Unit -III
Data structures:-

A computer stores information in a way best suited to conserve the memory space and provide for easy access or recall. The arrangement used for storing information depends upon processing the methods to store information in the computer collectively called data structures.

Or

Execution of a program on a computer requires data that is stored it different memory locations it is often useful to arrange these locations in a convenient manner such arrangement called data structure.

The data structures are primarily of two types.

[image: image1.png]lL.ast In

A

-— top

FI1rst Out

top

114

~top

i =)
Pt

A

top

=
=)

A

top

=)

A

Primitive data structures:-
Every language allows variables to name data of that type and provides a set of operations which meaningfully manipulated the variables. The data types that are directly supported by the machine are known as primitive data structures.

Ex:- the set of integers, real numbers.etc.

Non-Primitive data structures:-
Those data structures for which a computer system has no specific instructions to manipulate the individual data items of data structure are called non-Primitive data structures.

Ex:-complex numbers(there are no specific instructions to add two complex numbers)

Non-primitive data structures are further divided into linear and non linear data structures.

A linear data structure is one in which the elements are arranged in linear sequence.

 In the case of non-linear it represents hierarchical relationship between the elements

Basic data structures:-

1. Stacks:-

A stack is a ordered collection of items into which new items may be inserted and from which items may be deleted at one end called the “top” of the stack.

A data structure in which elements are added and removed from only one end, hensce its called “Last In, First Out” , (LIFO) structure.

[image: image31.wmf]K

L

E

F

B

G

C

M

H

I

J

D

A

Stack operations:

The following are the operations of stack:-

· Push

· Pop

· Clear stack

· Full stack

· Empty stack

Declaration of stack :-
A stack in C++ may therefore declared as class containing two objects, an array to hold the elements of the stack and an integer top to indicate the top position of the current stack with in the array.
#define maxstack 20

Class stack

{

int elements[maxstack];

int top;

};

stack *s;

Clear stack operation:-

This operation is used to initialize the stack. This is used to clear the contents of the stack . an operation that we called as clear stack().

Function for clear stack

This can be written as follows

void clearstack(stack *s);

{

s->top=-1;

Empty stack operation:-
 This operations is used to test whether the stack is empty or not. An operation that we called as empty stack (); This result either true or false.
Function for empty stack:-

Int emptystack(stack *s)

{

If(s->top==-1)

return 1;

else

return 0;

}

Full stack operation:-

This operation is used to test whether the stack is full or not; an operation that we called as fullstack(); this result either true or false.

Function for fullstack:-

Int fullstack(stack *s)

{

If(s->top==maxstack)

return 1;

else

return 0;

}

Push operation:-
When an item is added to the top of the stack an operation that we called as push operation. This is represented as

Push(s, item);

Function for push:-

Void push(stack *s, int item)
{

s->top=s->top+1;

s->elements[s->top]=item;

}

Pop operation:-
 When an item is deleted from the top of the stack an operation that we call as pop operation. This is represented as

Pop(s,&item);

Function for pop
Void pop(stack *s, int *ditem)

{

*ditem=s->elements[s->top];

s->top=s->top-1;

Applications of a stack:-

 Pile of books
 Plate trays
Program execution stack
Evaluating expressions

Arithmetic expressions:-

Arithmetic expressions can be represented with three notations.

· Infix notation

· Prefix notation
· Post fix notation

Infix notation:
For most common arithmetic operations, the operator symbol is placed in between two operands. This is called infix notation.

Ex:-a+b,c-d,e*f….etc.

Polish notation (or) prefix notation:-
Polish notation is referred to the notation in which operator symbol is place before its two operands.

+ab,-cd,*ef…etc.

Reverse polish (or)postfix notation:-
In which the operator symbol is placed after its two operands.

Ab+,cd-,ef*…etc.

Write an algorithm for conversion of infix notation to postfix notation.
1. Initialize stack contents to the special symbol #
2. Obtain the leftmost symbol in the infix expression and denote it as the current input symbol.

3. Repeat through step -6 while the current input symbol is not #.

4. Remove and all stack symbols whose precedence values are greater than or equal to the precedence of the current input symbol as each stack symbol is output.

5. Push current input symbol on the stack.

6. Obtain the next symbol, in the expression and left it be the current input symbol.

7. Remove and output all remaining symbols(except #)

8. Exit.

Symbol

precedence

#

0

+,-

1

*,/,%

2

 a ,b,c 3

Ex 1:-

The given infix notation is a+b-c;

Now the above infix notation is converted to postfix notation as

Step 1:ab+-c

Step 2:ab+c-
The final result is

ab+c-

Ex 2:- a+b*c-d/e

The manual conversion is

a+bc*-d/e

a+bc*-de/

abc*+-de/

abc*+de/-

the final result is
abc*+de/-

Algorithm for a postfix evolution:-
Suppose P is an arithmetic expression written in postfix notation. The following algorithm, which uses a stack to hold operations evaluate P.

1. Add “#” symbol at the end of P.

2. Scan P from left to right and repeat step 3 and step 4 for each element of P until “#” is encountered.

3. If an operand is encountered push it on to the stack.

4. If an operator # is encountered, then;

(a) Remove the two top elements of stack, where A is the top element and B is the next-to-top element.

(b) Evaluate B and A

 (c) Place the result of b back on stack

End if

[End step-2 loop]

5. set value equals to the top element on stack

6. Exit.

Converting infix to prefix notation:-

1 Reverse the input string

2 Examine the next element in the input

3. If it is operand add it to output string.

4. If it is an operator

a) If stack is empty push operator on stack.

b) If it has same or higher precedence operator than top of the stack then push operator on stack.

c) Else pop the operator from the stack and add it to output string, repeat step 4.

5. If there is more input go to step 2.

6. If there is no more input, unstuck the remaining operators and add them to output string.

7. Reverse the output string.

Ex 1:- the given infix arithmetic expression is
a+b*c;

Now it is converted to prefix expression, the final result is

+a*bc
Ex 2: a*b/c-d+e;

 The final result is

+-/*abcde

2. Queues:-
Like a stack, a queue is also a list. However, with a queue, insertion is done at one end, while deletion is performed at the other end. Accessing the elements of queues follows First In, First Out (FIFO) order.
In queue insertion takes place at rear position and deletion takes place at front position.
· Placing an item in a queue is called “insertion or enqueue”, which is done at the end of the queue called “rear. Removing an item from a queue is called “deletion or dequeue”, which is done at the other end of the queue called “front”.

[image: image2.png]dequeue enqueue

Figure 3.57 Model of a queue

Advantages of queues: - (Applications)

In operating system, process queues that are job schedule.

Print job queues

In simulation programs

In algorithm development

Queues types:

 We can implement queues in two ways.

Liner queue

Circuler queue.
Double Ended queues
Liner queues:-

Implementation of linear queue :-
 A queue can be implemented by using linear array to hold the elements and the two variables front, rear to indicate front position, rear position of the queue.

Declaration of linear queue :-
Class queue

{

int *a ;

int front,rear ;

} ;

Queue q ;
Operations on queues:-

En queue:- (ENQ) :-

New elements are added to the queue, an operation that we call en queue.

Enq(q,x);

Means add item x at the rear of the queue.

Function for En queue:-
Void enq(queue q,int rear,int ele)

{

rear++;

q.a[rear]=ele;

}
De queue (DEQ):-

We can also take elements off the front of the queue. An operation that we call de queue.

Deq(q,&x);

Means remove the front element from the queue and return its content in x.

Function for Dequeue:-

Void deq(queue q,int *x)

{

x= q.a[front];

Cout<<q[front]<<”is deleted”;

front++;

 }

Full Queue:-

By using the Full queue operation we can test whether the queue is full or not.

int fullq(queue q)

{

if(q[rear]==maxq)

return 1;
else

return 0;

}
Empty queue (emptyq):-
 A useful queue operation is checking whether the queue is empty.

emptyq(q);

Returns true if queue is empty.

Function for empty queue:-

int emptyq(queue q)
{

If(rear==-1)

return 1;

Else

return 0;
}
Clear queue (clearq):-
We need to them able to initialize a queue an operation that we called clear queue.

Function for clear queue:-
Void clearq(queue q)

{

q[front]=q[rear]=-1;

}
Circular queue:-
In the implementation of linear queues when rear is reached to max queue, even though there are empty locations at the front, there is no provision to add elements at the rear of the queue.

Both the front and the rear pointers wrap around to the beginning of the array. It is also called as “Ring buffer”.
Items can inserted and deleted from a queue in O(1) time.

A circular buffer first starts empty and of some predefined length. For example, this is a 7-element buffer:

Assume that a 1 is written into the middle of the buffer (exact starting location does not matter in a circular buffer):

Then assume that two more elements are added — 2 & 3 — which get appended after the 1:

If two elements are then removed from the buffer, the oldest values inside the buffer are removed. The two elements removed, in this case, are 1 & 2 leaving the buffer with just a 3:

If the buffer has 7 elements then it is completely full:

A consequence of the circular buffer is that when it is full and a subsequent write is performed, then it starts overwriting the oldest data. In this case, two more elements — A & B — are added and they overwrite the 3 & 4:

Alternatively, the routines that manage the buffer could prevent overwriting the data and return an error or raise an exception. Whether or not data is overwritten is up to the semantics of the buffer routines or the application using the circular buffer.

Finally, if two elements are now removed then what would be returned is not 3 & 4 but 5 & 6 because A & B overwrote the 3 & the 4 yielding the buffer with:

Operations on Circular queue:-

· Clear queue

· Enqueue

· Dequeue

· Emptyqueue

· Fullqueue

Double Ended queue:-
It is a double-ended queue. Items can be inserted and deleted from either ends. More versatile data structure than stack or queue.

3. Linked lists

Array versus Linked Lists:- Linked lists are more complex to code and manage than arrays, but they have some distinct advantages.

Dynamic: a linked list can easily grow and shrink in size. We don’t need to know how many nodes will be in the list. They are created in memory as needed. In contrast, the size of a C++ array is fixed at compilation time. Easy and fast insertions and deletions. To insert or delete an element in an array, we need to copy to temporary variables to make room for new elements or close the gap caused by deleted elements. With a linked list, no need to move other nodes. Only need to reset some pointers.

Linked list:-

Definition of Linked Lists

· A linked list is a sequence of items (objects) where every item is linked to the next.

· Graphically:

[image: image11.png]head ptr tail_ptr

· Each item has a data part and a link that points to the next item

· One natural way to implement the link is as a pointer; that is, the link is the address of the next item in the list

· It makes good sense to view each item as an object, that is, as an instance of a class.

· We call that class: Node

The last item does not point to anything. We set its link member to NULL. This is denoted graphically by a self-loop
Operations on lined lists:-

Insert a new item

· At the head of the list, or

· At the tail of the list, or

· Inside the list, in some designated position

· Search for an item in the list

· The item can be specified by position, or by some value

· Delete an item from the list

· Search for and locate the item, then remove the item, and finally adjust the surrounding pointers

· size();

isEmpty()
There are three types of linked lists.

· Single linked list (SLL)

· Double linked list (DLL)

· Circular linked list (CLL)

Declaration of a single linked list:-
A linked list nothing but a collection of nodes, each node contains two parts that is info and next.

[image: image12.png]99

37

Declaration of a node:-

[image: image13.png]next

ler node

elem->refers to the actual information to be stored in the node.

Next(refers to the pointer which refers to a node of same type.

Code for declaration of a node:-

 Class node

{

Int info;

node *next;

};

node *head;

head=NULL;

Basic operations on the single linked list:-

· Create

· Display

· Search

· Insert

· Delete

Create operation:-
By using the create operation we can create a new linked list.
Function for creation of new single linked list:-

Void create()

{
Node *t,*n;

Cout<<”enter the node information\”;

Cin>>i;

While(i!=-99)

{

n= new node;

n->info=I;

n->next=NULL;

}

if(head==NULL)

{

head=n;

t=n;

}

else

{

t->next=n;

t=n;

}
cout<<”Enter another value\n”;
cin>>I;

}

Display operation:-

By using the display operation we can display all of the elements in the list.
Function for display:-

Void display()

{

node *t;

t=head;

while(t!=NULL)

{

Cout<<t->info<<”->”;

t=t->next;

}

}

Search operation:-

By using the search operation we can find the node is existed or not.
Code for search function:-
void search()

{

Node *t;

t=head;

int ele;

cout<<”Enter the information to be search\n”;

cin>>ele;

while(t!=NULL)

{

If(t->info==ele)

{

Cout<<”Element is found\n”;

Break;

}

}

If(t==NULL)

Cout<<”Element is not found\n”;

}
Insert operation:-

By using the insert operation we can insert a new node in the list.

The insertion takes place at two places

· Insert at front position

· Insert at middle and tail

Insert a node at front
[image: image28.emf]front

 //

front.next

front

 //

front.next

Insert a node at middle or rear

[image: image14.png]Before.

prev curr

[image: image15.png]After.

prev curr

Ex:-

[image: image16.png]B B B o EE B g S S o I B
2o as 51 76 54

old value

R = e = e e) = e

Inserted item

Ex 2:-

[image: image17.png]U _>

newPtr

Function for insert a new node in the list:-
Void insert()
{

Int I;

Node *n,*t,*b;

t=head;

Cout<<”Enter the information\n”;
Cin>>I;

Cout<<”Enter the position to be inserted the node\n”;

Cin>>pos;

n=new node;

n->info=I;

n->next=NULL;

//insert at front

If(pos==1)

{

n->next=head;

head=n;

}

//insert at middle

else

{

int p=1;

while(p<pos)

{

b=t;

t=t->next;

p++;

}

n->next=n;

n->next=t;

}

}

Delete operation:-

By using the delete operation we can delete a node from the list , the deletion can be done at two places .

· Delete the head element

· Delete the element from the middle or tail

Delete the front element

[image: image18.png]

Delete the middle element
[image: image19.png]prev cur

OR

[image: image20.jpg]Current node

S |

prev curr curr.next
prev.next =curr.next;

Removing a node at position curr in the list.

Function for deleting a node from the list:-
Void delete()

{

Cout<<”enter the position to be delete\n”;

Cin>>pos;
P=1;

//Delete the head element

If(pos==1)

{

head=head->next;

}

//delete the element from middle

else

{

While(p<=pos)

{

b=t;

t=t->next;

p++;

}

b->next=t->next;

}

}

Write an algorithm to inserting a node into an ordered linear linked list:-
1 .Remove the node from the availability.

2.Sset the fields of new node.

3. if the linked list is empty then it returns the address of newnode.

4. if the node precedes all other in the list then insert the node set the front of the list and return it’s address.

5.Repeat the step 6 while information contained of the node in the list less than the information contained in the new node.

 6. obtain the next node in the list.

7. Insert the new node in the list and return address of first node.

Write an algorithm to delete a node from the linear linked list:-
1.If the linked list is empty, then write underflow and return.

2. repeat step 3 while the end of the list has last be reached and the node not been found.

3. obtain the next node in the list and records it’s predecessor node.

4. if the end of the list has been reached.

5. then write node is not found and return.

6. delete the node from the list.

Circular linked list:-

In circular list we can start any node in the list and traverse the whole list, for this reason we can make a external point to the list to any node and fill access all the nodes in the list.

The difference between the single linked list and circular linked list is

In single linked list the last node next part contains NULL value but in circular linked list the last node next part contains the address of head node. The remaining operations are same as single linked list.
Create a circular linked list:-
Void create()

{
Node *t,*n;

Cout<<”enter the node information\”;

Cin>>i;

While(i!=-99)

{

n= new node;

n->info=I;

n->next=NULL;

}

if(head==NULL)

{

head=n;

t=n;

}

else

{

t->next=n;

t=n;

t->next=head //point the head node in last node pointer

}
cout<<”Enter another value\n”;

cin>>I;

}

Complexity:-
· Time to search() is O(L) where L is the relative location of the desired item in the List. In the worst case. The time is O(n). In the average case it is O(N/2)=O(n).

· Time for remove() is dominated by the time for search, and is thus O(n).

· Time for insert at head or at tail is O(1).

· Time for insert at other positions is dominated by search time, and thus O(n).

 Time for size() is O(1), and time for isEmpty() is O(1)
Doubly linear linked list:-
Like a singly-linked list, a doubly-linked list is a sequential structure. To move forward or backward in a doubly linked list use the node links next and prev.
Advantage: given a node, it is easy to visit its predecessor. Convenient to traverse lists backwards
[image: image22.jpg]

Declaration of a node in double linked list:-
[image: image23.png]back Info next

info: The user's data
next,back: the address of the next and previous node in the list
Class node

{

Int item;

node *next;

node * back;

};

node *head;

Operations on DLL:-

Create

Display

Search

Insert

Delete

Create operation:-

By using the create operation we can create a new linked list.
Function for creation of new single linked list:-

Void create()

{
Node *t,*n;

Cout<<”enter the node information\”;

Cin>>i;

While(i!=-99)

{

n= new node;

n->info=I;

n->next=NULL;

n->back=NULL:

}

if(head==NULL)

{

head=n;

t=n;

}

else

{

t->next=n;

n->back=t;

t=n;

}
cout<<”Enter another value\n”;

cin>>I;

}

Display operation:-

By using the display operation we can display all of the elements in the list.
Function for display:-

Void display()

{

node *t;

t=head;

while(t->next!=NULL)

{

Cout<<t->info<<”->”;

t=t->next;

}

Cout<<t->info<;

While(t!=NULL)

{

Cout<<t->info<<”->”;

t=t->back;

}

Search operation:-

By using the search operation we can find the node is existed or not.

Code for search function:-
void search()

{

Node *t;

t=head;

int ele;

cout<<”Enter the information to be search\n”;

cin>>ele;

while(t!=NULL)

{

If(t->info==ele)

{

Cout<<”Element is found\n”;

break;

}

}

If(t==NULL)

Cout<<”Element is not found\n”;

}
Insert operation:-

[image: image24.jpg]prevNode = curr.prev curr

e ol

newNode
Inserting a new node at position curr in a doubly linked list.

prevNode = curr.prev;
newNode.prev = prevNode;
// statement 1

prevNode.next = newNode;
// statement 2

curr.prev = newNode;

// statement 3

newNode.next = curr;

// statement 4

5.Trees

Tree definition:-

A tree is a finite set of one or more nodes such that:

There is a specially designated node called the “root”. The remaining nodes are partitioned into n>=0 disjoint sets T1... Tn, where each of these sets is a tree. We call T1... Tn are the sub trees of the root. Root node does not have any parent.

Ex:-[image: image29.emf]K

L

E

F

B

G

C

M

H

I

J

D

A

K L

E F

B

G

C

M

H I J

D

A

A node with the sub trees is called “parent node” and the sub tress are called “children” of the parent node.

In the above Example A is the parent node of B, C, D and B, C, D are the Children of A.

Similarly B is the parent of E and F, E and F are the children of B.

Children of the same parent are called “siblings”.
Ex: B, C, D is the Siblings.

 H, I, J are the Siblings.
The “ancestors” of a node are all the nodes along the path from the root to the node.
The ancestors of L are E,B,A.

The ancestors of M are H,D,A.
The maximum distance of any leaf from the root of a tree is called the “height” of the tree. If a tree has only one node (the root), the height is zero. The height of a tree is also known as the “order”.
Ex: height of the above tree is 3.

The “degree” of a node is the number of sub trees associated with that node.

A node of degree zero has no sub trees. Such a node is called a leaf.

 The degree of A is 3; the degree of C is 1.

Binary Trees:-

Def: “A tree in which no node can have more than two children”.
A binary tree T is defined as a finite set of elements, called nodes, such that

1. T is empty (called the null tree or empty tree)

2. T contains a distinguished node R called the root of T, and the remaining nodes of T form an ordered pair of disjoint binary tree T1 and T2.

Each tree has a special node called its root, usually drawn at the top. Each node is permitted to have two links to other nodes, called the left child and the right child.

Children are usually drawn below a node. A node with no children is called a leaf.

· The root has no parent.

· Every other node has exactly one parent.

Two nodes with the same parent are called siblings.

Complete Binary Tree:-

The second node of a complete binary tree is always the left child of the root and the third node is always the right child of the root.

Tree Traversals:

There are three standard ways of traversing a binary tree T with root R. These three algorithms are called preorder, inorder and postorder.
Preorder Traversal:

In Preorder, the root is visited before (pre) the subtrees traversals

1. Visit the root

2. Traverse left sub tree

3. Traverse right sub tree

In order Traversal:
In Inorder, the root is visited in-between left and right subtree traversal

1. Traverse left subtree

2. Visit the root

3. Traverse right subtree

Post order Traversal:
In post order, the root is visited after (post) the sub trees traversals

1. Traverse left subtree

2. Traverse right subtree

3. Visit the root

Preorder Code:-
void preOrder(Tree *tree)
{

 if (tree->isEmpty())
 return;

else

{

 visit(tree->getRoot());

 preOrder(tree->getLeftSubtree());

 preOrder(tree->getRightSubtree());

}

}
In order code:-

void inOrder(Tree *tree)
{

 if (tree->isEmpty())
 return;

else

{ inOrder(tree->getLeftSubtree());

 visit(tree->getRoot());

 inOrder(tree->getRightSubtree());

}

}
Post order code:-

void postOrder(Tree *tree)
{

 if (tree->isEmpty())
 return;

else

{

 postOrder(tree->getLeftSubtree());

 postOrder(tree->getRightSubtree());

 visit(tree->getRoot());

}

}

Threaded Binary Tree
A Threaded Binary Tree is a binary tree in which every node that does not have a right child has a THREAD (in actual sense, a link) to its INORDER successor. By doing this threading we avoid the recursive method of traversing a Tree, which makes use of stacks and consumes a lot of memory and time.

The node structure for a threaded binary tree varies a bit and its like this --
struct NODE
{
 struct NODE *leftchild;
 int node_value;
 struct NODE *rightchild;
 struct NODE *thread;
}

Let's make the Threaded Binary tree out of a normal binary tree...

[image: image25.png]

The INORDER traversal for the above tree is -- D B A E C. So, the respective Threaded Binary tree will be --

[image: image26.png]

B has no right child and its inorder successor is A and so a thread has been made in between them. Similarly, for D and E. C has no right child but it has no inorder successor even, so it has a hanging thread.

Non recursive Inorder traversal for a Threaded Binary Tree

As this is a non-recursive method for traversal, it has to be an iterative procedure; meaning, all the steps for the traversal of a node have to be under a loop so that the same can be applied to all the nodes in the tree.

I'll consider the INORDER traversal again. Here, for every node, we'll visit the left sub-tree (if it exists) first (if and only if we haven't visited it earlier); then we visit (i.e print its value, in our case) the node itself and then the right sub-tree (if it exists). If the right sub-tree is not there, we check for the threaded link and make the threaded node the current node in consideration. Please, follow the example given below.

	
	[image: image27.png]

	List of visited nodes:
	

INORDER:

	step-1:
	'A' has a left child i.e B, which has not been visited. So, we put B in our "list of visited nodes" and B becomes our current node in consideration.
	B
	

	step-2:
	'B' also has a left child, 'D', which is not there in our list of visited nodes. So, we put 'D' in that list and make it our current node in consideration.
	B D
	

	step-3:
	'D' has no left child, so we print 'D'. Then we check for its right child. 'D' has no right child and thus we check for its thread-link. It has a thread going till node 'B'. So, we make 'B' as our current node in consideration.
	B D
	D

	step-4:
	'B' certainly has a left child but its already in our list of visited nodes. So, we print 'B'. Then we check for its right child but it doesn't exist. So, we make its threaded node (i.e 'A') as our current node in consideration.
	B D
	D B

	step-5:
	'A' has a left child, 'B', but its already there in the list of visited nodes. So, we print 'A'. Then we check for its right child. 'A' has a right child, 'C' and its not there in our list of visited nodes. So, we add it to that list and we make it our current node in consideration.
	B D C
	D B A

	step-6:
	'C' has 'E' as the left child and its not there in our list of visited nodes even. So, we add it to that list and make it our current node in consideration.
	B D C E
	D B A

	
	
	and finally.....
	D B E A C

Algorithm:-
Step-1: For the current node check whether it has a left child which is not there in the visited list. If it has then go to step-2 or else step-3.
Step-2: Put that left child in the list of visited nodes and make it your current node in consideration. Go to step-6.
Step-3: For the current node check whether it has a right child. If it has then go to step-4 else go to step-5
Step-4: Make that right child as your current node in consideration. Go to step-6.
Step-5: Check for the threaded node and if its there make it your current node.
Step-6: Go to step-1 if all the nodes are not over otherwise quit
C implementation:-
struct NODE
{
 struct NODE *left;
 int value;
 struct NODE *right;
 struct NODE *thread;
}
inorder(struct NODE *curr)
{
 while(all the nodes are not over)
 {
 if(curr->left != NULL && ! visited(curr->left))
 {
 visit(curr->left);
 curr = curr->left;
 }
 else
 {
 printf("%d", curr->value);
 if(curr->right != NULL)
 curr = curr->right;
 else
 if(curr->thread != NULL)
 curr = curr->thread;
 }
 }
}
Note:- The functions - visit() maintains a linked list of already visited nodes, visited() returns a TRUE value if it finds a particular node, in the list maintained by visit(), otherwise FALSE.
FAQ s
1) What is stack. Write the ADT implementation of stacks using templates in C++
2) What is time complexity and space complexity. Analyze the performance of Binary Search using time and space complexities.
3) What is Queue. Write the ADT implementation of queues using templates in C++.
4) Create a template in C++ to perform insertion and deletion operations in a sorted linked list.
5) (a) What are the applications of stack explain with an example.

(b) Explain the list representation of a tree by means of an example.

(c) Mention some common computing times for algorithms in order of increasing

difficulty?
 6) (a) Define Algorithm? What are the characteristics of algorithms?

(b) Order the following functions by growth rate: N, pN , N1.5, N2, N log N, 2N, N3?

(c) Show the stack status and the output string at every step in converting the following

 infix expressions to postfix expressions insisting on the usual prece-dence and

 associativity rules? a+b*c-(d*e/f)*g
 7) (a) What is the key difference between algorithm and program?

 (b) Explain the eight asymptotic identity rules?

 (c) Explain the steps to implement the following operations of singly-linked list
 illustrative examples?

i. removing at front

ii. removing at end

iii. removing node before a specified node

iv. removing node after a specified node.
 8) (a) What is de- queue? Explain various operations need to be supported by de-queue?

 (b) Write a C++ program to evaluate postfix expression?

***********All the best***************

Data structures

Int

Char

Float

Arrays

Stacks

Queues

Trees

Graphs

Primitive

Non-Primitive

Linear

Non-linear

� EMBED Unknown ���

� EMBED Unknown ���

[image: image30.wmf]front

 //

front.next

_1304789772.bin

_1304789773.bin

