan

· To ensure that the operators responsible for backing up and restoring data cannot manipulate financial or other sensitive data, you can implement a policy of separation of duties. In this case, you will need to include the appropriate staff that can run applications in the recovery plan

· Validate the contact list, software locations, and hardware locations.

· In addition to the technical steps involved in recovering the data, you must ensure that the supporting information is up to date. You need to conduct periodical checks to validate that people in the contact list still have the same phone or extension number, and hold the same position in the organization. You must also ensure that backup hardware and software are located where you expect to find them

· Revise the Recovery Plan Based on Periodic Rehearsals And Validations
· Database recovery plan rehearsals, along with actual disaster recoveries, give you essential feedback about the usefulness and relevance of your recovery processes and documentation. Incorporating that feedback into the recovery plan document is the most effective way of keeping your plan up to date and being prepared for a disaster

· Rehearse and Revise the Recovery Plan When the Infrastructure Changes

· An organization's infrastructure keeps changing based on technical and business requirements. When you add new databases, applications, hardware, or software, or upgrade to new releases of software, you must verify that the recovery plan still works, and update it as necessary.

Guidelines for Components of a Database Disaster Recovery Plan
· Contact List

· You can classify contacts in the following ways

· Key managerial personnel in your own department

· These contacts are typically responsible for notifying other members in the organization about the occurrence of a disaster

· Technicians and other staff responsible for helping in the recovery of the system

· These contacts include hardware service technicians, enterprise application service staff, and possibly spare part suppliers and transport agencies in the case of plans that require quickly obtaining replacement equipment. You should also include backup personnel who you can notify in case you cannot contact the first level of key individuals

· Personnel and departments affected by the disaster

· These staff need to adopt an alternative mode of operation until the problem is resolved. For example, if you detect that the database supporting a shipment-tracking system of the freight-forwarding department has failed, you should notify the designated contact for that department, who can in turn notify the customer service staff

· You must also have a mechanism for providing access to the database administrator’s password in case the database administrator or the designated backup member of the staff is unavailable. You should treat this password with all the sensitivity accorded to critical financial data
· Decision Tree

· A comprehensive database disaster recovery plan must provide key details for performing a recovery in a wide variety of circumstances. You should document the various circumstances that can arise, and the detailed steps to take to resolve each situation

· For a particular type of disaster, you can often consolidate many different recovery paths into a decision tree. A well-developed and tested decision tree can help reduce errors and speed up the recovery process

· Recovery Success Criteria

· You should include a set of criteria for verifying that a particular recovery process is complete and successful. You might think that the recovery process is over after you have restored the databases that you are responsible for, but the applications may require peripheral connectivity and supporting items to access the databases. You should keep in mind that the recovery process is not complete until the applications that use the databases are running normally

· Location of Backups, Software, Hardware, Keys and Activation Processes

· You should document the locations of backups, software and hardware, serial numbers, and software activation keys or activation and configuration processes. In addition, you should include documentation describing how to rebuild servers and reinstall software. Be sure to include information about software version numbers and the service packs required. If you are responsible for maintaining database server hardware, you should also include the locations of spare parts, such as replacement disks, memory, and processors

· Infrastructure Documentation

· The database disaster recovery plan could include server hardware specifications and configuration information. However, the plan might not contain related documents such as infrastructure diagrams and application process documents. You should make sure that the plan specifies the location of the most recent versions of these documents.

Guidelines for Creating a Disaster Recovery Decision Tree
· Classify Database Loss Scenarios

· Wide-ranging natural disaster.
· An earthquake, volcanic eruption, or flood can affect more than one location in a single geographic area. Therefore, the corresponding recovery plan must not rely on using backups, software, or hardware maintained locally

· Loss of a single server or location
· A fire or a serious power outage would probably affect a single office or building, or the immediate locality. The recovery plan must designate another site to replace the lost server or location quickly. The replacement site may be located close to the original site

· Data corruption or loss in a single database
· This can result from a disk failure, a user error, or an application error. The recovery plan should try to recover the missing data quickly and keep unaffected parts of the database available
· Loss of performance or service.

· This can result from failure of one or more database services providing access to the database. The database might be healthy, but inaccessible or running slow. The recovery plan must provide steps for identifying and restarting the failing service

· Security failure.

· Due to malfunctioning or malicious software, a virus attack, or a configuration error, the database might be operating with compromised security. The recovery plan must provide steps for rectifying security breaches and protecting data

· Prioritize Database Recovery Steps

· Identify the most critical databases.

· You must classify the importance of databases in terms of the losses that will be incurred if the databases are unavailable or if the data they contain becomes corrupt. You need to also consider any dependencies between the databases. For example, if your client database depends on a small configuration database, you will most likely have to restore the configuration database first even though the information that this database contains is not important from the economic point of view

· Identify critical processes

· Critical processes related to the databases can be just as important to restore as the databases themselves. Many business applications involve more than one database or more than one service, such as SQL Server Integration Services (SSIS), SQL Server Agent, and Microsoft Message Queuing. Some of these processes might be critical for the core business functionality of your applications, whereas others might be less important

· List recovery steps in the correct order based on business needs

· You need to identify the core business processes that are the most important and must be recovered first. Consider recovering the databases that support these processes as the first priority. In a large organization, you can also identify processes and their corresponding databases that have secondary or even tertiary importance.

· Establish Recovery Success Criteria

· It is important that you are able to verify the success or failure of each step in the recovery process. You must provide information that helps the staff performing each recovery operation to test the results of the operation. The decision tree must include the expected results, and the possible actions to take if these results do not occur. You can document these actions as branches in the tree or by references to other parts of the decision tree.

Guidelines for Documenting a Decision Tree
· When documenting a decision tree, provide enough detail for the database administrator to easily understand the steps and execute them under stressful conditions without having to make critical decisions. Use the following guidelines for documenting a decision tree
· Document the recovery strategy for each disaster scenario

· Each type of disaster requires a customized set of recovery steps. The most effective means of documenting these steps is to use a decision tree based on a flow chart or matrix. Although you can reference one decision tree from another, you should document the recovery strategy for each scenario separately

· The decision tree should specify the category of disaster, the likely symptoms (to help the administrator to verify the cause), and a series of commands and operations that the administrator should perform. Each command or operation should include information that helps the administrator to verify the success of the step and the action to be taken as each step succeeds or fails

· If a particular decision tree becomes too complex, you should consider dividing it into subtrees. If that is not possible, the scenario itself might be too complex, and you might need to break it down into smaller subscenarios

· Practice and record recovery times for each step

· You should document the expected time required to execute each major step in the recovery plan. Often, you can obtain estimates by rehearsing each major step in the plan by using realistic volumes of data and extrapolating the results, if necessary. By using these estimates, you can reliably predict the time required for the overall recovery process to be completed

· You must factor in the time required to replace hardware because recovery procedures can include replacement of hardware. If you do not have spare hardware, refer to your hardware support Service Level Agreement (SLA), which defines the maximum downtime that your service contract stipulates.
Database Maintenance Standards

Guidelines for Maintaining Updated Hot Fixes or Service Packs
· Understand the changes to be implemented in the update.

· Analyze and contextualize the changes in the update. Include the IT and all effected departments in the update process.

· Deploy and test the update in the development environment to analyze the impact on your applications.

· Document the corrections to be made to applications so that if the server information is lost, you can replicate the server environment and the interactions between the database server and the client applications

· Deploy and test the update in the test environment to analyze the impact on the production environment

· Deploy the update in the test environment and communicate server downtime to users

· Ensure that you include the performance and security implications in the tests that you execute against the new fix

· Deploy and test the update in the production environment.

· Imform users about server downtime before deploying and testing the update in the production environment.

· Document every test process and the test results.

References
Templates

· T-SQL

· Select

· Update

· Insert
· Delete

· Stored Procedure

· Trigger

· View

· Function.

· Error Handling.

Forms

· Request for Change Form

· Database Requirements

· Estimates
· Security

· Data

· User

· Encryption
· Backups
· Monitoring
· Backup and Restore

· Disaster Recovery

· Archival

· CLR
External References
[image: image2.png]

[image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11][image: image12]
Adventure Works Corporation Standards

Copyright © 2000 - 2017 Francis Apel All Rights Reserved. See http://www.sqlranger.com for details
PAGE

- 21 -

_1218958096.vsd
Developers create/alter scripts in development

Scripts are checked in to Source Safe

SQL Group schedules changes to Staging

Changes are made to Staging and requestors notified

Requestors test changes in staging and give final OK to move to production

Code is moved to production

Scripts

OK?

Changes are code reviewd by SQL team

Source Safe

NO

Developer notifies SQL team via Request for Change Form

Request for Change Form

OK?

Code is scheduled to move to production

YES

NO

Start

Stop

YES

Staging

Production

