Documentation for Armies of Exigo:
Trigger Editor Reference Manual. V4.1
By Alexei A Kozlenok

Thanks to Joseph Hatcher, Sheldon Ferguson and John (Alex) Mack

for assistance in testing features for, and the writing of this document.
© 2004 Electronic Arts

Color Code:

ORANGE – enterable/modifiable values

GREEN – constant/pre-entered values

BLUE - notes

A. Table of Contents:

A. Table of Contents

B. Trigger Editor Function Elements
C. Closing
B. Trigger Editor Function Elements
Within the Trigger editor many useful functions exist to help you out in creating a map, there are also ways to create your own triggers and trigger values within the acceptance of the engine. Here are all of the trigger functions and values with their appropriate description, sorted as they appear within the Trigger editor.
NOTE: This is a Reference manual, and is not a tutorial. I is here to explain the basic functions of each trigger/value and at times state an example to how it is used, this will not explain how-to use the trigger editor, please refer to my Trigger Editor tutorial for that.

NOTE: Since the trigger editor is a sort of script language, some programming knowledge is helpful in understanding things stated within the reference doc as some things are directly relative to programming terms, such as variable constants. I apologize for this, but I am unable to decipher all the terms as this would lead to a reference manual the size of a few ancient tomes.
NOTE: The difference between an Entity and a Unit is this: an entity is any unit of said type, while a Unit is a specific unit selected by the mapmaker from the map.
NOTE: This is a Breakdown of how the Reference manual explains Trigger Function Elements:

Function info: <variable> info: <variable>
<variable> - Explains the first variable stated in above Trigger Function Element.
<variable> - Explains the second variable stated in above Trigger Function Element
~ Explains the Trigger Function element in general and how it uses all the variables,

sometimes also states notes about the Element.
a. Miscellaneous Values
NUMBER

~ Represents a numerical value that is either represented as an unsigned integer (0~UINT_MAX) or as an unsigned double floating point (0.0~UDOUBLE_MAX).
RndNumber min: NUMBER max: NUMBER
~ Returns a random number between min and max.
NOTE: in reality the numbers are WORD and not numbers, they are converted to numbers somewhere in the code.
Check BOOL
~ Applies a Boolean value (true or false) to a comparison argument, basically just returns whatever is entered.
Delayms

~ Returns a reference variable to the amount of milliseconds that the trigger is being delayed by.
b. Miscellaneous Actions
StartTriggerGroup <trigger group>
<trigger group>– The trigger group to be enabled.
~ Starts a trigger group (Allows all the triggers in a specific group to be called).
StartTrigger <trigger>
<trigger>– The trigger to be enabled.
~ Starts the trigger and enables its condition to be triggered, but does not hold up the trigger it is called on.

RunTrigger <trigger> ignore condition: <T/F>
<trigger>– The trigger to be ran.
<T/F>– Whether or not the Condition values will be taken into account.
~ Runs the trigger stated, if ignore condition is true it will not check through the Condition values. Holds the trigger it is called in until the one called is finished.
DestroyTrigger <trigger>
<trigger> – The trigger to be disabled.
~ Prevents this trigger from ever being run, just as if you where to disable it manually.
Delay <sec> sec
<sec>– amount of seconds to delay the trigger.
~ Delays for a number of seconds until performing the action after it.
Restart
~ Returns the trigger back onto the callable heap (when called the trigger will be reset, so if the condition appears again it will run)
c. System Values

GameTime
~ Returns a reference variable to the GameTime (the amount of time that has passed in a game) variable.
CountdownTimer

~ Returns a reference variable to the CountdownTimer (the amount of time left until the timer is at 0) variable. When this is > 0 a Countdown timer appears at the top of the screen.
ScenarioVariable [<number>] <variable text>
<number> – spot in the array from which to extract the reference to the variable.
<variable text>– the name of the variable.
~ Returns a reference variable to the user-defined variable from the games allocated array for this specific scenario (map).
CampaignVariable [<number>] <variable text>
<number> – spot in the array from which to extract the reference to the variable

<variable text> – the name of the variable.
~ Returns a reference variable to the user-defined variable from the games allocated array for this specific campaign.

ConsoleValue TEXT
TEXT – text to place.
~ Places text in the console window (this is for the most part non-operational, please make sure you are familiar with console commands before using this trigger).
InGameAnimIsFinished <file>
<file>– gobj to check

~ Checks whether or not a specific gobj(in game animation) has completed it’s playtime. User made scenarios cannot use gobjs as they cannot be made with the Scenario Editor. Therefore this trigger can’t really be used in these Scenarios.
Chatmessage written by Player <player> is <text> Store number in: <variable>…
<player>– The player who should enter the chat message.
<text> – the language text which has been entered into the chat log.
<variable>… - the variable(s) into which to place numerical data entered after the specified chat message.
~ Checks whether a chat message written by a certain player has been entered into the chat log.

d. System Actions

WriteSimpleText <text>
<text> – Text to write.
~ Write Simple text to a buffer, this trigger is for the dev team and has no use for player made maps.
WriteLanguageText <text>
<text> – Language Text to write.
~ Writes a predefined Language text into a window in the bottom left hand corner of the GUI.

WriteLanguageTextDelayed <text> Delay: <ms> sec InGameAnim: <T/F>
<text> – Language Text to write.

<ms> – How long to last

<T/F> - Whether this is in an NIS (Always keep default)
~ Writes a predefined Language text into a window in the bottom left hand corner of the GUI for a set number of milliseconds.

WriteLanguageMessageDelayed <msg type> <text>Delay: <sec> sec
<msg type> - What sort of message to post (HINT, NEWUNIT, NOTICE, etc.)
<text> – Language Text to write.

<sec> – How long to last.
~ Writes a predefined Language text into a notice window on the left hand side of the screen with appropriate coloration based on message type for set number of seconds.

WriteLanguageCounter <text>
<text> – Language Text to write.

~ Writes a predefined Language text bellow the Countdown timer at the top of the screen when the Countdown timer is active.

WriteText x: <num x> y: <num y> width: <num w> height: <num h> duration: <ms> <text>
<num x> – X variable of Window placement.
<num y> – Y variable of Window placement.
<num w> – Width variable of Window Placement.
<num h> – Height variable of Window Placement.
<ms> – How long to last.
<text> – Manual Text to write.

~ Writes typed text into a window from the bottom left hand corner of the GUI for a set number of milliseconds with set x/y/height/width parameters.

ExecuteConsoleCommand TEXT
TEXT – text to place
~ Places text in the console window (this is for the most part non-operational, please make sure you are familiar with console commands before using this trigger).

PlayInGameAnim <file>

<file>– gobj to play

~ Plays a gobj (in game animation, or NIS – non-interactive scene). User made scenarios cannot use gobjs as they cannot be made with the Scenario Editor. Therefore this trigger can’t really be used in these Scenarios.
IngameAnimSkip MSWITCH
~ Disables/Enables the ability to skip NISes. User made scenarios cannot use gobjs as they cannot be made with the Scenario Editor. Therefore this trigger can’t really be used in these Scenarios.
PlayEffect <file>at <location>
<file> – Effect file to play.
<location> – Location at which to execute the file.
~ Plays an Effect file at set Location. Users cannot make effect files so this trigger is not useable in the creation of Scenarios.
SetScenarioTriggersCallingRate Every: <num> frame
<num> – How many frames to wait until rechecking triggers
~ Sets how many frames must pass until the game checks all triggers conditions and decides whether or not they should be launched (a smaller number leads to more checks).
SaveCampaignData

~ Saves Campaign Data, users cannot create campaigns any more, this trigger cannot be used in user made scenarios.
LoadCampaignData

~ Loads Campaign Data, users cannot create campaigns any more, this trigger cannot be used in user made scenarios.
HighResolutionPathFinder <Enable/Disable>
<Enable/Disable> – Turns on/off Dijkststra Pathfinding algo. (when this is on the game may be slower but the units will be better at finding a path to their location.)
SetMaxNumSelectedUnit <num>

<num> – How many units can be selected by any user max.
~ Sets how many units a user can have selected at any one time.
StartCTFRule CaptureScore: <num> RecaptureScore: <num>HomeRunScore: <num>WinScore: <num>PrepareTime: <sec>sec GameTime: <sec>sec MaxIdleDrop: <sec>sec FlagTouchRadius: <num>
<num> – How many points are gained for Capturing the Flag.
<num> – How many points are gained for Recapturing a Flag.
<num> – How many points are gained for taking a Flag home.
<num> – How many points are needed to win.
<sec> – How many seconds before flags appear.
<sec> – How long the game lasts after flags appear.
<sec> – How long before the flag drops from no action.
<num> – How far away (grid wise) a unit hasto be to pick up the Flag.
~ Turns on a Capture The Flag game and sets all required triggers in order to run it.

e. GameControl Values
DetectedDifficulty setting is <difficulty>
<difficulty> – Which difficulty setting the player has selected (easy – very hard)

~ Returns whether or not (true/false) the input difficulty is the one selected by the user (since users cannot set their difficulty during a User Created Scenario, this trigger will always return false.).
f. GameControl Actions

ScenarioResult Player <player> <result> NoEndScenarioWindow: <T/F> NoEndScenarioStats: <T/F>

<player> – Which Player is the result given to.
<result> – Which result is given to the said player.
<T/F> – Whether or not the Scenario Window is displayed.
<T/F> – Whether or not the Stats Screen is displayed.
~ Ends the scenario for said player with said result, with the choice to hide/show the Victory pop-up and Stats screens.
EndScenario Player <player> <result>
<player> – Which Player is the result given to.
<result> – Which result is given to the said player.
~ Ends the scenario for said player with said result.
FreezeGame <T/F>
<T/F> – Toggle Freeze on or off.
~ Toggles the Frozen state of the game on/off (while the state is on, no actions will take place except for the trigger it is called in, until it is disabled).
MeleeEndGame

~ Sets melee end result conditions (player wins when all opponents have been defeated, allies win as well).
MeleeResources

~ Distributes the amount of resources designated for an official Exigo Melee game.
AntiHideTheFarm

~ Turns on the default Melee rule that shows all of a said players building locations if his/her town hall type structure has been destroyed.
EntitiesActionOnMap <action num> <T/F>
<action num> – Which action to disable/enable.
<T/F> – Toggle Action on or off.
~ Turns on or off the Action designated by the action number.
g. GUI Values

NumSelectedEntity Player <player> Type: <entity type> at <location>
<player> – Which Player is selecting the units checked.
<entity type> – What sort of entity is the player selecting.
<location> – Which location the player is selecting the entity at.

~ Returns the number of entities selected by the player at set location in his/her GUI.
h. GUI Actions

SelectUnit Player <player> Type: <entity type> at <location>

<player> – Which Player is to select the unit.
<entity type> – What sort of entity is the player to select.
<location> – Which location the player is selecting the entity at.

~ Forces the set players GUI to select the unit(s) of said type at said location.
SendMinimapSignal to <player> Type: <signal> at <location>

<player> – Which Player is to see the Signal.
<signal> – What sort of signal is to happen at said location.
<location> – Which location the signal originate from.

~ Sends a mini-map signal of said type to a player originating from a location.
SendMinimapSignalUnit to <player> Type: <signal> from <unit>

<player> – Which Player is to see the Signal.
<signal> – What sort of signal is to happen at said location.
<unit> – Which unit the signal originate from.

~ Sends a mini-map signal of said type to a player originating from a unit.
ShowUnitPortrait <text> Duration: <ms> sec Portrait Position: <position> Face: <entity type> bIdleAnim: <T/F> OnlyInGameAnim: <T/F>
<text> – Language Text to write.

<ms> – How long to last.
<position> – In which position to display the portrait.
<entity type> – Which entities face to display.
<T/F> – Whether or not to play the Idle animation of the face.
<T/F> – Whether or not this is done in an NIS (always keep default).
~ Shows an entities portrait with said text for set amount of time for all users.
AmimateUnitPortrait Position: <position> Duration: <sec> ms
<position> – In which position is the portrait to be animated.
<ms> – How long to last.
~ Animates the portrait in said position.

MoveCameraToPosition <loc> Time: <ms>
<loc> - The preset location which the camera should move to.
<ms> - How many milliseconds that the camera will use to translate (0 = instant).
~Moves the camera to a preset location on the map for all players in a set number of milliseconds

MoveCamera for <player> To <loc> Time <ms> Breakable: <T/F>

<player> - Which user(or player) this applies to.
<loc> - The preset location which the camera should move to.
<ms> - How many milliseconds that the camera will use to translate (0 = instant).

<T/F> - Whether or not the user can break camera position.
~Moves the camera to a preset location on the map for set player(s), in a set number of milliseconds, with an option to break.

ZoomCamera for <player> To <value> Time <ms> Breakable: <T/F>

<player> - Which user(or player) this applies to.
<value> - The Zoom distance from the focal point to zoom to (floating point).
<ms> - How many milliseconds that the camera will use to translate (0 = instant).

<T/F> - Whether or not the user can break camera position.
~Moves the camera to a preset zoom level for set player(s), in a set number of milliseconds, with an option to break.

SetCamera for <player> To <CameraList> Duration <ms>

<player> - Which user(or player) this applies to.

<CameraList> - A camera from the preset list in the Toolbar (refer to chpt. Cb1).
<ms> - How many milliseconds that the camera will use to translate (0 = instant).

~Sets the said players view to a preset camera from your Camera list.

SetCameraFov for <player> Fov: <value> Time <ms> Breakable: <T/F>

<player> - Which user(or player) this applies to.
<value> - The Field of view angle to change to.

<ms> - How many milliseconds that the camera will use to translate (0 = instant).

<T/F> - Whether or not the user can break camera position.
~Sets the cameras Field of View angle to a preset level for set player(s), in a set number of milliseconds, with an option to break.

SetCameraIdle for <player> Idle <T/F>

<player> - Which user(or player) this applies to.

<T/F> - Whether or not Idle is on.

~Toggles the idle movement of the camera on and off.

CameraLock <En/Disable>
<En/Disable> - Enable or disable CameraLock (the inability to perform any camera manipulations for all users).

~Locks the camera from performing any translations/rotations or being resized.

ResetCamera for <Player> to Default

<player> - Which user(or player) this applies to.
~Resets the Camera to default map camera and turns off full rotate.

CameraFollowsUnit <UnitTypes> Time: <ms> Breakable: <T/F>

<UnitTypes> - The selected unit off of the map that will be followed.
<ms> - The amount of milliseconds that the camera will stay there (0 = forever).

<T/F> - Whether or not the user can break camera position.

~This function will follow any already existent unit on the map.
CameraFollowsEntity Owner: <player> Type: <type> in <loc> Time <ms> Breakable <T/F>
<player> - Which user(or player) this unit belongs to.
<type> - Selected from a list, the type of unit drawn to be followed from the loc.
<loc> - The preset location which the camera should extract the entity from.
<ms> - The amount of milliseconds that the camera will stay there (0 = forever).

<T/F> - Whether or not the user can break camera position.
~This function will follow the first unit of specified type at specified location of specified owner for a set number of milliseconds.

DisableFollowCamera
~Disables follow camera.
MessageBox VariableName: <variable> Value: <text> B1: <text> B2 etc.
<variable> - Which variable to store the result in.
<text> - Language text placed at the top of the Message Box.
<text> - Language text placed at appropriate button (1-9).
~ Creates a Message box with said Title text and up to 9 buttons that saves results into a scenario variable (does not work on a multi-player map)!
HighlightIconPositon at <GUI location> Position: <icon position>

<GUI location> - Which GUI location to look for icon at.
<icon position> - Which icon to highlight.
~ Visually highlights said icon in said GUI section.

ShowIngamePicture <file> FadeIn Duration: <ms> ms FromColor Red: <num> Green: <num> Blue: <num>
<file> - Which image file to load (TGAs only).
<ms> - How many milliseconds to fade the image in.
<num> - How much to hue starting color red.

<num> - How much to hue starting color green.

<num> - How much to hue starting color blue.

~ Displays a particular image on the users GUI.

HideIngamePicture <file> FadeOut Duration: <ms> ms ToColor Red: <num> Green: <num> Blue: <num>

<file> - Which image file to fadeout (TGAs only)

<ms> - How many milliseconds to fade the image out.
<num> - How much to hue ending red.

<num> - How much to hue ending green.

<num> - How much to hue ending blue.

~ Hides a particular image on the users GUI.

i. Player Values
Resource Player <player> <resource>
<player> - Which player to check.

<resource> - Which resource to check.

~ Returns a reference to a particular players resource value.
HarvestedResource Player <player> <resource>
<player> - Which player to check.

<resource> - Which resource to check.

~ Returns a reference to a particular players harvested resource value.

KilledEntityAmount Player <player> Type: <entity>
<player> - Which player to check.

<entity> - Which entity to check.

~ Returns a reference to a particular players killed entity amount.

LostEntityAmount Player <player> Type: <entity>
<player> - Which player to check.

<entity> - Which entity to check.

~ Returns a reference to a particular players lost entity amount.

LiveEntityAmount Player <player>Type: <entity>
<player> - Which player to check.

<entity> - Which entity to check.

~ Returns a reference to a particular players live entity amount.

KilledEntityCategory Player <player> Category: <entity category> TerrainType: <entity move type>
<player> - Which player to check.

<entity category> - Which category of entity to check.

<entity move type> - What sort of move type the entities checked should have.

~ Returns a reference to a particular players killed entity amount in a certain category.

LostEntityCategory Player <player> Category: <entity category> TerrainType: <entity move type>
<player> - Which player to check.

<entity category> - Which category of entity to check.

<entity move type> - What sort of move type the entities checked should have.

~ Returns a reference to a particular players lost entity amount in a certain category.

LiveEntityCategory Player <player> Category: <entity category> TerrainType: <entity move type>
<player> - Which player to check.

<entity category> - Which category of entity to check.

<entity move type> - What sort of move type the entities checked should have.

~ Returns a reference to a particular players lost entity amount in a certain category.

GetNumPlayers Player <player> Relation: <relation>
<player> - Which player to check.

<relation> - What relation the players have to the said player.

~ Returns the number of players of said relation to said player.
CollectiveExperience to Player <player> Type: <entity type>
<player> - Which player to check.

<entity type> - Which type of entity to check.

~ Returns a reference to a particular players total experience gained by a particular type of unit.
PlayerSlotUse Nr: <player slot> UsedBy <player type> AIDifficulty: <AI diff>
<player slot> - Which player slot to check
<player type> - Which type of player to check for
<AI diff> - Which difficulty of AI to check for (if AI player)
~ Returns a True or False based on whether or not the player slot in question is in use by said player type.
PlayerSlotStatus Nr: <player slot> Status <status>
<player slot> - Which player slot to check.
<status> - The status of slot to check for.
~ Returns a True or False based on whether or not the player slot in question is in the state posed.
GetPlayerRelation between Player <player> and Player <player> is <relation>
.
<player> - Which player to check
<player> - Which player to check against.
<relation> - Which relation to check for.
~ Returns a True or False based on whether or not the players are under the relation being checked for.
PlayerNation Player <player> is <race>
<player> - Which player to check.
<race> - Which race to check.
~ Returns a True or False based on whether or not the player is of said race.
SupplyMax Player <player> Race: <race>
<player> - Which player to check
<race> - Which races supply to check
~ Returns a reference to the variable keeping the max supply of said race
IsEntityAttacked by Player: <player> Owner: <player> Indirectattack: <T/F>
<player> - Which player to check if attacking.
<player> - Which player supply to check if attacked.
<T/F> - Whether or not the attack was ordered.
~ Returns a True or False based on whether or not the player is attacking the other player with an in/direct attack.
j. Player Actions

GiveVision Player <player> at <location> duration: <sec> sec
<player> - Which player to give vision to.
<location> - Where to give vision.
<sec> - How long to give vision for.
~ Reveals said location on the map for said player for set amount of seconds.
Assign Player <player> to Team <team>
<player> - Which player to assign.
<team> - Which team to assign to.
~ Assigns said player to said team.
Remove Player <player> from Team <team>
<player> - Which player to assign.
<team> - Which team to assign from.
~ Takes said player off of said team making him/her solo.
SetPlayerResource Player <player> Gold: <num> Wood: <num>Gem: <num>
<player> - Which player to set.
<num> - How much Gold to set.
<num> - How much Wood to set.

<num> - How much Gem to set.

~ Sets said players resources to set numbers.
SetPlayerRelation Player <player> to Player <player> is <relation>
<player> - Which players relation to set.
<player> - Which player the relation is towards.
<relation> - Which relation to set to.
~ Sets the relation of said player towards another player.
SetTeamRelation Team <team> to Team <team>is <relation>
<team> - Which team relation to set.
<team> - Which team the relation is towards.
<relation> - Which relation to set to.
~ Sets the relation of said team towards another team.
SetPlayerColor Player <player> Color: <color>
<player> - Which players color to set.
<color> - Which color to set to.
~ Sets the color of said players entities.
SetAgressionRange for player <player>
<player> - Which players aggression range to set.
~ Resets the players aggression range to default.
k. Entity Values

NumEntityTypeInArea Owner: <player> Type: <entity type> at <location>Level:<compare> <num>
<player> - Which players entities to check for.
<entity type> - Which type of entity to check for.
<location> - Where to check for entity.
<compare> - What sort of comparison to run on the level number.
<num> - What level to run previous compare on.
~ Returns the number of entities in said location of said type by said owner with said level conditions.
NumEntityCategoryInArea Owner: <player> Category: <entity category> TerrainType: <entity move type>at <location>
<player> - Which players entities to check for.
<category type> - Which category of entity to check for.
<entity move type> - What sort of travel type the units checked use.

<location> - Where to check for entity.
~ Returns the number of entities in said location of said category and move type by said owner.
NumEntityNotCompleted Owner: <player> Type: <entity type> at <location>
<player> - Which players entities to check for.
<entity type> - Which type of entity to check for.
<location> - Where to check for entity.
~ Returns the number of entities in said location of said type by said owner still under construction/recruitment.
NumEntityTypeVisibleToPlayer Player: <player> Owner: <player> Type: <entity type> at <location>
<player> - Which players view to check for.
<player> - Which players entities to check for.
<entity type> - Which type of entity to check for.
<location> - Where to check for entity.
~ Returns how many entities of said type, owned by ‘owner’ can be viewed by ‘player’s entities.
NumEntityFoggedToPlayer Player: <player> Owner: <player> Type: <entity type> at <location>
<player> - Which players view to check for.
<player> - Which players entities to check for.
<entity type> - Which type of entity to check for.
<location> - Where to check for entity.
~ Returns How many entities of said type, owned by ‘owner’ and viewed by ‘player’s entities are under the Fog of War (but visible/seen).
NumEntityShroudedToPlayer Player: <player> Owner: <player> Type: <entity type> at <location>
<player> - Which players view to check for.
<player> - Which players entities to check for.
<entity type> - Which type of entity to check for.
<location> - Where to check for entity.
~ Returns how many entities of said type, owned by ‘owner’ and not seen by ‘player’.
NumEntityPerformesAction Owner: <player> Type: <entity type> at <location> Action: <unit command>

<player> - Which players entities to check for.
<entity type> - Which type of entity to check for.
<location> - Where to check for entity.
<unit command> - What unit command to check for.
~ Returns how many units of said type owned by said player at said location are performing said unit command.
NumProducedEntityCategory Owner: <player> Category: <entity category> TerrainType: <entity move type>

<player> - Which players entities to check for.
<entity category> - Which category of entity to check.
<entity move type> - What sort of travel type the units checked use.

~ Returns the number of entities of said category/movement type owned by set player that have been produced/built/recruited.
NumProducedEntityType Owner: <player> Type: <entity type>
<player> - Which players entities to check for

<entity type> - Which type of entity to check for

<entity move type> - What sort of travel type the units checked use.

~ Returns the number of entities of said type owned by set player that have been produced/built/recruited.
NumSelectedGroupEntity Owner: <player> Type: <entity type> at <location> Group: <group>

<player> - Which players entities to check for.
<entity type> - Which type of entity to check for.
<location> - Where to check for entity.
<group> - which group to check.
~ Returns the number of entities of said type owned by set player at said location that have been selected in said group.
NumSelectedSuperGroupEntity Owner: <player> Type: <entity type> at <location>
<player> - Which players entities to check for.
<entity type> - Which type of entity to check for.
<location> - Where to check for entity.
~ Returns the number of entities of said type owned by set player at said location that have been selected in a super group.
NumItemOnEntitiesInArea Owner: <player> Type: <entity type> Item: <entity type> at <location>
<player> - Which players entities to check for.
<entity type> - Which type of entity to check for.
<entity type> - Which type of item to check for on entities.
<location> - Where to check for entity.
~ Returns the number of entities of said type owned by set player at said location that have said item.
NumEntityGarrisoned Owner: <player> in: <entity type> at <location> is Type: <entity type>

<player> - Which players entities to check for.
<entity type> - Which type of entity to check inside of.
<location> - Where to check for entity.
<entity type> - Which type of entity to check for.
~ Returns the number of entities of said type owned by set player at said location that are garrisoned in said type of entity.
GetEntityAttribute Owner: <player> <entity attribute> Type: <entity type> at <location> <relation level> <float>

<player> - Which players entities to check for.
<entity attribute> - Which attribute to return.
<entity type> - Which type of entity to check.
<location> - Where to check for entity.
<compare> - What sort of comparison to run on the number towards attribute.
<num> - What number to run previous compare on.
~ Returns a reference to the variable keeping the said entity attribute of said entity type owned by said owner at specified location and of the attribute parameters compared to.
EntityTypeAttribute Owner: <player> <entity type attribute> Type: <entity type>
<player> - Which players entities to check for.
<entity type attribute> - Which type attribute to return.
<entity type> - Which type of entity to check.
~ Returns a reference to the variable keeping the said entity type attribute of said entity type owned by said owner.
CreateEntityAmount Owner: <player> Type: <entity type> at <location>
<player> - Which players entities to create.
<entity type> - Which type of entity to create.
<location> - Where to create.
~ Creates the number of entities of said type for said player at said location (number of entities created is whatever this value is equaled to).
ControlEntityAmount Owner: <player> Type: <entity type> from <location> <unit command> To <location> Direction: <dir>
<player> - Which players entities to control.
<entity type> - Which type of entity to control.
<location> - Where to check for entity.
<unit command> - What sort of command to assign to the entity.
<location> - Where to aim the command.
<dir> - Which direction to aim the command (if applicable)
~ Gives said command to said type of entity at said location to said location with set direction for execution.
l. Entity Actions

CreateEntity Owner: <player> Type: <entity type> at <location> amount: <num>
<player> - Which players entities to create.
<entity type> - Which type of entity to create.
<location> - Where to create.
<num> - How many entities to create.
~ Creates the number of entities of said type for said player at said location.
ControlEntity Owner: <player> Type: <entity type> from <location> <unit command> To <location> Direction: <dir>
<player> - Which players entities to control.
<entity type> - Which type of entity to control.
<location> - Where to check for entity.
<unit command> - What sort of command to assign to the entity.
<location> - Where to aim the command.
<dir> - Which direction to aim the command (if applicable).
~ Gives said command to said type of entity at said location to said location with set direction for execution.
ControlEntityCategory Owner: <player> Category: <entity category> TerrainType: <entity move type> from <location> <unit command> To <location> Direction: <dir>
<player> - Which players entities to control.
<entity category> - Which category of entity to control.
<entity move type> - What sort of travel type the units checked use.

<location> - Where to check for entity.
<unit command> - What sort of command to assign to the entity.
<location> - Where to aim the command.
<dir> - Which direction to aim the command (if applicable).
~ Gives said command to said category of entity at said location to said location with set direction for execution.
AttackEntity Owner: <player> Type: <entity type> from <location> WeaponId: <num> To <location>
<player> - Which players entities to control.
<entity type> - Which type of entity to control.
<location> - Where to check for entity.
<num> - Which Weapon to use for Attack.
<location> - Where to aim the command.
~ Attacks with said Players entities of said type with said weapon aimed at said location.
AttackGround Owner: <player> Type: <entity type> from <location> WeaponId: <num> To <location>
<player> - Which players entities to control.
<entity type> - Which type of entity to control.
<location> - Where to check for entity.
<num> - Which Weapon to use for Attack.
<location> - Where to aim the command.
~ Attacks with said Players entities of said type with said weapon aimed at said location using ‘attack ground’ schematic.
SetAggression Owner: <player> Type: <entity type> from <location> Value: <num>
<player> - Which players entities to set.
<entity type> - Which type of entity to set.
<location> - Where to check for entity.
<num> - What number to set the Agreesion range to.
~ Sets aggression value for said Players entities of said type at said location.
KillEntity Owner: <player> Type: <entity type> at <location> amount: <num>
<player> - Which players entities to kill.
<entity type> - Which type of entity to kill.
<location> - Where to check for entity.
<num> - How many to kill.
~ Kills all entities of said Owner and said type at said location up to the max number stated.
DeleteEntity Owner: <player> Type: <entity type> at <location> amount: <num>
<player> - Which players entities to delete.
<entity type> - Which type of entity to delete.
<location> - Where to check for entity.
<num> - How many to delete.
~ Deletes all entities of said Owner and said type at said location up to the max number stated.
NOTE: The difference between Kill and Delete is that Kill will play the death animation of the Entity, wherein the Delete trigger will just pop it out of existence.

SetEntityLevel Owner: <player> Type: <entity type> at <location> level: Set To <num>
<player> - Which players entities to set.
<entity type> - Which type of entity to set.
<location> - Where to check for entity.
<num> - What level to set to.
~ Sets said num level for all entities of said Owner and said type at said location.
SetEntityInvulnerability Owner: <player> Type: <entity type> at <location> invulnerable: <T/F>
<player> - Which players entities to set.
<entity type> - Which type of entity to set.
<location> - Where to check for entity.
<T/F> - Invulnerable or not (True = yes, False = no).
~ Sets said invulnerability state for all entities of said Owner and said type at said location.
SetEntityAttribute Owner: <player> <entity attribute> Type: <entity type> at <location> <relation> <float>
<player> - Which players entities to set.
<entity attribute> - Which attribute to set.
<entity type> - Which type of entity to set.
<location> - Where to check for entity.
<T/F> - Invulnerable or not (True = yes, False = no).
~ Sets said invulnerability state for all entities of said Owner and said type at said location.
ChangeOwner from: <player> to: <player> Type: <entity type> at <location> default_color: <T/F>
<player> - Which players entities to set.
<player> - Which player is the new owner.
<entity type> - Which type of entity to set.
<location> - Where to check for entity.
<T/F> - Whether or not to use the new players default color or keep as current color

~ Sets said ownership state for all entities of said Owner and said type at said location to new owner.
Set2WayTeleport from: <unit> to: <unit>
<unit> - Portal to other unit

<unit> - Portal to other unit

~ Makes it so that if either unit is garrisoned with an entity, the entity will automatically appear outside of the other unit.
Set1WayTeleport from: <unit> to: <unit>
<unit> - Portal to other unit.
<unit> - Portal at which unit appears.
~ Makes it so that if the first unit is garrisoned with an entity, the entity will. automatically appear outside of the second unit.
PlayAnimOnEntity <file> Owner: <player> Type: <entity type> at <location> repeat: <num>
<file> - Which animation file to play.
<player> - Which players entity(s) to play on.
<entity type> - Which type of entity to play on.
<location> - Where to check for entity.
<num> - How many times to repeat the animation.
~ Plays loaded animation file on said players entities of said type at said location for said number of times (Note: there is no way to create an animation file using the tools provided with the Exigo Scenario Editor).
PlayEffectOnEntities <file> Type: <unit>
<file> - Which effect file to play.
<unit> - Which unit to play the effect on.
~ Plays loaded effect file on said unit (Note: there is no way to create an effect file using the tools provided with the Exigo Scenario Editor).

EntityAvailable Owner: <player> Type: <entity type> <T/F>
<player> - Which players entity.

<entity type> - Which type of entity.
<T/F> - Toggles whether the entity is available or not.
~ Sets said players ability to recruit/build/create said entity.
AutoCast Owner: <player> Type: <entity type> WeaponId: <num> <En/Disable>
<player> - Which players entity.

<entity type> - Which type of entity.
<num> - Which Weapon (by ID).
<En/Disable> - Whether or not the weapon should be available

~ Sets said players entities weapons state to be auto-casting or not.
Weapon Owner: <player> Type: <entity type> WeaponId: <num> <En/Disable>
<player> - Which players entity.

<entity type> - Which type of entity.
<num> - Which Weapon (by ID).
<En/Disable> - Whether or not the weapon should be available.
~ Sets said players entities weapon to be available or un-available for use.
Research Owner: <player> Type: <entity type> <research status>
<player> - Which players entity.
<entity type> - Which type of research entity.
<research status> - What status to select for the Research.
~ Sets said players entities research to be available or un-available for research or already researched.
AddItemToEntity Owner: <player> Type: <entity type> Item: <entity type> at <location>
<player> - Which players entity.

<entity type> - Which type of entity.
<entity type> - Which type of Item entity.
<location> - Where to check for entity.
~ Appends said Item entity onto the Said players entity of said type at said location.
RemoveItemFromEntity Owner: <player> Type: <entity type> Item: <entity type> at <location>
<player> - Which players entity.

<entity type> - Which type of entity.
<entity type> - Which type of Item entity.
<location> - Where to check for entity.
~ Removes said Item entity from the Said players entity of said type at said location.
ProduceEntityType Owner: <player> Type: <entity type> at <location> in: <entity type> amount: <num>
<player> - Which players entity.

<entity type> - Which type of entity to produce.
<location> - Where to check for entity.
<entity type> - Which type of entity to produce/recruit in.
<num> - How many to produce/recruit.
~ Adds said number of said type of entity to the recruit/produce queue in said entity owned by said player.
BuildEntityType Owner: <player> Builder: <entity type> at <location> Building: <entity type> to <location>
<player> - Which players entity.
<entity type> - Which type of entity is to construct the building.
<location> - Where to find entity that is going to construct.
<entity type> - Which type of entity to build.
<location> - Where to construct the entity.
~ Constructs said entity with said players entity from said location at said location.
BuildLinkedEntity Owner: <player> Builder: <entity type> at <location> Building: <entity type> from <location> to <location>
<player> - Which players entity.

<entity type> - Which type of entity is to construct the building.
<location> - Where to find entity that is going to construct.
<entity type> - Which type of entity to build.
<location> - Where to start constructing the entity.
<location> - Where to end construct the entity.
~ Constructs said entity with said players entity from said location from said location touching each building until building reaches second said location.
SaveEntityGroup ID: <text> Owner: <player> Type: <entity type> at <location> amount: <num> bAppend: <T/F>
<text> - Under which ID to save entity Group.
<player> - Which players entities.
<entity type> - Which type of entity to save.
<location> - Where to find entities.
<num> - How many to save.
<T/F> - Whether to overwrite the current entities at list or to append to current list of entities.
~ Creates/Appends to said ID entity group all entities of specified player and entity type at said location up to said number.
LoadEntityGroup <text> To <location>
<text> - From which ID to load entity Group.
<location> - Where to place entities.
~ Loads said ID group to said location (and creates them).
LoadEntityGroup2 <group list> To <location>
<group list> - Group from list which is to be loaded.
<location> - Where to place entities.
~ Loads said group to said location (and creates them).
CopyEntityGroup Source: <text> Dest: <text>
<text> - From which ID to load entity Group.
<text> - To which ID to copy.
~ Loads said ID group into second said ID (overwriting it if anything is there).
CopyEntityGroup2 Source: <entity group list> Dest: <text>
<group list> - Group from list which is to be loaded.
<text> - To which ID to copy.
~ Loads said group from list into second said ID (overwriting it if anything is there).
HighlightObject Owner: <player> Type: <entity type> at <location> num: <num> put signal: <T/F> blinking: <T/F>
<player> - Which players entity.

<entity type> - Which type of entity to highlight.
<location> - Where to highlight entities.
<num> - How many entities to highlight.
<T/F> - Whether or not to place a mini-map signal at unit being highlighted.
<T/F> - Whether or not the highlight blinks.
~ Highlights said number of entity(s) of said owner and type at said location.
ActivateWeaponEntityType Owner: <player> Type: <entity type> at <location> WeaponId: <num>
<player> - Which players entity.

<entity type> - Which type of entity.
<location> - Where to find entity.
<num> - Which Weapon (by ID).
~ Uses said Weapon (by ID) of said entity owned by said player at said location.
EntityMorph Owner: <player> Type: <entity type> at <location> to: <entity type>
<player> - Which players entity.

<entity type> - Which type of entity to morph.
<location> - Where to find entity.
<entity type> - Which type of entity to morph into.
~ Turns said entity of said player into the secondly said entity.
SetEntityColor Owner: <player> Type: <entity type> at <location> Color: <color>
<player> - Which players entity.

<entity type> - Which type of entity to change color.
<location> - Where to find entity.
<color> - Which type color to change to.
~ Turns said entity of said player to said color (regardless of state/ownership).
m. Unit Values

IsItemOnEntity Type: <unit> Item: <entity type>
<unit> - Which unit to check.
<entity type> - Which type of item to check for on the unit.
~ Returns whether or not the said item is on the unit selected.
IsUnitInLocation Type: <unit> <location>
<unit> - Which unit to check.
<location> - Where to check for unit.
~ Returns whether or not the selected unit is at said location.
NumEntityNear Obj: <unit> Owner: <player> Type: <entity type> Radius: <num>
<unit> - Which unit to check around.
<player> - Owner of entities checked for.
<entity type> - Which type of entity to check for.
<num> - How much of an area to check around the unit (radius).
~ Returns how many entities of said type owned by said player are in a said radius around the selected unit
UnitAttribute Type: <unit> <entity attribute>
<unit> - Which unit to check.
<entity attribute> - Which attribute to extract.
~ Returns a reference to the said attribute inside the selected unit.
UnitIsDead Type: <unit>
<unit> - Which unit to check.
~ Returns whether or not the unit is dead.
UnitIsBuiltUp Type: <unit>
<unit> - Which unit to check.
~ Returns whether or not the unit is fully constructed (applies to buildings).
UnitIsGarrisoned in: <unit> is Type: <unit>
<unit> - Which unit to check in.
<unit> - Which unit to check for.
~ Returns whether or not the selected unit is garrisoned within the other selected unit.
n. Unit Actions

ControlUnit Type: <unit> <unit command> To <location> Direction: <dir>
<entity unit> - Which unit to control.
<unit command> - What sort of command to assign to the unit.
<location> - Where to aim the command.
<dir> - Which direction to aim the command (if applicable).
~ Gives said command to the selected unit towards said location with set direction for execution.
ChangeUnitOwner Type: <unit> to: <player>

<unit> - Which unit to set.
<player> - Which player is the new owner.
~ Sets said ownership state for selected unit to set player.
AttackUnit Owner: <player> Type: <entity type> from <location> WeaponId: <num> To <unit>
<player> - Which players entities are to attack the unit.
<entity type> - Which type of entity to control.
<location> - Where to check for entity.
<num> - Which Weapon to use for Attack.
<unit> - Which unit to attack.
~ Attacks with said Players entities of said type with said weapon aimed at selected unit.
BuildEntity <unit> Type: <entity type> at <location>
<unit> - Which unit is to construct the building.
<entity type> - Which type of entity to build.
<location> - Where to construct the entity.
~ Constructs said entity with selected unit at said location.
ProduceEntity <unit> Type: <entity type> amount: <num>
<unit> - Which unit is to train/recruit/produce the entity.
<entity type> - Which type of entity to train/recruit/produce.
<num> - How many entities to train/recruit/produce.
~ Train/recruit/produce said entity with selected unit.
LinkEntity Unit1: <unit> Unit2: <unit>
<unit> - Which unit to link as child.
<unit> - Which unit to link as parent.
~ Links the two selected units in a child/parent fashion.
LinkEntity2 Unit1: <unit> Unit2: <unit> WeaponId: <num>
<unit> - Which unit to link as child.
<unit> - Which unit to link as parent.
<num> - Which Weapon (By ID) to link with.
~ Links the two selected units in a child/parent fashion bound with weapon.
AddItemToUnit Type: <unit> Item: <entity type>
<unit> - Which unit to place the item on.

<entity type> - Which type of Item entity.
~ Appends said Item entity onto the selected unit.
RemoveItemFromUnit Type: <unit> Item: <entity type>
<unit> - Which unit to remove the item from.
<entity type> - Which type of Item entity.
~ Removes said Item entity from the selected unit.
ActivateUnit Obj: <unit> <En/Disable>
<unit> - Which unit to toggle.
<En/Disable> - Whether to enable or disable the unit.
~ Enables or Disables control/ability to act of the selected unit.
UnitMorph Type: <unit> to: <entity type>
<unit> - Which unit to morph.
<entity type> - Which type of entity to morph into.
~ Morphs the selected unit into the said type of entity.
Gate Type: <unit> <En/Disable>
<unit> - Which unit to toggle.
<En/Disable> - Whether to enable or disable the units entrance.
~ Enables or Disables the ability to teleport through the selected unit.
CreateUnit Owner: <player> Type: <entity type> on <unit> pos
<player> - Which players entity to create.
<entity type> - Which type of entity to create.
<unit> - Where to create.

~ Creates one entity of said type for said player at the position of the selected unit.
VisionToEntity Owner: <player> Type: <unit> <En/Disable>
<player> - Which players vision to toggle.
<unit> - Which unit to toggle for.
<En/Disable> - Whether to enable or disable the vision.
~ Enables or Disables the ability of the said player to see the vision of the selected unit.
SaveUnit ID: <text> Type: <unit>
<text> - Under which ID to save the unit.
<unit> - Which unit to save.
~ Creates/Replaces to said ID the selected unit.
LoadUnit <text> To <location>
<text> - Under which ID to load the unit from.
<location> - Where to put the unit.
~ Creates the said unit inside of the said ID at said location.
LoadUnit2 <unit list> To <location>
<unit list> - Under which ID to load the unit from (in list form).
<location> - Where to put the unit.
~ Creates the said unit inside of the said ID (in list form) at said location.
EntityLight Type: <unit> <En/Disable>
<unit> - Which unit to toggle.
<En/Disable> - Whether to enable or disable the units light.
~ Enables or Disables the selected units emitted light (only applies to units that emit light in the first place).
AddTrapEntity Type: <unit>
<unit> - Which unit to add to.
~ Adds a general Trap to the unit (activated when the unit is walked over/touched).
CreateBoulderTrap Type: <unit>
<unit> - Which unit to add to.
~ Adds a boulder Trap to the unit (activated when the unit is killed).
CreatePoisonTrap Type: <unit>
<unit> - Which unit to add to.
~ Adds a poison Trap to the unit (activated when the unit is walked over/touched).
ForceUnitPlayAnimation Type: <unit> AnimationName: <text>
<unit> - Which unit to force.
<text> - Which animation to play.
~ Plays said animation on the selected unit (regardless of what the current action performed is).
EnableGarrison Type: <unit> <T/F>
<unit> - Which unit to toggle.
<T/F> - Whether to enable or disable the units entrance.
~ Enables or Disables the ability to garrison the selected unit.
ActivateWeapon Type: <unit> WeaponId: <num>
<unit> - Which units weapon to toggle.
<num> - Which Weapon (by ID).
~ Uses said Weapon (by ID) of the selected unit.
SetUnitColor Type: <unit> Color: <color>
<unit> - Which units color to change.
<color> - Which color to change to.
~ Turns selected unit to said color (regardless of state/ownership).
o. AI Actions

NOTE: The AI triggers are more likely to crash the game then most other triggers in the game, so use caution when implementing them into scenarios. Also all of the following functions will not do anything if the player is human and not AI.
AddAIArmyComposition Type: <entity types> Num: <num> Ratio: <ratio>
<entity types> - Which entity type to append into the general army makeup.
<num> - How many entities to append.
<ratio> - What ratio of the army will the entities stated above represent.
~ Appends said number of said Entity types as a said ratio of the AI army.
AddAIDefendLocation <location> WaitTime: <sec> sec
<location> - Which location to set.
<sec> - How long will the AI stay in defense of location.
~ Adds a Defense location for the AI, and sets how long they will wait when defending, before moving on.
AddAIAttackLocation <location> WaitTime: <sec> sec
<location> - Which location to set.
<sec> - How long will the AI stay in attack of location.
~ Adds an Attack location for the AI, and sets how long they will wait after attacking, before moving on.

NOTE: The difference between the three following functions is which army is used to patrol (all locations, locations2 and locations3 are patrolled by different ‘armies’.
AddAIPatrolLocation <location> WaitTime: <sec>sec Hold: <T/F>
<location> - Which location to set.
<sec> - How long will the AI waits at the location.
<T/F> - Whether or not to hold position once the location is arrived at.
~ Adds a Patrol point at said location for AI patrol group 1.
AddAIPatrolLocation2 <location> WaitTime: <sec>sec Hold: <T/F>

<location> - Which location to set.
<sec> - How long will the AI waits at the location.
<T/F> - Whether or not to hold position once the location is arrived at.
~ Adds a Patrol point at said location for AI patrol group 2.
AddAIPatrolLocation3 <location> WaitTime: <sec>sec Hold: <T/F>

<location> - Which location to set.
<sec> - How long will the AI waits at the location.
<T/F> - Whether or not to hold position once the location is arrived at.
~ Adds a Patrol point at said location for AI patrol group 3.
NOTE: I have not been able to get the following to triggers to work effectively outside of the Campaign maps.

AssignCampaignAI1 to Player <player> <race> ProduceStyle: <produce style> secFirstRes: <sec> secResWait: <sec> secAttackIntervall: <sec> dwArmyStrength: <num> secResBaseL2: <sec> secResBaseL3: <sec>
<player> - Which players AI to set.
<race> - Which race is this player.
<produce style> - Which produce style to set.
<sec> - How long to resource at first.
<sec> - How long to wait for resources.
<sec> - How long between each attack.
<num> - How strong should the army be.
<sec> - How long until first expansion.
<sec> - How long until second expansion.
~ Sets up campaign AI with said parameters.
AssignCampaignAI2 to Player <player> Nation: <nation>
<player> - Which players AI to set.
<race> - Which race is this player.
~ Sets up campaign AI with said parameters.
SetAIMilitaryUnitRatio Player <player> Type <entity type> Ratio: <ratio>
<player> - Which players AI to set.
<entity types> - Which entity type to set in the general army makeup of said player.
<ratio> - What ratio of the army will the entities stated above represent.
~ Sets the said entity as a set ratio in said players AI.
SetAIMinResearchTime Player MPLAYERS Type MENTITYTYPES Time: DWORD min DWORD sec
<player> - Which players AI to set.
<entity types> - Which entity type to set in the general army makeup of said player.
<ratio> - What ratio of the army will the entities stated above represent.
~ Sets the said entity as a set ratio in said players AI.
SetAIAttackParameters Player <player> FirstAttackTime: <min> min <sec> sec AttackInterval <min> min <sec> sec ArmyResourceStrength <num> ArmyResourceStrengthModify <num>
<player> - Which players AI to set.
<min> - Minute component of how long until the first attack.
<sec> - Second component of how long until the first attack.
<min> - Minute component of how long between each attack thereafter.
<sec> - Second component of how long between each attack thereafter.
<num>- How many resources will be spent on the first army.
<num>- How many resources are added to each army thereafter.
~ Sets the said players AIs parameters for executing attacks.
SetAIArmyComposition MaxResourceValue <num> Priority <num>
<num>- How many resources will be spent on the army.
<num>- How important is the army.
~ Sets the AIs parameters for creating an army and how important the army is.
MaintainBase Player <player> <location> NumTower: <num> NumMaxGoldWorker: <num> NumMaxWoodWorker: <num> NumMaxGemWorker: <num> ID: <variable>
<player> - Which players AI to set.
<location> - Where is the base to be maintained.
<num>- How many towers should be kept at the base.
<num>- Maximum amount of workers/harvesters assigned to gold mining.
<num>- Maximum amount of workers/harvesters assigned to lumbering wood.
<num>- Maximum amount of workers/harvesters assigned to gem mining.
<variable>- where to save the said ID for future reference.
~ Sets the said players AI to maintain a base at said location.
MaintainDefendArmy Player <player> <location> <army composition>Defend: <defend location> ID: <variable>
<player> - Which players AI to set.
<location> - Where is the army is to be maintained from.
<army composition> - Which army composition (from a list) is to defend said location).
<defend location> - Which defend location is to be defended by this army.
<variable>- where to save the said ID for future reference.
~ Sets the said players AI to maintain a defense army from said location to said defense location.
MaintainPatrolArmy Player <player> <location> Patrol <patrol location> <army composition> bTransport: <T/F> ID: <variable>
<player> - Which players AI to set.
<location> - Where is the army is to be maintained from.
<patrol location> - Which patrol location is to be patrolled by this army.
<army composition> - Which army composition (from a list) is to patrol said location list.
<T/F> - Whether or not the army should use a transport within its composition to travel.
<variable>- where to save the said ID for future reference.
~ Sets the said players AI to maintain a patrol army from said location to said patrol locations.
MaintainAttackArmy Player <player> <location> <army composition> Defend: <defend location> Attack: <attack location> AttackTimeInterval: <sec> sec fResourceAdd: <num> bTransport: <T/F> bTransport2: <T/F> bDimensionGate: <T/F> ID: <variable>
<player> - Which players AI to set.
<location> - Where is the army is to be maintained from.
<army composition> - Which army composition (from a list) is to patrol said location list.
<defend location> - Which defend location is to be defended by this army.
<attack location> - Which attack location is to be attacked by this army..
<sec> - How many seconds in between each attack.
<num> - How many resources to add to the creation of the army each interval.
<T/F> - Whether or not the army should use a transport within its composition to travel to attack.
<T/F> - Whether or not the army should use a transport within its composition to travel to defend.
<T/F> - Whether or not the army should use a Dimensional Gate within its composition to travel.
<variable>- where to save the said ID for future reference.
~ Sets the said players AI to maintain a patrol army from said location to said patrol locations.
MaintainProtectArmy Player <player> <location> <army composition> Protect: <location>Radius: <num> ID: <variable>
<player> - Which players AI to set.
<location> - Where is the army is to be maintained from.
<army composition> - Which army composition (from a list) is to defend said location).
<location> - Which location to protect.
<num>- What radius from the location to protect.
<variable>- where to save the said ID for future reference.
~ Sets the said players AI to maintain an army from said location to said location.
MaintainHeadRoomBase Player <player> at <location> amount: <num> ID: <variable>
<player> - Which players AI to set.
<location> - Where is the Head room maintained.
<num> - How much head room is given.
<variable>- where to save the said ID for future reference.
~ Maintains a head room base for said AI player at said location with said number of size.
AIBuildEntity Player <player> Type: <entity type> at <location>
<player> - Which players AI to order.
<entity type>- Which Entity to order constructed.
<location>- Where to construct the entity.
~ Makes the said players AI construct said entity at said location.
DestructAITrigger Player <player> VariableName: <variable>
<player> - Which players AI to delete.
<variable>- Which ID to delete.
~ Deletes any Trigger Function Element associated with the variable given, and the player given.
NOTE: Difference between the next two is that the first is protected by the 2nd, otherwise they function in the same way.

AISetProtectGroup ID: <variable> Player <player> <location>
<variable>- where to set the said ID.
<player> - Which players AI to set.
<location> - Where is the army is to protect.
~ Sets the said protect group ID.
AISetProtectorGroup ID: <variable> Player <player> <location>
<variable>- where to set the said ID.
<player> - Which players AI to set.
<location> - Where is the army is to protect.
~ Sets the said protector group ID.
p. Weather Actions

StartWeatherSet on <MAP> Light1 <NUM from> Light2 <NUM to> <EN/DISABLE>
<MAP> - which map to place the weather effect on.
<NUM from> - The first weather set (to transition from).
<NUM to> - The second weather set (to transition to).
<EN/DISABLE> - The state in which the transition takes place, disable will cause a pop to the other weather set.

~ Selects the Weather Set transition.

q. Sound Actions

PlaySound <sound> InGameAnim: <T/F>
<sound> - Which sound to apply to this element.
<T/F> - Whether or not this is playing during an NIS (always say FALSE).

~ Plays said 2D sound.

PlaySound3D <sound> <location> InGameAnim: <T/F>
<sound> - Which sound to apply to this element.
<location> - Which location to play the sound from.
<T/F> - Whether or not this is playing during an NIS (always say FALSE)

~ Plays said 3D sound at said location.
PlaySoundFromLocation Sound: <sound> at: <location> InGameAnim: <T/F>
<sound> - Which sound to apply to this element.
<location> - Which location to play the sound from.
<T/F> - Whether or not this is playing during an NIS (always say FALSE)

~ Plays said sound from said location.
PlaySoundFromUnit Sound: <sound> From: <unit> InGameAnim: <T/F>
<sound> - Which sound to apply to this element.
<unit> - Which unit to play the sound from.
<T/F> - Whether or not this is playing during an NIS (always say FALSE)

~ Plays said sound from said location.
PlaySoundFromOffset Sound: <sound> From <ms> ms InGameAnim: <T/F>
<sound> - Which sound to apply to this element.
<ms> - Which offset to play the sound from.
<T/F> - Whether or not this is playing during an NIS (always say FALSE).

~ Plays said sound after said number of milliseconds pass.
StopSound Sound: <sound> Immediately: <T/F> InGameAnim: <T/F>
<sound> - Which sound to apply to this element.
<T/F> - Whether to fade the sound (FALSE) or to abruptly stop it (TRUE).
<T/F> - Whether or not this is playing during an NIS (always say FALSE).

~ Plays said sound from said location.
SetSoundVolume Sound: <sound> Volume: <num> % InGameAnim: <T/F>
<sound> - Which sound to apply to this element.
<num> - Which volume to set the sound to.
<T/F> - Whether or not this is playing during an NIS (always say FALSE).

~ Changes the volume number of said sound.
AttachSound Sound: <sound> To <unit types> InGameAnim: <T/F>
<sound> - Which sound to apply to this element.
<unit types> - Which unit to attach the sound to.
<T/F> - Whether or not this is playing during an NIS (always say FALSE).

~ Attaches the sound to the unit, making it resonate from the unit.
MoveSound Sound: <sound> to <location> InGameAnim: <T/F>
<sound> - Which sound to apply to this element.
<location> - Which location to move the sound to.
<T/F> - Whether or not this is playing during an NIS (always say FALSE).

~ Moves the sound to new location (if it has been placed, only works on some sounds).
ResumeSound Sound: <sound> InGameAnim: <T/F>
<sound> - Which sound to apply to this element.
<T/F> - Whether or not this is playing during an NIS (always say FALSE).

~ Resumes sound where it last stopped playing.
ResetSound Sound: <sound> InGameAnim: <T/F>
<sound> - Which sound to apply to this element.
<T/F> - Whether or not this is playing during an NIS (always say FALSE).

~ Restarts the sound from its beginning state.
SetChannelVolume Channel: <channel> Volume: <num> % InGameAnim: <T/F>
<channel> - Which sound channel to change the volume on.
<num> - Which volume to set the sound to.
<T/F> - Whether or not this is playing during an NIS (always say FALSE).

~ Changes the volume number of said sound channel.
ResetChannelVolume Channel: <channel> InGameAnim: <T/F>
<channel> - Which sound channel to change the volume on.
<T/F> - Whether or not this is playing during an NIS (always say FALSE).

~ Changes the volume number of said sound channel to the default value set by the user.
IngameChannelVolume <En/Disable>
<En/Disable> - Whether or not the user can change the volume.

~ Changes whether or not the users volume settings are taken into account.
r. Quest Values

QuestStatus QuestName: <quest> is <quest status>
<quest> - Which quest applies to this trigger element.
<quest status> - Which status to check for on the quest.

~ Returns True or False based on whether the state given is that of the quest specified.

ObjectiveStatus ObjectiveName: <objective> is <quest status>
<objective> - Which objective applies to this trigger element.
<quest status> - Which status to check for on the objective.

~ Returns True or False based on whether the state given is that of the objective specified.

s. Quest Actions

CreateQuest ID: <text> <quest type>Title: <text> Description: <quest>
<text> - Under which ID will the quest be known within the trigger editor.
<quest type> - Which type of quest is this (main or optional).
<text> - The text which will appear in the list of quests in game.
<text> - The text which will appear in the quest description when this quest is selected in game.

~ Creates a quest under said ID of said type with said Title and description.
ModifyQuest QuestName: <quest> Status: <quest status>
<quest> - Which quest applies to this trigger element.
<quest status> - Which status to set on the quest.

~ Changes the status of said quest.

AddObjective ID: <text> QuestName: <quest> Description: <text>
<text> - Under which ID will the quest be known within the trigger editor.
<quest> - Which quest applies to this trigger element.
<text> - The text which will appear in the quest description.

~ Creates an objective under said ID onto said quest.
ModifyObjective ObjectiveName: <objective> Status: <quest status> Description: <text>
<objective> - Which objective applies to this trigger element.
<quest status> - Which status to set on the objective.
<text> - The text which will appear in the quest description.

~ Creates an objective under said ID onto said quest.
ShowQuest QuestName: <quest>
<quest> - Which quest applies to this trigger element.
~ Shows said quest in a right hand side pop-up on the GUI.

t. Map Values

ModifyMapBoundaries Map: <map> Direction: <side>
<map> - Which maps boundaries to get.
<side> - Which side of the boundary to return.

~ Returns a reference variable to the length of the said side.
u. Map Actions

SetMapBoundaries Map: <map> From X: <num> Y: <num> To X: <num> Y: <num>
<map> - Which maps boundaries to change.
<num> - Origin X of rectangle.
<num> - Origin Y of rectangle.
<num> - Target X of rectangle.
<num> - Target Y of rectangle.

~ Changes the boundaries of said map to said defined rectangle
ExtendMapBoundariesToMax Map: <map>
<map> - Which maps boundaries to change.

~ Changes the boundaries of said map to maximum proportions.
SightRangeModifier Map: <num> Value: <num>
<num> - Which map to set sight range modifier.
<num> - what value to modify the sight of all units by.

~ Modifies the sight range of all units on said map by said amount.
v. Physics Actions

SetPhysicsMapBoundaries Map: <map> From X: <num> Y: <num>To X: <num>Y: <num>
<map> - Which maps physics boundaries to change.
<num> - Origin X of rectangle.
<num> - Origin Y of rectangle.
<num> - Target X of rectangle.
<num> - Target Y of rectangle.

~ Changes the Physics boundaries of said map to said defined rectangle.
w. Transmission Values

TransmissionIsInProgress

~Returns whether or not a transmission is currently occurring
x. Transmission Actions

TransmissionVision at <location> Duration: <sec> sec
<location> - Where to give vision.
<sec> - How many seconds to give vision for.

~ Gives vision to all players at said location for said amount of seconds.
TransmissionSignalFrom <unit> and Owner: <player> Type: <entity type> in <location> <signal>
<unit> - What unit is to give off ping.
<player> - Owner of entity to give of ping.
<entity type> - Type of entity to give of ping.
<location> - location of entity to give of ping.
<signal> - Type of ping to give of.

~ Gives off said type of ping/signal from said entities and/or unit.
TransmissionHighlight <unit> and Owner: <player> Type: <entity type> in <location> Num: <num>
<unit> - What unit to highlight.
<player> - Owner of entity to highlight.
<entity type> - Type of entity to highlight.
<location> - location of entity to highlight.
<num> - Number of highlights to give.

~ Highlights said entities and/or unit for said number.
TransmissionDelay After: <ms> ms
<ms> - How many milliseconds delay.

~ Delays the trigger for said number of milliseconds while staying in transmission mode.
PerformTransmission InGame:<T/F> Sound:<sound> ShowUnitPortrait:<type> Text: <text> Duration: <ms> ms Last: <T/F>Narrator: <T/F>

<T/F>– Whether or not this is performed during an NIS (should always stay FALSE, as NISes cannot be created).
<sound> – Which sound should be played when Transmission begins.
<type> – Which unit portrait should be animated during Transmission.
<text> – Which text should be put on screen during transmission.
<ms> – How many milliseconds the Transmission will last.
<T/F>– Will this Last (should always stay FALSE, as NISes cannot be created).
<T/F>– Is the Narrator saying this (should always stay FALSE, as NISes cannot be created).
~ This Function Element combines a PlaySound, AnimateUnitPortrait and WriteLanguageText Trigger Element into one.

B. Closing

These functions of the map editor can be used for many different kids of scenarios. Hopefully this assists you in the creation of maps for whomever reads it, please send/comments and append requests to me (Alexei Kozlenok), or Joseph Hatcher.
[image: image1.png]

PAGE
41

