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1 Introduction

Most natural languages exhibit inflectional morphology, that is, the surface forms of words change to express syntactic features—I run vs. She runs. Handling the inflectional morphology of English in a natural language processing (NLP) system is fairly straightforward. The vast majority of lexical items in English have fewer than five surface forms. But English has a particularly sparse inflectional system. It is not at all unusual for a language to construct tens of unique inflected forms from a single lexeme. And many languages routinely inflect lexemes into hundreds, thousands, or even tens of thousands of unique forms! In these inflectional languages, computational systems as different as speech recognition (Creutz, 2006), machine translation (Goldwater and McClosky, 2005; Oflazer, 2007), and information retrieval (Mikko et al., 2007) improve with careful morphological analysis.

Three broad categories encompass the wide variety of computational approaches which can analyze inflectional morphology. A computational morphological analysis system can be:

1. Hand-built,

2. Trained from examples of word forms correctly analyzed for morphology, or

3. Induced from morphologically unannotated text in an unsupervised fashion.

Presently, most computational applications take the first option, hand-encoding morphological facts. Unfortunately, manual description of morphology demands human expertise in a combination of linguistics and computation that is in short supply for many of the world’s languages. The second option, training a morphological analyzer in a supervised fashion, suffers from a similar knowledge acquisition bottleneck. Morphologically analyzed data must be specially prepared to train a supervised morphology learner. This thesis seeks to overcome these problems of knowledge acquisition through language independent automatic induction of morphological structure from readily available machine readable natural language text.

1.1 The Structure of Morphology

Natural language morphology supplies many language independent structural regularities which unsupervised induction algorithms can exploit to discover the morphology of a language. This thesis intentionally leverages three such regularities. The first regularity is the paradigmatic opposition of inflectional morphemes. Paradigmatically opposed morphemes are mutually substitutable and mutually exclusive. Spanish, for example, marks verbs in the ar sub-class for the feature 2nd Person Present Indicative with the suffix as, but marks 1st Person Present Indicative with a mu​tually exclusive suffix o—no verb form can occur with both the as and the o suffixes simultaneously. A particular set of paradigmatically opposed suffixes is said to fill a paradigm. Because of its direct appeal to paradigmatic opposition, the unsupervised morphology induction algorithm described in this thesis is dubbed ParaMor. 

The se​cond morphological regularity leveraged by ParaMor to uncover morphological structure is the syntagmatic relationship of lexemes. Natural languages with inflectional morphology invariably possess classes of lexemes that can each be inflected with the same set of paradigmatically opposed morphemes. These lexeme classes are in a syntagmatic relationship. Returning to Spanish, all regular ar verbs use the as and o suffixes to mark 2nd Person Present Indicative and 1st Person Present Indicative respectively. Together, a particular set of paradigmatically opposed morphemes and the class of syntagmatically related stems adhering to that paradigmatic morpheme set forms an inflection class of a language, in this case the ar inflection class. 

The third morphological regularity exploited by ParaMor follows from the paradigmatic-syn​tag​ma​tic structure of natural language morphology. The repertoire of morphemes and stems in an inflection class constrains phoneme sequences. Specifically, while the phoneme sequence within a morpheme is restricted, a range of possible phonemes is likely at a morpheme boundary. A number of morphemes, each with possibly distinct initial phonemes, could follow a particular morpheme.
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Spanish non-finite verbs illustrate paradigmatic opposition of morphemes, the syntagmatic relationship between stems, inflection classes, paradigms, and phoneme sequence constraints. In the schema of Spanish non-finite forms there are three paradigms, depicted as the three columns in each table of Figure 1.2. The first paradigm marks the type of a particular surface form. A Spanish verb can appear in exactly one of three non-finite types: as a past participle, as a present participle, or in the infinitive. The three rows of the Type columns in Figure 1.2 represent the suffixes of these three paradigmatically opposed forms. If a Spanish verb occurs as a past participle, then the verb takes additional suffixes. First, an obligatory suffix marks gender: an a marks feminine, an o masculine. Following the gender suffix, either a plural suffix, s, appears or else there is no suffix at all. The lack of an explicit plural suffix marks singular. The Gender and Number columns of Figure 1.2 represent these additional two paradigms. In the left-hand table the feature values for the Type, Gender, and Number features are given. The right-hand table presents surface forms of suffixes realizing the corresponding feature values in the left-hand table. Spanish verbs which take the exact suffixes appearing in the right-hand table belong to the syntagmatic ar inflection class of Spanish verbs. 

To see the morphological structure of Figure 1.2 in action, we need a particular Spanish lexeme: a lexeme such as administrar, which translates as to administer or manage. The form administrar fills the Infinitive cell of the Type paradigm in Figure 1.2. Other forms of this lexeme fill other cells of Figure 1.2. The form filling the Past Participle cell of the tType paradigm, the Feminine cell of the Gender paradigm, and the Plural cell of the Number paradigm is administradas, a word which could refer to a group of women under administration. Each column of Figure 1.2 truly constitutes a paradigm in that the cells of each column are mutually exclusive—there is no way for administrar (or any other Spanish lexeme) to appear simultaneously in the infinitive and in a past participle form: *admistrardas, *admistradasar. 

The phoneme sequence constraints within these Spanish paradigms emerge when considering the full set of surface forms for the lexeme administrar, which include: Past Participles in all four combinations of Gender and Number: administrada, administradas, administrado, and administrados; the Present Participle and Infinitive non-finite forms described in Figure 1.2: administrando, administrar; and the many finite forms such as the first person singular indicative present tense form administro. Figure 1.3 shows these forms (as in Johnson and Martin, 2003) laid out graphically as a finite state automaton (FSA). Each state in this FSA represents a character boundary, while the arcs are labeled with characters from the surface forms of administrar. Morpheme-internal states are open circles in Figure 1.3, while states at word-internal morpheme boundaries are solid circles. Most morpheme-internal states have exactly one arc entering and one arc exiting. In contrast, states at morpheme boundaries tend to have multiple arcs entering or leaving, or both—the character (and phoneme) sequence is constrained within morpheme, but more free at morpheme boundaries.

Languages employ a variety of morphological processes to arrive at grammatical word forms—processes including suffix-, prefix-, and infixation, reduplication, and template filling. But this dissertation focuses on identifying suffix morphology, because suffixation is the most prevalent 
morphological process throughout the world’s languages. The methods for suffix discovery detailed in this thesis can be straightforwardly generalized to prefixes, and extensions can likely capture infixes and other non-concatenative morphological processes. 
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The application of word forming processes often triggers phonological (or orthographic) change. Despite the wide range of morphological processes and their complicating concomitant phonology, a large caste of paradigms, can be represented as mutually exclusive substring substitutions. Continuing with the example of Spanish verbal paradigms, the Number paradigm on past participles can be captured by the alternating pair of strings s and Ø. Similarly, the Gender paradigm alternates between the strings a and o. Additionally, and crucially for this thesis, the Number and Gender paradigms combine to form an emergent cross-product paradigm of four alternating strings: a, as, o, and os. Carrying the cross-product further, the past participle endings alternate with the other verbal endings, both non-finite and finite, yielding a large cross-product paradigm-like structure of alternating strings which include: ada, adas, ado, ados, ando, ar, o, etc. These emergent cross-product paradigms succinctly identify a single morpheme boundary within the larger paradigm structure of a language. And it is exactly cross-product paradigms that the work in this dissertation seeks to identify.

1.2 Thesis Claims 
The goal of this thesis is to automate the morphological analysis of natural language by decomposing lexical items into a network of mutually substitutable substrings. This network enables unsupervised discovery of structures which closely correlate with inflectional paradigms. Additionally,

5. The discovered paradigmatic structures immediately lead to word segmentation algorithms—segmentation algorithms which identify morphemes with a quality on par with state-of-the-art unsupervised morphology analysis systems. 

4. The unsupervised paradigm discovery and word segmentation algorithms achieve this state-of-the-art performance for the diverse set of natural languages which primarily construct words through concatenation of morphemes, e.g. Spanish, Turkish.

5. The paradigm discovery and word segmentation algorithms are computationally tractable.

6. Augmenting a morphologically naïve information retrieval (IR) system with induced segmentations improves performance on a real world IR task. The IR improvements hold across a range of morphologically concatenative languages. Enhanced performance on other natural language processing tasks is likely.



1.3 ParaMor: Paradigms across Morphology
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The paradigmatic, syntagmatic, and phoneme sequence constraints of natural language allow ParaMor, the unsupervised morphology induction algorithm described in this thesis, to first reconstruct the morphological structure of a language, and to then deconstruct word forms of that language into constituent morphemes. The structures that ParaMor captures are sets of mutually replaceable word-final strings which closely model emergent paradigm cross-products. To reconstruct these paradigm structures, ParaMor searches a network of paradigmatically and syntagmatically organized schemes of candidate suffixes and candidate stems. ParaMor’s search algorithms are motivated by paradigmatic, syntagmatic, and phoneme sequence constraints. Figure 1.4 
depicts a portion of a morphology scheme network auto​ma​ti​cal​ly derived from 100,000 words of the Brown Corpus of English (Francis, 1964). Each box in Figure 1.4 is a scheme, which lists in bold a set of can​di​date suffixes, or c‑suf​fixes, together with an ab​bre​via​ted list, in italics, of can​di​date stems, or c‑stems. Each of the c‑suf​fixes in a scheme concatenates onto each of the c‑stems in that scheme to form a word found in the input text. In Figure 1.4, the highlighted schemes con​taining the c‑suf​fix sets Ø.ed.es.ing and e.ed.es.ing, where Ø sig​ni​fies a null suffix, represent paradigmatically opposed sets of suffixes that constitute verbal sub-classes in English. The other candidate schemes in Figure 1.4 are wrong or incom​plete. Chapter 3 details the construction of morphology scheme networks over suffixes and describes a network search procedure that identifies schemes which contain in aggregate 91% of all Spanish inflectional suffixes when training over a corpus of 50,000 types. However, many of the initially selected schemes do not represent true paradigms. And of those that do represent paradigms, most capture only a portion of a complete paradigm. Hence, Chapter 4 describes algorithms to first merge candidate paradigm pieces into larger groups covering more of the affixes in a paradigm, and then filter out the poorer candidates. 
Now with a handle on the paradigm structures of a language, ParaMor uses the induced morphological knowledge to segment word forms into likely morphemes. Recall that each scheme that ParaMor discovers is intended to model a single morpheme boundary in any particular surface form. To segment a word form then, ParaMor simply matches discovered schemes against that word and proposes a single morpheme boundary at the match point. Examples will help clarify word segmentation. Assume ParaMor correctly identifies the English scheme Ø.ed.es.ing from Figure 1.4. When requested to segment the word reaches, ParaMor finds that the es c​‑suffix in the discovered scheme matches the word-final string es in reaches. Hence, ParaMor segments reaches as reach +es. Since more than one paradigm cross-product may match a particular word, a word may be segmented at more than one position. The Spanish word administradas from Section 1.1 contains three suffixes, each of which may match a separate discovered paradigm cross-product, producing the segmentation: administer +ad +a +s.

To evaluate the morphological segmentations which ParaMor produces, ParaMor competed in Morpho Challenge 2007 (Kurimo et al., 2007), a peer operated competition pitting against one another algorithms designed to discover the morphological structure of natural languages from nothing more than raw text. Unsupervised morphology induction systems were evaluated in two ways within Morpho Challenge 2007. First, a linguistically motivated metric measured each system at the task of morpheme identification. Second, an information retrieval (IR) system was augmented with the morphological segmentations each system proposed, and mean average precision of the relevance of returned documents measured. Each competing system could have Morpho Challenge 2007 evaluate morphological segmentations over four languages: English, German, Turkish, and Finnish. 

Of the four language tracks in Morpho Challenge 2007, ParaMor officially competed in English and German. At morpheme identification, in English, ParaMor outperformed an already sophisticated baseline induction algorithm, Morfessor (Creutz, 2006). ParaMor placed fourth in English morpheme identification overall. In German, combining ParaMor’s analyses with analyses from Morfessor resulted in a set of analyses that outperform either algorithm alone, and that placed first in the morpheme identification among all algorithms submitted to Morpho Challenge 2007. The morphological segmentations produced by ParaMor at the time of the official Morpho Challenge did not perform well at the information retrieval task. However, in the months following the May 2007 Morpho Challenge submission deadline, a straightforward change to ParaMor’s segmentation algorithm significantly improved performance at the IR task. ParaMor’s current performance on the Morpho Challenge 2007 IR task is on par with the best officially submitted systems. Additionally, augmenting the IR system used in Morpho Challenge 2007 with ParaMor’s unsupervised morphological segmentations consistently, across languages, outperforms a morphologically naïve baseline system for which no morphological analysis is performed. The same improvements to ParaMor’s segmentation algorithm that improved IR performance also facilitated morphological segmentation of Turkish and Finnish. ParaMor’s current results at Finnish morpheme identification are statistically equivalent to the best systems which competed in Morpho Challenge 2007. And ParaMor’s current Turkish morpheme identification is 13.5% higher absolute than the best submitted system
.

Chapter 2 begins this thesis with an overview of other work on the problem of unsupervised morphology induction. Chapters 3 and 4 present ParaMor’s core paradigm discovery algorithms. Chapter 5 describes ParaMor’s word segmentation models. And Chapter 6 details ParaMor’s performance in the Morpho Challenge 2007 competition. Finally Chapter 7 summarizes the contributions of ParaMor and outlines future directions both specifically for ParaMor and more generally for the broader field of unsupervised morphology induction.
2 Related Work

The challenging task of unsupervised morphology induction has inspired a great variety of approaches. Section 2.1 summarizes the work most relevant to unsupervised natural language morphology learning, while Section 2.2 contrasts this outside work with the work in this thesis. 

2.1 Synopsis of Related Work

Harris (1955; 1967) and later Hafer and Weiss (1974) were among the first to propose inducing natural language morphology from finite state automata (FSA), although they may not have thought in finite state terms themselves. Harris (1955) outlines an algorithm designed to segment full sentences into words and morphemes. His algorithm is inspired by phoneme sequence constraints in utterances—since many words can typically follow any particular word, a variety of phonemes can often occur immediately following a word boundary. On the other hand, phoneme choice is more restricted at positions within a word, and is particularly constrained within morphemes. Harris exploits this constraint on phoneme succession by first building character trees, or tries, over corpus utterances. Tries are deterministic, acyclic, but un-minimized FSA. In the tries, Harris identifies those states 
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 for which the finite state transition function is defined for an unusually large number of characters in the alphabet. These branching states represent likely word and morpheme boundaries. Harris primarily intended his algorithms to segment sentences into words. Harris (1967) notes that word-internal morpheme boundaries are much more difficult to detect with the trie algorithm. The comparative challenge of word-internal morpheme detection stems from the fact that phoneme variation at morpheme boundaries largely results from the interplay of a limited repertoire of paradigmatically opposed inflectional morphemes. In fact, word-internal phoneme sequence constraints can be viewed as the phonetic manifestation of the morphological phenomenon of paradigmatic and syntagmatic variation. 
Harris (1967), in a small scale mock-up, and Hafer and Weiss (1974), in more extensive quantitative experiments, report results at segmenting words into morphemes with the trie-based algorithm. Word segmentation is an obvious task-based measure of the correctness of an induced model of morphology. A number of natural language processing tasks, including machine translation, speech recognition, and information retrieval, could potentially benefit from an initial simplifying step of segmenting complex words into smaller recurring morphemes. Hafer and Weiss detail word segmentation performance when augmenting Harris’ basic algorithm with a number of heuristics for determining when the number of outgoing arcs is sufficient to postulate a morpheme boundary. Hafer and Weiss measure recall and precision performance of each heuristic when supplied with a corpus of 6,200 word types. The variant which achieves the highest F1 measure of 0.754, from a precision of 0.818 and recall of 0.700, combines results from both forward and backward tries and uses entropy to measure the branching factor of each node. Entropy captures not only the number of outgoing arcs but also the fraction of words that follow each arc. 
One modern unsupervised morphology induction system, built by Bordag (2007), competed strongly in Morpho Challenge 2007 alongside the unsupervised morphology induction system described in this thesis. Bordag builds his system’s tries over sets of words that occur in similar contexts. A number of systems that are discussed later in this section use Harris style trie algorithms to construct initial lists of likely morphemes. Demberg (2007), Goldsmith (2001), Schone and Jurafsky (2000; 2001), and Déjean (1998) all bootstrap unsupervised morphology induction algorithms from tries. Although she does not directly make use of tries, Bernhard (2007) captures something similar to trie branching factor in her unsupervised morphology induction system by calculating word-internal letter transition probabilites. Bernhard’s system also competed in Morpho Challenge 2007.
Also from tries it is not a far step to Johnson and Martin (2003) who suggest identifying morpheme boundaries by examining properties of the minimal finite state automaton that exactly accepts the word types of a corpus. The minimal FSA can be generated straightforwardly from a trie by collapsing trie states from which precisely the same set of strings is accepted. Like a trie, the minimal FSA is deterministic and acyclic, and the branching properties of its arcs encode phoneme succession constraints. In the minimal FSA, however, incoming arcs also provide morphological information. Where every state in a trie has exactly one incoming arc, each state, 
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, in the minimal FSA has a potentially separate incoming arc for each trie state which collapsed to form 
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. A state with two incoming arcs, for example, indicates that there are at least two strings for which exactly the same set of final strings completes word forms found in the corpus. Incoming arcs thus encode a rough guide to syntagmatic variation. Johnson and Martin combine the syntagmatic information captured by incoming arcs with the phoneme sequence constraint information from outgoing arcs to segment the words of a corpus into morphemes at exactly:

6. Hub states—states which possess both more than one incoming arc and more than one outgoing arc, Figure 2.2, left.

7. The last state of stretched hubs—sequences of states where the first state has multiple incoming arcs and the last state has multiple outgoing arcs and the only available path leads from the first to the last state of the sequence, Figure 2.2, right. Stretched hubs model ambiguous morpheme boundaries.
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Johnson and Martin (2003) report that this simple Hub-Searching algorithm segments words into morphemes with an F1 measure of 0.600, from a precision of 0.919 and a recall of 0.445, over the text of Tom Sawyer; which, according to Manning and Schütze (1999, p. 21), has 71,370 tokens and 8,018 types.[image: image222.wmf]C
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 To improve segmentation recall, Johnson and Martin extend the Hub-Searching algorithm by introducing a morphologically motivated state merge operation. Merging states in a minimized FSA generalizes or increases the set of strings the FSA will accept. In this case, Johnson and Martin merge all states which are either accepting word final states, or are likely morpheme boundary states by virtue of possessing at least two incoming arcs. This technique increases F1 measure over the same Tom Sawyer corpus to 0.720, by bumping precision up slightly to 0.922 and significantly increasing recall to 0.590.
State merger is a broad technique for generalizing the language accepted by a FSA, used not only in finite state learning algorithms designed to aid natural language morphological segmentation, but also in techniques for inducing FSA outright. Most research on FSA induction focuses on learning the grammars of artificial languages. Lang et al. (1998) present a state merge algorithm designed to learn large randomly generated deterministic FSA from positive and negative data. Lang et al. also provide a brief overview of other work in FSA induction for artificial languages. Since natural language morphology is considerably more constrained than random FSA, and since natural languages typically only provide positive examples, work on inducing formally defined subsets of general finite state automata from positive data may be a bit more relevant here. Work in constrained FSA induction includes Miclet (1980), who extends finite state k‑tail induction, first introduced by Biermann and Feldman (1972), with a state merge operation. Similarly, Angluin (1982) presents an algorithm, also based on state merger, for the induction of k‑re​ver​sible languages. 

Altun and Johnson (2001) present a technique for FSA induction, again built on state merger, which is specifically motivated by natural language morphological structure. Altun and Johnson induce finite state grammars for the English auxiliary system and for Turkish Morphology. Their algorithm begins from the forward trie over a set of training examples. At each step the algorithm applies one of two merge operations. Either any two states, 
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, are merged, which then forces their children to be recursively merged as well; or an є‑tran​sition is introduced from 
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. To keep the resulting FSA deterministic following an є‑tran​sition insertion, for all characters 
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 for which the FSA transition function is defined from both 
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, the states to which a leads are merged, together with their children recursively. Each arc 
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 in the FSA induced by Altun and Johnson (2001) is associated with a probability, initialized to the fraction of words which follow the 
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 arc. These arc probabilities define the probability of the set of training example strings. The training set probability is combined with the prior probability of the FSA to give a Bayesian description length for any training set-FSA pair. Altun and Johnson’s greedy FSA search algorithm follows the minimum description length principle (MDL)—at each step of the algorithm that state merge operation or є‑tran​sition insertion operation is performed which most decreases the Bayesian description length. If no operation results in a reduction in the description length, grammar induction ends. Being primarily interested in inducing FSA, Altun and Johnson do not actively segment words into morphemes. Hence, quantitative comparison with other morphology induction work is difficult. Altun and Johnson do report the behavior of the negative log probability of Turkish test set data, and the number of learning steps taken by their algorithm, each as the training set size increases. Using these measures, they compare a version of their algorithm without є‑tran​sition insertion to the version that includes this operation. They find that their algorithm for FSA induction with є‑tran​sitions achieves a lower negative log probability in less learning steps from fewer training examples.
The minimum description length principle has also been used in non-finite-state unsupervised natural language morphology induction. Brent et al. (1995; see also Brent 1993) use MDL to evaluate models of natural language morphology of a simple, but elegant form. Each morphology model is a set of three lists:

7. A list of stems

8. A list of suffixes

9. A list of the valid stem-suffix pairs

Each of these three lists is efficiently encoded and the sum of the lengths of the encoded lists is the description length of a particular morphology model. As the morphology model in Brent et al. (1995) only allows for pairs of stems and suffixes, each model can propose at most one morpheme boundary per word. Using this list-model of morphology to model a vocabulary of words 
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 possible models—far too many to exhaustively explore. Hence, Brent et al. (1995) describe a heuristic search procedure to greedily explore the model space. First, each word final string 
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 in the corpus is ranked according to the ratio of the relative frequency of 
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divided by the relative frequencies of each character in 
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. Each word final string is then considered in turn, according to its heuristic rank, and added to the suffix list whenever doing so decreases the description length of the corpus. When no suffix can be added that reduces the description length further, the search considers removing a suffix from the suffix list. Suffixes are iteratively added and removed until description length can no longer be lowered. To evaluate their method, Brent et al. (1995) examine the list of suffixes found by the algorithm when supplied with English word form lexicons of various sizes. Any correctly identified inflectional or derivational suffix counts toward accuracy. Their highest accuracy results are obtained when the algorithm receives a lexicon of 2000 types: the algorithm hypothesizes twenty suffixes with an accuracy of 85%.

Baroni (2000; see also 2003) describes DDPL, an MDL inspired model of morphology induction similar to the Brent et al. (1995) model. The DDPL model identifies prefixes instead of suffixes, uses a heuristic search strategy different from Brent et al. (1995), and treats the MDL principle more as a guide than an inviolable tenet. But most importantly, Baroni conducts a rigorous empirical study showing that automatic morphological analyses found by DDPL correlate well with human judgments. He reports a Spearman correlation coefficient of the average human morphological complexity rating to the DDPL analysis on a set of 300 potentially prefixed words of 0.62 
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Goldsmith (2001) extends the promising results of MDL morphology induction by augmenting Brent et al.’s (1995) basic model to incorporate the paradigmatic and syntagmatic structure of natural language morphology. To a very good first approximation, all natural language inflectional morphemes belong to paradigmatic sets where all the morphemes in a paradigmatic set are mutually exclusive. Similarly, natural language lexemes belong to a syntagmatic class where all lexemes in the same syntagmatic class can be inflected with the same set of paradigmatically opposed morphemes. While previous approaches to unsupervised morphology induction, including Déjean (1998), indirectly drew on the paradigmatic-syntagmatic structure of morphology, Goldsmith was the first to intentionally model this important aspect of natural language morphological structure. Goldsmith calls his unsupervised morphology induction system Linguistica. Linguistica models the paradigmatic and syntagmatic nature of natural language morphology by defining a signature to be, a pair of sets 
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 a set of stems and 
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 a set of suffixes. Where 
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 must satisfy the following two conditions:

8. For any stem 
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 and for any suffix 
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must be a word in the vocabulary
9. Each stem 
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 occurs in the stem set of at most one signature

Like Brent et al. (1995), a morphology model in Goldsmith consists of three lists, the first two are, as for Brent, a list of stems and a list of suffixes. Instead of a list containing each valid stem-suffix pair, the third list in a Goldsmith morphology consists of signatures. Notice that, once again, the morphology model can propose at most one morpheme boundary per word type. Replacing the list of all valid stem-suffix pairs with a list of signatures allows a signature model to more succinctly represent natural language morphology as sets of syntagmatically opposed stems which select sets of paradigmatically opposed suffixes. Following the MDL principle, each of the three lists in a signature morphology model is efficiently encoded and the sum of the encoded lists is the description length of the model. To find the MDL signature model, Goldsmith (2001; see also 2004) searches the model space with a variety of heuristics. The most successful search strategy, seeds the model selection with signatures derived from a Harris (1955) style trie algorithm. Then, a variety of heuristics suggest small changes to the seed model. Whenever a change results in a lower description length the change is accepted. Goldsmith (2001) reports precision and recall results on segmenting 1,000 alphabetically consecutive words from:

10. The more than 30,000 unique word forms in the first 500,000 tokens of the Brown Corpus (Francis, 1964) of English: precision: 0.860, recall: 0.904, F1 measure: 0.881.

10. A corpus of 350,000 French tokens: precision: 0.870, recall: 0.890, F1 measure: 0.880.

Goldsmith (2001) also reports qualitative results for Italian, Spanish, and Latin suggesting that a sampling of the best signatures in the discovered morphology models generally contain coherent sets of paradigmatically opposed suffixes and syntagmatically opposed stems.
Snover (2002; c.f.: Snover and Brent, 2002; Snover et al., 2002; Snover and Brent, 2001) discusses a family of morphological induction systems which, like Goldsmith’s Linguistica, directly model the paradigmatic and syntagmatic structure of natural language morphology. The morphological analyzers discussed in Snover (2002) have three distinct parts:

11. A morphology model consisting of lists of stems, suffixes, and their valid combinations.

12. A custom-designed generative probability model that assigns a probability to every potential instantiation of the morphology model for the words in a vocabulary.

11. A search strategy designed to explore the space of potential morphological analyses. 

The general outline of Snover’s (2002) morphology induction algorithms is similar to Brent et al.’s (1995) and Goldsmith’s (2001) MDL based algorithms: At each step, Snover’s algorithms propose a new morphology model, which is only accepted if it improves the model score. In Snover’s case, the model score is probability, where in MDL based algorithms the score is description length. Both the probability models that Snover (2002) presents as well as his search strategies intentionally leverage paradigmatic and syntagmatic morphological structure. To define the probability of a model, Snover (2002) defines functions that assign probabilities to:

13. The stems in the model

14. The suffixes in the model

15. The assignment of stems to sets of suffixes called paradigms

The probability of a morphology model as a whole, Snover defines as the product of the probabilities of these three parts. Since each stem belongs to exactly one paradigm, the third item in this list is identical to Goldsmith’s definition of a signature. Since Snover defines probabilities for exactly the same three items as Goldsmith computes description lengths for, the relationship of Snover’s models to MDL is quite tight. 

Snover describes two search procedures, hill climbing search and directed search, each of which leverages the paradigmatic structure of natural language morphology by defining data structures similar to the morphology networks proposed for this thesis. The hill climbing search uses an abstract suffix network defined by inclusion relations on sets of suffixes. Each node in the abstract suffix network contains the set of stems which, according to a particular morphological model, combine with each suffix in the node to form a word. Each step of the hill climbing search proposes adjusting the current morphological analysis of the stems in a node by moving them en mass to an adjacent node that contains exactly one more or one fewer suffixes. Snover’s directed search strategy defines an instantiated suffix network where each node, or, in the terminology defined in Chapter 3, each scheme, in the network inherently contains all the stems which can combine with each suffix in the scheme to form a word in the vocabulary. The scheme nodes in the network defined for the directed search algorithm are organized only by suffix set inclusion relations and so the network is a subset of what Monson et al. (2004) and Section 3.1.2 propose. The directed search algorithm visits every node in the suffix network and assigns a score based on the probability model. The best scoring suffix nodes are then iteratively combined to find a high-probability morphological analysis of all the words in the vocabulary. Snover et al. (2002) discusses the possibility of using a beam or best-first search strategy to only search a subset of the full suffix network when identifying the initial best scoring nodes but does not report results. 

To avoid the problems that ambiguous morpheme boundaries presents to word segmentation, Snover (2002) defines a pair of metrics to separately evaluate the performance of a morphology induction algorithm at 1. Identifying pairs of related words, and 2. Identifying suffixes (where any suffix allomorph is accepted as correct). Helpfully, Snover (2002) supplies not only the results of his own algorithms using these metrics but also the results of Goldsmith’s (2001) Linguistica. Snover (2002) achieves his best overall performance when using the directed search strategy to seed the hill climbing search and when evaluating competing morphology models with the paradigm based probability model. This combination outperforms Linguistica on both the suffix identification metric as well as on the metric designed to identify pairs of related words, and does so for both English and Polish lexicons of a variety of vocabulary sizes.

In a series papers culminating in a Ph.D. thesis (Creutz and Lagus, 2002; Creutz, 2003; Creutz and Lagus, 2004; Creutz, 2006) Mathias Creutz draws from several approaches discussed earlier in this section to create an unsupervised morphology induction system tailored to agglutinative languages, where long sequences of suffixes combine to form individual words. Creutz and Lagus (2002) extend a basic Brent et al. (1995) style MDL morphology model to agglutinative languages, through defining a model that consists of just two parts:

16.  A list of morphs, character strings that likely represent morphemes, where a morpheme could be a stem, prefix, or suffix.

12. A list of morph sequences that result in valid word forms

By allowing each word to contain many morphs, Creutz and Lagus neatly defy the single suffix per word restriction found in so much work on unsupervised morphology induction. The search space of agglutinative morphological models is large. Each word type can potentially contain as many morphemes as there are characters in that word. To rein in the number of models actually considered, Creutz and Lagus (2002) use a greedy search strategy where each word is recursively segmented into two morphs as long as segmentation lowers the global description length. Creutz (2003) improves morphology induction by designing a generative probability model tailored for agglutinative morphology models. Creutz (2003) again applies the same greedy recursive search strategy to find a high-probability model. Finally, Creutz and Lagus (2004) refine the agglutinative morphology model selected using a generative probability model. They introduce three categories, prefix, stem, and suffix, and assign every morph to each of these three categories with a certain probability. They then define a simple Hidden Markov Model (HMM) that describes the probability of outputting any possible sequence of morphs conforming to the regular expression: (prefix* stem suffix*)+. The morphology models described in this series of three papers each quantitatively improves upon the previous. Creutz and Lagus (2004) compare word segmentation precision and recall scores from the category model to scores for Goldsmith’s Linguistica. They report results over both English and Finnish with a variety of corpus sizes. When the input is a Finnish corpus of 250,000 tokens or 65,000 types, the category model achieves F1 measure of 0.64 from a precision of 0.81 and a recall of 0.53, while Linguistica only achieves F1 of 0.56 from a precision of 0.76 and a recall of 0.44. On the other hand, Linguistica does not fare so poorly on a similarly sized corpus of English (250,000 tokens, 20,000 types): Creutz and Lagus Category model: F1: 0.73, precision: 0.70, recall: 0.77; Linguistica: F1: 0.74, precision: 0.68, recall: 0.80.
Schone and Jurafsky (2000) take a very different approach to unsupervised morphology induction. They notice that in addition to being orthographically similar, morphologically related words are similar semantically. Their algorithm first acquires a list of pairs of potential morphological variants (PPMV’s) by identifying pairs of words in the corpus vocabulary that share an initial string. This string similarity technique was earlier used in the context of unsupervised morphology induction by Jacquemin (1997) and Gaussier (1999). Schone and Jurafsky apply latent semantic analysis (LSA) to score each PPMV with a semantic distance. Pairs measuring a small distance, those pairs whose potential variants tend to occur where a neighborhood of the nearest hundred words contains similar counts of individual high-frequency forms, are then proposed as true morphological variants of one another. In later work, Schone and Jurafsky (2001) extend their technique to identify not only suffixes but also prefixes and circumfixes. Schone and Jurafsky (2001) significantly outperform Goldsmith’s Linguistica at identifying sets of morphologically related words. 

Following a logic similar to Schone and Jurafsky, Baroni et al. (2002) marry a mutual information derived semantic based similarity measure with an orthographic similarity measure to induce the citation forms of inflected forms. And in the information retrieval literature, where stemming algorithms share much in common with morphological analysis, Xu and Croft (1998) describe an unsupervised stemmer induction algorithm that also has a flavor similar to Schone and Jurafsky’s. Xu and Croft start from sets of word forms that, because they share the same initial three characters, likely share a stem. They then measure the significance of word form co-occurrence in windows of text. Word forms from the same initial string set that co-occur unusually often are placed in the same stem class.

Finally, this discussion of previous work on unsupervised morphology induction concludes with a look at some pieces of work which begin to move beyond simple word-to-morpheme segmentation. Wicentowski and Yarowsky (Wicentowski, 2002; Yarowsky and Wicentowski, 2000; Yarowsky et al., 2001) iteratively train a probabilistic model that identifies the citation form of an inflected form from several individually unreliable measures including: relative frequency ratios of stems and inflected word forms, contextual similarity of the candidate forms, the orthographic similarity of the forms as measured by a weighted Levenshtein distance, and in Yarowsky et al. (2001) a translingual bridge similarity induced from a clever application of statistical machine translation style word alignment probabilities. 

Wicentowski’s work stands out in the unsupervised morphology induction literature for explicitly modeling two important but rarely addressed morphological phenomena: non-con​catenative morphology and morphophonology. Wicentwoski and Yarowsky’s probabilistic model explicitly allows for non-concatenative stem-internal vowel changes as well as phonologic stem-boundary alterations that may occur when either a prefix or a suffix attaches to a stem. Another system which begins to look at morphophonology is Demberg (2007). Demberg’s system extracts, from forward and backward tries, suffix clusters similar to Goldsmith’s signatures. Demberg then measures the edit distance between suffixes in a cluster and notes that suffixes with a small distance are often due to morphophonologic changes.

A third work that addresses more than simple word segmentation is Probst (2003). Like Yarowsky et al. (2001), Probst uses machine translation word alignment probabilities to develop a morphological induction system for the second language in the translation pair. Unlike any other recent proposal for an unsupervised morphological analysis system, Probst’s system can assign morphosyntactic features (i.e. Number, Person, Tense, etc.) to induced morphemes. Probst draws information on morphosyntactic features from a lexicon that includes morphosyntactic feature information for one language in the translation pair. Both Probst’s work as well as Yarowsky and Wicentowski’s take small steps outside the unsupervised morphology induction framework by assuming access to limited linguistic information. 
2.2 Discussion of Related Work
ParaMor, the unsupervised morphology induction system described in this thesis, contrasts in interesting ways with the unsupervised morphology induction approaches presented in Section 2.1. Most importantly, the morphology scheme networks described in section 3.1 are a synthesis of the paradigmatic/syntagmatic morphology structure modeled by Goldsmith (2001) and Snover (2002) on the one hand, and the finite state phoneme sequence description of morphology (Harris, 1955; Johnson and Martin, 2003) on the other. Biasing the morphology induction problem with the paradigmatic, syntagmatic, and phoneme sequence structure inherent in natural language morphology is the powerful leg-up needed for an unsupervised solution. 

Of all the morphology induction approaches presented in section 2.1, the work by Snover is the most similar to what I propose for this thesis. In particular, the directed search strategy, first described in Snover et al. (2002), defines a network of morphology hypotheses very similar to the scheme networks described in section 3.1. Still, there are at least two major differences between Snover’s use of morphology networks and how I propose to use them. First, Snover’s probability model assigns a probability to any individual network node considered in isolation. In contrast, the search strategies I discuss in Chapter 3 assess the value of a scheme hypothesis relative to its neighbors in the network. Second, Snover’s networks only relate schemes by c‑suffix set inclusion, while the morphology scheme networks defined in section 3.1 contain both c‑suffix set inclusion relations and morpheme boundary relations between schemes. The morpheme boundary relations capture phoneme succession variation, complementing the paradigmatic and syn​tag​ma​tic morphological structure modeled by c‑suffix set inclusion relations. 

The work proposed for this thesis does not directly extend every promising approach to unsupervised morphology described in section 2.1. I do not model morphology in a probabilistic model as Snover (2002), Creutz (2003), and Wicentowski (2002) (in a very different framework) do; nor do I employ the related principle of MDL as Brent et al. (1995), Baroni (2000), and Goldsmith (2001) do. The basic building blocks of the network search space defined in Chapter 3, schemes, are, however, a compact representation of morphological structure, and compact representation is what MDL and (some) probability models seek. Like most of the systems described in Section 2.1, ParaMor only models concatentive suffixing morphology, and postpones for future work analysis of morphophonologic change. Finally, the work by Schone and Jurafsky (2000), Wicentowski (2002), and others on identifying morphologically related word forms by analyzing their semantic and syntactic relatedness is both interesting and promising. While this thesis does not pursue this direction, integrating semantic and syntactic information into morphology scheme networks is an interesting path for future work on unsupervised morphology induction.

3 ParaMor: Paradigm Identification

This thesis describes and motivates ParaMor, an unsupervised morphology induction algorithm. To uncover the organization of morphology within a specific language, ParaMor leverages paradigms as the language independent structure of natural language morphology. In particular ParaMor exploits paradigmatic and syntagmatic relationships which hold cross-linguistically among affixes and lexical stems respectively. The paradigmatic and syntagmatic properties of natural language morphology were presented in some detail in Section 1.1. Briefly, an inflectional paradigm in morphology consists of:

17. A set of mutually substitutable, or paradigmatically related, affixes

18. A set of syntagmatically related stems which all inflect with the affixes in 1.

ParaMor’s unsupervised morphology induction procedure begins by identifying partial models of the paradigm and inflection class structure of a language. This chapter describes and motivates ParaMor’s strategy to initially isolate likely models of paradigmatic structures. As Chapter 1 indicated, this thesis focuses on identifying suffix morphology. And so, ParaMor begins by defining a search space over natural groupings, or schemes, of paradigmatically and syntagmatically related candidate suffixes and candidate stems, Section 3.1. With a clear view of the search space, ParaMor then searches for those schemes which most likely model the paradigm structure of suffixes within the language, Section 3.2.

3.1 Search Space of Morphological Schemes

3.1.1 Schemes

The constraints implied by the paradigmatic and syntagmatic structure of natural language can organize candidate suffixes and stems into the building blocks of a search space in which to identify language specific models of paradigms. This thesis names these building blocks schemes, as each is “an orderly combination of related parts” (The American Heritage® Dictionary, 2000). The scheme based approach to unsupervised morphology induction is designed to work on orthographies which at least loosely code each phoneme with a separate character. Scheme definition begins by proposing candidate morpheme boundaries at every character boundary in every word form in a corpus vocabulary. Since many languages contain empty suffixes, the set of candidate morpheme boundaries the algorithm proposes include those boundaries after the final character in each word form. The empty suffix is denoted in this thesis as Ø. Since this thesis focuses on identifying suffixes, it is assumed that each word form contains a stem of at least one character. Hence, the boundary before the first character of each word form is not considered a candidate morpheme boundary. 
Call each string before a candidate morpheme boundary a candidate stem or c‑stem, and each string after a proposed boundary a c‑suffix. Let 
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be a set of strings—a vocabulary of word types. Let 
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 be the set of all c‑stems generated from the vocabulary and 
[image: image32.wmf]V

F

be the corresponding set of all c‑suffixes. With these preliminaries, define a scheme 
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 to be a pair of sets of strings 
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Schemes succinctly capture both the para​dig​matic and syntagmatic regularities found in text corpora. The first three conditions require each of the syntagmatically related c‑stems in a scheme to combine with each of the mutually exclusive para​dig​ma​ti​c c‑suffixes of that scheme to form valid word forms in the vocabulary. The fourth condition forces a scheme to contain all of the syntagmatic c‑stems that form valid word forms with each of the paradigmatic c‑suffixes in that scheme. Note, however, that the definition of a scheme does not forbid any particular c‑stem,  
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. The number of c‑stems in 
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To better understand how schemes behave in practice, let us look at a few illustrative sample schemes in a toy example. Each box in Table 3.2 contains a scheme derived from one or more of the word forms listed in the top portion of the table. The vocabulary of Table 3.2 mimics the vocabulary of a text corpus from a highly inflected language where we expect few, if any, lexemes to occur in the complete set of possible surface forms. Specifically, the vocabulary of Table 3.2 lacks the surface form blaming of the lexeme blame, solved of the lexeme solve, and the root form roam of the lexeme roam. Proposing, as our procedure does, morpheme boundaries at every character boundary in every word form necessarily produces many ridiculous schemes such as the paradigmatic level three scheme ame.ames.amed, from the word forms blame, blames, and blamed and the c‑stem bl. Dispersed among the incorrect schemes, however, are also schemes that seem very reasonable, such as Ø.s, from the c‑stems blame and solve. Schemes are intended to capture both paradigmatic and syntagmatic structure of morphology. If a scheme were limited to containing c‑stems that concatenate only the c‑suffixes in that scheme, the entries of Table 3.2 would not reflect the full syntagmatic structure of natural language. For example, even though the c‑stem blame occurs with the c‑suffix d, blame is still an adherent of the scheme Ø.s, reflecting the fact that the paradigmatically related c‑suffixes Ø, and s each concatenate onto both of the syntagmatically related c‑stems and solve and blame. Before moving on, observe two additional intricacies of scheme generation. First, while the scheme Ø.s arises from the pairs of surface forms (blame, blames) and (solve, solves), there is no way for the form roams to contribute to the Ø.s scheme because the surface form roam is not in this vocabulary. Second, as a result of English spelling rules, the scheme s.d, generated from the pair of surface forms (blames, blamed), is separate from the scheme s.ed, generated from the pair of surface forms (roams, roamed).
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Behind each scheme, 
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, is a set of licensing word forms, 
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, which contribute c‑stems and c‑suffixes to 
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 in exactly one position. Although it is theoretically possible for more than one c‑suffix of 
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 to match a particular licensing word form, in empirical schemes, almost without exception, each 
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 matches just one c‑suffix in 
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. Hence, a naturally occuring scheme, 
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, models only a single morpheme boundary in each word 
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. But words in natural language may possess more than one morpheme boundary. In Spanish, as discussed in Section 1.1 of the thesis introduction, Past Participles of verbs contain either two or three morpheme boundaries: one boundary after the verb stem and before the Past Participle marker, ad on ar verbs; one boundary between the Past Participle marker and the Gender suffix, a for Feminine, o for Masculine; and, if the Past Participle is plural, a final morpheme boundary between the Gender suffix and the Plural marker, s; see Figure 1.2. Although a single scheme models just a single morpheme boundary in a particular word, together separate schemes can model all the morpheme boundaries of a class of words. In Spanish Past Participles a Ø.s scheme can model the paradigm for the optional Number suffix, while a a.as.o.os scheme models the cross-product of Gender and Number paradigms, and yet another scheme, which includes the c‑suffixes ada, adas, ado, and ados, models the cross-product of three paradigms: Verbal Form, Gender, and Number. In one particular corpus of 50,000 types of newswire Spanish the Ø.s scheme contains 5501
 c‑stems, the a.as.o.os scheme contains 892 c‑stems, and the scheme ada.adas.ado.ados contains 302 c‑stems.
Notice that it is only when a scheme models the final morpheme boundary of the scheme’s supporting words, that a scheme can model a full traditional paradigm. When a scheme captures morpheme boundaries that are not word final, then the scheme’s c‑suffixes encapsulate two or more traditional morphemes. Schemes which encapsulate more than one morpheme in a single c‑suffix no longer correspond to a single traditional paradigm, but instead capture a cross-product of several paradigms. Although the only traditional paradigms that schemes can directly model are word-final, schemes still provide this thesis with a strong model of natural language morphology for two reasons. First, as noted in the previous paragraph, while any particular scheme cannot by itself model a single word-internal paradigm, in concert, schemes can identify agglutinative sequences of morphemes. Second, the cross-product structure captured by a scheme retains the paradigmatic and syntagmatic properties of traditional inflectional paradigms. Just as true (idealized) suffixes in a traditional paradigm can be interchanged on adherent stems to form surface forms, the c‑suffixes of a cross-product scheme can be swapped in and out to form valid surface forms with the adherent c‑stems in the scheme. Replacing the final as in the Spanish word administradas with o, forms the grammatical Spanish word form administrado. And it is the paradigmatic and syntagmatic properties of paradigms (and schemes) which ParaMor exploits in its morphology induction algorithms. Ultimately, restricting each scheme to model a single mor​pheme boundary is computationally much simpler than a model which allows more than one morpheme boundary per modeling unit. And, as Chapters 5 and 6 show, algorithms built on the simple scheme allow ParaMor to effectively analyze the morphology even highly agglutinative languages such as Finnish and Turkish.
3.1.2 Scheme Networks
Looking at Table 3.2, it is clear there is structure among the various schemes. In particular, at least two types of relations hold between schemes. First, hierarchically, the c‑suffixes of one scheme may be a superset of the c‑suffixes of another scheme. For example the c‑suffixes in the scheme e.es.ed are a superset of the c‑suffixes in the scheme e.ed. Second, cutting across this hierarchical structure are schemes which propose different morpheme boundaries within a set of word forms. Compare the schemes me.mes.med and e.es.ed; each is derived from exactly the triple of word forms blame, blames, and blamed, but differ in the placement of the hypothesized morpheme boundary. Taken together the hierarchical c‑suffix set inclusion relations and the morpheme boundary relations impose a lattice structure on the space of schemes. 
Figure 3.2 diagrams a scheme lattice over an interesting subset of the columns of Table 3.2. Each box in Figure 3.2 is a scheme, where, as in Table 3.2, the c‑suffix exponents are in bold and the c‑stem adherents are in italics. Hierarchical c‑suffix set inclusion links, represented by solid lines (
[image: image60]), connect a scheme to often more than one parent and more than one child. The empty scheme (not pictured in Figure 3.2) can be considered the child of all schemes of paradigmatic level 1 (including the Ø scheme). Horizontal morpheme boundary links, dashed lines (
[image: image61]), connect schemes which hypothesize morpheme boundaries which differ by a single character. In most schemes of Figure 3.2, the c‑suffixes in that scheme all begin with the same character. When all c‑suffixes begin with the same character, there can be just a single morpheme boundary link leading to the right. Similarly, a morphology scheme network contains a separate leftward link from a particular scheme for each character which ends some c‑stem in that scheme. The only scheme with explicit multiple left links in Figure 3.2 is Ø, which has depicted left links to the sche​mes e, s, and d. A number of left links ema​na​ting from the schemes in Figure 3.2 are not shown; among others absent from the figure is the left link from the scheme e.es leading to the scheme ve.ves with the adherent sol. Section 4.4.2 defines morpheme boundary links more explicitly.
Two additional graphical examples generated from naturally occurring text will help visualize scheme-based search spaces. Figure 3.3 contains a portion of a search space of schemes auto​ma​ti​cally generated from 100,000 tokens of the Brown Corpus of English (Francis, 1964). Figure 3.4 il​lu​s​trates a portion of a hierarchical lat​tice over a Spanish newswire corpus of 1.23 millition tokens (50,000 types). As before, each box in these networks is a scheme and the c‑suf​fix exponents ap​​pear in bold. Since schemes in each search space contain more c‑stem adherents than can be listed in a single scheme box, ab​bre​vi​ated lists of adherents ap​pear in ita​lics. The number im​me​diately be​low the list of c‑suffixes is the total num​ber of c‑stem adherents that fall in that scheme.
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The scheme net​work in Figure 3.3 contains the paradigmatic level four scheme covering the suffixes Ø.ed.ing.s. These four suffixes, which mark com​binations of tense, person, number, and aspect, are the exponents of a true sub-class of the English verbal paradigm. This true sub-class scheme is embedded in a lattice of less satisfactory schemes. The right-hand column of schemes posits, in ad​di​tion to true inflectional suffixes of English, the derivational suffix ly. Immediately below Ø.ed.ing.s, appears a scheme comprising a subset of the suffixes of the true verbal sub-class appears, namely Ø.ed.ing. To the left, Ø.ed.ing.s is connected to d.ded.ding.ds, a scheme which proposes an al​ter​na​tive mor​pheme boundary for 19 of the 106 c‑stems in Ø.ed.ing.s. Notice that since left links effec​tive​ly slice a scheme on each character in the orthography, 
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adherent count mo​no​tonically decreases as left links are followed. Similarly, ad​he​rent count monotonically decreases as c‑suffix set inclusion links are followed upward. Consider again the hierar​chically re​lated schemes Ø.ed.ing.s and Ø.ed.ing, which have 106 and 201 adherents respectively. Since the Ø.ed.ing.s scheme adds the c‑suffix s to the three c‑suffixes already in the Ø.ed.ing scheme, only a subset of the c‑stems which can concatenate the c‑suffixes Ø, ed, ing can also concatenate s to produce a word form in the corpus, and so belong in the Ø.ed.ing.s scheme.

Now turning to Figure 3.4, this figure covers the Gender and Number paradigms on Spanish adjectival forms. As with Spanish Past Participles, adjectives in Spanish mark Number with the pair of paradigmatically opposed suffixes s and Ø. Similarly, the Gender paradigm on adjectives consists of the pair of strings a and o. Together the gender and number paradigms combine to form an emergent cross-product paradigm of four alternating strings: a, as, o, and os. Figure 3.4 contains:
19. The scheme containing the true Spanish exponents of the emergent cross-product paradigm for gender and number: a.as.o.os. The a.as.o.os scheme is outlined in bold.
20. All possible schemes whose c‑suffix exponents are subsets of a.as.o.os, e.g. a.as.o, a.as.os, a.os, etc.

21. The scheme a.as.o.os.ualidad, together with its descendents, o.os.ualidad and ualidad. The Spanish string ualidad is arguably a valid Spanish derivational suffix, forming nouns from adjectival stems. But the repertoire of stems to which ualidad can attach is severely limited. The suffix ualidad does not form an inflectional paradigm with the adjectival endings a, as, o, and os.
An additional scheme network covering a portion of two Spanish verbal paradigms appears in Appendix N.
3.2 Search
Given the framework of morphology scheme networks outlined in Section 3.1, an unsupervised search strategy can automatically identify schemes which plausibly model true paradigms and their cross-products. Many search strategies are likely capable of identifying reasonable paradigmatic suffix sets in scheme networks. Snover (2002) describes a successful search strategy, over a morphology network very similar to the scheme networks described in Section 3.1, in 
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which each network node is assigned a global probability score (see Chapter 2). In contrast, the search strategy presented in this section gauges a scheme’s value by computing a local score over the scheme’s network neighbors. 
3.2.1 ParaMor’s Search Algorithm
ParaMor’s local search strategy leverages the paradigmatic and syntagmatic structure of morphology that is captured by the vertical c‑suffix set inclusion links of scheme networks. ParaMor will harness the horizontal morpheme boundary links, which also connect networked schemes, in a later stage of the algorithm, see Section 4.4.2. ParaMor’s search algorithm harnesses the paradigmatic-syntagmatic structure of vertically networked schemes with a bottom-up search. At the bottom of a network of schemes, syntagmatic stem alternations are evident but each scheme contains only a single c‑suffix. At successively higher levels, the networked schemes contain not only successively more paradigmatically opposed c‑suffixes, but also successively fewer syntagmatic c‑stems. ParaMor’s search strategy moves upward through the network, trading off syntagmatic c‑stem alternations for paradigmatic alternations of c‑suffixes—ultimately arriving at a set of schemes containing many individual schemes which closely model significant portions of true inflectional paradigms.

Consider the paradigmatic and syntagmatic structure captured by and between the schemes of the Spanish network in Figure 3.4. The schemes at the bottom of this network each contain exactly one of the c‑suffixes a, as, o, os, or ualidad. The syntagmatic c‑stem evidence for the level 1 schemes which model productive inflectional suffixes of Spanish, namely a, as, o, and os, is significantly greater than the syntagmatic evidence for the unproductive derivational c‑suffix ualidad: The a, as, o, and os schemes contain 9020, 3182, 7520, and 3847 c‑stems respectively, while the ualidad scheme contains just 10 c‑stems. Moving up the network, paradigmatic-syntagmatic tradeoffs strongly resonate. Among the 3847 c‑stems which allow the c‑suffix os to attach, more than half, 2390, also allow the c‑suffix o to attach. In contrast, only 4 c‑stems belonging to the os scheme form a corpus word with the c‑suffix ualidad: namely, the c‑stems act, cas, d, and event. Adding the suffix a to the scheme o.os again reduces the c‑stem count, but only from 2390 to 1418; and further adding as, just lowers the c‑stem count to 899. There is little syntagmatic evidence for adding c‑suffixes beyond the four in the scheme a.as.o.os. Adding the c‑suffix ualidad, for example, drastically reduces the syntagmatic evidence to a meager 3 c‑stems. 
It is insightful to consider why morphology scheme networks capture tradeoffs between paradigmatic and syntagmatic structures so succinctly. If a particular c‑suffix, 
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, models a true inflectional suffix (or suffix sequence), then, disregarding morphophonologic change, the paradigmatic property of inflectional morphology implies, 
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 will be mutually substitutable for some distinct c‑suffix 
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 will occur in a text corpus attached to many of the same syntagmatically related c‑stems. In our example, when 
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 is the c‑suffix os and 
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 the paradigmatically related o, many c‑stems to which os can attach also allow o as a word-final string. Conversely, if the suffixes which 
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 model lack a paradigmatic relationship in the morphological structure of some language, then there is no a priori reason to expect 
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 to share c‑stems: when 
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 is os and 
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 is ualidad, a c‑suffix which is not paradigmatically opposed to os, few of the c‑stems which permit an os c‑suffix, admit ualidad.
ParaMor’s bottom-up search treats each individual c‑suffix as a potential gateway to a model of a true paradigm cross-product. ParaMor considers each one-suffix scheme in turn beginning with that scheme containing the most c‑stems, and working toward one-suffix schemes containing fewer c‑stems. From each bottom scheme, ParaMor follows a single greedy upward path from child to parent. As long as an upward path takes at least one step, making it to a scheme containing two or more alternating c‑suffixes, ParaMor’s search strategy accepts the terminal scheme of the path as likely modeling a portion of a true inflection class.
To take each greedy upward search step, ParaMor applies two criteria to the parents of the current scheme. The first criterion both scores the current scheme’s parents and thresholds the parents’ scores. ParaMor’s search greedily moves, subject to the second search criterion, to the best scoring parent whose score passes the set threshold. Section 3.2.3 presents and appraises some reasonable parent scoring functions. The second criterion governing each search step helps to halt upward search paths before judging parents’ worth becomes impossible. As noted above, c‑stem counts monotonically decrease with upward network moves. But small adherent c‑stem counts render statistics that assess parents’ strength unreliable. ParaMor’s policy avoids schemes containing few c‑stems by removing any scheme from consideration which does not contain more c‑stems than it has c‑suffixes. This particular avoidance criterion serves ParaMor well for two reasons. First, requiring each path scheme to contain more c‑stems than c‑suffixes attains high suffix recall by setting a low bar for upward movement at the bottom of the network. Search paths which begin from schemes whose single c‑suffix models a rare but valid suffix, can often take at least one upward search step and manage to be selected. Second, this halting criterion requires the top scheme of search paths that climb high in the network to contain a comparatively large number of c‑stems. Reigning in high-reaching search paths, before the c‑stem count falls too far, captures path-terminal schemes which cover a large number of word types. In a later stage of ParaMor’s paradigm identification algorithm, presented in Section 4.2, these larger terminal schemes effectively vacuum up the useful smaller paths that result from the more rare suffixes. Since ParaMor’s upward search from any particular scheme is deterministic, if a search path reaches a scheme that has already been visited, ParaMor abandons the redundant path.
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Figure 3.5 contains a number of search paths that ParaMor followed when analyzing a Spanish newswire corpus of 50,000 types when using one particular metric for parent evaluation. Most of the paths in Figure 3.5 are directly relevant to the analysis of the Spanish word administradas. As stated in the thesis introduction, Chapter 1, the word administradas is the Feminine, Plural, Past Participle form of the verb administrar, ‘to administer or manage’. The word administradas gives rise to many c‑suffixes including: stradas, tradas, radas, adas, das, as, s, and Ø. The c‑suffix s marks Spanish plurals and is a word final string of 10,662 wordforms in this same corpus, more than one fifth of the unique wordforms. Additionally, the c‑suffixes as and adas, cleanly contain more than one suffix: The left edges of the word-final strings as and adas occur at Spanish morpheme boundaries. All other c‑suffixes derived from administradas incorrectly segment the word. The c‑suffixes radas, tradas, stradas, etc. erroneously include part of the stem, while das, in our analysis, places a morpheme boundary internal to the Past Participle morpheme ad. Of course, while we can discuss which c‑suffixes are reasonable and which are not, an unsupervised morphology induction system has no a priori knowledge of Spanish morphology. ParaMor does not know what strings are valid Spanish morphemes, nor is ParaMor aware of the feature value meanings associated with morphemes
.

Each search path of Figure 3.5 begins at the bottom of the figure and proceeds upwards from scheme to scheme. In Spanish, the non-null c‑suffix that can attach to the most stems is s; and so, the first search path ParaMor explores begins from s. This search path is the right-most search path shown in Figure 3.5. At 5513 c‑stems, the null c‑suffix, Ø, can attach to the largest number of c‑stems to which s can attach. The parent evaluation function gave the Ø.s scheme the highest score of any parent of the s scheme, and that score passed the parent score threshold. Consequently, the first search step moves to the scheme which adds Ø to the c‑suffix s. ParaMor’s parent evaluation function then identifies the parent scheme containing the c‑suffix r as the parent with the highest score. Although no other c‑suffix can attach to more c‑stems to which s and Ø can both attach, r can only form corpus words in combination with 281 or 5.1% of the 5513 stems to which s and Ø can attach. Accordingly, the score assigned by the parent evaluation function to this Ø.s.r scheme falls below the stipulated threshold; and ParaMor does not add r, or any other suffix, to the now closed partial paradigm s.Ø.

Continuing leftward from the s-anchored search path in Figure 2, ParaMor follows search paths from the c‑suffixes a, n, es, and an in turn. The 71st c‑suffix from which ParaMor grows a partial paradigm is rado. The search path from rado is the first path to build a partial paradigm that includes the c‑suffix radas, potentially relevant for an analysis of the word administradas. Similarly, search paths from trado and strado lead to partial paradigms which include the c‑suffixes tradas and stradas respectively. The search path from strado illustrates the second criterion restricting upward search. From strado, ParaMor’s search adds four c‑suffixes, one at a time: strada, stró, strar, and stradas. Only seven c‑stems form words when combined singly with all five of these c‑suffixes. Adding any additional c‑suffix to these five brings the c‑stem count down at least to six. Since six c‑stems is not more than the six c‑suffixes which would be in the resulting partial paradigm, ParaMor does not add a sixth c‑suffix. 
3.2.2 The Construction of Scheme Networks

It is computationally impractical to build full morphology scheme networks, both in terms of space and time. Space complexity is directly related to the number of schemes in a network. Returning to the definition of a scheme in Section 3.1.1, each scheme contains a set of c‑suffixes, 
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 is the set of all possible c‑suffixes generated by a vocabulary. Thus, the set of potential schemes from some particular corpus is the power set of 
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 members. In practice, the vast majority of the potential schemes have no adherent c‑stems—that is, for most 
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 is a word form in the vocabulary. If a scheme has no adherent c‑stems, then there is no evidence for that scheme, and network generation algorithms would not need to actually create that scheme. Unfortunately, even the number of schemes which do posses adherent c‑stems grows exponentially. The dominant term in the number of schemes with a non-zero c‑stem count comes from the size of the power set of the scheme with largest set of c‑suffix—the highest level scheme in the network. In one corpus of 50,000 Spanish types, the higest level scheme contains 5816 c‑suffixes. The number of schemes in this network is thus grater than 
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, a truly astronomical number, larger than 
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. Or more schemes, by far, than the number of hydrogen atoms in the observable universe.
Because of the difficulty in pre-computing full scheme networks, during the scheme search, described in Section 3.2, individual schemes are calculated on the fly. This section contains a high-level description of ParaMor’s scheme generating procedure. To calculate any particular scheme, ParaMor first precomputes the set of most specific schemes. Where a most specific scheme is a set of c‑suffixes, 
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A consequence of this new fourth restriction is that each corpus c‑stem occurs in exactly one most specific scheme. The idea of the most specific scheme has been proposed several times in the literature of unsupervised morphology induction. Each most specific scheme is equivalent to a morphological signature in Goldsmith (2001). And more recently, most specific schemes are equivalent to ??? in Demberg (2007). Since the number of most specific schemes is bounded above by the number of c‑stems in a corpus, the number of most specific schemes grows much more slowly with vocabulary size than does the total number of schemes in a network. In the 50,000 type Spanish corpus, a mere 28,800 (exact) most specific schemes occurred. And computing these 28,800 most specific schemes takes ParaMor less than five minutes. From the full set of most specific schemes, the c‑stems, 
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, can be directly computed as follows. Given a set of c‑suffixes, 
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 as the set of most specific schemes whose c‑suffixes are a super set of 
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3.2.3 Upward Search Metrics
As described in detail in Section 3.2.1, at each step of ParaMor’s bottom-up search, the system selects, or declines to select, a parent of the current scheme as most likely to build on the paradigm modeled by the current scheme. Hence, ParaMor’s parent evaluation procedure directly impacts performance. Building on the strengths of the morphology scheme networks presented in Section 3.1, ParaMor’s parent evaluation function focuses on the tradeoff between the gain in paradigmatic c‑suffixes and the loss of syntagmatic c‑stems that is inherent in an upward step through a scheme network. A variety of syntagmatic-paradigmatic tradeoff measures are conceivable, from simple local measures to statistical measures which take into consideration the schemes’ larger contexts. This section investigates one class of localized metrics and concludes that, at least within this metric class, a simple metric gives a fine indication of the worth of a parent scheme.

To motivate the metrics under investigation, consider the plight of an upward search algorithm that has arrived at the a.o.os scheme when searching through the Spanish morphology scheme network of Figure 3.4. All three of the c‑suffixes in the a.o.os scheme model inflectional suffixes from the cross-product paradigm of Gender and Number on Spanish adjectives. In Figure 3.5, the second path ParaMor searches brings ParaMor to the a.o.os scheme (the second search path in Figure 3.5 is the second path from the right). Just a single parent of the a.o.os scheme appears in Figure 3.4, namely the a.as.o.os scheme. But Figure 3.4 covers only a portion of the full scheme network covering the 50,000 types in this Spanish corpus. In the full scheme network built from this particular Spanish corpus, there are actually 20,494 parents of the a.o.os scheme! Although the vast majority of the parents of the a.o.os scheme occur with just a single c‑stem, 1,283 parents contain two c‑stems, 522 contain three c‑stems, and 330 contain four. Seven parents of the a.o.os scheme are shown in Figure 3.6. Out of the nearly 21,000 parents, only one arises from a c‑suffix which builds on the adjectival inflectional cross-product paradigm of Gender and Number: The a.as.o.os parent adds the c‑suffix as, which marks Feminine Plural. The parent scheme of a.o.os that has the second most c‑stem adherents addes the c‑suffix amente. Like the English suffix ly, the Spanish suffix (a)mente derives adverbs from adjectives quite productively. Other parents of the a.o.os scheme arise from c‑suffixes which model verbal suffixes, including ar, e, and es, or model derivational morphemes, among them, Ø and ualidad. One reason the c‑stem counts of the ‘verbal’ parents are fairly high is that Spanish syncretically employs the strings a and o not only as adjectival suffixes marking Feminine and Masculine, respectively, but also as verbal suffixes marking 3rd Person and 1st Person Present Indicative. The c‑suffix os does not model any productive verbal inflection[image: image228.wmf]÷
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, however. Hence, for a c‑stem to occur in a ‘verbal’ parent such as a.ar.o.os, the c‑stem must somehow combine with os into a non-verbal Spanish word form. In the a.ar.o.os scheme in Figure 3.6, the four listed c‑stems cambi, estudi, marc, and pes model verb stems when they combine with the c‑suffixes a and ar, but they model, often related, noun stems when they combine with os, and the Spanish word forms cambio, estudio, marco, and peso ambiguously can be both verbs and nouns.
How shall an automatic search strategy asses the worth of the many parents of a typical scheme? Looking at the parent schemes in Figure 3.6, one feature which captures the para​dig​ma​tic-syntagmatic tradeoff between schemes’ c‑suffixes and adherent c‑stems is simply the c‑stem count of the parent. The a.as.o.os parent, which completes the Gender-Number cross-product paradigm on adectives with the c‑suffix as, has by far the most c‑stems of parent of a.o.os. Since, ParaMor’s upward search strategy must consider the upward parents of schemes which themselves have very different c‑stem counts, the raw count of a parent scheme’s c‑stems can be normalized by the number of c‑stems in the current scheme. Parent-child stem ratios are surprisingly reliable predictors of when a parent scheme builds on the paradigmatic c‑suffix interaction of that scheme, and when a parent scheme breaks the paradigm. To better understand why parent-child c‑stem ratios are so reasonable, suppose 
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 is a set of suffixes which form a paradigm, or indeed a paradigm cross-product. And let 
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 are mutually substitutable, it is reasonable to expect that, in any given corpus, many of the stems which occur with 
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. Hence, we would expect that when moving from a child to a parent scheme within a paradigm, the adherent count of the parent should not be significantly less than the adherent count of the child. Conversely, if moving from a child scheme to a parent adds a c‑suffix 
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, then there is no reason to expect that c‑stems in the child will form words with 
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. The parents of the a.o.os scheme clearly follow this pattern. More than 63% of the c‑stems in a.o.os form a word with the c‑suffix as as well, but only 10% of a.o.os’s c‑stems form corpus words with the verbal ar, and only 0.2% form words with the derivational c‑suffix ualidad.
Parent-child c‑stem ratios are a simple measure of a parent scheme’s worth, but it seems reasonable a more sophisticated measure might more accurately predict when a parent extends a child’s paradigm. For example, the derivational suffix (a)mente is so productive in Spanish that its paradigmatic behavior is nearly that of an inflectional suffix. But in Figure 3.6, the parent-child c‑stem ratio has dificulty differentiating between the parent which introduces the c‑suffix amente and the parent which introduces the non-paradigmatic verbal c‑suffix ar: Both the schemes a.amente.o.os and a.ar.o.os have very nearly the same number of c‑stems, and so have very similar parent-child c‑stem ratios of 0.122 and 0.102 respectively. This particular shortcoming of parent-child c‑stem ratios might be solved by looking to the level 1 scheme which contains the single c‑suffix which expands the current scheme into the proposed parent scheme. The expansion scheme of the a.amente.o.os scheme contains just the c‑suffix amente, the expansion scheme of the a.ar.o.os scheme contains just the c‑suffix ar, etc. Figure 3.7 depicts the expansion schemes for four parents of the a.o.os scheme. At 332 and 1448 respectively, there is a striking difference in the c‑stem sizes of the two expansion schemes amente and ar. From these data it is clear that the primary reason the a.amente.o.os scheme has so few c‑stems is that the c‑suffix amente is comparatively rare. There are many ways the c‑stem information from expansion schemes might be combined with predictions from parent-child c‑stem ratios. One combination method is to average parent-expansion c‑stem ratios with parent-child c‑stem ratios. In the a.amente.o.os example, the ratio of c‑stem counts from the parent scheme a.amente.o.os to the expansion scheme amente, 173/332, with the ratio of c‑stems from the parent scheme to the child [image: image229.wmf]C

scheme a.o.os, 173/1418. During the bottom-up search of scheme networks, ParaMor particularly seeks to avoid moving to schemes that do not model paradigmatically related c‑suffixes. To capture this conservative approach to upward movement, ParaMor combines parent-expansion and parent-child c‑stem ratios with a harmonic mean. Compared with the arithmetic mean, the harmonic mean comes out closer to the lower of a pair of numbers, effectively dragging down a parent’s score if either c‑stem ratio is low. Interestingly, after a bit of algebra, it emerges that the harmonic mean of the parent-expansion and parent-child c‑stem ratios is equivalent to the dice similarity metric on the sets of c‑stems in the child and expansion schemes. The dice similarity measure of two arbitrary sets 
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. In the context of schemes, the intersection of the c‑stem sets of the child and expansion schemes is exactly the c‑stem set of the parent scheme. As hoped, the relative difference between the dice scores for the amente and ar parents is larger than the relative difference between the parent-child c‑stem ratios of these parents. The dice scores are 0.198 and 0.101 for the amente and ar parents respectively, a difference of nearly a factor of two; as compared with the relative difference factor of 1.2 for the parent-child c‑stem ratios of the amente and ar parents. Note that it is meaningless to compare the value of a parent-child c‑stem ratio to the dice measure of the same parent directly.
The parent-child c‑stem ratio metric and the dice metric are the first two of six metrics that ParaMor investigated as candidate guiding metrics for the vertical network search described in Section 3.2.1. All six investigated metrics are summarized in Figure 3.8. Each row of this figure details a single metric. After the metric’s name which appears in the first column, the second column gives a brief description of the metric, and the third column contains the mathematical formula for calculating that metric. As an example metric formula, that for the parent-child c‑stem ratio is by far the simplest of any metric: 
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, where P is the count of the c‑stems in the parent scheme, and C is the count of c‑stems in the current scheme. In other formulas in Figure 3.8 the number of c‑stems in expansion schemes is given as E. The final four columns of Figure 3.8 applies each row’s metric to the four parent schemes of the a.o.os scheme from Figure 3.7. For example, the parent-child c‑stem ratio to the a.o.os.ualidad parent is given in the upper-right cell of Figure 3.8 as 0.002.
Of the six metrics that ParaMor examined, the four which remain to be described all look at the occurrence of c‑stems in a scheme from a probabilistic perspective. To build probabilities out of the c‑stem counts in the child, expansion, and parent schemes. ParaMor estimates the maximum number of c‑stems which could conceivably occur in a single scheme as simply the corpus vocabulary size. The maximum likelihood estimate of the c‑stem probability of any given scheme is straight​for​ward​ly then the count of c‑stems in that scheme over the size of the corpus vocabulary. Note that the joint probability of finding a c‑stem in the current scheme and in the expansion scheme is exactly the probability of a c‑stem appearing in the parent scheme. In Figure 3.8, V represents the corpus vocabulary size. 
The first search metric which ParaMor evaluated that makes use of the probabilistic view of c‑stem occurrence in schemes is pointwise mutual information. The pointwise mutual information
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between values of two random variables measures the amount by which uncertainty in the first variable changes when a value for the second has been observed. In the context of morphology schemes, the pointwise mutual information registers the change in the uncertainty of observing the expansion c‑suffix when the c‑suffixes in the current scheme have been observed. The formula for pointwise mutual information between the current and expansion schemes is given on the third row of Figure 3.8. Like the dice measure the pointwise mutual information identifies a large difference between the amente parent and the ar parent. As Manning and Schütze (1999, p181) observe, however, pointwise mutual information increases as the number of observations of a random variable decrease. And since the expansion schemes amente and ualidad have comparatively low c‑stem counts, the pointwise mutual information score is higher for the amente and ualidad parents than for the truly paradigmatic as—undesireable behavior for a metric guiding a search that needs to identify the productive inflectional paradigms.
While the heuristic measures of parent-child c‑stem ratios, dice similarity, and pointwise mutual information scores seem mostly reasonable, it would be theoretically appealing if ParaMor could base an upward search decision on a statistical test of a parent’s worth. Just such statistical tests can be defined by viewing each c‑stem in a scheme as a successful trial of a Boolean random variable. Taking the view of schemes as Boolean random variables, the joint distribution of pairs of schemes can be tabulated in 2x2 grids. The grids beneath the four extension schemes of Figure 3.7 hold the joint distribution of the a.o.os scheme and the respective extension scheme. The first column of each table contains counts of adherent stems that occur with all the c‑suffixes in the current scheme. While the second column contains an estimate of the number of stems which do not form corpus words with each c‑suffix of the child scheme. Similarly, the table’s first row contains adherent counts of stems that occur with the extension c‑suffixes. Consequently, the cell at the intersection of the first row and first column contains the adherent stem count of the parent scheme. The bottom row and the rightmost column contain marginal adherent counts. In particular, the bottom cell of the first column contains the count of all the stems that occur with all the c‑suffixes in the current child scheme. In mirror image, the rightmost cell of the first row contains the adherent count of all stems which occur with the extension c‑suffix. The corpus vocabulary size is the marginal of the marginal c‑stem counts, and estimates the total number of c‑stems.

Treating
 sets of c‑suffixes as Bernoulli random variables, we must ask what measurable property of random variables might indicate that the c‑suffixes of the current child scheme and the c‑suffixes of the expansion scheme belong to the same paradigm. One answer is correlation. As described earlier in this section, suffixes which belong to the same paradigm are likely to have occurred attached to the same stems—this co-occurrence is statistical correlation. We could think of a big bag containing all possible c‑stems. We reach our hand in, draw out a c‑stem, and ask: Did the c‑suffixes of the current scheme all occur attached to this c‑stem? Did the expansion c‑suffixes all occur with this c‑stem? If both sets of c‑suffixes belong to the same paradigm then the answer to both of these questions will often be the same, implying the random variables are correlated.

22. A number of standard statistical tests are designed to detect if two random variables are correlated. In designing ParaMor’s search strategy three statistical tests were examined: 

23. Pearson’s χ2 test

24. Wald test for the mean of Bernoulli population
25. A likelihood ratio test of independence of Binomial random variables
Pearson’s χ2 test is a nonparametric test designed for categorical data, in which each observed data point can be categorized as belonging to one of a finite number of types. Pearson’s χ2 test compares the expected number of occurrences of each category with the observed number of occurrences using a particular statistic that converges to the χ2 distribution as the size of the data increases. In a 2x2 table, such as the tables of c‑stem counts in Figure 3.7, the four cells in the table are the categories. If two random variables are independent, then the expected number of observations in each cell is the product of the marginal probabilities along that cell’s row and column (DeGroot, 1986 p536).

The second statistical test investigated for ParaMor’s vertical scheme search is a Wald test of the mean of a Bernoulli population (Casella and Berger, 2002 p493). This Wald test compares the observed number of c‑stems in the parent scheme to the number which would be expected if the child c‑suffixes and the expansion c‑suffixes were independent. When the current and expansion schemes are independent, the central limit theorem implies that the statistic given in Figure 3.8 converges to a standard normal distribution. 
Since the sum of Bernoulli random variables is a Binomial distribution, we can view the random variable which corresponds to any particular scheme as a Binomial. This is the view taken by the final statistical test investigated for ParaMor. In this final test, the random variables corresponding to the current and extension schemes are tested for independence using a likelihood ratio statistic from Manning and Schütze (1999, p172). When the current and expansion schemes are not independent, then the occurrence of a c‑stem, t, in the current scheme will affect the probability that t appears in the expansion scheme. On the other hand, if the current and expansion schemes are independent, then the occurrence of a c‑stem, t, in the current scheme will not affect the likelihood that t occurs in the expansion scheme The denominator of the formula for the likelihood ratio test statistic given in Figure 3.8 describes current and expansion schemes which are not independent; while the numerator gives the independent case. Taking two times the negative log of the ratio produces a statistic that is χ2 distributed.
One caveat, both the likelihood ratio test and Pearson’s χ2 test only asses the independence of the current and expansion schemes, they cannot disambiguate between random variables which are positively correlated and variables which are negatively correlated. When c‑suffixes are negatively correlated it is extremely likely that they do not belong to the same paradigm. ParaMor’s search strategy should not move to parent schemes whose expansion c‑suffix is negatively correlated with the c‑suffixes of the current scheme. Negative correlation occurs when the observed frequency of c‑stems in a parent scheme is less than the predicted frequency assuming that the current and expansion c‑suffixes are independent. ParaMor combines a check for negative correlation with each of these two statistical tests that prevents ParaMor’s search from moving to a parent scheme whose extension c‑suffix is negatively correlated with the current scheme.

Looking in Figure 3.8 at the values of the three statistical tests for the four parents of the a.o.os scheme suggests that the tests are generally well behaved. For each of the tests a larger score indicates that an extension scheme is more likely to be correlated with the current scheme—although again, comparing the scores of one test to the scores of another test is meaningless. All three statistical tests score the derivational ualidad scheme as the least likely of the four extension scheme to be correlated with the current scheme. And each test gives a large margin of difference between the amente and the ar parents. The only obvious misbehavior of any of these statistical tests is that Pearson’s χ2 test ranks the amente parent as more likely correlated with the current scheme than the as parent.
To quantitatively assess the utility of the six upward search metrics, ParaMor performed an oracle experiment. This oracle experiment evauates each upward metric at the task of identifying schemes in which every c‑suffix is string identical to a suffix of some single inflectional paradigm. The methodology of this oracle experiment differs somewhat from the methodology of ParaMor’s upward search procedure as described in Section 3.2.1. Where ParaMor’s search procedure of Section 3.2.1 would likely follow different upward paths of different length when searching with different upward metrics, the oracle experiment described here evaluates all metrics over the same set of upward decisions. The inflectional paradigms of Spanish used as the oracle in this experiment are detailed in Appendix A. It will be helpful to define a sub-paradigm scheme to be a network scheme that contains only c‑suffixes which model suffixes from a single inflectional paradigm. Each parent of a sub-paradigm scheme is either a sub-paradigm scheme itself, or else the parent’s c‑suffixes no longer form a subset of the suffixes of a true paradigm. The oracle experiment evaluates each metric at identifying which parents of sub-paradigm schemes are themselves sub-paradigm schemes and which are not. Each metric’s performance at identifying sub-paradigm schemes varies with the cutoff threshold below which a parent is believed to not be a sub-paradigm scheme. For example, when considering the c‑stem ratio metric at a threshold of 0.5, say, ParaMor would take as a sub-paradigm scheme any parent that contains at least half as many c‑stems as the current sub-paradigm scheme does. But if this threshold were raised to 0.75, then a parent must have at least ¾ the number of c‑stems as the child to pass for a sub-paradigm scheme. The oracle evaluation measures the precision, recall, and their harmonic mean F1 of each metric at a range of threshold values, but ultimately compares the metrics at their peak F1 over the threshold range. 

While each of the six metrics described in the previous section score each parent scheme with a real value, the scores are not normalized. The ratio and dice metrics produce scores between zero and one, Pearson’s χ2 test and the Likelihood Ratio test produce non-negative scores, while the scores of the other metrics can fall anywhere on the real line. But even metrics which produce scores in the same range are not comparable. Referencing Figure 3.8, the ratio and dice metrics, for example, can produce very different scores for the same parent scheme. Furthermore, while statistical theory can give a confidence level to the absolute scores of the metrics that are based on statistical tests, the theory does not suggest what confidence level is appropriate for the task of paradigm detection in scheme networks. The Ratio, Dice, and Pointwise Mutual Information metrics lack even an interpretation of confidence. Ultimately, empirical performance at paradigm detection judges each metric score. Hence, in this oracle evaluation each metric is compared at the maximum F1 score the metric achieves at any threshold. 
Figure 3.9 gives results of an oracle evaluation run over a corpus of Spanish containing 6,975 unique types. This oracle experiment is run over a considerably smaller corpus than other experiments that are reported in this thesis. Running over a small corpus is necessary because the oracle experiment visits all sub-paradigm schemes. A larger corpus creates too large of a search space. Figure 3.9 reports the maximum F1 over a relevant threshold range for each of the six metrics discussed in this section. Two results are immediately clear. First, all six metrics consistently outperform the baseline algorithm of considering every parent of a sub-paradigm scheme to be a sub-paradigm scheme. Second, the most simple metric, the parent-child c‑stem ratio, does surprisingly well, identifying parent schemes which contain only true suffixes just as consistently as more sophisticated tests, and outperforming all but one of the considered metrics. While I have not performed a quantitative investigation into why the parent-child c‑stem ratio metric performs so well in this oracle evaluation, the primary reason appears to be that the ratio metric is comparatively robust when data is sparse. In 79% of the oracle decisions that each metric faced the parent scheme had fewer than 5 c‑stems! On the basis of this oracle evaluation, all further experiments in this thesis use the simple parent-child c‑stem metric to guide ParaMor’s vertical search.
But at what threshold value on the parent-child ratio should ParaMor halt its upward search? The goal of this initial search stage is to identify schemes containing as wide a variety of inflectional suffixes as possible while introducing as few non-productive suffixes into schemes as possible. Thus, on the one hand the parent-child stem ratio threshold should be set relatively low to attain high recall of inflectional suffixes, while on the other hand, a ratio threshold that is too small will allow search paths to schemes containing unproductive and spurious suffixes. The threshold value at which the parent-child c‑stem ratio achieved its peak F1 in the oracle experiment is 0.05. However, when the schemes that ParaMor selected at a threshold of 0.05 over a larger corpus of 50,000 Spanish types were qualitatively examined, it appeared that many schemes included c‑suffixes that modeled only marginally productive derivational suffixes. Hence, the remainder of this thesis sets the parent-child c‑stem ratio threshold at the higher value of 0.25. It is possible that a threshold value of 0.25 is sub-optimal for paradigm identification and morphological segmentation. And future work should more carefully examine the impact of varying the threshold value on the morphological segmentations of Chapter 5. I believe, however, that by initiating a search path from each level 1 scheme ParaMor’s search algorithm attains a relatively high recall of inflectional suffixes despite a threshold value larger than that suggested by the oracle experiment
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4 Clustering and Filtering of Initially Selected Schemes

The bottom-up search strategy presented in Chapter 3 is a solid first step toward identifying useful models of productive inflectional paradigms. Table 4.2 provides a look at a range of schemes selected during a typical search run. Each row of Table 4.2 lists a scheme selected while searching over a Spanish newswire corpus of 50,000 types, using the stem ratio metric set at 0.25 (see Chapter 3). On the far left of Table 4.2, the Rank column states the ordinal rank at which that row’s scheme was selected during the search procedure: the Ø.s scheme was the terminal scheme of ParaMor’s 1st upward search path, a.as.o.os the 2nd, ido.idos.ir.iré the 1592nd, etc. The right four columns of Table 4.2 present raw data on the selected schemes, giving the number of c‑suffixes in that scheme, the c‑suffixes themselves, the number of adherent c‑stems of the scheme, and a sam​ple of those c‑stems. Between the rank on the left, and the scheme details on the right, are columns which categorize the scheme on its success, or failure, to model a true paradigm of Spanish. A dot appears in the columns marked N, Adj, or Verb if the majority of c‑suffixes in a row’s scheme model suffixes in a paradigm of that part of speech. The verbal paradigm is further broken down by inflection class, ar, er, or ir. A dot appears in the Deriv column if a significant fraction of the c‑suffixes of a scheme model derivational suffixes. 

The remaining six columns of Table 4.2 classify the correctness of each row’s scheme. Appendix A outlines the inflectional paradigms of Spanish morphology. The Good column of Table 4.2 is marked if the c‑suffixes in a scheme take the surface form of true suffixes. Initially selected schemes in Table 4.2 that correctly capture real paradigm suffixes are the 1st, 2nd, 4th, 5th, 12th, 30th, 40th, 127th, 135th, 400th, 1592nd, and 2000th selected schemes. Most true inflectional suffixes are modeled by some scheme that is selected during ParaMor’s initial search. The initial search identifies partial paradigms which, between them, contain 91% of all string-unique suffixes of the Spanish verbal inflectional paradigms presented in Appendix A. If we ignore as undiscoverable all suffix strings which occurred at most once in the Spanish newswire corpus, ParaMor’s coverage jumps to 97% of unique verbal suffixes. Additionally, ParaMor identifies schemes which model both of the phonologic inflection classes of number on nouns: Ø.s and Ø.es; and also a scheme matching the full adjectival cross-product paradigm of gender and number, a.as.o.os. 

But, while most true inflectional suffixes are modeled by some scheme selected in the initial search, no single initially selected scheme comprehensively models all the suffixes of the larger Spanish paradigms. And fragmentation of paradigm suffixes across schemes is the first of two broad shortcoming of ParaMor’s initial search procedure. The largest schemes that ParaMor selected from the newswire corpus are the 5th and 12th selected schemes. Shown in Table 4.2, both

[image: image232.wmf]V

 

of these schemes contain 15 c‑suffixes which model suffixes from the ar inflection class of the Spanish verbal paradigm. But the ar inflection class has 36 unique surface suffixes. In an agglutinative language like Turkish, the cross-pro​​duct of several word-final paradigms may have an effective size of hundreds or thousands of suffixes, and ParaMor will only identify a minute fraction of these in any one scheme. In Table 4.2, the Complete column is marked when a scheme contains, for every suffix of a paradigm (or paradigm cross-product), a corresponding c‑suffix. On the other hand, if the c‑suffixes of a scheme clearly attempt to model suffixes of some paradigm of Spanish, but manage to model only a portion of the full paradigm, then Table 4.2 has a dot in the Partial column. Among the many schemes which faithfully describe significant fractions of legitimate paradigms are the 5th, 12th, and 400th selected schemes. These three schemes each contain c‑suffixes which clearly model suffixes from the ar inflection—but each contains c‑suffixes that model only a subset of the suffixes in the ar inflection class. Some inflectional suffixes appear in two or more of these selected schemes, e.g. a, aba, ada, ó; others appear in only one, e.g. aban and arse in the 5th selected scheme. Separate patchworks cover the other inflection classes of Spanish verbs as well. Schemes modeling portions of the ir inflection class include the 30th, 135th, 1592nd, and 2000th selected schemes. Consider the 1592nd scheme, which contains four c‑suffixes. Three of these c‑suffixes, ido, idos, and ir, occur in other schemes selected during the initial search, while the fourth c‑suffix, iré, is unique to the 1592nd selected scheme. The suffix iré is uncommon in newswire text, makring ‘1st Person Singular Future Tense’ in the ir inflection class. Looking beyond the schemes listed in Table 4.2, and focusing in on one particular c‑suffix, 31 schemes, that were selected in the run of ParaMor search from which Table 4.2 was built, contain the c‑suffix ados: including the 5th, 12th, and 400th selected schemes shown in the figure. The search paths that identified these 31 schemes each geminate from a distinct initial c‑suffix: an, en, ación, amos, etc. 

The second broad shortcoming of ParaMor’s initial search is simply that many schemes do not satisfactorily model suffixes. The vast majority of schemes with this second shortcoming belong to one of two sub-types. The first sub-type comprises schemes containing c‑suffixes which systematically misanalyze word forms, hypothesizing morpheme boundaries consistently either to the left or to the right of the correct location. Schemes of this sub-type in Table 4.2 are marked in the Error: Left or Error: Right columns, and comprise the 3rd, 10th, 11th, 20th, 200th, 1000th, and 5000th selected schemes. Of these, the 3rd and 11th selected schemes place a morpheme boundary to the right of the stem boundary, truncating the full suffix forms: Compare the 3rd and 11th selected schemes with the 5th and 12th. In symmetric form, a significant fraction of the c‑suffixes in the 10th, 20th, 200th, 1000th, and 5000th selected schemes hypothesize a morpheme boundary to the left of the correct location, inadvertently including portions of verb stems within the c‑suffix list. In a random sample of 100 schemes out of the 8339 which the initial search strategy selected, 48 schemes modeled a morpheme boundary to the left of the correct position, and 1 hypothesized a morpheme boundary too far to the right.

The second sub-type of suffix model failure occurs when the c‑suffixes of a scheme are related not by belonging to the same paradigm, but rather by chance string similarity of surface type. Schemes which arise from chance string collisions are marked in the Error: Chance co​l​umn of Table 4.2, and include the 20th, 100th, 3000th, and 4000th selected schemes. In the random sample of 100 selected schemes, 40 are schemes produced from a chance similarity between word types. These chance schemes are typically ‘small’ in two distinct dimensions. First, the string lengths of the c‑stems and c‑suffixes of these chance schemes are often quite short. The longest c‑stem of the 100th selected scheme is two characters long; while both the 100th and the 3000th selected schemes contain the null c‑suffix, Ø, which has length zero. Short c‑stem and c‑suffix lengths in selected schemes are easily explained combinatorially: The inventory of possible strings grows exponentially with the length of the string. Because there just aren’t very many length one or length two strings, it should come as no surprise when a variety of c‑suffixes happen to occur attached to the same set of very short c‑stems. Schemes arising through a chance string similarity of word types are small on a second dimension as well. Chance schemes typically contain few c‑stems, and, by virtue of the details of ParaMor’s search procedure (see Chapter 3), even fewer c‑suffixes. The 3000th selected scheme contains just three c‑stems and two c‑suffixes. The evidence for this 3000th scheme arises, then, from a scant six (short) types, namely: li, a Chinese name; lo, a Spanish determiner and pronoun; man, part of an abbreviation for ‘Manchester United’ in a listing of soccer statistics;  lizano, a Spanish name; lozano, a Spanish word meaning ‘leafy’; and manzano, Spanish for ‘apple tree’. Schemes formed from chance string similarity of a few types, such as the 3000th selected scheme, are particularly prevalent among schemes chosen later in the search procedure, where search paths originate from level 1 schemes whose single c‑suffix is less frequent. Although there are less frequent c‑suffixes, such as iré, which led to the 1592nd selected scheme, that do correctly model portions of true paradigms, the vast majority of less frequent c‑suffixes do not model true suffixes. And because the inventory of word final strings in a moderately sized corpus is enormous, some few of the many available c‑suffixes happen to be interchangeable with some other c‑suffix on some few (likely short) c‑stems of the corpus. 

This chapter describes the algorithms with which ParaMor forges focused but comprehensive models of inflectional paradigms from the schemes selected during the initial search procedure. To consolidate the patchwork modeling of paradigms and to corral free c‑suffixes into structures which more fully model complete paradigms, ParaMor adapts an unsupervised clustering algorithm to automatically group related schemes. To remove schemes which fail to model true suffixes, ParaMor takes a two pronged approach: First, clean-up of the training data reduces the incidence of chance similarity between strings, and second, ParaMor wields targeted filtering algorithms that identify and discard those schemes which likely fail to model paradigms. 

To simplify the development of ParaMor’s algorithms, a pipeline architecture isolates each step of paradigm identification. ParaMor’s network search algorithm, described in Chapter 3, becomes one step in this pipeline. Now ParaMor must decide where to add the pipeline step that will cluster schemes which model portions of the same paradigm, and where to add steps that will reduce the incidence of incorrectly selected schemes. At first blush, it might seem most sound to place steps that remove incorrectly selected schemes ahead of any scheme clustering step—after all, why cluster schemes which do not model correct suffixes? At best, clustering incorrect schemes seems a waste of effort; at worst, bogus schemes might confound the clustering of legitimate schemes. But removing schemes before they are clustered has its own dangers. Most notably, a discarded correct scheme can never be recovered. On the other hand, if the distraction of incorrect schemes could be overcome, corralling schemes into monolithic paradigm models might safeguard individual useful schemes from imperfect scheme filtering algorithms. By the same token, scheme filters can also mistake incorrect schemes for legitimate models of paradigms. But by placing together similar misanalyses, such as the 3rd and 11th selected schemes from Table 4.2, clustering incorrect schemes could actually facilitate identification and removal of schemes in which the morpheme boundary is misplaced. As Section 4.2 explains, ParaMor’s clustering algorithm easily accommodates schemes which hypothesize an incorrect morpheme boundary for a legitimate inflectional paradigm, but has more difficulty with non-paradigmatic schemes which are the result of chance string similarity. To retain a high recall of true suffixes within the framework of a pipeline architecture, ParaMor takes steps which reduce the inventory of selected schemes only when necessary. Section 4.1 describes a technique that significantly reduces the number of selected schemes which result from chance string similarity, while insignificantly impacting correctly selected schemes. Section 4.2 then describes ParaMor’s scheme clustering algorithm. And Section 4.4 presents two classes of filtering algorithm which remove remaining incorrectly selected schemes.

4.1 Training Corpus Clean-Up

Because ParaMor’s clustering algorithm, which will be described in Section 4.2, is specifically tailored to leverage the paradigmatic structure of schemes, it is ill-suited for clustering schemes which do not exhibit a regular paradigmatic alternation. Schemes which result from chance similarities in word forms pointedly lack such paradigmatic structure. Thus ParaMor seeks to remove chance schemes before the scheme clustering step. As mentioned in the introduction to this chapter, the string lengths of the c‑suffixes and c‑stems of chance schemes are typically quite short. And if the c‑suffixes and c‑stems of a scheme are short, then the underlying types which license the scheme are also short. A simple data clean up step in which short types are excluded from the training data can virtually eliminate the entire category of chance scheme. For all of the languages considered in this thesis ParaMor has raw text corpora available that are much larger than the 50,000 types used in training. Consequently, for the experiments reported in this thesis, ParaMor does not merely remove short types, but replaces each with a new longer word type. As will be discussed in Chapter 5, the segmentation algorithm is independent of the set of types from which schemes and scheme clusters are built. Consequently, removing short types from training does not preclude them from being analyzed as containing multiple morphemes during segmentation. The string length below which types are removed from training is a free parameter. ParaMor is designed to identify the productive inflectional paradigms of a language. Unless a productive paradigm is restricted to occur only with short stems, a possible but unusual scenario (as with the English adjectival comparative, c.f. faster but *exquisiter), we can expect a productive paradigm to occur with a reasonable number of longer stems in a corpus. Hence, ParaMor needn’t be overly concerned about discarding short types. A qualitative examination of Spanish data suggested excluding types 5 characters or less in length. All experiments reported in this thesis which exclude short types only permit types longer than this 5 character cutoff. 

The schemes ParaMor selects during the initial search phase, when restricted to a corpus of 50,000 types longer than 5 characters in length, look very similar to the schemes, exemplified in Table 4.2, that ParaMor’s search algorithm selects over a corpus containing 50,000 types of all lengths—except for a remarkable absence of incorrect chance schemes. In a random sample of 100 schemes selected by ParaMor over a type-length restricted corpus of Spanish Newswire, only 2 schemes resulted from a chance similarity of word forms—this is down from 40 in a random sample of schemes selected from a corpus unrestricted for type length. The 3000th selected scheme, Ø.zano, shown in Table 4.2, is an example of the kind of scheme ParaMor’s search algorithm no longer selects once a type-length restriction is in place. The three surface types li, lo, and man are excluded from the Spanish training data because they are not longer than 5 characters in length. Removing these three types strips the Ø.zano scheme of all evidence for the Ø c‑suffix, and the 3000th scheme cannot be selected by the search algorithm. In all, ParaMor’s search algorithm selects 1430 fewer schemes, 6909 vs. 8339 when training over a type-length restricted corpus. Revisiting the status of the c‑suffix ados, including more long types in the training corpus increases the number of selected schemes which contain the c‑suffix ados from 31 to 40.
Because the training corpus has changed, schemes selected from a corpus restricted for type length are often not identical to schemes selected from an unrestricted corpus. But, in Spanish, ParaMor continues to identify schemes which model the major inflection classes of nouns, adjectives, and verbs and that, with one notable exception, contain numbers of c‑suffixes that are similar to the numbers of c‑suffixes of corresponding schemes found in Table 4.2. From the corpus unrestricted for type length, ParaMor directly models the Ø.es inflection class of number on Spanish nouns with the scheme Ø.es, the 4th selected scheme in Table 4.2. But from the type length restricted corpus, ParaMor only models the two suffixes of this less common nominal inflection class in combination with derivational suffixes, in schemes like Ø.​es.​idad.​idades.​mente. It so happens that in the type-length restricted corpus only 751 of the 3045 c‑stems which can attach the c‑suffix es can also attach Ø, this is 24.7%, just short of the 25.0% c‑stem ratio threshold in the upward search algorithm. And, since the ParaMor search strategy does not begin any search path from the Ø scheme, the only ParaMor search paths which include the c‑suffixes Ø and es necessarily begin from some third c‑suffix, like the fairly productive derivation suffix idad, the Spanish analogue of the English derivational suffix ity. As Chapter 5 discusses, ParaMor can analyze the morphology of inflected forms despite distracting derivational suffixes in a scheme. Thus ParaMor does not lose the ability to analyze Spanish nouns which mark plural with es after training over the corpus restricted for type length. 

4.2 Clustering of Partial Paradigms

Now that ParaMor largely avoids, through careful clean-up of the training data, selecting schemes which arise through chance string similarity, ParaMor applies a clustering algorithm to group schemes which model separate pieces of the same paradigm. ParaMor’s basic strategy is to cluster schemes which model the same morpheme boundaries in a variety of word types. As an unsupervised algorithm, ParaMor must use an unsupervised clustering algorithm to merge schemes. A variety of unsupervised clustering algorithms exist, from k-means to self-organizing kohonen maps. ParaMor’s current clustering algorithm is an adaptation of bottom-up agglomerative clustering. Bottom-up agglomerative clustering was chosen for ParaMor both because it is simple and also because it produces a tree structure that can be examined by hand. Careful examination of scheme cluster trees directly led to the adaptations of vanilla agglomerative clustering, described in this section, which accommodate the unique structure of paradigmatic schemes. Bottom-up agglomerative clustering begins with each item, i.e. scheme in this application, as its own separate cluster. At each step of clustering, that pair of clusters which is most similar is merged to form a new cluster. In its most basic instantiation, agglomerative clustering can proceed until a complete binary tree relates all the initial items being clustered. Typically, however a free parameter halts clustering when the similarity between clusters falls below a threshold.

ParaMor’s scheme clustering algorithm must address three challenges that arise when schemes are the items being clustered. Two of the three challenges concern intrinsic properties of linguistic paradigms; and two of the three involve properties of schemes as computational models. First, the purely linguistic challenge: morphological syncretism. Common cross-linguistically, syncretism occurs when distinct paradigms contain surface-identical suffixes. Syncretism implies there will be schemes which should not be merged even though the schemes contain some identical c‑suffixes. Second, ParaMor faces the wholly computational challenge of deciding when to halt clustering. As an unsupervised algorithm, ParaMor would prefer to find a way to halt clustering without introducing a free parameter. The third challenge ParaMor must overcome has both linguistic and computational roots: competing schemes may hypothesize rival morpheme boundaries in a common set of surface types, but such competing schemes should not be merged into the same cluster, as they are distinct models of morphological structure. Schemes hypothesize different morpheme boundaries in a single word type both for the computational fact that ParaMor does not know, a priori, where the correct morpheme boundaries are, but also because, in natural languages, morphological agglutination allows a single word type to legitimately contain more than one morpheme boundary. This section discusses adaptations to the basic bottom-up agglomerative clustering algorithm that address these three challenges.

To further explore the first challenge, surface identical c‑suffixes in distinct paradigms, i.e. syncretism, consider some examples. In Spanish, verbs of the er and the ir inflection classes systematically share many of the same inflectional suffixes. In Table 4.2 of this chapter’s introduction, the 30th, 135th, and 2000th selected schemes all contain only c‑suffixes which model suffixes found in both the er and the ir inflection classes. But grammars of Spanish still distinguish between an er and an ir inflection class because er and ir verbs do not share all inflectional suffixes. In Table 4.2, the 127th selected scheme contains the c‑suffixes er, erá, and ería which all only occur on er verbs, while the 1592nd selected scheme contains the c‑suffix ir and iré which only occur on ir verbs. A scheme clustering algorithm must not place the 127th and 1592nd selected schemes into the same cluster, but instead produce distinct clusters to model the er and ir inflection classes. More seditious than the suffix overlap between the er and ir inflection classes of Spanish verbs, is the overlap between the ar inflection class on the one hand and the er and ir inflection classes on the other. While shared surface suffixes in the er and ir inflection classes consistently mark identical sets of morphosyntactic features, most suffixes whose forms are identical across the ar and the er/ir inflection classes mark different morphosyntactic features. The present tense suffixes as, a, amos, and an mark various person-number features in the indicative mood on ar verbs but subjunctive mood on er and ir verbs. Conversely, es, e, emos (imos on ir verbs), and en mark indicative mood on er verbs, but these e‑forms mark subjunctive on ar verbs. Of course, ParaMor is unaware of morphosyntactic features, and so an appeal to syntactic features is irrelevant to ParaMor’s current algorithms. But clearly, ParaMor must carefully consider the 12th and 30th selected schemes, which ultimately model the ar and er/ir classes respectively, but which contain the c‑suffixes e and en in common, see Table 4.2.
Paradigm overlap is widespread in languages beyond Spanish. In English, many nouns form their plural with the suffix s, but verbs can also take an s suffix, marking ‘3rd Person Present Tense’. Important for the evaluation of the work in this thesis, paradigm overlap also occurs in German, Finnish, and Turkish, which, together with English, comprise the evaluation languages of Morpho Challenge 2007 (see Chapter 6). When modeling the inflectional paradigms of English, Spanish, German, Finnish, Turkish, or any other language, ParaMor must retain distinct models of each paradigm, though some of their suffixes might be string identical.

Suffix string identity overlap between paradigms has direct implications for the scheme similarity measure ParaMor employs during clustering. Bottom-up agglomerative clustering, like most unsupervised clustering algorithms, decides which items belong in the same cluster by measuring similarity between and among the items being clustered. To cluster schemes, ParaMor must define a similarity between schemes and clusters of schemes. Since natural language paradigms are essentially sets of suffixes, perhaps the most intuitive measure of scheme similarity would compare schemes’ c‑suffix sets. But because a suffix surface form may appear in more than one paradigm, comparing c‑suffix sets alone could spuriously suggest that schemes which model distinct paradigms be merged. 

Paradigm structure can rescue the complication of paradigm overlap. As a robust rule of thumb, while two paradigms, 
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, may share the surface forms of one or more suffix, 
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 will also contain suffixes which 
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 does not. For example, although the ar, er, and ir inflection classes of the Spanish verbal paradigm contain suffixes in common, each contains suffixes which the others do not—the infinitive suffixes ar, er, and ir themselves uniquely distinguish each inflection class. Similarly, in English, although verbal and nominal paradigms share the string s as a suffix, the verbal paradigm contains the suffixes ing and ed which the nominal paradigm does not. And conversely, the nominal paradigm contains the possessive ending which appears after the optional number suffix, yielding the orthographic paradigm cross-product forms: ’s, s’s, and s’. And the surface forms of these possessive suffixes do not appear in English verbal paradigms. The general rule that distinct paradigms contain some distinct surface suffix is not a language universal. Even in Spanish, the two suffixes in the paradigm of number on adjectives are identical to the suffixes of the largest inflection class of the number paradigm on nouns—both paradigms contain exactly the two suffixes Ø and s. And, indeed, both adjectives and nouns appear in ParaMor’s final cluster which contains the Ø.s scheme. In cases where a paradigm has no distinguishing suffix, ParaMor is currently unable to isolate that paradigm—this is a clear area for future research. 
ParaMor harnesses a paradigm’s distinguishing suffixes to overcome the challenge of paradigm overlap. ParaMor incorporates the unique suffixes of a paradigm into a form of discriminative clustering (get ref from Jaime). In abstract, discriminative clustering requires that the distance between each pair of items in a cluster be small. ParaMor’s discriminative clustering measures the distance between two schemes of a proposed cluster by measuring the distance between the c‑suffixes in those two schemes. To gauge the distance between two c‑suffixes, 
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, ParaMor examines the number of c‑stems to which both 
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 can attach. ParaMor easily calculates the c‑stems common to 
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 by revisiting the morphology scheme network used in the initial search for candidate schemes, see Chapter 3. The level 2 network scheme subsuming 
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 exactly holds the c‑stems which form words in combination with both 
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 scheme does not contain at least one c‑stem, then 
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scheme will be empty of c‑stems exactly when, without loss of generality, 
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 is a c‑suffix unique to a paradigm to which 
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 does not belong. Note that since the initial search will only select schemes containing a positive number of c‑stems, if 
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 are not mutually substitutable on at least one c‑stem, then no single selected scheme can contain both 
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. Coming back to Spanish, no c‑stem forms a word type in the newswire corpus by attaching the c‑suffix adas while also forming a separate word by attaching idas. The c‑suffixes adas and idas mark the past participle feminine plural in the ar and the ir/er inflection classes respectively. Since adas and idas share no c‑stem, discriminative clustering forbids the 12th selected scheme and the 30th selected scheme from belonging to the same cluster—exactly as required.

In addition to helping to keep distinct paradigms separate, ParaMor’s discriminative restriction, on the c‑suffixes which can belong to a cluster, also provides a principled halting criterion that avoids introducing an arbitrary similarity parameter. ParaMor allows agglomerative clustering to proceed until there are no more clusters that can legally be merged according to the c‑suffix based discriminative criterion. Thus, discriminatively restricting clustering by c‑suffixes solves two of the three challenges facing a scheme clustering algorithm.

Now ParaMor must solve the third challenge: ParaMor must avoid coalescing schemes that model competing morpheme boundary hypotheses. Each c‑stem - c‑suffix pair in each scheme hypothesizes a single morpheme boundary in a single word form. The word form corresponding to a c‑stem - c‑suffix pair is said to license the scheme containing that candidate pair. A single word form, 
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 may either agree on the morpheme boundary they hypothesize, or they may disagree. Consider the schemes from Table 4.2 which are licensed by the Spanish word apoyadas ‘supported (Adjectival Feminine Plural)’. The word apoyadas ends in one of the few agglutinative suffix sequences of Spanish, adas. As discussed in Chapter 1, a reasonable analysis of the suffix sequence adas is that it consists of three separate suffixes: ad, an adjectival marker; a, feminine; and s, plural. Following this analysis, the full decomposition of apoyadas is apoy+ad+a+s. The word apoyadas licenses five selected schemes in Table 4.2: the 1st, 2nd, 3rd, 5th, and 12th selected schemes (the 11th selected scheme is not licensed by apoyadas because the c‑stem apoya did not occur in corpus word forms with all 14 of the c‑suffixes in the 11th selected scheme). Each of the five schemes which apoyadas licenses in Table 4.2 models a single morpheme boundary in apoyadas. Between them, these five schemes propose the four morpheme boundaries: apoyada+s, apoyad+as, apoya+das, and apoy+adas. The hypothesized boundary apoya+das is incorrect. As the 5th and 12th selected schemes hypothesize the same boundary, apoy+adas, it is reasonable to consider placing the 5th and 12th schemes in a single cluster. The other schemes licensed by apoyadas each hypothesize a distinct morpheme boundary and should remain in separate clusters. 

Now consider the implications for a scheme similarity metric that arise from competition between schemes over their morpheme boundary hypotheses. Since schemes possess syntagmatic information in their sets of adherent c‑stems, it seems reasonable to compute scheme similarity scores not just over sets of c‑suffixes but to add information from c‑stems to information from c‑suffixes when evaluating scheme similarity. It also seems reasonable to give c‑stem similarity and c‑suffix similarity approximately equal weight. Fair representation of c‑stems and c‑suffixes is of concern as the number of c‑stems can far outstrip the number of c‑suffixes in a scheme: the 1st scheme selected in the ParaMor run of Table 4.2 contains just two c‑suffixes but more than five thousand c‑stems. Recognizing the unique structure of schemes, one method for combining similarities from c‑stems with similarities from c‑suffixes would reconcatenate the c‑stems and c‑suffixes of a scheme to form the set of word types which license that scheme. Comparing schemes by their sets of licensing types weights the aggregate evidence from c‑stems equally with the aggregate evidence from c‑suffixes because each licensing type consists of one c‑stem and one c‑suffix. But, because a single type may license schemes which hypothesize distinct morpheme boundaries, directly measuring scheme similarity by comparing sets of licensing types could erroneously merge these distinct models of morphology!

It might be tempting to measure scheme similarity by comparing sets of licensing types, while relying on c‑suffix discriminative clustering to keep separate any schemes that hypothesize distinct morpheme boundaries. The logic being that c‑suffixes, such as as and s, which are the result of distinct morpheme boundary hypotheses in a single word, i.e. apoyad+a+s, are unlikely to be able to attach to the same c‑stem. But discriminative clustering is not foolproof. It so happens that in our Spanish corpus, if ParaMor measures scheme similarity by comparing sets of licensing types, discriminative clustering fails to keep the Ø.s scheme separate from the a.as.o.os scheme. Training ParaMor only on types greater than 5 characters in length, both the Ø and s c‑suffixes can occur attached to a number of c‑stems which can also attach a, as, o, and os. The c‑suffix pairs which can attach to the fewest c‑stems are as.s and os.s, at 14 c‑stems each. Included among the c‑stems to which as, os, and s can all three attach are:  económic, franc, and norteamerican, from word forms in the Spanish newswire corpus like: económics, económicas, económicos, etc.

Since ParaMor cannot depend on discriminative clustering to alone segregate schemes which model competing morpheme boundaries, ParaMor retains the naturalness of measuring scheme similarity through sets of scheme-licensing types, while still distinguishing between schemes that model distinct morpheme boundaries, by comparing schemes based on types annotated for morpheme boundaries. For example, the morpheme boundary annotated type apoyada+s licenses the Ø.s scheme, while the boundary annotated type apoyad+as licenses the a.as.o.os scheme. In this manner, scheme models of distinct morpheme boundaries contain distinct objects that do not suggest spurious similarity.

Finally, for completeness, this section describes a heuristic originally implemented to prevent schemes which arise from a chance similarity of type strings from joining and overwhelming clusters. The heuristic is specifically adapted to ParaMor’s initial search strategy. As discussed in the introductory section of this chapter, selected chance schemes often originate from only few licensing types. At the same time, however, ParaMor’s initial network search identifies schemes which arise from large numbers of licensing types and which model suffixes of true paradigms—reference the 1st, 2nd, 4th, 5th, and 12th selected schemes, among others, from Table 4.2. ParaMor leverages these larger correct schemes, requiring at least one large scheme for each small scheme a cluster contains, where we measure the size of a scheme as the number of unique word forms licensing it. The threshold size above which schemes are considered large is a free parameter. As described in Section 4.4, the scheme size threshold is reused during ParaMor’s filtering stage. Section 4.4.1 details the unsupervised procedure used to set this scheme size threshold. Remember, however, that the current version of ParaMor avoids most chance schemes with the data clean-up step, presented in Section 4.1, of removing short types from the training data. With few or no chance schemes confounding the clustering algorithm, the heuristic restriction on the number of small schemes that may join a cluster is rendered largely unnecessary. But the small scheme heuristic is described here both because all versions of ParaMor include it, and also because early versions of ParaMor, on which quantitative results are reported in Chapter 6, did not include the short type filtering approach. 

We have found that tailoring bottom-up agglomerative clustering of schemes by first, using c‑suffix discrimination, and second, measuring similarity over sets of morpheme boundary annotated types, solves the three challenges facing a scheme clustering algorithm, namely: 1. c‑suffix overlap in paradigms, 2. the decision of when to halt clustering, and 3. preservation of the differing morpheme boundary hypotheses proposed by various schemes. With solutions to these three challenges in place, clustering is not significantly affected by the particular metric used to measure similarity. For the experiments reported in this thesis, ParaMor uses the cosine metric of set similarity to measure the relatedness of the schemes’ sets of licensing morpheme boundary annotated types. The formula for cosine similarity of two sets 
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. During clustering, when schemes, or clusters of schemes, are merged, the resulting cluster contains the union of the sets of morpheme boundary annotated types which belonged to the two children. 

4.3 ParaMor’s Initial Clusters

Table 4.3 contains scheme clusters typical of the sort that ParaMor builds after the three pipelined steps of 1. Data clean-up (Section 4.1), 2. Initial scheme selection from a morphology network (Chapter 3), and 3. Cluster aggregation (Section 4.2). Like Table 4.2, Table 4.3 was built from a Spanish newswire corpus of 50,000 types, but all word types in the corpus from which the scheme clusters in Table 4.3 were built are longer than five characters. Since the corpora from which the two figures come are not identical, the schemes from which the clusters of Table 4.3 were built are not identical to the schemes of Table 4.2. But most schemes from Table 4.2 have a close counterpart among the schemes which contribute to the clusters of Table 4.3. For example, Table 4.2 contains a Ø.s scheme, modeling the most frequent inflection class of number on Spanish nouns and adjectives. A Ø.s scheme also contributes to the first cluster given in Table 4.3, but the Ø.s scheme of Table 4.2 contains 5501 c‑stems, where the Ø.s scheme contributing to the 1st cluster of Table 4.3 contains 5399 c‑stems. Note that only full clusters are shown in Table 4.3, not the Ø.s scheme, or any other scheme, in isolation. As another example of scheme similarity between Table 4.2 and Table 4.3, turn to the third cluster of Table 4.3. This third cluster contains a scheme model of gender and number on Spanish adjectives consisting of the same c‑suffixes as the 2nd selected scheme in Table 4.2, namely a.as.o.os. Further correspondences between the clusters of Table 4.3 and the schemes of Table 4.2 are given in Table 4.3 in the second column, labeled Corresponds to Table 4.2. If the cluster of a row of Table 4.3 contains a scheme whose set of c‑suffixes is identical, or nearly identical, to that of a scheme in Table 4.2, then the rank of the corresponding scheme of Table 4.2 is given in the Corresponds column of Table 4.3; if the majority of suffixes of a scheme of Table 4.2 appear in a cluster of Table 4.3, but no particular scheme in that cluster exactly cor​​responds to the scheme of Table 4.2, then the Corresponds column of Table 4.3 gives the rank of the Table 4.2 scheme in parentheses. The clusters in Table 4.3 are ordered by the number of unique surface types which license schemes of  
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the cluster—this number of unique li censing types appears in the third column of Table 4.3. Because most c‑stems do not occur in all of a cluster’s schemes, the number of unique licensing types of a cluster is not simply the number of c‑suffixes multiplied by the number of c‑stems in the cluster. The fourth column of Table 4.3 gives the number of schemes which merge to form that row’s cluster. The only other column of Table 4.3 which does not also appear in Table 4.2 is the column labeled Phon. The Phon. column is marked with a dot when a row’s cluster models a morphophonological alternation. Clusters marked in the Phon. column are discussed further in Section 4.4.2. For additional explanation of the other columns of Table 4.3, please see their description in the introductory section of this chapter. 

Zooming in close on one scheme cluster, Figure 4.2 contains a portion of the clustering tree for the scheme cluster with the 4th most licensing types—a cluster covering suffixes which attach to ar verbs. The cluster tree in Figure 4.2 is of course binary, as it was formed through bottom-up agglomerative clustering. Schemes in Figure 4.2 appear in solid boxes, while clusters consisting of more than one scheme are in broken boxes. Each scheme or cluster reports the full set of c‑suffixes it contains. Schemes also report their full sets of c‑stems; and clusters state the cosine similarity of the sets of boundary annotated licensing types of the cluster’s two children. It is interesting to note that similarity scores do not monotonically decrease moving up the tree structure of a particular cluster. Non-decreasing similarities are a consequence of computing similarities over sets of objects, in this case sets of morpheme boundary annotated types, which are unioned up the tree. The bottom-most cluster of Figure 4.2 is built directly from two schemes. Two additional schemes then merge, one at a time, into the bottom-most cluster. Finally, the top-most cluster of Figure 4.2 is built from the merger of two clusters which already have internal structure. The full cluster tree continues upward until it contains 23 schemes. Although ParaMor can form clusters from children which do not both introduce novel c‑suffixes, each child of each cluster in Figure 4.2 brings to its parent some c‑suffix not found in the parent’s other child. Each c‑suffix which does not occur in both children of an intermediate cluster is underlined in Figure 4.2.

Returning to Table 4.3, examine ParaMor’s scheme clusters in the light of the two broad shortcomings of the schemes of Table 4.2, discussed in the introductory section of this chapter. Scheme clustering was designed to address the first broad shortcoming of the initially selected schemes, namely the patchwork fragmentation of paradigms across schemes. One of the most striking features of Table 4.3 are the clusters which merge schemes that jointly and correctly model significant fractions of a particular large Spanish paradigm. One such significant model is the cluster with the 4th largest number of licensing types. A portion of this 4th largest cluster appears in Figure 4.2, just discussed. All told, the 4th cluster contains more c‑suffixes than any  
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other scheme cluster, 41. These 41 c‑suffixes model suffixes which attach to ar verb stems: 7 c‑suffixes model agglutinative sequences of a non-finite inflectional suffix followed by a pronominal clitic, namely: arla, arlas, arlo, arlos, arme, arse, and ándose; 9 of the c‑suffixes are various inflectional forms of the relatively productive derivational suffixes ación, ador, and ante; And more than half of the c‑suffixes in this cluster are the surface forms of inflectional suffixes in the ar inflection class. This 4th cluster contains 24 c‑suffixes which model inflectional ar suffixes presented in Appendix 1; while one additional c‑suffix, ase, is a less common alternate form of the ‘3rd Person Singular Past Subjunctive’. Counting just the 24 c‑suffixes, this scheme cluster contains 64.9% of the 37 unique suffix surface forms in the ar inflection class of Spanish verbs listed in Appendix 1. Among the 24 inflectional suffixes are all of the 3rd Person endings for both Singular and Plural Number for all seven morphologically synthetic tense-mood combinations marked in Spanish: a, an, ó, aron, aba, aban, ará, arán, aría, arían, e, en, ara, and aran. Since newswire is largely written in the 3rd Person, it is to be expected that the 3rd Person morphology is most readily identified from a newswire corpus. Focusing in on one suffix of the 4th cluster, ados, an example suffix followed throughout this chapter, clustering reduces the number of distinct partial paradigms (scheme or cluster) in which the c‑suffix ados occurs, from 40 to 13.
The ar inflection class is the most frequent of the three regular Spanish verbal inflection classes, and so is most completely identified. But the clusters with the 11th and 17th most licensing types cover, respectively, the er and ir inflection classes nearly as completely as the 4th cluster covers the ar inflection class: The 11th cluster covers 19 of the 37 unique inflectional suffixes in the er inflection class, 4 inflection+clitic sequences, and 6 derivational suffixes; The 17th cluster contains 14 of the 36 unique surface forms of inflectional suffixes in the ir inflection class, 4 inflection+clitic sequences, and 2 derivational suffixes.

Clearly scheme clustering has significantly reduced the fragmentation of Spanish inflectional paradigms. But ParaMor’s c‑suffix discriminative restriction on scheme clustering, in combination with the heuristic restriction on the number of small schemes which a cluster may contain (see Section 4.2), prevents the majority of schemes from joining any cluster. Clustering only reduces the total number of separate paradigm models to 6087 clusters from 6909 original schemes when training on a corpus of types longer than 5 characters. The last six rows of Table 4.3 all contain ‘clusters’ consisting of just a single scheme that were prevented from merging with any other scheme. None of the singleton clusters on the last six rows correctly models inflectional affixes of Spanish. Five of the six singleton clusters misanalyze the morpheme boundaries in their few types; the cluster with the 300th most licensing types correctly identifies a morpheme boundary before the verb stem. All six clusters have relatively few licensing types. Section 4.4.1, directly addresses ParaMor’s strategy for removing these many small incorrect singleton clusters.

Before moving on to discuss the second broad shortcoming of ParaMor’s initially selected schemes, note a new shortcoming introduced by ParaMor’s clustering algorithm: overgeneralization. Each scheme, 
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, the paradigmatic relationship of the c‑stems and c‑suffixes of 
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 as well. Sometimes a merger’s generalization is well founded, and sometimes it is misplaced. When both 
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 model inflectional affixes of the same paradigm on syntactically similar stems, then the c‑stems of 
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 usually do combine to form valid word forms with the c‑suffixes of 
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 (and vice-versa). For example, the suffixes iré and imos are regular inflectional suffixes of the ir inflection class of Spanish verbs. Although the c‑suffix iré never occurs in a scheme with the c‑suffix imos, and although the Spanish word cumplimos ‘we carry out’ never occurs in the Spanish training corpus, the cluster of Table 4.3 with the 21st most licensing types places the c‑suffixes iré and imos in the same cluster together with the c‑stem cumpl—correctly predicting that cumplimos is a valid Spanish word form. On the other hand, when a c‑suffix, 
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 forms valid words with all the c‑stems of a merged cluster 
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. Consider the 1st scheme cluster of Table 4.3 which clusters the scheme Ø.s with the schemes Ø.mente.s and menente.mente. The c‑suffixes Ø and s mark Singular and Plural Number, respectively, on nouns and adjectives; The suffix (a)mente productively converts an adjective into an adverb, something like the suffix ly in English; But The string menente, on the other hand, is simply a typo. Where the Ø.s scheme contains 5399 c‑stems, and the scheme Ø.mente.s contains 253, the scheme menente.mente contains just 3 candidate stems: inevitable, unáni, and únıca. Many Spanish c‑stems allow the c‑suffix s to attach but represent only nouns. Such nominal stems will not legitimately attach mente. Furthermore, productively assuming that the c‑suffix menente can attach to any candidate stem is wrong. Thus this 1st cluster has overgeneralized in merging these three schemes. I am not aware of any unsupervised method to reliably distinguish between infrequent inflectional affixes on the one hand and reasonably frequent derivational affixes, such as mente, on the other. Overgeneralization is endemic to all clustering algorithms, not just unsupervised bottom-up agglomerative clustering of schemes. Chapters 5 and 6 of this thesis describe applying ParaMor’s induced scheme clusters to an analysis task. Specifically, ParaMor segments word forms into constituent morphemes. As discussed in Chapter 7, before ParaMor could be applied to a generation task that would propose likely full form words, the problem of overgeneralization in scheme clusters would need to be seriously addressed.

Now consider how the clusters of Table 4.3 stack up against the second broad shortcoming of ParaMor’s initially selected schemes: that many original schemes were unsatisfactory models of paradigms. The data clean-up step, described in Section 4.1, which excludes short types from ParaMor’s training data, virtually eliminated the first subclass of unsatisfactory schemes. The number of scheme clusters which result from a chance similarity of string types is insignificant. But, as anticipated in this chapter’s introduction, because ParaMor postpones discarding schemes which hypothesize unlikely morpheme boundaries until after the schemes have been clustered, many initially created clusters misanalyze morpheme boundaries. Half of the clusters in Table 4.3 hypothesize inferior morpheme boundaries in their licensing types. The largest such cluster is the cluster with the 2nd most licensing types. Like the 2nd selected scheme of Table 4.2, which it subsumes, the 2nd cluster places morpheme boundaries after the a vowel which begins most suffixes in the ar inflection class. On the upside, the 2nd cluster has nicely unified schemes which all hypothesize the same morpheme boundaries in a large set of types—only this time, the hypothesized boundaries happen to be incorrect. Section 4.4.2 describes steps of ParaMor’s pipeline which specifically remove clusters which hypothesize incorrect morpheme boundaries.

4.4 Filtering of Merged Clusters

With most valid schemes having found a safe haven in a cluster with other schemes that model the same inflection class, ParaMor focuses on improving precision by removing erroneous scheme clusters. ParaMor applies two classes of filters to cull out unwanted clusters. These two filter classes address two shortcomings of the ParaMor clustering pipeline that are described in the introductory section of this chapter. The first filter class, described in Section 4.4.1, targets the many scheme clusters with support from only few licensing types. The second class of filter, presented in Section 4.4.2 identifies and removes remaining scheme clusters which hypothesize incorrect morpheme boundaries.

4.4.1 Filtering of Small Scheme Clusters

ParaMor’s first class of filtering algorithm consists of just a single procedure which straightforwardly removes large numbers of erroneous small clusters: the filter discards all clusters with less than a threshold number of licensing types. To minimize the number of free parameters in ParaMor, the value of this threshold is tied to the threshold value, described near the end of Section 4.2, which is used by the clustering heuristic that restricts the number of small schemes that may join a cluster. These two thresholds can be reasonably tied together for two reasons. First, both the clustering heuristic and this first filter seek to limit the influence of small erroneous schemes. Second, both the heuristic and the filter measure the size of a scheme or cluster as the number of licensing types it contains. Figure 4.3 graphs the number of clusters that ParaMor identifies after first clustering schemes with a particular threshold setting and then filtering those clusters for their licensing type count using the same setting. Figure 4.3 also contains a plot of suffix recall as a function of these tied thresholds. ParaMor calculates suffix recall by counting the number of unique surface forms of Spanish inflectional suffixes, as given in Appendix 1, that appear in any identified cluster. The technique described in this section for removing small clusters was developed before ParaMor adopted the practice of only training on longer word types; and Figure 4.3 presents the cluster count and suffix recall curves over a corpus that includes types of all lengths. Figure 4.3 presents results over corpora that are not restricted by type length because it is from the unrestricted corpus data that the threshold for small scheme filtering was set to the value which ParaMor currently uses. Over a Spanish corpus that only includes types longer than 5 characters, the effect of filtering by licensing type count is similar.

Looking at Figure 4.3, as the size threshold is increased, the number of remaining clusters quickly drops. But suffix recall only slowly falls during the steep decline in cluster count, indicating ParaMor discards mostly bogus schemes containing illicit suffixes. Because recall is relatively stable, the exact size threshold used should have only a minor effect on ParaMor’s final morphological analyses. In fact, I have not fully explored the ramifications various threshold values have on the final morphological word segmentations, but have simply picked a rea​sonable setting with a low cluster count and a high suffix recall. The threshold ParaMor uses is 37 covered word types. At this threshold value, all but 137 of the 7511 clusters formed from the 8339 originally selected schemes are removed, a 98.2% reduction in the number of clusters. Note that the vertical scale on Figure 4.3 goes only to 1000 clusters. Counting in another way, before filtering, the scheme clusters contained 9896 unique c‑suffixes, and after filtering, just 1399, an 85.9% reduction. The recall of unique inflectional suffixes at a threshold value of 37 licensing types is 81.6%, or 71 out of 87. Before filtering schemes for the number of licensing types they contain, 92.0% of the unique suffixes of Spanish morphology appeared as a c‑suffix in some scheme cluster. But this automatically derived value of 92.0%, or 80 of 87, is somewhat misleading. At a threshold value of 37, nine unique c‑suffixes which are string identical to true Spanish suffixes are lost. But six of the nine lost unique c‑suffixes appear in schemes that clearly do not model Spanish inflectional suffixes. For example, one c‑suffix that is removed during cluster size filtering is erías, which matches the Spanish suffix verbal inflectional suffix erías ‘2nd Person Singular Present Conditional’. The c‑suffix erías appears in only one cluster, which consists of the single scheme ería.erías.o.os with the c‑stems escud.​ganad.​grad.​libr.​mer​cad. Reconcatenating c‑stems and c‑suffixes, most word forms which both license this cluster and end in ería or erías, like librerías ‘library (pl.)’ and ganaderías ‘ranch (pl.)’, are not verbs but nouns. And forms with the o/os endings, like libro ‘book’ and ganado ‘cattle,’ are derivationally related nouns. After disqualifying c‑suffixes which appear in schemes which do not model Spanish inflectional suffixes, only three true c‑suffixes are lost during this first filtering step.
When training from a Spanish corpus consisting only of types longer than 5 characters in length, the numbers follow a similar pattern. Before clustering, ParaMor identifies 6909 schemes; this is reduced to 6087 after clustering; and after filtering at a threshold of 37, only 150 clusters remain. The recall values of unique suffixes, when training over a Spanish corpus restricted for type length, are identical to the values over the unrestricted corpus: 92.0% before filtering and 81.6% after, although, oddly, ParaMor does not either identify or filter exactly the same set of inflectional suffixes. Looking at Table 4.3, the clusters in the last six rows are all removed, as they each contain fewer than 37 licensing types. And looking at the particular suffix of the ar inflection class that this chapter follows, after filtering, 7 clusters remain out of the original 13 which contain the c‑suffix ados. Of the six discarded clusters that contain ados, two are clearly correctly discarded as they are among the few surviving clusters which arise from chance string similarity of types. And even ParaMor’s discarding the remaining four is not unreasonable, as each of the four models at least one relatively unproductive derivational suffix. The discarded cluster ado.​ados.​amento.​amentos.​ando, for example, contains c‑suffixes which model inflectional suffixes: ado, ados, and ando, but also c-suffixes modeling forms of the derivational suffix amento/amentos, which forms nouns from some ar verbs.

4.4.2 Morpheme Boundary Filtering

In Spanish, as described in Section 4.4.1, filtering scheme clusters by thresholding the number of types that must license each cluster drastically reduces the number of clusters that ParaMor proposes as models for inflectional paradigms. From the thousands of initially created scheme clusters, type-license filtering leaves less than two hundred. This is progress in the right direction. But as Spanish has fewer than ten productive inflectional paradigms, see Appendix 1, ParaMor still vastly over estimates the number of Spanish paradigms. A hand analysis of the 150 scheme clusters which remain after training from a Spanish corpus of 50,000 types, each type more than 5 characters in length, reveals that the major defect in the remaining clusters is their incorrect modeling of morpheme boundaries. More than 
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, 108, of the remaining scheme clusters hypothesize an incorrect morpheme boundary in their licensing types. That misplaced morpheme boundaries are the major source of error in the remaining scheme clusters is not surprising. Morpheme boundary errors form the only error sub-type of the two broad shortcomings of the initially selected schemes that ParaMor has not yet addressed with either a clustering or a filtering algorithm. As described in this chapter’s introduction, ParaMor elected to cluster schemes immediately after search, allowing these incorrect morpheme boundaries to persist among the clustered schemes. 

ParaMor’s initial morphology network search strategy is designed to detect the hallmark of inflectional paradigms in natural language: mutual substitutability between sets of affixes (Chapter 3). Unfortunately, when the c‑suffixes of a scheme break not at a morpheme boundary, but rather at some character boundary internal to a true morpheme, the incorrect c‑suffixes are sometimes still mutually substitutable. For example, the scheme cluster on the 2nd row of Table 4.3 incorrectly hypothesizes a morpheme boundary that is after the a vowel which begins many inflectional and derivational ar verb suffixes. In placing the morpheme boundary after the a, this scheme cluster cannot capture the full paradigm of ar verbs, which includes inflectional suffixes such as  o ‘1st Person Singular Present Indicative’ and é ‘1st Person Singular Past Indicative’ which do not begin with a. But in the Spanish word administrados ‘administered (Adjectival Masculine Plural)’, the c‑suffix dos can be substituted out, and various c‑suffixes from the scheme cluster on the 2nd row of Table 4.3 substituted in, to form Spanish words, e.g. from Ø, administra ‘administer (3rd Person Singular Present Indicative); from da, administrada (Adjectival Feminine Singular); etc. Similarly, the scheme cluster on the 6th row of Table 4.3, the cluster that has the 10th most licensing types, models the many Spanish adjective stems which end in t, abierto ‘open’, cierto ‘certain’, pronto ‘quick’ etc.—But this cluster incorrectly prepends the final t of these adjective stems to the adjectival suffixes, forming c‑suffixes such as: ta, tas, and to. Unfortunately, these prepended c‑suffixes are mutually substitutable on adjectives whose stems end in t, and thus appear to the initial search strategy to model a paradigm. Since ParaMor cannot rely on mutual substitutability of suffixes to identify correct morpheme boundaries, ParaMor turns to a secondary characteristic of paradigms.

The secondary characteristic ParaMor adapts is an idea originally proposed by Harris (1955) known as letter successor variety. Take any string 
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 is a word form of a particular natural language. Harris noted that when the right edge of 
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 falls at a morpheme boundary, the strings in 
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 typically begin in a wide variety of characters; but when 
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 divides a word form at a character boundary internal to a morpheme, any legitimate word final string must first complete the erroneously split morpheme, and so will begin with the same character. This argument similarly holds when the roles of 
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 are reversed. Harris harnesses this idea of letter successor variety by first placing a corpus vocabulary into a character tree, or trie, and then proposing morpheme boundaries after trie nodes that allow many different characters to immediately follow. Consider Harris’ algorithm over a small English vocabulary consisting of the twelve word forms: rest, rests, resting, retreat, retreats, retreating, retry, retries, retrying, roam, roams, and roaming. The upper portion of Figure 4.4 places these twelve English words in a trie. The bottom branch of the trie begins r-o-a-m. Three branches follow the m in roam, one branch to each of the trie nodes Ø, i, and s. Harris suggests that such a high branching factor indicates there may be a morpheme boundary after r-o-a-m. The trie in Figure 4.4 is a forward trie in which all the items of the vocabulary share a root node on the left. A vocabulary also defines a backward trie that begins with the final character of each vocabulary item.

Interestingly there is a close correspondence between trie nodes and ParaMor schemes. Each circled sub-trie of the trie in the top portion of Figure 4.4 corresponds to one of the four schemes in the bottom-right portion of the figure. For example, the right-branching children of the y node in retry form a sub-trie consisting of Ø and i-n-g, but this same sub-trie is also found following the t node in rest, the t node in retreat, and the m node in roam. ParaMor conflates all these sub-tries into the single scheme Ø.ing with the four adherent c‑stems rest, retreat, retry, and roam. Notice that the number of leaves in a sub-trie corresponds to the paradigmatic level of a scheme, e.g. the level 3 scheme Ø.ing.s corresponds to a sub-trie with three leaves ending the trie paths Ø, i-n-g, and s. Similarly, the number of sub-tries which conflate to form a single scheme corresponds to the number of adherent c‑stems belonging to the scheme. By reversing the role of c‑suffixes and c‑stems, a backward trie similarly collapses onto ParaMor schemes.

Just as schemes are analogues of trie nodes, ParaMor can link schemes in a fashion analogous to transition links between nodes in forward and backward tries. Transition links emanating to the right from a particular scheme, 
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forward trie, and links to the left, analogues of transition links in a backward trie. To define forward scheme links from a scheme, 
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 to the scheme containing exactly the set of c‑suffixes 
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. Schemes whose c‑suffixes all begin with the same character, such as t.ting.ts and t.ting, have exactly one rightward path that links 
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 to the scheme where that leading character has been stripped from all c‑suffixes. For ex ample, in Figure 4.4 the t.ting.ts scheme is linked to the Ø.ing.s scheme. Leftward links among schemes are defined by reversing the roles of c‑stems and c‑suffixes as follows: for each character, 
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 starts all c‑suffixes. For example, the Ø.ing.s scheme contains the c‑stems rest and retreat, which both end in the character t, hence there is a link from the Ø.ing.s scheme to the t.ting.ts scheme. Note that when all the c‑suffixes of a scheme, 
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Drawing on the correlation between character tries and scheme networks, ParaMor ports Harris’ trie based morpheme boundary identification algorithm quite directly into the space of schemes and scheme clusters. Just as Harris identifies morpheme boundaries by examining the variety of the branches emanating from a trie node, ParaMor identifies morpheme boundaries by examining the variety in the trie-style scheme links. ParaMor employs two filters which examine trie-style scheme links: the first filter seeks to identify scheme clusters, like the 2nd cluster of Table 4.3, whose morpheme boundary hypothesis is too far to the right; while the second filter flags scheme clusters that hypothesize a morpheme boundary too far to the left, as the Table 4.3 cluster with the 10th most licensing types does.

To identify scheme clusters whose morpheme boundary hypothesis is too far to the right, ParaMor’s first filter examines the variety of the leftward trie-style links of the schemes in a cluster—a scheme cluster which places a morpheme boundary hypothesis too far to the right examines leftward links, because it is the leftward links which may provide evidence that the correct morpheme boundary is somewhere off to the left. ParaMor follows an idea first proposed by Hafer and Weiss (1974) and uses entropy to measure link variety. Each leftward scheme link, 
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, can be weighted by the number of c‑stems whose final character advocates 
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. In Figure 4.4 two c‑stems in the Ø.ing.s scheme end in the character t, and thus the leftward link from Ø.ing.s to t.ting.ts receives a weight of two. Weighting links by the count of advocating c‑stems, ParaMor can calculate the entropy of the distribution of the links. The leftward link entropy is close to zero exactly when the c‑stems of a scheme have little variety in their final character.  ParaMor’s leftward looking link filter examines the leftward link entropy of each scheme in each cluster. Each scheme with a leftward link entropy below a threshold is flagged. And if more than half of the schemes in a cluster are flagged, ParaMor’s leftward link filter discards that cluster. ParaMor is conservative in setting its leftward link filter’s free threshold. ParaMor flags a scheme as a likely boundary error only when the leftward link entropy is below 0.5, a threshold which indicates that virtually all of a scheme’s candidate stems end in the same character. 

The second morpheme boundary filter ParaMor uses examines rightward links so as to identify scheme clusters which hypothesize a morpheme boundary to the left of a true boundary location. But this right-looking filter is not merely the mirror image of the left-looking filter. Consider ParaMor’s quandary when deciding which of the following two schemes models a correct morpheme boundary: Ø.ba.ban.da.das.do.dos.n.ndo.r.ra.ron.rse.rá.rán or a.​aba.​aban.​ada.​adas.​ado.​ados.​an.​ando.​ar.​ara.​aron.​arse.​ará.​arán. These two schemes are attempting to model true inflectional suffixes of the verbal ar inflection class. The first scheme is the 3rd scheme selected by ParaMor’s initial search strategy, and appears in Table 4.2. The second scheme is a valid scheme which ParaMor could have selected, but did not. This second scheme, a.​aba.​aban.​ada.​adas.​ado.​ados.​an.​ando.​ar.​ara.​aron.​arse.​ará.​arán, arises from the same word types which license the 3rd selected scheme. Turning back to Table 4.2, all of the c‑stems of the 3rd selected scheme end with the character a. And so the left-looking filter, just described, would flag the 3rd selected scheme as hypothesizing an incorrect morpheme boundary. If the right-looking filter were the mirror image of the left-looking filter, then, because all of its c‑suffixes begin with the same character, the scheme a.​aba.​aban.​ada.​adas.​ado.​ados.​an.​ando.​ar.​ara.​aron.​arse.​ará.​arán would also be flagged as not modeling a correct morpheme boundary! ParaMor arbitrarily settles the problem of ambiguous morpheme boundaries like that involving the 3rd selected scheme, by preferring the left-most plausible morpheme boundary. 

ParaMor’s bias toward the left-most boundary is accomplished through calling the left-looking filter as a subroutine of the right-looking filter. Specifically, ParaMor’s right-looking morpheme boundary filter only flags a scheme, 
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, as likely hypothesizing a morpheme boundary to the left of a true boundary, if there exists a non-branching rightward path from 
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 is a correct morpheme boundary. For example, in considering the scheme a.​aba.​aban.​ada.​adas.​ado.​ados.​an.​ando.​ar.​ara.​aron.​arse.​ará.​arán, ParaMor’s right-looking morpheme boundary filter would follow the single rightward path along the character a to the 3rd selected scheme Ø.​ba.​ban.​da.​das.​do.​dos.​n.​ndo.​r.​ra.​ron.​rse.​rá.​rán. Since ParaMor’s left-looking filter believes this 3rd selected scheme does not hypothesize a correct morpheme boundary, ParaMor’s right-looking filter then examines the rightward links from the 3rd selected scheme. But different c‑suffixes in the 3rd selected scheme begin with different characters, Ø with Ø, ba with b, da with d, etc. Hence, ParaMor’s right-looking morpheme boundary filter finds more than one rightward path and stops its rightward movement. As ParaMor’s right-looking filter encountered no rightward scheme which the left-looking filter believes is at a morpheme boundary, the right-looking filter would accept a.​aba.​aban.​ada.​adas.​ado.​ados.​an.​ando.​ar.​ara.​aron.​arse.​ará.​arán as modeling a valid morpheme boundary. On the other hand, when considering a scheme like the 10th selected scheme ta.tamente.tas.to.tos, see Table 4.2, ParaMor’s right-looking filtering moves from ta.tamente.tas.to.tos to a.​amente.​as.​o.​os. The scheme a.amente.as.o.os clearly looks like a morpheme boundary to the left-looking filter—and so ta.tamente.tas.to.tos is flagged as not modeling a valid morpheme boundary. Like the left-looking filter, to discard a cluster of schemes, the right-looking filter must flag more than half of the schemes in a cluster as hypothesizing an incorrect morpheme boundary.

4.5 ParaMor’s Final Scheme Clusters as Viable Models of Paradigms

Section 4.4 completes the description of all steps in ParaMor’s paradigm identification pipeline. This section qualitatively considers the final scheme clusters that ParaMor produces over the Spanish newswire corpus of 50,000 long types. First, examine the effect of the left-looking and the right-looking morpheme boundary filters on the 150 scheme clusters which remained after filtering out small clusters as described in Section 4.4.1. The morpheme boundary filters remove all but 42 of these 150 scheme clusters. And of the 108 scheme clusters which hypothesized an incorrect morpheme boundary only 12 are not discarded. Unfortunately, this aggressive morpheme boundary filtering does have collateral damage. Recall of string-unique Spanish suffixes drops from 81.6% to 69.0%. All together, 11 unique c‑suffixes, which were string identical to Spanish inflectional suffixes given in Appendix 1, are lost from ParaMor’s cluster set. Four of these unique c‑suffixes were only found in clusters which did not model a Spanish paradigm. For example, the c‑suffix iste which is string identical to the er/ir suffix iste ‘2nd Person Singular Past Indicative’ is lost when the bogus cluster iste.​isten.​istencia.​istente.​istentes.​istiendo.​istir.​istió.​istía is removed by the right-looking filter. ParaMor correctly identifies this iste-containing cluster as an incorrect segmentation of verbs whose stems end in the string ist, such as consistir, existir, persistir, etc. But 7 of the 11 lost unique c‑suffixes model true Spanish suffixes. All 7 of these lost c‑suffixes model Spanish pronominal clitics. And all 7 were lost when the only cluster which modeled these Spanish clitics was removed by the left-looking morpheme boundary filter. The specific cluster that was removed is: Ø.​a.​emos.​la.​las.​le.​lo.​los.​me.​on.​se.​á.​án.​ía.​ían. In this cluster the c‑suffixes la, las, le, lo, los, me, and se are all pronominal clitics, the c‑suffix Ø correctly captures the fact that not all Spanish verbs occur with a clitic pronoun, and the remaining c‑suffixes are incorrect segmentations of verbal inflectional suffixes. While it is worrisome that an entire category of Spanish suffix can be discarded with a single mistake, Spanish clitics had two counts against them. First, ParaMor was not designed to retrieve rare paradigms, but pronominal clitics are very rare in Spanish newswire text. And second, the pronominal clitics which do occur in newswire text almost exclusively occur after an infinitive morpheme, usually ar. Always following the same morpheme, the left-looking morpheme boundary filter believes the Ø.​a.​emos.​la.​las.​le.​lo.​los.​me.​on.​se.​á.​án.​ía.​ían cluster to hypothesize a morpheme boundary internal to a morpheme. And exacerbating the problem, the c‑suffixes which appear alongside the clitics in this cluster are incorrect segmentations whose c‑stems also end in r. ParaMor’s bias toward preferring the left-most plausible morpheme boundary will fail whenever the c‑suffixes of a cluster consistently follow the same suffix, or even when they consistently follow the same set of suffixes which all happen to end with the same character. This is a weakness of ParaMor’s current algorithm.

Now, take a return look at Table 4.3, which contains a sampling of clusters ParaMor constructs from the initially selected schemes before any filtering. As noted when Table 4.3 was first introduced in Section 4.3, the cluster on the top row of Table 4.3 models the most prevalent inflection class of Number on Spanish nouns and adjectives, containing the scheme Ø.s. This 1st cluster is correctly retained after all filtering steps. The 2nd scheme cluster in Table 4.3 incorrectly places a morpheme boundary after the epenthetic vowel a which leads off most suffixes in the ar inflection class. ParaMor’s left-looking morpheme boundary filter correctly and successfully removes this 2nd cluster. ParaMor correctly retains the scheme clusters on the 3rd, 4th, 7th, and 8th rows of Table 4.3. These clusters have respectively the 3rd, 4th, 11th, and 17th most licensing types. The 3rd scheme cluster covers the scheme, a.as.o.os, which models the cross-product of gender and number on Spanish adjectives, and which was the 2nd selected scheme during ParaMor’s initial search. The other candidate suffixes in this cluster include a version of the adverbial suffix (a)mente, and a number of derivational suffixes that convert adjectives to nouns. The 4th, 11th, and 17th scheme clusters in Table 4.3 are correct collections of, respectively, verbal ar, er, and ir inflectional and derivational suffixes.

The 5th scheme cluster in Table 4.3 segments a Spanish nominalization internally. But ParaMor’s morpheme boundary filters are unsuccessful at removing this scheme cluster because this Spanish nominalization suffix has four allomorphs: sion, cion, sión, and ción. The 5th scheme cluster places a morpheme boundary immediately before the i in these allomorphs. The left-looking morpheme boundary filter is unable to remove the cluster because some c‑stems end in s while others end in c, increasing the leftward link entropy. But the right-looking morpheme boundary filter is also unable to remove the cluster, because, from a majority of the schemes of this cluster, after following a link through the initial i of these c‑suffixes, ParaMor’s right-looking filter reaches a scheme with two rightward trie-style paths, one following the character o and one following the character ó. In fact, the largest class of errors in the remaining 42 scheme clusters consists of clusters which somewhere involve a morphophonological change in the c‑suffixes or c‑stems. Thirteen clusters fall into this morphophonological error category. In Table 4.3, in addition to the 5th cluster, the cluster on the 9th row, with the 21st most licensing types, is also led astray by morphophonology. Both the 5th cluster and the 21st cluster are marked in the Phon. column of Table 4.3. The 21st cluster subsumes a scheme very similar to the 1000th selected scheme of Table 4.2, which hypothesizes a morpheme boundary to the left of the true stem boundary. Although the cluster with the 21st most licensing types includes the final characters of verb stems within c‑suffixes, the 21st cluster is modeling a regular morphophonologic and orthographic change: stem final c becomes zc in some Spanish verbs. The only way ParaMor can model morphophonology is by expanding the c‑suffixes of a scheme or cluster to include the variable portion of a verb stem. 

Nearing the end of Table 4.3, the scheme cluster on the 6th row of Table 4.3, with the 10th most licensing types, and the scheme cluster on the 10th row, with the 100th most licensing types, hypothesize morpheme boundaries in adjectives too far to the left, internal to the stem. Both are correctly removed by ParaMor’s right-looking morpheme boundary filter. Correctly, neither morpheme boundary filter removes the scheme cluster on the 11th row, with the 122nd most licensing types, which models plural number on nouns. Finally, as mentioned in Section 4.4.1, the last six scheme clusters in Table 4.3 were previously removed by the filter that looks at the number of licensing types in a cluster. 
And so the scheme clusters that ParaMor produces as models of paradigms are generally quite reasonable. Still, there are three reasons that scheme clusters are not full descriptions of the paradigms of a language. First, ParaMor does not associate morphosyntactic features with the c‑suffixes in each cluster. ParaMor might know that the c‑suffix ar attaches to c‑stems like apoy, but ParaMor does not know either of the facts that the string apoy is a verb in Spanish or that the ar suffix forms the infinitive. Second, ParaMor’s scheme clusters contain incorrect generalizations. As noted in Section 1.1, most of ParaMor’s clusters contain c‑suffixes, which model idiosyncratic derivational suffixes, that do not form valid word forms with all the c‑stems in the cluster. Third, although clustering introduces some model generalization, the scheme clusters ParaMor produces remain highly specific. By associating a set of c‑suffixes with a particular set of c‑stems, ParaMor constrains its analyses only to the word types covered by a c‑stem - c‑suffix pair in the scheme cluster. Despite these three deficiencies in ParaMor’s discovered paradigms, Chapters 5 and 6 successfully apply scheme clusters to morphologically segment word forms.
4.6 Summarizing ParaMor’s Pipeline

Chapters 3 and 0 presented the steps in ParaMor’s pipeline which, together, process raw natural language text into concise descriptions of the inflectional paradigms of that language. Figure 4.5 is a graphical representation of ParaMor’s pipelined algorithms. Beginning at the top of the figure: A monolingual natural language corpus is screened of all types 5 characters or less in length (Section 4.1). From the remaining longer types, ParaMor searches a network of proposed paradigms, or schemes, for those which most likely model true inflectional paradigms (Chapter 3). The many overlapping and fragmented scheme models of partial paradigms are then clustered into unified models of individual inflectional paradigms (Section 4.2). And finally, three filtering algorithms remove clusters which, upon closer inspection, no longer appear to model inflectional paradigms: one filter removes small singleton clusters; while two others examine the morpheme boundaries the proposed scheme clusters hypothesize in their licensing types. After these six steps ParaMor outputs a relatively small and coherent set of scheme clusters which it believes model the inflectional paradigms of a language.

Thus far, this thesis has only described ParaMor’s performance at paradigm identification over Spanish text. But ParaMor is intended to enable paradigm discovery in any language that uses a phoneme-based orthography. And Chapter 6 of this thesis applies ParaMor’s algorithms to a four additional languages: English, German, Finnish, and Turkish. Directly and quantitatively assessing the quality of ParaMor’s induced paradigms requires compiling by hand a definitive set of the paradigms of a language. Deciding on a single set of productive inflectional paradigms can be difficult even for a language with relatively straightforward morphology such as Spanish. Appendix 1 describes the challenge of deciding whether Spanish pronominal clitics are inflectional paradigms. And for an agglutinative language like Turkish, the number of potential suffix sequences makes a single list of paradigm cross-products extremely unwieldy. As Figure 4.5 depicts, rather than separately define paradigm sets for each language that ParaMor analyzes in this thesis, Chapter 0 applies ParaMor’s induced paradigm models to the task of morpheme segmentation. ParaMor’s ultimate output of morphologically annotated text will be empirically evaluated in two ways in Chapter 6. First, ParaMor’s precision and recall at morpheme identification are directly measured. And second, ParaMor’s morphological segmentations augment an information retrieval (IR) system.
5 Morphological Segmentation

Chapters 3 and 0 presented the steps of ParaMor’s paradigm discovery pipeline. This chapter and the next will apply ParaMor’s induced paradigms to the task of morphological segmentation. ParaMor’s scheme clusters can be successfully and usefully applied to the task of morphological segmentation. A morphological segmentation algorithm breaks full form words at morpheme boundaries. For example, the morphological segmentation of the Spanish word apoyar would be apoy + ar. While not a full morphological analysis from a linguistic perspective, a morphological segmentation is nonetheless useful in many natural language processing tasks. Creutz (2006) significantly improves the performance of a Finnish speech recognition system by training language models over Finnish text that has been morphologically segmented using an unsupervised morphology induction system called Morfessor. Oflazer and El-Kahlout (2007) improve a Turkish-English off-the-shelf statistical machine translation system by morphologically segmenting Turkish. Although Oflazer and El-Kahlout segment Turkish with a hand-built morphological analyzer, it is likely that segmentations induced from an unsupervised morphology induction system could similarly improve results. Yet another natural language processing application that can benefit from a shallow morphological analysis is information retrieval. Linguistically naïve word stemming is a standard technique that improves information retrieval performance. And Section 6.2 of this thesis discusses a simple embedding of ParaMor’s morphological segmentations into an information retrieval system with promising results.
Two principles guide ParaMor’s approach to morphological segmentation. First, ParaMor only segments word forms when the discovered scheme clusters hold paradigmatic evidence of a morpheme boundary. Second, ParaMor’s segmentation algorithm must generalize beyond the specific set of types which license individual scheme clusters. In particular ParaMor will be able to segment word types which did not occur in the training data from which ParaMor induced its scheme clusters. ParaMor’s seg​mentation algorithm is perhaps the most simple paradigm inspired segmentation algorithm possible that can generalize beyond a specific set of licensing types. Essentially, ParaMor hypothesizes morpheme boundaries before c‑suffixes which likely participate in a paradigm. To segment any word, 
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 is a word form found in either the training or the test corpora, then ParaMor proposes to seg​men​t 
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 as mutually substitutable suffixes from the same paradigm. The c‑suffix 
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 need not arise from the same original scheme as 
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[image: image216.wmf]w

 itself as the sole analysis of the word.
At this point, for each word, 
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, that ParaMor is to segment, ParaMor possesses a list of hypothesized morpheme boundaries. ParaMor uses the hypothesized boundaries in two different segmentation algorithms to produces two different sets of final segmented words. ParaMor’s two segmentation algorithms differ along two dimensions. The first dimension separating ParaMor’s two segmentation algorithms is the degree of morphological fusion and agglutination they assume a language contains. ParaMor’s first segmentation algorithm is primarily designed for languages with a fusional or non-agglutinative morphology. The second segmentation algorithm is more applicable for languages which may produce final wordforms with arbitrarily long sequences of suffixes. The second dimension along which ParaMor’s two segmentation algorithms differ is the degree to which they trust the scheme clusters that ParaMor proposes as models of inflectional paradigms. The first algorithm assumes that when ParaMor’s scheme clusters propose two or more separate morpheme boundaries, all but one of the proposed boundaries must be incorrect. ParaMor does not attempt to select a single boundary, however. Instead, ParaMor’s first segmentation algorithm proposes multiple separate segmentation analyses each containing a single proposed stem and suffix. The second algorithm takes multiple proposed morpheme boundaries at face value, and produces a single morphological analysis for each word form, where a single analysis may contain multiple morpheme boundaries.

Table 5.2 contains examples of word segmentations that each of ParaMor’s two segmentation algorithms produce. ParaMor segmented the word forms of Table 5.2 when trained on the same newswire corpus of 50,000 types longer than 5 characters in length used throughout Chapters 3 and 4. But the segmented word form in Table 5.2 come from a larger newswire corpus of 100,000 types which subsumes the 50,000 type training corpus. Each row of Table 5.2 contains segmentation information on a single word form. Starting with the leftmost column, each row of Table 5.2 specifies: 1. the particular Spanish word form which ParaMor segmented; 2. a gloss for that word form; 3. the word’s correct segmentation; 4. a full morphosyntactic analysis of the Spanish word form; 5. the segmentation that ParaMor produced using the segmentation algorithm which permits at most a single morpheme boundary in each analysis of a word; 6. the segmentation produced by ParaMor’s segmentation algorithm which proposes a single morphological analysis which may contain many morpheme boundaries; and 7. the final column of Table 5.2 contains the rank of scheme clusters which support ParaMor’s segmentation of the row’s word form. For each morpheme boundary that ParaMor proposes in each word form, the final column contains the rank of at least one cluster which provided paradigmatic evidence for that morpheme boundary. Whenever ParaMor proposes a morpheme boundary in Table 5.2 that is backed by a scheme cluster in Table 4.3, then the rank of Table 4.3 cluster is given in the final column of Table 5.2. In the few cases where no Table 4.3 cluster supports a morpheme boundary that is proposed in Table 5.2, then the rank of a supporting cluster appears in parenthese. Many morpheme boundaries that ParaMor proposes gain paradigmatic support from two or more scheme clusters. For any particular morpheme boundary, Table 5.2 only lists the rank of more than one supporting cluster when each supporting cluster appears in Table 4.3. The word forms of the first thirteen rows of Table 5.2 were hand selected to illustrate the types of analyses ParaMor’s two segmentation algorithms are capable of, while the word forms in the last six rows of Table 5.2 were randomly selected from the word forms in ParaMor’s training corpus to provide more of a flavor of typical segmentations ParaMor produces. 

The first row of Table 5.2 contains ParaMor’s segmentations of the monomorphemic word form sacerdote ‘priest’. Both of ParaMor’s segmentation algorithms correctly analyze sacerdote as containing no morpheme boundaries. The second row of Table 5.2 segments sacerdotes ‘priests’. Since both the word forms sacerdote and sacerdotes occurred in the Spanish corpora, and because ParaMor contains a scheme cluster which contains both the c‑suffixes s and Ø, namely the cluster from Table 4.3 with rank 1, ParaMor detects sufficient paradigmatic evidence to suggest a morpheme boundary before the final s in sacerdotes. ParaMor similarly correctly segments the form regulares ‘ordinary’ before the final es, using the rank 122 scheme cluster; and the form chancho ‘filthy’ before the final o, drawing on the rank 3 cluster. The particular formes sacerdote, sacerdotes, regulares, and chancho illustrate the ability of ParaMor’s segmentation algorithms to generalize. The forms sacerdote and sacerdotes directly contribute to the Ø.s scheme in the rank 1 scheme cluster of Table 4.3. And so to segment sacerdote required no generalization whatsoever. On the other hand, the c‑stem regular does not occur in the rank 122 scheme cluster, and the c‑stem chanch does not occur in the rank 3 cluster, but ParaMor was able to generalize from the rank 122 cluster and the rank 3 cluster to correctly segment the word forms regulares and chanchos respectively. ParaMor segmented regulares because 1. the rank 122 scheme cluster contains the Ø and the es c-suffixes, and 2. the word forms regular and regulares both occur in the training data from which ParaMor learned its scheme clusters. The occurrence of regular and regulares provides the paradigmatic evidence ParaMor requires to suggest segmentation. ParaMor’s justification for segmenting chancho is similar to the reasoning behind regulares but takes generalization one step further—the form chancho only occurred in ParaMor’s test set. 

The fifth row of Table 5.2 illustrates the difference between ParaMor’s two segmentation algorithms. The fifth row contains the plural feminine form of the Spanish adjective incógnito ‘unknown’: incógnitas. The gender is marked by the a in this form, while plural number is marked in the final s. And so, the correct segmentation contains two morpheme boundaries. ParaMor does identify both morpheme boundaries in this word, and since both suggested 


boundaries are correct, only ParaMor’s segmentation algorithm which places all suggested morpheme boundaries into a single analysis produces the correct segmentation. But ParaMor’s combined segmentation algorithm is not always the best choice. In the segmentation of the word form agradecimos on row ten of Table 5.2, one of the morpheme boundaries ParaMor suggests is incorrect. Being skeptical of the morpheme boundaries ParaMor suggests, the segmentation algorithm which only permits a single morpheme boundary in any particular analysis of a word form does produces the correct segmentation of agradecimos.

The sixth row of Table 5.2 gives an example of the rank 4 scheme cluster correctly segmenting a Spanish verb. The seventh row is an example of ParaMor’s failure to analyze pronominal clitics—as discussed in Section 4.5, ParaMor’s left-looking morpheme boundary filter discarded the scheme cluster which contained the majority of Spanish clitics. ParaMor’s correct segmentation of an adjectival verb on row eight of Table 5.2 contrasts with the incorrect oversegmentation of another adjectival verb on the table’s seventeenth row. The ninth, tenth, and eleventh rows of Table 5.2 illustrate some of the odd and incorrect segmentations that ParaMor produces from scheme clusters which involve a morphophonemic change. In ParaMor’s defense, there is no simple segmentation of the word form agradezco which contains the verb stem agradec. Whereas most of ParaMor’s segmentations in Table 5.2 split off inflectional suffixes, the segmentations ParaMor gives for the word forms of the eleventh and twelfth rows of Table 5.2 separate derivational morphemes. The short word form vete, on the table’s thirteenth row, is correctly segmented by ParaMor even though its four characters excluded it from ParaMor’s training data.

The final six rows of Table 5.2 place ParaMor in the wild, giving segmentations of a small random sample of Spanish words. ParaMor successfully leaves unsegmented the non-Spanish word form bambamg and the monomorphemic Spanish word sabiduría ‘wisdom’, both of which occurred in the newswire corpus. ParaMor correctly segments the verbal form clausurará; and oversegments the three forms hospital, investido, and pacificamente. The segmentations of the monomorphemic hospital are particularly conspicuous. Unfortunately, such over segmentation of monomorphemic words is not uncommon among ParaMor’s morphological analyses.  
6 Morphological Analysis and Morpho Challenge 2007

To evaluate the morphological segmentations which ParaMor produces, ParaMor competed in Morpho Challenge 2007 (Kurimo et al., 2007), a peer operated competition pitting against one another algorithms designed to discover the morphological structure of natural languages from nothing more than raw text. Evaluating through Morpho Challenge 2007 permits comparison of ParaMor’s morphological analyses to the analyses of unsupervised morphology induction algorithms which competed in the 2007 Challenge. Where the ParaMor algorithm was developed while analyzing Spanish data, Morpho Challenge 2007 evaluated participating algorithms on their morphological analyses of English, German, Finnish, and Turkish. The Challenge scored each algorithm’s morphological analyses in two ways: First, a linguistic evaluation measured morpheme identification against an answer key of mor​pho​logically analyzed word forms. Second, a task based evaluation embedded each algorithm’s morphological analyses in an information retrieval (IR) system. 

While the majority of the unsupervised morphology induction systems which participated in Morpho Challenge 2007, including ParaMor, performed simple morphological segmentation, the linguistic evaluation of Morpho Challenge 2007 was not purely a word segmentation task. The linguistic evaluation compared a system’s automatic morphological analyses to an answer key of morphosyntactically analyzed word forms. The morphosyntactic answer keys of Morpho Challenge looked something like the analyses in the Morphosyntactic column of Table 5.2—although Table 5.2 analyzes Spanish words and Morpho Challenge 2007 ran language tracks for English, German, Finnish, and Turkish. Like the analyses in the Morphosyntactic column of Table 5.2, the analysis of each word in a Morpho Challenge answer key contained one or more lexical stems and zero or more inflectional or derivational morpheme feature markers. The morpheme feature markers in the Morphosyntactic column of Table 5.2 have a leading ‘+’. As a morphosyntactic answer key, distinct surface forms of the same morpheme are marked with the same lexical stem or feature marker. For example, Spanish forms the Plural of sacerdote ‘priest’ by appending an s, but plural is marked on the Spanish form regular with es. But in both cases, a Morpho Challenge style morphosyntactic answer key would mark Plural with the same feature marker—+pl in Table 5.2. The organizing committee of Morpho Challenge 2007 designed the linguistic answer keys to contain feature markers for all and only morphosyntactic features that are overtly marked in a word form. Since Singular forms are unmarked on Spanish nouns, the Morpho Challenge style analysis of sacerdote in the Morphosyntactic column of Table 5.2 does not contain a feature marker indicating that sacerdote is Singular. 

Against the morphosyntactic answer key, the linguistic evaluation of Morpho Challenge 2007 assessed each system’s precision and recall at identifying the stems and feature markers of each word form. But to calculate these precision and recall scores, the linguistic evaluation had to account for the fact that label names assigned to stems and to feature markers are arbitrary. In Table 5.2 morphosyntactic analyses mark Plural Number with the space-saving feature marker +pl, but another human annotator might have preferred the more verbose +plural—in fact, any unique string would suffice. Since the names of feature markers, and stems, are arbitrary, the linguistic evaluation of Morpho Challenge 2007 did not require a morpheme analysis system to guess the particular names used in the answer key. Instead, to measure recall, the automatic linguistic evaluation selects a large number of word pairs such that each word pair shares a morpheme in the answer key. The fraction of these word pairs which also share a morpheme in the automatic analyses is the Morpho Challenge recall score. Precision is measured analogously: a large number of word pairs are selected where each pair shares a morpheme in the automatically analyzed words. Out of these pairs, the number of pairs that share a morpheme in the answer key is the precision. To illustrate the scoring methodology of the Linguistic evaluation of Morpho Challenge, consider a recall evaluation of the Spanish words in Table 5.2. To calculate recall, the linguistic analysis might select the pairs of words: (agradezco, agradecimos) and (padres, regulares) for sharing, respectively, the stem agradecer and the feature marker +pl. ParaMor would get recall credit for its ‘agrade +zco’ and ‘agrade +c +imos’ segmentations as they share the morpheme string agrade. Note here that the stem in the answer key, agradecer, is different from the stem ParaMor suggests, agrade, but ParaMor still receives recall credit. On the other hand ParaMor would not get recall credit for the (padres, regulares) pair, as ParaMor’s segmentations ‘padre +s’ and ‘regular +es’ do not contain any common pieces. The linguistic evaluation of Morpho Challenge 2007 normalizes precision and recall scores when a word has multiple analyses or when a word pair containes multiple morphemes in common. To get a single overall performance measure for each algorithm, Morpho Challenge 2007 uses F1, the harmonic mean of precision and recall. The official specification of the linguistic evaluation in Morpho Challenge 2007 appears in Kurimo et al. (2008a).

Morpho Challenge 2007 balances the linguistic evaluation against a task based IR evaluation. The IR evaluation consists of queries over a language specific collection of newswire articles. To measure the effect that a particular morphological anal​y​sis algorithm has on newswire IR, the task based evaluation replaces all word forms in all queries and all documents with their morphological decompositions, according to that analysis algorithm. Separate IR tasks were run for English, German, and Finnish, but not Turkish. For each language, the IR task made at least 50 queries over collections ranging in size from 55K (Finnish) to 300K (German) articles. The evaluation data included 20K or more binary relevance assessments for each language. The IR evaluation employed the LEMUR toolkit (www.lemurproject.org), a state-of-the-art retrieval suite; and used okapi term weighting (Robertson, 1994). To account for stopwords, terms in each run with a frequency above a threshold, 75K for Finnish, 150K for English and German, were discarded. The performance of each IR run was measured with Uninterpolated Average Precision. For additional details on the IR evaluation of Morpho Challenge 2007 please reference Kurimo et al. (2008b).
For each of the four language tracks, Morpho Challenge 2007 provided a corpus of text much larger than the corpus of 50,000 Spanish types the ParaMor algorithms were developed over. The English corpus contains nearly 385,000 types; the German corpus, 1.26 million types; Finnish, 2.21 million types; and Turkish, 617,000 types. To avoid rescaling ParaMor’s few free parameters, ParaMor induced paradigmatic scheme-clusters over these larger corpora from just the 50,000 most frequent types—or, when an experiment in this chapter excludes short types, ParaMor induced scheme-clusters from the most frequent 50,000 types long enough to pass ParaMor’s length cutoff. No experiment in this chapter varies ParaMor’s free parameters. Each of ParaMor’s parameters is held at that setting which produced reasonable Spanish suffix sets, see Chapters 3 and 0. Having induced scheme clusters for a Morpho Challenge language from just 50,000 types, ParaMor then segments all the word types in the corpus for that language, following the methodology of Chapter 5.

The linguistic evaluation of Morpho Challenge 2007 explicitly requires analyzing derivational morphology. But ParaMor is designed to discover paradigms—the organizational structure of inflectional morphology. The experiment of Table 6.1 makes concrete ParaMor’s relative strength at identifying inflectional morphology and relative weakness at analyzing derivational morphology. Table 6.1 contains Morpho Challenge style linguistic evaluations of English and German—but these linguistic evaluations were not conducted by the Morpho Challenge Organization. Instead, I downloaded the evaluation script used in the Morpho Challenge linguistic competition
 and ran the evaluations of Table 6.1 myself. For English and German, the official answer keys used in Morpho Challenge 2007 were created from the widely available Celex morphological database (Burnage, 1990). To create the official Morpho Challenge 2007 answer keys, the Morpho Challenge organization extracted from Celex both the inflectional and the derivation structure of word forms. For the experiment in Table 6.1, I constructed from Celex two Morpho Challenge style answer keys for English and two for German. First, because the Morpho Challenge organization did not release their official answer key, I constructed, for each language, an answer key very similar to the official Morpho Challenge 2007 answer keys where each word form is analyzed for both inflectional and derivation morphology. Second, I constructed, from Celex, answer keys for both English and Germen which contain analyses of only inflectional morphology. 
From the 50,000 most frequent types in the Morpho Challenge 2007 English and German data, ParaMor constructed scheme cluster models of paradigms. The experiments reported in Table 6.1 used a basic version of ParaMor. This basic ParaMor setup did not exclude short word types from the 50,000 training types, did not employ a left-looking morpheme boundary filter, and segmented the full English and German corpus using the segmentation algorithm which allows at most a single morpheme boundary per analysis. ParaMor’s morphological seg​men​ta​tions were evaluated against both the answer key which analyzed only inflectional morphology and against the answer key which contained inflectional and derivational morphology. A minor modification to the Morpho Challenge scoring script allowed the calculation of the standard deviation of F1, reported in the σ column of Table 6.1. To estimate the standard deviation we measured Morpho Challenge 2007 style precision, recall, and F1 on multiple non-overlapping pairs of 1000 feature-sharing words. Table 6.1 reveals that ParaMor attains remarkably high recall of inflectional morphemes for both German, at 68.6%, and particularly English, at 81.4%. When evaluated against analyses which include both inflectional and derivational morphemes, ParaMor’s mor​pheme recall is about 30 percentage points lower absolute, German: 53.6% and English: 33.5%.
In addition to the evaluations of ParaMor’s segmentations, Table 6.1 evaluates segmentations produced by Morfessor Categories-MAP v0.9.2 (Creutz, 2006), a state-of-the-art minimally supervised morphology induction algorithm that has no bias toward identifying inflectional morphology. To obtain Morfessor’s segmentations of the English and German Morpho Challenge data used in the experiment reported in Table 6.1, I downloaded the freely available Morfessor program and ran Morfessor over the data myself. Morfessor has a single free parameter. To make for stiff competition, Table 6.1 reports results for Morfessor at that parameter setting which maximized F1 in each separate evaluation scenario. Morfessor’s unsupervised morphology induction algorithms, described briefly in Chapter 2, are quite different from ParaMor’s. While ParaMor focuses on identifying productive paradigms of usually inflectional suffixes, Morfessor is designed to identify agglutinative sequences of morphemes. Looking at able 6.1, Morfessor’s strength is accurate identification of morphemes: In both languages Morfessor’s precision against the answer key containing both inflectional and derivational morphology is significantly higher than ParaMor’s. And, as compared with ParaMor, a significant portion of the morphemes that Morfessor identifies are derivational. Morfessor’s relative strength at identifying derivational morphemes is particularly clear in German. Against the German answer key of inflectional and derivational morphology, Morfessor’s precision is higher than ParaMor’s; but ParaMor has a higher precision at identifying just inflectional morphemes—indicating that many of the morphemes Morfessor correctly identifies are derivational. Similarly, while ParaMor scores a much lower recall when required to identify derivational morphology in addition to inflectional; Morfessor’s recall falls much less—indicating that many of Morfessor’s suggested segmentations which were dragging down precision against the inflection-only answer key were actually modeling valid derivational morphemes.
In order to convincingly compete in Morpho Challenge 2007, ParaMor’s morphological analyses of primarily inflectional morphology were augmented with morphological analyses from Morfessor. ParaMor’s and Morfessor’s morphological analyses are pooled in perhaps the most simple fashion possible: for each analyzed word, Morfessor’s analysis is added as an additional, comma separated, analysis to the list of analyses ParaMor identified. Naively combining the analyses of two systems in this way increases the total number of morphemes in each word’s analyses—likely lowering precision but possibly increasing recall. In the experiments which combine ParaMor and Morfessor analyses, Morfessor’s single free parameter was optimized separately for each language for F1. I optimized Morfessor against morphological answer keys I constructed from pre-existing morphological data and tools: the Celex database, in the case of English and German; and in the case of Turkish, a hand-built morphological analyzer provided by Kemal Oflazer (Oflazer, 2007). I had no access to morphologically annotated Finnish data. Hence, I could not directly optimize the Morfessor segmentations that are combined with ParaMor’s segmentations in the Finnish experiments. Instead, in the linguistic evaluation, the Finnish Morfessor segmentations use the parameter value which performed best on Turkish. While in the IR experiments, the Finnish Morfessor segmentations are segmentations provided by the Morpho Challenge 2007 Organizing Committee. Optimizing Morfessor’s parameter renders the Morfessor analyses no longer fully unsupervised. 

Table 6.2 and Table 6.3 present, respectively, the linguistic and IR evaluation results of Morpho Challenge 2007. In these two tables, the topmost four rows contain results for segmentations produced by versions of ParaMor. The remaining table rows hold evaluation results for other morphology analysis systems which competed in Morpho Challenge 2007. The topmost three rows in each table contain results from ParaMor segmentations that have been combined with segmentations from Morfessor, while the fourth row of each table lists results for one set of ParaMor segmentations which were not combined with Morfessor. Of the four versions of ParaMor evaluated in these two tables, only the versions on the third and fourth rows, which carry the label ‘–P –Seg,’ officially competed in Morpho Challenge 2007. The versions of ParaMor which officially competed only ran in the English and German tracks. And they used the same algorithmic setup as the version of ParaMor which produced the segmentations evaluated in Table 6.1: short word types were not excluded from the training data (Section 4.1), no left-looking morpheme boundary filter was used (Section 4.4.2), and the segmentation model was that which permitted multiple analyses per word with at most a single morpheme boundary in each analysis (Chapter 5). 
The ParaMor results on the first and second rows of these tables include refinements to the ParaMor algorithm that were developed after the Morpho Challenge 2007 submission deadline. Specifically they do exclude short word types from the training data, and they do perform the left-looking morpheme boundary filter. The ‘+P’ label on the first and second rows is meant to indicate that these ParaMor segmentations employ the full range of induction algorithms described in Chapters 3 and 4. The ParaMor systems on the first and second rows differ only in the segmentation model used. ParaMor segmented the word forms evaluated in the second row, labeled ‘–Seg,’ with the model which permits at most a single morpheme boundary per analysis, while ParaMor’s segmentations of the top row, labeled ‘+Seg,’ used the seg​men​ta​tion model which allows multiple morpheme boundaries in a single analysis. All segmentations produced by our extended versions of ParaMor were sent to the Morpho Challenge Organizing Committee (Kurimo et al., 2008c). Although the competition deadline was passed, the Organizing Committee evaluated the segmentations and returned the automatically calculated quantitative results.
Of the remaining rows in Tables 6.2 and 6.3, rows not in itallics give scores from Morpho Challenge 2007 for the best performing unsupervised systems. If multiple versions of a single algorithm competed in the Challenge, the scores reported here are the highest score of any variant of that algorithm at a particular task. Finally, morphology analysis systems which appear in italics are intended as reference algorithms and are not unsupervised.

The linguistic evaluation found in Table 6.2 contains the precision (P), recall (R), and F1 scores for each language and algorithm. Because the number of word pairs used to calculate the precision and recall scores in the linguistic evaluation was quite large, English used the fewest pairs at 10K, most score differences are statistically significant—All F1 differences of more than 0.5 between systems which officially competed in Morpho Challenge 2007 were statistically significant (Kurimo et al., 2008a). The Morpho Challenge Organizing Committee did not, however, provide data on the statistical significance of the results for the versions of ParaMor which they scored after the official challenge ended. 
As suggested by the experiments detailed in Table 6.1, combining ParaMor’s and Morfessor’s analyses significantly improves recall over ParaMor’s analyses alone. In fact, combining ParaMor’s and Morfessor’s analyses improves over Morfessor’s morpheme recall as well. But, as also expected, combining analyses with Morfessor hurts precision. In English, the tradeoff between precision and recall when combining analyses with Morfessor negligibly increases F1 over ParaMor alone. In German, however, the combined ParaMor-Morfessor system achieved the highest F1 of any system officially submitted to Morpho Challenge 2007. Bernhard is a close second just 0.5 absolute lower, one of the few differences in Table 6.1 that is not statistically significant (Mikko et al., 2007). As with English, Morfessor alone attains high precision at identifying German morphemes; but, ParaMor’s precision is significantly higher for German than in English. Combining the two reasonable German precision scores keeps the overall precision respectable. Both ParaMor and Morfessor alone have relatively low recall. But the combined system significantly improves recall over either system alone. Clearly ParaMor and Morfessor are complementary systems, identifying very different types of morphemes. 
Since combining segmentations from ParaMor and Morfessor proved so beneficial in German morpheme identification, while not adversely effecting F1 for English, the two ParaMor experiments which the Morpho Challenge 2007 Oranizing Committee evaluated after the May 2007 challenge deadline each combined ParaMor’s segmentations with Morfessor’s. Ad​di​tion​al​ly, with the development of new filtering strategies to improve the precision of ParaMor’s discovered paradigm models and an agglutinative model of segmentation, the post-challenge experiments segmented not only English and German but Finnish and Turkish as well. As discussed in Chapter 4, the filtering strategies of removing short types from the training data and removing scheme clusters which fail a left-looking morpheme boundary filter improve the precision of the resulting scheme clusters. As might be expected, improving the precision of ParaMor’s scheme clusters also improves precision scores on the Morpho Challenge linguistic competition. In German precision rises from 51.5 to 57.4; In English, where ParaMor’s precision was significantly lower, the combined ParaMor-Morfessor system’s precision improves by an impressive 14 percentage points, from 41.6 to 56.2. 
The final version of ParaMor which is evaluated in Table 6.2 (and Table 6.3) adopts the agglutinative segmentation model which combines all the morpheme boundaries that ParaMor predicts in a particular word into a single analysis. Allowing multiple morpheme boundaries in a single word increases the number of pairs of words ParaMor believes share a morpheme. Some of these new pairs of words do in fact share a morpheme, some, in reality do not. Hence, extending ParaMor’s segmentation model to allow agglutinative sequences of morphemes increases recall but lowers precision across all four languages. The effect of agglutinative hypotheses on F1, however, differs with language. For the two languages which, in reality, make only limited use of suffix sequences, English and German, a model which hypothesizes multiple morpheme boundaries can only moderately increase recall and does not justify the many incorrect segmentations which result. On the other hand, an agglutinative model significantly improves recall for true agglutinative languages like Finnish and Turkish, more than compensating for the drop in precision over these languages. But in all four languages, the agglutinative version of ParaMor outperforms the version of ParaMor which lacked the precision-enhancing steps of excluding short types from training and filtering morpheme boundaries looking-left.

In German, Finnish, and Turkish the full version of ParaMor, on the top row of Table 6.2, achieves a higher F1 than any system that competed in Morpho Challenge 2007. In English, ParaMor’s precision score drags F1 under that of the first place system, Bernhard; In Finnish, the Bernhard system’s F1 is likely not statistically different from that of ParaMor. The full version of ParaMor demonstrates consistent performance a​cross all four languages. In Turkish, where the morpheme recall of other unsupervised systems is anomalously low, ParaMor achieves a recall in a range similar to its recall scores for the other languages. ParaMor’s ultimate recall is double that of any other unsupervised Turkish system, leading to an improvement in F1 over the next best system, Morfessor alone, of 13.5% absolute or 22.0% relative. 
The final row of Table 6.2 is the evaluation of a reference algorithm submitted by Tepper (2007). While not an unsupervised algorithm, Tepper’s reference parallels ParaMor in augmenting segmentations produced by Morfessor. Where ParaMor augments Morfessor with special attention to inflectional morphology, Tepper augments Morfessor with hand crafted allomorphy rules. Like ParaMor, Tepper’s algorithm significantly improves on Morfessor’s recall. With two examples of successful system augmentation, future research in minimally-supervised morphology induction should take a closer look at combining morphology systems. 
Turn now to the average precision results from the Morpho Challenge IR evaluation, reported in Table 6.3. Although ParaMor does not fair so well in Finnish, in German the fully enhanced version of ParaMor places above the best system from the 2007 Challenge, Bernhard, while ParaMor’s score on English rivals this same best system. Morpho Challenge 2007 did not measure the statistical significance of average precision scores in the IR evaluation. It is not clear what feature of ParaMor’s Finnish analyses causes comparatively low average precision. Perhaps it is simply that ParaMor attains a lower morpheme recall over Finnish than over English or German. And unfortunately, Morpho Challenge 2007 did not run IR experiments over the other agglutinative language in the competition, Turkish. When ParaMor does not combine multiple morpheme boundaries into a single analysis, as in the three rows labeled ‘+P –Seg’, Average Precision is considerably worse across all three languages evaluated in the the IR competition. Where the linguistic evaluation did not always penalize a system for proposing multiple partial analyses, real NLP applications, such as IR, can. 
The reference algorithms for the IR evaluation are: Dummy, no morphological analysis; Oracle, where all words in the queries and documents for which the linguistic answer key contains an entry are replaced with that answer; Porter, the standard English Porter stemmer; and Tepper described above. While the hand built Porter stemmer still outperforms the best unsupervised systems on English, the best performing unsupervised morphology systems outperform both the Dummy and Oracle references for all three evaluated languages—strong evidence that unsupervised induction algorithms are not only better than no morphological analysis, but that they are better than incomplete analysis as well. 
7 Conclusions and Future Work
ParaMor, the unsupervised morphology induction system developed for this thesis, succesfully exploits the natural organizational structure of inflectional morphology to segment word forms into morphemes. It is the paradigm that organizes inflectional morphology by grouping affixes by mutual substituteability. And ParaMor automatically discovers the paradigms of a natural language from unannotated text by: First, laying out a space of candidate partial paradigms; Second, applying a recall-centric search strategy to the space of candidate paradigms; Third, merging candidate paradigms that likely describe portions of the same true paradigm; And fourth, culling out the least likely candidate paradigms that were initially selected. With a firm grasp on the paradigmatic structure of a language, ParaMor then segments individual words exactly when there is paradigmatic evidence that a paraticular word adheres to a discovered paradigm. 

ParaMor contrasts with other unsupervised morphology induction systems with its focus on inflectional morphology. Systems such as Morfessor (Creutz, 2006) seek to identify all morphemes whether inflectional or derivational. With their emphasis on very different aspects of morphology, ParaMor’s morphological analyses are largely complementary to those of a system like Morfessor. And this thesis leverages the individual strengths of the general purpose morphology induction system Morfessor and the inflection specific system ParaMor by combining the analyses from the two systems into a single compound analysis. Following the methodology of Morpho Challenge 2007, the morphological segmentations produced by the combined ParaMor-Morfessor system achieve an F1 score at morpheme identification at or above that of the best systems which competed in Morpho Challenge 2007 in German, Finnish, and Turkish. Morpho Challenge is a worldwide evaluation for unsupervised morphology induction systems. The primary reason for the combined ParaMor-Morfessor system’s success at morpheme identification is its strong morpheme recall atained while maintaining reasonable precision. The Morpho Challenge 2007 results also suggest that the combined ParaMor-Morfessor morphology analysis system may be helpful in higher level natural language processing tasks. In an information retrieval task, the combined system achieves an average precision above an oracle baseline in both English and German.

Naturally, this thesis could not explore every aspect of unsupervised morphology induction, nor could it even exhaustivly investigate all areas of the core ParaMor algorithm. The next two sections outline particular suggestions for extending ParaMor and specific recomentations to all who will pursue unsupervised morphology induction in the future.

7.1 Improving the Core ParaMor Algorithms

Developing ParaMor’s large and complicated suite of algorithms necessitated prioritizing implementation. The foremost priority for this thesis was to create a complete system that can both identify paradigms and then segment word forms. Unfortunately, focusing on the full ParaMor system required minimizing the investigation of four important pieces of ParaMor.
The first area that has not been fully investigated in ParaMor is the effect of ParaMor’s free parameters on the ultimate word segmentations. ParaMor’s four free paramaters were set by examining the candidate paradigms, i.e. the morphological schemes and clusters of schemes, that ParaMor created. The chronological development of ParaMor’s core algorithms largely followed the same order as ParaMor’s processing pipeline. In particular, ParaMor’s word segmentation algorithms were only developed after ParaMor’s paradigm identification algorithms were in place. Hence, it was not possible to directly measure how word segmentation varied with the parameters that control paradigm identification. ParaMor’s first parameter is the cutoff in the morphology scheme network search on when a parent scheme is deemed likely to correctly extend the coverage of the current scheme. The second parameter decides when to discard a scheme cluster based on the number of types a scheme cluster covers. The third and fourth parameters govern the right-looking and left-looking morpheme boundary filters. Table 6.1 highlights ParaMor’s strong recall of inflectional morphemes. Indeed, ParaMor’s four free parameters were intensionally set conservatively to maximize the recall of inflectional morphemes. Only empirical experimentation could determine if more aggressive filtering of scheme clusters either for size or for the more unlikely morpheme boundaries would significantly improve ParaMor’s precision at the segmentation task without severly hurting recall. 

The second area of ParaMor that warrents further work is a scaling up of ParaMor’s paradigm identification algorithms from the relatively small vocabulary sizes of 50,000 types to the orders of magnitude larger vocabularies used in Morpho Challenge 2007. While ParaMor’s segmentation algorithms can segment arbitrarily large corpora, in this thesis ParaMor only examined the most frequent 50,000 types while building the paradigm models. There is no significant barier to scaling up ParaMor’s paradigm indentification algorithms to larger vocabulary sizes. ParaMor’s on-demand instantiation of the morphology scheme network allows the scheme search procedure to complete in a matter of minutes with a reasonable memory footprint. The most likely bottleneck to scaling up ParaMor’s paradigm induction phase will be scheme clustering. Heirarchical agglomerative clustering is cubic in time with the number of initial schemes (REF). The primary reason this thesis did not scale up ParaMor’s paradigm identification algorithms is that ParaMor’s parameters were set over the smaller vocabulary size, and it was unclear how the parameter settings should accomodate a larger vocabulary. A systematic investigation of ParaMor’s parameters on word segmentation should, then, include experiments varying the vocabulary size

In contrast to scaling up ParaMor’s paradigm identification phase, the third ParaMor-specific question this thesis does not answer is how ParaMor’s segmentation algorithms scale down to smaller vocabulary sizes. The larger the vocabulary that ParaMor segments, the more likely ParaMor will be to find evidence that a particular word form belongs to a discovered paradigm. The vocabularies of the languages in Morpho Challenge 2007 are very large. But an unsupervised morphology induction system might be most useful for languages with much less machine readable data available. Thus, it will be important to scale ParaMor’s segmentation algorithms down to smaller vocabulary sizes. Perhaps in scenarios where more limited data is available, ParaMor’s morphological segmentation algorithm should require less evidence that a stem adheres to a particular paradigm before segmenting.
A fourth area of ParaMor’s algorithms that needs further improvement hits the very core of ParaMor. Although ParaMor’s discovered paradigms clearly capture paradigmatic suffix alternations, they still contain much redundancy. For example, in Spanish N separate scheme clusters model heavily overlapping portions of the ar verbal inflection class. ParaMor’s c‑suffix based discriminative restriction on clustering (Section 4.2) prevented these N clusters from merging. For example, the two clusters X and Y could not merge because the c‑suffix X’ never occurs on a stem that also permits Y’ to attach (details to be filled in soon). On the one hand, redundant paradigms do not prevent ParaMor from correctly segmenting many word forms, on the other hand, ParaMor’s current algorithms are clearly not capturing the full richness of morphological paradigms. In a similar vein, ParaMor’s c‑suffix discriminative clustering restrictions intentionally prevent distinct inflection classes of the same paradigm from coalescing. For example, in Spanish ParaMor intentionally keeps separate scheme clusters that model the ar verbal inflection class from clusters that model the er inflection class of verbs, which are separated again from models of the ir inflection class. Although all verbs in Spanish inflect for the same morphosyntactic features, verbs which adhere to distinct inflection classes use distinct suffixes to mark the same feature sets, and sometimes even use the same surface suffix to mark distinct sets of features (see Chapter 4). While it is clearly important, then, to keep models of distinct inflection classes separated, separate models prevent ParaMor’s segmentations bebe ‘she drinks’, beb + e and habla ‘she speaks’, habl + a from containing matching suffixes.
Finally, this thesis leaves to future work the development of more satisfactory approaches to combining the segmentations of ParaMor and Morfessor. The current algorithm does not attempt, for any particular word, to merge the morphological segmentations from the two systems but simply suggests each system’s segmentations as an alternative analysis. A more sophisticated system could select from among the morpheme boundaries suggested by the two systems to produce a single unified segmentation. In fact, a general purpose solution to the problem of combining the segmentations of multiple algorithms could potentially produce a set of segmentations that outperforms each algorithm alone. The next section looks beyond specific extensions to the ParaMor algorithm to the broader picture of the steps future unsupervised morphology induction systems must take.
7.2 The Future of Unsupervised Morphology Induction
The field of unsupervised morphology induction is in its infancy. Although everyone who looks at the problem acknowledges that natural language morphology is a large and complex phenomenon, implemented systems that learn morphology in an unsupervised manner almost universally focus on a narrow slice of the most simple forms of morphology. Three areas where very little work has been done on morphology induction from an unsupervised perspective are: 1. Morphological processes other than suffixation, 2. Morphophonemics, and 3. Mapping from morphemes to morphosyntactic features.

This thesis joins most other unsupervised morphology induction work in addressing the most prevalent morphological process, suffixation. While other morphological processes play an important role in many languages, suffixation plays a significant role in the morphology of nearly all the world’s languages, including those that also employ other morphological processes. Still, suffixation is only the most common morphological process among many, including: prefixation, infixation, reduplication, vowel and consonant mutation, templatic morphology (as in Arabic), as well as suprasegmental changes such as tone or stress. The next step in the field of unsupervised morphology induction will be to address morphological processes in addition to suffixation. Like suffixation, prefixation is a concatenation operation, and is thus the most easily addressed process beyond suffixation. A number of unsupervised systems have already extended their reach to prefixation. Morfessor, for example, agnostically discovers any concatenative morphological processes. Indeed, ParaMor could be easily extended to analyze prefixation by treating initial substrings of words as candidate prefixes in paradigmatic relationships and final substrings as the syntagmatic candidate stems. To date, the most promising work on unsupervised induction of non-concatenative morphology is Wicentowski (2002), which explicitly assumes an underlying morphology that is not purely concatenative. With ParaMor’s success at leveraging inflectional paradigms to induce morphology, a clear future direction for unsupervised morphology learning will be to expand the paradigm model to include non-concatenative morphological processes.
Not only does ParaMor restrict morphological analysis to suffixation, ParaMor also requires the suffixation to be purely concatenative. But, in fact, suffixation is often not strictly concatenative. Suffixation, like all morphological processes, can be accompanied by phonologic changes. Even English’s limited morphology is rife with examples of morphophonology: many nouns voice a final fricative before the plural, i.e. wolf becomes wolves not *wolfs. But more can change than just the word final consonant: both Finnish and Turkish have vowel harmony where it is a vowel of the suffix that changes to match a stem vowel. Although Wicentowski (2002), again ahead of its time, and Goldwater and Johnson (2004) begin to approach learning morphophonology, most current generation unsupervised morphology induction systems do not address morphophonology. In particular neither ParaMor nor Morfessor address morphophonology in a systematic fashion. Currently, when morphophonologic changes occur, the best ParaMor can do is incorporate the phonologic alternation into the paradigmatically varying c‑suffixes. Such is the case with one Spanish scheme cluster, given in Table N: z/c (details coming soon). The realization of the final consonants of some Spanish stems depends on the initial vowel of the suffix. These Spanish stems end in /s/ before the front vowels /i/ and /e/, but in /sk/ before the back vowels /a/ and /o/. In the Spanish orthography of stems which participate in this alternation, /s/ before a front vowel is spelled c, while /sk/ before a back vowel is rendered as zc (Hence, in the orthography, this consonant change appears as a z inserted before the c, instead of a /k/ inserted after an /s/). Since this morphophonologic change affects only the tail of verb stems, ParaMor can account for the change by incorporating the tail of the verb in the c‑suffixes. But with this approach, ParaMor’s segmentations of words like conoce ‘she knows’, cono + ce, and bebe ‘she drinks’, beb + e, do not contain identical suffixes. 
Finally, isolating the stem of a word by identifying and separating off inflectional suffixes, as ParaMor does, constitutes only the first step of full morphological analysis. A full analysis must also specify the set of syntactic features marked by each identified suffix. There have been few prior attempts to automatically associate induced suffixes with syntactic features (ref. Probst, 2003 in Section 2.1). 
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Figure � STYLEREF 1 \s �1�.� SEQ Figure \* ARABIC \s 1 �1�: Left: A fragment of the Spanish verbal paradigm. There are three morphosyntactic categories covered in this paradigm fragment: first, form; second, gender; and third, number. Each of these three categories appears in a separate column. And features within one feature column are mutually exclusive. Right: The suffixes filling the cells of the Spanish verbal paradigm fragment for the inflection class of ar verbs.
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Figure � STYLEREF 1 \s �1�.� SEQ Figure \* ARABIC \s 1 �2�: A Finite State Automaton (FSA) representing surface forms of the lexeme administrar. Arcs are characters; States are character boundaries. States at morpheme boundaries typically have multiple arcs entering and/or exiting, while states at character boundaries internal to morpheme boundaries typically have a single entering and a single exiting arc.





Figure 1.4: A portion of a morphology scheme network generated from 100,000 words of the Brown corpus of English. The two schemes which model complete verbal sub-classes are outlined in bold.
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Figure � STYLEREF 1 \s �2�.� SEQ Figure \* ARABIC \s 1 �1�: A hub, left, and a stretched hub, right, in a finite state automaton
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Table � STYLEREF 1 \s �3�.� SEQ Table \* ARABIC \s 1 �1�: Some of the schemes, arranged in a systematic but arbitrary order, derived from a toy vocabulary. Each scheme is specified as a space delimited set of c�suffix exponents in bold above a space delimited set of c�stem adherents in italics
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Figure � STYLEREF 1 \s �3�.� SEQ Figure \* ARABIC \s 1 �1�: A portion of a morphology scheme network from the toy vocabulary in � REF _Ref69705490 \h ��Table 3.1�
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Figure � STYLEREF 1 \s �3�.� SEQ Figure \* ARABIC \s 1 �2�: A portion of a morphology scheme space generated from a 100,000 token corpus of English text. The scheme that most closely matches a true verbal sub-class of English, Ø.ed.ing.s, is outlined in bold.
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Figure � STYLEREF 1 \s �3�.� SEQ Figure \* ARABIC \s 1 �3�: A hierarchical scheme lattice automatically derived from a Spanish newswire corpus of 50,000 unique types (1.23 million tokens). The scheme matching the productive adjectival sub-class of Spanish, a.as.o.os, is outlined in bold.





o.os


2390


cercan


human


puest


religios


...





...





...





...





strado


15





trado


30





rado


167





an


1784 





Figure � STYLEREF 1 \s �3�.� SEQ Figure \* ARABIC \s 1 �4�: Eight search paths that ParaMor follows in search of schemes which likely model inflectional paradigms. Search paths begin at the bottom of the figure and move upward. all c�suffixes appear in bold. The underlined c�suffix in each scheme is the c�suffix added by the most recent search step. Each scheme gives the number of adherent c�stems it contains. Horizontal links between schemes connect sets of c�suffixes that differ only in their initial character.
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Figure � STYLEREF 1 \s �3�.� SEQ Figure \* ARABIC \s 1 �5�: Seven of the 20,949 parents of the a.o.os scheme derived from the same Spanish newswire corpus of 50,000 types as � REF _Ref192403460 \h � \* MERGEFORMAT �Figure 3.3�. The c�suffix added by each parent is underlined.
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Figure � STYLEREF 1 \s �3�.� SEQ Figure \* ARABIC \s 1 �8�: A small-scale oracle evaluation of six metrics at the task of identifying schemes where each c�suffix models a suffix in the same true inflectional paradigm. Each bar reports the the peak F1 of its metric over a range of cutoffs appropriate for that metric.





lary. An expansion scheme heads each of the final four columns, which each contain the value of that row’s metric applied from the a.o.os scheme of � REF _Ref192925307 \h � \* MERGEFORMAT �Figure 3.6� to that column’s expansion scheme. The mini-table at left shows where � EMBED Equation.3  ���, � EMBED Equation.3  ���, � EMBED Equation.3  ���, and � EMBED Equation.3  ��� fall in a 2x2 table of c�stem counts, a la � REF _Ref192925307 \h � \* MERGEFORMAT �Figure 3.6�.
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Figure � STYLEREF 1 \s �3�.� SEQ Figure \* ARABIC \s 1 �7�: Six metrics which might gauge the paradigmatic unity of parent schemes during ParaMor’s search (see Section � REF _Ref192997159 \r \h ��3.2.1�) of the vertical morphology scheme network. Each row describes a single metric. The top three metrics are heuristic measures of paradigmatic coherence. The bottom three metrics treat the current and expansion schemes as random varaiables and test their statistical correlation. In the Formula column: � EMBED Equation.3  ���, � EMBED Equation.3  ���, and � EMBED Equation.3  ��� are the c�stem counts of the Current, Expansion, and Parent schemes respectively, while � EMBED Equation.3  ��� is the size of the corpus Vocabu- � 





Table � STYLEREF 1 \s �4�.� SEQ Table \* ARABIC \s 1 �1�: Suffixes of schemes selected by the initial search algorithm over a Spanish corpus of 50,000 types. While some selected schemes contain large numbers of correct suffixes, others are incorrect collections of word final strings.
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Table � STYLEREF 1 \s �4�.� SEQ Table \* ARABIC \s 1 �2�: Typical clusters produced by ParaMor over a Spanish corpus of 50,000 types each longer than 5 characters.


 





19: a aba aciones ación ada adas ado ados an ando ar arlo aron arse ará arán aría ándose ó


Cosine Similarity: 0.369


524 Covered Types 





Figure � STYLEREF 1 \s �4�.� SEQ Figure \* ARABIC \s 1 �1�: A portion of a cluster tree ParaMor built from schemes selected during a search run over 50,000 Spanish types longer than 5 characters. This cluster tree was built using the bottom-up agglomerative clustering algorithm adapted for schemes as described in Section � REF _Ref190686481 \r \h ��4.2�. Each scheme appears in a solid box; each intermediate cluster in a dotted box. The c�suffixes of each scheme or cluster of schemes are in bold, candidate stems are in italics. Suffixes in a cluster which uniquely originate in one child are underlined.








16: a aba aban ada adas ado ados an ando       ar aron arse ará arán aría ó


17: alcanz, anunci, aplic, celebr, consider, control,                                                                                            declar, entreg, estudi, expres, inici, investig, negoci, otorg, present, realiz, utiliz


272 Covered Types 





16: aba aban ada adas ado ados amos an ando ar ara aron arse ará arán aría


Cosine Similarity: 0.696


343 Covered Types 





18: a aba aban ada adas ado ados amos an ando ar ara aron arse ará arán aría ó


Cosine Similarity: 0.504


461 Covered Types 





15: aba aban ada adas ado ados an ando ar aron arse ará arán aría arían


16: alcanz, aplic, apoy, celebr, control, elev, entreg, estudi, form, hall, lleg, llev, ocup, otorg, realiz, utiliz


240 Covered Types 





19: a aba aban ada adas ado ados amos an ando ar ara aron arse ará arán aría arían ó


Cosine Similarity: 0.589


505 Covered Types 





23: a aba aban aciones ación ada adas ado ados amos an ando ar ara arlo aron arse ará arán aría arían ándose ó


Cosine Similarity: 0.364


842 Covered Types 





15: aba aban ada adas ado ados amos an ando ar ara aron ará arán aría


16: acept, alcanz, apoy, consider, declar,            entr, estudi, expres, lanz, llam, lleg,                      llev, marc, ocup, realiz, trat


240 Covered Types 





15: aba aban ada adas ado ados an ando ar ara aron arse ará arán aría


19: alcanz, anunci, apoy, consider, declar, entreg, estudi, expres, hall, inici, lanz, llam, lleg,             llev,   ocup, otorg, present, realiz, trat


285 Covered Types 





�





Figure � STYLEREF 1 \s �4�.� SEQ Figure \* ARABIC \s 1 �2�: The number of clusters and their recall of unique Spanish suffixes as the scheme cluster size threshold is varied. The graph marker of each function at the threshold value of 37 unique licensing types is in a larger size, because it is this value of 37 which ParaMor uses in all experiments reported in this thesis.
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Table� STYLEREF 1 \s �4�.� SEQ Table \* ARABIC \s 1 �3�
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t.ting.ts


res


retrea





t.ting


res


retrea





Ø.ing


rest


retreat


retry


roam





Ø.ing.s


rest


retreat


roam





Figure � STYLEREF 1 \s �4�.� SEQ Figure \* ARABIC \s 1 �3�: Above: A trie derived from the small vocabulary: rest, rests, resting, retreat, retreats, retreating, retry, retries, retrying, roam, roams, and roaming. Collapsible redundant sections of the trie are circled. Right: A snippet of the scheme network corresponding to the collapsed trie. The box representing each scheme is outlined in the same pattern as the circled trie branches from which it stems. 
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Figure � STYLEREF 1 \s �4�.� SEQ Figure \* ARABIC \s 1 �4�: The steps of ParaMor’s data processing pipeline, from raw natural language input to the output paradigm models of inflectional paradigms consisting of clusters of schemes.
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 �
Word Form�
Gloss�
Correct Segmentation�
Mophosyntactic�
Single Boundary Segmentation�
Combined Segmentation�
Cluster Rank�
�
Illustrative Word Forms�
sacerdote�
priest�
sacerdote�
sacerdote�
sacerdote�
sacerdote�
-�
�
�
sacerdotes�
priests�
sacerdote +s�
sacerdote +pl�
sacerdote + s�
sacerdote +s�
1�
�
�
regulares�
ordinary�
regular +es�
ordinary +pl�
regular +es�
regular +es�
122�
�
�
chancho�
filthy�
chanch +o�
chancho +masc�
chanch +o�
chanch +o�
3�
�
�
incógnitas�
unknown�
incógnit +a +s�
incognito +fem +pl�
incógnit +as,


incógnita +s�
incógnit +a +s�
1, 3�
�
�
descarrilaremos�
we will be derailed�
descarril +aremos�
descarrilar +1pl.fut.indic�
descarril +aremos�
descarril +aremos�
4�
�
�
accidentarse�
to have an accident�
accident +ar +se�
accidentarse +inf +reflex�
accident +arse�
accident +arse�
4�
�
�
errados�
wrong, mistaken (Masculine Plural)�
err +ad +o +s�
errar +adj +masc +pl�
err +ados


errad +os


errado +s�
err +ad +o +s�
1, 3, 4�
�
�
agradezco�
I thank�
agradec +o�
agradecer +1sg.pres.indic�
agrade +zco�
agrade +zco�
21�
�
�
agradecimos�
we thank�
agradec +imos�
agradecer +1pl.past.indic�
agrade +cimos


agradec +imos�
agrade +c +imos�
17, 21�
�
�
antelación�
(in) advance�
antel( +)acıón�
antelar +ción.N�
antel +acıón


antelac +ión�
antel +ac +ión�
4, 5�
�
�
tanteador�
storekeeper�
tante( +)ador�
tantear +ador.N�
tante +ador�
tante +ador�
4�
�
�
vete�
he/she should veto�
vet +e�
vetar +3sg.pres.subjunc�
vet +e�
vet +e�
4�
�
Randomly Selected �
bambamg�
not a Spanish word�
bambamg�
bambamg�
bambamg�
bambamg�
-�
�
�
clausurará�
he/she will conclude�
clausur +ará�
clausurar +3sg.fut.indic�
clausur +ará�
clausur +ará�
4�
�
�
hospital�
hospital�
hospital�
hospital�
hospit +al


hospital +l�
hospit +a +l�
(6), (7)�
�
�
investido�
invested (Masculine Singular)�
invest +id +o�
investor +adj +masc�
invest +ido


investi +do


invested +o�
invest +i +d +o�
3, 11, 17, (28)�
�
�
pacíficamente�
peaceably�
pacífic +amente�
pacíficamente�
pacific +amente


pacifíca +mente�
pacific +a +mente�
1, 3, 122�
�
�
sabiduría�
wisdom�
sabiduría�
sabiduría�
sabiduría�
sabiduría�
-�
�






Table � STYLEREF 1 \s �5�.� SEQ Table \* ARABIC \s 1 �1�: ParaMor’s morphological segmentations of some Spanish word forms.





Table � STYLEREF 1 \s �6�.� SEQ Table \* ARABIC \s 1 �1�: ParaMor segmentations compared to Morfessor’s (Creutz, 2006) evaluated for Precision, Recall, F1, and standard deviation of F1, σ, in four scenarios. Segmentations over English and German are each evaluated against correct morphological analyses consisting, on the left, of inflectional morphology only, and on the right, of both inflectional and derivational morphology.





�
Inflectional Only�
Inflectional & Derivational�
�
�
English�
German�
English�
German�
�
�
P�
R�
F1�
σ�
P�
R�
F1�
σ�
P�
R�
F1�
σ�
P�
R�
F1�
σ�
�
ParaMor�
33.0�
81.4�
47.0�
0.9�
42.8�
68.6�
52.7�
0.8�
48.9�
53.6�
51.1�
0.8�
60.0�
33.5�
43.0�
0.7�
�
Morfessor�
53.3�
47.0�
49.9�
1.3�
38.7�
44.2�
41.2�
0.8�
73.6�
34.0�
46.5�
1.1�
66.9�
37.1�
47.7�
0.7�
�






Table � STYLEREF 1 \s �6�.� SEQ Table \* ARABIC \s 1 �2�: Unsupervised morphology induction systems evaluated for precision (P), recall (R), and F1 with the methodology of the linguistic competition of Morpho Challenge 2007.





�
English�
German�
Finnish�
Turkish�
�
�
P�
R�
F1�
P�
R�
F1�
P�
R�
F1�
P�
R�
F1�
�
ParaMor & Morfessor�
+P	+Seg�
50.6�
63.3�
56.3�
49.5�
59.5�
54.1�
49.8�
47.3�
48.5�
51.9�
52.1�
52.0�
�
�
+P	–Seg�
56.2�
60.9�
58.5�
57.4�
53.5�
55.4�
60.5�
33.9�
43.5�
62.0�
38.2�
47.3�
�
�
–P	–Seg�
41.6�
65.1�
50.7�
51.5�
55.6�
53.4�
-�
-�
-�
-�
-�
-�
�
ParaMor [–P –Seg]�
48.5�
53.0�
50.6�
59.1�
32.8�
42.2�
-�
-�
-�
-�
-�
-�
�
Bernhard�
61.6�
60.0�
60.8�
49.1�
57.4�
52.9�
59.7�
40.4�
48.2�
73.7�
14.8�
24.7�
�
Bordag�
59.7�
32.1�
41.8�
60.5�
41.6�
49.3�
71.3�
24.4�
36.4�
81.3�
17.6�
28.9�
�
Morfessor�
82.2�
33.1�
47.2�
67.6�
36.9�
47.8�
76.8�
27.5�
40.6�
73.9�
26.1�
38.5�
�
Zeman�
53.0�
42.1�
46.9�
52.8�
28.5�
37.0�
58.8�
20.9�
30.9�
65.8�
18.8�
29.2�
�
Tepper�
69.2�
52.6�
59.8�
-�
-�
-�
62.0�
46.2�
53.0�
70.3�
43.0�
53.3�
�






�
Eng.�
Ger.�
Finn.�
Tur.�
�
ParaMor & Morfessor�
+P	+Seg�
39.3�
48.4�
42.6�
-�
�
�
+P	–Seg�
35.1�
43.1�
37.1�
-�
�
�
–P	–Seg�
34.4�
40.1�
-�
-�
�
ParaMor [–P –Seg]�
28.4�
32.4�
-�
-�
�
Bernhard�
39.4�
47.3�
49.2�
-�
�
Bordag�
34.0�
43.1�
43.1�
-�
�
Morfessor�
38.8�
46.0�
44.1�
-�
�
Zeman�
	26.7*�
	25.7*�
	28.1*�
-�
�
Dummy�
31.2�
32.3�
32.7�
-�
�
Oracle�
37.7�
34.7�
43.1�
-�
�
Porter�
40.8�
-�
-�
-�
�
Tepper�
37.3*�
-�
-�
-�
�






Table � STYLEREF 1 \s �6�.� SEQ Table \* ARABIC \s 1 �3�: Average Precision scores for unsupervised morphology induction systems in the IR competition of Morpho Challenge 2007. 


*Only a subset of the words which occurred in the IR evaluation of this language was analyzed by this system. 
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Figure � STYLEREF 1 \s �3�.� SEQ Figure \* ARABIC \s 1 �6�: Four parents of the a.o.os scheme, together with the level 1 expansion schemes which contain the single c�suffix which expands a.o.os into the parent scheme. Beneath each expansion scheme is a table of c�stem counts relevant to a.o.os and that parent. These schemes a c�stem counts come from a Spanish newswire corpus of 50,000 types.
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�A decent General introduction for why unsupervised morphology


�Look up in world atlas the percentage of languages which use suffixation vs. prefixation, infixation, etc.


�These thesis claims seem to come out of nowhere, with no context or explanation. Ask for advisors' advice on structuring the thesis claims


�Something is making this Figure numbers not work correctly.


�Should I put some sort of graph of the final results in at this point? I mean, I don’t want to blatantly replicate an identical graph from the later chapter that presents the results in excruciating detail. I think I’ll wait to see what exactly I put in the detailed results chapter before I decide what graphical results I include here.





�this number may have accidentally excluded enye from the Spanish alphabet.


�The paths figure has been updated to include enye


�Some text that may be worth incorporating but that I didn't have time to work through before sending the thesis off to Ron and advisors


The upward metrics investigated in this thesis are all restricted to using information of the type in Figure N, specifically: 


The adherent size of the current scheme


The adherent size of the proposed parent scheme


The adherent size of the scheme containing the c�suffixes in the proposed parent which are not in the current scheme; and finally, 


The vocabulary size of the corpus over which the current scheme network is built. 


The most straightforward upward metric in fact only uses the adherent sizes of the current scheme and the proposed parent scheme—items 1. and 2. in the above list. 





Text that remains to be worked through, but that I didn't have time to deal with before sending the thesis off to Ron and Advisors.


�Summary of Initial Search Strategy


Why do I keep only talking about Spanish? I need to explain that Spanish is my testbed. In our corpus of Spanish newswire text, ParaMor’s initial search identifies partial paradigms containing 92% of all ideal inflectional suffixes of Spanish (is it clear where I got these ‘ideal inflectional suffixes from?), or 98% of the ideal suffixes that occurred at least twice in the corpus. Among the selected partial paradigms are those which contain portions of all nine true paradigms for our analysis of Spanish. The high recall of the initial search comes, of course, at the expense of precision. While our analysis provides nine� true paradigms and 87 unique suffixes, 8240 schemes are selected containing 9837 unique candidate suffixes. The next chapter presents some techniques which improve suffix precision and reduce paradigm fragmentation, but which retain the high suffix recall of the initial search.�





Same as above?


In a corpus of Spanish newswire text of 50,000 types and 1.26 million tokens, the initial search identifies schemes containing 92% of all ideal inflectional suffixes of Spanish, or 98% of the ideal suffixes that occurred at least twice in the corpus. There are selected schemes which contain portions of each of the nine inflection classes in the answer key. The high recall of the initial search comes, of course, at the expense of precision. While there are nine inflection-classes and 87 unique suffixes in the hand-built answer key for Spanish, 8339 schemes are selected containing 9889 unique candidate suffixes.


�
because candidate morpheme boundaries are placed at each character boundary in every word form, the c�suffixes of a scheme may arise from an incorrect candidate morpheme boundary and not model true morphemes. Schemes built from incorrect morpheme boundaries are flawed models of paradigm structure; and ParaMor’s search algorithms explicitly seek to avoid and discard these erroneous schemes. AN IMPORTANT IDEA THAT NEEDS COMMUNICATED





�Appendix 1 (or A, or whatever) must explain the ase c�suffix in the cluster with the 4th most licensing types.


�Should I go into any more detailed a description of how most specific schemes are exactly the minimal forward FSA? And the full fledged scheme FSA has states that are unreachable from the start state etc. This might be interesting to Ron, but as I never actually use this fact in the thesis anywhere, I think I will just leave it out completely. Ron wanted FSA's, I tried, but it didn't happen. I have *good* results, not exactly what was imagined in the proposal, but close.





�Give web ref
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