Transactions & Concurrency

1. Scenario

John Smith and his wife Jane share one and the same credit account using two different credit cards. The bank database represents the credit card accounts using the following relation

account(accNo:INTEGER,holderName:STRING,shareName:STRING,balance:MONEY)

John and Jane usually do their shopping on Thursdays after they leave work. Often they go together, and in such a case John pays the bill using his credit card. Sometimes, they visit different shops and then they pay separately. The banking information system employs the following logic as described by the pseudocode fragment:

	John’ Transaction:
	Jane’ Transaction:

	Transaction parameters

 availableSum,requiredAmount: MONEY;

beginning of the transaction

 Input(requiredAmount);

 SELECT balance

 INTO availableSum

 FROM account

 WHERE holderName = ‘John Smith’;

 if <DB reports problems> then

 Output(“Access denied”);

 Rollback;

 end if;

 if availableSum > requiredAmount then

 UPDATE account

 SET balance = balance –

 RequiredAmount;

 if <DB reports problem> then

 Output(“Operation failed”);

 Rollback;

 else Commit;

 end if;

 else Output(“Credit exhausted”);

 Rollback;

 end if;

end of the transaction.
	transaction parameters

 availableSum,requiredAmount: MONEY;

beginning of the transaction

 Input(requiredAmount);

 SELECT balance

 INTO availableSum

 FROM account

 WHERE shareName = ‘Jane Smith’;

 if <DB reports problems> then

 Output(“Access denied”);

 Rollback;

 end if;

 if availableSum > requiredAmount then

 UPDATE account

 SET balance = balance –

 RequiredAmount;

 if <DB reports problem> then

 Output(“Operation failed”);

 Rollback;

 else Commit;

 end if;

 else Output(“Credit exhausted”);

 Rollback;

 end if;

end of the transaction.

2. Tasks for the seminar

Answer the following questions:

a) draw database state transaction diagrams and point out the shared data, critical states and interfering operations included into the two transactions when John and Jane pay separately for their own shopping (Suggestion: You may use UML state diagrams, dataflow diagrams or simple state charts)

b) draw possible event diagrams for execution of the two transactions in the case they overlap (Suggestion: You may use UML sequence diagrams, events flows or simple time maps)

c) calculate the final balance for different possible courses of events if the available credit in the account at the time before they started shopping was 200 GB, John selected goods for 100 GBP and Jane – for 150 GBP (Hint: suppose some ACID properties are implemented by DBMS and then make the calculation)

d) explain how ACID properties implementation by the DBMS can affect the transactions
e) explain if DBMS can automatically serialize the schedule for concurrent execution of the two transactions
f) propose database schema and algorithm for implementing transaction control mechanism which guarantees serial schedule of transaction execution (Suggestion: You may use UML activity diagrams or dataflow chart)
g) write PL/SQL-like procedure which implements the above algorithm (with free use of operators and procedures;

h) show the schedule for parallel execution of the two transactions in the case of using read and write locks;

i) Sample Solutions for Seminar Week 5

a) State transition diagrams

[image: image1.wmf]Payment

requested

Balance

checked

Balance

updated

Commit

Rollback

Rollback

Input

Read

Write

Start

Comm

itted

Payment

requested

Balance

checked

Balance

updated

Commit

Rollback

Rollback

Input

Read

Write

Start

Transaction 2

Abor

ted

Abor

ted

Comm

itted

Transaction 1

b) Event diagrams

[image: image2.wmf]John

Jane

Requesting

payment

Accessing

account

Checking

availability

Updating

balance

Requesting

payment

Accessing

account

Checking

availability

Updating

balance

t

10

t

11

t

12

t

13

t

14

t

15

t

16

t

17

t

27

t

20

t

21

t

22

t

23

t

24

t

25

t

26

Time

Time

c) Calculations

Case 1: t17 < t22 – John pays successfully while Jane’ payment is rejected
Initial balance at t10 : -200, final balance at t17 : -100

Case 2: t27 < t12 – Jane pays successfully while John’ payment is rejected
Initial balance at t20 : -200, final balance at t27 : -50

Case 3: t10 < t20 and t20 < t17 – both John and Jane pay, but they exceed the credit limit
Initial balance at t20 : -200, final balance at t27 : -250

Case 4: t20 < t10 and t10 < t27 – both John and Jane pay, but they exceed the credit limit
Initial balance at t20 : -200, final balance at t27 : -250

d) ACID properties

The calculations above are made under the assumption, that atomicity (the “A” property) is properly implemented by DBMS while isolation (the “I” property) is not controlled. Transactions, which execute operations in parallel however, would have correct behavior only if they do not access shared data at the same time (case 1 and 2). If they share some data, like in cases 3 and 4 (the same credit amount) isolation is vital in order to prevent incorrect changes of the shared data.

However, in some cases the atomicity could cause problems as well. If it is not maintained by the DBMS, or if there are transactions, which involve activities over HTTP (the protocol for communications over the Web), then in some cases each operation included in the transaction is automatically committed before the end of the transaction. This means, that the relative time for executing of the concurrent transactions becomes absolute time, and the changes made by the operations are made persistent immediately. In the case of interleaving transactions this means, that uncontrolled modification of the shared data can happen during execution of the transaction and in fact isolation is never applied.

Alternatively, the commit operations can be postponed until all communications are finished (optimistic strategy). In such a case however some of the transactions which were evaluated successful during the session can be rolled back afterwards.

If all this is not feasible, then the application should control the access to shared resources in real time using locks.

e) Automatic serialization and transaction management by DBMS

The simplest algorithm for serialization is to delay all operations in the second transactions accessing the data after the first reading of shared data occurs in the first transaction. It can be done by means of a simple lock before the reading. Here this algorithm is possible, because we have just one reading and one writing immediately after it in both transactions, so the wait state will cause effective serial execution of the two transactions.

If we have more reads/writes, but the order of accessing shared data is not important, then we can use more complex algorithms for serialization, which employ several different kinds of locks.

However, if the parallel operations, which happen during transaction are not commutative, there is no guaranty we can construct serial schedule using algorithms with simple wait states for automatic control. Then we should use additional semantic checks of the data before it reaches the database.

There are several possible alternatives for semantic control of the transaction execution. One is to employ separate transaction control mechanism using dedicated software server outside the database – e.g. EJB or JTS for Java, MTS for Windows, etc. In such a case the transaction control is separated from the session management – the sessions and the transactions are managed separately. The other alternative is to embed the transaction control mechanism within the database itself. This can be implemented using stored procedures, which execute control statements on behalf of the application after the external data is passed to the database. In this case the transaction control operates within the session. Obviously, it is not appropriate in the case of running transactions over the Web, because the underlying protocol (HTTP) does not maintain persistent session between the client and the server.

f) Explicit transaction control by the application

Possible database schema for explicit transaction control of the banking operations could be as follows:

Transaction(transactID:STRING,transactStatus:CHAR,startTime:TIME)

Lock(transactID:STRING,lockNo:INTEGER,accNo:INTEGER,lockType:CHAR,lockStatus:CHAR)

It allows recording of both read and write locks against each account.

The algorithm for transaction control in the case of credit accounts only can control the access to shared data using a single lock. This is absolutely sufficient in our case since we have only two pairs of interfering operations, which are non-commutative, so they should be implemented in a strong sequence. Next flowchart shows such a “semaphore” schema, which is a very general mechanism. Note especially the “Wait” process on the diagram, which in fact is the only point of communication with other transactions through the shared resource. If we use UML activity diagram to model the accounts operation, it could be the synchronizing event between the two operation flows corresponding to the two transactions.

[image: image3.wmf]Old balance

OK?

Database

Locked?

Change

OK?

New balance

OK?

Reject

Confirm

Request

Wait

Calculate

new balance

Extract

old value

Access

resource

Read

account

Lock

Read old

balance

Update

balance

Unlock

Yes

No

Yes

No

No

Yes

Yes

No

g) PL/SQL procedure

procedure sales_transaction (requiredAmount: MONEY, holder: VARCHAR) is

availableSum MONEY;

denied, failed, rejected EXCEPTION;

begin

 while locked (ACCOUNT) wait;

 end while;

 Lock_resource(ACCOUNT);

 SELECT BALANCE INTO availableSum FROM ACCOUNT WHERE HOLDERNAME = holder;

 if <DB reports problems> then raise denied;

 end if;

 if availableSum > requiredAmount then

 UPDATE ACCOUNT SET BALANCE = BALANCE – RequiredAmount;

 if <DB reports problem> then raise failed;

 end if;

 else raise rejected;

 end if;

 unlock_resource (ACCOUNT);

 COMMIT;

exception

 when denied then

 Output(“Access denied”);

 unlock_resource (ACCOUNT);

 ROLLBACK;

 when failed then

 Output(“Operation failed”);

 unlock_resource (ACCOUNT);

 ROLLBACK;

 when rejected then

 Output(“Request rejected”);

 unlock_resource (ACCOUNT);

 ROLLBACK;

 when others then

 Output(“Communication failure”);

 unlock_resource (ACCOUNT);

 ROLLBACK;

end sales_transaction;
h) Locking using read and write locks

	T1(old,new,request)
	T2(old,new,request)
	Request
	Balance

	input(request)
	
	40
	

	read_lock(account.balance)
	
	
	

	select_into(account.balance,old)
	
	
	100

	check_against(request,old)
	
	
	Yes

	unlock(account.balance)
	
	
	

	
	input(request)
	75
	

	
	read_lock(account.balance)
	
	

	
	select_into(account.balance, old)
	
	100

	
	check_against (request,old)
	
	Yes

	
	unlock(account.balance)
	
	

	write_lock(account.balance)
	
	
	

	calculate(old,new,request)
	
	
	60

	update_to(account.balance)
	
	
	60

	unlock(account.balance)
	
	
	

	
	write_lock(account.balance)
	
	

	
	calculate (old, new,request)
	
	25

	
	Update_to(account.balance, new)
	
	25

	
	unlock(account.balance)
	
	

_1065259381.vsd

_1077609330.vsd

_1065246998.vsd
Requesting payment�

Accessing account�

Checking availability�

Updating balance�

Requesting payment�

Accessing account�

t13�

Checking availability�

Updating balance�

John�

Jane�

t10�

t11�

t12�

t14�

t15�

t16�

t17�

t27�

t20�

t21�

t22�

t23�

t24�

t25�

t26�

Time�

Time�

