Comprehensive Vertical Sample-based EIN-ring KNN/LSVM approach and Applications
A Dissertation

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science
By

Fei Pan
In Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY
Major Department:

Computer Science and Engineering
 June, 2004

Fargo, North Dakota

ABSTRACT

Pan, Fei, PH.D., Department of Computer Science and Operation Research, College of Science and Mathematics, North Dakota State University, July 2002. Comprehensive Vertical Sample-based KNN/LSVM Classification and Applications. Major Professor: Dr. William Perrizo.

ACKNOWLEDGMENTS

I would like to thank my adviser, Dr. William Perrizo, for his encouragement and support, and for creating an excellent research environment. Thanks to the other committee members, Dr. Maggel, Dr. Fu, Dr. Vobaya, and Dr. Martin, for their interest in my dissertation and for valuable comments they made. Thanks to all DataSURG members for their willingness to explore research ideas together. Last but not least, thanks to Qinglan, Xin, and Kun whose understanding and support made this dissertation possible.

TABLE OF CONTENTS

Table Page

iiiABSTRACT

ivACKNOWLEDGMENTS

vTABLE OF CONTENTS

xLIST OF FIGURES

1CHAPTER 1.
INTRODUCTION

61.1.
Application Data Domains

171.2.
Organization of Dissertation

201.3.
References

23CHAPTER 2.
Comprehensive Vertical EIN-ring KNN/LSVM, Implementation, and Benchmark Study

242.1.
Review of P-tree Technology

392.2.
Equal Interval Neighborhood Ring

472.3.
Comprehensive Vertical EIN-ring KNN/LSVM

552.4.
Implementation

612.5.
Benchmark Study

772.6.
A Real World Benchmark: KDD Cup 2002

802.7.
References

84CHAPTER 3.
PAPER 1: Rapid and accurate EIN-ring KNN/LSVM Classification analysis of Gene Expression data

853.1.
Abstract

853.2.
Introduction

883.3.
Related Works

893.4.
Approach

953.5.
Experiments Results

973.6.
Conclusions

983.7.
References

104CHAPTER 4.
PAPER 2: EFFICIENT DENSITY CLUSTERING APPROACH for Gene Expression Analysis

1054.1.
Abstract

1054.2.
Introduction

1074.3.
Approach

1104.4.
Experiments Results

1154.5.
Conclusions

1164.6.
References

118CHAPTER 5.
PAPER 3: EFFICIENT RANKED KEYWORD QUERY OF Biomedical DOCUMENTS

1195.1.
Abstract

1195.2.
Introduction

1215.3.
System Archectecture and Process

1245.4.
Approach

1295.5.
Experiments Results

1325.6.
Conclusions

1325.7.
References

134CHAPTER 6.
PAPER 4: EFFICIENT DENSITY CLUSTERING APPROACH FOR SPATIAL DATA

1356.1.
Abstract

1356.2.
Introduction

1396.3.
Approach

1506.4.
Experiments Results

1516.5.
Conclusions

1536.6.
References

156CHAPTER 7.
PAPER 5: PROXIMAL SUPPORT VECTOR MACHINE FOR SPATIAL DATA

1577.1.
Abstract

1577.2.
Introduction

1597.3.
Related Works

1607.4.
Approach

1697.5.
Experiments Results

1707.6.
Conclusions

1717.7.
References

176CHAPTER 8.
PAPER 6: Rapid and accurate density clustering analysis for high dimensional data

1778.1.
Abstract

1778.2.
Introduction

1808.3.
Related Works

1818.4.
Approach

1858.5.
Experiments Results

1878.6.
Conclusions

1908.7.
References

192CHAPTER 9.
SUMMARY

1939.1.
Conclusions

1949.2.
Outlook

1969.3.
References

LIST OF TABLES
Figure Page
66Table 1.
Benchmark data sets for classification—the first and second parts contain real data, the lower part synthetic data sets. Legend: b=binary, c=categorical, m=metric.
……………………………………………………………………………

69Table 2.
Confusion Matrix for a Two-class Problem

75Table 3.
Average Classification Accuracy, Performances that are the best was underlined and denoted in bold face for each data set. Performances that are not significantly different at the 5% level from the top performance with respect to a one-tailed paired t-test are tabulated in bold face, otherwise in normal script.

76Table 4.
Specificity comparison of LSVM with FLD, NB, C4.5, C-SVM, KNN, Performances that are the best was underlined and denoted in bold face for each data set. Performances that are not significantly different at the 5% level from the top performance with respect to a one-tailed paired t-test are tabulated in bold face, otherwise in normal script.

77Table 5.
Sensitivity comparison of LSVM with FLD, NB, C4.5, C-SVM, KNN, Performances that are the best was underlined and denoted in bold face for each data set. Performances that are not significantly different at the 5% level from the top performance with respect to a one-tailed paired t-test are tabulated in bold face, otherwise in normal script.

115Table 6.
Results of clustering 38 samples into two classes using four methods

128Table 7.
Simplified Prototype of the Data Model

132Table 8.
Results of Score Comparison

139Table 9.
Symbols and Notations Used in the Paper

173Table 10.
Performance Comparison

189Table 11.
Results of clustering 38 samples into two classes using four methods

LIST OF FIGURES

Figure Page
9Figure 1.
Figure 1. (top) Scan of cDNA microarray containing whole yeast genome. (bottom) microarray spotting device at The Institute for Genome Research.

12Figure 2.
Satellite Image from Oaks, North Dakota

13Figure 3.
Yield Map of Example Satellite Image

16Figure 4.
An example of an XML Document

28Figure 5.
Peano Ordering or Z Ordering

29Figure 6.
Construction of 1-D Basic P-trees

30Figure 7.
An Example of 2-D P-tree Construction

38Figure 8.
A Fact Table, its Data Cube and PD-cubes

40Figure 9.
P1-trees for the transaction set, AND, OR and NOT Operations

42Figure 10.
Diagram of EIN-rings.

43Figure 11.
Calculation of Data Points within EIN-ring R(x, r, r+().

50Figure 12.
Diagram of weighted KNN approach with k=3.

53Figure 13.
Local support vectors approach.

58Figure 14.
Overall Diagram of the Class Modules

59Figure 15.
Logical view of the architecture of DataMIMETM

62Figure 16.
Snapshot of classification interface.

90Figure 17.
Histogram within Neighborhood Rings.

99Figure 18.
Comparison of accuracy and run time.

100Figure 19.
Precision strength measurements on DB1 and DB2 with 2%, 5% and 10% noise.
………………………………………………………………………..

112Figure 20.
Influence of string length on precision.

122Figure 21.
Architecture of P-RANK

128Figure 22.
Calculation of Data Points within EIN-ring R(Xstart, r, r+().

130Figure 23.
Comparison of SC-ID and P-RANK.

131Inverted List

142Figure 24.
Diagram of HOBBit Ring

147Figure 25.
Tuple-P-tree for x within HOBBit ring R(x, 0,()

148Figure 26.
PHDCluster Algorithm

152Figure 27.
Running Time Comparison of PHDCluster with other Density Clustering

163Figure 28.
Algorithm for finding of region components

166Figure 29.
Algorithm of Finding Support Vector Pairs

168Figure 30.
Algorithm of Finding Boundary Sentry

173Figure 31.
Running Time Comparison of P-SVM with C-SVM

189Figure 32.
Running Time Comparison of Density Clutering Using P-tree and Without Using P-tree

CHAPTER 1. INTRODUCTION
“We are deluged by data-scientific data, medical data, demographic data, financial data, and marketing data”, said by Jim Gray. One of the most active and exacting areas of the database research community is to find ways to analyze the data, to classify it, to discover trends in it, and to flag anomalies automatically with the aid of computers. Researchers in areas such as machine learning, statistics, visualization, and artificial intelligence are contributing to this field. However, the dramatic growth in data volume makes it difficult to grasp the extraordinary progress over the last decade; hence emerges data mining.
Data mining pursues the goal of extracting information from large databases with consideration for the storage structure. According to Bob Klevecz, data mining is defined as:

“Nontrivial extraction of implicit, previously unknown and potentially useful information from data or the search for relationships and global patterns that exist in databases.”

Many data mining techniques have been developed recently with the emphasis on large databases and algorithms, such as Association Rule Mining, Clustering, and classification. Classification is the process of predicting membership of a data point in one of a finite number of classes. It typically consists of two major steps. In the first step, a model is built describing a predetermined set of data classes or concepts. Typically, the learned model is represented in the form of classification rules, decision trees, or mathematical formulae. The model is constructed by analyzing database tuples described by attributes. The data tuples analyzed to build the model collectively form the training data set. Since the class label of each training sample is provided, this step is also known as supervised learning, i.e. the learning of the model is “supervised” in that it is told to which class each training sample belongs. In the second step, the model is used to determine the class label of unclassified samples for which the class label is not known according to the learned model.
Clustering, in contrast, has the goal of identifying classes in data without a predefined class label. Clustering is the process of grouping the data into classes or clusters so that data instances within a cluster have high similarity in comparison to one another, but are very dissimilar to data instances in other clusters. Dissimilarities are assessed based on the attribute values describing the data instances. It is often known as unsupervised learning, in which the class label of each training data instance is not know, and the number or set of classes to be learned may not be known in advance. Clustering is a fundamental problem that arises in many applications in different fields such as data mining, statistics, machine learning, image processing, and bioinformatics.

Association Rule Mining (ARM) is to find interesting association or correlation relationships among a large set of data items. With massive amounts of data continuously being collected and stored, many industries are becoming interested in mining association rules from their databases. A typical example of association rule mining is market basket analysis. This process analyzes customer buying habits by finding associations between the different items that customers place in their “shopping baskets”. The discovery of interesting association relationships among huge amounts of business transaction records can help in many business decision making processes, such as catalog design, cross-marketing, and loss-leader analysis.
However, traditional horizontally oriented record structures are known to scale poorly to very large data sets especially when one is interested in collective properties of a data set and not simple retrieval of specific records, i.e. in data mining rather than in data querying [15]

 REF _Ref60823486 \r \h
 * MERGEFORMAT [18]

 REF _Ref68506176 \r \h
 * MERGEFORMAT [19]. In his keynote address at the Association of Computing Machinery Management of Data Conference 2004 [20], Jim Gray, a “Distinguish Engineer” in Microsoft’s Scalable Servers Research Group, the manager of Microsoft’s Bay Area Research Center (BARC) and recipient of the ACM Turing award, emphasized the role of vertical data structuring in future of databases.
The goal of this dissertation is to develop comprehensive vertical sample-based data mining tools and demonstrate their effectiveness by applications. The algorithms in this dissertation were developed to suit the the concept of P-tree, which is an innovative data structure to facilitate efficient data mining [15]. The P-tree technology was initially created by the DataSURG research group in the computer science department of North Dakota State University to be used for data representations in the case of spatial data [4]

 REF _Ref66025851 \r \h
 * MERGEFORMAT [15]. The basic data structure for this technology is the Peano Count Tree (P-tree). P-trees are tree-like data structures that store numeric relational data in compressed format by splitting vertically each attribute into bits, grouping bits in each bit position, and representing each bit group by a P-tree. P-trees provide a lot of information and are structured to facilitate data mining processes.

An innovative vertical nearest neighborhood search approach using P-tree, Equal Interval Neighborhood ring (EIN-ring), and optimized formulations are originally developed in this dissertation to facilitate data mining algorithms. The nearest neighborhood search is the major computational cost for many data mining algorithms, especially sample-based approaches, such as k-nearest neighborhood classification algorithms and most clustering algorithms. The EIN-ring is a ubiquitous perfect centralized neighborhood ring, in which the interal can be as fine as possible. The intervals can be equal or geometric with a fixed factor. The equal interval can be adaptively adjusted with respect to sparseness of data set. The geometric interval with a factor of two turns out to be a special metric, called HOBbit metric, which is proven to be extremely efficient using P-trees [21].
This dissertation focuses on classification and clustering techniques that can be formulated in terms of boundary and neighborhood approaches with an efficient manner. The typical boundary classification approach is Support Vector Machine (SVM), which was first introduced by Vapnik theoretically [23]. It solves the discrimination hyperplane by a mathematical programming problem with an objective function, which balances between maximal separation and errors in linear inseparable case. SVM has empirically been shown to give good generalization performance on a wide variety of problems and is one of the up-to-state classification algorithms.
KNN is the most commonly used neighborhood classification due to its simplicity and good performance. Given an unlabeled instance, the kNN algorithm finds its kth nearest (most similar) neighbors among the training examples, and uses the dominant class label of these nearest neighbors as its class label. Here the similarity between two instances is simply defined as the number of overlapping features between them. If the instances are represented as binary feature vectors, the similarity function turns out to be the dot product function of two feature vectors.
This dissertation is primary based on the research projects that have been published or are to appear in papers [2][3][4]

 REF _Ref75929963 \r \h
[5]

 REF _Ref75929968 \r \h
[6]

 REF _Ref75929961 \r \h
[7]

 REF _Ref75929959 \r \h
[8]

 REF _Ref75929955 \r \h
[9]. In this dissertation, a comprehensive vertical sample-based classification approach, KNN/LSVM, is developed, characterized by P-tree, combination of majority voting and boundary based approach, and optimization of weighting using genetic algorithms. This approach is motivated from the experience of KDD Cup 2002, where we won an honorable mention by achieving the best score on broad problem, but not as accurate on narrow problem as broad problem [14]. The reason is that the data is high dimensional and imbalance, with 3018 training instance on one class and 38 on the other of the narrow problem, which degrades the performance of the consensus voting approach. Using our KNN/LSVM approach with combination of majority voting and local boundary decision, we can improve the classification accuracy significantly for imbalance data set, which often appears in the real world application domains.
In addition, the application of vertical EIN-ring approaches were also sucessufully applied to associate rule mining in paper [10], online analytical processing (OLAP) in paper [11], and sky data analysis in papers [12]

 REF _Ref75801088 \r \h
[13]. In the rest of this chapter, I will first introduce three type application data domain that have been used in previous research projects, and then briefly describe the organization of this dissertation.
1.1. Application Data Domains
For data mining algorithm, the organization and representation of data is one of the most important aspect that influence their performance. The nature of the data is very important for data mining algorithms in many application fields. In this section, three types of data sets, cDNA microarray gene express data, spatial image, and text documents are described.
1.1.1. Microarray

Bioinformatics is the use of mathematical and informational techniques to solve biological problems, usually by creating or using computer programs, mathematical models or both. With the completion genomes of numerous organisms have been determined, a challenge for next step is to uncover the regulatory functions of each genes. One aspect of understanding the functions of a given gene is to determine the conditions under which it is active and the interactions it has with other genes. One of the main application of bioinformatics is the data mining in and analysis of the cDNA microarray gene express data gathered in genome projects.

cDNA microarray technology is one very promising approach for high throughput analysis and provides the opportunity to study gene expression patterns on a genomic scale. Thousands or even tens of thousands of genes can be spotted on a microscope slide and relative expression levels of each gene can be determined by measuring the fluorescence intensity of labeled mRNA hybridized to the arrays. Beyond simple discrimination of differentially expressed genes, functional annotation or diagnostic classification requires the clustering of genes from multiple experiments into groups with similar expression patterns. Figure 1 shows a typical cDNA microarray and a microarray-spotting device.

cNDA microarrays exploit the preferential binding of complementary, single stranded nucleic acid sequences. Basically, a microarray is a specially coated glass microscope slide to which cDNA molecules are attached at fixed locations, called spots. With up to data computer controlled high-speed robots 19200 and more spots can be printed on a single slide, each representing a single gene. RNA from control and sample cells is extracted. Fluorescently labled cDNA probes are prepared by incorporating either Cye-3 or Cye-5-dUTP using a single round of reverse transcription, usually taking the red dye for RNA from the sample cells and green dye for that from the control population. Both extracts are simultancously incubated on the microarray, enabling the gene sequences to hybridize under stringed conditions to their complementary clones attached to the surface of the array.

The production and hybridization of slides is the first step to gain meaningful information from microarray experiments. Laser excitation of the incorporated targets yield an emission with a characteristic spectra, which is measured using a scanning cofocal laser microscope. Monochrome images from the scanner are then imported into software in which they are pseudo-colored and merged. A spot will for instance appear red, if the corresponding RNA from the sample population is in greater abundance and green, if the control population is in greater abundance. If both are equal, the spots will appear yellow, if neither binds, the spot will appear black. Thus, the relative gene expression levels of sample and reference populations can be estimated from the fluorescence intensities and colors emitted by each spot during scanning.

[image: image1.png]

[image: image2.png]

Figure 1. Figure 1. (top) Scan of cDNA microarray containing whole yeast genome. (bottom) microarray spotting device at The Institute for Genome Research.
The next step is to analyze the scanned images using image analysis software, which evaluates the expression of a gene by quantifying the ratio of the fluorescence intensities of a spot. The quantified intensities provide information about the activity of a specific gene in a studied cell or tissue. High intensity means high activity, low intensity indicates low or no activity.

Because the massive collection of numbers is difficult to assimilate, the primary data is combined with a graphical representation by representing each data point with a color that quantitatively and qualitatively reflects the original experimental observation, i.e. each data point xij is colored on the basis of the measured fluorescence ratio. This yields to a representation of complex gene expression data that allows biologists to assimilate and explore the data in a more intuitive manner.

In the literature the color scales range usually from saturated green (max neg. value) to saturated red (max. pos. value). Cells with log ratio of 0 (genes unchanged) are colored black, increasingly positive log ratios with reds of increasing intensity, and increasing negative log ratios with greens of increasing intensity. Missing values usually appear gray.

1.1.2. Remote Sensor Image

Spatial data mining refers to the extraction of knowledge, spatial relationships, or other interesting patterns not explicitly stored in spatial databases. It can be used for understanding spatial data, discovering spatial relationships and relationships between spatial and non-spatial data. It is expected to have wide applications in geographic information systems, geomarketing, remote sensing, medical imaging, navigation, traffic control, and many other areas where spatial data are used. Spatial data mining allows the extension of traditional spatial analysis methods by placing emphasis on efficiency, scalability, and the discovery of new types of knowledge.
Multi-band image data are increasingly available from variety of sources, including commercial and government satellites, as well as airborne and ground based sensors. Remote Sensor Image can be viewed as a 2-dimensional array of pixels. Associated with each pixel are various descriptive attributes, called “bands” in remote sensing literature. A typical image can have millions of pixels with tens of bands per pixel. A TIFF image of agricultural data may contain the Bands red, green, blue, yield, soil moisture, nitrogen, etc. The reflectance value in each band and yield ranges from 0 to 255. Figure 2 shows a TIFF image containing 1320 (1320 pixels with three 8-bit bands, red, green and blue.

Pixel classification on remote sensor image has many applications, such as pest detection, forest fire detection, crop yield prediction, wet-lands monitoring, etc. For example, a producer may want to know the relationship between the color intensities and yield. Based on previous seasons’ crop yield taken at harvest and RSI data set, a classifier can be trained to predicate the future crop yield. Figure 3 shows a synchronized yield map from Oaks, North Dakota, where red region represents high yield area, and blue region represent low yield area.
[image: image3.png]

Figure 2. Satellite Image from Oaks, North Dakota

[image: image4.wmf]

Figure 3. Yield Map of Example Satellite Image
1.1.3. Text document

With the emerging of tremendous number of on-line documents, automated document analysis and efficient retrieval have become an important text mining task. Right now, substantial portion of available information is stored in the text databases, which consist of large collections of documents from various sources, such as news articles, research papers, books, digital libraries, and Web pages. Text databases are rapidly growing due to the increasing amount of information available in electronic forms, such as electronic publications, CD-ROMs, and the World-Wide Web.
Data stored in most text databases are semi-structured data in that they are neither completely unstructured nor completely structured. For example, a document may contain a few structured fields, such as title, authors, publication, date, and so on, but also contain some largely unstructured text components, such as abstract and contents.

It is tedious yet essential to be able to efficiently analyze and retrieval the text databases. Information retrieval is a field that has been developing in databases systems for many years. A typical information retrieval problem is to locate relevant documents based on user input, such as keywords or example documents. In keyword-based information retrieval, a document is represented by a string, which can be identified by a set of keywords. A user provides a keyword or an expression formed out of a set of keywords, such as “car and repair shops”. Similarity-based retrieval finds similar documents based on a set of common keywords. The ouput of such retrieval should be based on the degree of relevance, where relevance is measured based on the closeness of the keywords, the relative frequency of the keywords, and so on.

One type of most widely used texte cocument is XML documant. An XML document is made up of nested tags where each tag can aslo be nested. Usually there is a single root tag for every document. Tags can have attributes, corresponding values and closing tags. Figure 4 depicts an XML document representing a set of syllabi for a graduate database courses.

In Figure 4, the root tag is <classes> (line 1). It contains nested tags where each tag is a class (lines 2 and 29) . Each class contains some nested tags of its own such as <title> (line 3), <teacher> (line 4), <time> (line 8), and <place> (line 9). All tags nested within the <classes> tag are enclosed between the <class> and </class> tags (lines 2 to 28).

Hyperlinked XML documents usually contain references to other documents. Referencing can be accomplished through IDREFs [W3C] or Xlinks [W3C]. An example of an IDREF reference is shown at line 25 where <class id="CSCI766"> cites <class id="CSCI765"> in the <courseobjective> section. This type of referencing is sometimes referred to as intra-document referencing because both documents exist in the same XML document. An Xlink reference is shown at line 26. The referenced paper is not in the same XML document (we have a hyperlink to it); this is why we refer to this type of referencing as inter-document referencing. Both, IDREFs and Xlinks, references are referred to hyperlinks.
[image: image109.bmp]
Figure 4. An example of an XML Document
1.2. Organization of Dissertation

This dissertation is primary based on the research projects that have been published or are to appear in papers [2][3][4]

 REF _Ref75929963 \r \h
[5]

 REF _Ref75929968 \r \h
[6]

 REF _Ref75929961 \r \h
[7]

 REF _Ref75929959 \r \h
[8]

 REF _Ref75929955 \r \h
[9]. Chapter 2 develops an innovative neighborhood search technique using P-tree, call Equal Interval Neighborhood Ring (EIN-ring) and corresponding optimized formulations to facilitate a comprehensive vertical sample-based data mining algorithm, EIN-ing KNN/LSVM. The KNN/LSVM method is characterized with the combination of majority voting and boundary based classification approach. A benchmark study on 21 UCI data sets and 5 sythnsized data sets with compason to other typical classification approaches including Fisher’s linear discriminant, Naïve Bayes, C4.5, C-SVM, and KNN demonstrate the superior performance of KNN/LSVM, especially on imbalance data sets that often inherit in real world problems.

Chapter 3 describes classification analysis of microarray gene expression data using the comprehensive vertical sample-based EIN-ring KNN/LSVM to uncover biological features and to distinguish closely related cell types that often appear in the diagnosis of cancer. Experiments on common gene expression data sets demonstrated that EIN-ring KNN/LSVM approach can achieve high accuracy and efficiency at the same time. The improvement of speed is mainly related to the vertical data representation, P-tree, and its optimized logical algebra. The high accuracy is due to the combination of a KNN majority voting approach and a local support vector machine approach that makes optimal decisions at the local level, which could be a powerful tool for high dimensional gene expression data analysis.

Chapter 4 proposes a clustering analysis of microarray gene expression data, which is a foundamental task in bioinformatics research and biomedical applications. Although some cluster methods have been recognized as effective approaches for uncovering patterns of biological system, some concerns still remain, such as high dimensionality of gene expression data. An efficient density based clustering method was developed, which exploits P-tree and EIN-ring formulations to accelerate the calculation of the density function within neighborhood rings. Experiments on common gene expression data sets demonstrated that this approach is efficient, robust, and accurate in terms of consistency with biological characteristics.
Chapter 5 represents a paper that describe the architecture, implementation, and evaluation of a system, P-RANK, built to address the requirement for extracting evidences of specific products of genes from biomedical papers. P-RANK accepts user interests in the form of keywords, which integrate different depth weights into the ranking score and highlights that molecular biologists who review these papers looking mainly for the certain part of a paper to extract experimental evidences, in turn, returns a ranked list pertaining to the users’ interests. Our contributions in this paper include presenting a new efficient keyword query system using a data structure called the P-tree, and a fast weighted ranking method using the EIN-ring.

Chapter 6 develops a density based clustering algorithm using HOBBit metrics and P-trees which facilitate the calculation of the density function within HOBBit rings. An application of this approach to large scale remote sensor image data is studied. The average run time complexity of this algorithm for spatial data in d-dimension is [image: image5.wmf])

(

n

dn

O

. The proposed method has comparable cardinality scalability with other density methods for small and medium size of data, but superior dimensional scalability.

Chapter 7 develop a proximal Support Vector Machine (P-SVM) using Peano tree, which exploits a unique neighborhood search method, i.e., EIN-ring based neighborhood search to find the boundary sentries. The final boundary hyperplanes of test data are determined by their d-nearest boundary sentries, which are calculated from EIN-ring membership of support vector pairs. Moreover, the outliers in the training data are automatically eliminated according to their EIN-ring membership in the step of finding region components. The candidate support vectors are selected in a way that is robust to noisy and fuzzy boundary. An application of the proposed approach to large scale spatial data demonstrate that P-SVM is order of magnitude faster than traditional SVM with superior cardinality scalability and comparable accuracy for a large-scale spatial data.

Chapter 8 attemps to tackle the challenge of clustering high dimensional data sets using the genetic algorithm, such as drug screen data with the dimensions in the hundreds or thousands. The proposed approach first employ a genetic algorithm with EIN-ring KNN as the fit function to select a subset of the most related attributes, and then an efficient density based clustering method is adopted using compressed vertical data structures, P-trees, and optimized P-tree logical operations to accelerate the calculation of the density function within neighborhood rings. Experiments on drug binding to Thrombin data set, which contains 139,351 binary attributes, demonstrated that our approach can be not only efficient, but also accuracy in distinguishing molecular bioactivity for drug design. Finally, the dissertation is summarized in chapter 9 with a brief outlook.

1.3. References

[1] William Perrizo, Peano Count Tree Technology, Technical Report NDSU-CSOR-TR-01-1, 2001.

[2] Fei Pan, Baoying Wang, Xin Hu, and William Perrizo, “Comprehensive Vertical Sample-based KNN/LSVM Classification for Microarray Gene Expression Analysis”, Journal of Biomedical Informatics, (in print), 2004.

[3] Fei Pan, Baoying Wang, Xin Hu, and William Perrizo, “Proximal Support Vector Machine for Spatial Data”, International Journal of Computers and Their Applications (to appear), 2004.
[4] Fei Pan, Baoying Wang, Dongmei Ren, Xin Hu, and William Perrizo, “Proximal Support Vector Machine for Spatial Data Using Peano Trees”, 16th International Conference on Computer Applications in Industry and Engineering, pp. 292-297, 2003.
[5] Fei Pan, Imad Rahal, Yue Cui, and William Perrizo, “Efficient Ranking of Keywords Queries Using P-trees”, 19th International Conference on Computers and Their Applications, pp. 278-281, 2004.

[6] Fei Pan, Baoying Wang, Yi Zhang, Dongmei Ren, Xin Hu, and William Perrizo, “Efficient Density Clustering for Spatial Data”, 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 375-386, 2003.

[7] Fei Pan, Baoying Wang, Xin Hu, and William Perrizo, “Rapid and Accurate KNN/PSVM Approach for Microarray Gene Expression Analysis”, SIAM Bioinformatics Workshop, Lake Buena Vista, Florida, pp. 52-62, 2004.

[8] Fei Pan, Xin Hu, Baoying Wang, and William Perrizo, “Efficient Density Clustering Analysis for Microarray Gene Expression Data”, SIAM Workshop on Clustering High Dimensional Data and its Applications, Lake Buena Vista, Florida, pp. 40-47, 2004.

[9] Fei Pan, Xin Hu, Baoying Wang, and William Perrizo, “Rapid and Accurate Density Clustering Analysis for High Dimensional Data”, 13th International Conference on Intelligent & Adaptive Systems, and Software Engineering, Nice, France, July, 2004.

[10] Baoying Wang, Fei Pan, Yue Cui, and William Perrizo, “Efficient Quantitative Frequent Pattern Mining Using Predicate Trees”, 16th International Conference on Computer Applications in Industry and Engineering, pp. 168-171, 2003.

[11] Baoying Wang, Fei Pan, Dongmei Ren, Yue Cui, Qiang Ding, and William Perrizo, “Efficient OLAP Operations for Spatial Data Using Peano Trees”, 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 28-34, 2003.

[12] Baoying Wang, Qiang Ding, Fei Pan, William Perrizo, "Efficient Modeling the SLOAN Digital Sky Survey Data Using P-BUSH", 13th International Conference on Intelligent & Adaptive Systems, and Software Engineering, Nice, France, July, 2004.

[13] Baoying Wang, Qiang Ding, Fei Pan, and William Perrizo, "DIGITAL SKY SURVEYS USING P-HTM", 13th International Conference on Intelligent & Adaptive Systems, and Software Engineering, Nice, France, July, 2004.

[14] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

[15] Ridgeway, G., Madigan, D., Bayesian Analysis of Massive Data Sets via Particle Filters. Proceedings of the Eighth ACM SIGKDD, 2002.

[16] Perera, A., Denton, A., Kotala, P., Jockheck, W., Granda, W. V. & Perrizo, W. P-tree Classification of Yeast Gene Deletion Data. SIGKDD Explorations. Vol 4, Issue 2, 2003.

[17] Maum Serazi, Amal Perera, Qiang Ding, Vasiliy Malakhov, Imad Rahal, Fen Pan, Dongmei Ren, Weihua Wu, and William Perrizo. "DataMIME™". ACM SIGMOD, Paris, France, June 2004.
[18] Han, P., and Yin, Mining Frequent Patterns without Candidate Generation. Proceedings of the ACM SIGMOD, International Conference on Management of Data, Dallas, Texas, 2000.

[19] Han, J. and Kamber M., Data Mining Concept and Techniques, Morgan Kaufmann, 2001.

[20] Gray, J., The Next Database Revolution. Proceedings of the ACM SIGMOD, International Conference on Management Of Data, Paris, France, June 2004.
[21] Ding, Q., Khan, M., Roy, A., & Perrizo, W. The P-tree Algebra, ACM Symposium on Applied Computing, 2002.

[22] Bob Klevecz "The Whole EST Catalog" Scientist 12 (2): 22 Jan 18 1999.
CHAPTER 2. Comprehensive Vertical EIN-ring KNN/LSVM, Implementation, and Benchmark Study
Databases are rich with hidden information that can be used for making intelligent decisions. Classification and clustering analysis tools have been developed and adapted rapidly to keep up with the dramatic growth in data volume. In this chapter, I will propose an innovative vertical neighborhood search technique, called Equal Interval Neighborhood Ring (EIN-ring), and develop a series of optimized formulations using EIN-ring to facilitate the data mining. A comprehensive vertical sample-based KNN/SVM approach using EIN-ring is proposed and tested with 21 UCI standard benchmark data sets and 5 synthesized data sets in comparison with five other methods including the decision tree, Naïve Bayes, Fisher’s linear discriminant, C-SVM, and nearest neighbor classifier.
2.1. Review of P-tree Technology

The P-tree technology was initially created by the DataSURG research group in the computer science department of North Dakota State University to be used for data representations in the case of spatial data [4]

 REF _Ref66025851 \r \h
 * MERGEFORMAT [15]. The basic data structure for this technology is the Peano Count Tree (P-tree). P-trees are tree-like data structures that store numeric relational data in compressed format by splitting vertically each attribute into bits, grouping bits in each bit position, and representing each bit group by a P-tree. P-trees provide a lot of information and are structured to facilitate data mining processes. In this section, I will briefly review the useful features of P-trees including data internalization, construction of 1-D, 2-D, and 3-D P-tree, and basic logical operations.

2.1.1. Data Internalization

For categorical data, we use normal binary coding, i.e., 1, 2, 3… for each category, and then construct corresponding P-trees. For numerical data, we use data internalization to improve the efficiency and scalability of data mining algorithms. We view the representation of the numerical data as a concept of hierarchy and suggest data representation by using partition. This would enable the data mining algorithms to work on a high dimensional data space by approaching speed of binary representation and achieving fine accuracy.
We organize the data representation of numerical data as the concept of hierarchy with a binary representation on one extreme and double precision numbers with a mantissa and exponent in complement of 2 on the other. We employ data representation somewhere between two extremes by using partition as follows.
First, we need to decide the number of intervals and specify the range of each interval. For example, we could partition the gene expression data space into 256 intervals along each dimension equally. After that, we replace each gene value within the interval by a string and use string from 00000000 to 11111111 to represent the 256 intervals. The length of the bit string is base two logarithm of the number of intervals.
The optimal number of interval and their ranges depend on the size of data sets and accuracy requirements. It could be determined by domain experts or preliminary experiments according to performance.

2.1.2. Construction of P-tree

The Peano Tree (P-ree) is a lossless, bitwise, vertical quadrant-based compressed tree devised to facilitate data mining. A basic P-tree is a quadrant-based tree structure characterized by compression and very fast logical operations of bit sequence. The recursive raster ordering is called the Peano or Z-ordering in the literature – therefore, the name Peano tree. One quadrant of a two-dimensional P-tree with four sub-quadrants, quadrant 0, 1, 2, and 3, is shown in Figure 5. P-Trees can be 1-dimensional, 2-dimensional, 3-dimensional, etc, which be described in the following.
2.1.2.1. One Dimensional P-tree
Given the data set with d dimensions (attributes), X = (A1, A2 … Ad), and the binary representation of jth dimension Aj as bj,mbj,m-1...bj,i… bj,1bj,0, we decompose each dimension into bit files, one file for each bit position. To build a P-tree, a bit file is recursively partitioned into halves and each half into sub-halves until the sub-half is pure (entirely 1-bits or entirely 0-bits), or the length of sub-half is less than the minimum bound. The detailed construction of one dimensional P-trees is illustrated by an example in Figure 6.

For simplicity, the data set with one dimension is shown in a) of Figure 6. We represent the dimension attribute as binary values, e.g., (7)10 = (111)2. Then vertically decompose them into three separate bit files, one file for each bit position, as shown in b). The corresponding basic P-trees, P1, P2 and P3, are constructed from the three bit vectors correspondingly by recursive partition with minimum bound of length one, which are shown in c), d) and e). As shown in c) of Figure 6, the root of P1 tree is 3, which is the 1-bit count of the entire bit file. The second level of P1 contains the 1-bit counts of the two halves, 0 and 3. Since the first half is pure, there is no need to partition it. The second half is further partitioned recursively.
2.1.2.2. Two Dimensional P-tree
For spatial data, we exploit peano order or Z-order to take advantage of the continuity and sparseness of the data. Given a data set with d feature attributes, X = (A1, A2 … Ad), and the binary representation of jth feature attribute Aj as bj,mbj,m-1...bj,i… bj,1bj,0, we first strip each feature attribute into several files, one file for each bit position. Such files are called bit files. A bit file is then recursively partitioned into quadrants and each quadrant into sub-quadrants until the sub-quadrant is pure, where a quadrant is called pure if it is entirely composed of 1-bits or 0-bits.

The detailed construction of two dimensional P-trees is illustrated using an example shown in Figure 7. The spatial data is the red reflective value of an 8x8 2-dimensional spatial data, which is shown in a). We represent the reflectance as binary values, e.g., (7)10 = (111)2. Then strip them into three separate bit files, one file for each bit, as shown in b), c), and d). The corresponding basic P-trees, P1, P2 and P3, are constructed by recursive partition, which are shown in e), f) and g).

As shown in e) of Figure 7, the root of P1 tree is 36, which is the 1-bit count of the entire bit file-1. The second level of P1 contains the 1-bit counts of the four quadrants, 16, 7, 13, and 0. Since quadrant 0 and quadrant 3 are pure, there is no need to partition these quadrants. Quadrant 1 and 2 are further partitioned recursively.

[image: image110.bmp]
 (a) 2-Dimension (b) 3-Dimension

Figure 5. Peano Ordering or Z Ordering

[image: image6.png]010

o1t
010
o1
101
o1
111
111
o) dataset oy
i
Y A
110 N
011 aP,
010
010 g
101 T
010 e
111 i
i1t &N

&) Thit-fibs PE

Figure 6. Construction of 1-D Basic P-trees

[image: image111.bmp]
 a) 8x8 spatial data

 b) bit file-1
 c) bit file-2 d) bit file-3

 e) P1 f) P2 g) P3

Figure 7. An Example of 2-D P-tree Construction

2.1.2.3. Three Dimensional P-tree
We develop a new data warehouse structure, PD-cube using three dimensional P-trees in paper [3] to take advantage of the continuity and sparseness in spatial data. The extension of this research projects to sky data is described in papers [4]

 REF _Ref76121913 \r \h
[5].

The PD-cube is a bit-wised data cube in Peano order which is consistent with P-Trees in terms of data storage. We partition the data cube into bit level in order to facilitate fast logical operations of predicate P-Trees. Predicate P-Trees are tree-based bitmap indexes built on quadrants. By means of fast logical and, or and not operations of predicate P-Trees, PD-cubes achieve efficient data access, which is very important for massive spatial data set.

Figure 8 shows an example of a fact table, 3-D data cube, and its PD-cubes representing the remote sensor image of crop yield. The part (a) is the fact table that is used to build the data cube. The part (b) is the data cube of field crop yields that has three dimensions: position x (X), position y (Y), and time (T). Since yield is a 4-bit value, we split the data cube of yield into four bit-wised cubes, which are stored in form of four predicate cubes as shown in part (c).

	X
	Y
	T
	Yeild

	0
	0
	0
	15 (1111)

	1
	0
	0
	15 (1111)

	0
	1
	0
	15 (1111)

	1
	1
	0
	15 (1111)

	0
	0
	1
	15 (1111)

	1
	0
	1
	15 (1111)

	0
	1
	1
	15 (1111)

	1
	1
	1
	15 (1111)

	2
	0
	0
	15 (1111)

	3
	0
	0
	 4 (0100)

	2
	1
	0
	 1 (0001)

	3
	1
	0
	12 (1100)

	2
	0
	1
	12 (1100)

	3
	0
	1
	 2 (0010)

	2
	1
	1
	12 (1100)

	3
	1
	1
	12 (1100)

	0
	2
	0
	15 (1111)

	1
	2
	0
	15 (1111)

	0
	3
	0
	 2 (0010)

	1
	3
	0
	 0 (0000)

	0
	2
	1
	15 (1111)

	1
	2
	1
	15 (1111)

	0
	3
	1
	 2 (0010)

	1
	3
	1
	 0 (0000)

	2
	2
	0
	12 (1100)

	3
	2
	0
	12 (1100)

	2
	3
	0
	12 (1100)

	3
	3
	0
	12 (1100)

	2
	2
	1
	12 (1100)

	3
	2
	1
	12 (1100)

	2
	3
	1
	12 (1100)

	3
	3
	1
	12 (1100)

	0
	0
	2
	15 (1111)

	1
	0
	2
	15 (1111)

	0
	1
	2
	15 (1111)

	1
	1
	2
	15 (1111)

	0
	0
	3
	15 (1111)

	1
	0
	3
	15 (1111)

	0
	1
	3
	15 (1111)

	1
	1
	3
	15 (1111)

	2
	0
	2
	15 (1111)

	3
	0
	2
	10 (1010)

	2
	1
	2
	 1 (0001)

	3
	1
	2
	14 (1110)

	2
	0
	3
	14 (1110)

	3
	0
	3
	 2 (0010)

	2
	1
	3
	12 (1100)

	3
	1
	3
	12 (1100)

	0
	2
	2
	15 (1111)

	1
	2
	2
	15 (1111)

	0
	3
	2
	 2 (0010)

	1
	3
	2
	 0 (0000)

	0
	2
	3
	15 (1111)

	1
	2
	3
	15 (1111)

	0
	3
	3
	 2 (0010)

	1
	3
	3
	 0 (0000)

	2
	2
	2
	12 (1100)

	3
	2
	2
	12 (1100)

	2
	3
	2
	12 (1100)

	3
	3
	2
	12 (1100)

	2
	2
	3
	12 (1100)

	3
	2
	3
	12 (1100)

	2
	3
	3
	12 (1100)

	3
	3
	3
	12 (1100)

(b) Data Cube of Field Crop Yields
(a) Fact Table of Yield in Peano Order (c) Four PD-cubes

Figure 8. A Fact Table, its Data Cube and PD-cubes

2.1.3. Basic Logical Operations of P-tree

AND, OR and NOT logic operations are basic P-tree operations. We use (, (and prime (’) to denote P-tree operations AND, OR, and NOT, respectively. We define a basic predicate tree called Pure-1 trees (P1-trees) for efficient operation. A node in a P1-tree is “1” if and only if that sub-half is entirely 1-bit. Figure 9 illustrates the one dimensional P1-trees corresponding to P1, P2, and P3 in Figure 6.

The P-tree logic operations are performed level-by-level starting from the root level. They are commutative and distributive, as they are simply pruned bit-by-bit operations. For instance, ANDing a pure-0 node with any results in a pure-0 node, ORing a pure-1 node with any results in a pure-1 node. In Figure 9, a) is the result of P11(P12, b) is the result of P11(P13, and c) is the result of NOT P13 (or P13’), where P11, P12 and P13 are shown in Figure 6.

2.2. Equal Interval Neighborhood Ring

The one of the most time-consuming computational cost of most sample-based data mining algorithms is to find the neighborhood data instances. For large scale data sets, neighborhood searching also requires large main memory which makes data mining algorithms lack of scalibility. In this section, we develop an innovative vertical nearest neighborhood search approach using P-trees and optimized operations.

[image: image7.png]EEN

[image: image8.png]Ty [T [y
ST IATe
AT WA}
OPLAPL; BPIPL 9Pl

Figure 9. P1-trees for the transaction set, AND, OR and NOT Operations

Definition1. The Neighborhood Ring of data instance c with radii r1 and r2 is defined as the set R(c, r1, r2) = {x(X | r1<|c-x|(r2}, where |c-x| is the distance between x and c.

Definition2. The Equal Interval Neighborhood Ring of data instance c with radii r and fixed interval (is defined as the neighborhood ring R(c, r, r+() = {x(X | r < |c-x| (r+(}, where |c-x| is the distance between x and c. For r = k(, k=1, 2,…, the ring is called the kth EIN-ring. Figure 4 shows 2-d EIN-rings with k = 1, 2, and 3.

The intervals can be equal or geometric with a fixed factor. The equal interval can be adaptively adjusted with respect to sparseness of data set. The geometric interval with a factor of two turns out to be a special metric, called HOBbit metic, which can be calculated extremely fast using P-trees [4]. The calculation of neighbors within EIN-ring R(c, r, r+l) is as follows.

Let Pr,(be the P-tree representing data instances within EIN-ring R(c, r, r+(). Note that Pr,(is just the predicate tree corresponding to the predicate c-r-(<X(c-r or c+r<X(c+r+(. We first calculate the data instances within neighborhood ring R(c, 0, r) and R(c, 0, r+() by Pc-r<X(c+r and P’c-r-(<X(x+c+r+(respectively. Pc-r-(<X(c+r+(is shown as the shadow area of a), and P’c-r<X(c+r is the shadow area of b) in Figure 11. The data instances within the EIN-ring R(c, r, r+() are those in R(c, 0, r+() but not in R(c, 0, r). Therefore Pr,(is calculated by the following formula:

	Pr,(= Pc-r-(<X(c+r+(P’c-r<X(c+r,
	(1)

Figure 10. Diagram of EIN-rings.

Figure 11. Calculation of Data Points within EIN-ring R(x, r, r+().

In the rest of this section, I present several original propositions for optimized range predicate operations using basic predicate trees to calculate the nearest neighbors. The range predicate tree, Px[image: image9.wmf]p

y, is a basic predicate tree that satisfies predicate x[image: image10.wmf]p

y, where y is a boundary value, and [image: image11.wmf]p

 is the comparison operator, i.g., <, >, (, and (. Without loss of generality, we only present the calculation of range predicate PA>c, PA(c, Pc1<A(c2 and their proof as follows.

Lemma 1. Let P1, P2 be two basic predicate P-trees, and P1’ is the complement P-tree of P1 by complementing each pure node of P1, then P1((P1’(P2)=P1(P2 and P1((P1’(P2)= P1(P2.

Proof:

 P1((P1’(P2)

 (According to the distribution property of P-tree operations)

 = (P1(P1’)((P1(P2)

 = True ((P1(P2)

 = P1(P2

Similarly P1((P1’(P2)= P1(P2, QED.
Proposition 1. Let A be jth attribute of data set X, m be its bit-width, and Pm, Pm-1, … P0 be the basic P-trees for the vertical bit files of A. Let c=bm…bi…b0, where bi is ith binary bit value of c, and PA >c be the predicate tree for the predicate A>c, then

PA >c = Pm opm … Pi opi Pi-1 … opk+1 Pk, k(i(m,
where 1) opi is (if bi=1, opi is (otherwise, 2) k is the rightmost bit position with value of “0”, i.e., bk=0, bj=1,[image: image12.wmf]"

j<k, and 3) the operators are right binding. Here the right binding means operators are associated from right to left, e.g., P2 op2 P1 op1 P0 is equivalent to (P2 op2 (P1 op1 P0)).
Proof (by induction on number of bits):

Base case: without loss of generality, assume b1=1, then need show PA>c = P2 op2 P1 holds. If b2=1, obviously the predicate tree for A>(11)2 is PA >c =P1(P0. If b2=0, the predicate tree for A>(01)2 is PA >c =P2((P2’(P1). According to Lemma, we get PA>c =P2(P1 holds.

Inductive step: assume PA>c = Pn opn … Pk, we need to show PA>c = Pn+1opn+1Pn opn …Pk holds. Let Pright= Pn opn … Pk, if bn+1=1, then obviously PA>c = Pn+1(Pright. If bn+1= 0, then PA>c = Pn+1((P’n+1(Pright). According to Lemma, we get PA>c = Pn+1(Pright holds. QED.

Proposition 2. Let A be jth attribute of data set X, m be its bit-width, and Pm, Pm-1, … P0 be the basic P-trees for the vertical bit files of A. Let c=bm…bi…b0, where bi is ith binary bit value of c, and PA(c be the predicate tree for A(c, then

PA(c = P’mopm … P’i opi P’i-1 … opk+1P’k, k(i(m,
where 1). opi is (if bi=0, opi is (otherwise, 2) k is the rightmost bit position with value of “0”, i.e., bk=0, bj=1,[image: image13.wmf]"

j<k, and 3) the operators are right binding.
Proof (by induction on number of bits):

Base case: without loss of generality, assume b0=0, then need show PA(c = P’1 op1 P’0 holds. If b1=0, obviously the predicate tree for A((00)2 is PA(c =P’1(P’0. If b1=1, the predicate tree for A((10)2 is PA(c =P’1((P1(P’0). According to Lemma, we get PA(c =P’1(P’0 holds.

Inductive step: assume PA(c = P’n opn … P’k, we need to show PA(c = P’n+1opn+1P’n opn …P’k holds. Let Pright= P’n opn … P’k, if bn+1=0, then obviously PA(c = P’n+1(Pright. If bn+1= 1, then PA(c = P’n+1((Pn+1(Pright). According to Lemma, we get PA(c = P’n+1(Pright holds. QED.

Proposition 3. Let A be jth attribute of data set X, PA(c and PA>c are the predicate tree for A(c and A>c, where c is a boundary value, then PA(c = P’A>c.
Proof:

Obvious true by checking the proposition 1 and proposition 2 according to (=(’ and Pm=(Pm’)’.

Proposition 4. Given the same assumption of A and its P-trees. Suppose m-r+1 high order bits of bound value c1 and c2 are the same, then we have c1 = bm…brb1r-1…b11, c2 =bm…brb2r-1…b21. Let s1 = b1r-1…b11, s2= b2r-1…b21, and B be the value of low r-1 bits of A, then predicate interval tree, Pc1<A(c2, is calculated as

Pc1<A(c2 = (m ((m-1(…(r(PB >s1(PB(s2
where (i is Pi if bi=1, (i is P'i otherwise. PB>s1 and PB(s2 are calculated according to proposition 1 and proposition 2, respectively.

Proof:

According to propositions 1 and 2, we have PA >c1 = Pm op1m … Pr op1r P1r-1 … op1k+1 P1k, PA(c2 = P’mop2m … P’r op2r P2’r-1 … op2k+1P2’k, where op1i is (if b1i=1 and op2i is (if b2i=1, op1i is (and op2i is (otherwise. We observe that if b1i = b2i, op1i and op2i are opposite. This is where we can further optimize. Suppose bm = 1, then op1m is (, op2m is (, hence
Pc1<A(c2 = PA >c1 (PA(c2
= (Pm (… Pr op1r P1r-1 … op1k+1 P1k) ((P’m(… P’r op2r P2’r-1 … op2k+1P2’k)

= <associative properties of (and (>

Pm ((P’m(P’m-1 … P’r op2r P2’r-1 … op2k+1P2’k) ((Pm-1op1m-1… Pr op1r P1r-1 … op1k+1 P1k)

= < Apply Lemma (m-r)th times >
Pm (Pm-1(…Pr ((P1r-1 op1r-1 … op1k+1 P1k) ((P2’r-1op2r-1… op2k+1P2’k)

= < Proposition 1 and Proposition 2>

Pm (Pm-1(…Pr(PB >s1(PB(s2
Similarly, we can approve the case when bm = 0

Pc1<A(c2 = PA >c1 (PA(c2

 = (Pm (… Pr op1r P1r-1 … op1k+1 P1k) ((P’m (… P’r op2r P2’r-1 … op2k+1P2’k)

= < Apply Lemma (m-r)th times >
P’m (P’m-1(…P’r ((P1r-1 op1r-1 … op1k+1 P1k) ((P2’r-1op2r-1… op2k+1P2’k)

= < Proposition 1 and Proposition 2>

P’m (P’m-1(…P’r(PB >s1(PB(s2
Combining the two cases together, hence proposition holds. QED.

2.3. Comprehensive Vertical EIN-ring KNN/LSVM

As mentioned earlier, our comprehensive vertical sample based KNN/LSVM approach is motivated from the lesson of KDD Cup 2002. What we learned from task2 of KDD Cup 2002 is that KNN voting approach does not work well for narrow problem, so we developed a combiniation of EIN-ring KNN and a local proximal support vector machine (LSVM) to improve the classification accuracy.
2.3.1. Weighted EIN-ring KNN
The KNN classifier is based on the assumption that the classification of an instance is most similar to the classification of other instances that are nearby in the feature space. For an unclassified target instance, the k nearest neighbors are first selected using EIN-ring approach. The unclassified target instance is assigned to the winning class according to the vote score (VS), which is calculated by the height of the winner bin minus the others and then divided by the sum of heights of all histogram bins.

We developed an EIN-ring based weighted KNN classification approach for high dimensional data sets. The weighted EIN-ring KNN classification has two major steps: 1) search the k nearest neighbors from the training data instances within successive EIN-ring, R(x, r, r+() using P-trees; 2) assign to x the most common class label among its k nearest neighbors. The classification process of weighted EIN-ring KNN approach is illustrated in Figure 12.

In panel (a) of Figure 12, data instance x is classified between two classes, A and B, by means of weighted EIN-ring KNN with k=3. The relative similarity among the data instances is calculated based on weighted distance in which different genes have different discriminant importance for classification. Panel (b) shows two extreme genes, the most relevant and the least relevant gene, and panel (c) shows weights assigned to genes. Within the 1st ring, we only got one nearest neighbor, less than three. Then we calculate the next successive neighborhood ring and get four neighbor instances. Since the total number of neighbors are greater than three, we then stop calculating neighborhood rings and check the voting score. Because we got three instances of class A and one instance of class B, we then assign instance x to class A according to majority rule.

The decisiveness within a neighborhood ring is measured by the vote score, which is calculated as follows. For a data set with a number of C classes, we first create a mask P-tree for the ith class, PCi, in which a “1” value indicates that the corresponding data instance has the ith class label and a “0” value indicates otherwise.

The data instances with ith class label within kth EIN-ring, R(x, k(, (k+1)(), is calculated as

	PNr,i = Pr, ((PCi,
	(2)

where r = k(. Pr,(is calculated according to Eq. (1). Let rc() be the root count function that returns the number of ones in a P-tree, then the vote score within the kth EIN-ring, R(x, k(, (k+1)(), is calculated using P-tree as

	VSr,i =[image: image14.wmf])

(

)

(

,

,

l

r

i

r

P

rc

PN

rc

,
	(3)

[image: image15.png]Hoamst reigibars

g
s
(Y & 2
EE
= | =
E
-
BB
g =3 005
B
E w
= = gl @ g gt
(O] ©

Figure 12. Diagram of weighted KNN approach with k=3.

The weight optimization and selection of feature dimensions is achieved by a genetic algorithm with EIN-ring KNN as the fitness function, which is a classical global and non-linear optimization method that is derided by analogy to evolution and natural genetics [7]. If the weight of one feature dimension is zero, it means that feature is not selected for classification vote, otherwise selected. The value of the weight indicates how important the corresponding feature is in the classification vote, which is discussed in chapter 3.
One simple way of selection of the dimensions is to select the first d-dimension with largest weight. An alternative way is to transform the neighorhood data instances into d-dimensional space using Schoenberg method [17]. The advange of the latter approach is that all the dimension information of the data is transformed into d-dimension through the weighted distance metric among the neighbors. Briefly, start with the distance matrix D=[dij] (ith row and jth column of D) of the target data and its neighbors, and calculate the eigen vector of a symmetric metric B= HAH, where A=[aij], aij = -dij2/2, and H is same size diagonal metric with [image: image16.wmf])

1

1

1

(

+

-

k

 on diagonal and [image: image17.wmf])

1

1

(

+

-

k

off diagonal. The values in first d eigen vectors with the largest eigen value is the new coordinate of target data and its corresponding neighbors.
2.3.2. On Improving Accuracy-LSVM

In this section, I depict a boundary based classification approach, the local support vector machine method (LSVM), developed in papers [6]

 REF _Ref76125184 \r \h
[7], to imorve the classification accuracy. Instead of solving global classification boundary using nonlinear programming approach [18]

 REF _Ref62446480 \r \h
 * MERGEFORMAT [11], the LSVM fits the classification boundary using piecewise segment hyperplanes based on local support vectors, as illustrated in Figure 13.
In Figure 13, there are two classes, A and B. The x is an unclassified instance, and S1, S2, S3 and S4 are the four nearest neighbors to the data instance x, which are used to form the local support vectors and to estimate the class boundary around the unclassified data instance x. The line through two data points M1 and M2 within the line segments S1S2 and S3S4 is the estimation of class boundary for the case of two dimensions.

The LSVM approach has two major steps. The first step is to find support vector pairs and to calculate the EIN-ring membership of them. The EIN-ring approach is used to find support vector pairs around the data instance x. The support vector pair is a pair of data instance that are mutual nearest neighbor with different class label. Specifically, a pair of data instance xi, xj(X, i(j, is the support vector pair, denoted as SVP(xi, xj), if and only if d(xi, xj) (d(xk, xl) [image: image18.wmf]X

x

x

l

k

Î

"

,

and xk (c1, xl (c2.

Given the radius of the neighborhood, we define the EIN-ring memberships of a data x as the weighted summation of vote score VSr,i, where the VSr,j is the ratio of the number of neighbors with the ith class label to the total number of neighbors. The EIN-ring memberships within neighborhood (is calculated as follows

[image: image19.png]Support. vector pairs
(51,52, (53,54
Sentries: M1, M2

Clusk Sl

Figure 13. Local support vectors approach.

	[image: image20.wmf]å

=

=

s

s

1

,

,

*

r

i

r

r

i

VS

w

M

,
	(4)

where VSr,i is calculated according to Eq. (3), (is the radius of the neighborhood, and wr is the weight of the kth EIN-ring, wr =1-k[image: image21.wmf]s

l

, r=k(. There are many other kernel functions that can be used to weight the shape of locality, such as linear kernel, polynomial kernel, RBF-kernel.
The second step is to fit hyperplane and assign a class label to the target data instance. The hyperplane spans over the data points between each SVP. We define these data point as boundary sentry (BS). The boundary sentry between support vector pair (xi, xj), denoted as BSi,j, is calculated as

	BSi,j = (xi + (1-()xj,
	(5)

where (= M(,j / (M(,i + M(,j), M(,i and M(,j are calculated according to Eq. (4). Given a test data instance x with d dimension, the boundary hyperplane is determined by d boundary sentries. For example, if d = 2, the boundary is a line and we need two boundary sentries. Similarly, if d = 3, we need three boundary sentries to determine the boundary plane.

After fitting the class boundary with peicewise hyperplane, we check if the data instance of support vectors have the same class on the same side of class boundary. If not, we replace the missleading support vector with the next nearest one and check the class boundary untill the data instance of support vectors have the same class on the same side of class boundary. Finally, we determine the class label of x based on its relative location to the boundary hyperplane.

2.4. Implementation

The vertical sample based EIN-ring KNN/LSVM is implemented using C++ with objective programming design. The EIN-ring KNN is coded by other datasurg members and I coded LSVM in the research project of developing DATAMIMETM [16]. One key advantage of objective programming is that it helps to organize the detailed functions into groups, i.e. objectives, such that algorithms can be realized at a high level in terms of functionality.
2.4.1. Implementation of EIN-ring LSVM

The LSVM consists of three major classes, EIGEN_INFO, KNN_INFO, and PSVM, as shown in Figure 14. The class of EINGEN_INFO is used to calculate the eigen vectors and eigen values given the training and test data instances. KNN_INFO takes the information from EINGEN_INFO and transform the origin data into new eigen spaces, and prepare the distance matrix of the training and test data instances for the class of PSVM. Finally, the PSVM class find the support vectors, calculate the boundary sentries, and fit the class boundary using piecewise linear segment of hyperplanes.

The class of EIGEN_INFO is composed of six methods, EIGEN_INFO (), eigen (), calDistmat (), calmat (), getsize (), getcol (), and three public variables, eigvect, data, mat. The method of EIGEN_INFO () is the default class constructor. The method of eigen() is the key function which is in charge of calculating eigen values and eigen vectors given distance matrix. The method of Calmat () is used to calculate the multi-scaling matrix giving original distance matrix of the neighborhood data instances. The method of caldistmat () is a Euclidean distance calculation function among neighborhood data instance given the multi-scaling matrix. The method of getsize() and getcol() are simple parameter information retrieval function to get size and column of the distance matrix.
The class of KNN_INFO also has six major methods, KNN_INFO (), calDist (), mysort (), getdata (), getCoordinate (), calvotedist (). The method of KNN_INFO () is the default class constructor. The method of mysort () is my implementation of an efficient sort alrogim for distance by overloading the sort functionality of map classs. The method of getcoordinate () is a simple implementation of taking coordinates neighborhood data stances from original space in class KNN_INFO to Eigen space in EIGEN_INFO. The method of caldist () is used to calculate distance vector used for sort from neighborhood data instances. The method of calvotedist () is used to calculate the vote distribution according to the class labels among the neighborhood data instances.
The class of PSVM is the main class that controls the execution the algorithm of LSVM. It creates an objective of the KNN_INFO, which will then initialize an objective of the EIGEN_INFO to initialize neighborhood data coordinate in Eigen space. The class of PSVM consists of eight methods, PSVM (), findNN (), getbc (), checkhp (), decision (), mysort (), calbcw (), and calweight (). The method of PSVM () is the default constructor of the PSVM object. The method of findNN () is a data retrieval function to get the nearest neighborhood data stance. The method of getbc () is the implementation of getting the coordinates of boundary centries. The method of checkhp () is used to validate if the data instances of the boundary centry have the same class label and the fartherest boundary centry will be discarded if not. The method of decision () will decide the final class label of the target data instance according the class boundary and voting in the case of multiclass problem. The method of mysort () is a clone function of same function in class KNN_INFO. The method of calweight () are functions that calculates the local class membership as the weights for support vectors and calbcw () calculate the boundary centry using the corresponding weights.
2.4.2. Implementation of Interactive KNN/LSVM

The goal of interactive KNN/LSVM is to allow the user to setup and adjust the classification configuration based on the feedback of classification result through a integrated data mining system, called DataMIME™ [16]. A prototype DataMIME™ system has been developed to provide P-tree based data mining tools for real-world problems. DataMIME™ is also used to demonstrate the scalability and performance of P-tree based data mining tools, including clustering, classification, ARM, and outlier detections.

Figure 14. Overall Diagram of the Class Modules

Figure 15. Logical view of the architecture of DataMIMETM
As a prototype for a vertically structured environment, DataMIME™ provides the following features: 1) ability to handle formatted record-based, relational data with numerical, categorical, and symbolic attributes; 2) various P-tree based data mining applications spanning association rule mining, classification, prediction, and similarity search; 3) any computing environment on the client side (Unix, Linux and Microsoft Windows) scalability; 4) a suite of data mining tools, including classification, clustering, outlier-detection tools, and association rule mining. The logical view of DataMIMETM architecture is shown in Figure 5.

From Figure 5, it is clear that DataMIME™ adopts server/client architecture which makes the provision of high performance and scalable data mining tools available through internet. The two main functionalities provided for users are: 1) Capturing component which will send data sets along with their descriptions to the DII/DCI layer of the server; 2) Mining component which will send requests to the DMA layer for data mining on captured data sets.

DATAMIME has a uniform classification interface, as shown in Figure 16. There are four components that needed to set for a classification. I the left panel a), user needs to select the input data, which are captured and representated in advance. The pulldown list b) allows user to select the type of classification algorithms, including KNN, LSVM, PODIUM, etc, all implemented based on EIN-ring. The option list c) allows user to select one of three test options, k-fold cross validation, boostrap, and new instance. The k-fold cross validation randomly first divides the data set into k partition, and then takes turn to use one as testing data, and the rest as training data to calculate the classification accuracy. The new instance option allows the user to input a data instance as the test that is not in the data set.

The process of interactive KNN/LSVM classification for a target instance is as follows. After selecting the training data and set test option as new instance, user first selects KNN from the pulldown list and run KNN classification for the new target instance. If the classificaiotn historgram is desive, that is, one class vote dominates in the histrogram, then the target data instance can be assign the majority class label confidently. On the other hand, if the classification historgram is not decisive, this might due the fact that data might be near the classification boundary. User can select the LSVM classification in the pulldown list can run LSVM to classify the target data. The classification results include the class label of target data and a histogram plot, where the first bin of histogram is the Euclidean distance between the target data to the classification boundary and the second bin is the average distance between the support vectors.
2.5. Benchmark Study

There are several aspects that might influence the performance of a classification algorithm. Class Imbalance data set is the data where the number of examples of one class is much higher than the others. It is often found in real word data which describes an infrequent but important event. Learning from imbalance data set presents an important challenge to the machine learning algorithms [17]

 REF _Ref75615495 \r \h
[13]

 REF _Ref75615497 \r \h
[11].

Figure 16. Snapshot of classification interface.

For the benchmark study of LSVM, I compare it to 16 methods for classification using 21 data sets. In this section, I first describe the synthesized data generation and the characteristic of the standard classification benchmarking real data set from UCI depository that is a standard benchmark for classification algorithms, as well as the standard measurements and significant test. After briefly describing the 16 classification methods, the comparison results are reports.

2.5.1. Data sets

For evaluating a classification algorithm, the data from UCI depository is usually regarded as the standard benchmark data sets, which are all real data sets. As suggested by Prechelt, the usage of synthesize data sets will make the evaluation more comprehensive [19]. Some algorithms, such as ID3, can deal with multi-class problem directly; while others, such as C-SVMs, handle multi-class problem by a voting mechanism. In order avoid the introduction of additional complications, I restrict the study to binary classification data sets.
2.5.1.1. UCI Data sets

The following 21 data sets have been obtained from the UCI benchmark repository at http://kdd.ics.uci.edu [2]: the Wisconsin breast cancer (wbc), the adult (adu), the Statlog heart disease (hea), the Statlog Australian credit (acr), the Statlog German credit (gcr), the tic-tac-toe endgame (ttt), the Bupa liver disorders (bld), the Johns Hopkins university ionosphere (ion), the Pima Indians diabetes (pid), the sonar (snr), and data set. The main characteristics of these data sets are summarized in Table 1 ordered by the degree of class imbalance.

The Wisconsin breast cancer data contains 699 instances with two classes, malignant and benign. The nine categorical attributes are coded using integer ranging from 1 to 10. The prediction task of the adult data is to determine whether income of a person exceeds $50K/yr based on census information. It contains 48842 instances with 14 attributes (6 continuous and 8 nominal). The Statlog Australian credit data is compiled from credit card applications with 690 instances and 14 attributes, which is first used by Quinlan [20]. This data set is interesting because there is a good mix of attributes -- continuous, nominal with small numbers of values, and nominal with larger numbers of values. The tici-tac-toe endgame contains 958 instances with two classes (positive = wins for "x", negative = wins for “o”). Each instance is a legal tic-tac-toe endgame board. All nine attributes that each corresponds to one tic-tac-toe square can take on 1 of 3 possible values (x=player x has taken, o=player o has taken, b=blank).

2.5.1.2. Synthesized Data sets

Five well known data sets from classification problems are also used. These data sets have been referred to numerous times in the literature, which makes them very suitable for benchmarking purposes.

The first one is called “2 noisy spirals”, which is a two entangled spirals with noise, σ = 0.05. The “circle in a square” data set is a hypersphere lying in the middle of a hypercube. The “twonorm” data set is two multinormal distributions. The “threenorm” data set is three multinomial distributions with two of them forming one class. Finally, the “ringnorm” data set is one smaller multinomial distribution ‘inside’ a bigger one. For all these artificial problems, data can be created by functions again provided in mlbench.

As a preprocessing step, all records containing unknown values are removed from consideration. For the methods that can not handle categorical data, we use usually binary coding scheme, i.e. 1, 2, 3, etc., to represent categorical data. We scaled all numerical variables to zero mean and unit variance to numeric problems, especially recommended for some methods which may perform badly on some tasks with values in a large range [12].

Table 1. Benchmark data sets for classification—the first and second parts contain real data, the lower part synthetic data sets. Legend: b=binary, c=categorical, m=metric.

	Problem
	#Instances
	#Attributes
	Class Distribution (%)

	
	
	b
	c
	m
	total
	

	BreastCancer
	699
	
	9
	
	9
	34.48 / 65.52

	HeartDisease
	
	
	
	
	
	

	Adult
	48842
	
	8
	6
	14
	23.93 / 76.07

	AustrCredit
	
	690
	8
	6
	14
	44.50 / 55.50

	GermanCredit
	
	
	
	
	
	

	Tictactoe
	958
	
	9
	
	9
	34.66 / 65.34

	Splice-ie
	3176
	
	
	
	
	

	Splice-ei
	3176
	
	
	
	
	

	Nursery
	12960
	
	
	
	
	2.55 / 97.45

	Letter-a
	20000
	
	
	
	
	3.95 / 96.05

	Satimage
	6435
	
	
	
	
	9.73 / 90.27

	E.Coli
	336
	
	
	
	
	10.42 / 89.58

	Sonar
	
	
	
	
	
	0.47 / 0.53

	Monk2
	
	
	
	
	
	0.37 / 0.63

	Ionosphere
	
	
	
	
	
	0.35 / 0.65

	Yeast
	
	
	
	
	
	0.04 / 0.96

	
	
	
	
	
	
	

	Circleinsquare
	200 / 1000
	
	
	2
	2
	50.00 / 50.00

	2noisySprials
	200 / 1000
	
	
	2
	2
	50.00 / 50.00

	Twonorm
	200 / 1000
	
	
	20
	20
	50.00 / 50.00

	Threeorm
	200 / 1000
	
	
	20
	20
	50.00 / 50.00

	Ringnorm
	200 / 1000
	
	
	20
	20
	50.00 / 50.00

2.5.2. Standard Accuracy Measurements

The most straightforward way to evaluate the performance of classifiers is based on the confusion matrix table as shown in Table 2. It illustrates a confusion matrix for a two class problem describing positive and negative class values. For example, the true positive (TP) is the number of data instances that bolong to positive classs are correctly classified as positive. The false negative (FN) is the number of data instances that belongs to positive class are misclassified as negative.
One of the most widely used classification performance mearsurement is accuracy. It is defined as the proportion of the correctly classified test instances among all test instances. In terms of confusion matrix, the accuracy is calculated as (TP+TN)/(TP+FN+FP+TN). For each algorithm, the average accuracy is calculated based on k times randomized data set. The standard t-test is used as a common and heuristic test to indicate statistical difference between average accuracies on the k randomized runs.
Due to the fact that the accuracy measurement considers different classification errors to be equally important, it is strongly biased to favor the majority class for imbalanced data set. Other performance measurements, e.g., specificity and sensitivity are adopted to measure the classification performance on positive and negative classes directly. Specificity is an important measure of the quality of a classifer and an indication of how well the classifer performs in excluding wrong classificaiton. It is the percentage of negative cases misclassified as belonging to the positive class. It is calculated by dividing the number of true negative results (TN) through the number of all negative results, which equals the sum of the true negative and the false positive (FP) results, i.e. specificity = TN/(TN + FP).

Sensitivity is another important measure of the quality of a classifier and an indication of how well the classifier performs in finding right classification. It is the percentage of positive cases correctly classified as belonging to the positive class. It is calculated by dividing the number of test positive results (TP) through the number of all positive results, which equals the sum of the true positive and the false negative (FN) results, i.e. sensitivity = TP/(TP + FN).
Table 2. Confusion Matrix for a Two-class Problem

	
	Positive Prediction
	Negative Predicton

	Positive Class
	True Positive (TP)
	False Negative (FN)

	Negative Class
	False Positive (FP)
	True Negative (TN)

2.5.3. Methods to Compare

Five typical classification algorithms are carefully selected as the comparison baseline for the the benchmark study, which include both traditional statistical approach and recent advances of machine learning algorithms. Fisher’s Linear Discriminant (FLD) is one of the primary statiscal classification algorithms. It seeks a linear combination of the variables maximizing the ratio of between-class variance to within-class variance, thus yielding a set of separating hyperplanes.

The Naïve Bayes (NB) algorithm is commonly studied in machine learning [21]. Its basic idea is to estimate the parameters of a multinomial generative model for instances, then find the most probable class for a given instance using the Bayes’ rule and the Naïve Bayes assumption that the features occur independently of each other inside a class. It is regarded as one of the top performing methods for document classification [1]

 REF _Ref75462992 \r \h
[23].
The Decision Tree (DT) algorithm is a method for approximating discrete valued target function, in which the learned function is represented by a tree of arbitrary degree that classifies instances [21]. The C4.5 software, a widely used implementation of the DT algorithm, is used in the following [14].

Recently, Support Vector Machines (SVMs) have been introduced by Vapnik for solving classification and nonlinear function estimation problems [22]. Within this new approach the training problem is reformulated and represented in such away so as to obtain a (convex) quadratic programming (QP) problem. The solution to this QP problem is global and unique. To deal with cases where there may be no separating hyper-plane, the soft margin SVM has been proposed. The soft margin SVM employ a parameter C that controls the amount of training errors allowed. For multi-class SVM, one-against-one strategy has been demonstrated to work well [8]. An adaptation of the LIBSVM implementation is used in the following [1].

K-nearest-neighborhood classification approach is one of the most widely used approach in machine learing and data mining field. Given an unlabeled instance, the kNN algorithm finds its kth nearest (most similar) neighbors among the training examples, and uses the dominant class label of these nearest neighbors as its class label. Here the similarity between two instances is simply defined as the number of overlapping features between them. If the instances are represented as binary feature vectors, the similarity function turns out to be the dot product function.

2.5.4. Experiment Procedure

The comparison with five other classification algorithms is performed on 21 different types of data sets using a 10-fold cross-validation. Specifically, each data is first randomly divided into 10 partitions, and then each partition takes turn to be used one as testing data, and the rest as training data. The average classification accuracy, specificity, and sensitivity for each data with respect to all algorithms are then calculated based on 10 time runs. The median of the classification accuracy is also reported since the rankings induced by medians sometimes differ from the ones based on means which are possibly biased by extreme values.
All experiments were carried out on a 1GHz Pentium PC machine with 1GB main memory and Debian Linux 4.0. The KNN/LSVM algorithm is implemented in DATAMIMETM with C++ language. The algorithm implementation of C4.5, Naïve Bayes, and Fisher’s Linear Discriminant are taken from R package, which is a typical staticstical machine learning freeware.The C-SVM is based on the implementation of LIBSVM, which is one of the most widely used implementation of SVM in literature [9].
The parameters for each of the learning algorithms (e.g., the C in the SVM) are all with their default values untouched. For C4.5, I used the default confidence level of 25% for pruning, which is the value that is commonly used in the machine learning literature. I also experimented with other pruning levels on some of the data sets, but found no significant performance increases. I used standard Naive Bayes with the normal approximation (NBn) [1] and k=3 for standard kNN classifier.

2.5.5. Results

Table 1 and table 2 show the mean and median of the test set error rates, respectively. The best average test set performance was underlined and denoted in bold face for each data set. The standard t-test is used as a common and heuristic test to indicate statistical difference between average accuracies on the ten randomizations. Performances that are not significantly different at the 5% level from the top performance with respect to a one-tailed paired t-test are tabulated in bold face, otherwise in normal script. Figure show the boxplot of the classification test results.
LSVM shares 8 best accuracy on data set A, B, and C, and 12 top ranks with on data set C, D, and F. Considering the average accuracy and average ranking over all data sets, the C-SVM gets the best average accuracy and the C4.5 yields the best average rank. There is no significant difference between the performances of both classifiers. The average performance of LSVM is not significantly different with respect to the best algorithms. The performances of many other algorithms algorithms are in line with the results of average accuracy. The average accuracy performance of L-SVM, C-SVM, C4.5 and Naïve Bayes is not significantly different at the 5% level. Also the average accuracy performance of L-SVM with C-SVM and C4.5 is not signifantly different at the 1%. The results of Table 3 indicate that the L-SVM achieves very good test set performances compared to the other reference algorithms.

The results, as shown in Table 4, depict the performance measurement of specitificty and sensitivity. LSVM achieves the most of best performance of specitifity and sensitivity with other algorithms on minrotity class. The average performance of specificity on data set A, B, and C is significantly different at 5% level. The average performance of sensitivity on data set F, G, and K is significantly different at 5% level. There is no indication that the specificity and sensitivity results obtained by LSVM are significantly different with majority class.

In summary, the experiment results show that the average accuracy performance of KNN/LSVM is comparable to that of the other techniques overall. For the highly imbalanced data sets, the KNN/LSVM approach achieves the highest results in terms of both specificity and sensitivity. The results of KNN/LSVM against highly imbalanced data sets outperform the other five methods for minority class. The consistently superior performance of the KNN/LSVM against Fisher’s Linear Discriminant demostrate the ability of distinguishing nonlinear relationships that cannot be discerned by globle linear separation techniques, which is highly dirserable for real word data set.
Table 3. Average Classification Accuracy, Performances that are the best was underlined and denoted in bold face for each data set. Performances that are not significantly different at the 5% level from the top performance with respect to a one-tailed paired t-test are tabulated in bold face, otherwise in normal script.
	
	LSVM
	FLD
	NB
	C4.5
	C-SVM
	KNN

	BreastCancer
	4.65
	3.56
	5.31
	6.71
	2.34
	6.84

	HeartDisease
	3.14
	3.56
	5.51
	6.71
	2.34
	6.84

	Adult
	3.14
	3.56
	5.51
	6.71
	2.34
	6.84

	AustrCredit
	3.14
	3.56
	5.51
	6.71
	2.34
	6.84

	GermanCredit
	3.14
	3.56
	5.51
	6.71
	2.34
	6.84

	Tictactoe
	3.14
	3.56
	5.51
	6.71
	2.34
	6.84

	Splice-ie
	3.14
	3.56
	5.51
	6.71
	2.34
	6.84

	Splice-ei
	3.14
	3.56
	5.51
	6.71
	2.34
	6.84

	Nursery
	3.14
	3.56
	5.51
	6.71
	2.34
	6.84

	Letter-a
	3.14
	3.56
	5.51
	6.71
	2.34
	6.84

	Satimage
	3.14
	3.56
	5.51
	6.71
	2.34
	6.84

	E.Coli
	3.14
	3.56
	5.51
	6.71
	2.34
	6.84

	Sonar
	3.14
	3.56
	5.51
	6.71
	2.34
	6.84

	Monk2
	
	
	
	
	
	

	Ionosphere
	
	
	
	
	
	

	Yeast
	
	
	
	
	
	

	Circleinsquare
	
	
	
	
	
	

	2noisySprials
	
	
	
	
	
	

	Twonorm
	
	
	
	
	
	

	Threeorm
	
	
	
	
	
	

	Ringnorm
	
	
	
	
	
	

Table 4. Specificity comparison of LSVM with FLD, NB, C4.5, C-SVM, KNN, Performances that are the best was underlined and denoted in bold face for each data set. Performances that are not significantly different at the 5% level from the top performance with respect to a one-tailed paired t-test are tabulated in bold face, otherwise in normal script.
	
	LSVM
	FLD
	NB
	C4.5
	C-SVM
	KNN

	BreastCancer
	5.32
	7.85
	6.41
	5.56
	4.84
	6.83

	HeartDisease
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Adult
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	AustrCredit
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	GermanCredit
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Tictactoe
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Splice-ie
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Splice-ei
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Nursery
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Letter-a
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Satimage
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	E.Coli
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Sonar
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Monk2
	
	
	
	
	
	

	Ionosphere
	
	
	
	
	
	

	Yeast
	
	
	
	
	
	

	Circleinsquare
	
	
	
	
	
	

	2noisySprials
	
	
	
	
	
	

	Twonorm
	
	
	
	
	
	

	Threeorm
	
	
	
	
	
	

	Ringnorm
	
	
	
	
	
	

Table 5. Sensitivity comparison of LSVM with FLD, NB, C4.5, C-SVM, KNN, Performances that are the best was underlined and denoted in bold face for each data set. Performances that are not significantly different at the 5% level from the top performance with respect to a one-tailed paired t-test are tabulated in bold face, otherwise in normal script.

	
	LSVM
	FLD
	NB
	C4.5
	C-SVM
	KNN

	BreastCancer
	4.24
	7.96
	6.41
	5.56
	4.54
	7.63

	HeartDisease
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Adult
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	AustrCredit
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	GermanCredit
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Tictactoe
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Splice-ie
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Splice-ei
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Nursery
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Letter-a
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Satimage
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	E.Coli
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Sonar
	3.14
	3.56
	5.51
	4.56
	3.54
	6.73

	Monk2
	
	
	
	
	
	

	Ionosphere
	
	
	
	
	
	

	Yeast
	
	
	
	
	
	

	Circleinsquare
	
	
	
	
	
	

	2noisySprials
	
	
	
	
	
	

	Twonorm
	
	
	
	
	
	

	Threeorm
	
	
	
	
	
	

	Ringnorm
	
	
	
	
	
	

2.6. A Real World Benchmark: KDD Cup 2002
The comprehensive vertical sample-based EIN-ring KNN/LSVM approach was successfully used in the classification of yeast gene deletion data as part of the ACM 2002 KDD Cup competition (http://www.biostat.wisc.edu/~craven/kddcup/). The dataSURG group won an honorable mention for obtaining the best performance in one category of the competition. It is important to note that participants of KDD cup include academic as well as professional groups involved in knowledge discovery.
The goal of the data mining task in KDD Cup 2002 is to identify the regularities and relationships that characterize the genes involved in regulating the hidden system. For the strains where the activity of the hidden system was significantly different, the activity of a different, "control" system was measured. The purpose of measuring the control was to distinguish the genes that have a specific relationship to the hidden system from those that affect the hidden system because they play general roles and affect many functions in the cell. This could be done with a narrow focus: characterizing the genes that affect the hidden system but not the control system; or be done with a broad focus: characterizing the genes that affect the hidden system without regard to what happens in the control system. Both of these perspectives are valuable, and both were considered in the scoring scheme for Task 2.

The data sets used for the competition are selected from real world applications and in most cases they include a large amount of external noise. The given genomics data had many interesting aspects, including multi-valued attributes, many null values, hierarchies within categorical attributes, a repository of unstructured information in the form of abstracts, an interaction table that introduces graph-like connectivity, and a very small probability of the class label "positive" (1.3% and 2.8% respectively for the two tasks with our team winning the latter).

Competitors in Task 2 are asked to provide predictions based on two different binary partitionings of the class labels. In the first case, the "positive" class consists of those genes with the "change" label and the "negative" class consists of those genes with *either* the "nc" or the "control" label. This partitioning corresponds to the narrow characterization of genes affecting the hidden system described above. In the second case, the "positive" class consists of those genes labeled with *either* the "change" or the "control" label, and the "negative" class consists of those genes labeled with the "nc" label. This partitioning corresponds to the broad characterization of the genes affecting the hidden system.

For each of the partitions described above, competitors were asked to provide their predictions sorted by confidence that the gene belongs to the positive class. That is, the first genes in this sorted list should be those that are most confidently predicted to belong to the positive class. The last genes in the list should be those that are most confidently predicted to belong to the negative class.
The evaluation metric that was used is the area under the ROC curve. The ROC curve for a perfect system has an area of 1. The ROC curve for a system making random predictions has an expected area of 0.5. By varying a threshold on these sorted predictions we can construct a Receiver Operating Characteristic (ROC) curve. An ROC curve is a plot of the true positive rate against the false positive rate for the different possible thresholds. Here the true positive rate is the fraction of the positive instances for which the system predicts "positive". The false positive rate is the fraction of the negative instances for which the system erroneously predicts "positive". The larger the area under the curve (the more closely the curve follows the left-hand border and then the top border of the ROC space), the more accurate the test. The expected curve for a system making random predictions will be a line on the 45-degree diagonal.

To motivate the scoring scheme, let us first consider the relationship of the three classes in the problem. Recall that each instance in the data set represents a strain of yeast in which a particular gene has been "knocked out" (i.e. disabled). The class labels in the data set come from two experiments that were run in sequence. First, the activity level of the "hidden" system was measured in 4507 of these knockout yeast strains. In about 130 of these strains, the activity of the hidden system was significantly different than in the baseline (the wild-type strain). This experiment is interesting because it suggests which genes might be involved somehow in regulating the hidden system. That is, if a given strain of yeast had a significantly different level of activity in the hidden system, then it is likely that the knocked-out gene associated with the strain is involved in regulating the hidden system.

Competitors were asked to provide two separate sets of predictions for the two class partitioning. We will construct two ROC curves (one for each partitioning) and measure the area under each. The winner will be the competitor with the greatest summed area for the two curves. That is: OverallScore = Area(ROC curve for narrow partition) + Area(ROC curve for broad partition). In addition to determining the overall winner, the competitor who has the best result for each individual partition was also reported as well.
We represent the data as a flat table in which each row is a gene represented by a bit vector containing a bit for each of the gene attributes. Representing each bit attribute as a basic P-tree generates a compressed form of this flat table. Hierarchical information is represented using a separate set of bit attribute for each level. For example to represent the information for protein-class we used 23 sets of bit columns at the highest level. “Molecular chaperone” at the highest level of the protein class hierarchy requires 15 bit columns to recursively identify all possible categorical attributes within 2 sub-levels. Other binary properties such as “lethal gene” were each encoded in a single bit column. Protein-interaction was encoded using a bit column for each possible gene in the data set, where the existence of an interaction with that particular gene was indicated with a truth bit. By applying the combination of neighborhood voting and boundary approach, we successfully won the honorable mention by wining on category task, which proves our comprehensive vertical sample-based approach could be a powerful tool to solve real word problems.
2.7. References

[1] A. McCallum and K. Nigam. A Comparison of Event Models for Naïve Bayes Text Classification. In AAAI-98 Workshop on Learning for Text Categorization, 1998.

[2] Blake, C. and Merz, C. (1998). UCI repository of machine learning databases. University of California, Irvine, Dept. of Information and Computer Sciences, http://www.ics.uci.edu/~mlearn/MLRepository.html.

[3] Baoying Wang, Fei Pan, Dongmei Ren, Yue Cui, Qiang Ding, and William Perrizo, “Efficient OLAP Operations for Spatial Data Using Peano Trees”, 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 28-34, 2003.

[4] Baoying Wang, Qiang Ding, Fei Pan, William Perrizo, "Efficient Modeling the SLOAN Digital Sky Survey Data Using P-BUSH", 13th International Conference on Intelligent & Adaptive Systems, and Software Engineering, Nice, France, July, 2004.

[5] Baoying Wang, Qiang Ding, Fei Pan, and William Perrizo, "DIGITAL SKY SURVEYS USING P-HTM", 13th International Conference on Intelligent & Adaptive Systems, and Software Engineering, Nice, France, July, 2004.

[6] Fei Pan, Baoying Wang, Dongmei Ren, Xin Hu, and William Perrizo, “Proximal Support Vector Machine for Spatial Data Using Peano Trees”, 16th International Conference on Computer Applications in Industry and Engineering, pp. 292-297, 2003.
[7] Fei Pan, Baoying Wang, Xin Hu, and William Perrizo, “Rapid and Accurate KNN/PSVM Approach for Microarray Gene Expression Analysis”, SIAM Bioinformatics Workshop, Lake Buena Vista, Florida, pp. 52-62, 2004.

[8] C. W. Hsu and C. J. Lin. A Comparison of Methods for Multi-class Support Vector Machines, IEEE Transactions on Neural Networks, 13, pp. 415--425, 2002.

[9] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[10] Duda, R. O., & Hart, P. E. (1973), Pattern Classification and Scene Analysis. New York: John Wiley.

[11] G. Batista, R.C. Prati, M.C. Monard, A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data, Sigkdd Explorations, vol. 6, p. 20-29, 2004.

[12] Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning. Springer.
[13] Hongyu Guo, Herna L Viktor, Learning from Imbalanced Data Sets with Boosting and Data Generaton: The DataBoost-IM Approach, Sigkdd Explorations, vol. 6:1, p. 30-39, 2004.

[14] J. R. Quinlan. C4.5: Programs fro Machine Learning. Morgan Kaufmann, San Francisco, CA, 1993.

[15] John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 338–345). Montreal, Quebec, Morgan Kaufmann.

[16] Maum Serazi, Amal Perera, Qiang Ding, Vasiliy Malakhov, Imad Rahal, Fen Pan, Dongmei Ren, Weihua Wu, and William Perrizo. "DataMIME™". ACM SIGMOD, Paris, France, June 2004.
[17] N. Chawla, K. Bowyer, L. Hall, W. Kegelmeyer. SMOTE: Synthetic Minority Over-sampling Technique, Journal of Artificial Intelligence Research, 16, 321-357, 2002.

[18] Perera, A., Denton, A., Kotala, P., Jockheck, W., Granda, W. V. & Perrizo, W. P-tree Classification of Yeast Gene Deletion Data. SIGKDD Explorations. Vol 4, Issue 2, 2003
[19] Prechelt, L. (1995). Some notes on neural learning algorithm benchmarking. Neurocomputing,9(3):343–347.

[20] Quinlan,"Simplifying decision trees", Int J Man-Machine Studies 27, Dec 1987, pp. 221-234.
[21] T. Mitchell. Machine Learning. McGraw Hill, New York,1997.

[22] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

[23] Y. Yang and X. Liu. A Re-examination of Text Categorization Methods. In Proceedings of ACM SIGIR Conference on Research and Development in Information, Retrieval (SIGIR’99), pp. 42-49, 1999.

CHAPTER 3. PAPER 1: Rapid and accurate EIN-ring KNN/LSVM Classification analysis of Gene Expression data
Abstract

Classification analysis of microarray gene expression data has been recently shown efficacious in uncovering biological features and distinguishing closely related cell types that often appear in the diagnosis of cancer. However, the number of dimensions of gene expression data is often very high, e.g., in the hundreds or thousands. Accurate and efficient classification of such high dimensional data still remains a contemporary challenge. In this paper, we propose a rapid accurate KNN/PSVM classification approach with optimized weights for gene expression data. Experiments on common gene expression data sets demonstrated that our approach can achieve high accuracy and efficiency at the same time. The improvement of speed is mainly related to the data representation, P-trees, and its optimized logical algebra. The high accuracy is due to the combination of majority voting approach and local support vector machine approach that makes optimal decisions at the local level. As a result, our approach could be a powerful tool for high dimensional gene expression data analysis.

3.1. Introduction

The advent of whole genome-scale microarray gene expression experiment technologies opens new vistas in the area of analyzing various phenotype diseases, such as human cancers. Classification approaches for gene expression data analysis, including classification decision tree, k-nearest neighbor classifier (KNN), support vector machine (SVM), etc, have been recognized as effective methods for distinguishing closely related cell types that often appear in the diagnosis of cancer.

Golub et al first employed KNN approach, which is based on consensus voting using correlation coefficient, automatically discovered the distinction between acute myeloid leukemia and acute lymphoblastic leukemia without previous knowledge of the class [8]. T.S. Furey et al applied SVM to micoarray data that consists of both classification of the tissue samples, and an exploration of the data for mislabeled or questionable tissue results [6]. Another study of SVM illustrated the method for predicting functional roles of 2467 uncharacterized genes from yeast Saccharomyces cerevisiae on the basis of expression data from DNA microarray hybridization experiments [3].

However, classification analysis of microarray gene expression data analysis often leads to very high-dimensional data space, which is in the hundreds or thousands. In addition, microarray gene expression data sets are often biased. Classifying such high-dimensional data sets with noise still remains a contemporary challenge.

Many approaches have been proposed to reduce the dimensions of gene expression data and choose informative subset for further classification. Golub et al employed neighborhood analysis to select a subset gene before classifying acute myeloid leukemia and acute lymphoblastic leukemia [8]. Li et al introduced a multivariate approach that selects a subset of predictive genes jointly using Genetic Algorithm (GA), which could select the subsets of gene that are uncorrelated with each other [10]. C.H. Ooi et al also employed GA to choose informative subsets of genes for further classification, specified for multi-class prediction of gene expression data [13].

In this paper, we propose a rapid and accurate classification approach, KNN/PSVM, for gene expression data analysis, which combines the KNN voting approach with local support vector machine approach to make optimal decisions at the local level. In this method, we approach the problem of high dimensionality by partition and weighting. We view the data representation as a concept of hierarchy with binary representation on one extreme and double precision numbers with a mantissa and exponent represented in complement of 2 on the other. We suggest employing data representation somewhere between two extremes by using partition. This would enable us to work on a high dimensional data by approaching speed of binary representation and achieving fine accuracy. The optimization of dimension weight is accomplished using Genetic algorithm, which is a multivariate approach and is capable of searching for optimal or near-optimal solutions.
This approach is motivated from the experience of KDDCup02, where we won honorable mention by achieving the best score on broad problem, but not as accurate on narrow problem as broad problem [14]. The reason is that the data is high dimensional and skew with bias, with 3018 training sample on one class and 38 on the other of the narrow problem, which degrades the performance of the consensus voting approach. Using our KNN/PSVM approach with combination of voting approach and local boundary approach, we can improve classification accuracy for gene expression analysis.

This paper is organized as follows. In section 2, we first briefly review the basic P-trees, and the optimized operations. In section 3, we define a unique equal interval neighborhood rings, EIN-rings, and then present a new rapid accurate classification approach for microarray analysis. Finally, an accuracy and efficiency performance study is reported in section 4 and conclude the paper in section 5.

3.2. Related Works

Many methods have been used in cancer classification using gene expression, such as artificial neural network [6], support-vector machines (SVM) [7], k-nearest neighbors [10] and Golub and Slonim classifier [7]. Golub and Slonim first employed a binary-class classifier, which is based on the consensus voting using correlation coefficients automatically discovered the distinction between the acute myeloid leukemia and the acute lymphoblastic leukemia [11]. Furey applied SVM to micoarray data that consists of both the classification of tissue samples, and an exploration of the data for mislabeled or questionable tissue results [6]. Another study of SVM illustrated the method for predicting functional roles of 2467 uncharacterized genes from yeast saccharomyces cerevisiae on the basis of expression data from DNA microarray hybridization experiments [3].

Nearest neighborhood classification approaches, also referred to as instance-based learning algorithms [9], are sometimes called “lazy” learning methods because they delay processing of classification until a new instance requests to be classified [8]. The key advantage of such learning approaches is that the classification decisions are made locally and differently for each new instance to be classified [8]. Cover at el. first studied the nearest neighbor approach and proposed the nearest neighbor classification rules [10]. Wanger at el. studied the convergence of the nearest neighbor classification approach [11]

 REF _Ref76143209 \r \h
[12]. The property of constancy and convergence of nearest neighbor density estimates has been well studied theoretically by Moore and Devroye [14]

 REF _Ref76143271 \r \h
[15].

Feature selection is one of the crucial steps for a comprehensive classifier. Many approaches, such as principal component analysis, linear discriminant analysis, projection pursuit, have been proposed to reduce the dimensions of gene expression data and choose informative subset [18]. Golub and Slonim employed a leave-one-out cross validation method to select a subset gene before classifying acute myeloid leukemia and acute lymphoblastic leukemia using neighborhood analysis [8]. Feature selection using genetic algorithms is a multivariate approach, which is capable of selecting a subset of genes that are uncorrelated with each other. L. Li and C.H. Ooi both reported that they successfully applied GA to the gene selection to improve the accuracy of classification analysis [10]

 REF _Ref66681457 \r \h
 * MERGEFORMAT [13].

3.3. Approach

3.3.1. EIN-ring Neighborhood KNN

We developed an EIN-ring based weighted KNN classification approach for high dimensional data sets. The k nearest neighbors of the unclassified target data sample are selected for voting according to their class labels. The unclassified target data sample is assigned to the winning class according to the vote score (VS), which is calculated by the height of the winner bin minus the others, and is then divided by the sum of heights of all histogram bins.

Figure 17. Histogram within Neighborhood Rings.

EIN-ring neighborhood classification has two major steps: 1) search the training set for the nearest neighbors to an unclassified sample x within successive EIN-ring, R(x, r, r+() by calculating predicate trees; 2) assign to x the most common class label among its neighbors according to the maximum P-tree root count.

The burden of selection of parameter of k can be released by checking the vote score of each neighborhood ring, which indicates the decisiveness within the neighborhood ring. The vote score within the kth EIN-ring, R(x, k(, (k+1)(), is calculated using P-trees as

	VSkwinner =
[image: image22.wmf])

)

(

)

(

)

(

)

(

(

max

1

1

1

å

å

=

=

=

+

-

C

i

k

i

k

j

C

i

k

i

k

j

d

j

PN

RC

PN

RC

PN

RC

PN

RC

,
	(6)

where PNkj is the P-tree that represents data points with class label i within EIN-ring R(x, k(, (k+1)() and RC(PNkj) is the root count of P-tree, PNkj, i(j. Figure 17 illustrates a decisive ring and an indecisive ring among the 2-dimensional EIN-rings.

The data sample with class label i within (th interval along jth dimension, denoted as PN(ji, is calculated as follows. First, we need to build the ith class label in the structure of P-tree, PCi, in which a “1” value indicates that the corresponding data point has ith class label and a “0” value indicates that the corresponding data point does not have ith class label. PN(ji is calculated as

	PN(ji = Px-(k+1)(<X(x+(k+1)((P’x-k(<X(x+k((PCi,
	(7)

where Px-(k+1)(<X(x+(k+1)(is a range predicate tree calculated using our optimized range predicate tree formulae described in section 2.2. After obtaining PN(ji, the vote score is then calculated as
	VSi = [image: image23.wmf]å

=

c

i

ij

ij

WRC

WRC

1

l

l

,
	(8)

where WRC(ij is the weighted root count of data points with class label i. The way we implement the calculation of the weighted root count is to create a weight string through which each dimension is weighted by selecting P-trees that participate in vote calculation using genetic algorithm.

3.3.2. Feature Selection Using Genetic Algorithms

Genetic algorithms (GAs), as introduced by Goldberg, are randomized search and optimization technique that are derived by analogy to evolution and natural genetics [7]. GA is capable of searching for optimal or near-optimal solutions in a complex and large spaces of possible solutions. We exploit the optimization capability of GA to find the optimal weight of each dimension for vote score.

We first create a weight string with length of d*mi, where d is the number of dimensions and mi is the substring length for ith dimension. The “1” in the weight string means the corresponding P-tree will participate in vote calculation, and “0” otherwise. By adjusting the number of P-trees that participate in voting through cross validation and mutation, the weight string plays the role of weighting each dimension.

Briefly, the process of GA is described as follows. Initially a population of weight strings is all randomly generated, and classification error is calculated using k-fold cross validation, i.e., randomly dividing the data set into k groups, taking turns to choose one group as the test data and the rest as training data, and average classification error is calculated. The weight strings that have small classification errors are chosen to reproduce by exchanging partial bits between each two weight strings with a small probability Pc and mutation, i.e., reverse some bits of a weight string randomly with probability Pm. The offspring weight strings are evaluated again, and reproduces the next generation until meeting stop condition, e.g., number of generations or minimum improvement between consecutive generations. The best weight string with smallest classification error is selected as final weight string. Finally, the unclassified sample x is assigned to that class for which the weighted root count summation of the neighbors is the majority.

One simple way of selection of the dimensions is to select the first d-dimension with largest weight. An alternative way is to transform the neighorhood data samples into d-dimensional space using Schoenberg method [17]. The advange of the latter approach is that all the dimension information of the data is transformed into d-dimension through the weighted distance metric among the neighbors. Briefly, start with the distance matrix D=[dij] (ith row and jth column of D) of the target data and its neighbors, and calculate the eigen vector of a symmetric metric B= HAH, where A=[aij], aij=-dij2/2, and H is same size diagonal metric with
[image: image24.wmf])

1

1

1

(

+

-

k

 on diagonal and
[image: image25.wmf])

1

1

(

+

-

k

off diagonal. The values in first d eigen vectors with the largest eigen value is the new coordinate of target data and its corresponding neighbors.

3.3.3. PSVM Approach

We developed a local proximal support vector machine (PSVM) in order to improve the accuracy, which fits the classification boundary using piecewise segment hyperplanes based on local support vectors. There are two phases, first to find support vector pairs by calculating EIN-ring membership of a data set in class region, and then fit the boundary by calculating d-nearest boundary sentries of the test data, where d is the dimension. Finally, the class label of the test data is determined by its location relative to the boundary hyperplane. Without loss of generality, we assume it is binary classification. The details of each step are described as follows.

We first define EIN-ring membership of data x in the class region c, which are used to find support vector pairs around the boundary. Then we use a simple two-way hand shaking algorithm to find support vector pairs by range predicate tree ANDing. The P-tree of data point x in class region c within the EIN-ring, R(x, r, r+(), Px(c,r is calculated as

	Px(c,r = Pr,((Pci,
	(9)

where Pci is class label P-tree. The number of neighbors within the EIN-ring in class region c, NBRx(c,r, is calculated as
	NBRx(c,r = RootCount (Px(c,r),
	(10)

The EIN-ring membership of data x in the class region c, Mx(c, is defined as normalized summation of the weighted P-tree root counts within EIN-ring, R(x, r, r+(), which is calculated as follows

	[image: image26.wmf]å

=

Î

Î

=

m

r

r

c

x

r

c

c

x

NBR

w

N

M

1

,

*

1

	(11)

where Nc is the number of data points in class region c, and wr is the weight of the EIN-ring, R(x, r, r+(). There are many weighting functions that can be used to adjust the EIN-ring membership by weights. The selection of weight is based on a RBF kernel function or simple step function.

The support vector pair is a pair of candidate data support vectors xi, xj(X, i(j, is the support vector pair, SVP(xi, xj), if and only if d(xi, xj) (d(xk, xl) [image: image27.wmf]X

x

x

l

k

Î

"

,

and xk (c1, xl (c2. The support vector pairs can be found using a simple two-way hand shaking algorithm. Two candidate data are support vectors if and only if they are mutual nearest data point with different class label. We define boundary sentry, BSi,j, of a support vector pair, SVP(xi, xj), as

	BSi,j = (xi + (1-()xj,
	(12)

where (= Mxi(c2 / (Mxi(c1 + Mxj(c2), Mxi(c1 is the EIN-ring membership of data xi in group g, and Mxj(c2 is the EIN-ring membership of data xj in group c2.

Given a test data point x, the boundary hyperplane is specified by the d-nearest boundary sentries. For example, if d = 2, the boundary is a line and we need two boundary sentries, BSij to determine it, where xi(c1 and xj(c2 for all corresponding SVP (xi, xj). Similarly, if d = 3, we need three boundary sentries to determine the boundary plane.
After getting the linear class boundary, we check if the data sample of support vectors have the same class on the same side of class boundary. If not, we replace the missleading support vector with next nearest one and check the class boundary untill the data sample of support vectors have the same class on the same side of class boundary. Finally, we determine the class label of x based on its relative location to the boundary hyperplane.

3.4. Experiments Results

We compared our EIN-ring based KNN/PSVM neighborhood classification approach with Fisher's linear discriminant analysis (FLDA) and Golub’s KNN analysis on gene expression data set [8]. The accuracy is measured by precision, which is calculated for every class c as TP/(TP+FP), where TP (true positives) is the number of test samples that are correctly classified as c and FP (false positives) is the number of test samples that should be classified as c but not. The precision comparison with FLDA and Golub’s weighted KNN approach is based on the report in paper [16]. The efficiency is compared between our algorithm by P-tree data representation and using double precision numbers (DPN) in our algorithm.

We implemented KNN/PSVM approach in the C language and run on a 1GHz Pentium PC machine with 1GB main memory, and Debian Linux 4.0. The two test data sets we selected are Leukemia data set and Lymphoma data set, denoted as DB1 and DB2 respectively, which were prepared in the same fashion as described in paper [16]. In this experiment, we chose uniform crossover, stochastic universal sampling selection, leave-one-out cross validation, Pc=0.5, Pm=0.05, k=5 and GA population size of 200, strength length of 8 based on preliminary experiment. Termination condition is always checked after selection, mutation, and re-evaluation, which is set to 1000 maximum runs and minimum difference of fitness value E=0.01 between two generations.

The precision comparison with FLDA and Golub’s KNN on DB1 is plotted in the upper panel of Figure 18 and overall run time of KNN/PSVM and same approach using DPN shown in the lower panel of Figure 18. In general, the nearest neighbor and KNN/PSVM had the higher precision strength than FLDA. The possible reason for the poor performance of FLDA is that it is a “global” approach that is not well suited to high dimensional skew data sets, while nearest neighbor and our approach methods could make optimal decision at local level. Compared to the precision of FLDA and Golub’s KNN approach on DB2, KNN/PSVM achieved relatively higher precision than FLDA and comparable precision to Golub’s KNN. As for efficiency, it is clear that P-tree based KNN/PSVM is significant faster than the same approach without using P-trees. Drastic speed improvement of KNN with P-trees is observed when the size of the data is very large – as shown in the case of 5000x20000 matrix size in [4].

We tested the sensitivity of our algorithm under various noise environments by adding 2%, 5% and 10% uniform random noise to DB1 and DB2. The comparison of precision measurements of KNN/PSVM under different noise is plotted in Figure 19. Comparing to the case without noise, the average precision measurement of KNN/PSVM under 2% and 5% noise change slightly, while the average precision measurement of KNN/PSVM approach decreases dramatically. The range of precision measurement spreads slightly under 2% and 5% noise, and more widely under 10% noise. The analysis reveals that KNN/PSVM is robust under small and moderate noise, which inherits from KNN weighted voting scheme and PSVM. The robustness capability of KNN/PSVM to high dimensional bias is a highly desirable characteristic for gene expression data analysis.

3.5. Conclusions

In this paper, we have proposed a rapid and accurate neighborhood classification approach, KNN/PSVM, for microarray gene expression analysis characterized by P-tree technology, combination of majority voting and boundary approach, and optimization of weighting. Experiments with public microarray gene expression data demonstrated that our approach can achieve high accuracy and efficiency, hence could be a powerful tool for gene expression data analysis.

In addition to improved performance, our approach also showed strong robustness to bias in high dimensional data.. The reason for that is mainly related to the property of KNN voting and implicit boundary based outlier detection, which is high desirable for microarray gene expression analysis.

In the future, we will apply this approach to large-scale time series gene expression data, where the efficient and scalable analysis approach is in demand. We will also investigate the influence of the partition on the balance of accuracy and computation efficiency.

3.6. References

[1] Aha, D., Kibler, D., & Albert, M. Instance-Based Learning Algorithms. Machine Learning, vol 6:1, p 37-66, 1991

[2] Alon, U. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proc. Natul. Acad. Sci. 1999.

[3] Brown, M.P.S. & Grundy, W.N. Support Vector Machine Classification of Microarray Gene Expressio Data, Proc. natl. Acad. Sci. uSA97, 2000.

[4] Ding, Q., Khan, M., Roy, A., & Perrizo, W. The P-tree Algebra, ACM Symposium on Applied Computing, 2002.

[image: image28.png]runtime (s)

precision strengih

00
0
600
500
an
00
B
100

T
FLoa b KowpSVM
RN
fiesss e
o6t 062

Figure 18. Comparison of accuracy and run time.

[image: image29.png]D81
0%
82

{F o
i f

yiuans uoisaid ibuays orspaid

%
neise rati

2%

% 0%

neise rati

2%

Figure 19. Precision strength measurements on DB1 and DB2 with 2%, 5% and 10% noise.

[5] Ester, M., Kriegel, H-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM SIGKDD, Portland, Oregon, pp. 226-231, 1996.

[6] Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research 2002;30(4)e15.
[7] Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999:286:531-537.
[8] Mitchell T. Machine Learning. Morgan Kaufmann; 1997.
[9] Aha D, Kibler D, Albert M. Instance-based learning algorithms. Machine Learning 1991;6(1):37-66.
[10] Cover TM, Hart PE. Nearest neighbor pattern classification, Trans IEEE Inform Theory, 1967;IT-13:21-27.
[11] Cover TM. Rates of convergence for nearest neighbor procedures, Proc Hawaii Int Conference on System Sciences; 1968, p. 413-415.
[12] Wagner TJ. Convergence of the nearest neighbor rule. Transaction IEEE Inform Theory 1971;IT-17:566-571.
[13] Moore DS, Yackel JW. Consistency properties of nearest neighbor density estimates. Annals of Statistics 1977;5:143-154.
[14] Devroye L, Wagner TJ. The strong uniform consistency of nearest neighbor density estimates. Annals of Statistics 1977;5:536-540.
[15] Furey, T.SSupport vector machine classification and validation of cancertissue samples using microarray expression data. Bioinformatics, 16(10), pp. 906–914, 2000.

[16] Goldberg, D.E. and Deb, K. A comparative analysis of selection schemes used in genetic algorithms. In Rawlins, G. (ed). Foundations of Genetic Algorithms. Morgan Kaufmann, Berlin, pp. 69-93, 1991.

[17] Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, pp. 531-537, 1999.

[18] Jain AK, Duin RPW, Mao J. Statistical pattern recognition: A review. IEEE Trans on Pattern Analysis and Machine Intelligence 2000;22(1):4-37.
[19] Joachims, T. Making large-scale support vector machine learning practical. In B. SchSlkopf, C. J. C.Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169-184. MIT Press, 1999.

[20] Li, L., Weinberg, C. R., Darden, T. A. & Pedersen, L. G. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method, Bioinformatics, vol. 17, pp. 1131-1142, 2001.

[21] Mangasarian, O. L. & Musicant, D. R., Data Discrimination via Nonlinear Generalized Support Vector Machines, Technical Report 99-03,Computer Sciences Department, University of Wisconsin, 1999.

[22] Mitchell, T. Machine Learning. Morgan Kaufmann, 1997.
[23] Ooi, C. H. & Tan, P. Genetic algorithms applied to multi-class prediction for the analysis of gene expression data, Bioinformatics, vol 19, pp. 37-44, 2003

[24] Perera, A., Denton, A., Kotala, P., Jockheck, W., Granda, W. V. & Perrizo, W. P-tree Classification of Yeast Gene Deletion Data. SIGKDD Explorations. Vol 4, Issue 2, 2003.

[25] Perrizo, W. Peano Count Tree Technology. Technical Report NDSU-CSOR-TR-01-1. 2001.

[26] Ross, D. T., Scherf, U. et al. Systematic variation in gene expression patterns in human cancer cell lines, Nature Genetics, 24(3), pp. 227-235, 2000.

[27] Schoenberg, Sur la definition axiomatique d’une classe d’espaces distancies vectoriellement applicable sur l’espace de Hilbert, Annals of Mathematics, pp. 724-732, 1937.

[28] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

CHAPTER 4. PAPER 2: EFFICIENT DENSITY CLUSTERING APPROACH for Gene Expression Analysis

Abstract

Clustering analysis of microarray gene expression data is an important task in bioinformatics research and biomedical applications. Although some cluster methods have been recognized as effective approaches for uncovering patterns of biological system, some concerns still remain, such as high dimensionality of gene expression data. In this paper, we propose an efficient density based clustering method, which exploits a new data representation, Peano Trees, P-trees, and optimized P-tree operations to accelerate the calculation of the density function within neighborhood rings. Experiments on common gene expression data sets demonstrated that this approach is efficient, robust, and accurate in terms of consistency with biological characteristics, which indicates that it can be a powerful tool for high dimensional gene expression data analysis.
4.1. Introduction

With advances in microarry technology, it has become possible to monitor the genome-wide gene expression patterns of biological systems. Clustering analysis of mircroarray gene expression data, which discovers groups that are homogeneous and well separated, has been recognized as an effective method for gene expression analysis.

Eisen et al first applied hierarchical linkage clustering approach that groups closest pairs into a strict hierarchy of nested subsets based on similarity to display and discover genome-wide expression patterns successfully [4]. Golub et al has also successfully discovered the tumor classes based on the simultaneous expression profiles of thousands of genes from acute leukemia patient’s testing samples using self-organizing maps clustering approach [6]. Some other clustering approaches, such as k-mean, fuzzy k-means, Kohonen network, etc, also have been proven to be valuable clustering methods for gene expression data analysis [11]

 REF _Ref62308252 \r \h
 * MERGEFORMAT [2]

 REF _Ref62307072 \r \h
 * MERGEFORMAT [12].

Although many cluster methods have been recognized as effective approaches for uncovering similarity features and patterns of biological system, some concerns and challenges still remain. For example, the gene expression data is often in high dimension and biased, effective and efficient clustering analysis of such kind data is an important task in bioinformatics research and biomedical applications.
Density based cluster algorithms have been widely used in mining spatial data sets with noise, but have not yet been widely used in analysis of gene expression [8]

 REF _Ref44338175 \r \h
 * MERGEFORMAT [5]. Briefly, density based cluster approach groups the data samples into a set of connected dense components separated by regions of low density. A cluster is regarded as a connected dense region of data samples, which grows in any direction that density leads. As a result, density based clustering algorithm is capable of discovering arbitrary shape of clusters as well as dealing with noise and outliers, which are highly desirable characteristics in a clustering method for high dimensional data.
In this paper, we propose an efficient density based clustering method, which exploits the vertical data structures, Peano Trees (P-trees), and optimized P-tree logical operations to accelerate the calculation of the density function within neighborhood rings. In this method, we approach the problem of high dimensionality by partition and weighting. We view the data representation as a concept of hierarchy with binary representation on one extreme and double precision numbers with a mantise and exponent represented in complement of 2 on the other. We suggest employing data representation somewhere between two extremes by using partition. This would enable us to work on a high dimensional data by approaching speed of binary representation and achieving fine accuracy. The optimization of dimension weight can be achieved using Genetic algorithm, which is beyond the scope of this paper. We experimented our algorithm on the public microarray gene expression data, which demonstrated that this approach is efficient, robust, and accurate in terms of consistency with biological characteristics.
This paper is organized as follows. In section 2, we first describe the basic P-trees, and the optimized logical operations. In section 3, we define a unique equal interval neighborhood rings, EIN-rings, and then present the new efficient density clustering method using EIN-rings. Finally, a performance study is experimented in section 4 and concludes the paper in section 5.
4.2. Approach

Density based clustering algorithm is a clustering method based on a set of density distribute function, called an influence function, which describes the impact of a data point within its neighborhood. Our algorithm employs a special EIN-ring based influence function. The overall density of the data space is then modeled as the sum of the influence functions of all data points. Clusters are determined by identifying density attractors, where density attractors are local maxima of the overall density function.

Let x and y be data points in Fd, a d-dimensional feature space. The influence function of the data point y on x is a function fHy: Fd -> R0+, which is defined based on EIN-ring:

	fr1,r2y(x) =1 if y(R(x, r1, r2)

 =0 if y(R(x, r1, r2) .
	(13)

The EIN-ring based density function of x is defined as the weighted summation of RC(x,r), which is calculated as follows

	fhD(x) = [image: image30.wmf])

(

*

1

2

,

1

x

f

w

m

r

y

r

r

r

å

=

 = [image: image31.wmf]å

=

m

r

r

r

x

RC

w

1

)

,

(

*

.
	(14)

where fhD(x) denotes the EIN-ring based density of data point x, with respect to weights, wr. The selection of this weight is based on a kernel function of the radius of EIN-ring, for simplicity, we use a step function with increment one here. The optimization of the weight is beyond the scope of this paper.
Once the density of each data point is defined, the next step is to define density attractors, i.e., local maxima of the overall density function. Having a high density doesn’t necessarily make a point a density attractor - it must have the highest density among its neighbors. Instead of using formal hill climbing as is done in DENCLUE [8], we adopt a simpler heuristic look around technique.

Algorithm 1. Look Around Pruning We first define a neighborhood as a ball of some chosen radius r. The number r can range from 0 to the maximal bit length of the attributes. After finding the density function Dx of a point, x, we compare that density with that of data points within its neighborhood. If it is greater than the density of all its neighbors, it is labeled as a new density attractor. Any old density attractor in that neighborhood is de-labeled as a density attractor.

After all the data points have gone through the process above, we have a set of intermediate density attractors. We compare each intermediate attractor’s density with that of its nearest neighbor data point. If the former is less than the latter, the attractor is de-labeled. Otherwise, it is a final density attractor. This step finds attractors that are isolated and therefore should be removed as noise.

Definition 3. Density Attractor Set Given a sequence of points x1, x2, … xn, the Density Attractor Set DAS (x1, x2, … xn) is a set of attractors produced by the look around algorithm applied to the data points in the order, x1, x2, … xn.
Definition 4. A data point x is reachable from data point y if x  R (y, 0, r), where r is the user-defined radius for the density clustering. If x is reachable from y, y is also reachable from x.

The look around pruning algorithm is robust, which means the clustering results are independent of data point treating order. The proof is given as follows.

Proof (Proof by contradiction): assume the statement is not true, i.e. y is an attractor, but  z R(y, 0, r), [image: image32.wmf]'

: [image: image33.wmf]Dy

Dz

>

. If z is treated first and z is an attractor, then when y gets treated, y would not be an attractor (Lemma 3.2.1). If y is treated before z, y could be designated an attractor at that time. But when z gets treated, y will be de-labeled according to look around pruning algorithm 3.2.1. Therefore y is not an attractor. Contradiction!

Lemma 2. (Density Characterization Lemma) Data point y is a density attractor iff[image: image34.wmf]Dz

Dy

³

, [image: image35.wmf])

,

0

,

(

r

y

R

z

Î

"

. If y is not a density attractor,  z R(y, 0, r) [image: image36.wmf]'

: [image: image37.wmf]Dy

Dz

>

.

Lemma 3. Given a data point y, and[image: image38.wmf]Dz

Dy

³

,  z  R(y, 0, r), y is the density attractor independent of the order in which y and z are treated in the look around process.

Theorem 2. Given data set X in two different sequences: {xi1,xi2, …xin} and { xj1, xj2, …, xjn}, then DAS(xi1,xi2, …xin) = DAS(xj1,xj2, …xjn).

Proof (Proof by contradiction): assume the statement is not true, i.e. DAS(xi1,xi2, …xin) ≠ DAS(xj1,xj2, …xjn). That means  x  DAS(xi1,xi2, …xin) but x  DAS(xj1,xj2, …xjn). According to x  DAS(xi1,xi2, …xin) and Lemma 3.2.1, [image: image39.wmf])

,

0

,

(

r

x

R

z

Î

"

[image: image40.wmf]Dz

Dx

³

. Also according to x  DAS(xj1,xj2, …xjn) and Lemma 3.2.1, [image: image41.wmf])

,

0

,

(

r

x

R

z

Î

 [image: image42.wmf]'

: [image: image43.wmf]Dx

Dz

>

. Contradiction!
4.3. Experiments Results

In this experiment, we studied the efficiency of P-tree representation, accuracy, and robustness of P-tree based density clustering (PDCluster) approach and compared it with two other popular clustering methods, k-means [1] and hierarchical clustering (HCluster) [7]. The data set is leukemia gene expression data, which can be found at the MIT Whitehead Institute web site. The initial data set consists of 38 bone marrow samples including 27 Acute Lymphoblastic leukemia (ALL) and 11 Acute Myeloid Leukemia (AML) with 6817 gene expression profiles. The first 200 genes with highest score[image: image44.wmf]|

2

/

)

(

|

ALL

AML

i

x

m

m

+

-

, which reflects the deviation of the expression level in the sample from the average of [image: image45.wmf]AML

m

 and[image: image46.wmf]ALL

m

, are selected. The cluster analysis is directly applied to the normalized (linearly rescaled) values of the expression data of all 38 bone marrow samples.

All clustering results are evaluated on the basis of the distribution of the biological classes (AML and ALL) within the clusters. The “ideal” results should group the 38 samples into two clusters, with the maximum (100%) percentage of the known ALL/AML samples in each cluster. We exploit the precision to measure the accuracy of clustering results in terms of consistency with biological characteristics, which is calculated as the average of TP/(TP+FP) for every clusters, where TP (true positives) is the number of samples that are majorities of a cluster and FP (false positives) is the number of samples that are minorities of a cluster. We implemented PDCluster, k-means, and hierarchical clustering approaches in the C++ language and ran them on a 1GHz Pentium PC machine with 1GB main memory and Debian Linux 4.0.

We first studied the influence of string length used to represent the value of gene expression on precision measurement. By varying the string length from 2 to 32 used to represent the value of gene expression, the corresponding average precision measurement is plotted in Figure 20. It shows that PDCluster almost can not generate homogenous clusters when using small string length, but the precision measurement increases close to the highest very quickly as the value of string length increases. This analysis reveals that PDCluster approach achieved relatively high precision efficiently with the string length of eight on this data set.

[image: image47.wmf]0

0.2

0.4

0.6

0.8

1

1.2

2

4

8

16

32

String Length

Precision

Figure 20. Influence of string length on precision.

We compared PDCluster with two other clustering methods, k-means and hierarchical clustering, where PDCluster used eight bit strings and others directly used the normalized values of the expression data of all 38 bone marrow samples. Table 1 shows the clustering results using the three methods with two integrated clusters. The k-means method with k=2 often generated two unbalanced clusters with one large cluster and one small cluster, indicating that the cluster result is often influenced by starting sample and bias. Although the both HCluster and PDCluster have comparable cluster result for this data set, HCluster seems to be sensitive to data biases and lack of the capability of grouping data flexibly, which are also noted by statisticians [9].
We also experimented the robustness of PDCluster approach to noise environments by adding 2% and 5% uniform random noise to the data set. Comparing to the case without noise, the average precision measurement of PDCluster decreased slightly, which reveals that PDCluster is robust under small and moderate noise. The reason for the robustness of PDCluster is mainly related to its capability of discovering outliers with low density. Moreover, drastic speed and scalability improvement of PDCluster can be achieved when the size of the data is very large – see the case of 5000x20000 matrix size in [3].

Table 6. Results of clustering 38 samples into two classes using four methods

	Method

	Cluster 1
	Cluster2

	
	# sample
	ALL /AML
	# sample
	ALL /AML

	K-means
	3
	1/2
	35
	26/9

	HCluster
	11
	2/9
	27
	25/2

	PDCluster
	25
	24/1
	13
	3/10

4.4. Conclusions

Clustering analysis of microarray gene expression data has been recognized as an effective method for uncovering patterns of biological system. However, clustering analysis of microarray gene expression data often leads to very high-dimensional and sparse data, where the dimension is in the hundreds or thousands. Accurate and efficient clustering such kind of data is an important task in bioinformatics research and biomedical applications.

In this paper, we proposed an efficient density based clustering method, which exploits the data representation, P-trees and the optimized P-tree logical operations to accelerate the calculation of the density function within neighborhood rings. Experiments on common gene expression data sets demonstrated that this approach is efficient, robust, and accurate in terms of consistency with biological feature for high dimensional data. As a result, this approach can be a powerful tool for gene expression data analysis.

In the future, we will apply this approach to large scale time series gene expression data, where the efficient and scalable analysis approach is in demand. We will also work on poster cluster analysis and result interpretation. For example, we will explore to build Bayesian network to model the potential pathway for each discovered cluster and subcluster.

4.5. References

[1] Anderberg, M.R. “Cluster analysis for applications. Academic Press”, New York, San Francisco, London, 1973.
[2] Arima, C and Hanai, T. “Gene Expression Analysis Using Fuzzy K-Means Clustering”, Genome Informatics 14, pp. 334-335, 2003.

[3] Ding, Q., Khan, M., Roy A., and Perrizo, W., “The P-Tree Algebra”, ACM SAC, 2002.

[4] Eisen, M.B., Spellman, P.T., “Cluster analysis and display of genome-wide expression patterns”. Proceedings of the natinoal Academy of Science USA, pp. 14863-14868, 1995.
[5] Ester, M., Kriegel, H-P., Sander, J. And Xu, X. “A density-based algorithm for discovering clusters in large spatial databases with noise”. In Proceedings of the 2nd ACM SIGKDD, Portland, Oregon, pp. 226-231, 1996.

[6] Golub, T. R.; Slonim, D. K.; Tamayo, P.; Huard, C.; Gaasenbeek, M. et al. “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring”. Science 286, pp. 531-537, 1999.
[7] Hartigan, J. “Clustering Algorithms”, Wiley, New York, 1975.
[8] Hinneburg, A., & Keim, D. A.: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. Proceeding 4th Int. Conf. on Knowledge Discovery and Data Mining, AAAI Press (1998)

[9] Morgan, B., Ray, A., “Non-uniqueness and inversions in cluster.analysis”. Appl. Statist. 44 (1), 117 - 134, 1995.

[10] Perrizo, W., “Peano Count Tree Technology”. Technical Report NDSU-CSOR-TR-01-1, 2001.

[11] S. Tavazoie, J. D. Hughes, and et al. “Systematic determination of genetic network architecture”. Nature Genetics, 22, pp. 281-285, 1999.

[12] Tamayo, P., slonim, D., “Interpreting patterns of gene expression with self-organiing maps: methods and application to hematopoietic differentiation.” Proceedings of the National Academy of Science USA, pp. 2907-2912, 1996.

CHAPTER 5. PAPER 3: EFFICIENT RANKED KEYWORD QUERY OF Biomedical DOCUMENTS

Abstract

In this paper, we describe the architecture, implementation, and evaluation of the P-RANK system built to address the requirement for extracting evidences of specific products of genes from biomedical papers. P-RANK is a system that accepts user interests in the form of keywords, which integrate different depth weights into the ranking score and highlights that molecular biologists who review these papers looking mainly for the certain part of a paper to extract experimental evidences, in turn, returns a ranked list pertaining to the users’ interests. Our contributions include presenting a new efficient keyword query system using a data structure called the P-tree, and a fast weighted ranking method using the EIN-ring.
5.1. Introduction

Biomedical information exists in both the research literature and various structured databases. With a huge number of papers and books published yearly, access to biomedical information has become in great demand especially by molecular biologists. Molecular biologists are interested in retrieving a concise ranked set of references of interest without having to manually go through all the documents in a given collection.

Data stored in most text databases are semistructured data in that they are neither completely unstructured nor completely structured. There have been a great deal of studies on the modeling and implementation of semistructured data in recent database research. Information retrieval techniques, such as text indexing methods, have been developed to handle unstructured documents. However, traditional information retrieval techniques become inadequate for the increasingly vast amounts of text data. Typically, only a small fraction of the many available documents will be relevant to a given individual or user. Without knowing what could be in the documents, it is difficult to formulate effective queries for analyzing and extracting useful information from the data. User need tools to compare different documents, rank the importance and relevance of the documents, or find patterns and trends across multiple documents.

Traditional methods for ranking queries results, such as Google [10] [3], are based on the use of ranking formulas that calculate the frequencies of a document accessed. However, molecular biologists are mostly interested in extracting evidences of specific products of genes, e.g. mRNA and proteins, which cannot be achieved by general ranking approaches. An automatic analysis of scientific biomedical papers to extract only the papers that include experimental-related results is in need.

In this paper, we describe the architecture, implementation, and evaluation of the P-RANK system built to address the requirement for extracting evidences of specific products of genes regarding expression of gene products from biomedical papers. P-RANK is a system that accepts user interests in the form of keywords, which integrate different dimension weights into the ranking score and evaluate documents accordingly. It returns a ranked list of reference pertaining to the users’ interests. Our contributions include presenting a new efficient keyword query system using a data structure called the P-tree and a fast weighted ranking method using the EIN-ring, which aid in the process of looking for evidences of specific products of genes from biomedical papers, especially from abstracts, experiments, and figure legends. We experimentally compare with other ranked-keyword searching approaches and results have shown that P-RANK is a very fast ranked keyword query system.

This paper is organized as follows. In section, we describe the data model and representation used in P-RANK. In section, we present an overview of P-RANK’s system architecture. In section, we present the voting-based ranking method using the EIN-ring. We experimentally compare our approach to the traditional inverted list approach in section. Finally, we conclude this paper in section.

5.2. System Archectecture and Process

Figure 21 depicts an abstract level view of the architecture of P-RANK. Documents are transformed to a document by term matrix using the weighting schemes and the optional pre-processing steps discussed in [1]. This matrix is then, in turn, converted to its P-tree representation by using the P-tree Capture Interface. The result of this last step is fed into the P-RANK engine. When users submit keywords to the system, P-RANK, first, applies on the keywords any optional pre-processing steps that were performed on the documents. This includes reducing keywords to their original forms or filtering some of them by using stop lists. After that, P-RANK does the required matching of the pre-processed keywords by EIN-ring-based ranking and sorting as will be discussed in Section. This is accomplished using the P-tree version of the document by term matrix. Finally, a ranked list of document matching his/her keywords is returned to the user.

Figure 21. Architecture of P-RANK

Before documents are represented by term vectors, PRANK performs a series of optional pre-processing steps with the aim of optimizing performance mainly by reducing the number of terms used (and thus the dimensions). One pre-processing step is case folding. Case folding is the process of converting all the characters in a document into the same case–either all upper case or lower case. For example, the words “Database”, “DaTaBASE”, “DATABASE”, “database are all converted to “database” or “DATABASE” depending on the chosen case. This has the advantage of speeding up comparisons when converting document tags to term vectors.

PRANK can also perform stemming which is the process of removing all prefixes and suffixes from words so that all words are reduced to their stems or original forms. As an example, consider the inflected words “Computing”, “Computer”, and “Computational”; after stemming is performed, all those words would map to the term “Compute”. This has the advantage of eliminating suffixes and prefixes indicating tag-of-speech and verbal or plural inflections, thus, reducing the number of terms used.

A third pre-processing step that can be done by PRANK is the removal of stop words. Stop words are words having no significant semantic relation to the context in which they exist. They are usually terms having high frequencies (i.e. have low uniqueness and thus low IDF values) across a document collection. Stop words are usually collected and submitted to PRANK in a stop list which is nothing but a list of words. Stop words are not included as vector dimensions. For example, prepositions such as “of”, “in”, and “with” are usually stop words. Also the word “dead” would probably be a stop word in a collection of articles addressing some war events, but certainly not in a collection of articles describing some sports event.

In addition to using all term weights as dimensions in the document vector, two other weights are employed by PRANK: document reference weight and tag depth weight. The main motive for those two weights is to highlight the characteristics pertaining to hyperlinked XML documents as opposed to other html or simple text documents in order to include them in the ranking evaluation as will be discussing later. The document reference weight is an integer value given to each document, d, to express the referencing importance of d to other documents in the document set. It is simply calculated as the total number of documents references, IDREFs or Xlinks, to d. All the tags of a document will have the same reference weight since references are usually document based and not tag based.

The depth weight reflects the hierarchical structure of an XML document and is calculated per document tag. The deeper a tag’s position is in a document, the more specific its contents are and thus they should be weighted higher. PRANK uses a simple incremental weight value to accomplish this purpose. The root tag of a document is weighted 1, first level tags are weighted 2, and second level tags are weighted 3, and so on until we reach the lowest level tags which get the highest weights depending on their depth.
5.3. Approach

We now present the weighted ranking scoring for keyword queries over biomedical documents using EIN-rings, which is defined in paper [6]. Consider a keyword search query Q = (k1, k2, …, kn), where k1, k2, …,kn are the input keywords. Let Pmask be the P-tree representing the result list that contains all the documents containing all the input keywords. A simplified prototype vector model as discussed in Section is shown in Table 6. We encode each column in Table 6 by bits and represent each bit position by a P-tree. The calculation of Pmask is as follows: First, we find the corresponding input keywords in the Term Existence section of Table 6; the P-tree representing the result list of the documents containing all the input keywords, Pmask, is just the “ANDing” of all P-trees for participating keywords, that is Pmask=Pk1(Pk2…(Pkn, where Pk1, Pk2, …, and Pkn are the P-trees for the participating keywords.

Consider each weight in W1, W2 and W3 sections in Table 1 as a dimension of the search space X. We have a space of (k+2)-dimensions (W1 having k term dimensions, W2 and W3, so, k+2 in total), X = (W11,…, W1k, W2, W3), and we denote the set of EIN-rings by R(Xstart, r, r+(), where Xstart = (xstart-1, xstart-2, .., xstart-k+2) is the center for the rings of radii r, r = r1,r2,…rk+2, where each ri is a radius associated with dimension Wi and (is a fixed interval. Each ri is referred to as the internal radius of the ring with center Xstart and ri+(is the corresponding external radius of the ring. The calculation of points within EIN-rings R(Xstart, r, r+() is presented as follows.

Xstart is the point in X having the largest weight values, i.e., xstart-i = max(Wi)
[image: image48.wmf]"

i. Initially, each ri is zero; then, ri is increased in steps each equal to (until we reach the max(Wi). Each step yields a bigger EIN-ring encompassing all the rings generated before it. Let Pri,(be the P-tree representing all points Y in X existing within the scope of the EIN-ring R(Xstart, ri, ri +(). Note that Pri,(is just the predicate tree corresponding to the predicate Xstart-i - ri -(<Y(Xstart-i - ri where Y is the set of points (w1, w2, …, wk+2) in X. We calculate Pri,(by ANDing PY<Xstart-i-ri and P’Y<Xstart-i-ri-(. For the sake of clarity, we will refer to PY<Xstart-i-ri and P’Y<Xstart-i-ri-(as Pmin and P’max respectively. Pmin is shown in the shadow area of a) and P’max in the shadow area of b) in Figure 22. According to the calculation formula of EIN-ring, Pmin is calculated as

	Pmin = PY<Xstart-i-ri = Pw1(Xstart-1-r1(Pw2(Xstart-2-r2(…. (Pwk+2(Xstart-k+2-rk+2,
	(15)

where each Pwi(Xstart-i-ri is calculated as explained in paper [6]. Similarly we calculate Pmax as

	Pmax = PX<Xstart-i-ri-(= Pw1(Xstart-1-r1-((Pw2(Xstart-2-r2-((…. (Pwk+2(Xstart-k+2-rk+2-(,
	(16)

Let P’max ​ be the complement of Pmax. Pri,(can be calculated by ANDing Pmin and P’max. Note that the set of points in Pri,(that contain all the keywords can be derived by ANDing the Pmask with Pri,(.

The set of EIN-rings along every dimension gives us an intrinsic ranking for the points along that dimension. Points existing in the same ring have the same rank value while points existing in other rings have different rank values. Rings with smaller external radii get higher rank values along that dimension. For example, points in the ring with a radius of max(Wi) get a rank value of 1, points in the ring with a radius of max(Wi)-(get a rank value of 2, points in the ring with a radius of max(Wi)-2(get a rank value of 3 and so on and so forth. After obtaining all the rank values using the EIN-rings for all points along every dimension, we calculate the rank order of the points in space as the weighted summation of all dimensions rank values. The weights for the dimensions can be derived by domain experts or machine learning algorithms. The detailed discussion of weights is beyond the scope of this paper.

Table 7. Simplified Prototype of the Data Model

	
	Term Existence
	Term Weight W1
	Refer.

Weight

W2
	Depth

Weight

W3

	
	T1
	…
	Tk
	WT1
	…
	WTk
	
	

	Doc1
	1/0
	1/0
	1/0
	W111
	…
	W1k1
	W11
	W21

	Doc2
	1/0
	1/0
	1/0
	W112
	…
	W1k2
	W12
	W22

	…
	
	
	
	…
	…
	…
	…
	…

	Docn
	1/0
	1/0
	1/0
	W11n
	…
	W1kn
	W1n
	W2n

[image: image49.png]o /

R™

Figure 22. Calculation of Data Points within EIN-ring R(Xstart, r, r+().

5.4. Experiments Results

We implemented P-RANK in C++ and test it on task one data from KDDCup 2002 task2, which provided 15,234 MEDLINE abstracts and a list of genes mentioned in that abstract [4]. In order to compare the efficiency of our approach, we prepared the abstracts into three size groups, denoted as DB1, DB2, DB3, which contain 1,000, 7,000, and 15,000 abstracts, respectively. We also implemented another version of P-RANK using inverted list. Details for the P-tree implementation can be found in [8]. The average run time of a single keywork ranking query on different size of test data executed on a 1 GHz Pentium PC machine with Debian Linux 4.0 is listed in Table 7 and plotted in Figure 23.

Compared to the inverted list implementation, P-Rank is not only faster on all three size of data, but also has a lower increasing rate as data size increases, which indicate a better scalability. The reason for the improvement in speed is mainly related to the efficiency resulting from fast logical operation and optimized P-tree formulation. Drastic improvement is shown when the size of the data is very large – see the case of 5000x20000 matrix size in [9]

 REF _Ref62643324 \r \h
[5]. As for scalability, it is mainly related to the capability of P-tree’s compression [9]

 REF _Ref49858763 \r \h
[7]. The improvement of accuracy could be achieved by using weights optimization method, such as genetic algorithms. The details of optimizing the weights and improving the accuracy will be explored in the future.

[image: image50.wmf]0

200

400

600

800

1000

1200

1400

DB1

DB2

DB3

Average Run Time (s)

Inverted-List

P-rank

Figure 23. Comparison of SC-ID and P-RANK.

Table 8. Results of Score Comparison

	
	1000
	7000

	Inverted List
	60
	306

	P-rank
	22
	97

5.5. Conclusions

In this paper, we described the architecture, implementation, and evaluation of the P-RANK system built to address the requirement for efficient ranked keyword query over biomedical documents. P-RANK’s contributes by presenting a new and efficient keyword-based query system characterized by speed and compression due to the use of P-trees. P-RANK’s weighted ranking highlights the fact that molecular biologists who review these papers looking mainly for the certain part of a paper to extract experimental evidence. Experimental comparisons demonstrated P-RANK’s overall superiority of keyword ranking query.

5.6. References

[1] I. Rahal and W. Perrizo, An optimized P-tree based KNN approach for Text Categorization. ACM Symposium on Applied Computing, 2003.

[2] J. Han and M. Kamber, “Data Mining: Concepts and Techniques”, Morgan Kaufmann, 2001.

[3] J. Kleinberg, “Authoritative Sources in a Hyperlinked Environment”, JACM 46(5), 1999.

[4] KDDCup2002 Web Page http://www.biostat.wisc.edu /~craven/kddcup/task2-training.zip

[5] Maleq Khan, Qin Ding and William Perrizo, “KNearest Neighbor Classification on Spatial Data Streams Using P-trees”, PAKDD 2002.

[6] Pan, F., Wang, B., Ren, D., Hu, X. and Perrizo, W., Proximal Support Vector Machine for Spatial Data Using Peano Trees, CAINE 2003.

[7] Perrizo, W., Peano count tree technology lab notes. Technical Report NDSU-CS-TR-01-1, 2001. http://www.cs.ndsu.nodak.edu/~perrizo/classes/785/pct.html. January 2003.

[8] P-tree World Wide Web Homepage. http://midas-11.cs.ndsu.nodak.edu/~ptree/. July 2003.

[9] Qin Ding, Maleq Khan, Amalendu Roy, and William Perrizo, The P-tree Algebra, ACM Symposium on Applied Computing, 2002.

[10] S. Brin, L. Page, The Anatomy of a Large-Scale Hypertextual Web Search Engine, WWW Conf., 1998.

[11] Salton and McGill, “Introduction to Modern Information Retrieval”. McGraw-Hill, 1983.

[12] Salton, Wong, and Yang, "A vector space model for automatic indexing," Communications of the ACM 18, pp. 613--620, 1975.

CHAPTER 6. PAPER 4: EFFICIENT DENSITY CLUSTERING APPROACH FOR SPATIAL DATA

6.1. Abstract

Data mining for spatial data has become increasingly important as more and more organizations are exposed to spatial data from such sources as remote sensing, geographical information systems (GIS), astronomy, computer cartography, environmental assessment and planning, bioinformatics, etc. Recently, density based clustering methods, such as DENCLUE, DBSCAN, OPTICS, have been published and recognized as powerful clustering methods for Data Mining. These approaches have run time complexity of [image: image51.wmf])

log

(

n

n

O

 when using spatial index techniques, R+ tree and grid cell. However, these methods are known to lack scalability with respect to dimensionality. In this paper, we develop a new efficient density based clustering algorithm using HOBBit metrics and P-trees. The fast P-tree ANDing operation facilitates the calculation of the density function within HOBBit rings. The average run time complexity of our algorithm for spatial data in d-dimension is [image: image52.wmf])

(

n

dn

O

. Our proposed method has comparable cardinality scalability with other density methods for small and medium size of data, but superior dimensional scalability.

6.2. Introduction

With the rapid growth of large quantities of spatial data collected in various application areas, such as remote sensing, geographical information systems (GIS), astronomy, computer cartography, environmental assessment and planning, efficient spatial data mining methods are in great demand. Density based cluster algorithms have been recognized as a powerful clustering approach capable of discovering arbitrary shape of clusters as well as dealing with noise and outliers, and are widely used in the mining of large spatial data.

There are two major approaches for density-based methods. The first approach is represented by DENCLUE [3]. It exploits a density function, e.g., step function or Gaussian function to measure the density in attribute metric space. Clusters are identified by determining density attractors. Thus, clusters of arbitrary shape can be easily determined by overall density functions. This algorithm scales well with run time complexity [image: image53.wmf])

log

(

n

n

O

 by means of grid cells techniques. However, it requires careful selection of the density parameter (and noise threshold (, which may significantly influence the quality of the clustering results [10].
The second approach calculates the density of all data points and groups them based on density connectivity. Typical algorithms in this approach include DBSCAN [6] and OPTICS [8]. DBSCAN first defines a core object as a set of neighbor points consisting of more than a specified number of data points. All the data points reachable within a chain of overlapping core objects define a cluster. The run time complexity of DBSCAN is [image: image54.wmf])

log

(

n

n

O

 for spatial data when using a spatial index. Otherwise, it is [image: image55.wmf])

(

2

n

O

[10]. OPTICS can be considered as an extension of DBSCAN without providing global density. It assumes each cluster has its own density parameter and uses a random variable to learn its probability distribution. It has the same run time complexity as DBSCAN, that is, [image: image56.wmf])

log

(

n

n

O

 if a spatial index is used and [image: image57.wmf])

(

2

n

O

 otherwise.

However, the spatial index techniques, such as R tree, R+ tree, and grid cell, are known to be suitable for low dimensional data sets. They perform well in 2-3 dimensions. In high dimensional spaces they exhibit poor behavior in the worst case and in typical cases as well [13]. The reason is that the data space becomes sparse at high dimensionalities causing the bounding regions to become large.

Recently, a new distance metric, the HOBBit Metric, has been proposed for data mining [2]. It exploits a new lossless data structure, called the Peano Count Tree (P-tree) [1]. The performance of HOBBit metric data mining using P-trees is shown to be fast and accurate [2].

In this paper, we propose an efficient density clustering algorithm using HOBBit metrics and show that the method scales well with respect to dimension. The basic idea is to make use of P-trees and HOBBit metrics to calculate the density function in [image: image58.wmf])

(

n

O

 time, on the average. The fast P-tree ANDing operation is used to get density functions within certain HOBBit ring neighbors. Furthermore, we adopt a look around pruning method to combine the density calculation and a hill climbing technique. The overall run time complexity is [image: image59.wmf])

(

n

dn

O

 for a d-dimensional data set, on the average. Experimental results show that the algorithm works efficiently on large-scale, high-dimensional, spatial data, outperforming other density methods significantly.

This paper is organized as follows. In section, The HOBBit metrics and P-tree techniques are briefly reviewed. In section, we introduce the new efficient density clustering method using HOBBit Metric, and then prove its efficiency in terms of time complexity. Finally, we compare our method with other density methods experimentally in section and conclude the paper in section. The symbols used in this paper are given in Table 8.

Table 9. Symbols and Notations Used in the Paper

	
Symbol
	Definition

	X
	Spatial pixel, X = {x1, x2, …, xn}, n is the number of attributes

	M
	Maximal bit length of attributes

	R
	Radius of HOBBit ring

	Pi,j
	Basic P-tree for bit j of attribute i

	Pi,j’
	Complement of Pi,j

	bi,j
	The jth bit of the ith attribute of x.

	Pxi,j
	Operator P-tree of jth bit of the ith attribute of x

	Pvi,r
	Value P-tree within ring r

	Px,r
	Tuple P-tree within ring r

	Qid
	Quadrant identification

	Dx
	Density of data point x

	R(c, r1, r2)
	HOBBit ring with radii r1 and r2 centered at c

	DAS (x1, x2, … xn)
	Density attractor set for sequence of points x1, x2, … xn

6.3. Approach

Distance metrics (or similarity functions) are key elements of clustering algorithms and therefore play an important role in data mining. In this section, we first briefly review the HOBBit Metrics, and the Peano Count Tree (P-tree) [[1]] data structure and related P-tree algebra. P-tree technology and HOBBit metrics were used successfully in 2002 ACM KDD-cup competition, wining the broad task-2 competition. [16]
6.3.1. HOBBit Metrics

The HOBBit metrics, also called HOBBit metric [1], is bit wise distance function. It measures distance based on the most significant consecutive matching bit positions starting from the left (Position Of Inequality or POI – leading to the HOBBit terminology). HOBBit metric difference measurements are based on the following observation. When comparing two values bitwise from left to right, once a difference is found, the position of that first difference reveals much about the magnitude of difference between the two values. Let Ai be a non-negative fixed point attribute in tabular data sets, R(A1, A2, ..., An). Each attribute, Ai, the values are represented as fixed-point binary numbers, x, i.e., x = x(m)x(m-1)---x(1)x(0).x(-1)---x(-n). Let X and Y be two values of Ai, the position of inequality (POI) or HOBBit similarity between X and Y is defined by

[image: image60.wmf]}

1

|

max{

)

,

(

=

Ä

=

i

i

y

x

i

Y

X

m

,

where [image: image61.wmf]i

x

and [image: image62.wmf]i

y

 are the [image: image63.wmf]th

i

 bits of X and Y respectively, and [image: image64.wmf]Ä

 denotes the XOR (exclusive OR) operation. In another word, m is the left most position at which X and Y differ. The HOBBit distance between two tuples, X and Y, is defined by[image: image65.wmf])

,

(

2

)

,

(

Y

X

m

Y

X

d

=

.

For two value X and Y of a signed fixed binary attribute, Ai, the HOBBit distance between X and Y are same as above if X and Y are of the same sign. If X and Y are of opposite sign, then the distance is [image: image66.wmf])

0

,

(

)

0

,

(

)

,

(

Y

d

X

d

Y

X

d

+

=

. HOBBit metric data mining uses a data structure, called a Peano Count Tree (P-tree), to facilitate its computation for spatial data. Some details about P-tree are described in next section 2.2.

Generally speaking, density based cluster algorithms group the attribute objects into a set of connected dense components separated by regions of low density. A cluster is regarded as a connected dense region of objects, which grows in any direction that density leads. Therefore, density based clusters are capable of discovering arbitrarily shaped clusters and deal well with noise and outliers.

The main drawback of existing density based algorithms is slowness and lack of scalability. Typical density based algorithms, such as DBSCAN, OPTICS and DENCLUE, exploit different approaches to improve the speed and scalability. In this paper, we propose a P-tree HOBBit ring based density clustering algorithm, which we will refer to as PHDCluster (P-tree, HOBBit, Density Clustering). The basic idea is to exploit HOBBit rings and P-trees to get the density function in one step. The fast P-tree ANDing operation is used to get density function within any specified HOBBit ring neighbor. We also adopt a look around pruning method to combine the density calculation and hill climbing. The detailed algorithm is in section 6.3.3 and 6.3.4.
6.3.2. HOBBit Ring

We first describe the definition of HOBBit rings in section. In section, we describe calculation of the density function using P-trees and HOBBit rings. In section 6.3.4, the algorithm for finding density attractors is discussed. Finally, the efficiency of our algorithm is analyzed in terms of time complexity.

Definition 3.1.1. HOBBit Ring The HOBBit ring of radii, r1 and r2 , centered at c is defined as R(c, r1, r2) = {x(X | r2(d(c,x) (r1}, where d(c,x) is HOBBit distance. Figure 24 shows a diagram of HOBBit ring R(c, r1, r2) in spatial data set, X.
The tuple-P-tree root counts within the HOBBit ring, R(x, r-1, r), which is denoted as RC(x,r), is accomplished by P-tree ANDing. For any data point, x, let x = b11b12 … bnm , where bi,j is x’s ith bit value in the jth attribute column. The bit-P-trees for x, Pxi,j , are then defined by

If bi,j = 1
 Pxi,j = Pi,j

Otherwise = P’i,j

The attribute-P-trees for x within the HOBBit ring, R(x, 0, r), are then defined by

Pvi,r = Pxi,1 & Pxi,2 & … & Pxi,r (i = 1, 2, 3, …, n)

The tuple-P-tree for x within the HOBBit ring, R(x, 0, r), are then defined by

Px,r = Pv1,r & Pv2,r &Pv3,r & … & Pvn,r

[image: image67.png]N\
>

i

=

.

Figure 24. Diagram of HOBBit Ring

 The tuple-P-tree root counts RC(x,r) within the HOBBit ring, R(x, r-1, r) is calculated as follows

 RC(x,r) = [image: image68.wmf])

1

,

(

)

,

(

-

-

r

Px

RootCount

r

Px

RootCount

where RootCount(Px,r) is the root count of Px,r.

6.3.3. Calculation of the Density Function Using P-trees and HOBBit Rings

Density based clustering algorithm is a clustering method based on a set of density distribute function, called an influence function, which describes the impact of a data point within its neighborhood. PHDCluster employs a special HOBBit ring based influence function. The overall density of the data space is then modeled as the sum of the influence functions of all data points. Clusters are determined by identifying density attractors, where density attractors are local maxima of the overall density function.

Let x and y be data points in Fd, a d-dimensional feature space. The influence function of the data point y on x is a function fHy: Fd -> R0+, which is defined based on HOBBit ring:

fr1,r2y(x)
=
1
if y(R(c, r1, r2)

 =
0 if y(R(c, r1, r2)

The HOBBit density function of x is defined as the weighted summation of RC(x,r). which is calculated as follows

fhD(x)

=
 [image: image69.wmf])

(

*

1

2

,

1

x

f

w

m

r

y

r

r

r

å

=

=
[image: image70.wmf]å

=

m

r

r

r

x

RC

w

1

)

,

(

*

where fhD(x) denotes the HOBBit density of data point x, with respect to weights, wr. Here wr = 2(r*d), where d is the dimension of data point x. The selection of this weight is based on the rationale that the influence of points should decrease exponentially with respect to r.

6.3.4. Finding Density Attractors

Once the density of each data point is defined, the next step is to define density attractors, i.e., local maxima of the overall density function. Having a high density doesn’t necessarily make a point a density attractor – it must have the highest density among its neighbors. Instead of using formal hill climbing as is done in DENCLUE [3], we adopt a simpler heuristic look around technique.

We first define a neighborhood as a ball of some chosen radius r. The number r can range from 0 to the maximal bit length of the attributes. After finding the density function Dx of a point, x, we compare that density with that of data points within its neighborhood. If it is greater than the density of all its neighbors, it is labeled as a new density attractor. Any old density attractor in that neighborhood is de-labeled as a density attractor.

After all the data points have gone through the process above, we have a set of intermediate density attractors. We compare each intermediate attractor’s density with that of its nearest neighbor data point. If the former is less than the latter, the attractor is de-labeled. Otherwise, it is a final density attractor. This step finds attractors that are isolated and therefore should be removed as noise.

Definition 3.2.1 Density Attractor Set Given a sequence of points x1, x2, … xn, the Density Attractor Set DAS (x1, x2, … xn) is a set of attractors produced by the look around algorithm applied to the data points in the order, x1, x2, … xn .
Definition 3.2.2 A data point x is reachable from data point y if x (R (y, 0, r), where r is the user-defined radius for the density clustering. If x is reachable from y, y is also reachable from x.

The look around pruning algorithm is robust, which means the clustering results are independent of data point treating order. The proof is given as follows.

Lemma 3.2.1 (Density Characterization Lemma) Data point y is a density attractor iff[image: image71.wmf]Dz

Dy

³

, [image: image72.wmf])

,

0

,

(

r

y

R

z

Î

"

. If y is not a density attractor, (z (R(y, 0, r) [image: image73.wmf]'

: [image: image74.wmf]Dy

Dz

>

.

Lemma 3.2.2 Given a data point y, and[image: image75.wmf]Dz

Dy

³

, (z (R(y, 0, r), y is the density attractor independent of the order in which y and z are treated in the look around process.

Proof Sketch (Proof by contradiction): Assume the statement is not true, i.e. y is an attractor, but (z (R(y, 0, r), [image: image76.wmf]'

: [image: image77.wmf]Dy

Dz

>

. If z is treated first and z is an attractor, then when y gets treated, y would not be an attractor (Lemma 3.2.1). If y is treated before z, y could be designated an attractor at that time. But when z gets treated, y will be de-labeled according to look around pruning algorithm 3.2.1. Therefore y is not an attractor. Contradiction!

Theorem 3.2.1 Given data set X in two different sequences: {xi1,xi2, …xin} and { xj1, xj2, …, xjn}, then DAS(xi1,xi2, …xin) = DAS(xj1,xj2, …xjn).

Proof Sketch (Proof by contradiction): Assume the statement is not true, i.e. DAS(xi1,xi2, …xin) ≠ DAS(xj1,xj2, …xjn). That means (x (DAS(xi1,xi2, …xin) but x (DAS(xj1,xj2, …xjn). According to x (DAS(xi1,xi2, …xin) and Lemma 3.2.1, [image: image78.wmf])

,

0

,

(

r

x

R

z

Î

"

[image: image79.wmf]Dz

Dx

³

. Also according to x (DAS(xj1,xj2, …xjn) and Lemma 3.2.1, ([image: image80.wmf])

,

0

,

(

r

x

R

z

Î

 [image: image81.wmf]'

: [image: image82.wmf]Dx

Dz

>

. Contradiction!

For example, suppose Qid of data point X is 0.3.2 and Dx = 250. The tuple P-tree Px,(within HOBBit ring R(x, 0,() is shown in Figure 25. We need compare Dx with the neighbor’s density. From the Px,(, x has four neighbors with Qids of 0.0.2, 0.3.1, 2.3.0 and 2.3.3. If densities of these points are respectively 300, 0, 220 and 0, and 0.0.2 and 2.3.0 are labeled as density attractors. By comparing Dx with the maximal density of 0.0.2 and 2.3.0, 250 < max(300, 220), therefore we determine that x is not a density attractor. Otherwise if Dx = 350, 350 > max (300, 220), x is labeled as the new density attractor. The old density attractors 0.0.2 and 2.3.0 are de-labeled and will not be considered later. The algorithm is summarized in Figure 26.

6.3.5. Time Complexity Analysis

Let (be the fan-out of a P-tree and let n be the number of data points it represents. We first present some Lemmas on P-trees, and then derive the average run time complexity to be
[image: image83.wmf])

(

n

n

O

.

Lemma 3.3.1. The number of level of P-tree k = log(() n

Proof Sketch: The numbers of nodes in each level of P-trees are: 1, (, (2, (3, … (k. Obviously the leaf level k is n bits long, i.e. (k = n. Thus k = log(() n.

Figure 25. Tuple-P-tree for x within HOBBit ring R(x, 0,()

Figure 26. PHDCluster Algorithm

Lemma 3.3.2. The maximum number of nodes in P-tree in the worst case (= (n – 1) / ((– 1)

Proof Sketch: Without compression, the total number of nodes is (= 1 + (+ (2 + (3 + … (k-1 = ((k – 1) / ((– 1). According to Lemma 3.3.1, (k = n, we get

(= (n – 1) / ((– 1)

Lemma 3.3.3. Total number of nodes in a P-tree with a compression ratio of (((<1) is

 (= 1 + ((k * n – () / ((* (– 1), where k is the number of levels of P-tree.

Proof Sketch: The numbers of nodes in each level of a P-tree with compression ratio (at level i is (i * (i-1., where i ranges from 1 to k.. For example, at level 2, there are ((* ()* (= (2 * (nodes. We get the total number of nodes in the case that the P-tree has a compression ratio of (as
(
= 1 + (+ (2 * (+ (3 * (2 + … + (k-1 * (k-2

= 1 + (* ((k-1*(k-1 – 1) / ((*(– 1)

= 1 + ((k * (k – () / ((* (– 1)

= 1 + ((k * n – () / ((* (– 1)

Corollary 3.3.1. When (= 0, the total number of nodes in the P-tree is 1; when (= 1, the total number of nodes in the P-tree is (n – () ((– 1) + 1. When (= 0.5 and (= 4, the total number of nodes in a P-tree with compression ratio (is

(
 = 1 + (4k/2k – 2 *4) / (4 – 2)

= 1 + (4k /2 – 8) /2

= 1 + ([image: image84.wmf]n

 - 8) /2

Theorem 3.3.1. The average run time complexity of PHDCluster with compression ratio 0.5 and fan-out 4 is O (d*n *[image: image85.wmf]n

), where d is the number of dimensions.

Proof Sketch: The P-tree ANDing operation is executed node by node when calculating the density. Each node ANDing is counted as one operation. For n data points in d-dimension, there are d*m basic P-trees, here m is the maximal bit size of each dimension. The total run time to get density P-trees is d*m*n*(, where (is the total number of nodes of a P-tree.

For data sets with fan-out (= 4 and average compress rate (= 0.5, according to Corollary 3.4.1, the total number of nodes of a P-tree (= 1 + ([image: image86.wmf]n

 - 8) /2. Therefore, the total time to get the density for n data points in d-dimension is d*m*n * (1 + ([image: image87.wmf]n

 - 8) /2). Thus, the average time complexity of density based clustering using P-tree with compression ratio 0.5 and fan-out of 4 is O (d*n *[image: image88.wmf]n

).

6.4. Experiments Results

Our experiments were implemented in the C++ language on a 1GHz Pentium PC machine with 1GB main memory, running on Debian Linux 4.0. The test data includes the aerial TIFF image (with Red, Green and Blue band reflectance values), moisture, and nitrate map of the Oakes Irrigation Test Area in North Dakota. The data is prepared in five sizes, that is, 128x128, 128x256, 256x256, 256x512, 512x512. The data sets are available at [4]. We evaluate our proposed P-tree HOBBit ring based density clustering algorithm, PHDCluster with respect to scalability, which is tested by increasing number of data records and number of attributes.

In this experiment, we compare our proposed PHDCluster with Density Function based Clustering method using Euclidian distance (DFC). The experiment was performed on the five different sizes of data sets. The average CPU run time of 30 runs is shown in Figure 31.

From Figure 31, we see that PHDCluster method is much faster than all of them on these five data sets. Especially when the data set size increases, the time of PHDCluster method increases at a much lower rate than other methods. The experiment results show that PHDCluster method is more scalable for large spatial data set.
6.5. Conclusions

In this paper, we propose an efficient P-tree HOBBit density based clustering algorithm (PHDCluster), with average time complexity,
[image: image89.wmf])

(

n

dn

O

), for spatial data sets. PHDCluster exploits a new distance metric, the HOBBit metric, to calculate density functions using Peano Trees (P-trees). The HOBBit metric is natural for spatial data and the calculation of HOBBit metrics using P-tree is extremely fast. Our proposed method has comparable cardinality scalability with other density methods for small and medium size of data, but is shown to be superior regarding dimensional scalability.

[image: image90.wmf]0

100

200

300

400

500

600

700

16384

32768

65536

131072

262144

Data Size (number of tuples)

Average Run Time (S)

DFC

PHDCluster

Figure 27. Running Time Comparison of PHDCluster with other Density Clustering

Our method is particularly useful for data streams. In data streams, such as large sets of transactions, remotely sensed images, multimedia video, etc., new data keeps on arrival continually. Therefore both speed and accuracy are critical issues. Achieving high speed using P-tree, and high accuracy using the weighted HOBBit metrics provides a density based clustering method that is well suited to the clustering of steam data. Besides spatial data, our method also has potential applications in other areas, such as DNA micro array and medical image analysis.
6.6. References

[1] William Perrizo, Peano Count Tree Technology, Technical Report NDSU-CSOR-TR-01-1, 2001.

[2] Khan, M., Ding, Q., & Perrizo, W. (2002). k-Nearest Neighbor Classification on Spatial Data Streams Using P-Trees. PAKDD 2002, Spriger-Verlag, LNAI 2336, 517-528.

[3] Hinneburg, A., & Keim, D. A. (1998). An Efficient Approach to Clustering in Large Multimedia Databases with Noise. Proceeding 4th Int. Conf. on Knowledge Discovery and Data Mining, AAAI Press.

[4] TIFF image data sets. Available at http://midas-10cs.ndsu.nodak.edu/data/images/.

[5] Ester, M., Kriegel, H.P., Sander, J., & Xu, X. (1997). Density-Connected Sets and their Application for Trend Detection in Spatial Databases. Proceeding 3rd Int. Conf. On Knowledge Discovery and Data Mining, AAAI Press.

[6] ESTER, M., KRIEGEL, H-P., SANDER, J. & XU, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM SIGKDD, 226-231, Portland, Oregon.

[7] SANDER, J., ESTER, M., KRIEGEL, H.-P., & XU, X. (1998). Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. In Data Mining and Knowledge Discovery, 2, 2, 169-194.

[8] ANKERST, M., BREUNIG, M., KRIEGEL, H.-P., & SANDER, J. (1999). OPTICS: Ordering points to identify clustering structure. In Proceedings of the ACM SIGMOD Conference, 49-60, Philadelphia, PA.

[9] XU, X., ESTER, M., KRIEGEL, H.-P., & SANDER, J. (1998). A distribution-based clustering algorithm for mining in large spatial databases. In Proceedings of the 14th ICDE, 324-331, Orlando, FL.

[10] HAN, J. & KAMBER, M. (2001). Data Mining. Morgan Kaufmann Publishers. San Francisco, CA.

[11] HAN, J., KAMBER, M., & TUNG, A. K. H. (2001). Spatial clustering methods in data mining: A survey. In Miller, H. and Han, J. (Eds.) Geographic Data Mining and Knowledge Discovery, Taylor and Francis.

[12] Perrizo, W., Ding, Q., Denton, A., Scott, Kirk., Ding, Q. & Khan, M. (2003). PINE – Podium Incremental Neighbor Evaluator for Classifying Spatial Data. SAC2003, Melbourne, Florida, USA

[13] Arya, S., Mount, D. M. & Narayan, O. (1996). Accounting for boundary effects in nearest-neighbor searching. Discrete and Computational Gemetry, 155-176.

[14] Samet, H. (1989). The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA.

[15] Sellis, T., Roussopoulos, N. & Faloutsos, C. (1997). Multidimensional Access Methods: Trees Have Grown Everywhere. Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB), 13-15.

[16] Perera, A., Denton, A., Kotala, P., Jockheck, W., Granda, W. V. & Perrizo, W. (2002). P-tree Classification of Yeast Gene Deletion Data. SIGKDD Explorations.
CHAPTER 7. PAPER 5: PROXIMAL SUPPORT VECTOR MACHINE FOR SPATIAL DATA

Abstract

With more and more spatial data being collected data mining for spatial data has become a rapidly evolving research area. Support vector machine (SVM) as a powerful tool for data classification has the potentials in spatial data mining. However, traditional SVM involves solving a quadratic optimization problem that requires considerably long computation time for large data sets. In this paper, we propose a new efficient proximal Support Vector Machine (P-SVM) using Peano tree. Peano tree, P-tree, is a vertical compressed bitwise quadrant tree that is processed horizontally through logical operations. P-SVM exploits a unique neighborhood search method, i.e., EIN-ring based neighborhood search to find the boundary sentries. The final boundary hyperplanes of test data are determined by their d-nearest boundary sentries, which are calculated from EIN-ring membership of support vector pairs. Moreover, the outliers in the training data are automatically eliminated according to their EIN-ring membership in the step of finding region components. The candidate support vectors are selected in a way that is robust to noisy and fuzzy boundary. Experiments show that P-SVM is order of magnitude faster than traditional SVM with superior cardinality scalability and comparable accuracy for a large-scale spatial data.

7.1. Introduction

Data mining for spatial data, e.g., remote sensing, geographical information systems, astronomy, computer cartography, environmental assessment and planning, etc., is a rapidly evolving research area in recent years. A crucial challenge to spatial data mining is the exploration of efficient spatial data mining techniques due to the huge amount of spatial data and the complexity of spatial data types and spatial access methods.

Statistical spatial data analysis has been a popular approach to analyzing spatial data. The approach handles numerical data well and usually proposes realistic models of spatial data. However, it typically assumes statistical independence among the spatially distributed data, while spatial data are often interrelated. Moreover, statistical methods do not work well with symbolic values, or incomplete or inconclusive data, and are computationally expensive in large databases.

Support vector machine (SVM) as a powerful tool for data classification has potential application for spatial data mining. The theory of SVM was first introduced by Vapnik back in the sixties [14]. It solves the discrimination hyperplane by a mathematical programming problem with an objective function, which balances between maximal separation and errors in linear inseparable case. SVM has empirically been shown to give good generalization performance on a wide variety of problems [10]

 REF _Ref27500735 \r \h
 * MERGEFORMAT [1]

 REF _Ref32814240 \r \h
 * MERGEFORMAT [9]

 REF _Ref32814425 \r \h
 * MERGEFORMAT [8]

 REF _Ref27501256 \r \h
 * MERGEFORMAT [1]. Although SVM has good generalization performance, it involves solving a quadratic program that require considerably long computation time, which makes it difficult for large spatial data.

In this paper, we propose a new efficient proximal Support Vector Machine (P-SVM) using Peano tree. Peano tree is a lossless vertical compressed bitwise quadrant tree that is processed horizontally through logical operations [1][6]. This approach stands in contrast to the ubiquitous approach of vertically scanning horizontal data structures (records). P-SVM exploits a unique neighborhood search method, i.e., EIN-ring based neighborhood search to find the boundary sentries. The final boundary hyperplanes of test data are determined by their d-nearest boundary sentries, which are calculated from EIN-ring membership of support vector pairs. Moreover, the outliers in the training data are automatically eliminated according to their EIN-ring membership in the step of finding region components. The candidate support vectors are selected in a way that is robust to noisy and fuzzy boundary. The overall average run time complexity for spatial data is O(d*n *[image: image91.wmf]n

), where d is the dimension and n is the size of data set. Experiments show that P-SVM is order of magnitude faster than traditional SVM with superior cardinality scalability and comparable accuracy for a large-scale spatial data.

This paper is organized as follows. In section 2, we review the basic P-tree and its variation, range predicate tree. In section 3, we describe a new efficient proximal support vector machine using P-trees. Finally, we compare our method with traditional C-SVM methods experimentally in section 4 and conclude the paper in section 5.

7.2. Related Works

The theory of SVM was first introduced by Vapnik back in the late seventies [15]. Recently, there is an explosion of applications and deepening theoretical analyses of SVM. It has empirically been shown to give good generalization performance on a wide variety of problems [10][8][1]

 REF _Ref32814240 \r \h
 * MERGEFORMAT [9]. Although traditional SVM has good generalization performance, it involves solving a quadratic program that require considerably long computation time, which makes it difficult for large spatial data.

Efficient sequential algorithms for computing SVM can be found in [3]

 REF _Ref45099154 \r \h
[4]

 REF _Ref45274182 \r \h
[11]

 REF _Ref45091929 \r \h
[2]

 REF _Ref45091547 \r \h
[7]. The sequential minimal optimization algorithm (SMO) uses a subproblem of size two, each subproblem has an analytical solution. While SMO has been shown to be effective on sparse data sets and especially fast for linear SVMs, the algorithm can be extremely slow on non-sparse data sets and on problems that have many support vectors.

The schemes for finding the class boundary directly using graph theory is presented in [5]. It turns out that finding the nearest points of the two convex hull is a simple alternative way to finding the separating hyperplane with maximum margin in the SVM case. A study of the relationship between SVM and Gabriel graph is also presented [17]. They show that both convex hull and Gabriel graph could be used for classifier with good performance on accuracy and complexity. Our approach is also a geometric method with better tuned accuracy and efficiency by using P-tree and EIN-ring.

7.3. Approach

In this section, we propose a Proximal Support Vector Machine (P-SVM) using P-tree. Our main idea is to fit the classification boundary using segment hyperplanes in original data space. The P-SVM includes four steps. 1) Locating region components by partitioning the training data into region components using equal interval neighborhood ring (EIN-ring). 2) Finding support vectors by calculating EIN-ring membership of a data set in region component. 3) Fitting the boundary by calculating d-nearest boundary sentries of test data. 4) The class label of the test data is determined by its location relative to the boundary hyperplane. The details of each step are described in the following subsections.

7.3.1. Finding Region Components
Definition 1. Region Component Given a training data set X with C classes, region components are groups of the training data points, x, which have more than half classmates within (neighbors, where classmates are the data points with same class label as x and (is a numeric threshold of neighbors.

Finding neighbors within a EIN-ring ring, which is accomplished by range predicate tree, is the first step to find the region components. The calculation of neighbors within EIN-ring R(x, r, r+() is as follows. Let Pr,(be the P-tree representing data points within EIN-ring R(x, r, r+(). We note Pr,(is just the predicate tree corresponding to the predicate x-r-(<X(x-r or x+r<X(x+r+(. We first calculate the data points within neighborhood ring R(x, 0, r) and R(x, 0, r+() by Px-r<X(x+r and P’x-r-(<X(x+r+(respectively. The data points within the EIN-ring R(x, r, r+() are those that are in R(x, 0, r+() but not in R(x, 0, r). Therefore Pr,(is calculated by the following formula

	Pr,(= Px-r<X(x+r P’x-r-(<X(x+r+(
	 (17)

Let Pr,c be the class label P-tree, which is built for class i within the data set X. A “1” value in Pr,c indicates that the corresponding data point has class label i. A “0” value in Pr,c indicates that the corresponding data point does not have class label i. the number of neighbors with the EIN-ring, R(x, r, r+(), is

	NBRx = RootCount (Pr,( Pr,c).
	(18)

We set NBRx as a fixed number (, e.g., 4, 6, or 8. If NBRx < (, decrement r until NBRs ((. Check the neighbors of x, mark x the same group as its classmates within the neighborhood. If none of its classmates within the neighborhood are marked, mark x as a new group member. If the number of x’s classmates is less than (/2, treat x as an outlier and zero it. After all data objects are proceeded and labeled with group ID, merge groups which have the same class label and are reachable to each other within (neighbors. Finally, code the remaining group ID as a simple binary number and build corresponding group ID P-trees, Pgi. The Pgi will be used to find support vector pairs which will be discussed in the later section. The algorithm for finding region components is given in Figure 28.

7.3.2. Finding Support Vector Pairs

We first define EIN-ring membership and EIN-ring membership pair of data x in the region component g. They are used to find support vector pairs around the boundary. Then we give the algorithm of finding support vector pairs using tuple-P-trees ANDing.

Definition 3.2.1 EIN-ring Membership The EIN-ring membership of data x in the region component g, Mx(g, is defined as normalized summation of the weighted tuple-P-tree root counts within EIN-ring, R(x, r, r+(), which is calculated as follows

Figure 28. Algorithm for finding of region components

	[image: image92.wmf]å

=

Î

Î

=

m

r

r

g

x

r

g

g

x

NBR

w

N

M

1

,

*

1

	(19)

where Ng is the number of data points in region components g, NBRx(g,r is the number of neighbors in group g, and wr is the weight of the EIN-ring, R(x, r, r+(). The number of neighbors in group g within the EIN-ring, NBRx(g,r, is calculated as

	NBRx(g,r = RootCount (Px(g,r),
	(20)

where Px(g,r is the P-tree of data point x in region component g within the EIN-ring, R(x, r, r+(), which is calculated as

	Px(g,r = Pr,(Pgi,
	(21)

Where Pgi is group ID P-tree. There are many weighting functions that can be used to adjust the EIN-ring membership by weights. The selection of this weight is based on a RBF kernel function of the radius of EIN-ring, such as Gaussian function, step function, etc.
Definition 3.2.2. EIN-ring Membership Pair The EIN-ring membership pair of data x in the region component g, HMPx(g, is defined as HMPx(g = (Mx(g, Mx(g’), where g’ is the neighboring region component of data x.

EIN-ring Membership Pair of data x, HMPx(g, indicates the location of x relative to the boundary of region component g and g’. According to the definition of HMPx(g, Mx(g >> Mx(g’ for x which is far away from the boundary. If x is around the boundary, then Mx(g (Mx(g’.

We define that data point x, x belonging to group g, is a candidate data support vector if Mx(g > Mx(g’.. The candidate data support vectors are those that are at the right side of boundary.
Definition 3.2.3. Support Vector Pair A pair of candidate data support vectors, xi, xj(X, i(j, is the support vector pair, SVP(xi, xj), if and only if d(xi, xj) (d(xk, xl) [image: image93.wmf]X

x

x

l

k

Î

"

,

and xk (g, xl (g’. In other words, xi and xj are at the right side of the boundary and the nearest neighbors from the different region components. The pseudo code of finding support vector pairs is given in Figure 29.

7.3.3. Fitting Boundary Hyperplane

Instead of solving a quadratic optimal programming in a high dimension, we explicitly search for the boundary hyperplane of the test data, which is defined as follows.

Definition 3.3.1. Boundary Sentry The boundary sentry, BSi,j, of a support vector pair, SVP(xi, xj), is defined as

	BSi,j = (xi + (1-()xj,
	(22)

where (= Mxi(g / (Mxi(g + Mxj(g’), Mxi(g is the EIN-ring membership of data xi in group g, and Mxj(g’ is the EIN-ring membership of data xj in group g’.

Algorithm 3.3.1. Fitting Boundary Hyperplane Given a test data point x, the boundary hyperplane is specified by a vector
[image: image94.wmf]d

R

w

Î

 and a bias w0 as

Figure 29. Algorithm of Finding Support Vector Pairs

	H(x) = wx+w0,
	(23)

where the vector, w, and bias, w0, is solved by the d-nearest boundary sentries. For example, if d = 2, the boundary is a line and we need two boundary sentries, BSij to determine it, where xi(g and xj(g’ for all corresponding SVP (xi, xj). Similarly, if d = 3, we need three boundary sentries to determine the boundary plane, where xi(g and xj(g’ for all corresponding SVP (xi, xj).

After fitting the boundary hyperplane for the test data x, we need to determine the class label of x, which is determined by relative location to the boundary hyperplane. The location of data point x relative to boundary hyperplane is calculated as

	Sign(x) = Sign(H(x)-wx+w0),
	(24)

where Sign (x) is a function to get the sign of x. If Sign(x) = Sign(xi), where xi(g, then x(g, otherwise x(g’. Then we will find the class label of x according to group. The algorithm for finding the boundary hyperplane of test data, x, is given in Figure 30.

Here is a brief complexity analysis of our algorithm. Let (be the fan-out of a P-tree, n be the size of the data set, and d be the dimension. The total number of nodes in a P-tree with a compression ratio of (((<1) is (= 1 + ((k * n – () / ((* (– 1), where k is the number of levels of P-tree.

The total run time at the worst case to find the nearest neighbors of n data point in d-dimension is d*m*n*(, where (is the total number of nodes of a P-tree, (= (n – 1) / ((– 1). Thus, the run time complexity is O
[image: image95.wmf])

(

2

dn

 at the worst case.

Figure 30. Algorithm of Finding Boundary Sentry

For data sets with fan-out (= 4 and average compression rate (= 0.5, the total number of nodes of a P-tree is (= 1 + (
[image: image96.wmf]n

 - 8) /2. Therefore, the total time at the average case to find the nearest neighbors of n data points in d-dimension is d*m*n * (1 + (
[image: image97.wmf]n

 - 8) /2), which is O
[image: image98.wmf])

(

n

dn

.

The P-SVM algorithm includes four steps as described above. The main cost of step one and step two is at finding the nearest neighbors of n data points. The average run time complexity of finding the nearest neighbors of n data points with compression ratio 0.5 and fan-out 4 of P-tree is O(d*n*[image: image99.wmf]n

). The run time complexity is O
[image: image100.wmf])

(

2

dn

 at the worst case. The run time complexity of step three is proportional to the number of SVPs. Since the number of SVPs is far less than N, the run time complexity of step three can be ignored. Thus, the overall average run time complexity of the P-SVM algorithm for spatial data is O(d*n *[image: image101.wmf]n

).

7.4. Experiments Results

All experiments were carried out on a 1GHz Pentium PC machine with 1GB main memory, and Debian Linux 4.0. The test data includes the aerial TIFF image with red, green and blue attribute reflectance values, moisture map, nitrate map, and yield map of the Oakes Irrigation Test Area in North Dakota. The TIFF image size is 1320x1320. The data sets are available at [13]. Among these six attributes we consider yield as the class attribute. Each attribute is 8 bits long. So we have 8 basic P-trees for each attribute and 40 (for the 5 attributes excluding yield) in total. For the class attribute, yield, we considered only the most significant 3 bits. Therefore we have eight different class labels for the pixels. We built 8 value P-trees from the yield values – one for each class label. In each experiment run, we randomly select the 10% of data set as test data and the rest as training data. Table 9 shows the experiment results of average error rate for 30 runs of P-SVM and C-SVM implemented by SVMlight [11].

As shown in Table 9, the testing correctness of P-SVM and C-SVM on all the five data set is almost identical. It indicates that the P-SVM has comparable accuracy with C-SVM. In order to compare cardinality scalability, we formed 16x16, 32x32, 64x64, 128x128, 256x256, and 512x512 images by choosing pixels that are uniformly distributed in original image. The average CPU run time of 30 runs on the five different sizes of data is shown in Figure 31.

It is shown that the P-SVM is faster than C-SVM on all five different sizes of data set. When the data set size increases, the run time of P-SVM method increases at a much lower rate than C-SVM. When the data set size is too large, e.g., more than 300k, P-SVM still works while C-SVM can not finish.The experiment results show that P-SVM method is faster and more scalable for large spatial data set.

7.5. Conclusions

In this paper, we propose a new efficient proximal Support Vector Machine (P-SVM) using Peano tree. This approach stands in contrast to the ubiquitous approach of vertically scanning horizontal data structures (records). The overall average run time complexity for spatial data is O(d*n *[image: image102.wmf]n

), where d is the dimension and n is the size of data set. Experiments show that P-SVM is order of magnitude faster than traditional SVM with superior cardinality scalability and comparable accuracy for a large-scale spatial data.

7.6. References

[1] C. Cortes and V. Vapnik, Support vector networks. Machine Learning, 20:1-25, 1995.

[2] Flake G, Lawrence S. Efficient SVM regression training with SMO. Machine Learning, 2002,46(1/3):271~290.

[3] J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Sch¨ olkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning. MIT Press, 1998.

[4] J. Platt. Using sparseness and analytic QP to speed training of support vector machines. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11. MIT Press, 1999.

[5] Kristin P. Bennett and Erin J. Bredensteiner. Duality and Geometry in SVM Classifiers. Morgan Kaufmann, San Francisco, CA, 2000.

[6] M. Khan, Q. Ding, W. Perrizo, k-Nearest Neighbor Classification on Spatial Data Streams Using P-Trees, PAKDD 2002, Spriger-Verlag, LNAI 2336, 2002, pp. 517-528.

[7] M.M.S. Lee, S.S. Keerthi, C.J. Ong and D. DeCoste. An Efficient Method for Computing Leave-One-Out Error in Support Vector Machines, accepted for publication in IEEE Transactions on Neural Networks.

Table 10. Performance Comparison

	Data set
n = # of pixels
	Testing Correctness %

	
	P-SVM
	C-SVM

	n = 16x16
	86.4%
	84.9%

	n = 32x32
	89.0%
	85.2%

	n = 64x64
	90.3%
	95.4%

	n = 128x128
	92.0%
	90.5%

	n = 256x256
	94.1%
	91.1%

	n = 512x512
	86.4%
	84.9%

[image: image103.wmf]0

200

400

600

800

1000

1200

Run Time (s)

Data Size (number of tuples)

P-SVM

C-SVM

P-SVM

1.2

15.8

29

89

189

1200

C-SVM

1.9

34

67

233

577.5

256

1024

4096

16384

65536

3E+05

Figure 31. Running Time Comparison of P-SVM with C-SVM
[8] O. L. Mangasarian and D. R. Musicant, Data Discrimination via Nonlinear Generalized Support Vector Machines, Technical Report 99-03,Computer Sciences Department, University of Wisconsin, 1999.

[9] O. L. Mangasarian, Mathematical programming in data mining, Data Mining and Knowledge Discovery 1,183-201, 1997.

[10] P. S. Bradley and O. L. Mangasarian , Massive data discrimination via linear support vector machines, Optimization methods and software 13,1-10, 2000.

[11] Shai Fine and Katya Scheinberg,Efficient SVM Training Using Low-Rank Kernel Representations,Journal of Machine Learning Research 2 (2001) 243-264

[12] T. Joachims. Making large-scale support vector machine learning practical. In B. SchSlkopf, C. J. C.Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169-184. MIT Press, 1999.
[13] TIFF image data sets. Available at http://midas-10cs.ndsu.nodak.edu/data/images/.

[14] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

[15] V. Vapnik. Estimation of dependencies based on empirical Data. (in Russian), Nauka, Moscow, 1979.

[16] W. Perrizo, Peano Count Tree Technology, Technical Report NDSU-CSOR-TR-01-1, 2001.

[17] Wan Zhang and Irwin King. A study of the relationship between support vector machine and Gabriel graph. In Proceedings of IEEE World Congress on Computational Intelligence--International Joint Conference on Neural Networks, pages CD-ROM #1415, Honolulu, Hawaii, USA, May 2002.
CHAPTER 8. PAPER 6: Rapid and accurate density clustering analysis for high dimensional data
8.1. Abstract

The process of drug discovery involves the screening of compounds against a drug target to identify those compounds that interact with the target to produce the desired effect. Data mining techniques like clustering analysis has been successfully applied to drug responses. However, clustering analysis of drug discovery often leads to very high-dimensional data. The dimension of the data is in the hundreds or thousands, which remains to be a contemporary challenge. In this paper, we first use a genetic algorithm with EIN-ring KNN as the fit function to select a subset of the most related attributes, and then employ an efficient density based clustering method using compressed vertical data structures, P-trees, and optimized P-tree logical operations to accelerate the calculation of the density function within neighborhood rings. Experiments on drug binding to Thrombin data set, which contains 139,351 binary attributes, demonstrated that our approach can be not only efficient, but also accuracy in distinguishing molecular bioactivity for drug design.

8.2. Introduction

Drugs are typically small organic molecules that achieve their desired activity by binding to a target site on a receptor. The first step in the discovery of a new drug is usually to identify and isolate the receptor to which it should bind, followed by testing many small molecules for their ability to bind to the target site. This leaves researchers with the task of determining what separates the active (binding) compounds from the inactive (non-binding) ones. Such a determination can then be used in the design of new compounds that not only bind, but also have all the other properties required for a drug, i.e., solubility, oral absorption, lack of side effects, appropriate duration of action, toxicity, etc.

Gene expression profiles provide valuable information to access human diseases and facilitates in drug discovery and drug design. The objective of Gene expression profiling for drug discovery is to discover compounds that can be developed as potential drugs. Diseases are the result of disturbances and abnormalities in the physiological pathways that regulate the functioning of cells in the human body. The main components of these pathways are proteins such as enzymes; receptors or ion channels-encoded by genes expressed within the cells affected the disease. Drugs generally exert their therapeutic effects by interacting with these proteins, referred as drug targets, in such a way as to restore the normal functioning of the disease-affected pathways or compensate for the abnormalities. The process of drug discovery involves the screening of collections of compounds against a drug target to identify those compounds that interact with the target to produce the desired effect. Compounds that show promise, known as drug leads, must be subjected to toxicological and clinical testing.
The process of drug discovery involves the screening of compounds against a drug target to identify those compounds that interact with the target to produce the desired effect. Clustering analysis of screening data, which discover groups that are homogeneous and well separated, has been recognized as an effective method for uncovering biological similarity features of drug design. The hierarchical, k-mean, fuzzy k-means, as well as self-organizing maps, have been used for clustering screening profiles. Hierarchical linkage clustering approach, which groups closest pairs into a strict hierarchy of nested subsets based on similarity is commonly used and has clearly proven valuable. It also has been noted by statisticians to suffer from lack of robustness, non-uniqueness, and inversion problems [9].

The major shortcoming of k-mean, fuzzy k-means, and self-organizing maps is their computational expensive, while the dimension of screening data is often in the hundreds or thousands. In addition to the high dimensionality, screening data sets are also often sparse. Clustering analysis such high-dimensional sparse data sets is a contemporary challenge.

Density based cluster algorithms have been widely used in the mining of large-scale data sets [8]

 REF _Ref44338175 \r \h
 * MERGEFORMAT [5]

 REF _Ref44338188 \r \h
 * MERGEFORMAT [2], but have not yet been applied to the analysis of screening data for drug design. Density based cluster algorithm is capable of discovering arbitrary shape of clusters as well as dealing with noise and outliers. It groups the objects into a set of connected dense components separated by regions of low density. A cluster is regarded as a connected dense region of objects, which grows in any direction that density leads.

In this paper, we propose an efficient density based clustering method, which exploits compressed vertical data structures, Peano Trees, and optimized P-tree logical operations to accelerate the calculation of the density function within neighborhood rings. We approach the problem of high dimensionality using Genetic algorithms, which is a multivariate approach capable of selecting related features simultaneously. we first use a genetic algorithm with EIN-ring KNN as the fit function to select a subset of the most related attributes, and then employ an efficient density based clustering method using compressed vertical data structures, P-trees, and optimized P-tree logical operations to accelerate the calculation of the density function within neighborhood rings. We experiment our algorithm to analyze the binding to Thrombin data set, which contains 139,351 binary attributes and 2545 data points. Experiment result demonstrates in addition to performing better efficiency than record-scan base density method, k-means, and hierarchical linkage methods, also high accuracy in distinguishing molecular bioactivity for drug design.
This paper is organized as follows. In section 2, we first briefly review the basic P-trees, and a variation of P-tree, predicate tree. In section 3, we define a unique equal interval neighborhood rings, EIN-rings, and then present the new efficient density clustering method using EIN-rings. Finally, we compare our method with record-scan based density methods, hierarchical clustering, k-means, and fuzzy k-means experimentally in section 4 and conclude the paper in section 5.
8.3. Related Works

Feature selection is one of the crucial steps for a comprehensive classifier. Many approaches, such as principal component analysis, linear discriminant analysis, projection pursuit, have been proposed to reduce the dimensions of gene expression data and choose informative subset [11]. Golub and Slonim employed a leave-one-out cross validation method to select a subset gene before classifying acute myeloid leukemia and acute lymphoblastic leukemia using neighborhood analysis [12]. Feature selection using genetic algorithms is a multivariate approach, which is capable of selecting a subset of genes that are uncorrelated with each other. L. Li and C.H. Ooi both reported that they successfully applied GA to the gene selection to improve the accuracy of classification analysis [13]

 REF _Ref76143715 \r \h
[14].

8.4. Approach

In this section, we present an adaptive EIN-ring based Density Clustering approach. We first define neighborhood rings and equal interval neighborhood ring (EIN-ring), and then describe the approach of calculation of EIN-ring using P-trees. In section 8.4.1, we employ genetic algorithm to select subset of the most related features. In section 8.4.2, we describe calculation of the density function using EIN-rings and the algorithm for finding density attractors.
8.4.1. Feature Selection Using Genetic Agorithms
The weight optimization and selection of feature dimensions is achieved by exploiting genetic algorithm. If the weight of one feature dimension is zero, it means that feature is not selected for classification vote, otherwise selected. The value of the weight indicates how important the corresponding feature is in the classification vote.

The usual approach to the use of GAs for feature selection involves encoding a set of d features as a binary string of d elements, in which a 0 in the string indicates that the corresponding feature is to be omitted, and a 1 that it is to be included. This problem representation has been almost universally adopted.

We employ EIN-ring KNN as the fit function of GA algorithm. The KNN classifier is based on the assumption that the classification of an instance is most similar to the classification of other instances that are nearby in the feature space. For an unclassified target instance, the k nearest neighbors are first selected using EIN-ring approach. The unclassified target instance is assigned to the winning class according to the vote score (VS), which is calculated by the height of the winner bin minus the others and then divided by the sum of heights of all histogram bins.

The EIN-ring based weighted KNN classification approach for high dimensional data sets includes two major steps. The first step is to search the k nearest neighbors from the training data instances within successive EIN-ring, R(x, r, r+() using P-trees. This step is the major computational cost the KNN algorithms. Instead of search in double precision numberical space, the EIN-ring KNN approach improve the efficiency by working on an intervalized space facilitated by the vertical data structure, P-tree and the optimized EIN-ring calculation. The second step is to assign to x the most common class label among its k nearest neighbors.
The way we implement the feature selection is to create a weight string through which each dimension is weighted by selecting P-trees that participate in vote calculation. The weight string has a length of d*mi, where d is the number of dimensions and mi is the coding string length for ith dimension. The “1” in the weight string means the corresponding P-tree will participate in vote calculation, and “0” otherwise. By adjusting the number of P-trees that participate in voting through crossover and mutation, the weight string plays the role of weighting and selecting each feature dimension.

The process of GA is described as follows. Initially a population of weight strings is all randomly generated, and classification error is calculated using k-fold cross validation, i.e., randomly dividing the data set into k groups, taking turns to choose one group as the test data and the rest as training data, and average classification error is calculated. The weight strings that have small classification errors are chosen to reproduce by exchanging partial bits between each two weight strings with a small probability Pc and mutation, i.e., reverse some bits of a weight string randomly with probability Pm. The offspring weight strings are evaluated again, and reproduces the next generation until meeting stop condition, e.g., number of generations or minimum improvement between consecutive generations. The best weight string with smallest classification error is selected as final weight string.
One simple way of selection of the dimensions is to select the first d-dimension with largest weight. An alternative way is to transform the neighorhood data samples into d-dimensional space using Schoenberg method [17]. The advange of the latter approach is that all the dimension information of the data is transformed into d-dimension through the weighted distance metric among the neighbors. Briefly, start with the distance matrix D=[dij] (ith row and jth column of D) of the target data and its neighbors, and calculate the eigen vector of a symmetric metric B= HAH, where A=[aij], aij=-dij2/2, and H is same size diagonal metric with
[image: image104.wmf])

1

1

1

(

+

-

k

 on diagonal and
[image: image105.wmf])

1

1

(

+

-

k

off diagonal. The values in first d eigen vectors with the largest eigen value is the new coordinate of target data and its corresponding neighbors.

8.4.2. Density-based Clustering Using P-tree
Density based clustering algorithm is a clustering method based on a set of density distribute function, called an influence function, which describes the impact of a data point within its neighborhood. Our algorithm employs a special EIN-ring based influence function. The overall density of the data space is then modeled as the sum of the influence functions of all data points. Clusters are determined by identifying density attractors, where density attractors are local maxima of the overall density function.

Let x and y be data points in Fd, a d-dimensional feature space. The influence function of the data point y on x is a function fHy: Fd -> R0+, which is defined based on EIN-ring:
	fr1,r2y(x) =1 if y R(c, r1, r2)

 =0 if y R(c, r1, r2) .
	(25)

The EIN-ring based density function of x is defined as the weighted summation of RC(x,r), which is calculated as follows
	fhD(x) = [image: image106.wmf])

(

*

1

2

,

1

x

f

w

m

r

y

r

r

r

å

=

 = [image: image107.wmf]å

=

m

r

r

r

x

RC

w

1

)

,

(

*

.
	(26)

where fhD(x) denotes the EIN-ring based density of data point x, with respect to weights, wr. The selection of this weight is based on a kernel function of the radius of EIN-ring, such as Gaussian function, step function, etc.
Once the density of each data point is defined, the next step is to define density attractors, i.e., local maxima of the overall density function. Having a high density doesn’t necessarily make a point a density attractor - it must have the highest density among its neighbors. Instead of using formal hill climbing as is done in DENCLUE [3], we adopt a simpler heuristic look around technique.

We first define a neighborhood as a ball of some chosen radius r. The number r can range from 0 to the maximal bit length of the attributes. After finding the density function Dx of a point, x, we compare that density with that of data points within its neighborhood. If it is greater than the density of all its neighbors, it is labeled as a new density attractor. Any old density attractor in that neighborhood is de-labeled as a density attractor.

After all the data points have gone through the process above, we have a set of intermediate density attractors. We compare each intermediate attractor’s density with that of its nearest neighbor data point. If the former is less than the latter, the attractor is de-labeled. Otherwise, it is a final density attractor. This step finds attractors that are isolated and therefore should be removed as noise.

8.5. Experiments Results

We applied our P-tree based density method (PDCluter) to analyze the screening data set provided by DuPont Pharmaceuticals Research Laboratories, which is used for KDD Cup 2001. The present training data set consists of 1909 compounds tested for their ability to bind to a target site on thrombin, a key receptor in blood clotting. Of these compounds, 42 are active (bind well) and the others are inactive. Biological activity in general, and receptor binding affinity in particular, correlate with various structural and physical properties of small organic molecules. Each compound is described by a single feature vector comprised of a class value (A for active, I for inactive) and 139,351 binary features, which are generated in an internally consistent manner for all 1909 compounds to describe three-dimensional properties of the molecule.

We implemented PDCluster approach in the C language and run on a 1GHz Pentium PC machine with 1GB main memory, and Debian Linux 4.0. In this experiment, we chose uniform crossover, stochastic universal sampling selection, leave-one-out cross validation, Pc=0.5, Pm=0.05, k=5 and GA population size of 200, strength length of 8 based on preliminary experiment. Termination condition is always checked after selection, mutation, and re-evaluation, which is set to 1000 maximum runs and minimum difference of fitness value E=0.01 between two generations.

In order to demonstrate the efficiency of our approach, we compared PDCluster with two most widely used clustering methods, k-means [1] and hierarchical clustering (HCluster) [7]. All clustering results are evaluated on the basis of the distribution of the biological classes (active and inactive) within the clusters. The “ideal” results should group the 1909 samples into two clusters, with the 42 in one cluster and rest of another. Table 1 shows the clustering results using the four methods.

The k-means method with k=2 generated two clusters with almost half of active compounds in each cluster, indicating that it does not show well ability to differentiation active compounds in the case of 2 cluster used. HCluster showed comparable accuracy with PDCluster in terms of distinguishing active and inactive compounds. In general, HCluster has been noted by statisticians to suffer from lack of robustness and inversion problems [9].

We also compared the PDCluster using P-tree with the traditional density clustering without using P-tree (DPN) on drug binding to Thrombin data set, denoted as DB1, and a very large remote sensor image data set with size of 5000x20000, denoted as DB2. From the run time result shown in Figure 5, it is clear that PDCluster is significant faster than the same approach without using P-trees., especially on data set two.
8.6. Conclusions

In this paper, we propose an efficient density based clustering method, which exploits compressed vertical data structures, P-trees, and optimized P-tree operations to accelerate the calculation of the density function within neighborhood rings. Experiments on binding to Thrombin data set, which contains 139,351 binary attributes demonstrated that our approach can be not only efficient, but also accuracy in distinguishing molecular bioactivity for drug design. As a result, our approach could be a powerful tool for high dimensional drug screening data analysis.
Table 11. Results of clustering 38 samples into two classes using four methods
	Method

	Cluster 1
	Cluster2

	
	# Sample
	A/I
	# Sample
	A/I

	K-means
	64
	18/46
	1887
	24/1863

	HCluster
	43
	32/11
	1908
	10/1898

	PDCluster
	45
	39/6
	1906
	3/1903

[image: image108.png]Run Time (s)

600
500
400
300
200

100

D Using P-tree

m Without P-tree

DB1 DB2

Figure 32. Running Time Comparison of Density Clutering Using P-tree and Without Using P-tree
8.7. References

[1] Anderberg, M.R. Cluster analysis for applications. Academic Press, New York, San Francisco, London, 1973.

[2] ANKERST, M., BREUNIG, M., KRIEGEL, H.-P., & SANDER, J.: OPTICS: Ordering points to identify clustering structure. In Proceedings of the ACM SIGMOD Conference, Philadelphia, PA (1999) 49-60

[3] BJT Morgan, APG Ray, Non-uniqueness and inversions in cluster.analysis. Appl. Statist. 44 (1), 117 - 134 (1995)

[4] ESTER, M., KRIEGEL, H-P., SANDER, J. & XU, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM SIGKDD, Portland, Oregon (1996) 226-231

[5] ESTER, M., KRIEGEL, H-P., SANDER, J. & XU, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM SIGKDD, Portland, Oregon (1996) 226-231

[6] Goldberg, D.E. and Deb, K. A comparative analysis of selection schemes used in genetic algorithms. In Rawlins, G. (ed). Foundations of Genetic Algorithms. Morgan Kaufmann, Berlin, pp. 69-93, 1991.

[7] Hartigan, J. Clustering Algorithms, Wiley, New York, 1975.

[8] Hinneburg, A., & Keim, D. A.: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. Proceeding 4th Int. Conf. on Knowledge Discovery and Data Mining, AAAI Press (1998)

[9] Perrizo, W.: Peano Count Tree Technology. Technical Report NDSU-CSOR-TR-01-1 (2001)

[10] Qin Ding, Maleq Khan, Amalendu Roy and William Perrizo, “ The P-Tree Algebra” , ACM SAC2002.
[11] Jain AK, Duin RPW, Mao J. Statistical pattern recognition: A review. IEEE Trans on Pattern Analysis and Machine Intelligence 2000;22(1):4-37.

[12] Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999:286:531-537.
[13] Li L, Weinberg CR, Darden TA, Pedersen LG. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2001;17:1131-1142.
[14] Ooi CH, Tan P. Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 2003;19:37-44.
CHAPTER 9. SUMMARY

9.1. Conclusions

This dissertation has presented several aspects of comprehensive vertical sampled-based classification approach for large scale various data sets, including development of EIN-ring, weighted EIN-ring KNN, local support vector machine as well as a density clustering approach. The dissertation is primarily based on the research projects that have been published or are to appear in papers [7][8][9]

 REF _Ref75975596 \r \h
[10]

 REF _Ref75975594 \r \h
[11]

 REF _Ref75975590 \r \h
[12]

 REF _Ref75975571 \r \h
[13]

 REF _Ref75975568 \r \h
[14].

In chapter 2, an innovative neighborhood search technique using P-tree [1], call Equal Interval Neighborhood Ring (EIN-ring) and corresponding optimized formulations were developed to facilitate a comprehensive vertical sample-based data mining algorithm, EIN-ing KNN/LSVM. The KNN/LSVM method is characterized with the combination of majority voting and boundary based classification approach. A benchmark study on 21 UCI data sets and 5 sythnsized data sets with compason to other typical classification approach including Fisher’s linear discriminant, Naïve Bayes, C4.5, C-SVM, and KNN demonstrated the superior performance of KNN/LSVM, especially on imbalance data sets that often inherit in real world problems.
Chapter 3 described the classification analysis of gene expression data using the comprehensive vertical sampled based EIN-ring KNN/LSVM approach. Chapter 4 introduced a density based clustering approach using EIN-ring, and its application for microarray gene expression data. Chapter 5 depicted the application of the vertical data representation, P-tree, and EIN-ring to biological text retrieval based on keyword ranking. Chapter 6 appied a density clustering approach using HOBBit metric and HOBBit ring to the analysis of the large scale spatial data, i.e. remote sensor image. Chapter 7 developed the proximal support vector machine approach and also applied it to the analysis of the large scale remote sensor image. Chapter 8 focused on feature selection of high dimensional data sets using a genetic algorithm with EIN-ring KNN as the fit function, and used the most related attributes to perform clustering.

9.2. Outlook

Data mining is very important in many application fields, such as bioinformatics. Bioinformatics is the use of mathematical and informational techniques to solve biological problems, usually by creating or using computer programs, mathematical models or both. One of the main applications of bioinformatics is the data mining in and analysis of the data gathered in genome projects. Other applications are sequence alignment, protein structure prediction, metabolic networks, morphometrics and virtual evolution.

The importance of genome-scale approaches to expose the protein-protein interactions is well established and increasing [3]. The ability to provide an integrated database of available data with respect to interaction information and cellular biological information and a suite of easy-to-use scalable data-analysis tools to further investigate and analyze protein interactions is a desirable scenario for any biologist involved in the research of protein-protein interactions and other related networks. It is also desirable to provide the scientific community with an integrated set of tools for browsing, integrating, ingesting, extracting, and analyzing the information on protein interaction networks in a scalable and efficient manner.

The study of protein/gene networks can be used for the identification of novel functional pathways and functional annotation of individual proteins [4]. Computational methods can be used to predict protein networks in new genomes, which might help in the identification of novel functional pathways and also enhance functional annotation of proteins even in the absence of experimental data for these protein interactions. These networks highlight the interactions between complexes in pathways and help in finding the essential proteins required by an organism. Many uncharacterized proteins can be associated with known pathways. By applying computational methods, new unidentified conserved pathways can be detected which in turn provide more insights into the cellular functions.

In the context of integral genomic study, one importantant hypodissertation is that integrating many different experimental data sets yields a clearer biological view than any single data set alone and uncovering patterns, pathway connections that are not readily apparent from individual research studies. Clustering analysis of biological data has been widely used to annotate functions of unknown proteins based on the idea that co-expressed genes are more likely to have similar functions [15]. Graph clustering is a good start to analyze gene and protein interaction data [6].

Sequence comparison has been the most widely method to identify molecular functions for proteins and nucleic acids. The graph comparison is bound to become the most powerful method to understand higher order functions. Typical graph comparison algorithms include isomorphism, homomorphism, and homeomorphism, etc. Two sub-graphs are isomorphic if both their structure and labels are exactly matching. Two sub-graphs with exact matching structures but whose node labels are genetically related. Finally, two sub-graphs are homeomorphic if they are structurally matching while allowing some disjoint edge paths.

Many methods based on variations of isomorphism, homomorphism, and homeomorphism algorithms have also been proposed to predict new interactions from existing data [16]

 REF _Ref74343548 \r \h
 * MERGEFORMAT [2]

 REF _Ref74343549 \r \h
 * MERGEFORMAT [5]. To compare two graphs it is necessary to identify a list of correspondences between the vertices that can be regarded as a set of virtual edges that connect the vertices across the two different graphs under consideration. Finding correlated subgraph can be formalized as an isomorphism problem and has been proven to be NP complete, which is a critical issue for large-scale interaction database. A heuristics-based algorithm for graph comparison using P-trees technology that detect loose similarities and are biologically more relevant by allowing gaps and mismatches is highly desirable.

9.3. References

[1] William Perrizo, Peano Count Tree Technology, Technical Report NDSU-CSOR-TR-01-1, 2001.

[2] SK, N., Zhang, Z., Tan, SH., Integrative Approach for Computationally Inferring Protein Domain Interactions. Bioinformatics, vol. 19:8, p.923-9, 2003.

[3] Pray, L., Unraveling Protein-Protein Interactions. The Scientist, Volume 17, Issue 34, January 27, 2003.

[4] McDermott, J. and Samudrala R., Enhanced Functional Information from Predicted Protein Networks, TRENDS in Biotechnology, vol. 22:2, 2004.

[5] Iossifov, I., Krauthammer, M., Friedman, C., Hatzivassiloglou, V., Bader, JS., White, KP., Rzhetsky, A.. Probabilistic Inference of Molecular Networks from Noisy Data Sources. Bioinformatics, 2004.
[6] Goodman, N., Clustering Proteins, Genome Technology, vol. 4, 2004.

[7] Fei Pan, Baoying Wang, Xin Hu, and William Perrizo, “Comprehensive Vertical Sampled-based KNN/LSVM Approach for Microarray Gene Expression Analysis”, Journal of Biomedical Informatics, (in print), 2004.

[8] Fei Pan, Baoying Wang, Xin Hu, and William Perrizo, “Proximal Support Vector Machine for Spatial Data”, International Journal of Computers and Their Applications (to appear), 2004.

[9] Fei Pan, Baoying Wang, Dongmei Ren, Xin Hu, and William Perrizo, “Proximal Support Vector Machine for Spatial Data Using Peano Trees”, 16th International Conference on Computer Applications in Industry and Engineering, pp. 292-297, 2003.

[10] Fei Pan, Imad Rahal, Yue Cui, and William Perrizo, “Efficient Ranking of Keywords Queries Using P-trees”, 19th International Conference on Computers and Their Applications, pp. 278-281, 2004.

[11] Fei Pan, Baoying Wang, Yi Zhang, Dongmei Ren, Xin Hu, and William Perrizo, “Efficient Density Clustering for Spatial Data”, 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 375-386, 2003.

[12] Fei Pan, Baoying Wang, Xin Hu, and William Perrizo, “Rapid and Accurate KNN/PSVM Approach for Microarray Gene Expression Analysis”, SIAM Bioinformatics Workshop, Lake Buena Vista, Florida, pp. 52-62, 2004.

[13] Fei Pan, Xin Hu, Baoying Wang, and William Perrizo, “Efficient Density Clustering Analysis for Microarray Gene Expression Data”, SIAM Workshop on Clustering High Dimensional Data and its Applications, Lake Buena Vista, Florida, pp. 40-47, 2004.

[14] Fei Pan, Xin Hu, Baoying Wang, and William Perrizo, “Rapid and Accurate Density Clustering Analysis for High Dimensional Data”, 13th International Conference on Intelligent & Adaptive Systems, and Software Engineering, Nice, France, July, 2004.

[15] Eisen, M.B., Spellman, P.T., Brown, P.O., and Bostein, D., Cluster Analysis and Display of Genome-wide Expression Patterns. Proc. Natl. Acad. Science USA 95, p. 14863-14868, 1998.

[16] Bock, JR. and Gough, DA., Whole Proteome Interaction Mining. Bioinformatics, vol. 19:1, p. 125-34, 2003.

[17] Baoying Wang, Fei Pan, Yue Cui, and William Perrizo, “Efficient Quantitative Frequent Pattern Mining Using Predicate Trees”, 16th International Conference on Computer Applications in Industry and Engineering, pp. 168-171, 2003.

[18] Baoying Wang, Fei Pan, Dongmei Ren, Yue Cui, Qiang Ding, and William Perrizo, “Efficient OLAP Operations for Spatial Data Using Peano Trees”, 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 28-34, 2003.

[19] Baoying Wang, Qiang Ding, Fei Pan, William Perrizo, "Efficient Modeling the SLOAN Digital Sky Survey Data Using P-BUSH", 13th International Conference on Intelligent & Adaptive Systems, and Software Engineering, Nice, France, July, 2004.

[20] Baoying Wang, Qiang Ding, Fei Pan, and William Perrizo, "DIGITAL SKY SURVEYS USING P-HTM", 13th International Conference on Intelligent & Adaptive Systems, and Software Engineering, Nice, France, July, 2004.

[21] Maum Serazi, Amal Perera, Qiang Ding, Vasiliy Malakhov, Imad Rahal, Fen Pan, Dongmei Ren, Weihua Wu, and William Perrizo. "DataMIME™". ACM SIGMOD, Paris, France, June 2004.
Internet

EIGEN_INFO ()

Eigen ()

CalDistmat ()

Calmat ()

Getsize ()

Getcol ()

Vector <double> eigvect, data, mat

5

KNN_INFO ()

CalDist ()

Mysort ()

Getdata ()

GetCoordinate ()

Calvotedist ()

Vector <double> data, target, votedist

Slave Servers

Master Server

3

7

4

2

P-tree Capture Interface

User Mining/Analysis

Data Integration

Class: KNN_INFO

P-tree Capture Interface

Ranking

P-tree Algebra

Ranked List

Decisive Ring

Indecisive Ring

3rd EIN-ring

C

P-tree View of Matrix

Document Term Matrix

2nd EIN-ring

1st EIN-ring

(

(

C

(

1

1

Biological Documents

Case Folding, Stemming, and Stop Lists

*

1

Representation and Weighting

Class: PSVM

Filtering Stop Lists

INPUT: SVM_info, test data x

OUTPUT: class label of x

// BS – boundary sentry, (-- membership ratio of SVP

// D1 – the shortest distance between boundary sentry and data x

// D2 – the second shortest distance between boundary sentry and data x

BEGIN

 // Get the nearest SVP of data x

 FOR i = 1 to sizeof (SVM_info) DO

 (= SVM_info.Mg / (SVM_info.Mg + SVM_info.Mg’)

 BS[i, g, g’] = (* SVM_info[i].x1 + (1 - () SVM_info[i].x2

 IF i = 1

 D1 = | BS[i, g, g’] – x|; nearest1 = i;

 g1 = SVM_info[i].g; g2’ = SVM_info[i].g’

 ELSE IF | BS[i] – x| < D1

 D1 (| BS[i, g, g’]– x|; nearest = i;

 g1 = SVM_info[i].g; g1’ = SVM_info[i].g’

 // Get the second nearest SVP of data x 	

 FOR i = 1 to sizeof (SVM_info) DO

 IF SVM_info[i].g = g1 && SVP_info[i].g’ =g1’

 D2 = D1 + (

 (= SVM_info.Mg / (SVM_info.Mg + SVM_info.Mg’)

 BS[i, g, g’] = (* SVM_info[i].x1 + (1 - ()

 SVM_info[i].x2

 IF BS[i] – x| < D2 && BS[i] – x| != D1

 D2 = | BS[i, g, g’] – x|; nearest2 = i;

 // Determine the hyperplane H(x) = wx+w0

 w = (H(nearest1) – H(nearest2)) / (x(nearest1) – x(nearest2)

 w0 = H(nearest1) – w * x(nearest1)

 // Determine the group ID of x

 IF Sign(H(x)-wx+w0) = Sign(H(SVM_info[nearest1].x1)

 G(x) = g

 ELSE G(x) = g’

 END IF

 // Determin class label of x

 C(x) = LookupTable(G(x))

END

INPUT: P-tree Set Pi,j for bit j and attribute i, HOBBit ring R(i, 0, ()

 P-tree set Pgi for group ID, number of groups: Ng

OUTPUT: Support vector pairs

// Pi,j – P-tree for attribute i and bit j; Pi – Neighborhood P-tree;

// Pv [h]– value P-tree within radius h; NBR – number of neighborhood

// M[i, k] – HOBBit membership of data point x[i] with group k

BEGIN

 // Get HOBBit membership of data set X

 // Get SVP set

 SVP_NO (0

 FOR i = 1 TO N DO

 FOR k = 1 to Ng DO

 IF Pgh [k] = Pgh [i] BREAK

 s (m

 REPEAT

 Pnn (Pgh[k]

 FOR j = 2 TO s DO

 Pnn (Pnn & Pv[j, s]

 s (s -1

 UNTIL RootCount(Pnn) (2

 i, neighbor (GetNode(Pnn);

 IF M[i, G[i]] > M[i, G[neighbor]] &

 M[neighbor, G[neighbor]] > M[neighbor, G[i]]

 SVP_Info[SVP_NO] ((x [i], x[neighbor], G[i],

 G[neighbor], M[i, G[i]], M[neighbor, G[neighbor]])

 SVP_NO (SVP_NO + 1

END FOR

 END FOR

 END

INPUT: P-tree Set Pi,j for bit j and attribute i, bij, of data set X

 group ID G of data set X

OUTPUT: Pgi, P-trees for group ID G of data set X

// Pnn – Neighborhood P-tree;

// Pv [i,h]– value P-tree for attribute i within radius h;

// N – size of data set X

//Merge neighbor groups within the same class

FOR i = 1 TO N DO

 // Get the closest classmate of x[i]

 s (m

 REPEAT

 Pnn (Pc

 FOR j = 2 TO s DO

 Pnn (Pnn & Pv[j, s]

 s (s -1

 UNTIL RootCount(Pnn) (2

 // Assimilate group ID of the closest classmate

 G[neighbor] = G[i]

END FOR

// Build P-trees for group ID

Pgi = Mapping (G)

c)

b)

P-RANK ENGINE

Case Folding and Stemming

User Keywords

a)

PSVM ()

FindNN ()

Getbc ()

Checkhp ()

Decision ()

Mysort ()

Calbcw ()

Calweight ()

KNN_INFO knnds

Class: EIGEN_INFO

 1

 0

 3

 2

 1

 0

111 111 111 111 101 101 001 001

111 111 111 111 001 001 001 001

101 101 111 111 100 100 001 001

101 111 111 111 100 101 101 001

110 110 110 110 011 011 000 000

110 110 110 110 000 000 000 000

010 010 110 110 011 011 000 000

010 110 110 110 011 011 011 000

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 1 1

1 1 1 1 0 1 1 1

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

 36

 _______/ / \ ____

 / __ / \ \

 / / \ \

16 _13__ 0 ___7__

 / / | \ / | \ \

 4 4 1 4 2 0 4 1

 //|\ //|\ //|\

 0001 1100 0010

 36

 _______/ / \ ______

 / __ / __ \

 / / \ \

16 __7__ __13__ 0

 / / | \ / | \ \

 2 0 4 1 4 4 1 4

 / / |\ //|\ //|\

1100 0010 0001

 36

 _____/ / \ _____

 / / \ \

 / / \ \

 _13__ 0 16 ___7__

/ / | \ / | \ \

4 4 1 4 2 0 4 1

 //|\ //|\ //|\

 0001 1100 0010

 (

r

INPUT: P-tree Set Pi,j for bit j and attribute i, HOBBit ring R(i, 0, ()

OUTPUT: Density attractors

// Pi,j – P-tree for attribute i and bit j; Pi – Neighborhood P-tree; Pv [h]– value P-tree within radius h

// N - # of data points; n - # of attributes; P(- Neighborhood threshold P-tree

// m - maximal bit length of attributes; flag[i] – label array of cluster center of data point i.

//wi[h] – density weight array of HOBBit ring (i, h, h+1); DENS[i] – density array

BEGIN

FOR i=1 to N DO

		flag[i](0

		Pi (Pure1 P-tree, DENS[i] (0, PrevRC (0

		FOR h = 1 TO m - 1 DO

 Pv (Pure1 P-tree

			FOR j = 1 TO n DO

				GET bjh[i]

				IF bjh[i] = 1

					PXjh (Pj,h	

				ELSE	

					PXjh (P`j,h

				Pv[h] (Pv [h] & PXjh 				

			END FOR

			Pi (Pi & Pv [h]

 w [i] = h * 2 h*n

 DENS[i](DENS[i]+ w * (RootCount(Pi)- PrevRC);	

 PrevRC (RootCount(Pi);					

 IF h = m - (

			 	P((Pi

		END FOR

		IF DENS[i] > the density of attractors within neighborhood ,

			flag[i] (1, clear the flags of its neighbors.			

END FOR

// Final look around pruning to intermediate attractors

	FOR i = 1 to N DO

IF flag[i] = 1DENS[i] < The density of the closest neighbor

Clear its flag

 	END FOR 	

END

5

_____ / / \ ______

/ / \ \

3 0 2 0

/ / \ \ / / \ \ 1

1 0 0 2 0 0 0 2 1

//\\ //\\ //\\ 1

0010 0110 1001 1

 1. <classes>

 2. <class id="CSCI766">� 3. <title> Database Systems Internals </title>� 4. <teacher id="T31330">� 5. <name> William Perrizo </name>� 6. <position> Professor </position>� 7. </teacher>

 8. <time> MWF 10:00-11:00 </time>

 9. <place> IACC 102 </place>

10. <officehours>

11. <time> MWF 11:00-12:00 </time>

12. <place> IACC 258 </place>�13. </officehours>

14. <book>

15. <name> Concurrency Control and Recovery in Database �16. System </name>

17. <author> Bernstein </author>

18. <author> Hadzilacos </author>

19. <author> Goodman </author>

20. </book>

21. . . .

22. <courseobjective> Understand fundamentals of Database

23. internals, do research and write a quality paper on

24. database internals

25. <cite ref=”CSC765”> Database Management Systems </cite>�26. <cite xlink=”…/syllabus/365/”> Intro to Databases </cites>

27. </courseobjective>

28. </class>�29. <class id="CSCI765">�30. . . .

31. </class>

32. </classes>

x

X

r

X

x

r+(

X

x

0

1

 0

 1

0

1

 1

1

1

 1

1

1

0

1

0

1

 9

11

1

1

 1

 1

 13

0

 0

 0

 0

 6

 5

1

 1

0

0

 6

 5

2

 22 2

1

 4

 3

0

1

 0

 1

0

0

 1

1

1

 1

1

1

0

1

0

1

 9

11

1

1

 1

 1

 13

0

 0

 0

 0

 6

 5

1

 1

0

1

 6

 5

2

 22 2

1

 4

 3

0

1

 1

 1

1

0

 1

1

1

 1

1

1

0

0

1

1

 9

11

1

1

 1

 1

 13

1

 1

 1

 1

 6

 5

1

 1

0

0

 6

 5

2

 22 2

1

 4

 3

0

1

 0

 1

1

0

 1

1

1

 1

1

1

0

1

0

1

 9

11

1

1

 1

 1

 13

1

 1

 1

 1

 6

 5

1

 1

0

0

 6

 5

2

 22 2

1

 4

 3

2

12

 4

 15

12

1

 15

15

15

 15

15

15

2

10

4

15

 9

11

15

15

15

15

 13

12

 12

 12

 12

 6

 5

15

 15

0

2

 6

 5

2

 22 2

1

 4

 3

1
v

_1149728227.unknown

_1149882285.xls
Chart1

		DB1		22

		DB2		97

		DB3		254

Inverted-List

P-rank

Average Run Time (s)

60

306

1224

Sheet1

				DataSize

		Num. Of Objects				DENCLUEI		DENCLUEII		PHDCluster

																1048.576

																4194.304		1048576

				1000				60		22		20.8		DB1		1048.576

				7000				306		97		45.5		DB2		4194.304		1048576

				15000				1224		254		115.8523750296		DB3		16777.216

						223.60679775

				Number of Attributes

		Num. Of Objects				DENCLUEI		DENCLUEII		PHDCluster

				64		1.2		1.9		1.6384		0.7240773439

				125		15.8		18.7		16.384		12.288

				256		29		37		32.768		20.8

				512		120		156		131.072		45.5

				1024		489		577.5		524.288		115.8523750296

						BR		60.43		70.25		70.25

						CNS		80.25		89.42		90.85

						CO		78.75		85.25		89.65

						LC		90.35		95.5		96.25

						LE		85.67		88.25		90.35

						ME		93.25		95.5		94.25

						OV		86.25		90.25		91.25

						PR		92.25		96.75		94.52

						RE		85.55		90.55		93.25

Sheet1

		0		0

		0		0

		0		0

Inverted-List

P-rank

Average Run Time (s)

Sheet2

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

KNN

c-SVM

KNN/SVM

Sheet3

		

		

_1149882928.unknown

_1149882980.unknown

_1149716212.unknown

_1149726867.unknown

_1149728008.unknown

_1149728002.unknown

_1149726855.unknown

_1129290170

_1149716164.unknown

_1113162188.unknown

_1116311779.unknown

_1107088592.unknown

