
[image: image16.emf]
Universal CORE (UCORE)
Description and Implementation Guide (DIG)
Version 1.0.0
UCORE V1.0.0
1 October 2007
Developed by UCORE Methodology Working Group for the SESGG
Universal Core (UCORE)
Description and Implementation Guide (DIG)
Version 1.0.0
1 October 2007
Authors:
UCORE Methodology Working Group
POCs:

Dan Green (Dan.Green@navy.mil)

Kevin M. Kelly (kkelly@mitre.org)

Leo McNeill (lmcneill@mitre.org)

EXECUTIVE SUMMARY
Historically, Programs have defined their own vocabularies and information exchange schemas, limiting the amount of understandable information that can be shared outside of pre-engineered interfaces. Communities of Interest (COI) have helped by developing common vocabularies within the COI to enable increased information sharing; however, sharing information outside the COI is still a challenge and is typically solved by using complex mediations. The development of COI vocabularies however has demonstrated that a common, minimal set of “words” span community vocabularies. Agreeing to the definition and representation of these words will reduce the amount of mediation that will need to be done for cross-community information sharing and is the goal of Universal Core (UCORE).

UCORE supports the principles of the Department of Defense (DoD) and Intelligence Community (IC) Data Strategies by defining a small set of common data elements (i.e., words) that are implemented in a lightweight information exchange schema. These common data elements include when and where. Implementation of UCore will enable these common elements to be understood by systems across the DoD and IC. This will allow a level of information sharing between unanticipated users and systems, will reduce the time and cost to implement information sharing across the DoD and IC enterprise, and will provide a framework and a set of elements that lay the foundation for sharing information, allowing Communities of Interest and associated programs to focus on their community specific needs.

Universal Core’s goal is to make it easy for programs to share information within and across communities. It is implemented as an information exchange standard and consequently, focuses on the sharing of information across systems, not how a particular system stores its data. However, UCore is not meant to solve all things for all stakeholders. Community of Interests and Programs will still need to determine what level of UCore adoption is appropriate for their needs and information exchanges.

PURPOSE
The primary purpose of this document is to provide sufficient information for application developers to define information exchange schemas within the UCORE framework. The document has two specific objectives:

· A technical description of UCORE V1.0 data framework, vocabulary and exchange schemas.

· A description of the concepts and design patterns embodied in UCORE V1.0 that will enable application developers to extend from the UCORE in an orderly fashion.

GUIDING PRINCIPLES

The following are the guiding principles for the UCORE:
· Build a strong foundation

· Ensure that Policy, Governance, Definition, and Test processes exist to support development, implementation and maintenance

· Pilot and evolve UCORE to maintain joint community, enterprise-wide perspective for common terms

· Avoid being the “standard for all things for all COIs”

· Build Joint from the start

· DoD and IC communities

· Harmonize across as many COIs as practical

· Keep it small, simple to implement, and standards based

· Include only a few of the most common terms

· Make is simple to implement for widespread adoption

· Leverage broadly accepted commercial standards, tools, and expertise

· Provide a starting point for COIs to extend as needed

· Leverage Ucore’s inherent interoperability across COIs

· Allow COIs to focus on value added, mission-specific data
DEFINING THE UCORE
The Universal CORE (UCORE) is a joint Department of Defense (DoD)/Intelligence Community (IC) effort to agree on a common baseline standard vocabulary to enable information exchange.

The UCORE

· Is a reusable approach and a set of constructs and design artifacts to improve the sharing of information that are fundamental to most operational processes

· Provides a simple starting point for teams to extend as they respond to more complex data sharing opportunities

· Reduces mediations/translation between systems for a small number of the most valuable operational concepts
· Is standards based – government and industry standards

· Is a small core with the following attributes

· Suitability – include only a few critical objects

· Simplicity – for widespread adoption

· Extensibility – to meet individual community needs

· Leveragability – of existing standards, tools, and expertise

· Supportability – for long-term success

The UCORE V1.0 data schema provides:

· ways to describe “what, when, where” types of information

· minimal sets of terms in the core

· minimal set of exchange schemas to promote cross-community information sharing
· appropriate use of open and Government standards

· mechanisms to support extensibility by COIs and systems as needed

VISION OF THE UCORE
To support the broader goals of information sharing, UCore will span DoD, IC, DoJ, DHS, State and Local communities to enable the broadest scope of information exchanges. As UCore is adopted across the communities, it is envisioned that UCore will accommodate new requirements from the partner federal agencies, while maintaining one of its key principles - to remain a small set of essential concepts and not attempt to solve all things to all stakeholders. Additionally by applying lessons learned from implementations and piloting, UCore will continue to be enhanced and refined (including the schema, policy, governance, and test and evaluation). To support this growth, the governance structure managing the UCore will also grow to provide visibility and development of the UCore among all adopting partners.

Table of Contents

111
Introduction

111.1 Background

111.1.1 Authority

121.1.2 UCORE Value Statement

121.2 Purpose of this Guide

121.3 Standards Notations and Conventions

121.3.1 Key Standards

131.3.2 XML Schema

131.3.3 XML Namespaces

131.3.4 UML Notation

141.3.5 XML Instance Document Fragments

141.4 Inclusion Criteria

151.5 Document Organization

162
UCORE Framework

162.1 Example – Position Reporting – “What”, “When”, “Where”

172.1.1 Object Identifier

172.1.2 ID, URI, and Linkable Properties

182.2 The UCORE Logical Model

192.2.1 UCORE Logical Model – Classes

192.2.2 UCORE Logical Model – XML Encoding

202.3 Tear-line Security Model

212.4 uc:type and Controlled Vocabularies

233
UCORE Classes

233.1 UCORE Taxonomy

233.2 uc:Object

243.2.1 uc:StandardObjectMD

253.3 uc:StaticObject

253.3.1 Bounded By and Valid Time

263.4 uc:DynamicObject

273.4.1 uc:MovingObjectStatus

283.4.2 uc:DynamicTopic

283.5 uc:MovingObject

283.6 uc:Collection

293.7 uc:Observation

314
Creating UCORE Application Schemas

314.1 Instance Document Example

314.2 Extensibility Pattern

344.3 Collection Member Properties

364.4 Additional Geometries

364.5 Simple Vocabulary and Data Type Reuse

364.6 UCORE Schema Simplification and Profiling

374.7 Substitution Groups

385
Summary

39A.
UCORE V1.0 Vocabulary

39A.1 UCORE Objects

39A.1.1 UCORE Properties – “what”

40A.1.2 UCORE Properties – “where”

42A.1.3 UCORE Properties – “where” Datums

42A.1.4 UCORE Properties – “when”

42A.1.5 UCORE Properties – uc:PropertyTypes

44A.2 UCORE Metadata Types

44A.3 ICISM Attributes

46A.4 W3C Xlink Attributes

47B.
Controlled Vocabularies

47B.1 Units of Measure

48B.2 Coordinate Reference Systems

49C.
UCORE V1.0 – Key Standards

50D.
References

52E.
Available GML Geometries

54F.
Creating DDMS Metacards

Table of Figures

14Figure 1 -- UML Notation

14Figure 2 -- XML instance fragment

14Figure 3 – “Simplified” XML instance fragment

16Figure 4 -- UCORE Position Report Instance

17Figure 5 -- SSN and VIN Instance

17Figure 6 -- Association and Reference Instance Code

18Figure 7 – Xlink Attribute Group

18Figure 8 -- UCORE Object-Property Pattern

19Figure 9 – UCORE Logical Model UML

20Figure 10 – Notional Object-Property Instance

20Figure 11 – Notional Object-Property UML

21Figure 12 – “Tear-Line” Security Model Instance

21Figure 13 -- uc:type property

22Figure 14 -- uc:type example

23Figure 15 -- UCORE Taxonomy UML

23Figure 16 – uc:Object Instance

24Figure 17 -- uc:Object UML

24Figure 18 -- uc:StandardObjectMD Instance

25Figure 19 -- uc:StaticObject UML

25Figure 20 -- uc:StaticObject Instance

26Figure 21 -- gml:boundedBy Instance

26Figure 22 -- gml:validTime Instance

27Figure 23 -- uc:DynamicObject UML

28Figure 24 -- uc:MovingObjectStatus (XML fragment)

28Figure 25 -- uc:DynamicTopic Instance

29Figure 26 – uc:Collection UML

29Figure 27 -- uc:Collection Instance

30Figure 28 -- uc:Observation UML

30Figure 29 -- uc:Observation Instance

31Figure 30 – ns:PlacemarkType

31Figure 31 – ns:Placemark Instance

32Figure 32 -- ns:PlacemarkType with Style Elements

32Figure 33 -- ns:PlacemarkType with Style UML

32Figure 34 – ns:PlacemarkType with Style Elements Instance

33Figure 35 – ns:PlacemarkMDType

34Figure 36 -- ns:Placemark UML

34Figure 37 -- ns:Placemark with Metadata Instance

35Figure 38 -- ns:Document and ns:Folder

35Figure 39 -- ns:CollectionMemberProperty

36Figure 40 -- ns:Folder Instance

36Figure 41 – Geometry Import

Revision History
	Revision
	Date
	Editor
	Changes Made

	0.5
	15 AUG 07
	D. Green
	Initial Outline and Content

	0.9
	28 AUG 07
	L. McNeill
	Initial Implementation Guide Content

	1.0.CD.1
	4 SEPT 07
	K. M. Kelly
	Consolidation of above material

	1.0.CD.2
	5 SEPT 07
	K. M. Kelly
	Updated appendices. Inserted bookmarks/hyperlinks. Completed section 1.4.

	1.0.CD.2
	6 SEPT 07
	K. M. Kelly
	Add section on XML encoding rules.

	
	6 SEPT 07
	K. M. Kelly
	Update section on object linking.

	
	7 SEPT 07
	K. M. Kelly
	Update the IC ISM tear-line section

	1.0.CD.3
	25 SEPT 07
	L. McNeill
	Updates based on reviewers comments

	1.0.0
	30 SEPT 07
	K. M. Kelly/
L. McNeill
	Updates to Executive Summary

Text editing on all sections

Streamlined appendices
Update bookmarks/references/document links

1 Introduction

1.1 Background
The Universal Core (UCORE) builds from earlier work on the US Air Force (USAF) Cursor-on-Target (CoT), the Family of Interoperable Pictures (FIOP) Common Battlespace Object (CBO), Net-Enabled Command Capabilities (NECC) Data Architecture Framework, and the STRATCOM Strike Community of Interest (COI) Spiral 1 activities.

The UCORE strikes a balance between two competing objectives: global utility and local specificity. UCORE is a framework that defines a small number of key concepts (“what, when, where, and who (future)”) constructs to enable net-centric information sharing across communities. The formal, machine-readable description of these concepts (e.g., “what”, “when”, and “where”) and constructs (e.g., exchange schemas) will improve interoperability by permitting the automated sharing of information resources across a broad and diverse communities. UCORE is intended to provide the foundation for a Net-Centic information sharing environment by supporting (see Section ‎1.4):
· Understandability – shared information across communities
· Trustability – tagging for security and dissemination controls

· Discoverability – via coupling with Discovery Metadata
· Suitability – include only a few critical objects

· Simplicity – for widespread adoption

· Extensibility – to meet individual community needs

· Leveragability – of existing standards, tools, and expertise

· Supportability – for long-term success
The UCORE Description and Implementation Guide (DIG) provides a reference and extensibility rules that serve as a starting point for Communities of Interest (COIs) intra- and inter-COI information sharing needs. COIs can extend the core concepts and tailor them to meet their particular information sharing requirements.
1.1.1 Authority
The Universal Core initiative is an enabler to respond to Presidential Directives, Executive Orders and National Security legislation directing the creation of an information sharing environment to facilitate “automated sharing of… information among appropriate agencies.” It supports and is compliant with Department of Defense (DOD) Directive 8320.2 “Data Sharing in a Net-Centric Environment” and the Federal Enterprise Architecture. The Universal Core is formally managed under DoD/ Intelligence Community (IC) charter signed by the Assistant Secretary of Defense for NII and the Office of the Director of National Intelligence.

As the work continues, the concrete implications of these requirements for the design will be worked out and documented. Controlled revisions will reflect changes based on stakeholder requirements, pilot implementation lessons learned and community consensus. The UCORE formalism will allow a useful level of constraint checking to be described and validated for a wide spectrum of applications.
1.1.2 UCORE Value Statement
The objectives of the UCORE are:

· Define a reusable method and set of artifacts to improve the sharing of information concepts that are fundamental to most operational processes
· Provide a starting point for teams to respond to complex data sharing opportunities

· Provide risk reduction through modularity and standards profiling (e.g., sub-setting)

· Reduce mediation/translation between systems for a small number of the most valuable operational concepts

· Provide the foundation for reference queries used to initiate richer COI specific content discovery (e.g., filtering)
1.2 Purpose of this Guide
The primary purpose of this document is to provide sufficient information for application developers to define information exchange schemas within the UCORE framework. The document has two specific objectives:

(1) A technical description of UCORE V1.0 data framework, vocabulary and exchange schemas.

(2) A description of the concepts and design patterns embodied in UCORE V1.0 that will enable application developers to extend from the UCORE in an orderly fashion.

1.3 Standards Notations and Conventions
1.3.1 Key Standards

UCORE V1.0 is based on a number of open and government standards. Some of the key standards include:

· Geography Markup Language (GML) [see GML 3.2.1]
· Intelligence Community (IC) Information Security Markings (ISM) [see IC ISM}
· DoD Discovery Metadata Specification (DDMS) [see DDMS]
For a more detailed description of the standards utilized by UCORE V1.0 (see Appendix ‎C). For a more detailed description of the linkage between UCORE V1.0 and DDMS (see Appendix ‎F).
1.3.2 XML Schema
Concepts are good. Patterns are good. But software developers need data specification from which they can develop concrete solutions. UCORE V1.0 provides this. The UCORE V1.0 constructs are using the W3C XML Schema language [XML Schema, Part 1] and [XML Schema, Part 2] to describe the syntax of conformant data instances.
While a reader who is unfamiliar with XML Schema may be able to follow the description here in a general fashion, this document is not intended to serve as an introduction to XML Schema Language. In order to have a complete understanding of UCORE, it is necessary for the reader to have a working knowledge of XML.
For the rest of the community, we provide textual descriptions, UML diagrams, and several definition tables that elaborate on the UCORE concepts.
1.3.3 XML Namespaces
UCORE V1.0 is based on a number of open and government standards. Each standard is governed by a separate organization that maintains the vocabulary within a specific XML Namespace. Table 1details the XML Namespaces utilized by UCORE V1.0. Other namespaces (e.g., “ns:”) and Uniform Resource Names (URNs) used in examples contained in this document are for illustrative purposes and should not be construed as a normative namespace prefix.
	Prefix
	XML Namespace/URN
	Specification

	uc
	http://metadata.dod.mil/mdr/ns/ucore/1.0
	This specification

	icism
	urn:us:gov:ic:ism:v2
	IC ISM

	xs
	http://www.w3.org/2001/XMLSchema
	XML Schema

	gml
	http://www.opengis.net.gml/3.2
	GML 3.2.1

	xlink
	http:///www.w3.org/1991/xlink
	Xlink 1.0

Table 1 -- XML Namespaces/URNs within UCORE specification

1.3.4 UML Notation
Some readers find it useful to visualize the UCORE structures via Unified Modeling Language (UML) diagrams (see UML). Unfortunately, XML and UML data structures do not have a deterministic data mapping (i.e., one for one). To perform this transformation consistently and without loss of data can become complex. Therefore we have created a UML profile that leaves out some data artifacts included in UCORE V1.0 in favor of presenting a simple and clear representation of the most critical data aspects being illustrated. It is incumbent on the reader to understand that the enclosed UML diagrams are intended for illustrative purposes and are not sufficient for complete code generation or any other form of model driven development. The UML notations employed is the following:

[image: image2]
Figure 2 -- UML Notation
1.3.5 XML Instance Document Fragments
The UCORE XML instance documents presented in this guide have been streamlined to enhance comprehensibility. As an example, the UCORE framework supports patterns for a security marking “tear-line” model (see Section ‎2.3) and XML document linking (see Section ‎2.1.2). For simplification, these attributes are sometimes removed from example code. Additionally, other non-essential elements are replaced with a “…” shorthand notation. Below are two XML instance document fragments. Figure 3 provides a standard XML instance fragment. Figure 4 provides that same fragment using the above simplifications.
(1) <uc:MovingObjectStatus gml:id="MOS_0001" icism:ownerProducer="USA"
(2)

icism:classification="U">

(3)
<gml:validTime>
(4)

<gml:TimeInstant gml:id="T_0001">
(5)

<gml:timePosition>2001-12-17T09:30:47.0Z</gml:timePosition>
(6)

</gml:TimeInstant>
(7)
</gml:validTime>
(8)
<uc:location>
(9)

<gml:Point gml:id="P_0001">
(10)

<gml:pos>0 0 0</gml:pos>
(11)

</gml:Point>

(12)
</uc:location>

(13) </uc:MovingObjectStatus>

Figure 3 -- XML instance fragment
(14) <uc:MovingObjectStatus>
(15)
<gml:validTime>…</gml:validTime>
(16)
<uc:location>
(17)

<gml:Point>…</gml:Point>
(18)
</uc:location>
(19) </uc:MovingObjectStatus>
Figure 4 – “Simplified” XML instance fragment
1.4 Inclusion Criteria
In determining technical constructs upon which to base UCORE, the Common Core Task Force (CCTF) identified and applied five broad criteria. These categories are:

· Suitability: A minimal set of objects will comprise the UCORE. Each object provides significant benefit to interoperability across a wide range of systems that span government agencies and military services.
· Simplicity: UCORE is simple to explain, understand, implement, and test. Performance measurements related to this criteria, include implement timelines, costs, and engineering “correctness”, without extensive assistance.
· Extensibility: Systems and communities can extend UCORE to meet their richer information interoperability needs, while maintaining a level of interoperability across existing and potential future implementations.
· Supportability: UCORE will be supported and maintained via a stewarding organization and various community activities.
· Leveragability: UCORE leverages existing commercial, government, or de-facto standards associated with the semantics and syntax development of UCORE artifacts.
1.5 Document Organization
The remainder of the document is organized as follows:

· Section ‎2 – UCORE Framework starts with a simple example and goes on to provide an overview of the UCORE framework and fundamental concepts and patterns.
· Section ‎3 – UCORE Classes provides a description of the UCORE data types, UCORE exchange schemas. It also describes the UCORE object taxonomy, defining classes and data types. Extensive XML examples and UML diagrams are provided throughout.
· Section ‎4 – Creating UCORE Application Schemas provides an overview of developing application schemas with the UCORE. It walks through a step-by-step process of extending UCORE objects to support “richer” application objects.
· Section ‎5 – Summary provides a summary of the most critical high-level concepts within this document.

Additionally, this document includes several appendices that provide further detail related to UCORE V1.0.

2 UCORE Framework
This section describes the UCORE framework and explains the rationale for fundamental UCORE design decisions. Before this framework is introduced, a UCORE instance document example is presented to facilitate discussion of UCORE concepts.
2.1 Example – Position Reporting – “What”, “When”, “Where”
Position reporting is critical across a whole spectrum of business domains: military applications – reporting of friendly and enemy assets; logistics applications – reporting of cargo trucks. At the heart of this “situational awareness”, is the “what”, “where”, “when” of the associated entity. Figure 5 is an example position report.
(20) <?xml version="1.0" encoding="UTF-8"?>
(21) <uc:MovingObject
gml:id="MO_0001"

(22)
icism:ownerProducer="USA" icism:classification="U"
(23)
xmlns:uc="http://metadata.dod.mil/mdr/ns/ucore"
(24)
xmlns:gml="http://www.opengis.net/gml/3.2"
(25)
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
(26)
xmlns:icism="urn:us:gov:ic:ism:v2">

(27)
<uc:StandardObjectMD>
(28)

<uc:type codeSpace="http://www.army.mil/ptype">ABCD1234</uc:type>
(29)
</uc:StandardObjectMD>
(30)
<gml:identifier codeSpace="urn:us:pid">1700012</gml:identifier>
(31)
<gml:boundedBy .../>
(32)
<gml:validTime .../>
(33)
<gml:history>
(34)

<uc:MovingObjectStatus gml:id="MOS_0001">
(35)

<gml:validTime>
(36)

<gml:TimeInstant gml:id="T_0001">
(37)

<gml:timePosition>…<gml:timePosition>
(38)

</gml:TimeInstant>
(39)

</gml:validTime>
(40)

<uc:location>
(41)

<gml:Point gml:id="P_0001">
(42)

<gml:pos>0 0 0</gml:pos>
(43)

</gml:Point>
(44)

</uc:location>
(45)

</uc:MovingObjectStatus>
(46)
</gml:history>
(47) </uc:MovingObject>
Figure 5 -- UCORE Position Report Instance
This example highlights several concepts. Line (3) has “icism” attributes that specify the security attributes associated with this position report. For example, this report is unclassified (e.g. “U”). Lines (4) – (7) define the XML namespaces that were described in Section 1. The “what”, “when”, and “where” are also captures in this example:

“what” – lines (8) – (12)
“when” – line (14) and line (17) – (21)
“where” – line (13) and line (22) – (26)
These concepts will be discussed extensively in Section ‎3.
2.1.1 Object Identifier
One concept depicted in the position report example is that of “Identity”. The identity of the reported resource is specified in line (11). The “gml:identifier” element provides for a domain based unique identification of the asset in question (i.e., the uc:MovingObject). The gml:identifier element includes a mandatory gml:codeSpace attribute. This attribute acts as a reference that specifies the naming authority (i.e., a particular controlled vocabulary) from which the name is derived. So in the above example, this specifies a military platform with “Unit Reference Number (URN)” 1700012 and this controlled vocabulary is referenced by a unique uniform resource location (URL). [Note: These examples are for illustrative purposes only the URNs and URLs used in these examples are not intended to represent actual controlled vocabularies or web resources.]
Two other examples of object identifier are: (1) the identifier of a person may be a social security number, while (2) the identifier for a car might be the vehicle identification number (VIN). Hence any report about a single individual or car should repeatedly provide the same identifier value. So the identifier for a specific individual or car may look as follows:
(48) <gml:identifier codeSpace="urn:us:SSN">123-45-6789</gml:identifier>
(49) <gml:identifier codeSpace="urn:us:VIN">XYZ123456789</gml:identifier>
Figure 6 -- SSN and VIN Instance
2.1.2 ID, URI, and Linkable Properties
The position report example also supports the concept of “linking. That is the navigation to a specific element within a XML instance document. UCORE V1.0 supports object linking via the W3C Xlink standard [see Xlink]. Within the confines of an XML instance document, this is done via a reference to a schema “ID” data type, (e.g. gml:id attribute). In the position report example, the components of the document that can be “linked” are specified via a gml:id (line (2), (16), (18), and (23)). Figure 6 shows an example of a gml:id handle and a link (line 3) to that handle.
(50) <uc:MovingObject gml:id="MO_0001"
(51)
icism:ownerProducer="USA"
icism:classification="U">
(52) <uc:link xlink:href=”#MO_0001”/>
Figure 7 -- Association and Reference Instance Code
Linking allows one to reuse object instances that are either internal or external to the instance document, and allows these links to delineate association roles between classes in an XML info set. The entire Xlink attribute group schema code is shown in the figure below.
(53) <attributeGroup name="simpleLink">
(54)
<attribute name="type" type="string" fixed="simple"
(55)
form="qualified"/>
(56)
<attribute ref="xlink:href"/>
(57)
<attribute ref="xlink:role"/>
(58)
<attribute ref="xlink:arcrole"/>
(59)
<attribute ref="xlink:title"/>
(60)
<attribute ref="xlink:show"/>
(61)
<attribute ref="xlink:actuate"/>
(62) </attributeGroup>
Figure 8 – Xlink Attribute Group
Xlink attributes are used in UCORE to implement associations between objects by references. The appearance of an “xlink:href” on a UCORE property indicates that the value of the property may be found by traversing the link to the data pointed to by the xlink:href attribute value. Other Xlink attributes provide additional semantics, like the role of the relationship. The most useful of the XLink attributes are:
· xlink:href -- identifier of the nature of the target resource, given as a URI
· xlink:role -- description of the nature of the target resource, given as a URI
· xlink:arcrole -- description of the role or purpose of the target resource in relationship to the subject resource, given as a URI
· xlink:title -- description of the association or the target resource, given as text
For a more complete definitions of these and other Xlink components, including their use in extended Xlink association maps, refer to the Xlink specification [Xlink].
2.2 The UCORE Logical Model

The UCORE logical model is based on a data model that follows a Subject-Predicate-Object pattern as originally delineated in [RDF] and now appearing in semantic standards such as Ontology Web Language (OWL) [OWL]. The pattern is important to the extensibility of UCORE because it clearly discerns semantic differences between classes and properties as defined in [OWL-OV]. The UCORE logical data model is described herein using terms defined in the OWL Language Reference [OWL-LR] and OWL Language Guide [OWL-LG]. Careful examination of the position report example reveals an XML nesting that follows a naming convention as follows:

(63) PATTERN

EXAMPLE EXTRACT
(64) <UpperCamelCase>

<uc:MovingObject>

(65)
<lowerCamelCase>

 <gml:history>
(66)

<UpperCamelCase/>

<uc:MovingObjectStatus/>
(67)
</lowerCamelCase>

 </gml:history>
(68) </UpperCamelCase>

</uc:MovingObject>
Figure 9 -- UCORE Object-Property Pattern
The upper camel-case tags represent classes, while the lower camel case tags represent class properties (i.e., data attributes). In the position report example, uc:MovingObject, uc:MovingObjectStatus, gml:TimeInstance and gml:Point elements are all instantiation of classes within the UCORE logical model. Elements such as gml:history and uc:type are object and data type properties respectively.
Our design pattern for categorizing UCORE classes uses four simple bins to create a simple meta-model. This meta-model is helpful in understanding the rationale behind the structuring of model classes, XML schema elements and XML schema complex types. The logical model is depicted in Figure 10.
[image: image3.png]uc:Object [@————— uc:Tof

uc:Metadata

Figure 10 – UCORE Logical Model UML
2.2.1 UCORE Logical Model – Classes
The UCORE Logical Model classifies entities as either “Objects”, “Properties”, “Topics”, or “Metadata” classes. Unfortunately the overloading of terms (e.g. object and property) within this document is unavoidable, given the different standards that UCORE leverages. The four meta-model class types are defined as:

· Object classes are UCORE nouns. They provide the taxonomy of business entities (i.e., assets, resources and artifacts). Understanding UCORE object taxonomy is critical to building a UCORE application schema.
· Property classes are sets of data characteristics that define the nature of an object, topic or metadata class. Aggregating data properties into a property class is often done to foster reuse of property sets.
· Topic classes only exist within the context of an object. Topics typically define the state of the context object (i.e., parent or containing object). The state may be either a dynamic or persistent aspect of an object.
· Metadata classes provide amplifying data associated with the creation or categorization of the subject object or topic.
Using the [OWL] vocabulary, objects (i.e., our logical model classes) are said to have properties (i.e., data attributes). There are two types of semantic properties. They are data type properties and object properties. Data type properties, also called literal properties, are traditional, non-complex language types, such as strings, integers and Booleans. Object properties are used to relate different classes to one another, and are modeled as aggregations or associations in the UCORE logical model.
2.2.2 UCORE Logical Model – XML Encoding
To encode the UCORE logical model as an XML data structure, we follow the lexical convention where:
· Classes and Properties can generate both XML elements and types to support modularity.

· Classes are instantiated as XML elements with a conceptually meaningful name in UpperCamelCase
· Classes are instantiated as XML complex types with an UpperCamelCase name ending in the word “Type

· Properties are instantiated as XML elements whose name is in lowerCamelCase
· Properties are instantiated as complex or simple types with an UpperCamelCase name ending in the word “PropertyType”
This convention provides explicit semantic relationships and distinctions between complex schema elements. The figure below illustrates this approach
(69) <ObjectClass>
(70)
<dataTypeProperty1/>
(71)
<dataTypeProperty2/>
(72)
<objectProperty1>
(73)

<MetadataClass>
(74)

<dataTypeProperty2/>
(75)

<dataTypeProperty3/>
(76)

</MetadataClass>
(77)
</objectProperty1>
(78)
<objectProperty2>
(79)

<TopicClass>
(80)

<dataTypeProperty5/>
(81)

<dataTypeProperty6/>
(82)

</TopicClass>
(83)
</objectProperty2>
(84) </ObjectClass>
Figure 11 – Notional Object-Property Instance
Given the tagging pattern above, the UML model for the code fragment above is represented as in Figure 12.
[image: image4.png]ObjectClass MetadataClass

-dataTypeProperty T obfectPropertyl dataTypePropertyd
dataTypePropery2 (@ |delaTypeProperyd

I TopicGiass
biectPropery2 -dataTypeProperty5.

dataTypeProperys

Figure 12 – Notional Object-Property UML
2.3 Tear-line Security Model

Access must be unambiguous, consistent, and trusted. UCORE V1.0 utilizes [IC ISM] to “tag” UCORE objects and its constituent components with security metadata markings. UCORE and its detail extensions may be (security) marked independently.
This alignment facilitates UCORE implementers to meet the required implementation of security markings as directed by the Controlled Access Program Coordination Office (CAPCO) using the Intelligence Community –Information Security Markings (IC ISM). Common implementation of security markings and dissemination controls is a key enabler of cross-domain interoperability (see IC ISM and Appendix ‎A.3 for additional details).
To describe the “tear-line” model, we introduce an intuitive example –sharing of a text document across security domain boundaries. In this example, each component of the document (e.g., chapters, paragraphs) would be “tagged” with security metadata that provides the security marking for that document component. When the document is to be shared across security domain boundaries only the components of the document that can be release (based on the security markings and policy rules) is transmitted. The components that are not releasable are safeguarded and filtered out of the transmission.

Similarly, UCORE Object can have one (security) marking while UCORE topic classes or domain/COI extensions may have other (security) markings. This approach is modeled along the Intelligence Community “tearline” concept where versions are written for each security enclave. As it is disseminated to lower classifications, the more sensitive data and perhaps its associated metadata is “torn” off. .

UCORE V1.0 supports a “tear-line” model by applying ICISM security markings to appropriate classes. ICISM security marking are required for all top-level UCORE objects. They are optional on topics, and not provided on property and metadata classes. Domain objects derived from UCORE objects inherit this model. In the figure below, line (2) contains the security markings associated with the uc:MovingObject. Line (9) contains the markings associated with the uc:Kinematics class.
(85) <uc:MovingObject gml:id="TANK"
(86)

icism:classification="U" icism:ownerProducer="USA">
(87)
<gml:identifier codeSpace="…">100110</gml:identifier>

(88)
<gml:name>Platform ABC</gml:name>
(89)
<gml:history>

(90)

<uc:MovingObjectStatus gml:id="TANK-MF">
(91)

<uc:location>…<\uc:location>

(92)

<uc:kinematics>

(93)

<uc:Kinematics icism:classification="S">
(94)

<uc:speed uom="m/s">30</uc:speed>
(95)

<uc:bearing>…</uc:bearing>

(96)

<uc:acceleration uom="m/s2">34</uc:acceleration>
(97)

</uc:Kinematics>

(98)

</uc:kinematics>
(99)

<other properties>…</other properties>

(100)

</uc:MovingObjectStatus>

(101)
</gml:history>

(102) </uc:MovingObject>

Figure 13 – “Tear-Line” Security Model Instance
2.4 uc:type and Controlled Vocabularies
Within a position report, as well as other information exchanges, additional data is required to categorize or establish the “what” of an information object. For this reason, UCORE has made provisions to provide object “type” knowledge. Objects or entities of the same type normally share a common set of characteristics. Typing is a necessary aspect in the development of a taxonomy or ontology.
UCORE supports object typing via the uc:type element. This element is syntactically represented as follows:

(103) <uc:type gml:codeSpace=”someURI”>someValue</uc:type>

Figure 14 -- uc:type property
The specific meaning of the above is:

(1) The token labeled “someURI” will conform to URI syntax

(2) Application programs may inspect this token to decide how to process the “someValue” token

Controlled vocabularies are used to store definitions of legal values or patterns that may be used within an XML instance document. Creating and storing such definition and constraints inline has over time proven to be problematic. Therefore, the UCORE V1.0 schema does not explicitly define controlled vocabularies but rather provides a mechanism to reference them. The Figure below shows an example. The gml:codeSpace value references a particular controlled vocabulary. In this case we reference a fictional “Army Echelon” vocabulary, and we specify the uc:type value as “Brigade”.
(104) <uc:type gml:codeSpace=”http://us.army.mil/echelon”>Brigade</uc:type>
Figure 15 -- uc:type example
Certain aspects of uc:type and controlled vocabularies are beyond the scope of this document:
· Conventions for codespace URIs

· Resolvability of “someURI” as a resolvable URL
· Controlled vocabulary “best practices” – It is highly desirable (when applicable) that a controlled vocabulary be represented as a taxonomy vice an enumerated list. Additionally, it is highly desirable that the controlled vocabulary is in a machine readable format. GML provides a potential syntax for encoding dictionaries. Other structured encoding standards exist for describing taxonomies RDF and/or OWL. Future best practices will determine whether ontologies or XML dictionaries, or a combination of the two, will provide the best source for defines properties to be used for discovery.
See Appendix ‎B – Controlled Vocabularies for additional information.
3 UCORE Classes
3.1 UCORE Taxonomy

Section ‎2.2 described the “top-level” UCORE logical model. Based on the abstract component of the UCORE logical model, the following diagram depicts the UCORE taxonomy. The uc:Root, uc:Property, uc:Metadata and uc:Topic classes are all abstract classes, for which no equivalent XML schema syntax exists. All the other classes depicted in the taxonomy diagram have XML schema syntax to describe the classes. The remainder of this section defines how these classes are instantiated by the UCORE schema.

[image: image5]
Figure 16 -- UCORE Taxonomy UML
3.2 uc:Object
The top-level object is uc:Object. All other UCORE objects are logical decedents of the uc:Object. The fundamental “what” properties are defined in the uc:Object. These are depicted in the following code fragment:
(105) <uc:Object gml:id="MO_0001" icism:ownerProducer="USA" icism:classification="U">
(106)
<gml:metaDataProperty/><!-- See the next subsection below-->
(107)
<gml:description>news story</gml:description>
(108)
<gml:descriptionReference xlink:href=”http://www.cnn.com/a.htm”>
(109)
<gml:identifier codeSpace="urn:cnn:com:news:ID">article-12345.07-31-2005</gml:identifier>
(110)
<gml:name codeSpace="urn:cnn:com:news:title">ABCD</gml:identifier>
(111) </uc:Object>
Figure 17 – uc:Object Instance
The “what” properties of uc:Object:
· gml:description -- provides a textual description of the UCORE object.
· gml:descriptionReference -- provides a reference (URL) to a description of the UCORE object.
· gml:identifier -- provides an object identifier. The identifier shall be unique within the specified controlled vocabulary. Although optional in the UCORE schema, a value for this element should be present at the UCORE object level.
· gml:name -- provides synonyms for the UCORE object.
The UML representation of uc:Object is as follows:

[image: image6.png]uc:Object

AT
icism-secuity_AUGH
midescripion
mieerence
mieferenceDescripion
ymlidentfier
mname

uc:StandardObjecthiD|

amiMetaDataProperty
o—————
1

Foctype

Figure 18 -- uc:Object UML
3.2.1 uc:StandardObjectMD
UCORE provided “what” metadata properties are found within the uc:StandardObjectMD element. The uc:StandardObjectMD type provides a set of elements used to further define the “what” of the UCORE object.
(112) <gml:metaDataProperty>
(113)
<uc:StandardObjectMD>
(114)

<uc:type codeSpace="MilStd2525C">FDDKHGCVBNL</uc:type>
(115)

<uc:affiliation codeSpace="iso-3306">USA</uc:affiliation>
(116)

<uc:reportingTime>…</uc:reportingTime>
(117)

<uc:reportingBy codeSpace=”C2R”>unitName</uc:reportingTime>
(118)

<uc:link xlink:href="iconFile.gif" xlink:role="symbol"/>

(119)
</uc:StandardObjectMD>

(120) </gml:metaDataProperty>

Figure 19 -- uc:StandardObjectMD Instance
The following describes the data properties of uc:StandardObjectMetadata:
· uc:type – provides a type classification used to denote a particular kind of entity. UCORE objects of the same uc:type normally share a common set of properties. The uc:type can also be used to denote a class or object taxonomy.
· uc:affiliation -- indicates a relationship specifying that the UCORE object is a member of, possession of, or has allegiance to a country, nationality, ethnic group, functional group, exercise group, or religion. The gml:codespace attribute denotes the controlled vocabulary.
· uc:reportingTime -- is a point in time indicating when the associated object or topic data instance was captured.
· uc:reportedBy -- is a reference to an organization, person, service or instrument that captured the data of this object instance. This element includes a gml:codeSpace attribute. Ideally this value will reference an object via a global unique identifier (GUID).
· uc:link -- is a general purpose link to another object instance or remote internet resource. This can be used to link to anything that can be posted or made accessible via an internet or intranet.
3.3 uc:StaticObject
The uc:StaticObject extends uc:Object and adds “when” and “where” properties.
· gml:boundedBy – geo-spatial extent (“where”)

· gml:validTime – temporal extent (:”when”

· uc:location – geo-spatial position

· uc:locationString – named location (e.g., street address or landmark)

An object is said to be static when its location (and other object properties) are time-invariant from an application context. For example, the locations of objects, such as the “White House” or the “Brooklyn Bridge” are both considered time-invariant in most application contexts. The UML depiction of uc:StaticObject is depicted below.
[image: image7.png]uc:Object
A S B Rl G
mdoscipten TocalonSTing s ATGD
mireiorerce 1 pe2osdEn A |
i eironceDescrpton
iiceniter
inams
‘omiTimeprinitive
gmi:MetaDhiaProperty mpos
[uc:StandardObjecthiD] nvolop. gmiTimelnstance
e s ARG T TmePoson
1 peaaton i upparCormer
L repotestine mcwerGomer oniTmeperiod
Kecreponadby i begnPosion
bt i endPostion

Figure 20 -- uc:StaticObject UML
An example of a static object is the location of an Air Force base. Below is an instance fragment feature in UCORE.
(121) <uc:StaticObject xsi:type=”ns:AirBase” gml:id="BASE_0001"
(122)
icism:ownerProducer="USA" icism:classification="U>
(123)
<gml:identifier codeSpace="urn:us:mil:af:AirBases">Code1234</gml:identifier>
(124)
<gml:description>Eglin AFB</gml:description>

(125)
<gml:boundedBy …/> <!-- see below -->

(126)
<uc:location>
(127)

<gml:Point gml:id="AB_Code1234_0001">
(128)

<gml:pos>0 0 0</gml:pos>
(129)

</gml:Point>
(130)
</uc:location>
(131) </uc:StaticObject>
Figure 21 -- uc:StaticObject Instance
3.3.1 Bounded By and Valid Time
There are four direct logical subclasses of the uc:Object. Each decedent adds the gml:boundedBy and gml:validTime properties. The gml:boundedBy provides for the specification of a geospatial extend regarding the data provided within this object. The extent provides a convenient means to quickly determine geographic proximity in queries and filters, without processing all the coordinates of a potentially complex geometry. For example, the display range used in a presentation of a graphic could be established using the extent, regardless of the complexity of the geometry of the UCORE object. The gml:boundedBy describes the bounding space via a lower and upper coordinate. Both of these coordinates are specified via WGS-84 3-dimensional coordinates (lat lon hae). The code fragment shows an example encoding:

(132) <gml:boundedBy>
(133)
<gml:Envelope>
(134)

<gml:lowerCorner>0 0 0</gml:lowerCorner>
(135)

<gml:upperCorner>10 10 1000</gml:upperCorner>
(136)
</gml:Envelope>
(137) </gml:boundedBy>
Figure 22 -- gml:boundedBy Instance
The gml:validTime provides for a time extent related to an object. The valid time can be used to express either a point in time (i.e., gml:TimeInstant) or a time span (i.e., gml:TimePeriod). It represents when a state change occurred or when an object instance is operationally valid (i.e., active or valid within a given business context). The code fragment for gml:validTime is:
(138) <gml:validTime>
(139)
<gml:TimeInstance>
(140)

<gml:TimePosition>2007-08-26T12:35:45.0Z<gml:TimePosition>
(141)
<gml:TimeInstance>
(142) <gml:validTime>
(143) -- or --
(144) <gml:validTime>
(145)
<gml:TimePeriod>
(146)

<gml:beginPosition>2007-08-26T12:35:45.0Z<gml:beginPosition>
(147)
<gml:endPosition>2007-08-27T08:00:00.0Z<gml:endPosition>
(148) <gml:TimePeriod>
(149) <gml:validTime>
Figure 23 -- gml:validTime Instance
3.4 uc:DynamicObject
To maintain a history of change, UCORE provides the uc:DynamicObject. Dynamic objects support the representation of objects that include time-variant aspects we call dynamic topics. Dynamic topics are used to represent a dynamic state of an object. By capturing a given topic over time, you can create a history of the changing state for a specific object. The UML representation of an uc:DynamicObject is provided below.
[image: image8.png]gml:Envelop

boundedsy »
e Objoct
[ucDynamicObjec gmisrs TG

A AT DymanicOect/® qmiupperCorner
osmseauty AuGD gnifonerCormer gmiTimePeriod
ki gmibeginPosiion
g rference gmifeory ©aiqrine gmtendPosiion
o referenceDescrption [omi:TimePrimitve
gmidenier T
gminame
‘gmi:MeiaDitaProperty uc:DynamicTopic |@y————————

') waidTime ‘gl Timelnstance

gmiimePosiion
e StandardObjectiD.
= gmi-AbstractGeometry
sctiion - il o e Point
ucreportedTime uciMovingObjocttatus fuc:2d-3dEror AtrGrp e
ucraportedBy
ueink weoffo § ¢ sekinomaics P e—— uebearing
oS
wpefigree
ficism securiyatrGr
cPadgeatD] |y [gmDirectionVector]
uc:OporatingWD) s uciaccelration famivedor

exercisetame
exerciselndicator

Figure 24 -- uc:DynamicObject UML

3.4.1 uc:MovingObjectStatus
The uc:MovingObjectStatus element is used to capture location and kinematics (e.g., movement vector) properties of an object for a specific time instance or period of time. The chaining together of individual uc:MovingObjectStatus elements represent a “history” of where an object instance will be is or has been at a given time. The tag “gml:history” is a misnomer because it’s subordinate elements (i.e., uc:MovingObjectStatus or uc:DynamicTopic) may represent projected or planned states, the most recent state, or past historical states.
The uc:MovingObjectStatus is included within UCORE because position data (i.e., location state data) for moving objects is nearly ubiquitous across application domains. The XML fragment below is an example of a track history for a single object with two uc:MovingObjectStatus reports.
(150) <gml:history>
(151)
<uc:MovingObjectStatus>
(152)

<gml:validTime>…</gml:validTime>
(153)

<uc:location>
(154)

<gml:Point>…</gml:Point>
(155)

</uc:location>
(156)
</uc:MovingObjectStatus>
(157)
<uc:MovingObjectStatus>

(158)

<gml:validTime>…</gml:validTime>

(159)

<uc:location>

(160)

<gml:Point>…</gml:Point>

(161)

</uc:location>

(162)
</uc:MovingObjectStatus>

(163) </gml:history>

Figure 25 -- uc:MovingObjectStatus (XML fragment)
3.4.2 uc:DynamicTopic
Many applications need to represent other types of dynamic state data. For this reason, UCORE includes a base structure for such objects in the uc:DynamicTopic element. The uc:MovingObjectStatus is a subclass of the uc:DynamicTopic. The XML fragment below depicts the use of the uc:DynamicTopic element to track the blood pressure of an individual over time.
(164) <gml:history>
(165)
<uc:DynamicTopic xsi:type=”ns:BloodPressureType”>
(166)

<gml:validTime>…</gml:validTime>
(167)

<ns:bloodPressure>
(168)

<ns:VitalReading>
(169)

<ns:systolic>120</ns:systolic>
(170)

<ns:diastolic>80</ns:diastolic>
(171)

</ns:VitalReading>
(172)

</ns:bloodPressure>
(173)
</uc:DynamicTopic>
(174)
<uc:DynamicTopic xsi:type=”ns:BloodPressureType”>
(175)

<gml:validTime>…</gml:validTime>
(176)

<ns:bloodPressure>
(177)

<ns:VitalReading>
(178)

<ns:systolic>125</ns:systolic>
(179)

<ns:diastolic>90</ns:diastolic>
(180)

</ns:VitalReading>
(181)

</ns:bloodPressure>
(182)
</uc:DynamicTopic>
(183) </gml:history>
Figure 26 -- uc:DynamicTopic Instance
3.5 uc:MovingObject

The uc:MovingObect class is a subclass of uc:DynamicObject. The uc:MovingObject tag provides a clear and unambiguous means to establish the presence of position information regarding a mobile business object. The use of the uc:MovingObjectStatus element is required within uc:MovingObject.
3.6 uc:Collection
The uc:Collection provides a mechanism to represent a data set or group of information objects. UCORE does not specify or constrain the business purpose of this set. Common reasons for using a collection include defining overlays, folders, or reports. The uc:Collection is very limited by design. Like uc:StaticObject and uc:DynamicObject, uc:Collection is an extension of uc:Object and adds the gml:boundedBy (e.g. geo-spatial extent of the entire collection) and gml:validTime (e.g. temporal extent of the entire collection) elements. Additionally, it adds the uc:member property. The uc:member is an object property meant to establish “constituent” objects by either value or reference. Containment by value is often done to indicate that the lifespan of contained objects are tied to the lifespan of the container (i.e., the collection). The UML representation of uc:Collection is depicted below.
[image: image9.png]ue:Object i MetaDataProperty [uc-StandardObjecthD)]
SR o e
icsmsecuity_AlrGp .
midescrpton
Grirefaence worpredtine
mirferenceDescriion ucreportadBy
i oriEmoion | [ucink
yml-name. -gml:srs_AfGrp
mlupperCorer
o [amiovercomer i Timornsianca
vemreer gmi-imePosition
amiboulcedsy
uciCollection laTime “gmi:TimePrimitive ‘gmi:TimePeriod
| —— g begrPostion
oml:endPostion.

Figure 27 – uc:Collection UML
The code fragment below illustrates a UCORE collection.
(184) <uc:Collection>
(185)
<gml:boundedBy …/>
(186)
<uc:member xsi:type="uce:AllMemberPropertyType">
(187)

<uc:Object>
(188)

<gml:identifier>Item1</gml:identifier>
(189)

</uc:Object>
(190)

<uc:Object>
(191)

<gml:identifier>Item2</gml:identifier>
(192)

</uc:Object>

(193)
</uc:member>

(194) </uc:Collection>

Figure 28 -- uc:Collection Instance
3.7 uc:Observation
The uc:Observation models the act of observing, by a person, sensor, camera or other form of instrumentation. It also indicates the resulting data product of the observation. For example, a video observation records who or what recorded the video, where the video was taken (i.e., location and angle) and when it was taken. It should not include the actual video footage, but instead provide a reference to where the footage can be retrieved. Conceptually, uc:Observation is an extension of uc:Object. Its UML representation and corresponding instance example is below.
[image: image10.png]et | gniMeisDasProper [ucStandardObjoctD)
T e
ety o e rnedTie
ymi:referenceDescription -ucreportedBy
it
s
gmi:sfibject ¢ 9 gml:Envelop
e i R
it
o
uc:Observation gniborpdedsy gml:Timelnstance
e P,
anivaeTime [gmi:TimePrimitve|
gmi:sfibject B N gml:TimePeriod

gmiAbsiractGeometry e
e TG
uc:2d-3dError NG gmipos

gmibegPosiion
gmtencPosiion

Figure 29 -- uc:Observation UML

(195) <uc:Observation gml:id="Obsv001"

(196)
icism:classification="U" icism:ownerProducer="USA">

(197)
<gml:description>Mission 47 Video</gml:description>

(198)
<gml:identifier codeSpace="uav">GUID</gml:identifier>

(199)
<gml:name>ISR-UAV-47</gml:name>

(200)
<gml:boundedBy …>
(201)
<gml:validTime>

(202)

<gml:TimePeriod gml:id="T7">

(203)

<gml:beginPosition>2007...</gml:beginPosition>

(204)

<gml:endPosition>2007...</gml:endPosition>

(205)

</gml:TimePeriod>

(206)
</gml:validTime>

(207)
<gml:using xlink:href="http://us.army.mil/uav1000"/>

(208)
<gml:resultOf

(209)

xlink:href="http://us.army.mil/video/mission47.mp4"/>

(210)
<uc:location>

(211)

<gml:Point gml:id="P7">

(212)

<gml:pos>39.3261 -101.857 0</gml:pos>

(213)

</gml:Point>

(214)
</uc:location>

(215) </uc:Observation>

Figure 30 -- uc:Observation Instance
4 Creating UCORE Application Schemas
4.1 Instance Document Example
Although, the UCORE V1.0 schema can be used directly as an exchange schema, it is expected that is most cases it will be used as the foundation in building more comprehensive application specific exchange schemas. Building an application schema by extending UCORE affords net-centric interoperability between other UCORE-based applications, while supporting tailoring that provides domain-specific extensions.
Construction of a UCORE application schema has a few simple, but critical patterns. The basic process consists of two steps; semantic data mapping and extension construction. Semantic mapping involves understanding both your application data requirements and the UCORE data model. Using the UCORE class taxonomy as a foundation creates a critical decision point related to how best to classify application data.
The following example uses the data model embodied in the popular Google Earth (GE) application. GE Keyhole Markup Language (KML) [KML] provides six basic object types that support the 2-D and 3-D visualization of geographic data.. They are Document, Folder, Placemark, Network-Link, Screen Overlay and Ground Overlay.
4.2 Extensibility Pattern
A GE Placemark is a feature that can have a point, line or polygon geometry. Only one singular instance of geometry is allowed in kml:Placemark objects. This implies that a Placemark is best represented as uc:StaticObject. After providing for prerequisite namespaces and other declarations, defining the ns:Placemark class in an extension schema is done by the following code:
(216) <xs:complexType name="PlacemarkType">
(217)
<xs:complexContent>
(218)

<xs:extension base="uc:StaticObjectType"/>
(219)
</xs:complexContent>

(220) </xs:complexType>

Figure 31 – ns:PlacemarkType
Within an instance document you could now use the xsi:type attribute to establish uc:StaticObject as an ns:Placemark. All of the uc:StaticObject elements and attribute remains available. A sample instance fragment is as follows:
(221) <uc:StaticObject xsi:type=”ns:PlacemarkType” gml:id=PM-1"
(222)
icism:ownerProducer="USA" icism:classification="U">
(223)
<gml:name>My_Placemark</gml:name>

(224) </uc:StaticObject>

Figure 32 – ns:Placemark Instance
At this point, the Placemark is simply a local name for a uc:StaticObject. That’s hardly worth creating, unless we extend it with some local properties. It turns out that KML provides all kinds of style attributes that are intentionally exclude from UCORE (i.e., separation of data and presentation). The following schema extends the uc:StaticObjectType and adds KML style elements (line (5) – (7)).
(225) <xs:complexType name="PlacemarkType">
(226)
<xs:complexContent>
(227)

<xs:extension base="uc:StaticObjectType">
(228)

<xs:sequence>
(229)

<xs:element name="visibility" type="xs:boolean" default="1"
(230)

minOccurs="0"/>
(231)

<xs:element name="open" type="xs:boolean" default="1"
(232)

minOccurs="0"/>
(233)

<xs:element ref="kml:Style" minOccurs="0"/>
(234)

</xs:sequence>
(235)

</xs:extension>
(236)
</xs:complexContent>
(237) </xs:complexType>
Figure 33 -- ns:PlacemarkType with Style Elements
The UML for this schema is as follows.

[image: image11.emf]uc:type

uc:affiliation

uc:reportedTime

uc:reportedBy

uc:link

uc:StandardObjectMD

gml:srs_AttrGrp

uc:2d-3dError_AttrGrp

gml:AbstractGeometry

gml:beginPosition

gml:endPosition

gml:TimePeriod

gml:id_Attr

icism:security_AttrGrp

gml:description

gml:reference

gml:referenceDescription

gml:identifier

gml:name

uc:Object

gml:pos

gml:Point

gml:srs_AttrGrp

gml:upperCorner

gml:lowerCorner

gml:Envelop

gml:TimePrimitive

gml:timePosition

gml:TimeInstance

gml:MetaDataProperty

gml:boundedBy

validTime

uc:location

ns:visibility

ns:open

kml:Style

ns:Placemark

uc:locationString

uc:StaticObject

Extension

Figure 34 -- ns:PlacemarkType with Style UML
Using the above XML schema, an instance document that includes the extension tags can be encoded. Notice in the example below the content tagged with the “ns:” and “kml:” namespaces.
(238) <uc:StaticObject xsi:type=”ns:PlacemarkType” >
(239)
<gml:name>My_Placemark</gml:name>
(240)
<ns:visibility>false</ns:visibility>
(241)
<ns:open>false</ns:open>

(242)
<kml:Style>
(243)

<kml:IconStyle>
(244)

<kml:Icon>
(245)

<kml:href … >
(246)

</kml:Icon>
(247)

</kml:IconStyle>
(248)
</kml:Style>
(249) </uc:StaticObject>
Figure 35 – ns:PlacemarkType with Style Elements Instance
You may at this point be unclear about having these two new namespaces (i.e., "ns" and "kml”). Whenever you create a UCORE application schema, it will have a namespace other than the UCORE normative set (see Section ‎1.3.3). For this example, “ns” was arbitrarily chosen as the target namespace.
Notice that this application schema also reuses elements (line (5) – (11)) from the GE application schema. GE schema has the namespace “kml”. By using the xs:import function, global “kml” elements and attributes can be referenced and included in an extension schema. It happens that the elements kml:visibility and kml:open are not globally defined and cannot be externally referenced by an importing schema. Therefore, the above application schema recreated these elements, using the exact same definition, but within the namespace “ns”.
All UCORE classes are meant to be extended using the approach presented above. Here, the term class refers to Object, Topic, Property and Metadata classes as defined in the UCORE logical model (see Section ‎2.2). As an example, suppose we decide that the “kml” extension elements above are actually metadata and should appear as such. Instead of extending the uc:StaticObject class, we can choose to extent the uc:StandardObjectMDType class. The basic schema code looks much the same as it did before. It is as follows:
(250) <xs:complexType name="PlacemarkMDType">
(251)
<xs:complexContent>
(252)

<xs:extension base="uc:StandardObjectMDType">
(253)

<xs:sequence>
(254)

<xs:element name="visibility" type="xs:boolean" default="1"

(255)

minOccurs="0"/>
(256)

<xs:element name="open" type="xs:boolean" default="1"
(257)

 minOccurs="0"/>
(258)

<xs:element ref="kml:Style" minOccurs="0"/>
(259)

</xs:sequence>
(260)

</xs:extension>
(261)
</xs:complexContent>

(262) </xs:complexType>

Figure 36 – ns:PlacemarkMDType
The UML diagram below depicts this example. The ns:Placemark class (in the lower left corner) is a subclass of uc:StaticObject. Also, the ns:KMLObjectMDType class is a subclass of uc:StandardObjectMDType. Lastly the inclusion of gml:LineString and gml:Polygon geometries are also extension UCORE, although they are done in a different manner, which is discussed in the next section.
[image: image12.png]Extension #2

weobiet
. s KMLORjocoD)
Jomkid_Attr uc:Standa focthD fnsvisibility
iy AuGrp | gmieaDataPrpery 1550 Feon
desorption o laffiaion kmiookAt
o b reporedtine b e
eferenceDescripton hicreporedey ko sojeSelctor
identifier fuclink lmk ¥
kname T
validTime gml:TimePrimitive
uc:StaticObject
Er— I——
locationString o v gml:Envelop
e Ao
[EiAbsrcGeomaty) [JnLyppecomer Tt
e AT fpmereton
oaing s
SVIsibility gmiTimePeriod
Esm sgrPaior
Syl riban| [nesting Poiveon ot endPoston
Extension #1 oS fpostist T

Extension #3

Figure 37 -- ns:Placemark UML
If you have understood this section so far, you have mastered the basic extension pattern. Example instance code for the ns:Placemark, with metadata, now looks as follows:
(263) <uc:StaticObject xsi:type=”ns:PlacemarkType”>
(264)
<gml:metaDataProperty>
(265)

<uc:StandardObjectMD xsi:type=”ns:PlacemarkMDType”>
(266)

<ns:visibility>false</ns:visibility>
(267)

<ns:open>false</ns:open>

(268)

<kml:Style>

(269)

<kml:IconStyle>

(270)

<kml:Icon>

(271)

<kml:href>http://www.icon.com</kml:href>

(272)

</kml:Icon>

(273)

</kml:IconStyle>

(274)

</kml:Style>

(275)

<uc:StandardObjectMD
(276)
<gml:metaDataProperty>
(277)
<gml:name>My_Placemark</gml:name>

(278)
<gml:boundedBy .../>

(279)
<gml:validTime .../>

(280)
<uc:location>

(281)

<gml:Point gml:id="P_0001">

(282)

<gml:pos>0 0 0</gml:pos>

(283)

</gml:Point>

(284)
</uc:location>

(285) </uc:StaticObject>

Figure 38 -- ns:Placemark with Metadata Instance
4.3 Collection Member Properties
The ns:Placemark supports encoding a single feature. GE also provides ways to “group” objects using Folders and Documents. UCORE V1.0 provides uc:Collection to represent a set or act as a container of information objects. Continuing our example, we create ns:DocumentType and ns:FolderType as extensions of uc:Collection. Adding properties to ns:DocumentType and ns:FolderType are done exactly the same as before in uc:StaticObject.
(286) <xs:complexType name="DocumentType">
(287)
<xs:complexContent>
(288)

<xs:extension base="uc:CollectionType"/>
(289)
</xs:complexContent>
(290) </xs:complexType>

(291) <xs:complexType name="FolderType">
(292)
<xs:complexContent>
(293)

<xs:extension base="uc:CollectionType"/>
(294)
</xs:complexContent>
(295) </xs:complexType>

Figure 39 -- ns:Document and ns:Folder
What makes uc:Collection unique is the uc:member property. To add objects as members of a collection requires extending the uc:MemberPropertyType, where uc:member is of type uc:MemberPropertyType.
The extension of uc:MemberPropertyType is different from other extensions in two simple, but significant ways. First, it is the only UCORE “property element” that routinely needs to be extended. The second is that it shall contain an xs:choice element that is only composed of UCORE objects. An example extension of the uc:MemberPropertyType is below. This particular application schema allows uc:Object, uc:StaticObject, and uc:Collection instances to be members of the ns:DocumentType and ns:FolderType collections.
(296) <xs:complexType name="KMLMemberPropertyType">
(297)
<xs:complexContent>
(298)

<xs:extension base="uc:MemberPropertyType">
(299)

<xs:choice maxOccurs="unbounded">
(300)

<xs:element ref="uc:Object"/>
(301)

<xs:element ref="uc:StaticObject"/>
(302)

<xs:element ref="uc:Collection"/>
(303)

</xs:choice>

(304)

</xs:extension>

(305)
</xs:complexContent>

(306) </xs:complexType>

Figure 40 -- ns:CollectionMemberProperty
UCORE application schemas (i.e., extensions) require that “xsi:type” be used in corresponding XML instance documents. The following is an example of instance codes for an uc:MemberPropertyType extension.
(307) <uc:Collection xsi:type="ns:FolderType">
(308)
…<uc:member xsi:type="ns:kmlMemberPropertyType">
(309)

<uc:StaticObject xsi:type=”ns:PlacemarkType>
(310)

<gml:name>My_First_Placemark</gml:name>
(311)

</uc:StaticObject>
(312)

<uc:StaticObject xsi:type=”ns:PlacemarkType”>

(313)

<gml:name>My_Second_Placemark</gml:name>

(314)

</uc:StaticObject>

(315)
</uc:member>

(316) </uc:Collection>
Figure 41 -- ns:Folder Instance
4.4 Additional Geometries
The GML framework, upon which UCORE is designed, provides for a rich and nearly unlimited capability to include additional geometries and coordinate systems in an application schema. By default, the UCORE schema only includes the use of the gml:Point geometry and a specific coordinate reference systems (i.e., WGS84). Additional geometries are added by importing the appropriate "xsd" file or updating the profile being used.
The first, and simplest geometry extension method, is to place appropriate import statements into your application schema that add the additional geometries defined in GML. The code below illustrates the import statement.
(317) <xs:import namespace="http://www.opengis.net/gml/3.2"
(318)
schemaLocation="..\..\GML3.2.1\gml.xsd"/>
(319) <xs:import namespace=http://www.opengis.net/gml/3.2
(320)
schemaLocation="..\..\GML3.2.1\geometryBasic0d1dCurve.xsd"/>
Figure 42 – Geometry Import
GML segregate geometries into multiple “xsd” files. The importation of an appropriate “xsd” makes those geometries available to your application schema. Appendix ‎E provides a table that lists geometries available within GML. This table indicates the GML schema file where specific geometries are found and which GML geometries are included in the UCORE GML. In order to include these GML geometries requires extending the UCORE GML profile. A description of this process is beyond the scope of this document.

4.5 Simple Vocabulary and Data Type Reuse

In addition to being a foundation schema, UCORE components can be reused as a common set of vocabulary terms and data types that are individually selectable for inclusion at the application schema extension level (i.e., local level). UCORE ensures that its vocabulary is reusable in application extensions by defining them at the global schema level, where they can be referenced by an application schema extension. Where appropriate we encourage reuse by reference, versus creating a new data type. We also encourage the same be done with global GML elements.

Doing so can minimize the overall number of types your application developer or community interoperability partners must handle and understand.
4.6 UCORE Schema Simplification and Profiling
Simplifying an XML schema without compromising the ability to construct conformance XML instances is done via the process of profiling. An XML schema profile involves the specification of a proper subset of data entities that a given user or community will employ. This subset must provide for the construction of instance documents that conform to the patterns of the original XML schema. The advantage of creating a profile is that it allows optional elements and branches to be eliminated, which streamlines your data specification and possible development. This is the approach we used to profile the GML schema.
The construction of valid profiles requires knowledge across multiple domains, including familiarity with the original schema and the target environment. Given the current lack of automated support and the small size of the UCORE schema relative to computing power (i.e., even on handhelds), we strongly recommend against further profiling the UCORE schema. If one still determines that further UCORE schema simplification is required, while this is possible, the specifics involved in doing so are beyond the scope of this document.
4.7 Substitution Groups
UCORE application schemas should not use substitution groups when extending UCORE classes. Substitution groups allow extensions to replace an element with another element in the same data type hierarchy. The replacement or local element will have the base structure of the original class. Regardless of having the same sub-elements, any system that does not a-priori have knowledge of the local schema (e.g., schema aware) will not be able to establish that the local defined class is the same as a UCORE class. It is assumed that in an enterprise as large as the DoD/IC, that the local extensions (e.g., schemas) will not be widely distributed outside one’s own community. Hence wide-scale interoperability depends upon global recognition of common structures, classes and data types in all circumstances. The use of substitution group significantly complicates such a capability.
Unfortunately, all the XML development tools that we are aware of, the presence of a type extensions in a schema is not graphically depicted, unless a substitution element is defined. If defining a substitution group is deemed necessary to support development or presentation efforts, schema designers should be sure to declare their substitution elements as abstract and delete them prior to using the schema in an operational environment.
5 Summary
In summary, the purpose of the UCORE is to help in fostering an environment in which net-centricity and wide-scale interoperability can be achieved. UCORE does this by balancing the objectives of global utility and local specificity. It goes beyond providing a simple set of data types, and establishes a data framework that leverages the key concepts of “what”, “when”, and “where”, as it relates to the capability of military, security and other application domains.
UCORE provides the starting point for constructing extensible Community of Interest (COIs) XML schemas that enable cross-community interoperability and data sharing. Yet it avoids creating the tightly constrained environment that limits growth and the ability to respond to local imperatives in an agile manner.
Over time, this guide may be update to reflect evolving goals, technology shifts and community lessons learned. However, UCORE scope and compatibility issues should always remain a paramount consideration in future revisions. If you believe you can contribute to the enhancement of future document versions, please contact the issuing authority with your specific comments and solutions. Our ability to move forward through collaboration will ultimately result in more effective operational systems for those in the service of our nation.
A. UCORE V1.0 Vocabulary

This section provides for the definition of key elements within the UCORE.

A.1 UCORE Objects

The following table defines the UCORE objects. The XML syntax for the below objects are contained in ucore.xsd.

	Concept
	XML Element Name
	Description

	Object
	uc:Object
	The top-level UCORE object. The uc:Object has the “what” properties. All other UCORE objects extent from the uc:Object.

	StaticObject
	uc:StaticObject
	The uc:StaticObject has the “what”, “when”, and “where” components. The uc:StaticObject is intended to represent domain objects that have time-invariant properties.

	Observation
	uc:Observation
	The uc:Observation has the “what”, “when” , “where” components, and additional “metadata” to capture the information associated with an observation. The uc:Observation is intended to model the act of observing and the results of this observation.

	DynamicObject
	uc:DynamicObject
	The uc:DynamicObject has the “what”, “when”, and “where” components. The uc:DynamicObject is intended to model domain objects that have time-variant properties.

	MovingObject
	uc:MovingObject
	The uc:MovingObject is an extension of the uc:DynamicObject. The uc:MovingObject is intended to model domain objects that have location as a time-variant property.

	Collection
	uc:Collection
	The uc:Collection is intended to model a grouping of UCORE objects.

Table 2 -- UCORE Vocabulary (UCORE Objects)

A.1.1 UCORE Properties – “what”

UCORE provides a framework to describe “what” characteristics of the UCORE object. These general characteristics provide identifiers, type information, linking mechanism, and descriptive information. The “what” properties are defined on uc:Object.

	Concept
	XML Element Name
	Description

	Object Link Handle
	gml:id
	The attribute gml:id supports provision of a handle for the XML element representing a GML Object. Its use is mandatory for all GML objects. It is of XML type ID, so is constrained to be unique in the XML document within which it occurs.

	Description
	gml:description
	The value of this object is a text description of the object.

	Description Reference
	gml:description _Reference
	The value of this property is a remote text description of the object. The xlink:href attribute of the gml:descriptionReference property references the external description.

	Identifier
	gml:identifier
	The gml:identifier is property to specify a unique identifier to the UCORE object. Often, a special identifier is assigned to an object by the maintaining authority with the intention that it is used in references to the object For such cases, the codeSpace shall be provided. That identifier is usually unique either globally or within an application domain. [Note: The specification of gml:identifier is required for all UCORE objects. It is NOT required for properties of UCORE objects.]

	Synonym(s)
	gml:name
	The gml:name property provides a label or additional identifiers for the UCORE object. An object may have several names, typically assigned by different authorities. gml:name uses the gml:CodeType content model. The authority for a name is indicated by the value of its (optional) codeSpace attribute.

	
	
	

	Object Type
	uc:type
	 A classification used to denote a particular kind of UCORE object. uc:type is typically utilized to denote a value from a controlled vocabulary associated with this UCORE object. The controlled vocabulary is specified via the codeSpace attribute. All UCORE objects should specify a uc:type.

	Affiliation
	uc:affiliation
	A relationship specifying that an object is a member of, possession of or has allegiance to a country, nationality, ethnic group, functional group, exercise group, or religion.

	Reported Time
	uc:reportedTime
	The point in time indicating when the data provided within this UCORE object instance was captured.

	Reported By
	uc:reportedBy
	A reference to the entity that captured the data within this UCORE object instance.

	Association
	uc:link
	A reference to another information object (either UCORE object or external resource).

Table 3 -- UCORE Vocabulary (UCORE "what" properties)

A.1.2 UCORE Properties – “where”

UCORE provides properties to describe the geo-spatial extent and location associated with UCORE objects. The top-level UCORE object only includes the “what” properties. The other UCORE objects extend from uc:Object and add the “where” geo-spatial extent property. The uc:StaticObject and uc:Observation add the “where” uc:location property.

	Concept
	XML Element Name
	Description

	Geospatial Extent
	gml:boundedBy
	This property describes the minimum bounding box or rectangle that encloses the entire feature.

	Envelope
	gml:Envelope
	Envelope defines an extent using a pair of positions defining opposite corners. The first direct position is the "lower corner" (a coordinate position consisting of all the minimal ordinates for each dimension for all points within the envelope), the second one the "upper corner" (a coordinate position consisting of all the maximal ordinates for each dimension for all points within the envelope).

	
	
	

	Location (by geometric position)
	uc:location
	A geometric position associated with the UCORE object.

	Point
	gml:Point
	A Point is defined by a single coordinate tuple. The direct position of a point is specified by the gml:pos element.

	Line
	gml:LineString
	A Line is defined by two or more coordinate tuples, with linear interpolation between them. The number of direct positions in the list shall be at least two.

	Polygon
	gml:Polygon
	A Polygon is defined by a linear ring. It consists of four or more coordinate tuples, with linear interpolation between them; the first and last coordinates shall be coincident. The number of direct positions in the list shall be at least four.

	Circle
	gml:CircleByCenter _Point
	A gml:CircleByCenterPoint is specified via a center point and a radius (specified in meters). This representation can be used only in 2D.

The single control point is the center point of the arc plus the radius and the bearing at start and end. This representation can be used only in 2D.

The element radius specifies the radius of the arc.

The element startAngle specifies the bearing of the arc at the start.

	The element endAngle specifies the bearing of the arc at the end. Radius in meters and angles in decimal degrees.

	Position
	gml:pos
	Position representation specified as a tuple -- lat lon hae. Lat and lon are represented as decimal degrees. HAE is represented in meters.

	Position Sequence
	gml:posList
	Position representation specified as a list of positions. Each position is specified as a -- lat lon hae. Lat and lon are represented as decimal degrees. HAE is represented in meters.

	
	
	

	Location (by description)
	uc:locationString
	A location description (string) associated with the UCORE object. The codeSpace specifies the controlled vocabulary.

Table 4 -- UCORE Vocabulary (UCORE "where" properties)
A.1.3 UCORE Properties – “where” Datums

	Concept
	XML Element Name
	Description

	Datum
(WGS-84 2D)
	gml:srsName=”http://metadata.dod.mil/mdr/ns/GSIP/crs/WGS84E_2D
	Defines coordinates in Latitude and then Longitude, encoded as decimal degree.

	Datum
(WGS-84 3D)
	gml:srsName=”http://metadata.dod.mil/mdr/ns/GSIP/crs/WGS84E_3D
	Defines coordinates in “Latitude Longitude Altitude”, latitude and longitude encoded as decimal degree. Altitude encoded as meters. This is the default coordinate system.

Table 5 -- UCORE "where" attributes (Datum)

A.1.4 UCORE Properties – “when”

UCORE provides properties to describe the temporal aspects associated with UCORE objects. The top-level UCORE object only includes the “what” properties. The other UCORE objects extend from uc:Object and add the “when” temporal properties.
	Concept
	XML Element Name
	Description

	Time Extent
	gml:validTime
	gml:validTime is a temporal element that defines either the time instance or time interval (begin and end time) that this UCORE object instance is valid as appropriate for the domain in which this instance exist.

	Time Period
	gml:TimePeriod
	gml:TimePeriod is described by the temporal positions of the instants at which it begins and ends. The length of the period is equal to the temporal distance between the two bounding temporal positions.

	Time Instant
	gml:TimeInstant
	gml:TimeInstant acts as a zero-dimensional geometric primitive that represents an identifiable position in time.

	Time Representation.
	gml:TimePositionType
	The method for identifying a temporal position is specific to each temporal reference system. gml:TimePositionType supports the description of temporal position according to the subtypes described in ISO 19108.

UCORE profiles to restrict the time to be xs:dateTime.

	Time Duration
	gml:duration
	gml:duration conforms to the ISO 8601 syntax for temporal length as implemented by the XML Schema duration type.

Table 6 -- UCORE "where" properties

A.1.5 UCORE Properties – uc:PropertyTypes
The following table defines the UCORE properties. The XML syntax for the below objects are contained in ucorePropertyTypes.xsd.

	Concept
	XML Element Name
	Description

	Kinematics
	uc:Kinematics
	Describes the motion associated with a moving object.

	Speed
	uc:speed
	The velocaity of the object. Specified in meters/sec. uom="m/s"

	Bearing
	uc:bearing
	The rotational measurement clockwise from the line of true North to the direction of motion in the horizontal plane of the OBJECT at the time of the report (degrees). The rotational measurement from the horizontal plane to the direction of motion of the OBJECT at the time of the report, where the positive angle is vertically upward. Specified in decimal degrees. uom=”deg”

	Acceleration
	uc:acceleration
	The acceleration of the object. Specified in meters/sec2. uom="m/s2"

	
	
	

	Dynamic Topic
	uc:DynamicTopic
	A general pattern for specifying time-variant properties of a UCORE dynamic object. Application domains should extend (DynamicTopicType) to specifying time varying properties for their particular domain.

	
	
	

	Moving Object Status
	uc:MovingObjectStatus
	Describes the time-variant properties of a moving object. Location, Kinematics, and the following metadata.

	Operational Metadata
	uc:operationalMD
	see next section

	Pedigree
	uc:pedigreeMD
	see next section

	
	
	

	Collection Membership
	uc:member
	A property to specify that a UCORE object is a member of a uc:Collection.

Table 7 -- UCORE Vocabulary (UCORE property types)
A.2 UCORE Metadata Types

The following table defines the UCORE metadata types. The XML syntax for the below objects are contained in ucoreMetadataTypes.xsd.

	Concept
	XML Element Name
	Description

	Operational Metadata
	uc:OperationalMD
	Specifies operational metadata associated with the UCORE object.

	Operation Name
	uc:name
	A name of the associated operation or exercise for which this object instance was created.

	Operational Indicator
	uc:indicator
	An indicator of the associated operation or exercise for which this object instance was created.

	Operational Status
	uc:opngStatus
	A flexible code set and value that determines whether this object instance refers to real, faint, exercise, simulated or stimulated data.

	
	
	

	Pedigree
	uc:PedigreeMD
	Specifies pedigree metadata associated with the UCORE object.

	Data Source
	uc:dataSource
	Specifies the data source that generated this UCORE information object.

	
	
	

The linearError associated with linear measurement. Precision represents the resolution associated with the reported UOM.

	

see next section The linearError and circularError associated with the reported 3-D POINT. Precision represents the resolution associated with the reported POINT.

	

Table 8 -- UCORE Vocabulary (UCORE metadata types)

A.3 ICISM Attributes

The following table defines the IC ISM security attributes. The XML syntax for the below objects are contained in IC-ISM-V2.xsd.

	Concept
	XML Attribute Name
	Description

	Classification
	icism:classification
	Highest level of classification applicable to an information resource or portion within the domain of classified national security information.

	Classification Reason
	icism:classification _Reason
	The basis for an original classification decision.

	Classified By
	Icism:classifiedBy
	The identity, by name or personal identifier, and position title of the original classification authority for a resource.

	Date Of Exempted Source
	Icism: dateOfExempted _Source
	The year, month and day of publication or release of a source document

	Declassification Date
	icism:declassDate
	A specific year, month and day for declassification

	Declassification Event
	Icism:declassEvent
	A description of an event for declassification

	Declassification Exception
	icism:declass _Exception
	One or more exceptions to the nominal 25-year point for automatic declassification.

	Declassification Manual Review Indicator
	Icism: declassManual _Review
	An indication of a requirement for manual review prior to declassification, over and above the usual programmatic determinations.

	Derived From
	icism:derivedFrom
	A citation of the authoritative source or reference to multiple sources of the classification markings used in a resource.

	Dissemination Controls
	Icism: dissemination _Controls
	Controls that identify the expansion or limitation on the distribution of information.

	FGI Open Source
	icism:FGIsource _Open
	An indication that information qualifies as foreign government information according to CAPCO guidelines for which the source(s) of the information is not concealed.

	FGI Protected Source
	icism:FGIsource _Protected
	An indication that information qualifies as foreign government information according to CAPCO guidelines for which the source(s) of the information must be concealed when the information is disseminated.

	Non-Intelligence Community Markings
	icism:nonICmarkings
	Information security classification markings for classified information originating from non-intelligence components of the US Department of Defense or the US Department of Energy.

	Owner Producer
	icism:ownerProducer
	The national government or international organization owner(s) and/or producer(s) of a resource.

	Releasable To
	icism:releasableTo
	The country or countries and/or international organization(s) to which classified information may be released based on the determination of an originator in accordance with established foreign disclosure procedures.

	Special-Access-Required Program Identifier
	icism:SARIdentifier
	Registered trigraphic or digraphic code(s) for defense or intelligence programs for which special access is required

	SCI Controls
	icism:SCIcontrols
	CAPCO-authorized abbreviations for sensitive compartmented information control system(s

	Type Of Exempted Source
	icism: typeOf _ExemptedSource
	A declassification marking of a source document that causes the current, derivative document to be exempted from automatic declassification.

Table 9 -- IC ISM security attributes
A.4 W3C Xlink Attributes

The following table defines the W3C xlink attributes. The XML syntax for the below objects are contained in xlinks.xsd.

	Concept
	XML Attribute Name
	Description

	Target Resource Reference
	xlink:href
	Identifier of the nature of the target resource, given as a URI.

	Target Resource Description
	xlink:role
	Description of the nature of the target resource, given as a URI.

	Target Resource Purpose
	xlink:arcrole
	Description of the role or purpose of the target resource in relationship to the given resource, given as a URI.

	Description
	xlink:title
	Description of the association or the target resource, given as text.

Table 10 -- W3C xlink attributes

B. Controlled Vocabularies

Many applications require the use of a control attributes that are used to establish the meaning of conditional element values. Such attributes are coupled to and provides context for a related literal datatype XML element. One such control attributes is Units of Measure (UOM). UOM are used to indicate the base standard by which a quantity is declared (i.e., speed is often declared in meters/second.)

To maintain agile and extensible data schemas these controlled vocabularies are typically maintained external from the XML application schema. UCORE V1.0 provides a framework to reference external controlled vocabularies.

Several of the controlled vocabularies (e.g., units of measure, datums) are fundamental to a consistent understanding of UCORE-based XML instance documents. This section documents these controlled vocabularies.

Other controlled vocabularies (e.g., domain taxonomies) UCORE provides the framework (e.g., uc:type) to “plug-in” elements from a controlled vocabulary and/or taxonomy. UCORE does not explicitly define these taxonomies.

This implies that a mechanism outside the schema is necessary to define controlled vocabularies. A formal syntax/structure is preferable for both collaboration and machine processing of this information.

It is highly desirable (where applicable) that a controlled vocabulary be represented as a taxonomy vice an enumerated list. Additionally, it is highly desirable that the controlled vocabulary is in a machine readable format, as well as human readable if possible. GML provides a potential syntax for encoding dictionaries. Other structured encoding standards exist for describing taxonomies RDF and/or OWL. Future best practices will determine whether ontologies or XML dictionaries, or a combination of the two, will provide the best source for the representation of controlled vocabularies.

The following tables document the controlled vocabularies for units of measure and datums.

B.1 Units of Measure

	Concept
	XML Attribute Name
	Description

	Time
	uom=”s”
	Unit of measure of time in seconds

	Angle
	uom=”deg”
	Unit of measure of angle in decimal degrees

	Distance
	uom=”m”
	Unit of measure of distance in meters.

	Speed
	uom=”m/s”
	Unit of measure of speed in meters/second.

	Acceleration
	uom=”m/s2”
	Unit of measure of acceleration in meters/second**2

Table 11 -- Controlled Vocabulary (Units of Measure)
B.2 Coordinate Reference Systems
	Concept
	XML Attribute Name
	Description

	WGS-84 (2D)
	srsName=”urn:ogc:def:crs:EPSG::4326”
	Defines coordinates in Latitude and then Longitude, encoded as decimal degree

	WGS-84 (3D)
	srsName=” urn:ogc:def:crs:EPSG::4979”.
	Defines coordinates in “Latitude Longitude Altitude”, latitude and longitude encoded as decimal degree. Altitude encoded as meters. . This is the default coordinate system.

Table 12 – Controlled Vocabulary (srsName)

C. UCORE V1.0 – Key Standards
UCORE is based on the following industry and government standards.

	Standard
	Description
	Version

	DDMS
	DoD Discovery Metadata Specification. DDMS defines discovery metadata elements to describe an information resource.
	1.4

	GML
	Geography Markup Language (GML). GML specifies an XML schema syntax to describe geographic features. (see ISO 19136).
	3.2.1

	ICISM
	Intelligence Community Information Security Markings (IC ISM).
	2.0

	ISO 19136
	Geographic Information – Geography Markup Language. Defines the XML Schema syntax, mechanisms and conventions that: provide an open, vendor-neutral framework for the description of geospatial application schemas; allow profiles that are a proper subset of GML; support the description of application schemas for specialized domains; and increase the ability of organizations to share geographic application schemas and the information they describe.
	19136:2007

	ISO 8601
	Defines representation of dates in the Gregorian calendar, times in the 24-hour timekeeping system, time intervals and recurring time intervals. [Note: UCORE V1.0 utilizes the ISO 8601 profile encoded in GML 3.2.1].
	8601:2004

	UCUM
	Unified Code for Units of Measure (UCUM). The Unified Code for Units of Measure is a code system intended to include all units of measures being contemporarily used in international science, engineering, and business. The Unified Code for Units of Measure is inspired by and heavily based on ISO 2955-1983, ANSI X3.50-1986, and HL7's extensions called “ISO+”.
	1.6

	XLink
	XML Linking Language (XLink) which specifies elements to be inserted into XML documents in order to create and describe links between resources.
	1.0

	XML Schema

[Part1, Part2]
	XML Schema specifies a definition language which offers facilities for describing the structure and constraining the content of XML documents.
	1.0

Table 13 – UCORE – Key Open and Government Standards
D. References
[DDMS 1.4]

Department of Defense, "Department of Defense Discovery Metadata Specification," July 2005. (See http://metadata.dod.mil)
[GML]

Geography Markup Language (GML) (See http://www.opengeospatial.org/standards/gml)
[IC ISM 2.0]

Intelligence Community Metadata Standard for Information Security Marking (See https://www.dnidata.org)

[ISO 19103]

Geographic Information – Conceptual Schema Language (See http://www.iso.org/iso/home.htm)
[ISO 19107]

Geographic Information – Spatial Schema (See http://www.iso.org/iso/home.htm)
[ISO 19108]

Geographic Information --Temporal Schema (See http://www.iso.org/iso/home.htm)
[ISO 19109]

Geographic Information – Rules for Application Schema (See http://www.iso.org/iso/home.htm)
[ISO 19111]

Geographic Information – Spatial Referencing by Coordinates (See http://www.iso.org/iso/home.htm)
[ISO 19123]

Geographic Information – Schema for Coverage Geometry and Functions (See http://www.iso.org/iso/home.htm)
[ISO 19136]

Geographic Information – Geography Markup Language (GML) (See http://www.iso.org/iso/home.htm)
[ISO 8601]

Data elements and interchange formats -- Information interchange -- Representation of dates and times (See http://www.iso.org/iso/home.htm)
 [KML]

Keyhole Markup Language (KML) (See http://code.google.com/apis/kml/documentation/kml_tags_21.html)
[OWL]

Web Ontology Language (OWL) (See http://www.w3.org/2004/OWL/)

[OWL-LR]

OWL Web Ontology Language Reference (See http://www.w3.org/TR/owl-ref/)
[OWL-LG]

OWL Web Ontology Language Guide (See http://www.w3.org/TR/owl-guide/)
[RDF]

Resource Description Framework (See http://www.w3.org/RDF/)

[UCUM]

Unified Code for Units of Measure (UCUM)
(See http://aurora.rg.iupui.edu/UCUM/ucum.html)
[UML]

Unified Modeling Language (UML) (See http://www.uml.org)
[XLink]

S. DeRose, et al, “XML Linking Language (XLink) Version 1.0” (See http://www.w3.org/TR/xlink/)
[XML Schema, Part 1]

H. Thompson, et al, "XML Schema Part 1: Structures," October 2004. (See http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/)

[XML Schema, Part 2]

P. Biron, et al, "XML Schema Part 2: Datatypes," October 2004. (See http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/)

E. Available GML Geometries

Other than gml:Point, the use any GML geometry in a UCORE application schema requires either: (1) the importation of a GML “xsd” file to make the geometries defined within that file available within your application schema, (2) the modification of the UCORE GML profile, or (3) both

GML segregates the geometries it provides into multiple “xsd” files. The table below describes the geometries contained within GML and the “xsd” file. The table also denotes which GML geometries are contained with the UCORE GML profile (and highlights the concrete geometries).

	GML File
	Geometry
	In Profile
	Geometry
	In Profile

	geometryBasic0d1d.xsd
	AbstractCurve
	Yes
	LineString
	Yes

	
	AbstractGeometry
	Yes
	Point
	Yes

	geometryBasic2d.xsd
	AbstractRing
	No
	LinearRing
	No

	
	AbstractSurface
	Yes
	Polygon
	Yes

	geometryPrimitives.xsd
	AbstractCurveSegment
	No
	Circle
	No

	
	Arc
	No
	Curve
	No

	
	ArcByBulge
	No
	LineStringSegment
	No

	
	ArcString
	No
	OrientableCurve
	No

	
	ArcStringByBulge
	No
	 CircleByCenterPoint
	Yes

	
	ArcByCenterPoint
	Yes
	
	

	geometryAggregates.xsd
	AbstractGeometric _Aggregate
	No
	MultiGeometry
	No

	
	AbstractGriddedSurface
	No
	MultiPoint
	No

	
	AbstractParametric _CurveSurface
	No
	MultiSolid
	No

	
	AbstractSolid
	No
	MultiSurface
	No

	
	AbstractSurfacePatch
	No
	OffsetCurve
	No

	
	AffinePlacement
	No
	OrientableSurface
	No

	
	ArcByCenterPoint
	No
	PolygonPatch
	No

	
	Bezier
	No
	PolyhedralSurface
	No

	
	Bspline
	No
	Rectangle
	No

	
	CircleByCenterPoint
	No
	Ring
	No

	
	Clothoid
	No
	Shell
	No

	
	Cone
	No
	Solid
	No

	
	CubicSpline
	No
	Sphere
	No

	
	Cylinder
	No
	Surface
	No

	
	Geodesic
	No
	Tin
	No

	
	GeodesicString
	No
	Triangle
	No

	
	MultiCurve
	No
	TriangulatedSurface
	No

	geometryComplexes.xsd
	CompositeCurve
	No
	CompositeSurface
	No

	
	CompositeSolid
	No
	GeometricComplex
	No

Table 14 -- GML geometries
F. Creating DDMS Metacards

One of the key enablers for net-centric information sharing is the discovery of information resources. A key aspect is the description of discovery metadata to support this discovery process. This section describes the mapping from UCORE constructs into a DoD Discovery Metadata Specification (DDMS) metacard. A detailed desecription of the actual process of metacard construction is beyond the scope of this document.

Table 15 describes the mapping from UCORE elements to required DDMS elements. Table 16 describes the mapping from UCORE elements to optional DDMS elements.

To simplify the table, the use of word “UcoreObject” represents the head of a substitution group. What this means, is that wherever the UcoreObject word is used, it may be replaced by any UCORE Object. Valid substitutions include uc:Object, uc:StaticObject, uc:DynamicObject, uc:MovingObject, uc:Observation and uc:Collection.

	Target DDMS Data
	Source UCORE Data

	identifier@qualifier
	ucore namespace

	identifier@value
	gml:identifier

	title
	gml:description or gml:identifier (repeat)

	title@classification
	UcoreObject @classification

	title@ownerProducer
	UcoreObject@ownerProducer

	creator/organization/Name
	Source organization name if available

	creator/service/name
	Use your service?

	subjectCoverage/keyword
	UcoreObject (e.g., uc:StaticObject)

	subjectCoverage/keyword
	UcoreObject@xsi:type

 (e.g., ns:Placemark)

	subjectCoverage/category
	uc:type gml:codeSpace attribute

	subjectCoverage/value
	uc:type element value

	security@classification
	UcoreObject @classification

	security@ownerProducer
	UcoreObject@ownerProducer

Table 15 – UCORE elements to required DDMS elements
In addition to the required data of the metacard, several other UCORE elements and attributes can be useful in the metacard construction. The table below provides these additional mapping rules. The absence of any DDMS tag in this table is not in any way meant to imply that its usage with UCORE objects is inappropriate.
	Target DDMS Data
	Source UCORE Data

	identifier@qualifier
	UCORE namespace (e.g., uc)

	identifier@value
	UcoreObject/gml:identifier

	description
	gml:description

	description@classification
	UcoreObject @classification

	description@ownerProducer
	UcoreObject @ownerProducer

	dates@posted
	UcoreObject/gml:reportingTime

	dates@ValidTil
	UcoreObject/gml:validTime/gml:EndPeriod

	source@schemaQualifier
	Fixed value of “XSD”

	source@schemaHref
	Fixed value of “http://metadata.dod.mil/mdr/ns/ucore/1.0”

	type@qualifier
	UcoreObject/gml:metadata/uc:standardObjectMetadata
/uc:type@gml:codeSpace

	type@value
	UcoreObject/gml:metadata/uc:standardObjectMetadata

/uc:type

	temporalCoverage/ TimePeriod/start
	UcoreObject/gml:validTime/gml:TimePeriod /gml:startPosition

	temporalCoverage/ TimePeriod/end
	UcoreObject/gml:validTime/gml:TimePeriod /gml:endPosition

	geospatialCoverage/ GeospatialExtent/ boundingBox/WestBL
	UcoreObject /gml:boundedBy/ gml:Envelope/ gml:lower Corner (first token)

	geospatialCoverage/ GeospatialExtent/ boundingBox/SouthBL
	UcoreObject /gml:boundedBy/ gml:Envelope/ gml:lower Corner (second token)

	geospatialCoverage/ GeospatialExtent/ boundingBox/WestBL
	UcoreObject /gml:boundedBy/ gml:Envelope/ gml:upper Corner (first token)

	geospatialCoverage/ GeospatialExtent/ boundingBox/NorthBL
	UcoreObject /gml:boundedBy/ gml:Envelope/ gml:upper Corner (second token)

Table 16 – UCORE elements to optional DDMS elements

UCORE DIG V1.0.0
Page 2 of 54
FINAL

[image: image1][image: image13.png]uc:Root

e —

uc:Object uc:Property uc:Metadata uc:Topic
uc:StaticObject lgml:Envelop uc:StandardObjectVMID uc:DynamicTopic
uc:DynamicObject \gml:AbstractGeometry uc:OperatingMD
JAN

uc:MovingObject

uc:Collection

\gml:TimePrimitive

uc:Observation

gml:Poin

igml:Timelnstance

igml:TimePeriod

uc:MovingObjectStatus

[image: image14.png]SuperClass

i

AggregateClass

ObjectProperty#1 T T ObjectProperty#2

Class1

ObjectProperty#3
SubClass#1 SubClass#2 [ComponentClass#1 ComponentClass#2 Class2
Subtyping Aggregation Association

[image: image15.jpg]

