Object Technology Source Code
Object Technology Source Code

Contents of Classes in Package objects

2public class Fridge

5public class Module

6public class Person

8public class Student extends objects.Person

11public class StoreCustomer extends Person

13public class BankCustomer extends Person

17public class LoyaltyCard

18public class StoreCard extends LoyaltyCard

19public class BonusCard extends StoreCard

19public class GoldCard extends StoreCard

20public class BankAccount

25public class CurrentAccount extends BankAccount

27public class SavingsAccount extends BankAccount

28public class AccountBase

35public class BankCustomerBase

38public class Bank

package objects;

import java.util.ArrayList;

import java.util.ListIterator;

/**

 * A Fridge has a temperature and contents and is capable of storing

 * items represented by Strings up to its maximum capacity (the number of

 * items it can hold)

 * A fridge has a fixed maximum and minimum temperature

 *

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class Fridge

{ /* Two Class Variables */

/** The maximum allowed temperature of the Fridge */

static int maxTemp = 6;

/** The minimum allowed temperature of the Fridge */

static int minTemp = -5;

/* Three Instance variables */

/** The temperature of the Fridge*/

private int temperature;

/** The capacity of the Fridge*/

private int capacity;

/** The contents of the Fridge*/

private ArrayList contents;

/** Creates an empty Fridge with given capacity and temperature

A Constructor or Instance Creation method */

public Fridge(int capacity, int temperature)

{ this.capacity = capacity;

if (temperature > maxTemp)

temperature = maxTemp;

if (temperature < minTemp)

temperature = minTemp;

this. temperature = temperature;

contents = new ArrayList();

}

/** Creates an empty Fridge with given capacity and the temperature set to 2

 * A Constructor or Instance Creation method */

public Fridge(int capacity)

{ this(capacity,2); }

/** Sets the temperature of the fridge to that specified if in range

 * otherwise no change is made */

public void setTemperature(int temperature)

{ if((temperature >= minTemp) && (temperature <= maxTemp))

this.temperature = temperature;

}

/** Returns the current temperature of the fridge */

public int getTemperature()

{ return temperature; }

/** Returns the current maximum allowable temperature of a fridge */

public int getMaxTemperature()

{ return maxTemp; }

/** Returns the minimum allowable temperature of a fridge */

public int getMinTemperature()

{ return minTemp; }

/** Returns the number of items the fridge can hold */

public int getCapacity()

{ return capacity; }

/** Returns the number of items in the fridge */

public int getUsedCapacity()

{ return contents.size(); }

/** Returns how many more items can be put in the fridge */

public int getSpareCapacity()

{ return capacity - contents.size(); }

/** Returns true if there are no items in the fridge else returns false*/

public boolean isEmpty()

{ return contents.isEmpty(); }

/** returns true if all of capacity is used else returns false*/

public boolean isFull()

{ return contents.size() == capacity; }

/** If there is space for the item then it is added to the fridge

 * otherwise it is not added */

public void addItem(String item)

{ if (!this.isFull())

contents.add(item); }

/** Returns a string comprising the fridge's temperature and capacity

 * together with each item in the fridge */

public String toString()

{ String contains ="Temperature = " + temperature + " Capacity = " +

 capacity + " contents = ";

ListIterator iterator = contents.listIterator();

while (iterator.hasNext())

contains = contains + ((String) iterator.next())+ ' ';

return contains;

}

/** Returns true if the fridge contains an item with the given description

 * and false otherwise */

public boolean containsItem(String description)

{ ListIterator iterator = contents.listIterator();

while (iterator.hasNext())

{ String next = ((String) iterator.next());

if (next.equals(description))

return true;

};

return false;

}

/** If the item with the given desciption is in the fridge it is removed

 * else the contents remain the same*/

public void removeItem(String description)

{ if (this.containsItem(description))

contents.remove(description);
}

/** Displays the fridge's temperature and capacity together with each item

 * in the fridge - one per line
*/

public void show()

{ System.out.println(this.toString());

 System.out.println(); }

}

 package objects;

/**

* This class models a Module with a code and title, the module may

* be studied by a Student.

 *

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class Module

{ /** The module code - usually a 4 letter 4 digit code such as COMP1005*/

private String code;

/** The module title */

private String title;

/** Creates a Module with given code and title */

public Module(String code, String title)

{ this.code = code;

 this.title = title;

}

/** Returns the Module's code number*/

public String getCode()

{ return code; }

/** Returns the Module's title */

public String getTitle()

{ return title; }

/** Sets the code of the Module to that specified */

public void setCode(String code)

{ this.code = code; }

/** Sets the title of the Module to that specified */

public void setTitle(String title)

{ this.title= title; }

/** Returns a String of the form "INFO1003 Object Technology" */

public String toString ()

{ return code + " " + title; }

/** Displays the details of a module in the format defined in the

 * toString method*/

public void show()

{ System.out.println(this.toString());}

}

package objects;

import java.lang.String;

/**

 * This Class models a Person with three attributes

* name (a word - string), age (a whole number - int), and gender

* (a character 'M' or 'F')

 *

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class Person

{ /** The Person's name */

protected String name;

/** The Person's age */

protected int age;

/** The Person's gender - 'M' or 'F' */

protected char gender;

/** Creates a Person with given name, age and gender. */

public Person(String name, int age, char gender)

{ this.name
= name;

this.age

= age;

this.gender = gender;

}

/** Sets the name of a person to that specified. */

public void setName(String name)

{ this.name = name; }

/** Returns the name of a person. */

public String getName()

{ return name; }

/** Sets the age of a person to that specified.. */

public void setAge(int age)

{ this.age = age; }

/** Returns the age of a person. */

public int getAge()

{ return age; }

/** Sets the gender of a person to that specified. */

public void setGender(char gender)

{ this.gender = gender; }

/** Returns the gender of a person */

public char getGender()

{ return gender; }

/** Returns a string comprising the name, age and gender of a

 * person e.g. "Joe Bloggs age 20 M". */

public String toString()

{ return name + " age " + age + " gender " + gender; }

/** Displays the name, age and gender of a person on the screen */

public void show()

{ System.out.println(this); }

}

package objects;

import objects.Module;

/**

* This class models a Student who is a Person who may register for

* up to 8 modules.

 * @see Person#Person(String, int, char)

 * @see Module#Module(String, String)

 *

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class Student extends objects.Person

{ /** The maximum number of modules that a student can register for is 8 */

private static int MAXMODULES = 8;

/** The attribute modules, an Array, which can hold up to 8 Module objects */

private Module[] modules;

/** Creates a student with specified name, age and gender registered for

 * no modules */

public Student(String name, int age, char gender)

{ super(name,age,gender); // Uses the constructor from the super-class Person

modules = new Module[MAXMODULES];

for (int pos = 0; pos < MAXMODULES; pos++)

modules[pos] = null;

}

/** Adds the module to the array of modules in the first available location */

private void addModule(Module module)

{ int pos = 0;

while ((modules[pos] != null))

pos++;

modules[pos] = module;

}

/** Returns true if the student has registered for less than the maximum

 * number of modules and false otherwise */

private boolean canTakeAnotherModule()

{ return (this.numberOfModules() < MAXMODULES); }

/** Register the student for the given module. If the student has not

 * registered for the module and can register for one more module

 * then the module is added to the student's list of modules. */

public void registerForModule(Module module)

{ if(! this.hasRegisteredForModule(module) && this.canTakeAnotherModule())

this.addModule(module);

}

/** Removes the module from the array of modules.

 * A Private method used by the withdrawFromModule method,

 * this may not be used in test programs or by other application programs */

private void removeModule(Module module)

{ boolean found = false;

for(int pos = 0; pos < MAXMODULES && !found; pos++)

if (modules[pos] != null)

if (modules[pos].getCode() == module.getCode())

{ modules[pos] = null;

found = true;

}

}

/** Removes the registration of the student for the module. */

public void withdrawFromModule(Module module)

{ if (this.hasRegisteredForModule(module))

this.removeModule(module);

}

/** Returns the number of modules for which the student has registered.*/

private int numberOfModules()

{ int count = 0;

for (int pos = 0; pos < MAXMODULES; pos++)

if (modules[pos] != null)

count++;

return count;

}

/** Returns the number of modules for which the student has registered.*/

public int getNumberOfModules()

{ int count = 0;

for (int pos = 0; pos < MAXMODULES; pos++)

if (modules[pos] != null)

count++;

return count;

}

/** Returns true if the student has registered for the <Module> and

 * false otherwise*/

public boolean hasRegisteredForModule(Module module)

{ for (int pos = 0; pos < MAXMODULES; pos++)

if ((modules[pos] !=null)

 &&(modules[pos].getCode().equalsIgnoreCase(module.getCode())))

return true;

return false;

}

/** Returns a string comprising the student's name age and gender

 * together with the names of each module the student has registered

 * for - one per line */

public String toString()

{ String moduleNameInfo;

moduleNameInfo = super.toString() + " has registered for " +

 this.numberOfModules() + " Modules";

if (this.numberOfModules() != 0)

{ moduleNameInfo += '\n';

for (int pos =0; pos < MAXMODULES; pos++)

if (modules[pos] != null)

moduleNameInfo = moduleNameInfo + modules[pos].toString() + '\n';

}

return moduleNameInfo;

}

public void show()

{ System.out.println(this.toString());
}

}

package objects;

/**

 * This Class models a StoreCustomer who is a Person who may own a StoreCard.

 * The StoreCustomer and StoreCard classes are linked to each other

 *

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class StoreCustomer extends Person

{ /** The StoreCard owned by the StoreCustomer - this may be null*/

private StoreCard card;

/** Creates a StoreCustomer with given name age and gender without

* a StoreCard */

public StoreCustomer(String name, int age, char gender)

{ super(name, age, gender);

card = null;

}

 /** If the StoreCustomer does NOT own a card then this links the StoreCustomer

 * to the StoreCard.Otherwise the StoreCustomer retains the current StoreCard

 */

public void setCard(StoreCard card)

{ if (this.canHaveCard())

 this.card = card;

}

/** This links the StoreCustomer to the StoreCard.

 * If the StoreCustomer already owns a StoreCard then this is repalce

 * by the new StoreCard */

public void setNewCard(StoreCard card)

{ this.card = card;
}

/** Returns the card owned by the customer - or null if no card is owned*/

public StoreCard getCard()

{
return card; }

/** Returns true if the customer has a card and false otherwise*/

public boolean hasCard()

{ if (card != null)

 return true;

else

return false;

}

/** Returns true if the customer does not have a card and false otherwise*/

public boolean canHaveCard()

{ if (card == null)

 return true;

else

return false;

}

/** Returns a string of the form "Joe Bloggs age 20 M has card 1234 with 100

 * points" showing details of the StoreCustomer and the StoreCard owned -

 * if any */

public String toString()

{ String cardInfo;

if (this.hasCard())

cardInfo = super.toString() + " has card " + card.getCardNumber() + "

 with " + card.getPoints() + " points";

else

cardInfo = super.toString() + " has no Card";

return cardInfo;

}

}

package objects;

/** A BankCustomer is a Person who can have a maximum of three BankAccounts.

 * (The code here can be read to show the use of loops and if else statements

 * nested control structures and Array manipulation.)

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class BankCustomer extends Person

{ /** The maximum number of BankAccounts a BankCustomer can

 * have at any one time */

static int MAXACCOUNTS = 3;

/** The attribute accounts, an Array, which can hold up to 3

 * BankAccount objects */

private BankAccount[] accounts;

/** Creates a BankCustomer with the given name, age and gender.

 *
A BankCustomer is created with no BankAccounts. */

public BankCustomer(String aName, int anAge, char aGender)

{ super(aName,anAge,aGender);

accounts = new BankAccount[MAXACCOUNTS];

for(int position = 0; position < MAXACCOUNTS; position++)

accounts[position] = null;

}

/** Adds the given account to the customer's collection of accounts.

 * Pre-condition : The customer has less than the maximum number

 * of accounts allowed. */

public void addAccount(BankAccount anAccount)

{
int position = 0;

while((position < MAXACCOUNTS) && (accounts[position] != null))

position++;

//if (position < MAXACCOUNTS)

 accounts[position] = anAccount;

}

/** Returns the number of accounts owned by the customer. */

public int numberOfAccounts()

{ int count = 0;

for (int position = 0; position < MAXACCOUNTS; position++)

if (accounts[position] != null)

count++;

return count;

}

/** Returns the number of 'open' accounts owned by the customer. */

public int numberOfOpenAccounts()

{ int count = 0;

for(int position = 0; position < MAXACCOUNTS; position++)

{

if(accounts[position] != null)

{ if(accounts[position].isOpen())

count++;

}

}

return count;

}

/** Returns true if the customer has some open accounts and false

 * otherwise. */

public boolean hasOpenAccounts()

{

for (int position = 0; position < MAXACCOUNTS; position++)

if ((accounts[position] != null) && (accounts[position].isOpen()))

return true;

return false;

}

/** Returns true if all of a customers accounts can be closed. A customer has

 * a collection of accounts, an account is responsible for knowing whether it

 * can be closed. Returns false if the customer has an account that cannot be

 * closed. */

public boolean canCloseAllAccounts()

{

for (int position = 0; position < MAXACCOUNTS; position++)

if (accounts[position] != null)

 if (!accounts[position].canBeClosed())

return false;

return true;

}

/** Returns true if all of a customers accounts can and are closed. A customer

 * has a collection of accounts, an account is responsible for closing

 * itself. Returns false if the customer has an account that cannot be

 * closed.

 */

public boolean closeAllAccounts()

{ if(this.canCloseAllAccounts())

{
for(int position = 0; position < MAXACCOUNTS; position++)

if(accounts[position] != null)

accounts[position].close();

return true;

}

return false;

}

/** Returns true if the number of accounts owned by the customer

 * is less than the maximum allowed and false otherwise. */

public boolean canOpenAnotherAccount()

{ return this.numberOfAccounts() < MAXACCOUNTS; }

/** Returns a string describing the name of the customer, the number of

 * accounts owned by the customer and the number of accounts more they

 * can open. */

public String canOpenMoreAccounts()

{ String aString = new String();

aString = this.getName() + " has " + this.numberOfAccounts() + " accounts

 can have ";

return aString += MAXACCOUNTS - this.numberOfAccounts() + " more";

}

/** Returns true if the BankCustomer has an account

 * with the given number and false otherwise. */

public boolean hasAccount(int aNumber)

{ for (int position = 0; position < MAXACCOUNTS; position++)

 if (accounts[position].getAccountNumber() == aNumber)

 return true;

return false;

}

/** Returns the account with the specified account number if it

 * is one of those owned by the BankCustomer otherwise returns null. */

public BankAccount getAccount(int aNumber)

{ for (int position = 0; position < MAXACCOUNTS; position++)

 if (accounts[position].getAccountNumber() == aNumber)

 return accounts[position];

return null;

}

/** Returns true if the specified account is removed. A customer

 * has a collection of accounts, an account is responsible for

 *
closing itself. If an account is closed then it is removed. */

public boolean removeAccount(int aNumber)

{
BankAccount anAccount;

if(this.hasAccount(aNumber))

{ anAccount = this.getAccount(aNumber);

anAccount.close();

if(anAccount.isClosed())

{ this.removeAccount(anAccount);

return true;

}

}

return false;

}

/** Removes an account of a customer.

 * Pre-condition:
the account is 'closed'.
*/

private void removeAccount(BankAccount anAccount)

{
for(int position = 0; position < MAXACCOUNTS; position++)

if(accounts[position] == anAccount)

accounts[position] = null;

}

/** Returns true if all the accounts of a customer are removed. A customer is

 * responsible for knowing whether it has closed all of its accounts. If a

 * customer has closed all of its accounts then the customer is responsible

 * removing all of its accounts. */

public boolean removeAllAccounts()

{
if(this.closeAllAccounts())

{ this.removeAccounts();

return true;

}

return false;

}

/** Removes all the accounts of a customer.

 * Pre-condition:
all accounts are 'closed'.
*/

private void removeAccounts()

{
for(int position = 0; position < MAXACCOUNTS; position++)

accounts[position] = null;

}

/** Returns a string describing a BankCustomer. Responsibility for describing

 details of the customer
is delegated to the super class of the customer. A

 customer is responsible for knowing if it has some accounts. If the

 customer has some accounts then each account is responsibile for

 displaying some details
of itself, if the customer has no accounts then "

 has no accounts" is returned. */

public String toString()

{ String accountInfo;

if (this.numberOfAccounts() == 1)

accountInfo = super.toString() + " has 1 account\n";

else

accountInfo = super.toString() + " has " + this.numberOfAccounts() + "

 accounts " + '\n';

for(int position = 0; position < MAXACCOUNTS; position++)

{ if(accounts[position] != null)

accountInfo += accounts[position].someDetails()+'\n';

}

return accountInfo;

}

}

package objects;

/**

 * A Class modelling a high street store LoyaltyCard.

 * In his model a LoyaltyCard records 1 point for every pound spent.

 * Points may be exchanged in multiples of 250 for vouchers worth 250p

 * A card must be registered to one Person and may not be passed on to another

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class LoyaltyCard

{ /** The number of points currently on the card*/

protected int points;

/** The card number - automatically generated starting at 1234 */

protected int cardNumber;

/** The Person who owns the card */

protected Person owner;

/** Used to generate the next card number automatically*/

private static int nextNumber = 1234;

/** Creates a LoyalyCard for the given Person with 0 points and an

 * automatically generated cardNumber */

public LoyaltyCard(Person owner)

{ this.points = 0;

this.cardNumber = nextNumber++;

this.owner = owner;

}

/** Returns the Person who owns the card*/

public Person getOwner()

{ return owner; }

/** Returns the card number */

public int getCardNumber()

{
return cardNumber; }

/** Increases the points on the card by 1 for each pound spent */

public void addPoints (int money)

{ points = points + money;

}

/** Returns the number of points currently on the card */

public int getPoints()

{ return points; }

/** Returns the number of vouchers (1 per 250 points) that may be taken for

 * the number of points currently on the card and reduces the points total

 * by 250 for each voucher */

public int takeVouchers()

{ int vouchers;

vouchers = points / 250;

points = points % 250;

return vouchers;

}

/** Returns the number of vouchers (1 per 250 points) that may be taken for

 * the number of points currently on the card. The points on the card

 * remain unchanged */

public int numberOfVouchersAvailable()

{ return points / 250; }

/** Returns a string of the form "Card Number 1234 points 325 owned

 * by Fred" */

public String toString()

{ return "card # " + cardNumber + " points = " + points + " owned by " +

 owner.getName(); }

/** Displays the details of a card (Number and points) and the

 * details (Name age and gender) of its owner on the screen */

public void show()

{ System.out.println(this.toString()); }

}

package objects;

/** A StoreCard is a LoyaltyCard that is also linked to its owner,

 * a StoreCustomer

 * This class simply implements that link in the constructor

 *

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class StoreCard extends LoyaltyCard

{

 /** Creates a StoreCard and links it to the StoreCustomer by whom it is owned

 * Pre-Condition - The StoreCustomer must not already have a StoreCard. */

public StoreCard(StoreCustomer owner)

{ super(owner);

owner.setCard(this);

}

}

package objects;

/**

 * A BonusCard is a StoreCard that gains 10% extra points for every £100 spent

 * e.g. When £200 is spent 220 points are gained

 * This is implemented by over-riding the addPoints methods with a new

 * implementation

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class BonusCard extends StoreCard

{

/**Creates a BonusCard linked to the StoreCustomer by whom it is owned*/

public BonusCard(StoreCustomer owner)

{ super(owner);
}

 /** Increases the points on the card by 1 for each pound spent and adds

 * an extra 10% points for every £100 spent. e.g. £350 would give 350 points

 * + 35 points */

public void addPoints (int money)

{ points = points + money + (money/100)*10; }

}

package objects;
/**

 * A GoldCard is a StoreCard that gains an extra 250 points for every 1000

 * points accumulated. This is implemented through an additional attribute set

 * in the constructor and by over-riding the addPoints method

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class GoldCard extends StoreCard

{ /** Stores an accumulated total of all points accrued abd is used to compute

 * 250 point bonus Each time the totalPoints attribute crosses a 1000

 * boundary */

/** The flag that allows or prevents the results of messages to be displayed */

 public int totalPoints;
 /** Creates a GoldCard linked to the StoreCustomer by whom it is owned

 * totalPoints is set to 0 */

public GoldCard(StoreCustomer owner)

{ super(owner);

 totalPoints = 0;

}

 /** Increasing the points on the card by 1 for each pound spent and gives

 * an extra 250 points for every 1000 points accumulated */

public void addPoints (int money)

{ if (((totalPoints + money)/1000) > (totalPoints/1000))

 money = money + (250 * (1 + money / 1000));

totalPoints +=money;

points +=money;

}

}

package objects;

/**

 * A BankAccount has an account number, a balance, and an owner who is a

 * BankCustomer.

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class BankAccount

{ /** Used to record the next number to be used for a bank account */

static int nextNumber = 1001;

/** The balance of the account */

protected double balance;

/** The account number is generated automatically, starting at 1001 */

protected int accountNumber;

/** The BankCustomer who owns the account */

protected BankCustomer owner;

/** Indication of whether the state of the account is 'open'. An open account

 * can undertake credit and debiting transactions. An account that is not

 * 'open' is in a 'closed' state. A closed account cannot undertake any

 * credit or debiting transactions. An account can only be 'closed' if the

 * balance of the account is zero. An account that is not closed is 'open'.

 */

protected boolean open;

/* Creates an account for a bank customer with the given balance. A new

 * account is 'open', the account number is automatically generated. The

 * account owner is responsible for adding the account to its collection of

 * accounts.

 *
Pre-condition : The customer does NOT have 3 accounts. */

public BankAccount(BankCustomer aCustomer, double aBalance)

{ owner

= aCustomer;

balance

= aBalance;

open

= true;

accountNumber = nextNumber++;

 // Assignes the next number then adds 1 ready for the next account

owner.addAccount(this);

 // Link the owner to this account

}

/** Creates a BankAccount for the given bank customer with a balance of zero.

 */

public BankAccount(BankCustomer aCustomer)

{ this(aCustomer,0.0); }

/** Increases the balance by the given amount. */

private void increaseBalance (double anAmount)

{ balance += anAmount;}

/** Decreases the balance by the given amount. */

private void decreaseBalance(double anAmount)

{ balance -= anAmount; }

/** Returns the account number of the account. */

public int getAccountNumber()

{ return accountNumber; }

/** Returns the balance of the account. */

public double getBalance()

{
return balance; }

/** Returns the bank customer who owns the account. */

public BankCustomer getOwner()

{
return owner;
}

/** Returns a string "Bank account ". Subclasses should override. */

public String details()

{ return "Bank account \t\t"; }

/** Returns a string describing some details of a bank account. The account is

 *
responsible for knowing whether it is 'open'. If the account is open the

 *
account will display its details and a string in the form "# 1001 balance

 *
= 50", if not open, details of the closure will be returned.*/

public String someDetails()

{ if(this.isOpen())

return this.details() + "# " + accountNumber + " balance = £" + balance;

return this.details() + "# " + accountNumber + this.closureDetails();

}

/** Returns a string displaying the balance of the account in £'s. */

private String displayBalance()

{
return "£ " + balance;
}

/** Returns a string displaying the owner of the account. */

private String displayOwner()

{
if(this.isOpen())

return " owned by " + owner.getName();

return " ";

}

/** Returns a string describing some details and the owner of the account. */

public String toString()

{ return this.someDetails() + this.displayOwner();
}

/** Returns true if the BankAccount is open and false otherwise. */

public boolean isOpen()

{ return open; }

/** Returns true if the BankAccount is closed and false otherwise. */

public boolean isClosed()

{
return !this.isOpen(); }

/** Returns true if an account can or is closed. An account can be

 * closed if the balance is zero otherwise false is returned. */

public boolean canBeClosed()

{ return this.isOpen() && (balance == 0); }

/** An account that can be put in a 'closed' state will be closed. A closed

* account cannot undertake any further credit or debiting transactions.

* An account can only be 'closed' if the balance of the account is zero.

* An account that is not closed is 'open'. Attempts to close a closed

* account will result in no change in state of an account. */

public void close()

{ if(this.isOpen() && (balance == 0))

open = false;

}

/** Returns a string describing details of the 'closed' state of an account. A

 * closed account cannot undertake any credit or debiting transactions. An

 * account can only be 'closed' if the balance of the account is zero. An

 * account that is not closed is 'open'. */

public String closureDetails()

{ if(balance != 0)

return " cannot close, balance is " + this.displayBalance() + " balance

 must be zero to close ";

else

if(this.isClosed())

return " - account is closed ";

else

return " can close - balance is £0.00 ";

}

/** Returns a string confirming the credit of an amount of money to the

 *
account. An account is responsible for knowing whether it can credit an

 *
amount. If it can then the account delegates to itself the responsibility

 * of increasing the balance by the amount. If the account cannot be credited

 * by the amount then the account is closed and cannot be debited. */

public String credit(double anAmount)

{ String creditConfirmation = this.details() + "# " + this.getAccountNumber();

if(this.canCredit())

{ this.increaseBalance(anAmount);

return creditConfirmation += " : credited with £" + anAmount;

}

else

return creditConfirmation += " : cannot debit by £" + anAmount +

 this.closureDetails();;

}

/** Returns true if the bank account can be credited by checking if the

* account is open. An account is responsible for knowing whether it is open.

* Subclasses may override. */

public boolean canCredit()

{ return this.isOpen(); }

/** Returns a string confirming the debit of an amount of money from the

 *
account. An account is responsible for knowing whether it can debit an

 *
amount. If it can then the account delegates to itself the responsibility

 * of decreasing the balance by the amount. If the account cannot be debited

 * by the amount then the account checks if it is open, an open account that

 * cannot be debited has 'insufficient funds'. If not open the account is

 * closed and cannot be debited. */

public String debit(double anAmount)

{ String debitConfirmation = this.details() + "# " + this.getAccountNumber();

if(this.canDebit(anAmount))

{

this.decreaseBalance(anAmount);

return debitConfirmation += " : debited by £" + anAmount;

}

else

if(this.isOpen())

return debitConfirmation += " : cannot debit by £" + anAmount + " -

 insufficient funds ";

else

return debitConfirmation += " : cannot debit by £" + anAmount +

this.closureDetails();

}

/** Returns true if the account can be debited by an amount of money. An

 *
account is
responsible for knowing its balance and whether it is open. If

 *
the amount to be debited is less than or the same as the balance of the

 * bank account and the acount is open then the account will not go overdrawn

 * and can be debited. Subclasses may override. */

public boolean canDebit(double anAmount)

{

if(anAmount <= balance && this.isOpen())

return true;

else

return false;

}

/** Returns a string confirming the transfer of an amount of money from one

 *
account to another account. The account the money transfers to is the

 *
'crediting' account. An account is responsible for knowing whether it can

 *
debit or can credit an amount. If the debiting account can be debited and

 * the crediting account can be credited then the transfer will be

 * successful.The account delegates to itself the responsibility of debiting

 * itself by the amount, the crediting account credits itself by the amount.

 * If the account cannot be debited or the crediting account cannot be

 * credited then the transfer will not occur. */

public String transfer(double anAmount, BankAccount

 creditingAccount)

{ String debitConfirmation

= new String();

String creditConfirmation

= new String();

if(this.canDebit(anAmount))

{ if(creditingAccount.canCredit())

{ debitConfirmation = this.debit(anAmount) + "\n";

creditConfirmation = creditingAccount.credit(anAmount);

return "\nTransfer successful \n" + (debitConfirmation +

creditConfirmation);

}

}

else

debitConfirmation += this.details() + "# " + this.getAccountNumber() + " :

cannot debit by £" + anAmount + " ";

if(!creditingAccount.canCredit())

creditConfirmation += this.details() + "# " +

creditingAccount.getAccountNumber() + " : cannot credit with £" +

anAmount;

return "\nTransfer unsuccessful \n" + (debitConfirmation +

creditConfirmation);

}

}

package objects;

/**

 * A CurrentAccount is a BankAccount with an overdraft limit (£100 by default).

 *

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class CurrentAccount extends BankAccount

{ private double overdraftLimit;

/** Creates a CurrentAccount for the given BankCustomer with a given balance

 * and overdraft limit. */

public CurrentAccount(BankCustomer anOwner,

 double aBalance, double anOverdraftLimit)

{ super(anOwner, aBalance);

this.overdraftLimit = anOverdraftLimit;

}

/** Creates a CurrentAccount for the given BankCustomer with

 * a balance of zero and an overdraft limit of £100. */

public CurrentAccount(BankCustomer anOwner)

{ this(anOwner,0.0,100.0); }

/** Returns the overdraftLimit. */

public double getOverdraftLimit()

{
return overdraftLimit;
}

/** Sets the overdraft limit to the given value. */

public void setOverdraftLimit(double aLimit)

{
this.overdraftLimit = aLimit; }

/** Returns true if there are sufficient funds to debit a current account. A

 *
current account is responsible for knowing its balance, overdraft limit

 *
and if it is open. The specified amount can be debited if the amount to be

 * debited is less than or equal to the balance plus the limit of the account

 * and the account is open. Overrides the method with the same
signature in

 * BankAccount. */

public boolean canDebit(double anAmount)

{
if(anAmount <= (balance + overdraftLimit)&& this.isOpen())

return true;

else

return false;

}

/** Returns a string "Current account " */

public String details()

{ return "Current account\t"; }

/** Returns a string describing a CurrentAccount. A current account knows if

 *
it is open,if open responsibility for describing the account is delegated

 *
to the super class of the account and details about the overdraft limit

 * are displayed. If not open responsibility for describing the account is

 * delegated to the super class of the account. */

public String toString()

{ if(this.isOpen())

return super.toString() + " overdraft limit = £" + overdraftLimit;

return super.toString();

}

}

package objects;

/**

 * A SavingsAccount is a BankAccount with an interest rate (2.5% by default).

 *

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class SavingsAccount extends BankAccount

{ private double interestRate;

/** Creates a SavingsAccount for the given BankCustomer with a

 * given balance and interestRate. */

public SavingsAccount(BankCustomer anOwner,

 double aBalance, double anInterestRate)

{ super(anOwner, aBalance);

this.interestRate = anInterestRate;

}

/** Creates a SavingsAccount for the given BankCustomer with

 * a balance of zero and an interestRate of 2.5%. */

public SavingsAccount(BankCustomer anOwner)

{ this(anOwner,0.0,2.5); }

/** Returns the interest rate. */

public double getinterestRate()

{
return interestRate;
}

/** Sets the interest rate to the given value. */

public void setInterestRate(double aRate)

{
interestRate = aRate; }

/** Adds interest at the current rate to the balance. */

public void addInterest()

{
balance = balance * balance * interestRate / 100.0; }

/** Returns a string "Savings account " */

public String details()

{ return "Savings account\t"; }

/** Returns a string describing a SavingsAccount. A savings account knows if

 * it is open, if open responsibility for describing the account is delegated

 * to the super class of the account and details about the interest rate of

 * the account are displayed. If not open responsibility for describing the

 * account is delegated to the super class of the account. */

public String toString()

{ if(this.isOpen())

return super.toString() + " interest rate = " + interestRate + '%';

else

return super.toString();

}

}

package objects;

import java.util.ArrayList;

import java.util.ListIterator;

/** An AccountBase contains a list of BankAccounts either CurrentAccounts or

 * SavingsAccounts each of which is identified by a unique accountNumber.

 * @version 4

 * @date August 2002

 * @author Ian Smith & Jon Bennett

 */

public class AccountBase

{ private ArrayList accounts;

/** Creates an AccountBase, containing an empty list of

 * BankAccount objects and bankAccount subclasses. */

public AccountBase()

{ accounts = new ArrayList(); }

/** Returns an ArrayList, a collection of all the accounts in the AccountBase.

 */

private ArrayList getAccounts()

{ return accounts; }

/** Returns the number of accounts. An account base has a list of accounts.

 * The list of accounts is responsible for knowing its size. */

public int numberOfAccounts()

{
return accounts.size(); }

/** Returns true if there are no accounts. A bank account base has a list of

 * accounts. The list of accounts is responsible for knowing whether it is

 * empty. */

public boolean isEmpty()

{ return accounts.isEmpty();
}

/** Returns false - the capacity is restricted by memory only and is not

 * checked. */

public boolean isFull()

{ return false; }

/** Returns a string indicating whether a new bank account has been added to

 * the bank. A bank account base has a list of accounts. If a customer can

 * open another account then a new bank account is created, the account base

 * is responsible for adding the account to itself.

 * Pre-condition : that the given customer is an existing customer of the

 * bank. */

public String addNewBankAccountFor(BankCustomer aCustomer)

{ BankAccount anAccount;

if (aCustomer.canOpenAnotherAccount())

{
anAccount = new BankAccount(aCustomer);

this.addAccount(anAccount);

return "Account # " + anAccount.getAccountNumber() + " added";

}

return aCustomer.canOpenMoreAccounts();

}

/** Returns a string indicating whether a new current account has been

 * added to the bank. A bank account base has a list of accounts. If a

 * customer can open another account then a new current account is created,

 * the account base is responsible for adding the account to itself.

 * Pre-condition : that the given customer is an existing customer of the

 * bank. */

public String addNewCurrentAccountFor(BankCustomer aCustomer)

{ CurrentAccount anAccount;

if (aCustomer.canOpenAnotherAccount())

{
anAccount = new CurrentAccount(aCustomer);

this.addAccount(anAccount);

return "Account # " + anAccount.getAccountNumber() + " added";

}

return aCustomer.canOpenMoreAccounts();

}

/** Returns a string indicating whether a new savings account has been added

 * to the bank. A bank account base has a list of accounts. If a customer can

 * open another account then a new savings account is created, the account

 * base is responsible for adding the account to itself.

 * Pre-condition : that the given customer is an existing customer of the

 * bank. */

public String addNewSavingsAccountFor(BankCustomer aCustomer)

{ SavingsAccount anAccount;

if (aCustomer.canOpenAnotherAccount())

{
anAccount = new SavingsAccount(aCustomer);

this.addAccount(anAccount);

return "Account # " + anAccount.getAccountNumber() + " added";

}

return aCustomer.canOpenMoreAccounts();

}

/** Adds an account to the account base. An account base has a list of

 * accounts. This list is responsible for adding accounts to itself.

 *
Pre-condition : that the given customer who will own the new

 *

 account is an existing customer of the bank.

 * that the customer can open another account. */

private void addAccount(BankAccount anAccount)

{ accounts.add(anAccount); }

/** Returns true if an account is stored in the acount base or returns false.

 * An account base has a list of accounts. The account base compares

 * each account in its list of accounts with the given account. */

public boolean includesAccount(BankAccount anAccount)

{
ListIterator iterator = accounts.listIterator();

while (iterator.hasNext())

if (((BankAccount)iterator.next())== anAccount)

return true;

return false;

}

/** Returns a true if aa account with the given number is in the acount base

 * or returns false. An account base has a list of accounts. An account is

 * responsible for knowing its number. The account base gets the number of

 * each account in its list of accounts and compares each number with the

 * given number. */

public boolean includesAccount(int aNumber)

{ ListIterator iterator = accounts.listIterator();

while (iterator.hasNext())

if (((BankAccount)iterator.next()).getAccountNumber()== aNumber)

return true;

return false;

}

/** Returns an account with the given number or returns null. An account base

 * has a list of accounts. An account is responsible for knowing its.

 * accountNumber The account base gets the accountNumber of each account in

 * its list of accounts and compares each acontNumber with the given number.

 * If an account with the given number is found then the account is returned.

 */

public BankAccount getAccount(int aNumber)

{ BankAccount anAccount;

ListIterator iterator = accounts.listIterator();

while (iterator.hasNext())

{ anAccount = ((BankAccount) iterator.next());

if (anAccount.getAccountNumber() == aNumber)

return anAccount;

}

return null;

}

/** Returns a string confirming the removal of an account with the given

 * number. The account base has a list of accounts, the account base is

 * responsible for knowing if it includes an account and for getting an

 * account. An account that is not closed cannot be removed. An account is

 * responsible for 'closing' itself and for knowing if it is closed. If an

 * account is closed then the account can be removed. An account is

 * responsible for knowing and can get its owner. The owner or customer has a

 * collection of accounts. A customer is responsible for removing an account

 * with a given number. The account base is responsible and can remove an

 * account from itself. */

public String removeAccount(int aNumber)

{ if(this.includesAccount(aNumber))

{ BankAccount anAccount = this.getAccount(aNumber);

anAccount.close();

if(anAccount.isClosed())

{

BankCustomer aCustomer = anAccount.getOwner();

aCustomer.removeAccount(aNumber);

this.remove(anAccount);

return "Account # " + aNumber + " removed";

}

return anAccount.closureDetails();

}

return "Account # " + aNumber + " not found - not removed";

}

/** Remove an account from a list of accounts. The account base has a list of,

 * accounts this list of accounts is responsible for removing an account from.

 * itself

 * Pre-conditions : an account must exist in the list of accounts,

 *

 the account must be closed before it is removed,

 *

 the account must have already been removed from

 * the owning customer's collection of accounts. */

private void remove(BankAccount anAccount)

{ accounts.remove(anAccount); }

/** Returns a string confirming the removal of all the accounts of a given

 * customer. The account base has a list of accounts, the account base is

 * responsible for getting all the accounts of a customer. All of these

 * accounts can be contained in a customer account base. A number can be

 * responsible for recording the size of this customer account base. An

 * account base knows its size. An account that is not closed cannot be

 * removed. An account is responsible for 'closing' itself and for knowing if

 * it is closed. If an account is closed then the account

 * can be removed. The account base is responsible for and can remove an

 * account from itself.

 * Pre-condition : that all of the accounts of a customer can be closed,

 * that the owning customer of the accounts has already been

 * removed from the bank. */

public String removeAllAccountsOf(BankCustomer aCustomer)

{
String confirmation = new String();

AccountBase aCustomerAccountBase = this.getAllAccountsOf(aCustomer);

int aNumber = aCustomerAccountBase.accounts.size();

ListIterator iterator = aCustomerAccountBase.accounts.listIterator();

while(iterator.hasNext())

{

BankAccount anAccount = ((BankAccount) iterator.next());

anAccount.close();

if(anAccount.isClosed())

{

this.remove(anAccount);

confirmation += "Removed #" + anAccount.getAccountNumber()+ " " +

 anAccount.details() + " \n";

}

}

return confirmation;

}

/** Returns a new account base containing all the accounts of the given

 *
customer. The bank account base has a list of accounts. An account is

 *
owned by a customer. An account can get its owner, a customer. The account

 *
base can check whether the owner of an account in its list of accounts, is

 *
the given customer. An account base is responsible for adding an account

 * to itself. If an account is owned by the given customer then the account

 * can be added to the new account base. */

public AccountBase getAllAccountsOf(BankCustomer aCustomer)

{ AccountBase aCustomerAccountBase = new AccountBase();

BankAccount anAccount;

ListIterator iterator = accounts.listIterator();

while(iterator.hasNext())

{anAccount = ((BankAccount) iterator.next());

if(anAccount.getOwner() == aCustomer)

 aCustomerAccountBase.addAccount(anAccount);

}

return aCustomerAccountBase;

}

/** Returns a new account base containing all 'open' accounts. The bank

account base has a list of accounts. An account is 'open' or 'closed'. An

account is responsible for knowing if it is open. The account base can

 check whether an account in its list of accounts is open. An account base

 is responsible for adding an account to itself.

If an account is open then the account can be added to the new account

 base. */

public AccountBase getOpenAccounts()

{ AccountBase anAllOpenAccountsBase = new AccountBase();

BankAccount anAccount;

ListIterator iterator = accounts.listIterator();

while (iterator.hasNext())

{ anAccount = ((BankAccount) iterator.next());

if (anAccount.isOpen())

anAllOpenAccountsBase.addAccount(anAccount);

}

return anAllOpenAccountsBase;

}

/** Returns a new account base containing all accounts with a balance greater

 *
than an amount specified. The bank account base has a list of accounts. An

 *
account is responsible for knowing and can get its balance. The account

 *
base can check whether
an account in its list of accounts has a balance

 * greater than the specified amount. An account base is

 *
responsible for adding an account to itself. If an account has a balance

 * greater than the specified amount the account can be added to the new

 * account base. */

public AccountBase getAccountsWithBalanceGreaterThan(double anAmount)

{ AccountBase aTempAccountBase = new AccountBase();

BankAccount anAccount;

ListIterator iterator = accounts.listIterator();

while (iterator.hasNext())

{ anAccount = ((BankAccount) iterator.next());

if (anAccount.getBalance() > anAmount)

aTempAccountBase.addAccount(anAccount);

}

return aTempAccountBase;

}

/** Returns a string comprising the details of each account. An account

 * base has a list of accounts. An account is responsible for returning a

 * string describing details of itself. Each account is displayed on a new

 * line. */

public String toString()

{ String details = "";

BankAccount anAccount;

ListIterator iterator = accounts.listIterator();

while (iterator.hasNext())

{ anAccount = ((BankAccount) iterator.next());

details = details + anAccount.toString() +'\n';

}

return details;

}

/** Returns a string to confirm a deposit of an amount to an account with a

 * given number. Responsibility for making a deposit is delegated to an

 * account base. */

public String deposit(double anAmount, int aNumber)

{ BankAccount anAccount = this.getAccount(aNumber);

if(anAccount != null)

return anAccount.credit(anAmount);

return "Account # " + aNumber + " cannot be found - cannot deposit " +

 anAmount;

}

/** Returns a string to confirm a withdrawal of an amount to an account with a

 * given number. Responsibility for making a withdrawal is delegated to an

 * account that debits itself. */

public String withdraw(double anAmount, int aNumber)

{ BankAccount anAccount = this.getAccount(aNumber);

if(anAccount != null)

return anAccount.debit(anAmount);

return "Account # " + aNumber + " cannot be found - cannot debit " + anAmount;

}

/** Returns a string confirming the transfer of an amount of money from one

account to another account. The account the money transfers to is the

'crediting' account. An account is responsible for knowing whether it can

 debit or can credit an amount. If the debiting account can be debited and

 the crediting account can be credited then the transfer will be

 successful. The account delegates to itself the responsibility of debiting

 itself by the amount, the crediting account credits itself by the amount.

 If the account cannot be debited or the crediting account cannot be

 credited then the transfer will not occur. */

public String transfer(double anAmount,

 int aDebitingAccountNumber, int aCreditingAccountNumber)

{
String transferConfirmation = new String();

BankAccount aDebitingAccount
= this.getAccount(aDebitingAccountNumber);

BankAccount aCreditingAccount
= this.getAccount(aCreditingAccountNumber);

if(aDebitingAccount
== null)

transferConfirmation += "Account # " + aDebitingAccountNumber + " cannot

 be found - cannot transfer " + anAmount;

if(aCreditingAccount
== null)

transferConfirmation += "Account # " + aCreditingAccountNumber + " cannot

 be found - cannot transfer " + anAmount;

if(aDebitingAccount
== null || (aCreditingAccount
== null))

return transferConfirmation;

return aDebitingAccount.transfer(anAmount,aCreditingAccount);

}

/** Returns a string to confirm the closure of an account with a given number.

 *
Responsibility for closing is delegated to an account base. */

public String closeAccount(int aNumber)

{ BankAccount anAccount = this.getAccount(aNumber);

if(anAccount != null)

{

anAccount.close();

return anAccount.someDetails();

}

return "Account # " + aNumber + " cannot be found - cannot close ";

}

}

package objects;

import java.util.ArrayList;

import java.util.ListIterator;

/** A BankCustomerBase contains a list of BankCustomers.

 * Each customer may be added once only -

 * BankCustomers with the same name are not allowed. */

 public class BankCustomerBase

{ private ArrayList customers;

/** Creates a BankCustomerBase, containing an empty list of BankCustomer

 objects. */

public BankCustomerBase()

{ customers = new ArrayList(); }

/** Returns an ArrayList, a collection of all the customers in the

 BankCustomerBase. */

private ArrayList getCustomers()

{ return customers; }

/** Returns the number of BankCustomers. A bank customer base has a list of

 * customers. The list of customers is responsible for knowing its size. */

public int numberOfCustomers()

{
return customers.size(); }

/** Returns true if there are no BankCustomers. A bank customer base has a

 * list of customers. The list of customers is responsible for knowing

 * whether it is empty. */

public boolean isEmpty()

{ return customers.isEmpty(); }

/** Returns false - the capacity is restricted by memory only and is not

 * checked. */

public boolean isFull()

{ return false; }

/** A string is returned to confirm the new customer addition or to indicate

 * failure.A bank customer base has a list of customers. A customer is

 * responsible for knowing its name. In this customer base customers are

 * uniquely identified by name. The base is responsible for knowing if it

 * already includes a customer with a name in its list of customers. If a

 * customer with this name does not exist, then a new object representing this

 * customer is created. The list of customers is responsible for adding the

 * customer to itself. */

public String addBankCustomer(String aName, int anAge,

 char aGender)

{ if(this.includesCustomerNamed(aName))

return "Bank customer named " + aName + " already exists - not added";

else

customers.add(new BankCustomer(aName,anAge,aGender));

return "Bank customer " + aName + " added";

}

/** A string is returned to confirm the addition of a customer or to indicate

 * failure.A bank customer base has a list of customers. The base is

 * responsible for knowing if it already includes a customer in its list of

 * customers. If the customer does not exist, then an object representing this

 * customer is added. The list of customers is responsible for adding the

 * customer to itself. */

public String addBankCustomer(BankCustomer aCustomer)

{ if(this.includes(aCustomer))

return "Bank customer named " + aCustomer.getName() + " already exists -

 not added";

else

customers.add(aCustomer);

return "Bank customer " + aCustomer.getName() + " added";

}

/** Returns true if a customer with the given name is in the bank customer

 * base or returns false. A bank customer base has a list of customers. A

 * customer is responsible for knowing its name. The bank customer base gets

 * the name of each customer in its list of customers and compares each name

 * with the given name. */

public boolean includesCustomerNamed(String aName)

{ BankCustomer aCustomer;

ListIterator iterator = customers.listIterator();

while(iterator.hasNext())

{

aCustomer = ((BankCustomer) iterator.next());

if(aCustomer.getName()== aName)

return true;

}

return false;

}

/** Returns true if a customer is stored in the bank customer base or returns

 * false.A bank customer base has a list of customers. The bank customer base

 * compares each customer in its list of customers with the given customer. */

public boolean includes(BankCustomer aCustomer)

{ ListIterator iterator = customers.listIterator();

while(iterator.hasNext())

{

if((BankCustomer)iterator.next() == aCustomer)

return true;

}

return false;

}

/** Returns a customer with the given name or returns null. A bank customer

 * base has a list of customers. A customer is responsible for knowing its

 * name. The bank customer base gets the name of each customer in its list of

 * customers and compares each name with the given name of a customer. */

public BankCustomer getCustomerNamed(String aName)

{ BankCustomer aCustomer;

ListIterator iterator = customers.listIterator();

while (iterator.hasNext())

{ aCustomer = ((BankCustomer) iterator.next());

if (aCustomer.getName() == aName)

return aCustomer;
}

return null;

}

/** Returns true if the given customer can be removed. A customer has a

 * collection of accounts,a customer can only be removed if these accounts can

 * be closed. A customer can only be removed if these accounts are closed. A

 * customer is responsible knowing whether their accounts can be and are

 * closed.

 * Pre-condition : that the given customer object, representing a customer,

 * is included in the list of customers of the bank customer

 * base. */

public boolean canRemove(BankCustomer aCustomer)

{
if(aCustomer.canCloseAllAccounts())

return true;

return false;

}

/** Returns a string indicating the removal of an object representing a

 * customer.A customer is responsible for removing all of its accounts. If a

 * customer can remove all of its accounts then the bank customer base is

 * responsible for and will remove the object representing a customer.

 * Pre-condition : that the given customer object, representing a customer is

 * included in the list of customers of the bank customer

 * base. */

public String removeCustomer(BankCustomer aCustomer)

{

if(aCustomer.removeAllAccounts())

{

this.remove(aCustomer);

return "Removed " + aCustomer.getName() + "\n";

}

return aCustomer.getName() + " has " + aCustomer.numberOfOpenAccounts() + "

 open accounts and cannot be removed";

}

/** Removes the specified customer.

 * Pre-condition:
the customer must exist in the list of customers of the

 * bank customer base,

 * all of the accounts of the customer are closed - so the

 * customer can be removed. */

public void remove(BankCustomer aCustomer)

{ customers.remove(aCustomer); }

/** Returns a string comprising the details of each customer. A bank customer

 * base has a list of customers. A customer is responsible returning a string

 * describing details of itself. Each customer is displayed on a new line. */

public String toString()

{ String details = "";

BankCustomer aCustomer;

ListIterator iterator = customers.listIterator();

while(iterator.hasNext())

{aCustomer = ((BankCustomer) iterator.next());

 details += aCustomer.toString() + '\n';

}

return details;

}

}

package objects;

/**

 * A Bank is composed of BankCustomers (a BankCustomerBase)

 * and Accounts (an AccountBase).

 * @version 4

 * @author Ian Smith & Jon Bennett - updated July 2002

 */

public class Bank

{ /** A list of all the customers of the Bank. */

private BankCustomerBase aCustomerBase;

/** A list of all the accounts in the Bank. */

private AccountBase anAccountBase;

/** Creates a new instance of Bank, with a customer base: populated with some

 * customers,and an account base: populated with some accounts, deposits and

 * debits.
*/

public Bank()

{

aCustomerBase
= new BankCustomerBase();

anAccountBase = new AccountBase();

this.populate();

}

/** Populates a Bank by adding objects representing customers, accounts,

 * deposits and credits. */

private void populate()

{ this.addBankCustomer("Bob",39,'M');

this.addBankCustomer("Mohammed",56,'M');

this.addBankCustomer("Mary",19,'F');

this.addNewBankAccountFor("Bob");

this.addNewCurrentAccountFor("Mohammed");

this.addNewSavingsAccountFor("Mohammed");

this.deposit(255.50,1002);

this.deposit(100,1003);

this.withdraw(25,1003);

this.withdraw(30,1004);

this.closeAccountNumber(1001);

this.transfer(1004,1003,10);

}

/** Returns a string confirming the addition of a customer, customer

 * names must be unique - a simplification.
Customer details are sent

 * to a customer base, addition is delegated to the customer base. */

public String addBankCustomer(String aName,int anAge,

 char aGender)

{ return aCustomerBase.addBankCustomer(aName,anAge,aGender); }

/** Returns a string representing a customer. A customer base is responsible

 * for getting a customer with a given name. If the customer exists, the

 * customer can display itself as a string. */

public String getDetailsOfCustomerNamed(String aName)

{ BankCustomer aCustomer = aCustomerBase.getCustomerNamed(aName);

if(aCustomer == null)

return aName + " is not a customer of the bank \n ";

return aCustomer.toString();

}

/** Returns a string confirming the addition of a new bank account for a

 * customer with a given name.The bank delegates to itself the responsibility

 * of getting a customer with the given name. If the customer exists then the

 * responsibility of adding the new account is delegated to an account base.

 */

public String addNewBankAccountFor(String aName)

{ BankCustomer aCustomer = this.getCustomerNamed(aName);

if(aCustomer != null)

return anAccountBase.addNewBankAccountFor(aCustomer);

else

return "No such customer \n";

}

/** Returns a string confirming the addition of a new current account for a

 * customer with a given name.The bank delegates to itself the responsibility

 * of getting a customer with the given name. If the customer exists then the

 * responsibility of adding the new account is delegated to an account base.

 */

public String addNewCurrentAccountFor(String aName)

{ BankCustomer aCustomer = this.getCustomerNamed(aName);

if(aCustomer != null)

return anAccountBase.addNewCurrentAccountFor(aCustomer);

else

return "No such customer \n";

}

/** Returns a string confirming the addition of a new savings account for a

 * customer with a given name.The bank delegates to itself the responsibility

 * of getting a customer with the given name. If the customer exists then the

 * responsibility of adding the new account is delegated to an account base.

 */

public String addNewSavingsAccountFor(String aName)

{ BankCustomer aCustomer = this.getCustomerNamed(aName);

if(aCustomer != null)

return anAccountBase.addNewSavingsAccountFor(aCustomer);

else

return "No such customer \n";

}

/** Returns a string representing an account. An account base is responsible for

 * getting an account with a given account number. If the account exists, the

 * account can display itself as a string. */

public String getDetailsOfAccount(int anAccountNumber)

{ BankAccount anAccount = anAccountBase.getAccount(anAccountNumber);

if(anAccount == null)

return "Account # " + anAccountNumber + " cannot be found -

 not an account of the bank \n ";

return anAccount.toString();

}

/** Returns a string confirming the removal of an account with a given number.

 *
Removal is delegated to an account base. It is the responsibility of an

 *
account base to remove an account with a given number. */

public String removeAccount(int aNumber)

{
return anAccountBase.removeAccount(aNumber); }

/** Returns a string to confirm the removal of a customer with a given name.

 * The bank is responsible for getting a customer with a given name. If the

 * customer is in the bank then the customer base of the bank is responsible

 * for checking whether the bank can remove a customer. A customer base is

 * responsible for removing a customer, the account base of the bank is

 * responsible for removing all the accounts of a customer. */

public String removeCustomerNamed(String aName)

{ String confirmation = new String();

confirmation
= "\nAttempting to remove a customer and accounts \n";

BankCustomer aCustomer = this.getCustomerNamed(aName);

if(aCustomer != null)

if(aCustomerBase.canRemove(aCustomer))

{

confirmation += aCustomerBase.removeCustomer(aCustomer);

confirmation += anAccountBase.removeAllAccountsOf(aCustomer);

return confirmation;

}

else

return confirmation += aCustomerBase.removeCustomer(aCustomer);

else

return confirmation += "No customer named " + aName + " found -

 cannot remove \n";

}

/** Returns a string displaying the customer and account base of the bank. */

public String toString()

{

String displayString;

displayString = "\n------------ Start of Display of

 Bank Customers -------- \n\n";

displayString += aCustomerBase.toString();

displayString += "\n------------ End of Display of

 Bank Customers ---------- \n\n";

displayString += "\n------------ Start of Display of

 Accounts -------------- \n\n";

displayString += anAccountBase.toString();

displayString += "\n------------ End of Display of

 Bank Accounts ----------- \n\n";

return displayString;

}

/** Returns a string to confirm a deposit of an amount to an account with a

 * given number. Responsibility for making a deposit is delegated to an

 * account base. */

public String deposit(double anAmount, int anAccountNumber)

{ return anAccountBase.deposit(anAmount,anAccountNumber);
}

/** Returns a string to confirm a withdrawal of an amount from an account with

 * a given number. Responsibility for making a withdrawal is delegated to an

 * account base. */

public String withdraw(double anAmount, int anAccountNumber)

{ return anAccountBase.withdraw(anAmount,anAccountNumber);
}

/** Returns a string to confirm a transfer of an amount from an account with

 *
a given number to another account with a given number. Responsibility for

 *
making a transfer is delegated to an account base. */

public String transfer(double anAmount, int

 aDebitingAccountNumber, int aCreditingAccountNumber)

{ return anAccountBase.transfer(anAmount, aDebitingAccountNumber,

 aCreditingAccountNumber); }

/** Returns a string to confirm the closure of an account with a given number.

 *
Responsibility for closing is delegated to an account base. */

public String closeAccountNumber(int anAccountNumber)

{ return anAccountBase.closeAccount(anAccountNumber); }

//--

/** Returns a bank customer base of all the customer objects in the bank.

 * A string is not returned. */

public BankCustomerBase getCustomers()

{ return aCustomerBase; }

/** Returns an account base of all of the account objects in the bank.

 * A string is not returned. */

public AccountBase getAccounts()

{ return anAccountBase; }

/** Returns true if there is a customer of the bank with the given

 * name and false otherwise. A name is sent to a customer base. */

public boolean includesCustomerNamed (String aName)

{ return aCustomerBase.includesCustomerNamed(aName); }

/** Returns true if there is an account of the bank with the given account

 * number and false otherwise. An account number is sent to an account base.

 */

public boolean includesAccountNumber(int anAccountNumber)

{ return anAccountBase.includesAccount(anAccountNumber); }

/** Returns a bank customer with the given name or returns null. A name

 * is sent to a customer base. A string is not returned. */

public BankCustomer getCustomerNamed(String aName)

{ return aCustomerBase.getCustomerNamed(aName); }

/** Returns an account with the given number or returns null. A number

 * is sent to an account base. A string is not returned. */

public BankAccount getAccountNumber(int anAccountNumber)

{ return anAccountBase.getAccount(anAccountNumber); }

/** Returns the number of customers in the bank. Responsibility for

 * knowing the number of customers is delegated to a customer base. */

public int numberOfBankCustomers()

{ return aCustomerBase.numberOfCustomers(); }

/** Returns the number of accounts of the bank. Responsibility for knowing

 * the number of accounts is delegated to an account base. */

public int numberOfAccounts()

{ return anAccountBase.numberOfAccounts(); }

}

PAGE
42

