Vertical Data Management and Mining
TABLE OF CONTENTS
1CHAPTER 1.
INTRODUCTION

11.1.
Scalable Data Mining

21.2.
A General Framework for Data Mining

141.3.
Fundational Theory

25CHAPTER 2.
VERTICAL MINING PRINCIPLES AND DATA STRUCTURE DESIGN

252.1.
Weaknesses of Horizontal Data Layout for Data Mining

252.2.
Data Encoding

302.3.
Vertical Data Structure Introduction

372.4.
Data Intervalization and Value Concept Hierarchy

372.5.
Logical Operations on Vertical Data

382.6.
Predicate Tree Construction Details

782.7.
Related Vertical Data Structures

80CHAPTER 3.
EVALUATION OF VERTICAL PREDICATES AND VERTICAL MINING OVER ONE RELATION

803.1.
Evaluating Predicates over Vertical Data

1403.2.
Vertical Set Inner Products (V-SIPs)

1633.3.
Derivated Attributes or Functionals on a Table: Total Variation (TV) and Hilbert Walk Positions (HWP)

1703.4.
A Performance Summary of Data Mining Algorithms Using P-trees

262CHAPTER 4.
MULTI-RELATIONAL DATA MINING

2624.1.
Multi-Relational Data Mining Introduction

2624.2.
Naïve Approach

2634.3.
Inductive Logic Programming (ILP)

265CHAPTER 5.
VERTICAL MATERIALIZED VIEWS FOR MULTIPLE RELATIONS

2655.1.
Vertical Materialized Views

2665.2.
Data Warehouse and Data Cube

2755.3.
INFORMATICS DATAWAREHOUSE

2815.4.
5.4. Multidimensional Vertical Materialized Views

2895.5.
Two Common Relational Data Schemas for Data Mining

2905.6.
Relational Vertical Materialized Views

2955.7.
MVMV vs. RVMV

296CHAPTER 6.
PERFORMANCE ANALYSIS ON MULTI-RELATIONAL DATASETS

2966.1.
Experiments on Synthetic Datasets

3046.2.
Experiments on Real Datasets

3056.3.
Advantages of Using Multi-Relational VMVs

307CHAPTER 7.
VERTICAL STRATEGIES IN SPJ QUERY OPTIMIZATION

3077.1.
One-Table Selections

3077.2.
Select-Project-StarJoin (SPSJ) Queries

3117.3.
Select-Project-Join (SPJ) Queries

3167.4.
DISTINCT Keyword, GROUP BY Clause, ORDER BY Clause, HAVING Clause and Aggregate Operations

323CHAPTER 8.
CONCLUSION

324REFERENCES

CHAPTER 1. INTRODUCTION

1.1. Scalable Data Mining

The explosion of machine collected-data technologies, such as bar-code and RF-ID tag scanners in commercial domains, sensors in scientific-industrial domains, telescopes and Earth Observing Systems in the aero domain are adding tremendous volumes to the already huge amounts of data available in digital form. In the near future, sensor networks in battlefields, agricultural fields, manufacturing domains and meteorological domains, will only exacerbate this data overload situation. This explosive growth in data and databases generates the need for new techniques and tools that can intelligently and automatically transform the data into useful information and knowledge. Data mining is one such technique.

Data mining or knowledge discovery in databases (KDD), aims at the discovery of useful patterns from large data volumes. Data mining is becoming much more important as the number of databases and database size keeps growing. Researchers and developers in many different fields have shown great interest in data mining.

Data mining has two kinds of scalability issues: row (or database size) scalability and column (or dimension) scalability [HK01]. The row-scalability problem is sometimes referred to as “the curse of cardinality” and the column scalability problems is referred to as “the curse of dimensionality”. A data mining system is considered (linearly) row scalable if, when the number of rows is enlarged 10 times, it takes no more than 10 times as long to execute the same data mining queries. A data mining system is considered column (linearly) scalable if the mining query execution time increases linearly with the number of columns (or attributes or dimensions).

The use of traditional horizontal database structure (files of horizontally structured records) and traditional scan-based, data processing approaches (scanning files of horizontal records) are known to be inadequate for knowledge discovery in very large data repositories [HK01, HPY00, SAM96]. This Presentation addresses the scalability and efficiency issues in data mining by considering the alternative, vertical database technology.

In vertical databases, the data in each table, file or relation is vertically partitioned (projected) into a collection of separate files, one for each column or even one for each bit position of each (numeric) column. Such vertical partitioning requires that the original matchup of values be retained in some way, so that the “horizontal” record information is not lost. In our approach, the horizontal match-up information is retained by maintaining a consistent ordering or tree positioning of the values, relative to one-another. If we consider a list to be a 0-dimensional tree, then we can speak in terms of tree-positioning only.

We partition all data tables into individual vertical attribute files, and then for numeric attribute domains, further into individual bit-position files. For non-numeric attribute domains, such as categorical attribute domains, we either code them numeric or construct separate, individual, vertical bitmaps for each category. If the categorical domain is hierarchical, we simply use composite bitmaps to accommodate the higher levels in that concept hierarchy.

The first issue we will deal with is that data mining almost always expects just one table of data. Although Inductive Program Logicians have attempted to deal with multi-table or multi-relational data directly, we argue that this approach has inherent shortcomings. Our approach is to combine the multiple tables or relations into one first and then datamine the resulting “universal” table. However, any such approach would only exacerbate the curse of cardinality (and to some extent the curse of dimensionality) if applied directly, that is, if it is applied by first joining the multiple tables into one massively large table and then vertically partitioning it.

Our approach is to convert the sets of compressed, lossless, vertical, tree structures (P-trees) representing the original multiple tables directly to a set of compressed, lossless, vertical, tree structures (P-trees) representing the universal relation, without ever having to actually join the tables. Since the resulting P-trees are compressed, this ameliorates the curse of cardinality to a great extent.

As to the curse of dimensionality, except for domain knowledge related and analytical (e.g., Principal Component Analysis) dimension reduction methods, there is no way to relieve the curse of dimensionality. In some real sense it is not a curse, but a fact, if the internal information is spread across all dimensions.

1.2. A General Framework for Data Mining

An Introduction first: What is Data mining, roughly?

Data mining, in its most restricted form can be broken down into 3 general methodologies for extracting information and knowledge from data. These methodologies are Rule Mining, Classification and Clustering. To have a unified context in which to discuss these three methodologies, let us assume that the “data” is in one relations, R(A1,…,An) (a universal relation – un-normalized) which can be thought of as a subset of the product of the attribute domains,
[image: image1.wmf]´

=

n

i

1

Di

Rule Mining is a matter of discovering strong antecedent-consequent relationships among the subsets of the columns on based evident from a given database state (called the training table here).

Classification is a matter of discovering signatures for the values in an attribute, called the class label attribute (which may be composite attribute), from values of the other attributes (some or all of them) in the training table.

Clustering is a matter of using some notion of tuple similarity (or dissimilar or distance) to group together training table rows so that within a group (a cluster) there is high similarity and across groups there is low similarity.

The above definitions will be expanded upon greatly in this document.

In general, the training table will be considered to be the Universal relation of all relevant attributes for the analysis at hand. Alternatively, the training table can be decomposed into many tables to achieve any of the various normal forms or it can be decomposed into a star, snowflake or constellation model. These are all relational models (Universal Relational (UR), Normal Form Relational (NFR), Multi-Dimensional Relational (MDR)). We will start with the MDR model.

Given a training table, R, one can distinguish those attributes which are entity keys, K1,…,Kk, i.e., each is a (composite?) attribute which minimally, uniquely identifies instances of the entity for all time (not just for the current state). In addition to the key attributes, there are feature attributes for each of the keyed entities. The feature attributes for entity key, Ki, will be denoted, Ai,1,…,Ai,ni .

We assume there is one central fact to be analyzed. A star model can be developed to model the data (alternatively, a constellation model if there are multiple facts to be analyzed) as:

1. The k-dimensional hypercube of key vectors and any features of those key vectors, called measurements at the center of the star.

2. Each entity and its features (features that refer only to that entity) can be factored out into a separate dimension table as a point of the star.
3. Any remaining features then refer to (describe) some combination of the entity keys but not the entire set of them (more than one but less than k) are placed with the cuboid composed of that set of keys (key subvector space). With the addition of these subvector or sub-fact spaces, the picture no longer resembles a star but is a lattice of cuboids with feature attributes for each cuboid. In the example below, the central fact file (star center) is the 3-dimensional base cuboid for the fact, sale, with keys for each of the three dimensions of a sale, the product sold, the date of the sale, and the country in which the sale took place. Therefore the lowest (3-D) level and the second level (1-D) of this lattice could be made to look like a star (distributing the red links evenly with angle so 120 degrees), however there are three 2-dimensional subfact cuboids, product-date, product-country, and date-country which may have feature attributes themselves. For example, date-country sale instances may have a “holiday season” attribute whose value depends upon the country and the date but not the product.

[image: image461.emf]

Genes

[image: image2]
Moving up this lattice of cuboids one level is called “Rolling Up” and it eliminates one or more dimensions. Moving up thid lattice of cuboids is “rolling up” an entire key dimension to the top of its semantic hierarchy where it has one value, the entire domain, and therefore is eliminated along with its features. This is a schema-level rollup in the sense that it can be defined entirely at the schema (intentional) level and need not involve the instance (extensional) level.

4. The final issue to be considered (to further complicate the picture but capture the last remaining concept) is the issue of attribute value granularity (domain semantic hierarchy level). The domain of each attribute, whether structural (key) or descriptive (feature,) in a cuboid, has associated with it a semantic hierarchy (ontology) which can be thought of as a sub-POSet of the PowerSet POSet of the domain itself (set of all subsets with set containment as the order relation). To model these semantic hierarchies, one can view the above lattice of cuboids (with all feature attributes included) at the bottom of a ontological hierarchy (OH). As noted previously, moving up the standard (pictured) lattice of cuboids is “rolling up” an entire key dimension to the top of its semantic hierarchy where it has one value, the entire domain, and therefore is eliminated along with its features. This is a schema-level rollup in the sense that it can be defined entirely at the schema (intentional) level and need not involve the instance (extensional) level. However, one can partially roll up (or down) any or all key attributes (e.g., date can be rolled up from month to quarter or down form month to day along the dashed red link). This is an extension-level rollup on keys. Finally, one can think of projecting off a feature attribute as a complete (schema-level) rollup of that attribute to eliminate the information it holds completely (and therefore eliminate the need for it completely). Before we leave this very preliminary discussion of the OLAP operator, RollUp, we note that Rollup can be done in all the context above in many ways (using many different aggregates or “rollup actions”). Projection is an aggregation-function-free rollup (attribute is eliminated completely. One can think of an OLAP slice as another example of an aggregation-function-free rollup. Rollups can involve central tendency operators (e.g., mean, median, mode, midrange), true aggregations (e.g., sum, avg, min, max, count), and measures of dispersion (e.g., quartile operators, measures of outlierness, variance). Each feature attribute can be extension-level rolled up or down within its semantic hierarchy (ontology). We will assume a level of granularity has been fixed for each attribute and that the universal relation has been formed for all entities and all attributes involved in the analysis in question. However, the structure we have described makes standard On-Line Analytic Processing (OLAP) much more complex.
Next we note that a functional dependency is a schema or intention level association rule. Whereas, an association rule is a (fuzzy) extension-level rule. One can view an association rule as a fuzzy (within some level of confidence, e.g., 80% confidence) functional relationship relating a value in an antecedent (possibly composite) attribute to a value in a consequent attribute at a level of confidence.
If all attributes are binary, this definition corresponds to the definition given in, so called, Market Basket Research (MBR). If attributes are categorical, usually they are bitmapped so that each resulting category is a binary attribute. If, however, attributes are numerical (vector space setting), then one has to consider an association rule as associating a subset of the antecedent attribute with a subset of the consequent attribute up to a level of confidence. For a composite attribute, these subsets are products of subsets of the individual attributes. How does this definition fit with the statement just made, “One can view an association rule as a fuzzy functional relationship relating a value in an antecedent attribute to a value in a consequent attribute at a level of confidence.”? By moving up the antecedent and consequent concept hierarchies to any level at which the sets are both points, the definition holds. Of course, if one then rolls down from there, the set definition is necessary again (where an item is an attribute-domain_subset pair).

So now we have related association rules and functional dependencies (they are the same except that ARs are extensional and FDs are intentional). Also clearly, clustering and classification are just partitioning the entire training set, where classification is partitioning with respect to the values in some particular attribute column (called the class label attribute) and clustering is more general. In clustering we have a similiarty function (or just a similariy notion) and we partition the set into clusters that are internally very similar but dissimilar across clusters. If one defines a binary similarity function in which two tuples are similar iff they have the same class and are dissimilar if they do not, then clustering becomes classification with respect to that similarity measure.
One can note that one should always place a feature attribute with the highest cuboid to with it applies. Starting with the universal training table, for a given feature, one determines what the highest cuboid is for which that feature is invariant, that is, for which it is a slice in the sense that each of its values is fully determined by one cuboid key subvector value. Then, clearly, the redundant replication of this one value is unnecessary and the feature can be rolled up (by simply projecting the single value) to that cuboid. Later we will discuss more complex roll up operators that use aggregation operators, however, here, since feature value is the same all along the roll up, no aggregate operator is necessary.

The full lattice of cuboids (the full central fact cube of all the keys is called the base cuboid (at the bottom of the lattice) and the degenerate fact consisting of none of the keys (at the top of the lattice, just above the 1-key dimension tables) is called the apex cuboid. An example is given below in which there are three entities, Genes, Organisms and Experiments (GEO star Schema and cuboid lattice) below.

[image: image3]

[image: image4]

[image: image5]
Finally, we point out that there is a semantic hierarchy for each entity and that the rollup can be to any level in that hierarchy (not all the way to the top in which the entity disappears entirely, e.g., rolling up the full GEO cube to the GE cube along the dimension ORGANISM (eliminating organism entirely) could be partially done to roll up GEO along the Organism concept hierarchy to, say Phylum instead.

Thus there is a massive lattice of cuboids hidden here.

[image: image462.emf]

Genes

[image: image463.bmp]
[image: image464.bmp][image: image465.png]% 1 T o i il 1 o
Z Z
T 7=
el Lo [HH |] |t
. A d !
0 1 A lL o 1 1A
d !
' ERER RN RN ERERVE
o o1 |1 ofoft |1
= = AW AWAT
7o L2
1 -
AE [
LE o o | B[ZE [[0
Tl1]o |o Tl1]o |o

[image: image466.bmp][image: image467.jpg]

[image: image468.bmp][image: image469.jpg]

[image: image470.wmf][image: image471.png]

[image: image472.png]

[image: image473.png]

[image: image474.wmf][image: image475.bmp]
[image: image476.bmp][image: image477.png]8888 5

[image: image478.png]

[image: image479.png]

(Support set shown in gray with a portion of the consequent cut-away to expose the support set).

and its antecedent set (note that the consequent set is of little consequences other than to identify a particular sub-region of the antecedent where, for example in the search for confident rules, the antecedent points are very populous (bunch up). That is to say, when doing confident rule mining one is searching for boxes in which the member points “bunch up” with respect to other dimension(s) as shown in the figure below. For fixed consequent rule mining, one can see that we are looking for frequent classes (really classification with respect to the consequent as the class label attribute).

1.3. The role of partitions

The concept of a partition links many of the common data mining techniques and many standard techniques can be described in the same framework of generalized database operations. Relational data base system are ubiquitous today. The notion of a unary equivalence relation is central to understanding data patterns through similarity partitioning and the notion of a comparison relation (order relation or hierarchy) is central for distinguishing similarity patterns. The former glues object together and the latter distinguishes them. The former is reflexive, symmetric and transitive and the latter is irreflexive, and transitive.

We can view a relation, R(A1,…,An) with Dom(Ai) = Xi, as the f-1(1)-component of the pre-image partition generated by a function

f:X1(…(Xn ({0,1}

which assigns 1 if the tuple “exists in the relation” and 0 if it “does not exist in the relation” (pre-images of functions; partitions and equivalence relations are pair-wise dual concepts). That is, we partition the full Cartesian product of the attribute domains into two components whenever we define a relation. Data mining and database querying are a matter of describing the non-randomness of that partition boundary (if it is non-random). Clearly, if f is identically 1, the relation is the entire Cartesian product and there is no boundary. This is one extreme.

At the other extreme, f is the characteristic function of a singleton set and there is a clear boundary and clear non-randomness. Data mining in the latter case degenerates to data querying. So "searching for patterns" can be viewed as searching for and describing the non-randomness of that boundary.

A partition on a relation over attribute domains, X1,…,Xn is the pre-image partition generated by a surjection function,

F:X1(…(Xn ({0,1,…,N}.

The range provides a labeling for the partition. We don’t need to define a relation separately from a partition since this partition function, F, when composed with the characteristic function, g:[0,N] --> [0,1] given by g(n)=1 iff n(0, is the function, f, that defines the underlying relation being partitioned. Composition with this characteristic function is used in Market Basket Research to focus on existence of a data item in a market basket (independent of count issues) in much the same way.

Another very central construct we will use to unify data querying and data mining of a relational database is the partition. Both the “partition - equivalence relation” duality and the “partition - label function” duality will be exploited in this treatment - namely, every partition generates an equivalence relation and vice versa, and every labeled partition generates a function from the partitioned set to the label set and vice versa. Partitions have sub-objects.

A sub-partition is simply a finer partition (every partition component is a subset of a component of the super-partition). The class of partitions forms a partially ordered set under the “sub” operator. Within the context of the partially ordered set of partitions (or the lattice of partitions), querying, indexing, clustering, classification, association rule mining, data warehousing operations, and even concurrency control can be defined and related.

Using this extended model, it may be possible to bring database and data mining research together. It may also be possible to eliminate the current need for two separate systems, an operational database management system and a data warehouse. If this should happen, the original goals of database management, namely: centralized control of enterprise data resources, reduced data redundancy, standardization of schemas, database correctness (i.e., serializability), maximal information resource utilization, etc.; may be achieved. The purpose of this paper is to attempt to make a contribution in this direction.

We will use the notions of partitions and hierarchies (partial orderings) of partitions as a unifying theme. Most data mining operations involve partitioning – based on distance functions, classifiers, equivalence relations (e.g., binning algorithms) and chaining techniques (e.g., density-based clustering). For example, clusters generated from the k-means clustering method are partitions produced from distance functions. Partitions are often but not always represented by indexes. Data warehouses use bitmap indexes for data mining queries.

Many data mining algorithms use tree-structured indexes to represent hierarchical partitions. Examples of such indexes are B+-trees, R-trees[2], Quad-trees[3], and P-trees[4,5,6,7,8]. A close relationship exists between bitmap indexes that are used in data warehouses, and P-tree indexes.

The “distance function - similarity measure”, the “distance function - norm dualities”, and the “distance function - scalar product” dualities will be exploited in this paper, also. We will discuss distance between data points (i.e., database tuples) in a general framework that includes commonly used distance metrics such as Euclidean distance and Manhattan distance, as well as other Lp-distances and their variations, the Max distance, and a new distance called the HOBBit distance[5]. Each of these generates a similarity measure and therefore a whole class of clusterings (depending on the clustering algorithms employed). Each of these also generates a norm and scalar product and therefore provides the notions of orthonormal basis and coincident angle.

Support Vector Machines (SVM), Wavelet Analysis, Principal Component Analysis (PCA) and other approaches to clustering and classification make use of these notions. It will be necessary to keep in mind when considering a database state in the context of a linear space, that a database state is always finite and discrete and therefore is a subset, not a subspace. We refer the reader to [12] regarding functional and linear space details. We will show how one of the standard distances, namely the Max distance, can provide huge benefits when dealing with categorical data. We encode categorical attributes, based on their labels, as an integer and break up the integer into bit planes.

The bit planes are then treated as Boolean variables, the distance between which is given by the Max distance. We will show that this results in a distance of 1 whenever the attribute values differ. By this scheme we can encode a categorical attribute that has a domain of 2n values in n bits without losing any of the distance properties of the standard encoding (which uses one Boolean attribute for each of the 2n domain values). This shows how a systematic treatment of distance metrics can lead to dramatic performance improvement.

It is important to note that the standard encoding of categorical attributes that uses one Boolean attribute for each domain value can easily be regained by a bit-wise "AND" operation on a combination of Boolean attributes and their complements. This allows existing algorithms to be used unmodified.

Based on attribute values and distances, we will identify partitions that can be efficiently searched through indexes. It is important for our discussion that partitions can be defined at many levels. In the data mining context this can be identified with a concept hierarchy, or in our model a “partition hierarchy”. Concept hierarchies are commonly defined as a tree of mappings from a set of low-level concepts to more general concepts, such as "city" < "province_or_state" < "country"[1].

More general mappings are described through directed graphs and are called concept lattices. In practice, concept hierarchies are often converted into what we will term concept slices by realizing that a lower level attribute only has to specify the incremental information with respect to the higher-level attribute. In the presence of the higher-level attribute “year” the month is uniquely defined through its name or number (without specifying the year), and the day through the attribute “day_of_month”. Specifying a concept hierarchy for these attributes requires combining attributes ("year","month","day_of_month") < ("year","month") < "year". We will refer to “year”, "month" and "day_of_month" as concept slices. Concept slices can only be defined for concept hierarchies, i.e. trees, not for concept lattices, i.e., graphs.

Concept lattices can be converted to concept hierarchies by identifying a spanning tree. Day can either be seen as a lower-level concept for month (“day_of_month”) or for week (“weekday”), and both month and week can be represented through incremental information with respect to year.

When a concept slice-based representation is used a decision has to be taken, which of the possible spanning trees will be used as basis. It is also possible to derive a concept hierarchy from the intervalization of numerical attributes. Efficient data mining on numerical attributes normally requires values within some interval to be considered together. It is often useful to do data mining at a variety of levels of interval width leading to a concept hierarchy based on intervals of integer valued attributes. We will show that in this model bit planes can be considered concept slices that can be used to map out a concept hierarchy by a bit-wise "AND" operation. This treatment naturally extends to the concept lattices.

A concept lattice is a collection of attributes for which the mapping from low-level concepts to high-level ones only defines a partial order. It is important to note that although we break up both integer and categorical attributes into bit planes we do so with different motivation. For integer attributes the individual bits are considered concept slices that can be used within a framework of concept hierarchies. Knowing which bit position is represented by a given attribute is essential for the correct evaluation of distance, means, etc.

For categorical attributes the individual bits are considered equivalent and are not part of a concept hierarchy.

Consistent evaluation of distance requires use of a particular metric, namely the Max metric. In section 2, we will discuss the key ingredients of our model, namely the assumptions we make about tables, how partitions are formed (2.1), some background on distance measures (2.2) and the notions of concept hierarchies and concept slices (2.3). In section 3, we will look at data mining algorithms in more detail, and will see how partitions and, in particular, indexes can improve performance and clarity. We end with concluding remarks in section 4.

1.3. Foundational Theory

At the heart of our description is a table R(A1,A2, ..., An). We decide to use the term “table” rather than “relation” because our treatment of distance requires us to be able to discuss rows of the table as vectors. Tuples of a relation are sets rather than vectors. The practical relevance of this distinction can be seen especially clearly when we discuss how different distance measures can be chosen for different dimensions in attribute space.

We are not concerned with normalization issues. The table in question could therefore be a view, i.e. the result of joins on more than one of the stored tables of the database. One or more attributes of this table constitute the key. Many of the techniques we describe are based on a specific order of data points. We will generally define this order based on the values of the key attributes. In a general setting attributes could come from one of several domains.

In the following we assume that all domains have been mapped to integers. This does not limit our presentation much since most domains naturally lend themselves to such a mapping: Boolean attributes correspond to values of 0 or 1, string attributes are represented in a way that maintains their lexicographical order, and continuous variables are discretized.

Discretization of continuous variables can be seen as the lowest level of intervalization. We will discuss intervalization of numerical attributes further in the context of concept hierarchies. All domains mentioned so far have an associated natural order that is well represented by integer variables.

Categorical attributes are an exception to this in that they are represented by nominal values, i.e., sets of values with no natural order. We encode categorical attributes by assigning an integer label to each domain value. The bit-wise representation of these labeling integers is broken up into bit planes. We will discuss in 2.2, how we can assure the distance of any two such attributes to be one by using the standard Max metric.

1.3.1.
Partitions

Our main mechanism for the extraction of information from a table is a partition. A partition is a mutually exclusive, collectively exhaustive set of subsets (called “components”). One possible basis for the partitioning of a table is the value of one or more attributes. In database systems such a partition is often realized as an index, i.e. a table that maps from the attribute value to the tuples of the partition component. A common reason to implement an index is to provide a fast access path to components of the partition.

An index,

I(R,Ai)

for R on an attribute, Ai, is a partition produced by the pre-image sets of the projection function,

f:R ( R[Ai]

and the range values can be viewed as labeling the components of the partition (i.e., a labeled partition of R). An attribute can be a composite. A multi-level index is a tree structure representing a hierarchical partition.

We will consider every function (e.g., f:R (R[Ai]) to have an “inverse” defined, in general, as a set-valued function from the range to the powerset of the domain, e.g.,

f:R ( R[Ai]
has inverse,

f–1 :R[Ai] (2R
which maps a to the set of all tuples containing a in the ith component. In fact, the range of f–1 is the partition.).

Not every partition has to be implemented using an index. While an index always defines a partition, defining a partition without an index on it may well be useful. An example of a partition without an index is the result of a "select" query. A "select" creates a partition of the table into rows that satisfy a given condition and those that don't.

It is important to realize how the concept of partitions is relevant at several levels of database systems, from indexes to queries. The relationship can most easily be seen for the example of bitmap indexes in data warehouses. Bitmap indexes are bit vector representations of regular indexes based on the value of an attribute. The result of a query is represented by a bitmap that partitions a table into rows that are of interest, labeled by the value 1, and those that are not, labeled by 0. We will later look at other indexes that label exactly two components, in particular at P-tree indexes.

The structure of P-trees has been described elsewhere [8]. The most relevant properties in the context of this discussion are the following: P-trees are a data mining-ready representation of integer-valued data. Count information is maintained to quickly perform data mining operations. P-trees represent bit information that is obtained from the data through a separation into bit planes.

Their multi-level structure is chosen so as to achieve compression through a tree-based structure in which nodes or quadrants that are made up entirely of 0's or entirely of 1's (pure quadrants) are eliminated. A consistent multi-level structure is maintained across all bit planes of all attributes. This is done so that a simple multi-way logical AND operation can be used to reconstruct count information for any attribute value or tuple. All major data mining techniques involve partitioning. We will now look at how the concept of partitions is implemented in clustering, classification, and Association Rule Mining (ARM).

A clustering is a partition generated by an equivalence relation from a similarity measure. The mechanism producing an equivalence relation from a similarity meas. depends on the clustering method. In hierarchical clustering, a hierarchical partition is generated.

The classification of R[A1 ,…, An] by class label attribute, Ai, is a map

g:R[A1,…,Ai-1, Ai+1,…,An] (2R[Ai]

where 2R[Ai] stands for the power set of the extant domain of the class label attribute. The mapping varies depending upon the classification method.

For decision tree induction, stopping rules usually terminate the decision tree generation before a unique class label has been determined, and a plurality vote is used to pick a class label for that branch of the tree or a probability distribution function is attached to that branch. We can think of each level in the tree construction as a partitioning of the remaining relation, R'(Ai1,…,Aip) via pre-images under the projection

,

g:R'(Ai1,…,Aip(R'(Ai1,…,Aij-1Aij+1,…,Aip

where Aij is the decision attribute at that node in the tree. This process is continued along each branch of the tree until a stopping condition is satisfied, at which point, the remaining relation fragment contains some subset of R[Ai] (ideally, but not always, a singleton set). Therefore the decision tree amounts to a map

g:R[A1,…,Ai-1,, Ai+1,…,An] (2R[Ai]

generated by a succession of projection-pre-image partitions.

It is not necessarily determined by the value of the class label attribute alone. Lazy classifiers make use of different partitions. When the classifier results in a unique class label range value, i.e., in

g:R[A1,…,Ai-1, Ai+1,…,An] (2R[Ai] g(t) is always a singleton set,

classification is a generalization of the graphing problem, namely, given a set of domain values for which the range values are known, fill in the missing range values based on the known ones. With numeric data, when the “filling in” process is based on the assumption that the resulting graph must be a straight line, it is called linear regression. When the “filling in” is allowed to be the graph of a higher order hyper-surface, it is called non-linear regression.
In Association Rule Mining new hierarchies of partitions are generated for each rule. The partitions have only two components, one of which represents the data points of interest and the other is its complement. Support is a property of one partition whereas confidence relates two partitions within a hierarchy.

 Partitions that are generated by clustering or classification will generally have more than two components. This does not preclude a description based on Boolean indexes. The labels of a general partition can be seen as nominal values, and as such, one possible representation uses one Boolean quantity for each label value, i.e., in this case one index.

1.3.2.
Distance Measures

 We are now in a position to define distance or dissimilarity measures on attribute domains. This will allow us to use similarity (lack of dissimilarity) between data items as a criterion for the partitioning tables. It is important at this point to preserve flexibility in our definition of space to make the theory applicable to a wide variety of application domains. Nevertheless we need certain tools to perform calculations.

 We need a norm to evaluate distance and an inner product to determine angles. In mathematical terms, a space with these properties is called a pre-Hilbert space. It is a space that is a specialization of a normed linear space and has all its properties

| x | (0 for x (0 and | x | = 0 for x = 0

| x + y | (| x | + | y |

| a x | = | a | | x | for any real number, a.

The norm induces a unique distance function by

d(x , y) = | x - y |.

 We pause here in the general treatment of distance, to point out that there are often alternatives to how | x | is defined, even in a standard numeric domain. For example, assume the domain of numbers, {0, 1, …, 255} represented as all 8-bit strings and interpreted as base-2 representations of those numbers. In this case we usually define

| x | (| x7..x0 | (| (i=7..0(xi * 2i) | = | (i ({bit-positions in which the x bit = 1} (xi * 2i) |

 The final representation simply sums over the bit positions at which the x-bit is a 1-bit, that is to say, all x-bits that are 1-bits. Although it is clearly a true statement, one might wonder why we would want to view it that way? The reason is, then we can consider a whole class of alternatives, called the HOBBit lengths (for High Order Bifurcating Bits) as follows.

 If, for k ({8,…,1}, we define the HOBBit-k length to be,

| x |k = | (i ({left-most k positions in which the x bit = 1} (xi * 2i) |

 Is this a norm? We will answer that question later, but for now, we simply say that HOBBit-k length is an alternative, faster way of measuring vector length (fewer terms to sum over – note for HOBBit-1 there is no summing at all) which gives an approximation to the standard length. In some applications this is a good tradeoff.

 In a pre-Hilbert space one can place an additional requirement on the norm, and thereby define an inner product space. The requirement, which is known as the parallelogram condition, states that the square of the sum of the diagonals is equal to the sum of the squares of the sides for any parallelogram, or, for any two points, x and y,

|x+ y|2 + | x - y|2 = 2 (| x |2+| y |2)
An inner product can then be defined as

x (y = (| x + y |2 - | x - y |2) / 4.

 The classical Frechet - Von Neuman - Jordan theorem states that this scalar product is commutative, distributes over addition, commutes with real multiplication, and satisfies

x (x = | x |2.

Alternatively it is possible to postulate a scalar product with these properties and derive the properties of a norm from there. Therefore the concepts of a scalar product and a norm are dual.

Forming distances on vector spaces can be a two step process, first defining a length on each dimension (e.g., standard numeric length or HOBBit length or?); and second, defining a “combiner” for those lengths (e.g., the Euclidean combiner, Minkowski combiner,…). Most of the combiners are Minkowski combiners, Lp.

The “weighted” Minkowski combiner with parameter, p, and weights
[image: image6.wmf]w

=(w1,…,wn) is

[image: image7.wmf](

)

p

n

i

p

i

i

i

w

p

y

x

length

Y

X

d

w

1

1

,

))

,

(

(

)

,

(

å

=

=

where p is a positive integer, and xi and yi are the components of vectors X and Y in dimension i. Weights can be added to the summands for complete generality. If the dimensional length is just numeric length and the weights are all 1, then this is just the standard Minkowski distance on Rn .
For p = 1 the Minkowski distance becomes the Manhattan distance: the shortest path between two points has to follow a dimension-parallel grid. For p = 2 the regular Euclidean distance is regained. In the limiting case of p→(the Minkowski distance becomes the Max distance

[image: image8.wmf]|

|

max

)

,

(

1

i

i

n

i

y

x

Y

X

d

-

=

=

¥

.

We return to the HOBBit-k measurements for a moment. A computationally efficient distance measurement over numeric domains is the High Order Bifurcation Bit Distance (HOBBit)[5]. For one dimension, the HOBBit-1 distance can be defined alternatively as the number of digits by which the binary representation of an integer has to be right-shifted to make two numbers equal. Using this alternative definition, HOBBit-k distance is the lowest number of digits by which the binary representation has to be right-shifted to leave at most k-1 bits differing. For more than one dimension, the HOBBit-k distance is defined as maximum of the HOBBit-k distances in the individual dimensions. Of course, it is not necessary to use the same k for every domain. This is a parameter choice left to the user.

It is important to note that the length (norm) of any one attribute can be chosen independently from method of combining those lengths into the norm on vectors. In fact we point out without proof that groups of attributes, such as the Boolean variables that we use to represent categorical attributes, can be treated together as one attribute that has an associated metric which is independent of the metric of the vector.

We will make use of this to consistently choose the Max metric (L() for our norm on the Boolean values that represent categorical attributes. Our encoding is based on the bit-slices of the attribute labels. Bit-slices are considered as separate variables. This corresponds to a mapping to the corners of an n-dimensional hypercube as representation of up to 2n domain values.

The Max metric evaluates any distance within a hypercube to be 1. Therefore the distances between any two attributes will be the same unit distance. For an example of a categorical attribute with a domain of size 4 the representation becomes 00, 01, and 10, and 11. It can easily be seen that the Max metric distances between any of these numbers is 1.
Before moving on to concept hierarchies in general, we make the following observations regarding distances and bit coding. When we express a number in binary format, we can view that as encoding the number using bits in a certain way, namely installing successive remainders upon division by 2 until the dividend is exhausted. This is an example of an encoding scheme. Other encoding schemes are discussed later in a section with that title.
1.3.3.
Concept Hierarchies

 Concept hierarchies allow data mining to be performed at different levels of abstraction. They occur most often, and find their usefulness, in categorical domains. Concept hierarchies employ the “IS-A” and “HAS” or “PART-OF” specification operators, as well as all aggregation and generalization operators. Specification operators move down the hierarchy (to a greater level of specificity) and generalization operators move up the hierarchy (to a lesser level of specificity).
 Many times there is a consistency across the elements at a given level of a concept hierarchy or sub-hierarchy. For example, the attributes "year", "month", and "day_of_month" in the “time” concept hierarchy. "day_of_month" does not contain information on the month or the year. The highest level in this concept hierarchy is "year", but the next lower level is not "month", but instead the combination of "year" and "month". We will refer to such attributes (e.g., month) as concept slices. Concept slices correspond to Cartesian products. In the above case, the year-month-domain constitutes the Cartesian product of the year-domain and the month-domain.

 In a very natural way, value-based concept hierarchies and slices can be identified within any one integer-valued attribute. Just as the digits of a number in any number system could be identified as concept slices, i.e., elements in a concept hierarchy that is defined through differences, so can binary digits (the so-called “bit-planes”). Of course, again it is natural to consider these concept hierarchies in terms of Cartesian products. Thus, we can think of a relation, R, with n attributes, each defined on the domain, B of 8-bit binary numbers, for instance, as a subset of an n-dimensional vector space over the real numbers. This vector space is, of course, a Cartesian product of n copies of the real number domain – the concept slices of this structure. One can further consider each each attribute of R as a Cartesian product of its bit-planes.

 We use this understanding to systematically break up each integer attribute into bit-planes. Each bit of each integer-valued attribute is saved in a separate file, resulting in a bit sequential (bSQ) file format[6]. Note that this treatment is significantly different from the encoding we use for categorical attributes.

 For categorical attributes the individual bit-planes of the encoding were considered equivalent. There was no concept hierarchy associated with the individual values. For integer attributes, on the other hand, this hierarchy is very important to represent distance information properly. Mining data using different accuracies now becomes mining at different levels of a partition hierarchy. At the highest level membership in the components is entirely determined by the highest order bit. For lower levels the successive bit values represent differences. That means that the lower order bits do not by themselves constitute a lower level in a concept hierarchy, but rather represent changes or deltas with respect to the next higher level.

 The important aspect of going to the finest level of differences, namely bits, is that we can use a standard bit-wise "AND" to generate partitions at every level. The bit sequences that are produced by a multi-way "AND" of all bit-levels equal to and higher than some given resolution is, in database language, the bitmap for a bitmapped index of the data points with attribute values within the represented interval. In data mining we often want to compute counts within such a sequence. For computational and storage reasons we do so by defining a hierarchy in the space of the key attribute(s), which we call structure space.

 We use P-trees [8], a data structure that represents count information as a tree structure. P-trees can be defined at any of the levels of the concept hierarchy that we described for bit sequential sequences. Their multi-level structure leads to an improvement in storage efficiency and speeds up the "ANDing” operations involved in creating a concept hierarchy.

1.3.4.
Learning Through Partitions

 We will now proceed to demonstrate in more detail how data mining algorithms can be described in the framework of partitions on tables. Data mining generally works with data points that can be considered equivalent according to some measures. Therefore it is natural to look for equivalence relations on the data. Knowing that equivalence relations and partitions are dual concepts, i.e., both separate space into mutually exclusive and collectively exhaustive components, we can thereby justify our focus on partitions. Unsupervised learning techniques, such as clustering, as well as supervised ones such as classification and association rule mining can be seen in this context.

 In clustering equivalence is often defined through a distance measure on feature attributes. The k-means method defines points to be equivalent to a cluster center if the distance is smaller than that to any other cluster center (ties can be broken by an order numbering of the centers). For given cluster centers this uniquely defines a partition.

 The definition of clusters is changed iteratively based on the distribution of data items within the cluster. Different strategies exist to label data items according to their cluster membership. One possibility is to create an index that associates the cluster label with data items in the cluster. As an example we will look at an algorithm that is based on P-trees [4]. One P-tree index can only distinguish between members and non-members of one cluster. Multiple P-trees, therefore, must be created if there are more than two clusters.

The multi-level structure of a P-tree lends itself to the rectangular clusters analyzed in [4]. Aggregate information at the bit-level can be extracted by projecting onto each individual bit-plane. This allows very efficient calculation of the means that are relevant for the clustering algorithm. Clustering techniques that are not based on distance measure can still be viewed as special cases of a partitioning. In density-based methods equivalence is commonly given through some measure of connectivity with a dense cluster.

 In the DBScan [9] clustering method the measure of connectivity is determined by the condition that a cluster member is within an (-range of the data point in question. In one variant of DENCLUE [10] connectivity is granted if a path to a cluster member exists for which an overall density function exceeds a threshold. Density methods commonly allow the existence of outliers that are not connected to any cluster. In our model outliers are considered to be in a cluster by themselves.

Many clustering algorithms make use of concept hierarchies. Agglomerative and divisive techniques can be viewed as partitioning strategies that start from opposite ends of a concept hierarchy. Agglomerative clustering begins at the bottom of a hierarchy by considering only those data points to be in the same cluster, for which the relevant attribute values are identical. This corresponds to an equivalence relation that takes d(x , y) = 0 as its condition of equality.

Further steps in agglomerative clustering correspond to moving up some concept hierarchy. Divisive clustering begins at the top of a hierarchy by considering all data items to be in the same cluster. This corresponds to an equivalence relation based on no condition for equivalence. Successive steps in divisive clustering correspond to moving down some concept hierarchy.

Classification differs from clustering in several respects. In classification the properties of one particular class label attribute, together with some condition on similarity of the remaining attributes, are used to determine class membership. The class label attribute is not expected to be known for unseen data. Therefore partition membership has to be defined on the basis of non-class-label attributes alone.

In the absence of noise, and for perfect classification, data points are considered to be in the same equivalence class if and only if the values of one particular attribute, the class label attribute, are equal according to some definition of equality. Correspondingly, the partition that is defined by the class label attribute is identical to the partition used in prediction.

In the presence of noise, this is not always the case. Different classification algorithms handle noise differently. ID3 decision trees [11] determine partition membership on the basis of plurality. Decision trees can be interpreted as indexes based on some subset of non-class-label attributes. It is worth noting that the partition described above is not the only possible one when performing classification.

CHAPTER 2. VERTICAL MINING PRINCIPLES AND DATA STRUCTURE DESIGN
2.1. Weaknesses of Horizontal Data Layout for Data Mining

For several decades and especially with the preeminence of relational database systems, data is almost always formed into horizontal record structures and then processed vertically (vertical scans of files of horizontal records). This makes good sense when the requested result is a set of horizontal records. In knowledge discovery and data mining, we are typically interested in collective properties or predictions that can be expressed very briefly. Therefore, the approaches for scan-based processing of horizontal records are known to be inadequate for data mining in very large data repositories [HK01, HPY00, SAM96].

For this reason much effort has been focused on sub-sampling [POJ99, Cat91, MCR93. ARS98, GGR+99, HSD01] and indexing [MAR96, SAM96] as methods for addressing problems of scalability. However, sub-sampling requires that the sub-sampler know enough about the large dataset in the first place, to sub-sample “representatively”. That is, sub-sampling representatively presupposes considerable knowledge about the data. For many large datasets, that knowledge may be inadequate or non-existent.

Index files are vertical structures. That is, they are vertical access paths to sets of horizontal records. Indexing files of horizontal data records does address the scalability problem in many cases, but it does so at the cost of creating and maintaining the index files separate from the data files themselves.

In this Presentation, we propose a database model in which the data is losslessly, vertically structured and in which the processing is based on horizontal logical operations rather than vertical scans (or index-optimized vertical scans). Our model is not a set of indexes, but is a collection of representations of dataset itself. Our model incorporates inherent data compression [DKR+02] and contains information useful in facilitating efficient data mining.

2.2. Data Encoding

This section is related to the section on concept hierarchies above. Since our goal is to employ fast Boolean operations on vertical datasets, we need to encode the data into binary format as the first step. Different encoding strategies can be used on different types of attributes. Even for attributes with the same type, we might encode using different strategies, depending on the inherent relationship of attribute values. Below we will describe some of the encoding strategies with examples. For easy retrieval, we limit them only to fixed length encoding.

2.2.1.
Binary Encoding

In terms of numeric values (excluding floating point values), we can use
[image: image9.wmf]é

ù

n

2

log

 bits to represent values between 0 and n. This strategy is also very suitable for attributes with a fixed set of possible values. For example, gender attributes can be encoded as 0 or 1; months of a year can be encoded as 4 bits values ranging from 0000 to 1011.

2.2.2.
Lookup-table Encoding

For most non-numeric discrete values (categorical data), we can easily maintain a lookup table for all the possible values. For example in Figure 1, we encode all five possible values into 3 bits and maintain a lookup table. We can decode values by lookup.

Figure 1. An example using lookup-table encoding.

2.2.3.
Bitmap Encoding

For categorical and those numeric attributes with sparse value occurrence, bitmap encoding is very useful. There are two bitmap encoding schemes, equality encoding and range encoding. These schemes have been described in several papers under different names [WLO+85, OQ97, CI98]. Equality encoding is the most fundamental and common bitmap encoding scheme. If m is the cardinality of the relational table, n is the number of different values for an attribute, then the corresponding column of the table can be encoded by a m by n matrix, where the ith bit in the bitmap associated with the attribute value v is set to 1 if and only if the ith record has a value of v, and the ith bit in each of the other bitmaps is set to 0. The matrix consists of n bitmaps {E0, E1, …, En-1}. Figure 2 shows the projection on an attribute with duplicates preserved and the corresponding equality-encoded columns, where each column represents an equality-encoded bitmap Ev associated with an attribute value v.

Figure 2. An example using bitmap encoding.

For hierarchical categorical attributes, upper levels in the hierarchy can be handled as composites of the categories that make them up (and therefore the bitmap for a composite attribute is just the logical OR of the bitmaps for those categories that make it up).

For numerical data, there are several approaches to interval encoding. The intervals can be disjoint and collectively exhaustive, partitioning the number range, and then the partitions can be either equal diameter or unequal diameter (determined by a sequence of endpoints). The intervals can also be nested instead of disjoint. Such intervalizations include the range encoding scheme discussed next.

In all interval encoding schemes, each interval has a bitmap associated with it in which the ith bit is 1 if and only if the ith value in the list is contained in that interval. Equi-diameter intervalizations can be thought of simply as smoothings of the data. If the diameters are consecutive powers of 2, then the resulting bitmaps are just the bit slices of the base-2 expansions of the numbers.

Equi-diameter intervalization can be done recursively, resulting in a concept hierarchy for the number domain. This hierarchy can be thought of as successive generalizations of the numbers themselves.

Equi-diameter intervalization is sometimes called equi-width partitioning. An alternative is, so called, equi-depth partitioning, which is data set dependent, and partitions the domain into partitioning intervals so that each interval contains the same number of values (therefore, equi-depth).

Domain knowledge may dictate a intervalization (partitioning into intervals that is neither equi-width nor equi-depth. For example, in precision agriculture, a yield attribute (a yield number for each grid sections of a crop field) might best be intervalized into low, medium and high yield, where low may be [0, 80], medium may be [81, 110] and high may be [111, (], as determined by the producer who wants the information in the first place.

Nested intervalizations and partition intervalizations are both fully defined by the sequence of end-points used. Clearly, once the end-point sequence is selected, one can create a nested or partition intervalization based on those points and one can easily convert from one intervalization to the other.

2.2.4
Range encoding schemes

The range encoding scheme consists of (n-1) bitmaps {R0, R1, …, Rn-2}, where in each bitmap Rv, the ith bit is set to 1 if and only if the ith record has a value in the range [0, v] for the attribute. In Figure 3, (b), (c), and (d) show the range-encoded bitmaps of column shown in (a).

[image: image10]
Figure 3. Examples of range encoding.

(a) Projection of attribute A with duplicates preserved.

(b) Single component, base-9 range-encoded bitmaps.

(c) Base 3 range-encoded bitmaps.

(d) Base 2 range-encoded bitmaps.

Of course this last range encoding is just the bit complement of the standard base-2 number system encoding.

However the data is bit encoded, the collection of resulting bitmaps provides a vertical lossless representation of the data.

2.3. Vertical Data Structure Introduction

Later in this section, we will develop the Predicate-Tree or P-tree technology in detail, but for now let us understand that it is a way of viewing and manipulating data vertically, instead of the ubiquitous horizontal (record based) way of viewing and manipulating data. In vertical data organizations, files of information on entities and relationships are not organized into collections of horizontal “instance” records, but into vertical domain value maps (or even more finely divided vertically into bit slices or code mappings of value maps.). In our model, given almost any predicate on instances within a file, we construct a P-tree for that predicate (thus the name predicate-tree) which is a compressed map of the instances that satisfy the predicate. In particular, in a vector space we construct Basic P-trees, one for each bit position of each dimension (where the predicate is “the instance has a 1-bit in that position in that dimension”) and for categorical files, we construct a separate bitmap for each category.

Let us begin by attempting to give a very general setting in which to do the subsequent development and study. Let us begin by defining a Dissimilarity Space, (V,d).

Let {Vi}i=1..n be a set of spaces, either subspaces of real vector spaces or category spaces. Let {di}i=1..n be a set of dissimilarity measures on the spaces, Vi . By that we mean only that each di:Vi×Vi (R (the reals) with no other required condition (although we think dissimilarity that is not symmetric makes little sense, others, apparently disagree). Let dg be any global combiner of Rn to R (e.g., Lq:Rn(R given by Lq((r1,…,rn)) = (
[image: image11.wmf]å

=

n

i

1

riq)1/q or L∞((r1,…,rn)) =
[image: image12.wmf]max

1

n

i

=

ri .)

The we define d:V×V(R as d = dg o (d1 ,…, dn) completing our definition of a Dissimilarity Space, (V,d).

In Dissmilarity Spaces, the notion of a disk of radius, r, about a center, a(V is disk(a,r) ≡ {v(V | d(a,v) < r} and for a(Vi, disk(a,r) ≡ {v(Vi | di(a,v) < r}.

Often, below, we will need a P-tree to represent all instances that fall in a particular disk (usually an L∞-disk). Assuming the L∞ combiner and that all Vi are categorical to start out with (even a vector space can be treated as a category space where each vector is a category – no other structure is retained). Then all Basic P-trees are category bit-maps. One can obviously construct a Predicate-tree for disk(a,r) as follows:
Pdisk(a,r) =
[image: image13.wmf]Ù

=

n

i

1

`

 Pdisk(ai,r) Pdisk(ai,r) =
[image: image14.wmf]Ú

Î

<

Vi

vi

r

vi

ai

di

)

,

(

Pvi where Pvi is the bitmap for vi.
Therefore,

Pdisk(a,r) =
[image: image15.wmf]Ù

=

n

i

1

`

[image: image16.wmf]Ú

Î

<

Vi

vi

r

vi

ai

di

)

,

(

Pvi

We note that this is computatation is somewhat more scalable than a vertical scan of the entire dissimilarity space but still involves a vertical scan of each individual dimension space (must make a computation with each individual value, vi , in each dimension, Vi. Clearly, this is a lot more efficient than scanning the entire space, V, since the cardinality of V may be up to |V1|*|V2|*…*|Vn|, while scanning the dimensions spaces one at a time (i.e., even without any parallelism) involves scan cardinality of |V1|+|V2|+…+|Vn|.

We, of course, are interested in even further reductions in the scan cardinality if possible. We will see, later, that in the case of vector subspaces, by creating coded P-trees (e.g., bit-slice P-trees) the scan cardinality can be reduced to the number of bit slices, which is a fixed schema cardinality and far smaller, in general, than any instance cardinality. To illustrate the difference, let’s consider a 12x12x22 data cube example. That’s 3168 instances to scan.

With bitmap P-trees, the cardinality of the scan reduces to (scanning only the individual dimensions) 12 + 12 + 22 = 36 (and order of magnitude reduction).

Finally, if bit slices are used instead of bit maps, the P-tree approach involves approximately log2(12) + log2(12) + log2(22) (12 P-tree ANDs. But, this toy example disquises the truth in this last case. Suppose we have 4 dimensions, each of 32-bit numbers. Then,

 Instance scan cardinality = 232 * 232 * 232 * 232 = 2128, a very large number!

 Bitmap P-tree scan cardinality = 232 + 232 + 232 + 232 = 234 a large number!

 Bit-slice P-tree scan cardinality = 32 + 32 + 32 + 32 = 27 a small number!

The other calculation we make often below is the total variation of a set about a point. It is calculated using the inner product, roughly as follows.

Total Variation of X about a is

(X-a)o(X-a) ≡
[image: image17.wmf]å

Î

X

x

(x-a)o(x-a) ≡
[image: image18.wmf]å

Î

X

x

 EMBED Equation.3 [image: image19.wmf]å

=

n

i

1

di(ai,xi)2 =
[image: image20.wmf]å

=

n

i

1

 EMBED Equation.3 [image: image21.wmf]å

Î

X

x

 di(ai,xi)2

 =
[image: image22.wmf]å

=

n

i

1

rootcount(Pxi ^ PX) * di(ai,xi)2

Again the formula in the totally bitmapped case is simple and straight forward. However, the problems hidden by it is that the calculation cardinality can be huge. For example, if each Vi is 32-bit numbers, there are 232 values (and therefore 232 = 4 billion bitmaps). Therefore bitslice encoding is a very very important step.

A question leaps to mind. In the categorical case, bitslicing makes no sense, and therefore it seems, we are stuck with bitmapping and the curse of calculation cardinality. However, there may be bit encoding schemes to use in those cases as well, even though the bit slice encoding scheme (so natural, it hardly seem like “encoding”) is not available in for category spaces. There are other bit encoding schemes though!

By encoding the data into binary values, we are able to break up attributes into bit slices. In this sense, all the attributes can be treated universally for data mining, although they might have different evaluation functions defined for some measurements such as similarity, distance, means, etc.

Current practice is to Structure data into horizontal records and then process those records vertically (through scans). The figure below illustrates that paradigm.

In [PDD+01], a quadrant-based tree structure, called the Peano Tree or P-tree, was developed to facilitate compression and very fast processing (logical ANDing) of bit sequential (bSQ) data. The most useful form of a P-tree is the predicate-P-tree in which a 1-bit appears at those tree nodes corresponding to quadrants for which the predicate holds. In Figure 4, (a) is a bSQ file with 64 rows, the file is rearranged into 2-D Peano or Z order in (b), and the P-tree is shown in (c).

[image: image23]
Figure 4. An example of bSQ file, 2-D Peano order bSQ file, and P-tree.

(b) bSQ file. (b) 2-D Peano order. (c) P-tree.

In this example, the count of 1-bits in the entire file is called root count of the P-tree (equals 39 in this example). The root count or any other quadrant count can be computed quickly by summing from the bottom up. If we compute all quadrant counts and place them at the nodes of a P-tree, it is called a Peano Count tree. In a Peano Count tree, the leaf sequence (depth-first) is a partial run-length compressed version of the original bit vector [DKR+02].

Therefore, P-trees can save substantial amounts of storage. P-trees can be 1-dimensional, 2-dimensional, 3-dimensional, etc. If the data has a natural dimension (e.g., spatial data) the P-tree dimension is matched to the data dimension. Otherwise, the dimension can be chosen to optimize compression. We focus on 1-dimensional P-tree in this Presentation.

To convert a relational table of horizontal records to a set of vertical P-trees, we first project the table into columns, one for each attribute, retaining the original record order in each. Then each attribute column is further decomposed into separate bit vectors, one for each bit position of the values in that attribute.

Each bit vector is then compressed into a tree structure by recording the truth of the predicate “purely 1-bits” recursively on halves until purity is reached. Figure 1 gives an example of this conversion process.

[image: image24]
Figure 1. Transformation of relational table to P-trees

2.4. Data Intervalization and Value Concept Hierarchy

On numerical attributes, considering together values within some interval normally leads to more efficient data mining. Using the vertical data organization, we can easily intervalize data with a certain value concept hierarchy. For example, for numeric data between 0 and 255, we can use 1 bit up to 8 bits to represent the data intervals. Different numbers of bits correspond to different granularities. Figure 2 illustrates the value concept hierarchy of values from 0 to 255.

 [0,0] [1,1] ------ 1 bit

 (0~127) (128~255)

 [00,01) [01,10) [10,11) [11,11] ------ 2 bits

 (0~63) (64~127) (128~191) (192~255)

 [000, [001, [010, [011, [100, [101, [110, [111, ------ 3 bits

 001) 010) 011) 100) 101) 110) 111) 111]

 (0~31) (32~63) (64~95) (96~127) (128~159) (160~191) (192~223) (224~255)

Figure 2. Value concept hierarchy.

2.5. Logical Operations on Vertical Data

Different operations can be applied on P-trees. P-tree algebra contains operators, COMPLEMENT (denoted '), AND (denoted ⋀ or &), OR (denoted ⋁ or |), and XOR, the bitwise logical operations on P-trees. These operations can be conducted directly without decompression, eliminating a high CPU cost required in most compression algorithms.

[image: image25]
Figure 3. P-tree operations. (a) P1. (b) P2. (c) P1’. (d) P2’. (e) P1⋀P2. (f) P1⋁P2.

Figure 3 shows two P-trees, P1 and P2, and the corresponding logical operations. The P-tree logic operations are performed level-by-level starting from the root level. They are associative, commutative, and distributive, since they are simply pruned bit-by-bit operations. For instance, ANDing a pure-0 node with anything results in a pure-0 node, ORing a pure-1 node with anything results in a pure-1 node. In Figure 3, (e) is the AND result of P1 and P2, and (f) is the OR result of P1 and P2.

2.6.
Predicate Tree Construction Details

Next, we consider the construction of our basic data structure, the Predicate Tree, more formally and in more detail.

Figure: a) A (horizontal) record structure; b) The file is scanned vertically;

c) The same file with values expressed as 3-bit numbers.

Next, each attribute of the original data file is projected onto a separate file as follows.

[image: image26]
Next, for full vertical decomposition, each attribute is further vertically decomposed into individual bit-position files as follows.

[image: image27]
These bit files (the basic bit vectors) may be very sparse. They can be compressed in various ways. For our purposes, the compression should be such that horizontal processing across the collection of files (logical AND, OR, NOT, …) is efficient and such that the subsetting and recombining is also accurate and efficient. For these reasons, we choose a tree structure compression which is essentially run-length compression but with the caveat that runs are allowed to end only on a particular set of boundaries (the same boundaries for all basic bit vectors). We call these basic compressed bit trees, the basic Predicate-trees (or P-trees) for this data set. The choice of boundaries depends upon the “dimension” of the P-trees desired.

The basic 0-dimensional P-trees are just the basic (uncompressed) bit vectors themselves. The basic 1-dimensional P-trees result from taking run boundaries that fall on “half-points” (1/21 points) only. The basic 2-dimensional P-trees result from taking run boundaries on “quarter-points” (1/22 points) only. The basic 3-dimensional P-trees result from taking run boundaries on “eighth points” (1/23 points) only, etc.

The set of basic P-trees of any dimension (the dimension(s) is(are) a user parameter choice) can be constructed either top-down or bottom-up. The top-down construction is probably the most instructive as a first example, and we will illustrate top-down construction of the 1-dimensional P-trees next. However, we point out that bottom-up construction is clearly the most efficient, and we will illustrate bottom-up construction of 1-dimensional P-trees also.

Top-down construction of the 1-dimensional P-trees

From the file, R(A1, A2, A3, A4), and the resulting 0-dimensional basic P-trees (bit vectors), R11, …, R43, shown above, we construct the 1-dimensional basic P-trees “top-down” as shown. Only the construction of P11 from R11 is shown. P12, …, P43 are constructed from, R12, …, R43, respectively, in the exact same way.

The top-down construction of the 1-dimensional P-tree representation of R11, denoted, P11, is built by recording the truth of the universal predicate “pure 1” in a tree recursively on halves, until purity is achieved.

For illustration purposes, we lay out R11 on its side (so we can talk in terms of left and right halves of R11 to correspond with left and right branch of our P-tree, P11).

R11 0 0 0 0 1 0 1 1

Recursively we evaluate the predicate “Is this half universally 1-bits (pure-1)?” and record the answer as at truth bit in the appropriate node in our P-tree, until purity is reach (either pure-1 or pure-0).

The entire vector is pure-1.

R11 0 0 0 0 1 0 1 1
False, record 0 at the root:

0

The left half is pure-1.

R11 0 0 0 0 1 0 1 1

False, record 0 at the left branch:

0

 0

We note that the left half is pure, however (pure-0), so that left branch terminates (is not built down any further).

The right half is pure-1.

R11 0 0 0 0 1 0 1 1
False, record 0 at the left branch:

0

 0
 0

Left half of right half is pure-1.
R11 0 0 0 0 1 0 1 1

False, record 0 at the left branch

0

of the right branch:

 0
 0

 0

Right half of right half is pure-1.
R11 0 0 0 0 1 0 1 1
True, record 1 at that node:

0

 0
 0

 0
 1

We note that this half is pure, so the tree branch terminates.

Left of left of right half is pure-1.
R11 0 0 0 0 1 0 1 1

True, record 1 at that node:

0

 0
 0

 0
 1

 1

Right of left of right half is pure-1.
R11 0 0 0 0 1 0 1 1

False, record 0 at that node:

0

 0
 0

 0
 1

 1 0

The basic P-tree, P11, which is the 1-dimensional compression of R11, is thus:

[image: image28]
In exactly the same way, P12, …, P43 are constructed from, R12, …, R43, respectively.

The result is the set of 12 basic 1-dimensional P-trees for R:

[image: image29]
Before showing the more efficient bottom-up construction of this basic P-tree set, we pause to give a simple example of their use in data mining. Very often in data mining, we need to count the number of occurrences of some record or tuple in a file or relation. With horizontal structures (assuming we do not have specifically designed indexes to help us) we have to scan vertically down the entire file to get that count. With basic P-trees, to count the number of occurrences of, for example, the record

7, 0, 1, 4
we need only observe that this record has the binary pattern,

1 1 1 0 0 0 1 1 1 1 0 0

then perform a logical AND of the corresponding P-tree for each 1-bit and a logical AND of the complement of the corresponding P-tree for each 0-bit. We note (and show in detail later) that the complement of a basic P-tree is constructed by bit-complementing only the leaves of the basic P-tree.

 Therefore, the logical program is:

P11 ^ P12 ^ P13 ^ P’21 ^ P’22 ^ P’23 ^ P31 ^ P32 ^ P33 ^ P41 ^ P’42 ^ P’43
 Employing the shortcuts (to ANDing P-trees) that a 0-node in any operand means that node is 0 in the result and a 1 node in any operand can be skipped (just AND the other corresponding nodes), the resulting P-tree (which is called the tuple-P-tree for the tuple, (7, 0, 1, 4) because it records the truth of the predicate “this half is purely (7, 0, 1, 4)” recursively until purity is reached), is,

 P(7,0,1,4)

[image: image30]
In order to get the count of (7, 0, 1, 4) tuples in R, we need only accumulate the “root count” of P(7,0,1,4) which we can do efficiently by realizing that a 1-bit at level-k contributes 2k to the count. The root count of P(7,0,1,4), denoted, rc(P(7,0,1,4)), is 2.

A much more thorough and detailed discussion of the P-tree algebra, its uses, and the concepts of basic P-trees, value-Ptrees, tuple-P-trees, root count and etc, will be given also. This treatment is meant only to motivate and illustrate the construction and basics of the technology.

Next we show how P11 is constructed from R11 bottom-up (more efficiently, in general).

The bottom-up construction of the 1-dimensional basic P-tree, P11, from R11, is done using in-order tree traversal and the collapsing of pure siblings, as follow:

We sequence across R11 left-to-right, filling in the tree in-order.

R11 0 0 0 0 1 0 1 1

[image: image31]
 0
R11 0 0 0 0 1 0 1 1

[image: image32]
 0 0
We collapse these pure-0 siblings.

R11 0 0 0 0 1 0 1 1

[image: image33]
We move to the next bit of R11 and record it in the tree.

R11 0 0 0 0 1 0 1 1

[image: image34]
 0

We move to the next bit of R11 and record it in the tree.

R11 0 0 0 0 1 0 1 1

[image: image35]
 0 0

We collapse these level-0 pure-0 siblings.

[image: image36]
We collapse the level-1 pure-0 siblings.

[image: image37]
We move through the next four bits of R11 and record it in the tree.

R11 0 0 0 0 1 0 1 1

[image: image38]
 1 0 1 1

Finally, we collapse the level-0 pure-1 siblings and fill in all remaining nodes as 0.

[image: image39]
 1 0

We pause to point out that, even though bottom-up construction of basic P-trees does require one file scan (which we have criticized horizontal data structuring for), we note that this construction process is a one-time only process and its costs can be amortized over all subsequent uses of these structures.

The above top-down and bottom-up construction of 1-dimensional basic P-trees shows the basic process, and the horizontal AND program to compute the number of occurrences of a particular record shows the basic processing step for the P-tree technology. Next we simply point out again that the dimension of the basic P-tree set is a user choice. It can be used to optimize compression, to accelerate data mining, or simply to fit the data intuitively (user understandability).

For example, 2-dimensional basic P-trees make intuitive sense for 2-dimensional images, 3-dimensional basic P-trees make good intuitive sense for solids, etc. We illustrate the bottom-up construction of a 2-dimensional basic P-tree from a bit slice (e.g., the high order bit of the red color band) of an image next.

2-dimensional P-trees

2-Dimensional P-trees are a natural choice for, e.g., image files.
For images, any ordering of pixels will work (raster, diagonalized, Peano, Hilbert, Jordan), but the space-filling “Peano” ordering has advantages for fast processing, yet compresses well in the presence of spatial continuity.

Suppose the raster-ordered, most-significant (left-most) bit of the red band of an image file is:

1111110011111000111111001111111011110000111100001111000001110000

which, in spatial position is:

[image: image40]
Top-down construction of its 2-dimensional P-tree is built by recording the truth of the universal predicate “pure 1” in a fanout=4 tree recursively on quarters, until purity is achieved.

[image: image41]

Bottom-up construction yields the same P-tree but is, in practice, more efficient. Top-down usually provides a more illuminating explanation, but bottom-up is the better way to actually construct the P-tree

We traverse the bit vector in spatial raster order, rather than left-to-right as was done for 1-dimensional bottom-up construction. We note, before proceeding with this construction, that any ordering of the pixels would work (raster, diagonal, Peano, Hilbert, Jordan-Hilbert, etc.) and it is, in fact, a user choice.

Whatever ordering the pixel file is sorted into, we build the fan-out=4 basic P-trees bottom-up, recording bits in the tree using in-order tree traversal and collapsing pure sibling quartets up to the next level of the tree.

Below we use Peano order. Again, any ordering of the tuples in the file is allowable. Usually the ordering is chosen to optimize compression or to fit the real-life entities that the file describes or to take advantage of continuity or for some other reason. We choose Peano order because it is a good compromise between optimizing compression (due to spatial continuity) and translatability between coordinates and tree node identifiers (as noted in the discussion of 1-dimensional P-trees.)

START_HERE

[image: image42]

[image: image43]
Figure:
a) shows a particular cell (at row-7, column-1),

b) shows the branch numbering and IP-address-like quadrant-ID scheme,

c) shows the re-ordering conversion from coordinates to quadrant-ID (pair-up the two high-order bits for the first quadrant-ID segment, the two middle bits for the second quadrant-ID segment, and the two low-order bits for the third quadrant-ID segment).

The figure shows the reason Peano ordering is used instead of any of the other space filling curve ordering (e.g., Hilbert, Jordan, etc.), namely that the conversion between coordinates and quadrant-ID is very simple and useful.

Just for completeness, we show include a picture illustrating the same construction for the 3-dimensional cases. The file has the xyz-coordinates of voxels and an intensity measurement for each voxel (e.g., average temperature at Fargo, ND in December). The four cubes at right show the bit slices and the Peano ordering that would be used on them. The four basic 3-dimensional P-trees would be fan-out=8 trees, which could be constructed top-down by recording the truth of “octant is pure-1” recursively on octants until purity is reached. The same reordering of bits will achieve conversion from standard xyz-coordinates to IP-address-like octant-ID.

[image: image44]
A simple example of the use of and need for 3-D P-trees can be seen in the following situation. The assumption is that of a battle field situation space, e.g., a valley in Afghanistan into which a commander is contemplating sending his troops. Before going in, the commander wants to know if and where there are chemical or biological agents that might harm his troops before sending them in.

Using nano-sensors either mortared or dropped by plane to cover the situation space, which are capable of sensing then the agent is present beyond a harmful threshold, and also the capability to geo-register themselves (using, e.g., GPS), each triggered nano-sensor sends one ping and its 3-D coordinates to a collecting site. This site is then tasked to aggregate this information efficiently (minimal volume) and send it to a hand-held display unit operated by the commander. The hand-held unit could be a cube constructed from layers of plexiglass with a excitable element at each voxel. These excitable (quantum dots?) elements will be signaled to illuminate iff the corresponding voxel in the situation space sensed a threshold level of the agent.

The question is, what is the minimal data structure that needs to be collected and transmitted and what is the simplest algorithm that allows fast accurate reconstruction for display purposes?

The picture below shows a situation space with a chemical agent present in harmful quantities at the one voxel indicated by the 1 bit in the 3-D matrix below it.

[image: image45]

[image: image46]

All other positions contain a 0-bit, i.e., the level of bio-agent detected by the nano-sensors in each of the other 63 cells (voxels) is below the danger threshold. One tiny, compressed P-tree can completely represent this “bio-situation” It is constructed (bottom up) as a fan-out=8, level=3 P-tree, as follows.

We do this by starting in the forward upper left corner and tracing the cells of the cube in Peano or Z-order, building the fanout-8 P-tree as we go. The first octant trace is shown below, along with the “in-order” lower left segment of the P-tree that it generates.

[image: image47]

[image: image48]

The traversal of the cube proceeds to the

next octant (upper forward right),

then the next (lower forward left),

then the next (lower forward right),

then the next (upper backward left),

then the next (upper backward right),

then the next (lower backward left),

then the next (lower backward right),

as show here (to the best of our ability with the cut-away view given).

[image: image49]
We can save time by noting that all the remaining 56 cells (in 7 other octants) contain all 0s. Each of the next 7 octants will produce eight 0s at the leaf level (8 pure-0 siblings), each of which will collapse to a 0 at level-1. Thus the P-tree is as follows.

[image: image50]
This entire situation can be transmitted to a personal display unit, as merely two bytes of data plus their two node IDs (NIDs). For NID, we can use [level, global_level_offset] rather than [local_segment_offset,…local_segment_offset].

So assume every node not sent is all 0s, that in any 13-bit node segment sent (only need send “mixed” segments), the 1st segment is the level (in this case, need 2 bit only), the next 3 bits give the global_level_offset within that level (i.e., 0..7) and the final 8 bits are the node’s data, then the complete situation can be transmitted as these 13 bits: 01 000 0000 0001

If there were 2n3 cells (ntoe that n=2 above) the “situation” will take only ROOF(log2(n)) blue, 23n-3 green, 8 red bits (e.g., even if there are 283=224 ~16,000,000 voxels, transmit merely 3+21+8=32 bits.).

SLOAN DIGITAL SKY SURVEY Application

Yet another application of P-trees which illustrates the intelligent use of the dimension parameter is in a virtual sky survey data (e.g., the Sloan Digital Sky Survey combining all telescope data together into one massive virtual repository). In this application, the standard point of view is to assume that light sources seen through telescopes are positioned on a 2-D “celestial ceiling” (surface of a sphere) positioned at some unspecified radius from the center of the earth (the radial distance is not a feature attribute but a derived attribute – e.g., from red shift measurements, etc.).

The celestial sphere shares its equatorial plane, center and poles with the earth. Points on the celestial sphere are identified by their DEClination angle(DEC) which is -90 degrees at the south pole, 0 degrees at the equator, and 90 degrees at the north pole; and their Recession Angle (RA) which is 0 at a longitudinal great circle determined (and periodically updated) by positions related to the vernal equinox; proceeding around the equator using the right-hand rule (thumb pointing at the north pole) to 360 degrees back at the starting point.
A picture of this set up is as follows.

[image: image51]
What Ptree dimension and what ordering should be used for such astronomical data?

Hierarchical Triangle Mesh Tree (HTM-tree), seems to be the accepted standard. We will describe it below. We recommend, however, two other alternatives that use Peano-like or Z-like ordering. They are Peano Triangle Mesh Tree (PTM-tree) and Peano Celestial Coordinate tree (PCC-tree).

PTM is similar to HTM used in the Sloan Digital Sky Survey project. In both:

· Sphere is divided into triangles

· Triangle sides are always great circle segments.

· PTM differs from HTM in the way in which they are ordered?

[image: image52]
The difference between HTM and PTM-trees is in the ordering. It makes a big difference how these triangles are ordered if continuity is a consideration. Assuming some nearness patterns are the focus of the analysis, we would want to position neighbors on the Celestial sphere as close to each other in our tree ordering as possible (to preserve continuity characteristics). PTM does not do that. PTM order as follows.

[image: image53]
The PTM scheme simply reorders at each level of triangulation so that celestial sphere neighbors are neighbors on the linear ordering at each level, as much as possible. That is, we always move to a neighbor as follows.

[image: image54]
This PTM ordering produces a sphere filling curve (does not cross itself) with good continuity characteristics. We now show the global picture to make that clear. The next picture show the 1st octant (northern hemisphere, 90 degree Recessional degrees facing the viewer). At right, is the same “octant” with the longitudinal and equatorial sides straightened out so that it forms a planar triangle (and the 4 triangular subdivisions that would be made at the next level of the subdivision are also shown).

[image: image55]
Next we proceed around the northern hemisphere according to the right-hand rule with respect to the north pole.

[image: image56]
And so forth, until we have the entire northern hemisphere, as shown below. We then traverse southern hemisphere in the revere direction (just the identical pattern pushed down instead of pulled up, arriving at the Southern neighbor of the start point. This gives us the upper level of our tree (fanout=8 – note that this all levels below this top level will be fanout=4).

[image: image57]
We build the basic Ptrees for any feature attributes of these triangulations, one bit slice per basic P-tree as before. This construction is what we referred to as top-down and proceeds to order the triangles at each level, always proceeding to a neighbor and never crossing itself. We believe this will preserve maximal continuity characteristics in an optimal way when the data is mined.

The northern hemisphere traversal at the next level in the tree is shown below. The southern hemisphere traversal is just the push-down of that.

[image: image58]
This P-tree shows just one of the fanout=4 children generated at this level.

[image: image59]
The next level is traversal is shown below, which adds another fanout=4 level to the tree.

[image: image60]
The P-trees after this level will have the shape shown below (only one of the fanout=4 P-tree segments is shown at each level).

[image: image61]
The next level proceeds similarly as shown.

[image: image62]

[image: image63]
PEANO CELESTIAL COORDINATES and PEANO CELESTIAL COORDINATE TREES (PCC-trees)

An alternative that uses Peano ordering or the Recessional Angle – Declination angle coordinates directly is shown next. Peano Celestial Coordinates, unlike PTM-trees which initially partition the sphere into the 8 faces of an octahedron, in the PCC-tree scheme, the sphere is transformed to a cylinder, then into a rectangle, then standard Peano ordering is used on the Celestial (RA, dec) Coordinates. The Celestial Coordinates Recession Angle (RA) runs from 0 to 360o and Declination Angle (dec) runs from -90o to 90o.

[image: image64]

[image: image65]

[image: image66]

[image: image67]
The result is shown below with 5 levels of peano ordering indicated.

[image: image68]

This PCC scheme is very natural and follows the (RA, dec) coordinate system faithfully.

A Brief Preview of P-trees and Data Mining

Lazy classifiers don't usually attempt to partition space entirely. The k-nearest-neighbors classifier uses a different partition for each prediction. Data points are selected entirely on the basis of similarity in the space of the non-class-label attributes. The predicted value of the class label attribute can be derived from the average or plurality member of the class labels of the selected data points. It [5] this algorithm is shown to benefit from the use of P-tree indexes that allow efficient evaluation of the necessary averages by projecting onto each individual bit-plane and combining the aggregate information.

Whereas standard classification techniques naturally partition space according to the predicted value of the class label attribute, Association Rule Mining aims at finding rules on the basis of their relevance. Therefore the most natural partition is one that separates data items that are relevant according to some measure, from irrelevant data items. New partitions will be created in the process of finding each rule

It is important to realize that the properties of any one partition are not sufficient to determine an acceptable or strong rule. A strong rule is defined as having high support as well as high confidence. The latter requires calculation of the support of the antecedent as well as the support of the combination of antecedent and consequent. This process is simplified by the fact that the two partitions of interest are part of the same concept hierarchy.

The task of an ARM algorithm therefore involves constructing different concept hierarchies and evaluating combinations of counts. The relevant partitions contain only a small fraction of the data items in the table. If such a partition is represented by an index, the index naturally will be very sparse. Therefore it is important to use an index that provides good compression.

For continuous data a suitable implementation can again be based on P-trees [7]. A benefit of this implementation lies in the bit-wise representation of the data that makes the construction of a concept hierarchy very efficient.

2.7.
Related Vertical Data Structures

The concept of vertical data organization has been studied within the context of both centralized and distributed database systems for a long time, yet much remains to be done [SR02]. It makes hardware caching work really well; it makes compression easy to do; it may greatly increase the effectiveness of the I/O device since only participating fields are retrieved each time. The vertical decomposition of a relation also permits a number of transactions to execute concurrently. Copeland et al presented an attribute level.

Decomposition Storage Model called DSM [CK85], similar to the Attribute Transposed File model (ATF) [Bat79], storing each column of a relational table into a separate table. DSM was shown to perform well. It utilizes surrogate keys to map individual attributes together, hence requiring a surrogate key to be associated with each attribute of each record in the database. Attribute level vertical decomposition is also used in Remotely Sensed Imagery (e.g., Landsat Thematic Mapper Imagery), where it is called Band Sequential (BSQ) format. Beyond attribute level decomposition, Wong et al presented the Bit Transposed File model (BTF), which took advantage of encoded attribute values using a small number of bits to reduce the storage space [WLO+85].

In addition to ATF, BTF and DSM, there has been other work on vertical data structuring, such as Bit-Sliced Indexes (BSI) [CI98, OQ97, ROO01], Encoded Bitmap Indexes (EBI) [WB98, Wu98] and Domain Vector Accelerator (DVA) [PGT+91]. A BSI is an ordered list of bitmaps used to represent values of some column or attribute, C. These bit-slices provide binary representations of C-values for all the rows. In the EBI approach, an encoding function on the attribute domain is applied and a binary-based bit-sliced index on the encoded domain is built.

EBIs minimize the space requirement and show more potential optimization than binary bit-slices. Both BSIs and EBIs are auxiliary index structures that need to be stored twice for particular data columns. As we know, even the simplest index structure used today incurs substantial increase in total storage requirements. The increased database size, in turn, translates into higher media and maintenance costs, and results in lower performance. However, our database design only requires one copy of the data and no additional auxiliary structures.

DVA is a method for performing relational operations based on vertical bit-vectors. For joins involving a primary key attribute and an associated foreign key attribute, the DVA method performs very well.

The most significant difference between DVA and our proposed design is that DVA needs to map the attribute values into the entire domain and only works for joins between tables containing primary key and foreign key while our model needs only to encode particular attributes of the domain; Thus, our design facilitates efficient SPJ (Select/Project/Join) query processing and data mining in a unified approach.

CHAPTER 3. EVALUATION OF VERTICAL PREDICATES AND VERTICAL MINING OVER ONE RELATION

3.1. Evaluating Predicates over Vertical Data

Equality predicates, range predicates, and aggregations for range-encoded bitmaps are evaluated in [OQ97, CI98]. Since our bSQ data are exactly base-2 one-sided range-based encoding, and P-trees are lossless representations of bSQ data, we adopt those well developed algorithms for range-encoded bitmaps and summarize them in this section, replacing bitmaps with P-trees. Table 1 gives all the descriptions of notations we are going to use throughout this section. Notations used in evaluating predicates using P-trees.

	Notation
	Description

	A
	Attribute name

	v
	Value in the domain of attribute A

	n
	Number of basic P-trees for attribute A

	|A|
	Cardinality (#of records) of attribute A

	PURE1
	P-tree representing pure one sequence

	PURE0
	P-tree representing pure zero sequence

	Pi
	The ith basic P-tree for A
i ∈ [1, n], from least to most significant

	P(A op v)
	P-tree for predicate A op v
op ∈ {<, >, ≤, ≥, =, ≠}

	Px & Py
	Logical AND operation of two P-trees Px and Py

	Px | Py
	Logical OR operation of two P-trees Px and Py

	P’
	Complement of P-tree P

	COUNT(P)
	Root count of P-tree P

3.1.1.
Equality Predicates

Figure 4 gives the algorithm for getting derived P-tree P(A=v). The non-equality predicate can be calculated by complement operation, P(A≠v) = P’(A=v).

[image: image69]
Figure 4. Algorithm for equality predicates of P-trees.

3.1.2.
Range Predicates

Range predicates, P(A op v), where op ∈ {<, >, ≤, ≥}, are also frequently used to generate derived P-trees. In [CI98], a very efficient range predicate algorithm (RangeEval-Opt) for range-encoded bitmaps on both binary and non-binary bases was developed. RangeEval-Opt is an optimized algorithm as opposed to the one (Algorithm 4.3, RangeEval) proposed in [OQ97]. Since we have,

P(A≥v) = P(A>v-1),

P(A≤v) = P’(A>v),

P(A<v) = P’(A≥v) = P’(A>v-1),

we only show the algorithm to evaluate P(A>v).

[image: image70]
Figure 5. P(A>v) evaluation algorithm using P-trees version 1.

Figure 5 gives the algorithm for getting derived range P-tree P(A>v). This algorithm is directly derived from algorithm RangeEval-Opt by applying base 2 for the range encoding. We give a modified version of the algorithm in Figure 6 to make the calculation more efficient.

[image: image71]
Figure 6. P(A>v) evaluation algorithm using P-trees version 2.

3.1.3.
Aggregations

Aggregate functions are heavily involved in OLAP operations and data mining algorithms. By using P-tree logical operations and the Count function, we can calculate aggregations very efficiently.

SUM / AVG

The algorithm of SUM aggregation is given in Figure 7. The function AVG is an algebraic aggregate function, which can be calculated by AVG(A) = SUM(A) / |A|.

[image: image72]
Figure 7. Algorithm of SUM(A) using P-trees

MAX / MIN

[image: image73]
Figure 12. Algorithm of MAX(A) using P-trees.

The MAX and MIN aggregation algorithms are given in 0 and Figure 8.

[image: image74]
Figure 8. Algorithm of MIN(A) using P-trees.

MEDIAN

The MEDIAN value of a column for a set of rows is the value M such that at least half of the rows have values greater than or equal to M and at least half of the rows have values less than or equal to M.

The algorithm of MEDIAN using P-trees is given in Figure 9. Note that the algorithm can provide not only the median value but also the set of rows (in fact a mask represented by the corresponding P-tree) that is equal to the median (or by simple modification, greater than or equal to, strictly greater than, less than or equal to, or strictly less than).

[image: image75]
Figure 9. Algorithm of MEDIAN(A) using P-trees.

More formal Definitions of a Distance Metrics
A distance metric measures the dissimilarity between two data points in terms of some numerical value. It also measures similarity; we can say that more distance less similar and less distance more similar.

To define a distance metric, we need to designate a set of points, and give a rule, d(X, Y), for measuring distance between any two points, X and Y, of the space. Mathematically, a distance metric is a function, d, which maps any two points, X and Y in the n-dimensional space, into a real number, such that it satisfies the following three criteria.

Definition of a Distance Metric

a) d(X, Y) is positive definite: If the points X and Y are different, the distance between them must be positive. If the points are the same, then the distance must be zero. That is, for any two points X and Y,

i. if (X (Y), d(X, Y) > 0

ii. if (X = Y), d(X, Y) = 0

b) d(X, Y) is symmetric: The distance from X to Y is the same as the distance from Y to X. That is, for any two points X and Y,

d(X, Y) = d(Y, X)

c) d(X, Y) satisfies triangle inequality: The distance between two points can never be more than the sum of their distances from some third point. That is, for any three points X, Y and Z,

d(X, Y) + d(Y, Z) (d(X, Z)

Various Distance Metrics

The presence of the pixel grid makes several so-called distance metrics possible that often give different answers for the distance between the same pair of points. Among the possibilities, Manhattan, Euclidian, and Max distance metrics are common.

Minkowski Distance

The general form of these distances is the weighted Minkowski-p (or Lp) distance. Considering a point, X, in n-dimensional space as a vector <x1, x2, x3, …, xn>,

the weighted Minkowski-p distance,

[image: image76.wmf](

)

p

n

i

p

i

i

i

p

y

x

w

Y

X

d

1

1

,

þ

ý

ü

î

í

ì

-

=

å

=

Where, p is a positive integer,

xi and yi are the ith components of X and Y, respectively.

wi ((0) is the weight associated to the ith dimension or ith feature.

Associating weights allows some of the features dominate the others in similarity matching. This is useful when it is known that some features of the data are more important than the others. Otherwise, the Minkowski-p distance is used with wi = 1 for all i. This is also known as the Lp distance.

[image: image77.wmf](

)

p

n

i

p

i

i

p

y

x

Y

X

d

1

1

,

þ

ý

ü

î

í

ì

-

=

å

=

Manhattan Distance

When p = 1, the Minkowski distance or the L1 distance is called the Manhattan distance.

The Manhattan distance,

[image: image78.wmf](

)

å

=

-

=

n

i

i

i

y

x

Y

X

d

1

1

,

It is also known as the City Block distance. This metric assumes that in going from one pixel to the other it is only possible to travel directly along pixel grid lines. Diagonal moves are not allowed.

For Boolean data (with values from {0,1} only) the Manhattan distance is also know as the

Hamming distance
Hamming distance measures the count of Boolean Coordinates at which two Boolean strings differ. It is Manhattan distance applied to Boolean data. We can note, however, if we consider any Lp distance, p=1,2,… and if we remove the qth power (p-power Lp distance,
[image: image79.wmf]d

p

p

). Note that total variation sums the 2-power L2 distances,
[image: image80.wmf]d

2

2

, so
[image: image81.wmf]d

p

p

 distance measurement is a very commonly used construct),

[image: image82.wmf](

)

þ

ý

ü

î

í

ì

-

=

å

=

n

i

p

i

i

p

p

y

x

Y

X

d

1

,

and if the data is Boolean, then
[image: image83.wmf]d

p

p

 is Hamming distance for any p=1,2,…
Euclidian Distance

With p = 2, the Minkowski-p distance or the L2 distance is known as the Euclidian distance.

The Euclidian distance,

[image: image84.wmf](

)

(

)

å

=

-

=

n

i

i

i

y

x

Y

X

d

1

2

2

,

This is the most familiar distance that we use, in our daily life, to find the shortest distance between two points (x1, y1) and (x2, y2) in a two dimensional space; that is

[image: image85.wmf](

)

(

)

(

)

2

2

2

2

1

1

2

,

y

x

y

x

Y

X

d

-

+

-

=

Max Distance

When p gets extremely large, the summation, in the Minkowski-p distance, is dominated by the largest difference, |xk – yk| for some (one or more) k (1 (k (n) and the other differences are negligible. In the limit, as p tends toward infinity, the maximum difference will become the only contributor, hence the L(distance becomes is defined as the maximum of the differences.

The Max distance or L(distance,

[image: image86.wmf](

)

i

i

n

i

y

x

Y

X

d

-

=

=

¥

1

max

,

Max distance is also known as the chessboard distance. This metric assumes that you can make moves on the pixel grid as if you were a ‘King’ making moves in chess, i.e. a diagonal move counts the same as a horizontal move. For that reason, is is also know as the Monarch distance. We will use the terminology Minkowski distance to include the Minkowski-p distances as well as the L(distance.

It is clearly understood from the figure 2.1 that d1 (d2 (d(for any two points X and Y.

We note that the max distance is the only Minkowski distance that is vertically, in the sense that it still computes efficiently when the data is vertically partitioned. This is because it applies to individual attributes, one at a time whereas, all others applied to all attributes combined together.

Theorem 1: For any two points X and Y, the Minkowski distance metric,

[image: image87.wmf](

)

p

n

i

p

i

i

p

y

x

Y

X

d

1

1

,

þ

ý

ü

î

í

ì

-

=

å

=

 p=1,2,…

[image: image88.wmf](

)

i

i

n

i

y

x

Y

X

d

-

=

=

¥

1

max

,

is a monotone decreasing function of p; that is
[image: image89.wmf]q

p

d

d

³

 if p < q.

Proof: For p < ∞,
[image: image90.wmf](

)

p

n

i

p

i

p

n

i

p

i

i

p

z

y

x

Y

X

d

1

1

1

1

,

þ

ý

ü

î

í

ì

=

þ

ý

ü

î

í

ì

-

=

å

å

=

=

,
 letting
[image: image91.wmf]i

i

i

z

y

x

=

-

, where zi (0

Assuming X (Y and
[image: image92.wmf]{

}

k

i

n

i

z

z

=

=

1

max

, we see
[image: image93.wmf]0

¹

k

z

.

Let
[image: image94.wmf]i

k

i

z

z

a

=

, then
[image: image95.wmf]1

0

£

£

i

a

 and

[image: image96.wmf](

)

p

n

i

p

i

k

p

n

i

p

i

p

k

p

z

z

Y

X

d

1

1

1

1

,

þ

ý

ü

î

í

ì

=

þ

ý

ü

î

í

ì

=

å

å

=

=

a

a

and
[image: image97.wmf]1

0

å

=

³

n

i

p

i

a

, since
[image: image98.wmf]p

k

n

i

p

i

z

z

å

=

³

0

Similarly,
[image: image99.wmf](

)

q

n

i

q

i

k

q

z

Y

X

d

1

1

,

þ

ý

ü

î

í

ì

=

å

=

a

and
[image: image100.wmf]1

0

å

=

³

n

i

q

i

a

Now
[image: image101.wmf]1

0

£

£

i

a

[image: image102.wmf]å

å

=

=

³

Þ

³

Þ

n

i

q

i

n

i

p

i

q

i

p

i

a

a

0

1

a

a

, since p < q

[image: image103.wmf]p

n

i

q

i

q

n

i

p

i

a

þ

ý

ü

î

í

ì

³

þ

ý

ü

î

í

ì

Þ

å

å

=

=

0

1

a

, since
[image: image104.wmf]1

0

å

=

³

n

i

p

i

a

 and
[image: image105.wmf]1

0

1

å

=

+

³

n

i

p

i

a

 and p < q

[image: image106.wmf]q

n

i

q

i

k

p

n

i

p

i

k

a

z

z

1

0

1

1

þ

ý

ü

î

í

ì

³

þ

ý

ü

î

í

ì

Þ

å

å

=

=

a

That is
[image: image107.wmf](

)

(

)

Y

X

d

Y

X

d

q

p

,

,

³

Again when X = Y,
[image: image108.wmf](

)

(

)

0

,

,

=

=

Y

X

d

Y

X

d

q

p

Therefore, for any X and Y,
[image: image109.wmf](

)

(

)

Y

X

d

Y

X

d

q

p

,

,

³

.

For p=∞,

[image: image110.wmf](

)

i

i

n

i

y

x

Y

X

d

-

=

=

¥

1

max

,

 ≥
[image: image111.wmf]p

n

 EMBED Equation.3 [image: image112.wmf]i

i

n

i

y

x

-

=

1

max

 =
[image: image113.wmf]n

p

/

1

 EMBED Equation.3 [image: image114.wmf]ú

ú

û

ù

ê

ê

ë

é

-

=

}

{max

1

/

1

i

i

n

i

p

y

x

p

 =
[image: image115.wmf]}

max

*

{

1

/

1

i

i

n

i

y

x

n

p

-

=

 =
[image: image116.wmf]p

n

i

p

i

i

n

i

y

x

1

1

1

|

|

max

ï

þ

ï

ý

ü

ï

î

ï

í

ì

-

å

=

=

 =
[image: image117.wmf]p

n

i

p

i

i

n

i

y

x

1

1

1

|

|

max

ï

þ

ï

ý

ü

ï

î

ï

í

ì

-

å

=

=

 ≥
[image: image118.wmf](

)

p

n

i

p

i

i

p

y

x

Y

X

d

1

1

,

þ

ý

ü

î

í

ì

-

=

å

=

 p=1,2,…

Corollary 1(a):
[image: image119.wmf](

)

p

n

i

p

i

p

k

p

n

i

p

i

k

p

z

z

Y

X

d

L

1

1

0

1

1

0

0

0

lim

lim

,

:

þ

ý

ü

î

í

ì

=

þ

ý

ü

î

í

ì

=

å

å

=

®

=

®

a

a

, which is not defined.

Corollary 1(b):
[image: image120.wmf](

)

i

i

n

i

k

p

n

i

p

i

p

k

p

n

i

p

i

k

p

y

x

z

z

z

Y

X

d

L

-

=

=

þ

ý

ü

î

í

ì

=

þ

ý

ü

î

í

ì

=

=

=

¥

®

=

¥

®

¥

¥

å

å

1

1

1

1

1

max

lim

lim

,

:

a

a

.

Other distances

Canberra Distance

Canberra distance is defined by
[image: image121.wmf](

)

å

=

+

-

=

n

i

i

i

i

i

c

y

x

y

x

Y

X

d

1

,

Squared Cord Distance

Squared cord distance is defined by
[image: image122.wmf](

)

(

)

å

=

-

=

n

i

i

i

sc

y

x

Y

X

d

1

2

,

Squared Chi-squared distance
Squared Chi-squared distance is defined by
[image: image123.wmf](

)

(

)

å

=

+

-

=

n

i

i

i

i

i

chi

y

x

y

x

Y

X

d

1

2

,

In all the distances above, we have used the | xi – yi | to calculate the distance between two values in a single attribute domain. It is naturally assumed that, for a numeric domain, the absolute value of the value difference is the always the to be used. Boolean or binary attributes are numeric and therefore the same is true for them. For categorical attributes, as noted above in the section discussing coding, we use bitmaps (separate attribute for each category) and therefore the same is true again. However, with vertically partitioned data, there are other attribute distances that makes sense (can speed up computations while giving a good measure of dissimilarity).

We have briefly discussed this class of HOBBit-k distances Above. We define HOBBit attribute distance, then show that standard attribute distance is one of the HOBBit distances (HOBBit-b distance, when the domain is b-bit numbers).

The name HOBBit derives from High Order Bifurcating Bits.

To motivate the HOBBit distance, a very interesting and useful metric, we note that the distance between two values in some given numeric attribute domain need not be defined as the absolute value of the difference in the values, which, for b-bit numbers, x = xb…x0 and y = yb…y0, where xj and yj are bits, is

| x – y | = | (k=(b-1)…0 (xk-yk)2k | = | (all positions, k({(b-1)…0}, where the bits of x and y differ (xk-yk)2k |.

If, instead, we take only the first q bit positions (from the left) where the bits of x and y differ, we get a value distance which is an approximation, but which involves fewer calculations. We can take the extreme case of q=1 (distance is 2k where k is the highest order bit position at which the bits differ). This gives, essentially, the HOBBit distance defined carefully below. However, instead of raising 2 to the k power, we can use a non-exponential definition and achieve the same result.

The reason for taking this alternative approach is that the metric properties are easier to verify and the same computational simplification results. That is the approach taken in the HOBBit distance below. In the definition below, we only combine these value distances using the max distance since it is the only vertical data compliant vector distance.

Higher Order Bifurcation Bit (HOBBit) Distance

We propose a new distance metric called HOBBit distance that provides efficient computation when using P-trees. HOBBit distance is defined for the data where each component of a data point is an integer such as reflectance values of a pixel. We use similarity in the most significant bit positions between band values of two pixels.

We consider only the most significant consecutive bit positions starting from the left most bit, which is the highest order bit. Consider the following two 8-bit values, x1 and y1, represented in binary. The 7th bit is the most significant bit and 0th bit is the least significant bit.

Bit position: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

 x1: 0 1 1 0 1 0 0 1

x1: 0 1 1 0 1 0 0 1

 y1: 0 1 1 1 1 1 0 1

y2: 0 1 1 0 0 1 0 0

These two values are similar in the three most significant bit positions, bits (011). After that they differ (in 4th bit), we don’t consider anymore lower order bit positions. Since we are looking for closeness in values, after differing in some higher order bit positions, similarity in some lower order bit is less meaningful with respect to our purpose. Similarly, x1 and y2 are identical in the four most significant bits (0110). Therefore, according to our definition, x1 is more similar to y2 than to y1.

Definition 2: The HOBBit distance between two integers A and B is defined by

dv(A, B) = 2H(A, B)
where H(A, B) = max{ k | ak(bk }, ak and bk are the kth bits numbering positions left to right ending in 0) of A and B respectively. All values, being from the same domain, are represented using the same number of bits, m+1.

We note that the more general definition for the HOBBit-q distance between the two integers is defined by

dHOBBitq(A,B) = | (k({k1 … kq}, the first q positions from the left where the bits differ (xk-yk)2k |.

Then the HOBBIT distance, dv, is just the HOBBit-1 distance and the standard absolute value of the difference distance is just HOBBit(m+1) distance.

Definition 3: The HOBBit distance between two points X and Y is defined as the maximum HOBBit distance between any of the attribute value pairs, xi and yi . n is the number of dimensions.xi and yi are the ith components of X and Y respectively.

Definition 4: When A and B are equal, A and B are identical in all m bits. Again when A and B are identical in all m bit, A and B are equal. We say,

A = B if and only if
[image: image124.wmf](

)

i

i

b

a

m

i

i

=

Þ

£

£

"

1

.

Lemma 1: For integers A and B, HOBBit(A, B) is defined and 0 (HOBBit(A, B) (m.

Proof: If s = 0, for any i,
[image: image125.wmf]s

i

£

£

1

 (FALSE, hence
[image: image126.wmf](

)

i

i

b

a

s

i

i

=

Þ

£

£

"

1

(TRUE.

Therefore, the set
[image: image127.wmf](

)

{

}

i

i

b

a

s

i

i

s

=

Þ

£

£

"

1

:

 contains the element 0 irrespective of A and B.

Hence, for any two integers A and B,
[image: image128.wmf](

)

{

}

i

i

m

s

b

a

s

i

i

s

=

Þ

£

£

"

=

1

:

max

0

has a value, i.e.

HOBBit(A, B) is defined.

[image: image129.wmf]{

}

m

s

m

s

=

=

0

max

and
[image: image130.wmf]{

}

0

min

0

=

=

s

m

s

, then
[image: image131.wmf](

)

{

}

m

b

a

s

i

i

s

i

i

m

s

£

=

Þ

£

£

"

£

=

1

:

max

0

0

That is 0 (HOBBit(A, B) (m.

Lemma 2: 0 (dv(A, B) (m.

Proof:
0 (HOBBit(A, B) (m (Lemma 1)

(m - 0 (m - HOBBit(A, B) (m – m

(m (dv(A, B) (0

(0 (dv(A, B) (m

Lemma 3: HOBBit(A, A) = m and dv(A, A) = 0

Proof: HOBBit(A, A) =
[image: image132.wmf](

)

{

}

i

i

m

s

a

a

s

i

i

s

=

Þ

£

£

"

=

1

:

max

0

 =
[image: image133.wmf]{

}

s

m

s

0

max

=

 = m

dv(A, A) = m - HOBBit(A, A) = 0.

Lemma 4: If A (B, HOBBit(A, B) < m and dv(A, B) > 0.

Proof: (Proof by contradiction)

Assume, HOBBit(A, B) = m

[image: image134.wmf](

)

i

i

b

a

m

i

i

=

Þ

£

£

"

Þ

1

[image: image135.wmf]1

Definition

(A = B
[image: image136.wmf]4

Definition

But it is given that A (B (contradiction), Therefore HOBBit(A, B) (m.

Again, HOBBit(A, B) (m
[image: image137.wmf]1

Lemma

Hence, HOBBit(A, B) < m

And m - HOBBit(A, B) > 0

(dv(A, B) > 0.

Theorem 3: HOBBit distance is positive definite i.e. for any two points X and Y,

a) if (X = Y),
[image: image138.wmf](

)

Y

X

d

H

,

 = 0

b) if (X (Y),
[image: image139.wmf](

)

Y

X

d

H

,

 > 0

Proof: a) dH(X, Y)

= dH(X, X)
[image: image140.wmf]Y

X

=

= maxi=1…n{m - HOBBit(xi, xj)}=
[image: image141.wmf]{

}

max

1

m

m

n

i

-

=

[image: image142.wmf]3

Lemma

=
[image: image143.wmf]{

}

0

max

1

n

i

=

= 0

c) X (Y (there exits some k such that xk (yk

(dv(xk, yk) > 0
[image: image144.wmf]4

Lemma

(
[image: image145.wmf](

)

{

}

i

i

v

n

i

,y

x

d

1

max

=

 > 0
[image: image146.wmf](

)

2

Lemma

0,

,

any

For

³

i

i

v

,y

x

d

i

That is dHOBBit(X,Y)> 0.

Lemma 5: HOBBit(A,B) = HOBBit(B,A)

Proof: HOBBit(A,B)

=
[image: image147.wmf](

)

{

}

i

i

m

s

b

a

s

i

i

s

=

Þ

£

£

"

=

1

:

max

0

=
[image: image148.wmf](

)

{

}

i

i

m

s

a

b

s

i

i

s

=

Þ

£

£

"

=

1

:

max

0

= HOBBit(B,A)

Theorem 4: HOBBit distance is symmetric i.e. for X and Y, dHOBBit(X,Y)=dHOBBit(Y,X).

Proof:
[image: image149.wmf](

)

Y

X

d

H

,

= maxi=1…n{m - HOBBit(xi, yj)}

= maxi=1…n{m - HOBBit(yi, xj)}
[image: image150.wmf]5

Lemma

=
[image: image151.wmf](

)

X

Y

d

H

,

Lemma 6: For any three integers A, B and C,
[image: image152.wmf](

)

B

A

d

v

,

 +
[image: image153.wmf](

)

C

B

d

v

,

 (
[image: image154.wmf](

)

C

A

d

v

,

.

Proof: Let HOBBit(A,B)= p and HOBBit(B,C)= q.

That is,
[image: image155.wmf](

)

{

}

i

i

m

s

b

a

s

i

i

s

=

Þ

£

£

"

=

1

:

max

0

= p and
[image: image156.wmf](

)

{

}

i

i

m

s

c

b

s

i

i

s

=

Þ

£

£

"

=

1

:

max

0

= q

(
[image: image157.wmf](

)

i

i

b

a

p

i

i

=

Þ

£

£

"

1

 (
[image: image158.wmf](

)

i

i

c

b

q

i

i

=

Þ

£

£

"

1

(
[image: image159.wmf](

)

(

)

(

)

(

)

i

i

i

i

c

b

b

a

q

p

i

i

=

Ù

=

Þ

£

£

"

,

min

1

(
[image: image160.wmf](

)

(

)

i

i

c

a

q

p

i

i

=

Þ

£

£

"

,

min

1

(HOBBit(A,C) =
[image: image161.wmf](

)

{

}

i

i

m

s

c

a

s

i

i

s

=

Þ

£

£

"

=

1

:

max

0

 (
[image: image162.wmf](

)

q

p

,

min

(m - HOBBit(A,C) (m -
[image: image163.wmf](

)

q

p

,

min

That is m -
[image: image164.wmf](

)

q

p

,

min

 (
[image: image165.wmf](

)

C

A

d

v

,

.

We know that (m – p) + (m – q) (max (m – p, m – q) = m –
[image: image166.wmf](

)

q

p

,

min

 (
[image: image167.wmf](

)

C

A

d

v

,

.

That is
[image: image168.wmf](

)

B

A

d

v

,

 +
[image: image169.wmf](

)

C

B

d

v

,

 (
[image: image170.wmf](

)

C

A

d

v

,

[image: image171.wmf]2

Definition

Theorem 5: HOBBit distance satisfies triangle inequality, i.e. for any three points X, Y

and Z,
[image: image172.wmf](

)

Y

X

d

H

,

 +
[image: image173.wmf](

)

Z

Y

d

H

,

 (
[image: image174.wmf](

)

Z

X

d

H

,

.

Proof: Assume
[image: image175.wmf](

)

Z

X

d

H

,

 =
[image: image176.wmf](

)

{

}

max

1

i

i

v

n

i

,z

x

d

=

=
[image: image177.wmf](

)

k

k

v

z

x

d

,

, for some k, where 1 (k (n.

Now
[image: image178.wmf](

)

{

}

max

1

i

i

v

n

i

,y

x

d

=

(
[image: image179.wmf](

)

k

k

v

y

x

d

,

 and
[image: image180.wmf](

)

{

}

max

1

i

i

v

n

i

,z

y

d

=

(
[image: image181.wmf](

)

k

k

v

z

y

d

,

(
[image: image182.wmf](

)

{

}

max

1

i

i

v

n

i

,y

x

d

=

+
[image: image183.wmf](

)

{

}

max

1

i

i

v

n

i

,z

y

d

=

(
[image: image184.wmf](

)

k

k

v

y

x

d

,

 +
[image: image185.wmf](

)

k

k

v

z

y

d

,

(
[image: image186.wmf](

)

Y

X

d

H

,

 +
[image: image187.wmf](

)

Z

Y

d

H

,

 (
[image: image188.wmf](

)

k

k

v

y

x

d

,

 +
[image: image189.wmf](

)

k

k

v

z

y

d

,

[image: image190.wmf]3

Definition

We know that
[image: image191.wmf](

)

k

k

v

y

x

d

,

 +
[image: image192.wmf](

)

k

k

v

z

y

d

,

 (
[image: image193.wmf](

)

k

k

v

z

x

d

,

[image: image194.wmf]6

Lemma

Then
[image: image195.wmf](

)

Y

X

d

H

,

 +
[image: image196.wmf](

)

Z

Y

d

H

,

 (
[image: image197.wmf](

)

k

k

v

z

x

d

,

That is
[image: image198.wmf](

)

Y

X

d

H

,

 +
[image: image199.wmf](

)

Z

Y

d

H

,

 (
[image: image200.wmf](

)

Z

X

d

H

,

[image: image201.wmf](

)

(

)

k

k

v

H

z

y

d

Z

X

d

,

,

Assumption

=

As we discuss in the next section, distance metrics are very useful in database and data mining considerations. We use them to gather neighbors of a given point (where we need to know which points in the space are close enough to qualify as “neighbors”), and for many other uses. Here we note that distance metrics are very formal “dissimilarity measures” and dissimilarity measures are most often used to quantify “similarity” (closeness) of points in a space (e.g., a search space or a training space). So, often “similarity” is the underlying notion we are trying to get at. Above we noted that one need not use the usual definition of distance (or dissimilarity or similarity) within a numeric attribute, namely the absolute value of the difference of the two values. One can, instead, consider only the (k) most significant bits of that difference to provide a quicker (but less accurate) measure of similarity. Then the various notions of dissimilarity between two attribute values can be combined across domains in a variety of ways, as discussed above (Lq distance, 1≤ q ≤ ∞ or some other?) .

In many application areas, the notion of dissimilarity chosen by practitioners is quite far from having formal distance metric properties. For example, in Bioinformatics, the notion of pairwise sequence alignment (nucleotide sequences, polypeptide sequences, etc) is a fundamental tool for prediction structure or function based on phylogeny (homologs or sequences that evolved from the same parent sequence through mutation, insertion and deletion events over long evolutionary periods). This is another example of nearest neighbor voting or case-based prediction.

However, in bioinformatic sequence alignment, the similarity function is not (cannot be?) based on a formal distance function at all. Within a given attribute domain (a position in the sequence), the user is allowed to pick a very complex “scoring matrix” which stipulates the distance between possible pairs of values that may occur at that position in the sequence (in simple true alignment, the matrix assigns a “distance” score to every pair of possible values). Simple true alignment is appropriate only if one assume the only evolutionary event is mutation (change in one position), however, it is know that, so called, indel (insertion and deletion) events have occurred in evolutionary history as well. When the sequences being compared are different lengths (as they almost always are), the hypothesis that they evolved from the same parent sequence through point mutations and insertions (of 1 or more new entries in one of both of the sequences) and deletions (of 1 or more of the existing entries in one or both of the sequences) si required. Therefore, the scoring matrixes involve inter-position scorings (to accommodate indel events). Gaps are assessed similarity penalties. Furthermore, these scores for mutation and indel evolutionary events are quite typically assigned based observations of actual rates of occurrence of these events.

In the Point Accepted Mutation (PAM) method, a scoring matrix is computed by observing the substitutions that occur in alignments between similar sequences with very high identity first. Next, the relative mutability of each pair is computed from experience. A matrix of the “log odds” is constructed, normalized and used.

Another popular scoring matrix is called the BLOSSUM matrix. It is also derived by observing substitution rates among similar sequences using statistical clustering techniques.

Dynamic programming techniques (e.g., in the Needleman-Wunsch Agorithm) are then used to find the best alignments between two sequences, rather than exhaustive search.

Suffice it to say, similarity in Bioinformatics is not a matter of selecting among formal distance metrics. In fact, the similarity notions used are very complex, difficult to describe, non-closed form formulas or programs. None-the-less, there is a similarity notion used in all such alignments and searches (e.g., BLAST, FAST, etc.) which boils down to an application of a weighted voting by highly similar sequences (neighbors).

The question comes up, should a vertical BLAST search be developed? Would it be faster, more accurate? It is difficult to answer that question. Here are some thoughts in that direction. Due to the indel evolutionary events (which shift values, essentially from one attribute column to another) and the statistical nature of the scoring matrixes used, it seems that the current methods are quite “horizontal” in nature. That is not to say that horizontal-based methods are the best. It is to say, though, that a lot of work would have to be done to bring a vertical suite of alignment and search tools up to the level of current horizontal ones.

My belief is that, since we are talking about nearest neighbor set identification and retrieval, such vertical methods, once developed to take account of indel events and prior biological knowledge, would be far more scalable and faster than current methods. Why is speed and accuracy so important? When methods don’t scale, work-arounds are always introduced to make them work in reasonable time. Those work-arounds always become embedded in the thinking of the scientists as necessities, skewing their algorithmic thinking. It would be far better if the scientific need always drove the tool creation and never that the tool limitation drives the scientific direction. One last opinion in this regard – several recent changes in thinking may throw current practice into question.

The basic dogma that there is a subsequence of DNA (a “gene”) that, when expressed in sufficient quantities (and therefore produces sufficient quantities of THE protein it codes for), a certain function or phenomenon will occur, may be in doubt. This writer is not qualified to comment other than to observe that other writers who are, seem to be saying, at this point in time, that there are a plethora of post transcriptional, post splicesomal, and post translational events that throw this dogma into doubt.

That, together with the seemingly tenuous nature of the basic assumption of phylogeny, that two sequences closely aligned, came from a common ancestor (not far away in the tree of life) and that therefore the two sequences are very likely to have similar function or phenotype, seems to this (non-biologist) writer, to be a somewhat rash assumption.

I will comment at this point on one other strange (to this non-biologist) assumption regarding alignment. When scoring the alignment of two sequences that are different lengths (very often very different lengths), it appears to be the assumption that the difference in lengths derives from indel (insertion and deletion) evolutionary events and that one only needs to consider such events that bring the shorter up to the length of the longer. Why wouldn’t indel events be just as probable in the longer sequence. True, insertions are considered in the longer sequence as one way the two sequences developed differing lengths (and is treated as the same as a corresponding deletion events in the shorter. Wouldn’t deletions in the longer be just as likely (maybe more likely) as deletions in the shorter? And if so, isn’t the current treatment of gaps, less than satisfactory?

Neighborhood of a Point or Pixel Using Different Distance Metrics

We define the disk neighborhood of a target point, T, as a set of points, S, such that each point in S is within a specified distance, r, from the target T and S contains all of the points that lie a distance r or less from T. (Clearly, this definition depends upon the definition of distance that is used.)

That is

X (S if and only if d(T, X) (r

The elements in S are called the nearest neighbors of T with respect to the

distance r and metric d.

r is called the radius of the neighborhood.

T is called the center of the neighborhood.

The locus of the point X satisfying d(T, X) = r, is called the boundary of the disk neighborhood.

When r = 1, the boundary of the disk neighborhood is called the unit circle for the metric d.

The disk neighborhood can also be defined as a closed region, R, in the space such that a point, X, is in the region R if and only if d(T, X) (r.

Different distance metrics result in disk neighborhoods with different sizes and different shapes. In a two dimensional space, the disk neighborhood using Manhattan distance metric is a diamond. The center of the disk neighborhood is the intersection point of its diagonals. Each side of the diamond makes 45(angles with the axes and the diagonal length is 2r i.e. each side is (2r.

The disk neighborhood using Euclidian distance is the interior (and boundary) of an actual circle with radius r and center T; the center of the circle is the center of the neighborhood. Using the Max distance it is a square with sides 2r, center T and having its sides parallel to the axes.

The disk neighborhood for HOBBit distance is also a square with side 2r and the sides are parallel to the axes but the center of neighborhood, T, is not necessarily the center of the square.

The size of the disk neighborhood for the Canberra and Squared Cord distance depends on the target T; for the same distance r, different targets generates different sized neighborhood. The disk neighborhoods using four distance metrics discussed above are depicted in the figure 2.2.

 a) Manhattan b) Euclidian c) Max d) HOBBit
Figure 2.2: disk neighborhood using different distance metrics for 2-dimensional data points. T is the center of the neighborhood and X is a point on the boundary, i.e. d(T, X) = r. Shaded region indicates the neighborhood.

Decision Boundaries for the Distance Metrics
Let A and B be two stationary points and X be a moving point in the space. The locus of the point X satisfying the condition d(A, X) = d(B, X) is a hyperplane D (a line in a 2-dimensional space), which divides the space into two half-planes (shown in figure 2.3).

Figure 2.3: Decision boundary between points A and B using an arbitrary distance metric d.
The points in the region or half-plane R1 are closer to point A; the points in the region R2 are closer to the point B and the points on the hyperplane D have the same distance from A and B.

This hyperplane D is called the decision boundary between points A and B for the metric d.

Figure 2.4: Decision boundary for Manhattan, Euclidian and Max distance.

The decision boundary for Euclidian distance is the perpendicular bisector to the line segment joining points A and B.

The decision boundary for Manhattan distance is a 3-segment line; the middle segment is a straight line making a 45(angle with the axes and other two segments are parallel to the axes

For Max distance, it is also a 3-segment line; the middle segment is parallel to the axes and the other two segments are straight line making a 45(angle with the axes. The parallel segment can be parallel to the x-axis or the y-axis depending on the orientation of points A and B.

The decision boundary for HOBBit distance, since HOBBit distance is a max distance with a lazy calculation of intra-dimension distance (considering only the highest order bit that differs rather than all of them), is a straight line perpendicular to the axis that makes the largest distance i.e. the axis, k, for which
[image: image202.wmf](

)

k

k

v

y

x

d

,

is maximum, until the distances get large, at which point it takes a ragged diagonal-like course. The following diagram shows the decision boundary in tight around the two points (does not attempt to show the ragged diagonal-like portion, since the nature of that portion of the decision boundary depends upon the placement of the points).

Figure 2.5: Decision boundary for HOBBIT distance
Finally, with respect to distance or dissimilarity measures, we note that Boolean data (all domains allow only {0,1} values) essentially there is but one distance metric, namely the classical Hamming distance and that the max distance degenerates (distances is 0 for x=y and 1 for x(y).

We say that Boolean max distance degenerates because, from the point of view of data mining, we need to distinguish rings emanating from a point, which cannot be done effectively when there are only two degenerate distance values.

Since 1q = 1 for all q, the Lq-distance applied to Boolean tables is always

= qth-root((all positions where the bits of x and y differ |xk-yk|)

= qth-root(Hamming distance) .

We note here that the HOBBit-k distances produce disk neighborhoods that are quite eccentric for k=1 (the standard HOBBit distance) to disks that are completely centered for k=((the standard max-distance). Again, the trade of is between accuracy (centered is more accurate) and calculation speed (HOBBit-1 requires no calculation at all).

The next section develops an excellent and very useful formula to reduce the calculation cost of constructing a Predicate-tree for the predicate “belongs to the disk of radius, r, about center, c” which is one of the critical constructions which allows the tremendous speed up for neighborhood-based data mining calculations such as P-KNN etc. (by replacing costly vertical scans of horizontal datasets with horizontal logical operations (AND, OR, COMP, NOT) across the (bits of the) attributes of the dataset. This technology is called EIN technology (for Equal Interval Neighborhood). EIN technology is due to Dr. Fei Pan as part of his Ph.D. thesis at North Dakota State University.

There is a problem. The problem is that max-rings (rings of points approximately equi-max-distant from a center) are “pointy” – that is, they have huge points on their main diagonals (with respect to Euclidean distance). In two dimensions, we can note easily that the (main) diagonal points of the 1-ring about the origin (0,0), namely the points (-1,-1), (-1,1), (1,1), 1,-1), are (2 (or 1.414) times as far away from the origin (in Euclidean measurements) as the intercepts, (-1,0), (0,1), (1,0), (0,-1). In n dimensions, the main diagonals (points furthest away from the origin) are (n times as far away as the intercepts (points closest to the origin). E.g., in 64 dimensions, the diagonals are 8 times as far away as the intercepts.

This, we will refer to as the “curse of max-distance rings” because, when constructing a Predicate tree for a max-ring. Why is it called a curse? E.g., for the purpose of allowing all ring training points to cast the same class label vote in kNN, the intercept points get the same vote as the diagonal points, which may be many times as far away (in the Euclidean sense) as the intercepts. If the vote is supposed to be weighted by separation (relying on continuity of class value), this gives a skewed vote (a Florida vote).

We can devise work-arounds in which we form better disk P-trees (ring P-trees are calculated by taking the difference of an outer disk P-tree and an inner P-tree) by ORing rectangular max-disks that better approximate the Euclidean disk, but this AND program explodes in high dimension also. The following diagram illustrates this work-around.

Approximating Euclidean-disks by ORing several Max-rectangles

 - - - - - - - - -

 | |

 - - - - - - - - -

 | |

 - - - - - - - - - - -

 | |

 - - - - - - - - - - -

 | |

 | |

 - - - - - - - - - - - - -

 | |

 | |

 | |

 | |

 | |

 | |

 - - - - - - - - - - - - -

 | |

 | |

 - - - - - - - - - - -

 | |

 - - - - - - - -

 | |

 - - - - - - - - - -

 | |

 - - - - - - - - -

Following the discussion of EIN technology, we consider another critical vertical computation for data mining vertical data, namely, an inner product calculation. The potential for this technology is yet to be explored, however, it seems clear that it may be the key to solving the “curse of max-distance rings” described above (by allowing the construction of Predicate-trees for Euclidean disks directly).
Equal Interval Neighborhood (EIN) Rings

Optimized P-tree Formulas

In this section, we present several original propositions for optimized range predicate operations using basic predicate trees to calculate the nearest neighbors. Range predicate tree, Px
[image: image203.wmf]p

y, is a basic predicate tree that satisfies predicate x
[image: image204.wmf]p

y, where y is a boundary value, and is the comparison operator, i.e., <, >, (, and (. Without loss of generality, we only present the calculation of range predicate PA>c, PA(c, Pc1<A(c2 and their proof as follows.

Lemma 1.
Let P1, P2 be two basic predicate P-trees, and P1’ is the complement P-tree of P1 by complementing each pure node of P1, then P1((P1’(P2)=P1(P2 and P1((P1’(P2)= P1(P2.

Proof:

 P1((P1’(P2)

 (According to the distribution property of P-tree operations)

 = (P1(P1’)((P1(P2)

 = True ((P1(P2)

 = P1(P2

Similarly P1((P1’(P2)= P1(P2, QED.

Proposition 1.
Let A be jth attribute of data set X, m be its bit-width, and Pm, Pm-1, … P0 be the basic P-trees for the vertical bit files of A. Let c=bm…bi…b0, where bi is ith binary bit value of c, and PA >c be the predicate tree for the predicate A>c, then

PA >c = Pm opm … Pi opi Pi-1 … opk+1 Pk, k(i(m,
where

1) opi is (if bi=1, opi is (otherwise,

2) k is the rightmost bit position with value of “0”, i.e., bk=0, bj=1,
[image: image205.wmf]"

j<k, and 3) the operators are right binding. Here the right binding means operators are associated from right to left, e.g., P2 op2 P1 op1 P0 is equivalent to (P2 op2 (P1 op1 P0)).
Proof (by induction on number of bits):

Base case:

without loss of generality, assume b1=1, then need show PA>c = P2 op2 P1 holds. If b2=1, obviously the predicate tree for A>(11)2 is PA >c =P1(P0. If b2=0, the predicate tree for A>(01)2 is PA >c =P2((P2’(P1). According to Lemma, we get PA>c =P2(P1 holds.

Inductive step:

assume PA>c = Pn opn … Pk, we need to show PA>c = Pn+1opn+1Pn opn …Pk holds.

Let Pright= Pn opn … Pk, if bn+1=1, then obviously PA>c = Pn+1(Pright.

If bn+1= 0, then PA>c = Pn+1((P’n+1(Pright).

According to Lemma, we get PA>c = Pn+1(Pright holds. QED.

Proposition 2.

Let A be jth attribute of data set X, m be its bit-width, and Pm, Pm-1, … P0 be the basic P-trees for the vertical bit files of A.

Let c=bm…bi…b0, where bi is ith binary bit value of c, and PA(c be the predicate tree for A(c, then

PA(c = P’mopm … P’i opi P’i-1 … opk+1P’k, k(i(m,
where

1). opi is (if bi=0, opi is (otherwise,

2) k is the rightmost bit position with value of “0”, i.e., bk=0, bj=1,
[image: image206.wmf]"

j<k, and 3) the operators are right binding.

Proof (by induction on number of bits):

Base case:

without loss of generality, assume b0=0, then need show PA(c = P’1 op1 P’0 holds. If b1=0, obviously the predicate tree for A((00)2 is PA(c =P’1(P’0.

If b1=1, the predicate tree for A((10)2 is PA(c =P’1((P1(P’0).

According to Lemma, we get PA(c =P’1(P’0 holds.

Inductive step:

assume PA(c = P’n opn … P’k, we need to show PA(c = P’n+1opn+1P’n opn …P’k holds.

Let Pright= P’n opn … P’k, if bn+1=0, then obviously PA(c = P’n+1(Pright. If bn+1= 1, then PA(c = P’n+1((Pn+1(Pright).

According to Lemma, we get PA(c = P’n+1(Pright holds. QED.

Proposition 3.
Let A be jth attribute of data set X, PA(c and PA>c are the predicate tree for A(c and A>c, where c is a boundary value, then PA(c = P’A>c.

Proof:

obviously true by checking the proposition 1 and proposition 2 according to (=(’ and Pm=(Pm’)’.

Proposition 4.

Given the same assumption of A and its P-trees.

Suppose m-r+1 high order bits of bound value c1 and c2 are the same, then we have

c1 = bm…brb1r-1…b11, c2 =bm…brb2r-1…b21.

Let

s1 = b1r-1…b11,

s2= b2r-1…b21,

and B be the value of low r-1 bits of A,

then predicate interval tree, Pc1<A(c2, is calculated as

Pc1<A(c2 = (m ((m-1(…(r(PB >s1(PB(s2

where (i is Pi if bi=1, (i is P'i otherwise. PB>s1 and PB(s2 are calculated according to proposition 1 and proposition 2, respectively.

Proof:

According to propositions 1 and 2, we have PA >c1 = Pm op1m … Pr op1r P1r-1 … op1k+1 P1k, PA(c2 = P’mop2m … P’r op2r P2’r-1 … op2k+1P2’k, where op1i is (if b1i=1 and op2i is (if b2i=1, op1i is (and op2i is (otherwise.

We observe that if b1i = b2i, op1i and op2i are opposite.

This is where we can further optimize. Suppose bm = 1, then op1m is (, op2m is (, hence

Pc1<A(c2 = PA >c1 (PA(c2 =

(Pm (… Pr op1r P1r-1 … op1k+1 P1k) ((P’m(… P’r op2r P2’r-1 … op2k+1P2’k)

= <associative properties of (and (>

Pm ((P’m(P’m-1…P’r op2r P2’r-1…op2k+1P2’k) ((Pm-1op1m-1…Pr op1r P1r-1 …op1k+1 P1k)

= < Apply Lemma (m-r)th times >

Pm (Pm-1(…Pr ((P1r-1 op1r-1 … op1k+1 P1k) ((P2’r-1op2r-1… op2k+1P2’k)

= < Proposition 1 and Proposition 2>

Pm (Pm-1(…Pr(PB >s1(PB(s2
Similarly, we can approve the case when bm = 0

Pc1<A(c2 = PA >c1 (PA(c2 =

(Pm (… Pr op1r P1r-1 … op1k+1 P1k) ((P’m (… P’r op2r P2’r-1 … op2k+1P2’k)

= < Apply Lemma (m-r)th times >
P’m (P’m-1(…P’r ((P1r-1 op1r-1 … op1k+1 P1k) ((P2’r-1op2r-1… op2k+1P2’k)

= < Proposition 1 and Proposition 2>

P’m (P’m-1(…P’r(PB >s1(PB(s2
Combining the two cases together, QED.
Next, we define neighborhood ring and equal interval neighborhood ring (EIN-ring), and then describe the approach of constructing a Predicate tree for an EIN-ring.

Following that, we describe the calculation of the density function using EIN-ring. Finally, the algorithm for finding density attractors is developed in section 3.3.

EIN-ring Neighborhood Search
A major computational cost of neighborhood-based data mining algorithm is the neighborhood search, which may become a potential problem for large scale and high dimensional data. To improve the efficiency of neighborhood search, we developed a P-tree based nearest neighborhood search approach using the optimized operations.

Definition 1.

The Neighborhood Ring of data point c with radii r1 and r2 is defined as the set

R(c, r1, r2) = {x(X | r1<|c-x|(r2},

where |c-x| is the distance between x and c.

Definition2.
The Equal Interval Neighborhood Ring of data point c with radii r and fixed interval (is defined as the neighborhood ring

R(c, r, r+() = {x(X | r < |c-x| (r+(},

where |c-x| is the distance between x and c.

For r = k(, k=1,2,…, the rings called the kth EIN-rings. Figure 4 shows 2-D EIN-rings with k = 1, 2, and 3.

The interval (could be a fixed equal interval or geometric interval with a fixed factor.

Note that the geometric interval with a factor of two turns out to be a special metric, called HOBbit metric introduced above, which can be extremely fast calculating using P-trees.

The interval can be adaptively adjusted with respect to sparseness of data set. The calculation of neighbors within EIN-ring R(c, r, r+l) is as follows.

Diagram of EIN-rings.

Let Pr,(be the P-tree representing data points within EIN-ring R(c, r, r+(). We note Pr,(is just the predicate tree corresponding to the predicate c-r-(<X(c-r or c+r<X(c+r+(.

We first calculate the data points within neighborhood ring

R(c, 0, r) and R(c, 0, r+() by

Pc-r<X(c+r and P’c-r-(<X(x+c+r+(
respectively.

Pc-r<X(c+r is shown as the shadow area of a) and P’c-r-(<X(c+r+(is the shadow area of b) in Fig.3. The data points within the EIN-ring R(c, r, r+() are those that are in R(c, 0, r+() but not in R(c, 0, r).

Therefore Pr,(is calculated by the following formula

Pr,(= Pc-r-(<X(c+r+(^ P’c-r<X(c+r
Vertical Set Calculations
Vertical Set Calculations about a Point

Vertical Set Inner Product
VSIP,

Vertical Set Difference

VSD,

Vertical Set Total Variation
VSTV
The Set Inner Product of X, SIP(X) or XoX, is

SIP(X) = XoX ≡
[image: image207.wmf]2

,

å

Î

-

X

y

x

y

x

 =
[image: image208.wmf](

)

(

)

y

x

y

x

X

y

x

-

-

å

Î

o

,

Here, we generalize the notation, | |, to represent any distance or dissimilarity in the underlying space containing X (which may or may not be a vector space) and the inner product notation, o, to the real, binary function, xoy = |x-y|2 . We will calculate this function vertically, therefore the terminology, Vertical Set Inner Product or VSIP.

If a is a fixed point (inside X or not),

the Set Inner Product of X about a, SIP(X,a), is

SIP(X,a) = Xoa ≡
[image: image209.wmf]å

Î

X

x

xoa

 =
the Set Difference of X about a, SD(X,a), is

SD(X,a) = X-a ≡
[image: image210.wmf]å

Î

-

X

x

a

x

the Total Variation of X about a, TV(X,a), is

TV(X,a) = (X-a) o (X-a) ≡
[image: image211.wmf](

)

(

)

a

x

a

x

X

x

-

-

å

Î

o

 =
[image: image212.wmf]2

å

Î

-

X

x

a

x

We pause at this very early point to note that the setting is much more general than indicated above. We simply need to have a set, X in some space with a commutative, binary operator, sum, and a unary operator, negation, and a distance or dissimilarity function (real valued binary operator on the underlying space). We will not be precise, at this point, about specifying any particular properties of the dissimilarity function (e.g., positive definite, symmetric, transitive). We will, however, use any or all of these properties when useful (So that the discussion applies to standard vector spaces, but much of it may generalize. We want to develop the general concepts first, before becoming concerned about detailed space properties).

The reader can notice that we are not developing the “about a point, a” concepts as space operators (from X back to X) first, and then applying a functional (resulting in a mapping of X to the reals). This would be the most precise way to develop the material. However, we feel it gets us to far afield. Therefore we develop the concept of SIP(X,a), SD(X,a) and TV(X,a) as functionals from the outset.

We will note at this point that the operator (X to X) analog of SD(X,a) is the vector mean of X about a (dividing the sum of vector differences by count(X)).

The SIP(X,a) can be used to measure cumulative angle about a, in the sense that, in a vector space, xoa = |x| |a| cosө where ө is the angle between the two vectors, x and a. Therefore, restricting out attention to the |a|-X-ring of points in X that are the same length as a, and to only acute angles (restricting to the half space defined by the direction of a, therefore the |a|-X-hemisring), if SIP(X,a) is small it indicates that the |a|-X-hemisring vectors are clustered around a. That is the use of SIP(X,a) that we will make use of in data mining.

The TV(X,a) function can be used to measure ring density about a, in the sense that, when restricting out attention to an |a|-X-hemisring, TV can be used in conjunction with a measure of volume to provide a good set density measure.

Thus, if one thinks in terms of polar coordinates, the SIP(X,a) helps determine clustering with respect to an angular dimension and the TV(X,a) helps deteremine clustering with respect to the radial dimension. Of course, in a high dimensional (vector) space, there are many angular dimensions, but when analyzing with respect to a given vector, a, then the angle made with a itself is the one important angular measurements. Thus, in some sense, using SIP and TV results in massive dimension reduction. Natrually, some information might be lost in the process.

In high dimension, there may be no strong clusters, in general, however, there may be strong clusters on lower dimensions (when projecting or slicing to a lower dimensional space). We note that projecting can be done with replica elimination or not. Either way, projecting involves aggregation, slicing does not. Any strong cluster in a slice (affine subspace) is also a strong cluster in the full space. However, when aggregating, there may be new information revealed. Therefore, a clustering technology which searches for strong clusters in the entire space and which searches for projected subspaces in which three is strong clustering (and for the clusters in those subspaces) is the only comprehensive view to take.

We see the possibility of building a tree of all SIP and TV measurements over lower and lower dimensional subspaces, as a good approach.

Thus, to search out the deep-cluster-points (DCP), versus outlier points (OP), one can build a table of typical candidates as follows
1. Pick a point, a

2. Use TV(X,a) to determine if the close-in ring densities about a are unusually dense (in which case, a is likely a DeepClusterPoint) or if the close-in ring counts indicate that a is all by itself (OutlierPoint). If the close-in rings are inconclusive on that issue, then

3. Use SIP(X,a) to determine if there is the close-in rings exhibit angular clustering with respect to the angles between a and the points of X. If they do not, then one should examine subspaces (projected subspaces) and repeat the process.

We believe that one should examine subspace clustering without duplicate removal since that is the most robust information (noting that if all neighbors project onto the same point and duplicates are removed, that gets counted as one neighbor and therefore not deep within a cluster, however, if the projection angle is changed slightly so that those points no longer project as duplicates then the set will show up as a deep cluster). Thus, some sort of tree structure (ala BIRCH) of the TV(X,a) and SIP(X,a) is the information rich data structure. The tree would should be built something along the lines of the following:
1. The root is indexed by X (the entire set of interest)

2. Then the next level in the tree should delineate any clustering on subspaces of X generated by projections along single vectors (not necessarily in X). Of course this will give unaccountably infinitely many branches, so one must realize (is it a theorem?) that a slight rotation of the projection vector reveals the same n-1 dimensional projection clusters (cluster revelation is robust with respect to angle). Therefore, there would be a branch only for each angular-robust cluster (angular neighborhood).
3. At this point it is clear that the structure should not be a tree at all, since, at the next level, one should look of all n-2 dimensional angular-robust clusters, each of which may or may not have an relationship with the n-1 dimensional angular-robust clusters in the previous level. Thus, a structure is suggested, indexed by decreasing dimension.

There may be applications, however, in which duplicate-elimination projection reveals the sought after information and non-duplicate-elimination does no, though it is not clear to this author what that could possibly be. Noticing that there would be bifurcations in the clustering with respect to angle (strong clusters would disappear entirely as the projection angle is aligned just so that all cluster points project to one point and then it would reappear as the angle moves off in any direction from that one).

The picture below shows a as a red arrow and the x (X as blue arrows

A Simple Case Next:

To motivate this section we start with an example in which there are two dimensions and each has three bit numbers.

X any set of vectors in R(A1,A2) with mask-Ptree, PX (e.g., a class mask)

x in X, x = (x1,x2) = (x12x11x10, x22x21x20) =

 (22x12 + 2x11 + x10 , 22x22 + 2x21 + x20)

Let o be the symbol for inner product,

define a "set inner product" of the set, X, with vector, a as

The Set Inner Product:

X o a = SUM(x in X)[x o a]

= SUM(x in X)[

24(x12 a12 + x22 a22) +

23(x12 a11 + x11 a12 + x22 a21 + x21 a22) +

22(x12 a10 + x11 a11 + x10 a12 + x22 a20 + x21 a21 + x20 a22) +

21(x11 a10 + x10 a11 + x21 a20 + x20 a21) +

20(x10 a10 + x20 a20)

] =

24(rc(PX^P12)a12 + rc(PX^P22)a22) +

23(rc(PX^P12)a11 +rc(PX^P11)a12 +rc(PX^P22)a21 +rc(PX^P21)a22) +

22(rc(PX^P12)a10 +rc(PX^P11)a11 +rc(PX^P10)a12 +rc(PX^P22)a20 +rc(PX^P21)a21 +rc(PX^P20)a22)

21(rc(PX^P11)a10 +rc(PX^P10)a11 +rc(PX^P21)a20 +rc(PX^P20)a21) +

20(rc(PX^P10)a10 +rc(PX^Px20)a20)

or rearranging to collect common root count terms

X o a =

rc(PX^P12) (16a12 + 8a11 + 4a10) +

rc(PX^P11) (8a12 + 4a11 + 2a10) +

rc(PX^P10) (4a12 + 2a11 + a10) +

rc(PX^P22) (16a22 + 8a21 + 4a20) +

rc(PX^P21) (8a22 + 4a21 + 2a20) +

rc(PX^P20) (4a22 + 2a2 1 + a20)

Or in general,

x in X, x = (x1,…,xn)
= (x1,b…x1,0 ,…, xn,b…xn,0)

= (2bx1,b+…+ 20x1,0 ,…, 2bxn,b+…+ 20xn,0)

= ((h=b..02hx1,h ,…, (h=b..02hxn,h)

X o a ≡ (x(X(xoa) =

(x(X ((h=b..02hx1,h ,…, (h=b..02hxn,h) o ((h=b..02ha1,h ,…, (h=b..02han,h) =

(x(X ((h=b..02hx1,h) ((h=b..02ha1,h) +…+ (x(X ((h=b..02hxn,h) ((h=b..02han,h) =

(j=1..n (x(X ((h=b..02hxj,h)((h=b..02haj,h) , so

X o a = (j=1..n (h=b..0 2hrc(PX^Pj,h)((h=b..02haj,h) and since aj = (h=b..02haj,h

X o a = (j=1..n aj (h=b..0 2h rc(PX^Pj,h)

So the set inner product is calculated using vertical structures in a scalable way.

We note that the set-inner product (SIP) can be employed to yield a measure the cumulative angle between the set and the vector (or if we divide by the set size, it is the average angle between the elements of the set and the vector). This is a very useful measurement. Clearly, a set of vectors, all of the same length as a given vector, a, is
For classification, there are no (or very few) methods based on density rather than distance. Which classification methods could classify correctly if the training set was the chamelian data set? One must be careful, especially when global methods are used, to make sure that one takes account of the possibility that the class partition is more density like than distance like. Some combination of using global masks (such as the global class masks created using inner products above) and using local masks (such as disk neighborhoods) may work well.

Next we consider using sum of (or average) vector difference rather than average angle/length to use global boundaries to help determine class. We consider the actual aggregate vector difference (add up the vector differences as a vector sum).

Next, after that, we consider computing the sum of the lengths of the vector differences.

Set Difference,

X-a
X any set of vectors in R(A1,A2) with mask-Ptree, PX (e.g., a class mask)

x in X, x = (x1,x2) = (x12x11x10, x22x21x20) =

 (22x12 + 2x11 + x10 , 22x22 + 2x21 + x20)

a in X, a = (a1,a2) = (a12a11a10, a22a21a20) =

 (22a12 + 2a11 + a10 , 22a22 + 2a21 + a20)

x – a = (22(x12 - a12) + 2(x11 - a11) + (x10- a10) , 22(x22 - a22) + 2(x21 - a21) + (x20- a20))

Summing over this last representation,

X – a

= SUM(x in X)[x - a]

= SUM(x in X)[

(22(x12 - a12) + 2(x11 - a11) + (x10- a10) , 22(x22 - a22) + 2(x21 - a21) + (x20- a20))
] =

X – a =
(22(rc(PX^P12)-|X|a12) + 2(rc(PX^P11)-|X|a11) + rc(PX^P10)-|X|a10 ,

 22(rc(PX^P22)-|X|a22) + 2(rc(PX^P21)-|X|a21) + rc(PX^P20)-|X|a20) =

(22rc(PX^P12) + 2rc(PX^P11) + rc(PX^P10) , 22rc(PX^P22) + 2rc(PX^P21) + rc(PX^P20)) -

|X| (22a12 +2a11 +a10 , 22a22 +2a21 +a20) .

Or in general,

x in X, x = (x1,…,xn)
= (x1,b…x1,0 ,…, xn,b…xn,0)

= (2bx1,b+…+ 20x1,0 ,…, 2bxn,b+…+ 20xn,0)

= ((h=b..02hx1,h ,…, (h=b..02hxn,h)

X - a ≡ (x(X(x-a) =

(x(X ((h=b..02hx1,h ,…, (h=b..02hxn,h) - ((h=b..02ha1,h ,…, (h=b..02han,h) =

(x(X ((h=b..02hx1,h - (h=b..02ha1,h ,…, (x(X (h=b..02hxn,h - (h=b..02han,h) =

((h=b..02hrcPX^P1,h - (h=b..02ha1,h ,…, (h=b..02hrcPX^Pn,h - (h=b..02han,h) and since aj = (h=b..02haj,h

X - a ≡ (x(X(x-a) = ((h=b..02hrcPX^P1,h - a1 ,…, (h=b..02hrcPX^Pn,h - an)

Next we look at the average vector difference between the vectors, X and the vector, a. It is easily derived from the above.

AVG(X-a) ≡ ((x(X(x-a))/rcPX =((h({b..0}2hrcPX^P1,h-a1 ,…, (h({b..0}2hrcPX^Pn,h-an) / rcPX
Which we will denote by (AVG(X-a)1 ,…, AVG(X-a)n)

Then the differences variance of the vector is:
VAR(X-a) ≡ ((x(X(x-a)2 – ((x(X(x-a))2/rcPX) / (rcPX -1)
| X – a | ≡ (x(X | x-a | =
(x(X | (x1,…,xn) - (a1,…,an) | =

(x(X | (x1-a1,…,xn-an) | =

(x(X SQRT((j=1..n (xj-aj)2) =

(x(X SQRT((j=1..n (xj2 - 2 xjaj -aj2) =

(x(X SQRT((j=1..nxj2 - 2 (j=1..nxjaj + (j=1..naj2) =

Here’s where it hangs up. We can’t move the (x(X inside the SQRT. We could take the Maclaran series of SQRT, or take the Manhattan length rather than the Euclidean length, but the Manhattan length suffers from the curse of pointed-ness of rings. What we want to do is:
SQRT((x(X (j=1..nxj2 - 2 (x(X (j=1..n xjaj + (x(X (j=1..naj2) =

But we cannot do this, of course.
The Total Variation of X from A,

(X-a)o(X-a)
To get a measure of the sum of lengths of the vector differences (which measures how closely a seems to be aligned with X, we can use

(X-a) o (X-a) = SUM(x in X)[(x-a)o(x-a)]

= SUM(x in X)[

(22(x12-a12) +2(x11-a11) +(x10-a10), 22(x22-a22) +2(x21-a21) +(x20- a20)) o

(22(x12-a12) +2(x11-a11) +(x10-a10), 22(x22-a22) +2(x21-a21) + (x20-a20))]

(X-a) o (X-a)
 = SUM(x in X)[(x-a)o(x-a)]

= SUM(x in X)[

(22x12+2x11+x10 - (22a12+2a11+a10), 22x22+2x21+x20 - (22a22+2a21+a20)) o

(22x12+2x11+x10 - (22a12+2a11+a10), 22x22+2x21+x20 - (22a22+2a21+a20))

]

(X-a) o (X-a)

= SUM(x in X)[
24x122 +24x12x11 +23x12x10 –23x12(22a12+2a11+a10) +

22x112 +22x11x10 –22x11(22a12+2a11+a10) +

21x102 + –21x10(22a12+2a11+a10) +

 (22a12+2a11+a10)2 +

24x222 +24x22x21 +23x22x20 –23x22(22a22+2a21+a20) +

22x212 +22x21x10 –22x21(22a22+2a21+a20) +

21x202 + –21x20(22a22+2a21+a20) +

 (22a22+2a21+a20)2

]

Noting xij2 = xij and aij2 = aij (since they are bits)
(X-a) o (X-a)

 = SUM(x in X)[

24x12 +24x12x11 +23x12x10 –23x12 (22a12+2a11+a10) +

 22x11 +22x11x10 –22x11 (22a12+2a11+a10) +

 21x10 –21x10 (22a12+2a11+a10) +

24x22 +24x22x21 +23x22x20 –23x22 (22a22+2a21+a20) +

 22x21 +22x21x20 –22x21 (22a22+2a21+a20) +

 21x20 –21x20 (22a22+2a21+a20) +

 (22a12+2a11+a10)2 +

 (22a22+2a21+a20)2

]

commuting the orderings of the xi,j a little,

 (X-a) o (X-a)
=

24rcPX^P12 +24rcPX^P11^P12 +23rcPX^P10^P12 –23rcPX^P12 (22a12+2a11+a10) +

 22rcPX^P11 +22rcPX^P10^P11 –22rcPX^P11 (22a12+2a11+a10) +

 21rcPX^P10 –21rcPX^P10 (22a12+2a11+a10) +

24rcPX^P22 +24rcPX^P21^P22 +23rcPX^P20^P22 –23rcPX^P22 (22a22+2a21+a20) +

 22rcPX^P21 +22rcPX^P20^P21 –22rcPX^P21 (22a22+2a21+a20) +

 21rcPX^P20 –21rcPX^P20 (22a22+2a21+a20) +

 (22a12+2a11+a10)2 +

 (22a22+2a21+a20)2

Rearranging by collecting highest order bit P-trees (only to suggest possible programming efficiencies),

(X-a) o (X-a)
=

 24rcPX^P11^P12 +23rcPX^P10^P12 –23rcPX^P12 (22a12+2a11+a10 -2) +

 22rcPX^P10^P11 –22rcPX^P11 (22a12+2a11+a10 -1) –

 21rcPX^P10 (22a12+2a11+a10 -1) +

 +24rcPX^P21^P22 +23rcPX^P20^P22 –23rcPX^P22 (22a22+2a21+a20 -2) +

 +22rcPX^P20^P21 –22rcPX^P21 (22a22+2a21+a20 -1) –

 21rcPX^P20 (22a22+2a21+a20 -1) +

 (22a12+2a11+a10)2 +

 (22a22+2a21+a20)2
Assuming we have pre-computed and residualized the basic class P-trees for class, X, which are the ANDs of our class-P-tree, PX, with each of the basic P-trees, P12, P11, P10, P22, P21, P20, i.e.,

PX^P12, PX^P12, PX^P11, PX^P10, PX^P22, PX^P21, PX^P20,

are pre-computed and stored as a necessary amortization, and labeled as, e.g.,

PX,i,j (PX^Pi,j
then there are just 6 P-tree AND’s to do, namely,

PX,1,2 ^ PX,1,1
PX,1,2 ^ PX,10
PX,1,1 ^ PX,1,0
PX,2,2 ^ PX,2,1
PX,2,2 ^ PX,2,0
PX,2,1 ^ PX,2,0
Note that we have chosen to use PX,I,j^PX,k,l instead of PX,i,j ^ Pk,l since PX,k,l is more sparse (more compressed) than Pk,l and the AND result will be the same.

Thus, in a 2-dimensional space, each with a 3-bit number domain, there are 2*3 = 6 ANDs required (again, assuming the basic class P-trees have been computed and stored for each class), and in n-dimensional space, with b-bit number domains, there are n*b ANDs. This computation step is linear in both dimension and in bit-width. Also, this computation program be optimized and programmed using parallel methods.

(X – a) o (X – a) General Formula
The general formula for (X – a) o (X – a) for n dimensions, A1, …, An each of bit-width, b+1, is as follows (if the bit-widths are not all the same, take the maximum and pad out the others with high-order 0-bits).

Or in general,

x in X, x = (x1,…,xn)
= (x1,b…x1,0 ,…, xn,b…xn,0)

= (2bx1,b+…+ 20x1,0 ,…, 2bxn,b+…+ 20xn,0)

= ((h=b..02hx1,h ,…, (h=b..02hxn,h)

(X-a)o(X-a) ≡ (x(X(x-a)o(x-a) =

(x(X ((x1,…,xn) - (a1,…,an) o (x1,…,xn) - (a1,…,an)) =

(x(X ((x1-a1,…,xn-an) o (x1-a1,…,xn-an)) =

(x(X ((j=1..n (xj-aj)2) =

(x(X ((j=1..n (xj2 - 2 xjaj -aj2) =

(x(X ((j=1..nxj2 - 2 (j=1..nxjaj + (j=1..naj2) =

(x(X (j=1..nxj2 - 2 (x(X (j=1..n xjaj + (x(X (j=1..naj2 =

(x(X (j=1..nxj2 - 2 (j=1..n (x(X xjaj + |X| (j=1..naj2 =

(x(X (j=1..nxj2 - 2 (j=1..n aj (x(X xj + rc(PX) (j=1..naj2 =

(x(X (j=1..nxj2 - 2 (j=1..n aj (x(X ((k=b..0 2kxj,k) + rc(PX) (j=1..naj2 =

(x(X (j=1..nxj2 - 2 (j=1..n aj (k=b..0 2k(x(X xj,k + rc(PX) (j=1..naj2 =

(x(X (j=1..nxj2 - 2 (j=1..n aj (k=b..0 2krc(PX^Pj,k) + rc(PX) (j=1..naj2

This finishes the formula for the last two terms. We will work with the first term by itself from here on (rather than repeating the final two terms each time) and then combine the three terms of (X-a)o(X-a) in final form.

(x(X (j=1..n
xj2 =

(x(X (j=1..n
((k=b..0 2kxj,k)2) =

(x(X (j=1..n
(2bxj,b+2b-1xj,b-1+2b-2xj,b-2+…+20xj,0) *

(2bxj,b+2b-1xj,b-1+2b-2xj,b-2+…+20xj,0)

 collecting all xj,b–terms first (and noting xj,k2 = xj,k) we have (x(X (j=1..n
 22bxj,b + 22b xj,b xj,b-1 + 22b-1xj,bxj,b-2 +…+ 2b+1xj,bxj,0 +

 22b-2xj,b-1 + 22b-2xj,b-1xj,b-2 +…+ 2bxj,b-1xj,0 +

 22b-4xj,b-2 + 22b-4xj,b-2xj,b-3 +…+ 2b-1xj,b-2xj,0 +

.

.

.

 22xj,1 + 22xj,1xj,0 +

 20xj,0

commuting (x(X (j=1..n to (j=1..n(x(X we get

(X-a)o(X-a) = (j=1..n

22brcPX^Pj,b + 22b rcPX^Pj,b^Pj,b-1 + 22b-1rcPX^Pj,b^Pj,b-2 +…+ 2b+1rcPX^Pj,b^Pj,0 +

 22b-2rcPX^Pj,b-1 + 22b-2rcPX^Pj,b-1^Pj,b-2 +…+ 2b rcPX^Pj,b-1^Pj,0 +

 22b-4rcPX^Pj,b-2 +…+ 2b-1rcPX^Pj,b-2^Pj,0 +

:
:
 22rcPX^Pj,1 + 22 rcPX^Pj,1^Pj,0 +

 20 rcPX^Pj,0

Another important observation can be made by rearranging the terms.

x in X, x = (x1,…,xn)
= (x1,b…x1,0 ,…, xn,b…xn,0)

= (2bx1,b+…+ 20x1,0 ,…, 2bxn,b+…+ 20xn,0)

= ((h=b..02hx1,h ,…, (h=b..02hxn,h)

(X-a)o(X-a) ≡ (x(X(x-a)o(x-a) =

(x(X (x1,…,xn) - (a1,…,an) o (x1,…,xn) - (a1,…,an) =

(x(X (x1-a1,…,xn-an) o (x1-a1,…,xn-an)) =

(x(X (j=1..n (xj - aj)2 =

(x(X (j=1..n (2bxj,b+…+ 20xj,0 - (2baj,b+…+ 20aj,0))2 =

(x(X (j=1..n (2b(xj,b-aj,b) +…+ 20(xj,0 -aj,0))2 =

(j=1..n (x(X ((k=b..0 2k(xj,k-aj,k))2 =

If aj,k = 0 then that term in the sum, (k=b..0 2k(xj,k-aj,k), is just 2k(xj,k)
If aj,k = 1 then that term in the sum, (k=b..0 2k(xj,k-aj,k), is just - 2k(xj,k)[1]
where (bit)[1] means bit complement and (bit)[0] = bit (i.e., not complemented). That is, [] is a binary field exponent.
So, we can rewrite (X-a)o(X-a):
(X-a)o(X-a) = (j=1..n (x(X ((k=b..0 (-1)aj,k 2k (xj,k)[aj,k])2 =

Letting, for the moment, (-1)aj,k 2k = ck and the bit, (xj,k)[aj,k] = yk and ck yk = zk
(just to make the binomial expansion formula familiar), we need to evaluate the square:
(zb + zb-1 +…+ z1 + z0)2 = ((h, k)({b..0} zh zk
(zb + zb-1 +…+ z1 + z0)2 = (h=b..0 zh2 + 2 ((h>k({b..0} zh zk)
Taking the formula;

(zb + zb-1 +…+ z1 + z0)2 = ((h, k)({b..0} zh zk
(X-a)o(X-a) = (j=1..n (x(X ((h, k)({b..0} (-1)aj,h 2h (xj,h)[aj,h] (-1)aj,k 2k (xj,k)[aj,k] =

(X-a)o(X-a) = (j=1..n (x(X ((h, k)({b..0} (-1)aj,h+aj,k 2h+k (xj,h)[aj,h](xj,k)[aj,k] =

(X-a)o(X-a) = (j=1..n (x(X ((h, k)({b..0} 2h+k (-1)aj,h + aj,k (xj,h)[aj,h](xj,k)[aj,k] =

(X-a)o(X-a) = (j=1..n (x(X (((h, k)({b..0} & aj,h_same_as_aj,k 2h+k xj,h[aj,h] xj,k[aj,k] -

 ((h, k)({b..0} & aj,h_opposite_of_aj,k 2h+k xj,h[aj,h] xj,k[aj,k]) =
 (X-a)o(X-a) = (j=1..n (x(X (((h, k)({b..0} & aj,h=aj,k=1 2h+k xj,h’ xj,k’ +

 ((h, k)({b..0} & aj,h=aj,k=0 2h+k xj,h xj,k -
 ((h, k)({b..0}&aj,h=1&aj,k=0 2h+k xj,h’ xj,k -

 ((h, k)({b..0} & aj,h=0&aj,k=1 2h+k xj,h xj,k’) =

 (X-a)o(X-a) = (j=1..n (((h, k)({b..0} & aj,h=aj,k=1 2h+k (x(X xj,h’ xj,k’ +

 ((h, k)({b..0} & aj,h=aj,k=0 2h+k (x(X xj,h xj,k -

 ((h, k)({b..0}&aj,h=1&aj,k=0 2h+k (x(X xj,h’ xj,k -

 ((h, k)({b..0} & aj,h=0&aj,k=1 2h+k (x(X xj,h xj,k’) =

(X-a)o(X-a) = (j=1..n (((h, k)({b..0} & aj,h=aj,k=1 2h+k rcPX^P’j,h^P’j,k +

 ((h, k)({b..0} & aj,h=aj,k=0 2h+k rcPX^Pj,h^Pj,k -

 ((h, k)({b..0}&aj,h=1&aj,k=0 2h+k rcPX^P’j,h^Pj,k -

 ((h, k)({b..0} & aj,h=0&aj,k=1 2h+k rcPX^Pj,h^P’j,k)

Taking the formula;

(zb + zb-1 +…+ z1 + z0)2 = (h=b..0 zh2 + 2 ((h>k({b..0} zh zk)
and recalling, (-1)aj,k 2k (xj,k)[aj,k] = zk where (bit)[1] means bit complement and (bit)[0] = bit,

is a matter of noting that every term occurs twice above except when h=k, so we collect h=k

terms first the add 2 times the other unique terms.

(X-a)o(X-a) = (j=1..n (
(h=k & aj,h=aj,k=1 22h rcPX^P’j,h (since P’j,h^P’j,h=P’j,h) +

(h=k & aj,h=aj,k=0 22h rcPX^Pj,h (since Pj,h^Pj,h=’j,h) -

(h=k&aj,h=1&aj,k=0 22h rcPX^P’j,h^Pj,h (=0 since P’j,h^Pj,h =0) -

(h=k & aj,h=0&aj,k=1 22h rcPX^Pj,h^P’j,h (=0 since Pj,h^P’j,h =0) +

(h>k({b..0} & aj,h=aj,k=1 2h+k rcPX^P’j,h^P’j,k +

(h>k({b..0} & aj,h=aj,k=0 2h+k rcPX^Pj,h^Pj,k -

(h>k({b..0}&aj,h=1&aj,k=0 2h+k rcPX^P’j,h^Pj,k -

(h>k({b..0} & aj,h=0&aj,k=1 2h+k rcPX^Pj,h^P’j,k)

Therefore, the most efficient version is

(X-a)o(X-a) = (j=1..n (
(h=k & aj,h=aj,k=1 22h rcPX^P’j,h +

(h=k & aj,h=aj,k=0 22h rcPX^Pj,h -

(h>k({b..0} & aj,h=aj,k=1 2h+k rcPX^P’j,h^P’j,k +

(h>k({b..0} & aj,h=aj,k=0 2h+k rcPX^Pj,h^Pj,k -

(h>k({b..0}&aj,h=1&aj,k=0 2h+k rcPX^P’j,h^Pj,k -

(h>k({b..0} & aj,h=0&aj,k=1 2h+k rcPX^Pj,h^P’j,k)

Another (better) general formulation for (X-a)o(X-a)

Another formulation of the general formula for (X-a)o(X-a) is given below and is similar and is developed below for completeness of exposition (without as many summation indexes).

x in X,

x = (x1 ,…, xn)

 = (x1b…x10 ,…, xnb…xn0)

 = (2bx1b+…+20x10 ,…, 2bxnb+…+20xn0)

x – a = (2b(x1b - a1b) +…+ 20(x10-a10) ,…, 2b(xnb – anb) +…+ 20(xn0-an0))

(X-a) o (X-a)

= SUM(x in X)[(x-a)o(x-a)]

= SUM(x in X)[

(2b(x1,b - a1,b) + … + 20(x1,0-a1,0) , . . . , 2b(xn,b – an,b) + … + 20(xn,0-an,0)) o
(2b(x1,b - a1,b) + … + 20(x1,0-a1,0) , . . . , 2b(xn,b – an,b) + … + 20(xn,0-an,0))

]

(X-a) o (X-a)

= SUM(x in X)[
(2bx1,b+…+20x1,0 – (2ba1,b+…+20a1,0) , …, 2bxn,b +…+20xn,0 – (2ban,b +…+20an,0)) o
(2bx1,b+…+20x1,0 – (2ba1,b+…+20a1,0) , …, 2bxn,b +…+20xn,0 – (2ban,b +…+20an,0))
]

(X-a) o (X-a)

= SUM(x in X)[
22(b-0)x1,b-02 +22(b-0)x1,b-0x1,b-1 +22(b-0)-1x1,b-0x1,b-2 +..+22(b-0)-(b-1)x1,b-0x1,b-b -2b-0 x1,b-0 (2ba1,b+…+20a1,0) +

22(b-1)x1,b-12 +22(b-1)-1x1,b-1x1,b-2 +..+22(b-1)-(b-1)x1,b-1x1,b-b -2b-1 x1,b-1 (2ba1,b+…+20a1,0) +

22(b-2)x1,b-22 +..+22(b-2)-(b-1)x1,b-2x1,b-b -2b-2 x1,b-2 (2ba1,b+…+20a1,0) +

. . . +

22(b-b)x1,b-b2 -2b-(b-1)x1,b-(b-1) (2ba1,b+…+20a1,0) +

 (2ba1,b+…+20a1,0)2 +

22(b-0)x2,b-02 +22(b-0)x2,b-0x2,b-1 +22(b-0)-1x2,b-0x2,b-2 +..+22(b-0)-(b-1)x2,b-0x2,b-b -2b-0 x2,b-0 (2ba2,b+…+20a2,0) +

22(b-1)x2,b-12 +22(b-1)-1x2,b-1x2,b-2 +..+22(b-1)-(b-1)x2,b-1x2,b-b -2b-1 x2,b-1 (2ba2,b+…+20a2,0) +

22(b-2)x2,b-22 +..+22(b-2)-(b-1)x2,b-2x2,b-b -2b-2 x2,b-2 (2ba2,b+…+20a2,0) +

. . . +

22(b-b)x2,b-b2 -2b-(b-1)x2,b-(b-1) (2ba2,b+…+20a2,0) +

 (2ba2,b+…+20a2,0)2 +

. . .

22(b-0)xn,b-02 +22(b-0)xn,b-0xn,b-1 +22(b-0)-1xn,b-0xn,b-2 +..+22(b-0)-(b-1)xn,b-0xn,b-b -2b-0 xn,b-0 (2ban,b+…+20an,0) +

22(b-1)xn,b-12 +22(b-1)-1xn,b-1xn,b-2 +..+22(b-1)-(b-1)xn,b-1xn,b-b -2b-1 xn,b-1 (2ban,b+…+20an,0) +

22(b-2)xn,b-22 +..+22(b-2)-(b-1)xn,b-2xn,b-b -2b-2 xn,b-2 (2ban,b+…+20an,0) +

. . . +

22(b-b)xn,b-b2 -2b-(b-1)xn,b-(b-1) (2ban,b+…+20an,0) +

 (2ban,b+…+20an,0)2]

noting xi,j2 = xi,j and ai,j2 = ai,j (since they are bits)

(X-a) o (X-a)

= SUM(x in X)[

22(b-0)x1,b-0 +22(b-0)x1,b-0x1,b-1 +22(b-0)-1x1,b-0x1,b-2 +..+22(b-0)-(b-1)x1,b-0x1,b-b -2b-0 x1,b-0 (2ba1,b+…+20a1,0) +

22(b-1)x1,b-1 +22(b-1)-1x1,b-1x1,b-2 +..+22(b-1)-(b-1)x1,b-1x1,b-b -2b-1 x1,b-1 (2ba1,b+…+20a1,0) +

22(b-2)x1,b-2 +..+22(b-2)-(b-1)x1,b-2x1,b-b -2b-2 x1,b-2 (2ba1,b+…+20a1,0) +

. . . +

22(b-b)x1,b-b -2b-(b-1)x1,b-(b-1) (2ba1,b+…+20a1,0) +

 (2ba1,b+…+20a1,0)2 +

22(b-0)x2,b-0 +22(b-0)x2,b-0x2,b-1 +22(b-0)-1x2,b-0x2,b-2 +..+22(b-0)-(b-1)x2,b-0x2,b-b -2b-0 x2,b-0 (2ba2,b+…+20a2,0) +

22(b-1)x2,b-1 +22(b-1)-1x2,b-1x2,b-2 +..+22(b-1)-(b-1)x2,b-1x2,b-b -2b-1 x2,b-1 (2ba2,b+…+20a2,0) +

22(b-2)x2,b-2 +..+22(b-2)-(b-1)x2,b-2x2,b-b -2b-2 x2,b-2 (2ba2,b+…+20a2,0) +

. . . +

22(b-b)x2,b-b -2b-(b-1)x2,b-(b-1) (2ba2,b+…+20a2,0) +

 (2ba2,b+…+20a2,0)2 +

.

.

.

22(b-0)xn,b-0 +22(b-0)xn,b-0xn,b-1 +22(b-0)-1xn,b-0xn,b-2 +..+22(b-0)-(b-1)xn,b-0xn,b-b -2b-0 xn,b-0 (2ban,b+…+20an,0) +

22(b-1)xn,b-1 +22(b-1)-1xn,b-1xn,b-2 +..+22(b-1)-(b-1)xn,b-1xn,b-b -2b-1 xn,b-1 (2ban,b+…+20an,0) +

22(b-2)xn,b-2 +..+22(b-2)-(b-1)xn,b-2xn,b-b -2b-2 xn,b-2 (2ban,b+…+20an,0) +

. . . +

22(b-b)xn,b-b -2b-(b-1)xn,b-(b-1) (2ban,b+…+20an,0) +

 (2ban,b+…+20an,0)2]
(X-a)o(X-a) and data mining

3.2.
Vertical Set Inner Products (V-SIPs)

Vertical Set Inner Products (V-SIPs) for a set of vectors, X, and a center vector, a, are of the form,

(X-a)o(X-a) ≡
[image: image213.wmf]2

å

Î

-

X

x

a

x

 =
[image: image214.wmf](

)

(

)

a

x

a

x

X

x

-

-

å

Î

o

and provide the sum of the lengths of the vectors connecting X and a.

This sum is small, iff all X vectors are close to a. That’s one of the reasons V-SIPs are so powerful.

The other reason is that P-tree VSIPs can be used to accumulate nearest neighbor votes without scans and in a one-step process, i.e., without the necessity of building out by vote “rings”.

Vote rings are rings of training tuples around, a, which get the same vote. Unfortunately, Euclidean vote rings (the right ones) are very expensive to construct using vertical methods. L∞-distance vote rings are very easy to construct using P-trees, but they have an irregular shape, giving an unfair vote. That is, in an n-dimensional vector-space training set, the points on the main diagonals of any L∞-ring are
[image: image215.wmf]n

 times as far from center, a, as the intercepts on that same L∞-ring. Giving the main diagonal points and the intercepts the same vote is clearly not correct (e.g., in 64-dimensional space, L∞-ring main diagonal points are 8 times as far from the center, a, as the intercepts on that same ring, yet both are considered to be equally “near a” in terms of their class vote.

P-tree V-SIPs are called P-tree Set Inner Products or P-SIPs.

When classifying the unclassified sample, a, how do we accumulate the votes for class, c, for instance, without using rings? The method relies on the designation of a vote-drop-off function (VDOF), specifying how the vote levels should drop off for training points further and further away from the unclassified sample, a.

We, of course, would like to use a Gaussian VDOF, but we settle for a power series approximation. Given the Maclauran series,

e
[image: image216.wmf]2

r

-

 =
[image: image217.wmf]!

/

)

1

(

2

0

n

r

n

n

n

å

¥

=

-

we can approximate the Gaussian VDOF, by truncating the power series
w0 – w1 r2 + w2 r4 - w3 r6 + w4 r8 - …

Adjusting the weights can give almost any desirable shape for the VDOF (including Gaussians). Of course, the more terms one uses, the more complex the horizontal AND program. In fact the complexity of vertical vote calculations appears to get out of hand when many terms are used. Therefore we first consider the simplest case of truncating after term, 1:

VDOF1 ≡ w0 – w1 r2
and then consider truncation after term, 2. We go no further than that.

VDOF2 ≡ w0 – w1 r2 + w2 r4
VDOF1 ≡ w0 – w1 r2
For VDOF1 ≡ w0 – w1 r2 we note that the vote for class, c, from a training tuple, x with class, c, would be

VOTE1c(x) = w0 – w1 (x-a)o(x-a)
since (x-a)o(x-a) = |x-a|2 = r2 .

Therefore, the total vote for class, c, from those training points with class, c, Xc, using VDOF1 is

VOTE1c(Xc)
=
[image: image218.wmf]]

a)

-

a)o(x

-

(x

 w

-

[w

Xc

x

1

0

å

Î

 =
[image: image219.wmf]å

Î

Xc

x

0

w

 -
[image: image220.wmf]

w

1

[image: image221.wmf]å

Î

Xc

x

a)

-

a)o(x

-

(x

= rc(Pc)
[image: image222.wmf]0

w

 -
[image: image223.wmf]

w

1

(X-a)o(X-a)
where Pc is the predicate P-tree which is true for each training point with class, c, and false otherwise.

Note, in Nearest Neighbor Classification (NNC), this P-tree, Pc , is just the value P-tree for the class value, c, in the class label attribute, C. If the classification is binary, as it often is, then Pc=1 is just the basic P-tree for that attribute and Pc=0 is just its complement. That is, Pc is always essentially given. Therefore, we see that NNC using VDOF1 is just a matter of evaluating the P-SIP, (X-a)o(X-a), where X is the set of training tuples with class, c.

P-tree evaluation of (X-a)o(X-a)

(X-a)o(X-a) ≡

[image: image224.wmf](

)

(

)

=

-

-

å

Î

a

x

a

x

X

x

o

=
[image: image225.wmf]=

-

å

å

Î

=

X

x

n

i

i

i

a

x

1

2

)

(

=
[image: image226.wmf]å

å

å

å

Î

=

=

=

÷

ø

ö

ç

è

æ

+

×

-

X

x

n

i

i

n

i

i

i

i

n

i

i

i

a

a

x

x

1

2

2

2

=
[image: image227.wmf]å

å

å

å

å

å

Î

Î

=

Î

=

=

+

×

-

X

x

X

x

n

i

i

X

x

n

i

i

i

i

n

i

i

i

a

a

x

x

1

2

2

2

Let
T1
=

[image: image228.wmf]å

å

Î

=

X

x

n

i

i

i

x

2

T2
=

[image: image229.wmf]å

å

Î

=

×

-

X

x

n

i

i

i

i

a

x

2

T3
=

[image: image230.wmf]å

å

Î

=

X

x

n

i

i

i

a

2

then
[image: image231.wmf](

)

(

)

=

-

-

å

Î

a

x

a

x

X

x

o

 T1 + T2 + T3.

Now we will solve T1, T2 and T3 separately.

T1
=
[image: image232.wmf]å

å

Î

=

X

x

n

i

i

x

1

2

[image: image233.wmf]2

1

0

1

2

å

å

å

Î

=

-

=

÷

÷

ø

ö

ç

ç

è

æ

×

=

X

x

n

i

b

j

ij

j

x

[image: image234.wmf]÷

ø

ö

ç

è

æ

×

÷

÷

ø

ö

ç

ç

è

æ

×

=

å

å

å

å

-

=

Î

=

-

=

0

1

1

0

1

2

2

b

k

ik

k

X

x

n

i

b

j

ij

j

x

x

[image: image235.wmf]å

å

å

Î

=

-

=

-

=

+

×

=

X

x

n

i

b

k

b

j

ik

ij

k

j

x

x

1

0

1

1

2

[image: image236.wmf]å

å

å

Î

=

-

=

-

=

+

=

X

x

ik

ij

n

i

b

k

b

j

k

j

x

x

1

0

1

1

2

[image: image237.wmf])

^

^

(

2

1

0

1

1

ik

ij

c

n

i

b

k

b

j

k

j

P

P

P

rc

å

å

=

-

=

-

=

+

=

Or we can write T1, expressing the diagonal terms (j=k) separately (noting also that xij2 = xij):

T1 =
[image: image238.wmf]å

å

Î

=

X

x

n

i

i

i

x

2

[image: image239.wmf])

(

2

)

(

2

1

0

1

0

&

&

0

)

1

(

0

&

&

)

1

(

)

2

*

(

2

å

å

å

=

-

=

¹

-

=

¹

+

=

Ù

Ù

×

+

Ù

×

=

n

i

b

j

j

j

l

j

j

j

k

il

ij

c

k

ij

c

j

P

P

P

rc

P

P

rc

K

K

.

and
T3
=
[image: image240.wmf]å

å

Î

=

X

x

n

i

i

a

1

2

=
[image: image241.wmf]å

Î

X

x

aoa

= rc(Pc) aoa

and
T2
=
[image: image242.wmf]å

å

Î

=

×

-

X

x

n

i

i

i

i

a

x

2

[image: image243.wmf]å

å

å

Î

=

-

=

÷

÷

ø

ö

ç

ç

è

æ

×

×

-

=

X

x

n

i

b

j

ij

j

i

x

a

1

0

1

2

2

[image: image244.wmf]å

å

å

=

-

=

Î

×

×

-

=

n

i

b

j

X

x

ij

j

i

x

a

1

0

1

2

2

[image: image245.wmf]å

å

=

-

=

Ù

×

×

-

=

n

i

b

j

ij

c

i

j

P

P

rc

a

1

0

1

)

(

2

2

So finally,

(X-a)o(X-a) =
[image: image246.wmf])

^

^

(

2

1

0

1

1

ik

ij

c

n

i

b

k

b

j

k

j

P

P

P

rc

å

å

=

-

=

-

=

+

[image: image247.wmf]å

å

=

-

=

Ù

-

n

i

b

j

ij

c

i

j

P

P

rc

a

1

0

1

)

(

2

2

 + rc(Pc) aoa

and assuming we have computed and residualized
[image: image248.wmf]cij

P

≡
[image: image249.wmf]ij

c

P

P

Ù

 then we need only compute

[image: image250.wmf]cij

P

≡
[image: image251.wmf]ik

cij

P

P

Ù

 for every k ≠ j.

VDOF2 ≡ w0 – w1 r2 + w2 r4
the vote for class, c, from a training tuple, x with class, c, would be

VOTE2c(x) = w0 – w1 (x-a)o(x-a) + w2 (x-a)o(x-a)2
Therefore, the total vote for class, c, from those training points with class, c, Xc, using VDOF2 is

VOTE2c(Xc)
=
[image: image252.wmf]]

a)

-

a)o(x

-

(x

 w2

a)

-

a)o(x

-

(x

 w

-

[w

2

Xc

x

1

0

+

å

Î

=
[image: image253.wmf]å

Î

Xc

x

0

w

 -
[image: image254.wmf]

w

1

[image: image255.wmf]å

Î

Xc

x

a)

-

a)o(x

-

(x

 +
[image: image256.wmf]

w

2

[image: image257.wmf]2

Xc

x

a)

-

a)o(x

-

(x

å

Î

= VOTE1c(Xc)

+
[image: image258.wmf]

w

2

[image: image259.wmf]2

Xc

x

a)

-

a)o(x

-

(x

å

Î

Therefore, we see that NNC using VDOF2 is just a matter of evaluating

(X-a)o(X-a)2 ≡
[image: image260.wmf](

)

2

Xc

x

a)

-

a)o(x

-

(x

å

Î

 =
[image: image261.wmf]=

÷

ø

ö

ç

è

æ

-

å

å

Î

=

X

x

n

i

i

i

a

x

2

1

2

)

(

 EMBED Equation.3 [image: image262.wmf]2

1

2

2

2

å

å

å

å

Î

=

=

=

÷

ø

ö

ç

è

æ

+

×

-

X

x

n

i

i

n

i

i

i

i

n

i

i

i

a

a

x

x

where X is the set of training tuples with class, c. So we need to multiply out the outer squaring function and proceed as above.

(X-a)o(X-a)2 =
[image: image263.wmf]2

2

2

å

å

å

Î

=

=

÷

ø

ö

ç

è

æ

+

×

-

X

x

n

i

i

i

i

n

i

i

i

aoa

x

a

x

 =
[image: image264.wmf](

)

2

3

2

1

å

Î

+

+

X

x

S

S

S

 =
[image: image265.wmf]k

X

x

jk

j

S

S

å

å

Î

where
S1
=

[image: image266.wmf]å

=

n

i

i

i

x

2

(note:
[image: image267.wmf]å

Î

X

x

S1 = T1 from above)

S2
=

[image: image268.wmf]å

=

-

n

i

i

i

i

x

a

2

(note:
[image: image269.wmf]å

Î

X

x

S2 = T2 from above)

S3
= aoa

(note:
[image: image270.wmf]å

Î

X

x

S3 = T3 from above)
(X-a)o(X-a)2
=
[image: image271.wmf]å

Î

X

x

(S1S1 + 2S1S2 + 2aoaS1 + S2S2 + 2aoaS2 + aoa2)

=
[image: image272.wmf]å

Î

X

x

2

1

S

 + 2
[image: image273.wmf]å

Î

X

x

2

1

S

S

 + 2aoa
[image: image274.wmf]å

Î

X

x

1

S

 +
[image: image275.wmf]å

Î

X

x

2

2

S

 + 2aoa
[image: image276.wmf]å

Î

X

x

2

S

 + rc(Pc)aoa2

=
[image: image277.wmf]å

Î

X

x

2

1

S

 + 2
[image: image278.wmf]å

Î

X

x

2

1

S

S

 + 2aoaT1 +
[image: image279.wmf]å

Î

X

x

2

2

S

 - 4aoaT2 + rc(Pc)aoa2
using the calculations already completed above. That leaves 3 terms to evaluate. Starting with:

[image: image280.wmf]å

Î

X

x

2

2

S

=
[image: image281.wmf]å

Î

X

x

[image: image282.wmf]j

n

j

i

i

j

i

x

x

a

a

å

=

1

,

4

=
[image: image283.wmf]å

å

=

Î

n

j

i

X

x

j

i

j

i

x

x

a

a

1

,

4

=
[image: image284.wmf]å

å

å

å

=

Î

-

=

-

=

÷

ø

ö

ç

è

æ

×

÷

ø

ö

ç

è

æ

×

n

j

i

X

x

b

k

jk

k

b

h

ih

h

j

i

x

x

a

a

1

,

0

1

0

1

2

2

4

 =

[image: image285.wmf]å

å

å

=

Î

-

=

-

=

+

n

j

i

X

x

b

k

b

h

ik

ih

k

h

j

i

x

x

a

a

1

,

0

1

1

2

4

=
[image: image286.wmf]å

å

å

=

Î

-

=

-

=

+

n

j

i

X

x

ik

ih

b

k

b

h

k

h

j

i

x

x

a

a

1

,

0

1

1

2

4

=
[image: image287.wmf]å

å

=

-

=

-

=

+

n

j

i

ik

ih

c

b

k

b

h

k

h

j

i

P

P

P

rc

a

a

1

,

0

1

1

)

^

^

(

2

4

Secondly,

[image: image288.wmf]å

Î

X

x

2

1

S

S

= -2
[image: image289.wmf]å

Î

X

x

[image: image290.wmf]å

=

n

i

i

i

x

2

 EMBED Equation.3 [image: image291.wmf]å

=

n

i

j

j

j

x

a

= -2
[image: image292.wmf]å

Î

X

x

[image: image293.wmf]å

=

n

i

j

i

j

i

i

j

x

x

x

a

,

= -2
[image: image294.wmf]å

å

=

Î

n

i

j

i

j

i

i

X

x

j

x

x

x

a

,

= -2
[image: image295.wmf]å

å

=

Î

n

i

j

i

X

x

j

a

,

 EMBED Equation.3 [image: image296.wmf]÷

ø

ö

ç

è

æ

×

å

-

=

0

1

2

b

h

ih

h

x

 EMBED Equation.3 [image: image297.wmf]÷

ø

ö

ç

è

æ

×

å

-

=

0

1

2

b

k

ik

k

x

 EMBED Equation.3 [image: image298.wmf]÷

÷

ø

ö

ç

ç

è

æ

×

å

-

=

0

1

2

b

q

jq

q

x

= -2
[image: image299.wmf]å

å

=

Î

n

i

j

i

X

x

j

a

,

 EMBED Equation.3 [image: image300.wmf]÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

×

å

-

=

-

=

-

=

+

+

0

1

1

1

2

b

q

b

k

b

h

jq

ik

ih

q

k

h

x

x

x

= -2
[image: image301.wmf]å

=

n

i

j

i

j

a

,

 EMBED Equation.3 [image: image302.wmf]÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

å

å

-

=

-

=

-

=

Î

+

+

0

1

1

1

2

b

q

b

k

b

h

jq

ik

ih

X

x

q

k

h

x

x

x

= -2
[image: image303.wmf]å

=

n

i

j

i

j

a

,

 EMBED Equation.3 [image: image304.wmf]å

å

-

=

-

=

-

=

Î

+

+

0

1

1

1

)

^

^

^

(

2

b

q

b

k

b

h

jq

ik

ih

c

X

x

q

k

h

P

P

P

P

rc

and lastly,

[image: image305.wmf]å

Î

X

x

2

1

S

=
[image: image306.wmf]å

Î

X

x

[image: image307.wmf]÷

ø

ö

ç

è

æ

å

=

n

i

i

i

x

2

 EMBED Equation.3 [image: image308.wmf]÷

÷

ø

ö

ç

ç

è

æ

å

=

n

i

j

j

x

2

=
[image: image309.wmf]å

Î

X

x

[image: image310.wmf]÷

ø

ö

ç

è

æ

å

=

n

i

i

i

i

x

x

 EMBED Equation.3 [image: image311.wmf]÷

÷

ø

ö

ç

ç

è

æ

å

=

n

i

j

j

j

x

x

=
[image: image312.wmf]å

Î

X

x

[image: image313.wmf]÷

ø

ö

ç

è

æ

×

å

-

=

0

1

2

b

h

ih

h

x

 EMBED Equation.3 [image: image314.wmf]÷

ø

ö

ç

è

æ

×

å

-

=

0

1

2

b

k

ik

k

x

 EMBED Equation.3 [image: image315.wmf]÷

÷

ø

ö

ç

ç

è

æ

×

å

-

=

0

1

2

b

q

jq

q

x

 EMBED Equation.3 [image: image316.wmf]÷

÷

ø

ö

ç

ç

è

æ

×

å

-

=

0

1

2

b

p

jp

p

x

=
[image: image317.wmf]å

Î

X

x

[image: image318.wmf]å

-

=

-

=

-

=

-

=

+

+

×

0

1

1

1

1

2

b

p

b

q

b

k

b

h

jp

jq

ik

ih

q

k

h

x

x

x

x

=
[image: image319.wmf]å

å

-

=

-

=

-

=

-

=

Î

+

+

×

0

1

1

1

1

2

b

p

b

q

b

k

b

h

jp

jq

ik

ih

X

x

q

k

h

x

x

x

x

=
[image: image320.wmf]å

-

=

-

=

-

=

-

=

+

+

×

0

1

1

1

1

)

^

^

^

^

(

2

b

p

b

q

b

k

b

h

jp

jq

ik

ih

c

q

k

h

P

P

P

P

P

rc

This computation is becoming quite complex, however, we still believe it beats horizontal scan markedly for very large vector spaces. One can, of course use

VDOF3 ≡ w0 – w1 r2 + w2 r4 - w3 r6
 in which case, the vote for class, c, from a training tuple, x with class, c, would be

VOTE3c(x) = w0 – w1 (x-a)o(x-a) + w2 (x-a)o(x-a)2 + w3 (x-a)o(x-a)3

However, the resulting horizontal computation would be very complex (likely involving up to a 6-way AND of basic P-trees). On the other hand, for very high cardinality training data sets, this may still be far faster than horizontal scan based nearest neighbor classification.

Is it necessary to go to VDOf3 or might VDOF2 and even VDOF1 suffice to get the vote accuracy we need?

The following analysis of e
[image: image321.wmf]2

r

-

 =
[image: image322.wmf]!

/

)

1

(

2

0

n

r

n

n

n

å

¥

=

-

 and the approximations should lead to an answer. Here in this Excel spreadsheet, we see by varying a and the weights, we can get pretty much any shape we want with VOTE2. However, it does swing radically up after bottoming out.

If we go to VOTE3 it will swing radically down after a while.

If we go to VOTE4 it will swing radically up after a while, and so forth.

[image: image323.emf]w1 5 w0 620

w2 0.01

w3 0 a 1.5

w4 0

w5 #VALUE!

w6 #VALUE!

w7 #VALUE!

w8 #VALUE!

0 620

1 608.8006

2 575.81

3 522.8506

4 452.96

5 370.3906

6 280.61

7 190.3006

8 107.36

9 40.90063

10 1.25

11 -0.04937

12 49.76

13 164.6506

14 359.81

15 651.6406

16 1057.76

17 1597.001

18 2289.41

19 3156.251

20 4220

Using SUM (-1)nw

n

(aX)2n

 n=0..2

= w

0

 - w

1

(aX)2 + w

2

(aX)4

-1000

0

1000

2000

3000

4000

5000

0 5 10 15 20

25

Kernel inner products
What if there is a kernel matrix involved in the inner product? Most kernels involve complex nonlinear functions, so that the likelihood we could produce a scalable vertical computation seem remote (however, a killer idea may solve it)

What we note is that a more Euclidean-like disk P-tree may be possible now using the inner product, that is, a scalable computation for constructing the Euclidean-like-disk-P-tree without scanning all elements of X. There may be an EIN-ring like formula for it.

In any case, for classification, if a is an unclassified sample and X is a training set class, then (X – a) o (X – a) is the sum of the square distances . For feature-continuity based (similar case based) classification and clustering, this number should be very useful.

What can’t we do well as yet?

We cannot create a Predicate tree for predicates involving ranges of sums spanning dimensions (i.e., P ((over multiple dimensions) < r).

A General Model for Two P-tree Killer Ideas
1. Pmaxdisk(x,r) Construction

2. Set Inner Product ((X-a)o(X-a)) P-tree Computation
Let Di (i=1..n) be either a real vector space or a category space

Let dli : Di x Di (R dissimilarity functions on Di
A Product Dissimilarity Space (PDS), (V,d) over { Di , dli } is such that

V (×i=1..n Di
d(x,y) = dg((dl1,dl2,…,dln)), where dg:Rn (R is called a Global Dissimilarity Combiner (GDS).

The Basic P-tree Set ov V (BPS(V)) consist of P-trees {Pi,j} where, if Vi is a vector space, the {Pi,j} are the basic bit-slice P-trees of Vi and if Vi is a category space, the {Pi,j} are bit maps of the categories in that space.

Examples of GDSs include:

1. Lq (q=1,2,…), where Lq(r=(r1 ,…, rn)) = (
[image: image324.wmf]å

=

n

i

q

i

r

1

)1/q

2. L∞, where L∞(r=(r1 ,…, rn)) =
[image: image325.wmf]n

i

1

max

=

ri

We note that hierarchical categorical spaces in which there is a partition hierarchy on the basic categories (e.g., categories {skim_milk, 2%_milk, Colby_cheese, Swiss_cheese, crew_socks, knee_socks, T-shirts, tank_shirts} might be the atomic categories, while {milk, cheese, socks, shirts} might be a 1st level hierarchy category set, and {dairy, clothing} might be a 2nd level hierarchy category set and {products} might be the root level hierarchy set, etc.) can be handled by using the logical OR of the bitmaps across all categories in a partition set as the bitmap for that set. The dissimilarity of a two partition sets at a given level can be the max (or min, or avg…) of the dissimilarities of pairwise members).

{products}

{dairy, clothing}

{milk, cheese, socks, shirts}

{skim, 2%, Colby, Swiss, crew, knee, T, tank}

Pdisk(ai,r) = ORv(Vi (: di(v, ai) < r Pv
Local Disk of radius r about ai
Pmaxdisk(a,r) = ANDi=1..n Pdisk(ai,r)
Global Maxdisk of radius r about a
Total Variation of X about a
(X-a)o(X-a) =
[image: image326.wmf]å

Î

X

x

L∞(x,a)2 =
[image: image327.wmf]å

Î

X

x

 (maxi=1..ndi(xi , ai))2

(X-Y)o(X-Y) =
[image: image328.wmf]å

Î

Î

Y

y

X

x

dg(x, y)2
Total Variation of X and Y
(X-X)o(X-X) =
[image: image329.wmf]å

Î

Î

X

y

X

x

dg(x, y)2
Total Variation of X

So, given a local dissimilarity function, di(x,y), on each Vi = { v1, v2, v3, v4,…, vmi} (often all the Vi and di are the same for all i=1..n, but not always):

 di

v1

v2

v3

v4
…
vmi

v1
di(v1,v1)
di(v1,v2)
di(v1,v3)

di(v1,v4)

di(v1,vmi)

v2
di(v2,v1)
di(v2,v2)
di(v2,v3)

di(v2,v4)

di(v2,vmi)

v3
di(v3,v1)
di(v3,v2)
di(v3,v3)

di(v3,v4)

di(v3,vmi)

v4
di(v4,v1)
di(v4,v2)
di(v4,v3)

di(v4,v4)

di(v4,vmi)

…

vmi
di(vmi,v1)
di(vmi,v2)
di(vmi,v3)
di(vmi,v4)
di(vmi,vmi)
The jth row of di (also column, since the array is symmetric) is called the

vh-dissimilarity vector of Vi , DVi(vh) = (di(vh,v1), di(vh,v2), di(vh,v3), di(vh,v4), …, di(vh,vmi))
r-thresholded vh-dissimilarity vector of Vi , rDVi(vh) is that vector with entries ≥ r set to zero.

Thus, Pdisk(ai,r) = ORv(Vi (: di(v, ai) < r Pv = ORv (rDVi(ai) Pv
Thus, Pmaxdisk(a,r) = ANDi=1..nPdisk(ai,r) = ANDi=1..nORv (rDVi(ai) Pv
Thus, (X-a)o(X-a) =
[image: image330.wmf]å

Î

X

x

L∞(x,a)2 =
[image: image331.wmf]å

Î

X

x

 (maxi=1..ndi(xi , ai))2 =
[image: image332.wmf]å

Î

X

x

 (maxi=1..ndi(xi , ai))2
Bioinformatics Metrics
In bioinformatics, sequence alignment is an important tool. If one considers sequence alignment from the point of view of nearest neighbor search (given a query sequence and a database of subject sequences, the nearest k sequences within a maximum distance of d (that is stop the search when the k nearest neighbors are found or when reaching a distance, d, which ever comes first. Usually the neighbors are rank ordered by distance as well (e.g., BLAST or FASTA search).

The only problems with treating these alignment searches as nearest neighbor search is that the similarity function is not a strict distance, but what is known as a “edit distance” in which one measures the number of edit steps to get from the query to a subject (with a scoring function to assign distances for different edits). This topic comes up again below in the context of classification (in bioinformatics).

Here we propose a way of dealing with the fact that similarity in sequence alignment is not based strictly on distance.

Let us assume we have a database of amino acid sequences (the example is actually a database of extracttions (50 amino acids from positions 161 - 210) of actual dengue viruses (in this truncated form they are not contagious ;-)

.

12345678911234567892123456789312345678941234567895
DTITYNCPLLRQNEPEDIDCWCNSTSTWVTYGTCTATGEHRREKRSVALA
DTITYKCPLLRQNEPEDIDCWCNSTSTWVTYGTCTTTGEHRREKRSVALV
DTVTYKCPLITEVEPEDIDCWCNLTSTWVTYGTCNQAGEHRRDKRSVALA
TVTYKCPLITEVEPEDIDCWCNLTSTWVTYGTCNQAGEHRRDKRSVALAP
DTMTYKCPRITETEPDDVDCWCNATETWVTYGTCSQTGEHRRDKRSVALA
TRTETWMSSEGAWKHVQRIETWILRHPGFTIMAAILAYTIGTTHFQRALI
DTVTYKCPHITEVEPEDIDCWCNLTSTWVTYGTCNQAGERRRDKRSVALA
TVTYKCPLLVNTEPEDIDCWCNLTSTWVMYGTCTQSGERRREKRSVALTP
DTVTYKCPHITEVEPEDIDCWCNLTSTWVTYGTCNQAGERRRDKRSVALA
DTVTYKCPHITEVEPEDIDCWCNLTSTWVTYGTCNQAGEHRRDKRSVALA
DTMTYKCPRITEAEPDDVDCWCNATDTWVTYGTCSQTGEHRRDKRSVALA
DTITYKCPLLRQNEPEDIDCWCNSTSTWVTYGTCTTTGEHRREKRSVALV
DTITYKCPLLRQNEPEDIDCWCNSTSTWVTYGTCATTGEHRREKRSVALV
DTMTYKCPRITEAEPDDVDCWCNATDTWVTYGTCSQTGEHRRGKRSVALA
DTITYNCPLLRQNEPEDIDCWCNSTSTWVTYGTCTATGEHRREKRSVALV
TVTYKCPLLVNTEPEDIDCWCNLTSTWVMYGTCTQSGERRREKRSVALTP

Next we will think of this as a 50 dimensional product space of the alphabet {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y} of 20 amino acids. And we define similarity within each dimension (intra-dimension similarity) to be given by a symbol “distance” table (SDT),
Symbol Distance Table for alphabet {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,U,V,W,Y} (SDTaa):
 A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y

A

C

D

E

F

G

H

I

K

L

M

N

P

Q

R

S

T

V

W

Y

In this SDT table each entry dij is the distance (or dissimilarity) between the ith symbol and the jth symbol. Thus, the Eucidean distance (squared) between two sequences, s1 and s2 (e.g., s1 = s1,1s1,2…s1,50) is

(i=1..50 da(s1,i , s2,i)2
where da is the intra-dimensional distance and assuming the use of the L2 or Euclidean “combiner”.

In general, for any Lq combiner (q = 1..∞), the distance between sequences, s1 and s2 would be

Lq [(da(s1,1,s2,1), da(s1,2,s2,2), …, da(s1,50,s2,50))]

where Lq stands for the qth root of the sum of the qth powers of array elements for q < ∞ and the maximum of the array elements for q = ∞.

How should the database of 50-character-sequences be structured vertically? Since the values are categorical, we will suggest bimaps, that is, 20*50 vertical bit maps, one for each of the 20 possible symbols (values) in each of the 50 sequence postions. This is 1000 separate bit maps and therefore 1000 basic P-trees (when compressed), Pi,j for the ith sequence position and the jth symbol or Pi,s for the ith sequence position and the symbol, s.

The Lq distance between two sequences, s1 and s2, would be

Lq [(da(s1,1,s2,1), da(s1,2,s2,2), …, da(s1,50,s2,50))]

where each dSD(s1,i,s2,i) is an SDT lookup.

Given a query sequence, Q = (Q1,…,Q50) where Qi is the symbol in Q at the ith sequence position, the

L∞ disk or radius r about Q, Disk∞(Q,r), is {sj | Maxi=1..50[dSD(Qi,sj,i)] < r }.

To create a P-tree, PDisk∞(Q,r), for this disk (predicate = “sequence belongs to Disk∞(Q,r)”) we must AND the dimensional P-trees, PDisk∞(Qi , r), (predicate = “dSD(Qi , sj,i) < r”).

The distance, dSD(Qi , sj,i) is a simple SDT-lookup. But to build the P-tree, PDisk∞(Qi , r) vertically, we have to do the following:
PDisk∞(Qi , r) = PQi AND(ji (: SDT(Qi , ji) < r) Pi,ji

So,

PDisk∞(Q,r) = ANDi=1..50 (PQi AND(ji (: SDT(Qi , ji) < r) Pi,ji)

The Set Inner product and Set difference formulas for this categorical sequence data will be examined next.

Given the sequence space S = {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}50 , for any set, X, in S, and a mask P-tree, PX for X, the SIP,

(X-Q)o(X-Q) ≡
[image: image333.wmf]å

Î

X

x

dL2(x,Q)2 =
[image: image334.wmf]å

Î

X

x

EMBED Equation.3[image: image335.wmf]å

=

n

i

..

1

 dSD(xi,Qi)2
Let’s consider that there is a generalized model into which both this sequence metric space and regular real vector spaces can be place. The above formula give you the PDisk∞(Q,r). The only nuance is in the SDT table. What is the proper SDT table for real vector spaces?

For a subspace, V of a real vector space, Rn , say over an 8-bit domain, (i.e., the real values in each domain are “bytes” and range over {0,1,…,255}), the proper SDT is as follows.

Symbol Distance Table for {0, 1, …, 255 } or { 00000000, 00000001, …, 11111111) in bits, called (SDT8) is as follows (a | column – row | scheme):

 76543210 76543210 76543210 76543210 76543210 76543210

 00000000 00000001 00000010 00000011 00000100 … 11111111

76543210
00000000 0 20 21 20+21 22 … (k2k
76543210
00000001 20 0 21-20 21 22-20 … (k≠02k
76543210
00000010 21 |20-21| 0 20 22-21 … (k≠12k
76543210

00000011 |-21-20| 21 |-20| 0 22-21-20 … (k≠0,12k
76543210

00000100 |-22| |-22+20| |-22+21||-22+21+20| 0 … (k≠22k
.
.

.

76543210

11111111 (k2k (k≠02k (k≠12k (k≠0,12k (k≠22k 0

The Symbol Distance Table for {0, 1, …, 255 } (SDT8) in decimal is as follows.

 0 1 2 3 4 5 6 7 8 9 10 … 255

0 0 1 2 3 4 5 6 7 8 9 10 … 255

1 1 0 1 2 3 4 5 6 7 8 9 … 254

2 2 1 0 1 2 3 4 5 6 7 8 … 253

3 3 2 1 0 1 2 3 4 5 6 7 … 252

4 4 3 2 1 0 1 2 3 4 5 6 … 251

5 5 4 3 2 1 0 1 2 3 4 5 … 250

6 6 5 4 3 2 1 0 1 2 3 4 … 249

7 7 6 5 4 3 2 1 0 1 2 3 … 248

8 8 7 6 5 4 3 2 1 0 1 2 … 247

9 9 8 7 6 5 4 3 2 1 0 1 … 246

10 10 9 8 7 6 5 4 3 2 1 0 … 245

.

.

.

255 255 254 253 252 251 250 249 248 247 246 245 … 0
Vertical Data Structuring for Volatile Databases and Concurrency Control

A goal of database workload synchronization or concurrency control has always been to provide concurrency control at the field-level of granularity. The problem has always been that the entity instance identifier or key is attached to the other fields in a horizontally structured database and therefore, the these key field values must be protected from change. This is a solvable problem with proper restrictions on what can be changed. However, a more serious problem occurs when two separate update transactions wish to change different fields within the same record concurrently. Even though they are not in conflict (accessing different items – i.e., fields), since the two fields are glued together in one horizontal record, either the horizontal gule must be removed (making that data item temporarily non-horizontal and then glued back together when the two transactions finish their respective updates, or replicas of the horizontal record must be given to each transaction to update and then the updated replicas must be united into one correct record before it is re-stored into the database. This version amelioration process is just too expensive to work well. When data is glued together into horizontal records, it only makes sense to mete out access at the record level without replication. This means record-level concurrency control and that has been the ubiquitous approach in all known database system.

While record level concurrency control is absolutely ubiquitous and has remained unchallenged for several decades, record level concurrency control system performance has been wholly inadequate in the presence of both update and read-only workloads. This inadequacy has spurred the creation of a whole new approach and a whole new industry, namely the Data-warehouse industry. Data-warehouses are non-volatile, historical database systems in which little or know updating is ever done. Instead, operational transaction database system are used and updated over an active period (such as a day) and then at a periodic quiescent period (such as every night) a copy of the final state of the operational database is appended to the data-warehouse alone with the proper timestamp – making each of these day-end data items a new data item in the warehouse. So, updates are made to the operational database and long, read-only, analysis queries are made to the datawarehouse, relieving the conflict that caused the inadequacy in the first place. Of course, knowledge workers querying the datawarehouse in order to analyze the business would prefer to have fully up-to-date data items (if they are working at 2 PM, they would like to know the state of the business as of 1:59 PM, but they do not!). Attempts have been made to allow incremental updates to the data warehouse in order to soften the effects of this scheme upon the knowledge worker (who often owns the company and therefore is quite intolerant of such inadequacies), however, the problem has not been solved and looms as a “Just a darn minute!’ day of reckoning for the industry eventually. The database systems development industry has failed at its long effort to provide adequate concurrency control (fast, serializable execution, allowing concurrent long-read-only and short-update transactions to operate on one and the same up-to-date database, while providing true isolation - giving all users the illusion of being the only users on the system, in terms of both correctness and delay). True field-level concurrency control is the key to solving this dilemma. But, as stated before, field-level concurrency control on horizontally structure data is impossible.

There is a solution! It is to vertically structure data (e.g., A P-tree database). Of course, indexes on horizontal datasets are auxiliary vertical structures and therefore it is not surprising that most advanced concurrency control mechanisms that attempt to provide field-level or semantic concurrency control, use index locking. However, indexes must be updated whenever the data is updated. Having auxiliary vertical data structures (indexes) along with the horizontally structured data (record files) makes updating exceedingly slow and problematic.

Our solution is to make the data itself vertical. A Vertical Data Base Management System (VDBMS) has the advantage that record identifier fields are structural (permanent “positions” assignments in an array or tree) that are maintained across all vertical slices. Thus the vertical RID slice is never updated in place and therefore the key-update problem never occurs. More importantly, two separate fields are never glued together and therefore never have to be pulled apart or replicated to accommodate simultaneous access by different transactions.

We note further, that the ROLL, ROCC and MV-ROCC concurrency control technologies are tailored for vertically structured data. The Request Vector (RV) or Request Element concept that originated in ROLL and was used in ROCC and MV-ROCC is a vertical map of a transactions access set. It can be dynamically expanded and contracted over time, within the rules of the concurrency control scheme. An RV is a binary item map which specifies exactly which data items (e.g., field level items) are to be accessed by the transaction and specifies in the Request Order Linked List (ROLL) in which order these items can be accessed over time (multi-wait-queues). RVs depend for their definition upon a fixed permanent choice of bit position for each data item (so they can be bit mapped). P-trees automatically fill this need. The separate set of basic P-trees in the PDBMS (P-tree DBMS) for each relation also requires that a fixed permanent choice of bit position (for 0-dimensional P-trees) or tree position (for 1,2,… dimensional P-trees). We can use a separate set of basic P-trees for each relation or we can introduce one additional tree layer at the top which has a sibling pointer for each relation, so that the entire data-item map for the database is one tree structure.

In fact, a later section of this document, shows how the universal relation makes sense when structuring data vertically into compressed bit-slice-maps (P-trees). Thus, the point of view in that “Multi-relational Data Mining” section is that the sets of basic P-trees for each relations are first combined into a set of basic P-trees for the universal relation of a constellation modeled database (without having to actually perform the massive joins as an intermediate step). Thus we can always consider the database to be one universal relation and structure it vertically using Universal Relation P-Trees (URPTs). Each tree positions identifies a Universal Record and the 1-bit pattern at any tree position, taken across the Universal Schema, identifies the values of the fields of that Universal Record. Thus, the combination of a tree position (Universal Record) and the set of basic P-trees for a particular data-item (which could be a Universal Record, an initial database record, a field or just a bit position in a field) could be “locked” by a transaction. This scheme allows all data item granularities and all workloads to be combined into one system simultaneously, solving the 1990-2010 database system design problem that looms ahead of us.

As noted in papers on HYDRO (HeterogeneouslY Distributed Roll), the ROLL scheme distributes naturally and as noted in papers on PRIISM Multi-level Secure Database System, it accommodates multilevel security as well. As noted in the papers on Domain Vector Query Acceleration, one can consider the database to be a subset of the full domain of each attribute and therefore map domain values to bit positions for query acceleration as detailed in those papers and as briefly described and developed below.

Finally, we note that, considering a database workload from IPL to final shutdown as a progression of database state changes on the Universal Cartesian Product of the Domains (UCPD), one can view the UPCD at the bit level and then (assuming a separate mask for “currently exits”) view database state change as a non-deterministic dynamical system over the integers. This viewpoint gets us to the important mathematical area of dynamical systems, attractors, and chaos. These may be key concepts in the full understanding of database system workloads and their classification and analysis.

3.3.
Derivated Attributes or Functionals on a Table: Total Variation (TV) and Hilbert Walk Positions (HWP)
Derived attribute is a useful way to address scalable mining problems (scalable to datasize and scalable to number of dimensions). This approach adds DERIVED ATTRIBUTES (additional redundant attributes, each of which can be derived from the basic table attributes above) to a table (both rows and columns are ordered). In this section, we introduce two derived attributes, total variation (TV) and Hilbert Walk Position (HWP), which can be used to calculate vertical Lp distance.
Total Variation derived attributes:
Given extension set, X, and intention set, S, the TV(X,S) derived attribute associates with each tuple, t in R, TV(X,S,t), the Total Variation of X about t wrt S is given by:

TV(X,S,t) = SUM(x in X)[x.S o t.S]
where o is inner product defined as sum of the coordinate-wise products.

Hilbert Walk derived attributes:

Given intention ordered set, S, (with ordering, S1,..,Ss), and a s-bit orientation pattern, o=o1,...,os (where for oi=0 use low-to-hi orientation on Si (and oi=1 use hi-to-low), the HW(S,o) derived attribute associates with each tuple, t in R, HW(S,o)=the number of step in the (S,o)-Hilbert-Walk to arrive at t.S. It is noted that It is noted that

1. HW(S,o) fully parameterizes all Hilbert Walks (a walk is a Hilbert Walk if it visits every S-value exactly once and does so as Hilbert described in his section. An S-value is any value in Domain(S).
2. Any HW(S,o) attribute (there are Permuation(|S|,|S|)*2|S| of them) can be viewed as a 1-dimensionalization (to a 1-D numeric attribute) or approximation of S to one dimension. On HW we can use maxdistance tools because on any 1-D vector space (subset of Reals) all Lp distances = numeric separation.

3. If you have 2n binary dimensions, then one can Hilbert walk no subsets, in which case, then all points are on 0 or 1-rings about any center, or Hilbert Walk each pair then all points are on 0,1,2,3-rings about any center, or hilbert walk each quad then all points are on 0-7-rings about any center. If one Hilbert walk each |S|=2n, then all points are on 0-2n-rings about any center (in 1-D space).

4. One can use a single HW derived attribute for clustering as follows. a. find MicroClusters (MCs) by sorting R[HW] and separating at all gaps > 1 (form interval-Ptrees for each HW-interval - those are the MCs); b. use MinDis AGNES to agglomerate MCs (include singleton MCs so that "border points" get agglomerated.)

5. Multple HW(S,o)'s can be used to generate multiple derived attributes. Each will provide a set of MCs. These can be used as "baggings" (pick best) or they can be combined to get an even better one. One can form the graph of MCs from each of multiple hilbert walk, any antichain of which gives a clustering.

The choice of a distance function is critically important for a data mining algorithm. The only truly “vertical” Lp-distance is L(-distance or Max-distance (maximum of the dimension-wise distance). The reason is that vertical formats separate dimensions (data columns) and L(is the only distance that does not involve an algebraic combination of dimensional distances. Fortunately, L(distance work well when data mining simple numeric data. Unfortunately, L(-distance does not work well in high dimension space. One reason is that high dimension L(-cubes are uneven with respect to Euclidean distance. In n dimensional space, n-diagonal (main diagonal) points of the unit cube are (n times as far apart as 1-diagonal (intercepts) points. Worse yet, in a binary spaces, any two distinct points are exactly one L(unit apart. We, therefore, cannot use L(distance effectively in these situations. We have, therefore, developed P-tree tools that use L2 (Euclidean) and L1 (Manhattan or Hamming) distance measurements for these situations.

The L2 (Euclidean) P-tree tools employ the inner product to calculate total variation of a set, S, about a point, a (called TV(S,a)). The sum of the inner products of points in a set, S, with a given point, a, is easily calculated from vertical data. TV-based tools are very useful in clustering and classification (annotation), as well as other tools. If S is all points, then one can view TV(S,a) as a derived attribute value attached to each tuple, a. This derived attribute is numeric (even if the underlying space is binary). In a sense, each TV(S,a) derived attribute is a 1-dimensional approximation of the original space. Of course, TV attributes do not retain all the information of the space, but preliminary study shows that TV tools can be very useful in clustering and classification, e.g., as a first step.

To approximate L1 (Hamming) distance, we use Hilbert Walk (HW) distance. The HW technique also produces a numeric derived attribute (for both vector spaces and binary spaces) and therefore can be used in a similar way to TV derived attributes. HW derived attributes have the additional advantage that they are locally distance faithful (give good upper bound estimates to small L1 or Hamming distances). This advantage can be strengthened by using, as the distance, the minimum HW distance several different Hilbert walks (see Figure 2).

Each Hilbert Walk (HW) derived attribute records the step count along a fixed (non-random) Hilbert walk of the space. Why are they useful? In 1-dimensional space (e.g., the HW derived attribute space), all Lp-distances are the same (L(=L2=L1=numeric difference) and therefore L(-based P-tree tools can be used. An illustrative example is given in Figure 2. Figure 2a shows a Hilbert walk of 6-dimensional binary space (in red). Figure 2b shows a second Hilbert walk of the same space reversing the dimension ordering (to 6,5,4,3,2,1 - in blue). Figure 2c shows the resulting HW derived attributes. We then convert each HW derived attributes converted to 6 basic P-trees, and measure distances using the minimum step count of the two walks (giving a good approximation of Hamming distance for small distances).
We use a similar approach to model graph data (e.g., interaction graphs). We treat each graph node as a (categorical) derived attribute and bitmap each category (1-bit iff there is an edge starting at that row node and ending at that column node). Both TV and HW derived attributes help reduce the high dimension of this structure also, while providing clustering and classification insight through P-tree technology.
[image: image336.jpg]

Figure 2. Points in 6-dimensional binary space are walked using two Hilbert orderings,

a. dimension order 12,3,4,5,6 b. dimension order 6,5,4,3,2,1 c. the two derived HW attributes.
Functional Machine Learning on Relations

A functional on a table (relation with a row ordering and a column ordering), R(K,A1,…,An), is a real valued function on R. Common examples include to following

Let T(R’, where R’ is R projected on some subschema.

Sum of Absolute Distance (SAD),
SAD(x) ((t(T|t-x|, with graph for R(K,A1,A2)

[image: image337.png]icrosoft PowerPoint - [t]

] He Edt Vew Insert Fomat Took SideShow Window Help

Autoshapes > N\ [J O

Toestonfann =20« B 7 1 |

@ | peveners.. | B B B - B -

Slide 2 of 2 Default Design Engish (U1.5.) 223

Sum of Square Distance (SSD), SSD(x) ((t(T|t-x|2 = (t(T(t-x)o(t-x), with 2-D graph
[image: image338.png]icrosoft PowerPoint - [t]

] He Edt Vew Insert Fomat Took SideShow Window Help

Autoshapes > N\ [J O

Toestonfann =20« B 7 1 |

G | meveners.. | & B B - B -

EER 3

Slide 2 of 2 Default Design Engish (U1.5.) 223

Affine Projection (along x) (AP),
APG,F(x) ((x-G)oF

[image: image339.png]icrosoft PowerPoint - [t]

B E Vew Inert Fomat Iook SideShow Window Hep Type o ueston for e[
| | Auoshapes~ N W DO 2-L-A- se@.
@ |revevers.. [B B - B -|tadh| X [0,

R R R R R R R R R T R RS R R RN RN TR R

Toestonfann =20« B 7 1 |

HeE o

Side 2 0f 2 Default Design Engish (US.)

Coordinate projections are affine projections with b=0 and a=ei

Grid Walk Functionals

Let J=(j1,…,jn) be a number vector, where 0< ji <bitwidth(Ai), then a J-hi gridding is a gridding in which the cells are identified by the space of all vectors of the form, H=(h1,…,hn) where 0 (hi (2ji and each cell contains exactly those points whose ji highorder bits are identical (and form the number given by the identifier, hi). A J-lo gridding is defined by fixing the number of bits within each cell and using the rest (of the hi order bits) to identify cells.

Given a Grid, G, (J-hi or J-lo), and a Walk of its cells, W,

FGW(x) (step count to x along W

e.g. for 1-hi grids (1-hi grids are parameterized by a list of the attributes (ordering), S=(Ai1,…,Ain), an orientation, O (starting corner), and a pattern (e.g., Peano, Hilbert, Jordan, Raster,…), F1hi,(A1..An),(0..0),Peano(x) = xhb1…xhbn as a binary number, (where xhbi is the high order bit of x.Ai.) and therefore F(x) = (i=1..n 2hbji xhbji

Note with Raster patterning, the from O=(000…0) is just sorting by S (Ai1 first, Ai2 second, …).

[image: image340.png][Microsoft PowerPoint - [t]

Toestonfann =20« B 7 1 |

@ | mevieners.. | & By & -

5 4

GW1ki (41,4200 ert

Of the whole space

GW1Lni (ag A1t Gebert

1-hi cell ©,1)

&

B-ltadh|x-|@E.

&) Fie Edt Vew Inset Fomat Iods SideShow Window Help

Autoshepes ~

N NQOo

B-L-A-

GWLki (2 ADQOHDet -

1-hi cell 0,0)

GW1ni (ag, A, 0,08 ert

2-hi cell ©0,00)

(which is 1-hi©0) p, |

of 1-hi(©,0))

ERRRRRRET IO . R R R PO S U PR T SRR RPN
4 I« -
v
GWhhi car o
1-hicell (1,1)
I >
-
Y
v

tL

GW1Lki (41, 42,0,08ert
1-hi cell (1,0)

Type aquestion for help X,

sEag.

0)Hibert

Side 4 of 4

Default Design

Engish (US.)

Candidate Key functionals
(CK functionals or DKs) (derived attribute that is a candidate key) are defined as functionals in which

F is 1-1

The HW and ZW functionals from above are just recursive applications of Grid Walk functionals, in which each recursion results in another coordinate of a new coordinate system for the space (previously we concatenated these “coordinates” using an IP-like construct can called them Quadrant or Node IDs. Recall that for Peano Walks, we concatenate the highest-order Cartesian coordinate bits to form the binary of the first transformed coordinate, then the next highest for the second transformed coordinate, etc. This is just recursion of Peano Grid Walks (gridding each grid cell gives the second transformed coordinate, gridding each grid cell of the gridding of each initial grid cell gives the 2nd coordinate, etc.). By recursing any J-hi grid walk to the ultimate, we get a CK functional assigning the raster order number under the new transformed coordinates where we raster order in the opposite direction (from last transformed coordinate to first).

In fact SSD (and SAD) can be recursed to produce a CK functional by using PTM gridding on each contour set (and PTM walking of that contour set grid).

That is complex in higher than 3 dimensions (do we know how to PTM walk the 3-sphere?), so better to recurse, elimination one dimension at a time. This can be done by

forming contour sets using SSD, then

an Affine Projection on each contour set (effectively eliminates one more dimension and retains the property that if two points are far apart in the functionals range then they are far apart in the functionals domain..

We note that this approach is basically DIANA (divisive hierarchical clustering). We use divisive whenever we recurse with functionals that respect far-ness (if the functional range distance is large, then the domain distance had to be large, e.g., SSD, AP…).

We note that we are using AGNES (agglomerative hierarchical clustering) when we recurse with functionals that respect closeness (if the functional range values are close then the functional domain values are close. E.g., Grid Walk functionals…)

3.4.
A Performance Summary of Data Mining Algorithms Using P-trees

During the past years, we have developed a whole suite of vertical data mining algorithms using P-trees over single relations. P-tree is based on complete vertical decomposition and designed specifically to facilitate very fast logical operations used in data mining. Some experiment results [KDP02, PDD+01, PDD02a, DDP02b, PDD+03] have already shown that P-tree based data mining algorithms outperform other earlier algorithms on some particular data sets. In this section we are giving a summary of performance results of these algorithms.

3.4.1. P-tree based ARM
3.4.1.1. P-ARM

We begin with a discussion of rule mining in general. A rule is an implication of the form, A (C, where A is called the antecedent and C is called the consequent, where A and C are, in general, predicates. For rule mining on relations (relational rule mining), these predicates are typically tuple predicates, that is, they are either true of false for a particular tuple (and therefore of a set of tuples).

Neighborhood Relational Rule Mining (NRRM) is relational rule mining in which the antecedent and consequent tuple predicates involve membership in neighborhoods (thus, involve a similarity measure of distance function on tuples). That is, in NRRM, A and C are neighborhoods in the sub-relations of the relation and A [C] is true for a tuple iff that tuple is in the neighborhood.

Given a distance function on a relation, R(A1…An), typically the neighborhoods are sub-relation max-disks about a center, A=((k=i1..im)[ck-rk, ck+rk], where, Ai1…Aim is a sub-schema of R. In this case, Ai1…Aim and Cj1…Cjp can be assumed to be disjoint sub-schema since no tuple can belong to two disjoint intervals in any given dimension and allowing overlapping intervals for A and C in any dimension is unnecessarily confusing. The rule A(C is frequent iff the number of tuples in the intersection of A and C (support of the rule) is above some threshold (called the min-supp) and is confident iff the ratio of the support of the rule to the support of the antecedent is above some threshold (called the min-conf). Since, when the maxdisks are used, the neighborhoods are rectangles or boxes (products of intervals), we will call this subclass of NRRM, Box Rule Mining (BRM).

If all attributes are Boolean, and if the only Boolean value of interest is true or 1, then there is only one interval to consider in any dimension and that is the interval [0,1]. That is, there is a 1-1 correspondence between disjoint sub-schema sets and relational rules. In this case we can equivocate A as being the sub-schema, Ai1…Aim and C as being the disjoint sub-schema, Cj1…Cjp. This is the point of view taken typically in Market Basket Research.

Often in non-Boolean domains there is a natural threshold determined by domain experts as being the critical cut off for some phenomenon (e.g., in micro-array gene expression, often the expert knows what expression level to designate as “expresses” for each gene studied). In this case it makes sense to Booleanize that domain (partition it into two disjoint intervals, namely, above the threshold or not). In this case, Booleanizing the data is justified (no real important information it sacrificed). However, Booleanization (or at least intervalization) is often done as a pre-processing step without justification – apparently only for the purpose of making already-developed market basket research tools available for the analysis. We think this is wrong. It is done because, with horizontal data, there often isn’t a scalable alternative (and only for that reason). With vertically structured data, there is a scalable alternative and we believe it is important to treat rule mining as the more general BRM (Box Rule Mining). Of course, in this case, the new tools need to be developed. That is the content of the rest of this section. In 3 dimensions, the box-rule is A=[c1-r, c1+r]× [c2-r, c2+r] (C=[c3-r, c3+r]

In this context, a relational rule is essentially determined by its support set (shown in grey below).

(Support set shown in gray with a portion of the consequent cut-away to expose the support set).

and its antecedent set (note that the consequent set is of little consequences other than to identify a particular sub-region of the antecedent where, for example in the search for confident rules, the antecedent points are very populous (bunch up). That is to say, when doing confident rule mining one is searching for boxes in which the member points “bunch up” with respect to other dimension(s) as shown in the figure below. For fixed consequent rule mining, one can see that we are looking for frequent classes (really classification with respect to the consequent as the class label attribute).

An important question is, can we use vector inner product methods to do real Neighborhood Rule Mining on vector spaces, rather than always relying upon ARM and Booleanization? We can mask this antecedent box as a rectangle-P-tree.

Next, let us reverse consequent and antecedent in the previous example (so that the antecedent is 2-dimenisonal).

The box rule, A(C can be diagramed as follows.

Then we can simply use the inner product of this set with the consequent dimension(s) basis vectors to get a pattern of the placement of the points in the tube. This should reveal confident rules with that antecedent.

Box Rule Mining is closely related to clustering.

In [HARP: A Practical Projected Clustering Algorithm, K.Yip, D. Cheung, M. Ng, IEEE Transactions of Knowledge and Data Engineering, Nov. 2004, V16:11 pp. 1387-1397] and [Finding generalized projected clusters in high dimensional spaces, ACM SIGMOD 2000, C. Aggarwal, P. Yu, pp70-81], the concept of projected clustering is developed. In projected clustering, one seeks clusters that show up as strong clusters only when the data is projected onto some subspace. The subspace need not be parallel to the dimensions of the vector space in this work. The relationship we see is that Box Rule Mining is “slice clustering” whole HARP and these other technologies are “projection clustering”. That is, in BRM, we slice out a box-subspace (antecedent box) and then find strong cluster(s) as boxes within that subspace (the consequent(s) to form Strong Box Rules. In the referenced work above, the authors project onto subspaces, instead of slicing in the directions of subspaces. Therefore, confident box rule mining is closely related to projection clustering.
Most importantly, the same techniques indicated above for BRM should work equally well, if not better, for projections. In fact, the picture above is more indicative of the process of calculating projections than it is of calculating slices.

Next we look at the same situation in the realm of all Boolean data. In Market Basket Research, for the most part, the only slices of interest are those that contain 1 in at least one dimension (i.e., in MBR the interest is in “buy” and not so much in “does not buy” which would beintervals around 0 in at least on dimension.) Thus, in three dimensions, the only MBR slices considered are:

The three slices restricting just one dimension to [1.1]:

dim-2

 1

 dim-3

 dim-1

 [0,1] × [1,1] × [0,1] [0,1] × [0,1] × [1,1] [1,1] × [0,1] × [0,1]

The three slices restricting two dimensions to [1.1]:

 :

 [1,1] × [1,1] × [0,1] [0,1] × [1,1] × [1,1] [1,1] × [0,1] × [1,1]

The one slices restricting one dimension to [1.1]:

 [1,1] × [1,1] × [1,1]

Thus, there are only 7 slices in three Boolean dimensions that are commonly considered (the seven additional slices one gets by restricting dimensions to [0,0] are not commonly considered in ARM – should they be? That is, “does not buy a computer” may be as important as “buy a computer”. Of course this option often gets accommodated by considering treating “not buy a computer” as a separate Boolean column.). Thus, we can identify the 7 slices above with the set of dimensions which get restricted to [1,1]. This is the way ARM on Market Basket Research proceeds. In MBR APRIORI ARM then, we find frequent sets first (which means finding those dimension in which the bit is a 1-bit).

In the Relational Rule Mining setting this would correspond to finding dense clusters of points in the space first. Once we find all dense “core” neighborhoods (more dense than some pre-selected threshold), we can select them as potential confident rule support sets and then mine those supports for confident antecedent subsets.

Then we can simply use the norm (inner product of this set with the consequent dimension(s) basis vectors to get a pattern of the placement of the points in the tube. This should reveal confident rules with that antecedent.

More on ARM

P-ARM [DDP02b] is a P-tree based version of Apriori algorithm [AS94] that operates on binary-transaction types of datasets to find all association rules satisfying minimum support and confidence thresholds.

We have compared the P-ARM algorithm with the Apriori algorithm, and a more efficient algorithm, FP-growth [HPY00]. The data sets used were aerial TIFF images with synchronized yield data.

The P-ARM algorithm is more scalable than Apriori in two ways. First, P-ARM is more scalable for lower support thresholds.

The reason is that, for low support thresholds, the number of candidate itemsets will be extremely large. Thus, candidate frequent itemset generation performance degrades markedly. Figure 10 compares the results of the P-ARM algorithm and Apriori for different support thresholds.

[image: image341.emf]0

100

200

300

400

500

600

700

800

10% 30% 50% 70% 90%

Support threshold

Run time (Sec.)

P-ARM

Apriori

Figure 10. P-ARM and Apriori with respect to support threshold.

P-ARM algorithm is more scalable for large datasets. Apriori needs to scan the entire data set each time a support is to be calculated. This has a high cost for large data sets. However, in P-ARM, we calculate the count directly from the root count of a basic P-tree and the AND program.

When dataset size is doubled, only one more level is added to each basic P-tree. Figure 11 gives a scalability comparison between P-ARM and Apriori with respect to the number of transactions.

[image: image342.emf]0

200

400

600

800

1000

1200

100 500 900 1300 1700

Number of transactions(K)

Time (Sec.)

Apriori

P-ARM

Figure 11. Scalability comparison between P-ARM and Apriori with respect to the number of transactions.

FP-growth is an efficient algorithm for association rule mining. It uses a data structure called frequent pattern tree (FP-tree) to store compressed information about frequent patterns. For a dataset of 100K bytes, FP-growth is fast. However, when we run the FP-growth algorithm on the TIFF image of large size, the performance falls off markedly.

For large sized datasets and low support thresholds, it takes longer for FP-growth to run than P-ARM. Figure 12 and Figure 13 show the experimental result of running the P-ARM and FP-growth.

[image: image343.emf]0

100

200

300

400

500

600

700

800

10% 30% 50% 70% 90%

Support threshold

Run time (Sec.)

P-ARM

FP-growth

Figure 12. Scalability comparison between P-ARM and FP-growth with respect to support threshold.

[image: image344.emf]0

200

400

600

800

1000

1200

100 500 900 1300 1700

Number of transactions(K)

Time (Sec.)

FP-growth

P-ARM

Figure 13. Scalability comparison between P-ARM and FP-growth with respect to the number of transactions.

3.4.1.2. Exploiting Edges Semantics in Citation Graph Data using an Efficient Vertical Association Rule Mining Model [RRP+05]
Graphs are increasingly becoming a vital source of information within which a great deal of semantics is embedded. As the sizes of graphs increase, the ability of arriving at the embedded semantics becomes more difficult. One type of important hidden semantics is that which is embedded in the edges of directed graphs. Citation graphs serve as a good example in this context. This paper attempts to understand temporal aspects in publication trends through citation graphs by identifying patterns in the subjects of scientific publications using an efficient vertical association rule mining model. Such patterns can (a) indicate the original topics that lead into or participate in the development of other target subject(s) later in time, (b) highlight the evolution of subjects, and (c) give insights on the potential effects of current research on future research. We highlight how our work is different than previous work on graph mining, citation mining, and web structure mining, propose an efficient vertical data representation model, introduce a new subjective interestingness measure for evaluating patterns with a special focus on those patterns that signify strong associations between properties of cited papers and citing papers (referred to as citee and citer papers in this paper, respectively), and present an efficient algorithm for the purpose of discovering the rules of interest with detailed analysis.

Related Work on Citation Minng and Graph Mining
Web structure and citation mining: Our work is similar in essence to other research in the areas of web structure mining and citation mining. The area of citation analysis has been studied in information retrieval (IR) for many purposes one of which is discovering influential journals by giving journals “influence weights” Error! Reference source not found. based on the number of influential journals citing them. Web structure mining (aka web link mining) borrows this idea over to the newer context of the World Wide Web. Formally, Web structure mining is the process of discovering influential and “authoritative” pages over the Web. Two types of web pages can be distinguished: authorities and hubs. Authorities are web pages that are linked to by many other pages because they contain important information; while, hubs are web pages that contain links to many authorities on some subject. Error! Reference source not found. proposes an approach for analyzing the link structure of the World Wide Web and finding information of “high-quality” in response to broad-topic search queries which can have thousands of potentially relevant web page matches. In order to provide effective searching for users, only the subset of authoritative pages on the topics of interest should be returned. Error! Reference source not found. discusses a newer approach for the same purpose that is based on Error! Reference source not found..

Error! Reference source not found. introduces the novel concept of citation mining which combines citation bibliometrics and text mining. Their work focuses on analyzing and documenting the impacts of research on the development of real-life applications, technology, and other research over time along with the pathways through which that can be achieved; in addition, it attempts to recognize and highlight the different characteristics related to the user population. In other words, the work studies the different impacts of research along with the impacted population. They represent the studied research by papers indexed by the Science Citation Index database
 and the user population by other papers in the database citing the studied research papers as well as their future extensions. Citation bibliometrics Error! Reference source not found. is utilized to highlight the characteristics of the impacted user population by analyzing the user papers. The text mining Error! Reference source not found. component of their approach analyzes the relations among technical areas in population papers and between them and other areas in research papers using intelligent and feasible text mining.

Research in citation analysis and web structure mining such as Error! Reference source not found. and Error! Reference source not found. have focused primarily on discerning entities such as journals, papers or web pages that are deemed influential to or authoritative on certain topics of interest. In contrast, our work has a totally different entity of focus, the publication subject matter, which, in a way, could be viewed as the query input in web structure mining. In addition, our work differs from Error! Reference source not found. and other citation mining research in that we attempt to discover research trends by understanding the semantics hidden in the edges of citation graph data. Those edges are used to relate publications, represented by thier corresponding subject matters, where the edge direction embodies a time element. We adopt a new approach that uses a popular data-mining application to arrive at rules associating subject matters from publications written at different points in time. The objective of our study is to discover rules capable of uncovering subject matter extensions and evolution over time as well as providing a “potential” framework for predicting future subject matters that could be affected by current research, where applicable. As will be discussed later, a vertical data representation model is employed to enable the possible analysis of huge citation graphs where other approaches might fail. We also propose a new interestingness measure to guide us through the enormous rule space in the quest for the rule subset of interest.

Graph mining: A particular interest in graph data is that of interactions. Many objects in the world have special interaction relationships where objects influence one another. One area in which interactions are involved is the study of proteomics in biology Error! Reference source not found.. Most work in cells is not isolated; rather, it is done by interacting proteins. Past techniques in protein interactions include binary networks Error! Reference source not found., Bayesian networks Error! Reference source not found., and support vector machines Error! Reference source not found.. However, there is still a wide range of graph-based techniques that still needs to be explored.

In association rule mining of graph data, the idea of what constitutes a transaction and what defines the support of an itemset depends on the graph model. In some instances, a transaction can be viewed as an individual graph and the support of an itemset (which is a sub-transaction or a subgraph) is based on the number of transactions (or graphs) in the graph database Error! Reference source not found. supporting the itemset. The task of finding frequent patterns is then represented as frequent subgraph or sub-transaction searching. Searching occurs by comparing subgraphs to check for similarity, a problem defined as the subgraph isomorphism problem which is known to be NP-complete Error! Reference source not found. Error! Reference source not found.. To alleviate the complexity of matching subgraphs, various heuristics and methods are utilized. Common among these is a form of canonical labeling which allows label codes attached to graph nodes or edges to be compared rather than the actual graph structures which invariably takes less time Error! Reference source not found. Error! Reference source not found.; however, methods that use these labeling techniques suffer when the data has few unique labels. Two popular algorithms for frequent itemset generation applied to graph data are summarized next. Other algorithms can be found in Error! Reference source not found. and Error! Reference source not found..
Apriori-based graph mining (AGM) Error! Reference source not found. mines association rules from frequent substructures or subgraphs. In AGM, graphs take the shape of adjacency matrices. Canonical matrix coding is used in order to alleviate the isomorphism problem. Candidate generation Error! Reference source not found. Error! Reference source not found. occurs when two subgraph matrices share all but the last column. These two matrices are joined to form the next level candidate which has all the common columns in addition to the differing ones. This is in direct comparison to the way itemsets are joined in typical Apriori-based algorithms Error! Reference source not found. Error! Reference source not found.. After generating a candidate subgraph, the graph set is then scanned to determine the support of that subgraph.
The Frequent Sub-Graph algorithm (FSG) Error! Reference source not found. is another algorithm based on Apriori. FSG’s approach seeks to limit the space by only considering connected subgraphs. A sparse graph representation is used to reduce storage and computational costs. As with AGM, FSG adds one edge at a time during candidate generation. However, it was noted more prominently that each join for a candidate does not necessarily result in a single candidate as is the case in classical ARM.
All previous work on graph mining focused on the discovery of patterns within the graph structure. Node information played a secondary role, if any, in the process. Our approach, on the other hand, is centered on the data available in the graph nodes. Graph structures are exclusively used to relate the information between nodes that are connected by citations edges. Some work in bioinformatics has used a similar approach but focused on biological aspects Error! Reference source not found. Error! Reference source not found.. In addition, because we are dealing with citation data, only directed graph (digraph) structures are considered in our work where nodes represent papers and edges represent citation relationships. Even though such graphs are viewed as acyclic, in practice, they might contain cycles due to factors such as “preprints” and “self-citations”. Research on association rule mining of graph data has considered more general and even more complicated graph structures such as “hyper” graphs.
The set of citer-citee relationships is usually embodied in a citation graph. For every citation, we have a directed edge connecting the citer to the citee. Error! Reference source not found. depicts part of a citation graph drawn using a modified version of the TouchGraph software Error! Reference source not found.. The figure shows three disconnected components. In the larger component, a paper having a property 12.10.-g
 and another paper having a property 11.25.Mj are involved in a citation relationship where the latter paper cites the former (in the figure, citation relations go from lower to higher nodes).
In next sections, we introduce two measurement of rules and propose a fast association rule mining algorithms using the P-trees. The performance of the proposed algorithm is analyzed through a comprehensive experimental design scheme.

RULE “INTERESTINGNESS” MEASURE

On Interestingness Measures: A number of studies in the literature have analyzed the notion of interestingness in data mining. In general, interestingness measures of patterns can fall in one of two classes: objective measures and subjective measures Error! Reference source not found. Error! Reference source not found. Error! Reference source not found.. Objective interestingness measures are data-centric in that they define the interestingness of a pattern in terms of the data used in the mining process. They also depend on the structure of the patterns. For example, in ARM, the two ubiquitous objective measures are support and confidence both of which highlight the statistical strength and significance of the discovered rules. Due to the many complexities arising in the pattern discovery process, objective measures usually discover a large number of patterns and thus fall short of their purpose
 especially when the notion of interestingness depends on additional factors such as the decision-maker. A number of subjective measures have been proposed for the latter scenario. In general, subjective measures endeavor to generate a smaller, tailored set of patterns that is potentially more interesting and useful to the pattern examiner.

As discussed in Error! Reference source not found., subjective measures depend on two main factors to discover patterns, namely, actionability and unexpectedness. Actionability states that a pattern is considered interesting to examiner if it calls for action on his or her behalf. Unexpectedness focuses more on the surprising factor of the pattern with respect to the examiner; i.e., how much does the pattern surprise the examiner. In order for the unexpectedness factor to be integrated into a subjective measure, a system of beliefs Error! Reference source not found. must be defined first. Such a system would define the standard knowledge expected by the examiner. The discovery process then captures all deviations from such standards as unexpected and thus as interesting to the examiner. In general, beliefs can be of two types: hard and soft. Hard beliefs represent the knowledge that examiner is not willing to change even in the light of newly discovered contradictory evidence; the validity of the discovered patterns and sometimes the original data are questioned instead. On the other hand, soft beliefs could be changed by examiner if suggested by new patterns. A user-defined measure of strength, referred to as degree of belief, is usually associated with every belief in the system. A number of subjective interestingness measures for association rules are presented next.

Error! Reference source not found. uses a probabilistic approach to discover unexpected rules in the form of “rule-pairs”. Their work is domain-independent in that it requires no prior knowledge in the form of beliefs against which the unexpectedness factor is measured.

Error! Reference source not found. proposes the use of synthetic comparison between rules and beliefs (which are also represented as rules) to arrive at interesting rules. A rule, R, is considered to be different than a belief, B, if R and B have similar consequents but very dissimilar antecedents or vice versa. In this context, their distance-based similarity is based on the synthetic structures of rules and beliefs.

Error! Reference source not found. defines the interestingness of a pattern by the degree with which it “shakes” the belief system. Their work emphasizes the importance of rule actionability along with the complexity associated with formulating and integrating it into the discovery process. To alleviate this problem, they assume that most actionable rules are unexpected and use rule unexpectedness as the focal point in their interestingness measure. A number of approaches were suggested to define the degrees of beliefs such as the frequency approach which is limited to beliefs in the form of rules and the conditional approach which can be applied to more general forms of beliefs and thus is chosen by the authors. Their work can be applied in dynamic environments where the data changes often thus affecting the degrees of beliefs and, consequently, the outcome of interesting patterns.

Error! Reference source not found. defines a subjective interestingness measure for the analysis of healthcare insurance claims. The concern here is to find “deviations from the norms” which can call for corrective actions to reinstate them back to standards. The actions are pre-defined by domain experts for each class of deviations which is clearly only possible for very domain-specific applications.

Error! Reference source not found. associates a degree with every belief in the system where beliefs are coded as rules. Degrees of beliefs are defined by the examiner and can be updated using a “revision procedure”. As in Error! Reference source not found., they focus on the unexpectedness factor of interestingness and define a rule, R, to be unexpected with respect to a belief, B, if (1) the antecedents of R and B are logically contradicting, and (2) the number of tuples intersecting R and B (i.e. the subset of tuples where the antecedents of R and B are both true) is “statistically” large. In order to arrive at the subset of interesting rules, the authors assume the validity of what they refer to as the “monotonicity of beliefs” which states that if a belief holds on some data with some degree then it must also hold on large subsets of that data.

Intra- And Inter-Node Rules
To define our interestingness measure, we introduce the concept of inter- and intra-node rules. Intra-node rules relate properties within papers of the same category.

Definition 6.1: (Intra-Node Rule) An intra-node rule is a rule whose antecedent and consequent are properties drawn from either the citer or the citee set of papers but not from both simultaneously, support is greater than the minimum support threshold, and confidence greater than the minimum confidence threshold.

In general, intra-node rules could be derived without knowledge of the graph. Those rules would, however, differ from rules that are derived in the path-based setting described in the previous section, namely, inter-node rules.

Inter-node rules depend fundamentally on the knowledge derived from the graph structure. Here, a rule might have its antecedent drawn from the citer, while, the consequent from the citee and vice versa. Different formats of rules could be derived in this manner, but we will limit ourselves to only one form in which the antecedent is drawn from the citee while the consequent is drawn from the citer. As we shall discuss later, this type of rules can give insights into research publication trends by associating properties of papers written at different points in time.

Definition 6.2: (Inter-Node Rule) An inter-node rule is a rule whose antecedent is drawn from the citee set of papers, consequent is drawn from the citer set of papers, support is greater than the minimum support threshold, and confidence is greater than the confidence of the corresponding intra-node rule (defined next).

Definition 6.3: (Corresponding Intra-Node Rule) The corresponding intra-node rule of an inter-node rule is a “potential” rule having the same antecedent as the inter-node rule (drawn from the citee set of papers), a consequent whose properties are the same as those in the consequent of the inter-node rule but drawn from the citee set of papers, and a confidence greater than the minimum confidence threshold.

Rules could be simply derived by using minimum support and confidence thresholds; however, since it is very difficult to estimate a minimum threshold for confidence that would yield interesting rules, we consider an inter-node R to be of interest if there exists a corresponding intra-node rule, R’, such that the confidence of R is larger than or equal to confidence of R’. As described in definition 6.3, the R’ has the same antecedent as R (drawn for the citee set) along with a consequent having the same properties drawn from the citer set for the R and from the citee set for R’. Note that in definition 6.3 we say that a corresponding intra-node rule is a “potential” rule to emphasize the point that we are not interested in its support, we just use its confidence, which should be greater than the minimum specified threshold, for testing the inter-node rule at hand. As an example, consider an inter-node rule, R: Citee_Prop1 (Citer_Prop6, Citer_Prop9. This rule associates property 1 from the citee set with the combination of properties 6 and 9 from the citer set. The corresponding intra-node rule, R’, would be Citee_Prop1 (Citee_Prop6, Citee_Prop9. This kind of information tells us that inter-node properties are exhibiting stronger associations than corresponding intra-node ones which deserves attention. As a result, the reader is advised that the notion of the constant ubiquitously-known confidence threshold is not directly utilized in our work; we substitute it with a tailored form derived for each rule dynamically and separately from the confidence of the corresponding intra-node rule.

To a domain expert in the publications field, we expect most of the rules to be semantically interpretable; however, surprises may arise. We consider those as a form of unexpected knowledge which could be interesting. From a data-mining perspective, inter-node rules provide valuable knowledge embodied in associations between earlier work represented by citee properties and later work represented by the citer properties. Given a subject S of interest, the derived associations can be used to show S’s future subject extensions (i.e. what subjects have directly or indirectly extended from S). This is could be done by matching S against the antecedents of the rules and viewing the subjects in the consequents as extensions of S. A rule such as R: Subject_X_Citee (Subject_Y_Citer says that a big number of papers with subject Y cite papers with subject X which could indicate that Y is an extension of X. A more concrete example would be a rule stating that subject “databases” implies subject “data mining” since the latter is an extension of or a development from the former
.

Another use of such associations is highlighting the evolution of subjects which can be viewed as the opposite of the first use. By matching a subject of interest, S, against the consequents of the rules, we can view the subjects in the antecedents as the original subjects from where S extended or derived. The rationale for this is that papers, written later in time, usually follow the trend of citing the original and seminal papers that started a certain research direction. As an example, almost all papers involving subject matter “association rule mining” usually cite Agrawal’s work Error! Reference source not found. Error! Reference source not found. implying that their application areas could be viewed as an extension of the market basket research (MBR) area. This is also true for this paper where we model citation graph data as MBR transactions to enable the application of ARM; as a result, we can view MBR as an original subject which we (and many others) have extended.

A third use can be to predict the “potential” impact that current papers might have on future papers. We do realize that this last use might not be applicable all the time; nevertheless, it might provide valuable knowledge when it does. For example, a rule such as R: Subject_X_Citee (Subject_Y_Citer, Subject_Z_Citer might tell us that having a set of papers, S, involving subject matter X implies that future papers involving subject matters Y and Z might cite S with a certain support (R’s support) and confidence. Looking at the same issue from a different angle, using inter-node rules such as R may help us in determining what future publication subject matters might get affected by current publication subject matters. For example, from R, we can conclude that it is probable for current papers with subject matters X to be cited by future papers with subject matters Y and Z; thus, we can say that subject matter X will probably have an effect on subject matters Y and Z. Notice that, from this last observation, we might also be able to gain more insight on future subjects given current ones. We envision the usefulness of such inter-node rules as they present associations between the properties of two sets of papers written at different points in time (the citee set and the citer set) that are more confident than similar associations between properties of the same set of papers.

In this work, we are primarily interested in patterns showing stronger associations among inter-node properties than among intra-node properties, i.e., associations between properties of citee papers and citer papers that are stronger than similar associations between properties drawn from citee papers alone. In a sense, our work is similar to Error! Reference source not found. in that we too discover specific pairs of rules, where each pair is composed of an inter-node rule along with its corresponding intra-node rule, and use the conditional probability of those rules to decide upon the interestingness of the inter-node rule. Another similarity with Error! Reference source not found. is that we do not utilize a user-define system of beliefs like other work on subjective interestingness measures such as Error! Reference source not found. Error! Reference source not found. Error! Reference source not found. Error! Reference source not found.; the corresponding intra-node rules are used to set the norms. Any inter-node rule that deviates from this norm by having a confidence larger than the confidence of its corresponding intra-node rule is unexpected and thus interesting. The rationale for this is based on our belief that, in general, one usually expects intra-node properties to exhibit the strongest associations because their nodes play the same role in the graph which happens to be the citee role in this work as we are only focusing on citee intra-node rules. If we consider the derived relation resulting from our data representation for a moment, we can realize that for an intra-node rule to a have a high confidence value, the subjects participating in the rule consequent must exist together with those in the antecedent part quite often; in order for that to happen, those subjects must coexist together in the same publications. In view of the fact that we are more interested in understanding subject evolution, extensions and potential predictivity, the time element plays a crucial in our notion of interestingness which coexisting subjects don’t satisfy. As a result, we view inter-node rules that are not stronger than their corresponding intra-node rules as not interesting.

In order for a statistically large number of papers PCiter with a certain subject SCiter to cite a set of papers PCitee involving a subject SCitee where SCiter is not prominently spread in PCitee, SCiter, in its current form, ought to be rather newer than SCitee which explains its scarcity in PCitee. For example, a large number of papers on “data mining” cite the “machine learning” literature which is an older subject that forms one of the roots of “data mining”. Inter-node associations adhering to this justification can clearly highlight subject evolution as well as future extensions as discussed previously. Note that, sometimes, SCitee and SCiter could be disciplinary unrelated subjects and associations can be of interdisciplinary value. An example would be the “Nash Equilibrium” work that the famous Dr. John Nash did at Princeton University in area of game theory in 1950 which awarded him the Nobel Prize in economics in 1994. Almost all economics literature on equilibrium cites Nash’s work or its extensions even though economics and game theory are disciplinary unrelated fields of research.

Another scenario could be that SCiter is older than SCitee but became a “hot” research subject after the introduction of SCitee. In the event that this is true, a justification for the observed citation phenomenon could be that research in SCitee has lead to important advancements or findings with high applicability to SCiter. Biological research started way before the introduction of computers; however, due to the advancements in the fields of data mining and machine learning, a large number of papers on biology, especially those focusing on the “in-silico” analysis (i.e. through the use of computers) of biological data Error! Reference source not found., cite the newer data mining and machine learning literatures.

The above discussion elucidates that our subjective interestingness measure discovers unexpected rules capable of highlighting subject extensions and evolution which also could give insights on the potential effects of current research on future research where applicable. We focus largely on the unexpectedness factor of interestingness simply because, at this stage, we are interested in understanding the semantics embedded in citation graphs. This is in direct comparison with Error! Reference source not found. which also limits the definition of interestingness to the unexpectedness factor but only because the actionability factor is hard to formulate and integrate into the discovery process as suggested.
THE PROPOSED MINING APPROACH
The P-tree based algorithm

We used our P-tree-based ARM implementation for this work to analyze a subset of the dataset available for the KDD Cup 2003 competition, a knowledge discovery and data mining competition held in conjunction with the Ninth Annual ACM SIGKDD Conference (http://www.cs.cornell.edu/ projects/kddcup/). The subset under consideration deals with citation graphs and publication subjects represented by PACS numbers (Physics and Astronomy Classification Scheme). PACS numbers are numbers used to represent subject matters of publications in the physics domain. The total number of PACS numbers available in the given dataset is 828. We have 828 citee PACS numbers and 828 citer PACS numbers amounting to a total of 1656 attributes or columns used in the derived table. The total number of transactions (i.e. edges) considered is 1448 out of a possible 352,807 edges in the original dataset. The reason for this reduction is that we selected only the subset of papers participating in the citation graph (i.e. nodes in it) and having PACS numbers. As aforementioned, the possible attributes in each transaction are the 828 citee PACS numbers followed by the 828 citer PACS. We used item indexes 1 to 828 for citee attributes and 829 to 1656 for citer properties. Each transaction records the item indexes of the PACS numbers existing in its participating nodes. The same file could also be represented in binary where attribute values record the existence or absence of the corresponding PACS number in the participating nodes of every edge. In our case, we used the latter format to help expedite the process of P-tree creation as described in the previous subsection.

After representing the data vertically using P-trees, we divide the ARM task into four steps, the first two of which could be done in parallel. First, we mine all frequent itemsets from the citee part of the dataset. Those itemsets satisfy the minimum specified support threshold, minisupp (i.e. have support greater that or equal to minisupp). Second, we mine all frequent itemsets from the citer part. Note that representing data in P-tree format has the advantage of speeding up the frequent itemset-mining process because, after creating the P-trees which could be done offline, no database scans are ever needed Error! Reference source not found. Error! Reference source not found., just logical operations on compressed bitmaps. To get the support of an itemset containing items X and Y, all we have to do is to AND Px and Py and issue a ROOTCOUNT operation on the resulting tree (cheaper than a database scan Error! Reference source not found. Error! Reference source not found.). Note that as in Error! Reference source not found., we take advantage of our vertical data representation to utilize memory efficiently by only materializing the P-trees related to the part of the dataset we are dealing with. Even while mining each part separately, all P-trees for non-frequent itemsets are unloaded from memory as they won’t be useful anymore, resulting is better memory utilization. In addition, the two steps described so far are independent thus giving us the ability to perform them asynchronously (i.e. they could be done in parallel Error! Reference source not found.).

After mining all the frequent itemsets in both parts of the dataset, we perform a join step. The reason for this is the format of the desired inter-node rules; each rule must have its antecedent drawn from the citee part while its consequent from the citer part. By definition, the support of the rule must be greater than or equal to minisupp (i.e. the support of the union of the antecedent and consequent must be greater than or equal to minisupp and so must be the supports of each considered separately); thus, instead of mining all frequent itemsets across all of the dataset which could result in an exponential blowup in the number of itemsets that must be generated and tested (because of doubling the feature space) and then pruning all itemsets that do not contain items from both parts of the dataset, we perform a divide-and-conquer approach by mining each part separately. The join step is straight forward and takes advantage of the anti-monotonicity of support with respect to itemset size which states that any itemset has support greater than or equal to the support of any of its supersets and thus no itemset can be frequent unless all of its subsets are also frequent. For example, if the result of joining two frequent itemsets Iciter and Icitee is a non-frequent itemset then there is no need to join Iciter or any of its supersets with Icitee or any of its supersets. At this point, we have all frequent itemsets containing both citee and citer parts. Each itemset produces a only one rule because all of its citee items should reside in the antecedent while the citer items in the consequent. As a result, producing rules is fast and requires almost no processing (no enumeration of the different rules that could be derived from an itemset) other than the confidence test.

The fourth and last step is to produce the inter-node rules. To do that, we have to compare the confidence of each inter-node rule with the confidence of its corresponding intra-node rule (which in turn must satisfy miniconf) and mark all the inter-node rules that match this criterion. As mentioned previously, we do not care for the support of the corresponding intra-node rule; we just use its confidence for testing purposes.

Computing the confidence of a rule is rather straight forward because of P-trees; the confidence of a rule is equal to the ROOTCOUNT of the P-tree representing the itemset in the rule antecedent union the rule consequent divided by the ROOTCOUNT of the P-tree representing the antecedent. As aforementioned, each such inter-node rule provides us with valuable information as it associates subject matters of publications written at different points in time. The formal description of our P-tree-based algorithm used herein is given in Figure 6.
All the procedures in Figure 6 are self-explanatory; we will highlight some important points in relation to our frequent itemset mining procedure (PROC Mine Frequent Itemsets). The procedure does a depth first enumeration of the itemsets in the item space, I, testing the support of an itemset only after processing all of its subsets. For example, suppose that for I = {a, b, c, d, e} we have Frequent_1_Itemsets = {a, b, c, d}. The way entries are tested and inserted in the Frequent_Itemsets vector is as follows (assuming everything is frequent): a, b, ba, c, ca, cb, cba, d, da, db, dba, dc, dca, dcb, dcba. First we insert a, then we insert b and try it with everything on its left (from left to right) in Frequent_Itemsets vector; so we try ba. Similarly we insert c, then ca, cb, and cba, etc … Note that first we insert the new frequent item in the vector and then try it with all itemsets preceding it; as a result, before testing the frequency of an itemset, we can be sure that all of its subsets are frequent and in the Frequent_Itemsets vector, thus exploiting the anti-monotonicity property of support with respect to itemset as introduced in Error! Reference source not found. Error! Reference source not found.. For example, we do not try the new item c with ba if either a or b is not in Frequent_Itemsets vector simply because ba would cease to exist in this case; however, we still would try the new item d with cba even if cd is not frequent because cba is in the Frequent_Itemsets vector.

Figure 6. P-tree-based Algorithm.

To rectify this problem, we associate a temporary itemset list, referred to as a taboo list (TL), with every new frequent item, I, inserted into the vector where will save all the itemsets that produce infrequent itemsets when joined with I. Going back to the previous example, if cd is infrequent then we append itemset c to the taboo list of item d (TLd for short). In later steps, we can skip all supersets of c. In general, before computing the support of any new candidate itemset, X, containing item d, we check if any subset of X is in TLd. If so, we discard X. This may seem unfeasible; however, an efficient implementation has been devised as we shall discuss in more details in the next subsection.

Implementation Details

For every new frequent item, I, we maintain a TLI which stores the itemsets whose supports, when joined with I, are less than minisupp and thus the supports of their supersets when joined with I need not be computed. In our implementation, each TLI is a P-tree having a size equal to the number of itemsets in the Frequent_Itemsets vector preceding I (i.e. all nodes that I need to be joined with I). A value 1 is used for itemsets which, when joined with I, result in infrequent itemsets; thus, none of their supersets need to be joined later with I. The remaining TLI entries will be 0s. For example, for the set of items I = {a, b, c, d}, suppose that the entries in the Frequent_Itemsets vector created so far are: a, b, ab, c, ac, bc, abc. For item d, we initialize a TLd having 7 entries all containing 0s initially. If the union of item d with node b results in an infrequent itemset, then the second entry in TLd which corresponds to itemset b is flagged with a 1, and so are all entries containing b (i.e. entries pointing to ab, bc and abc). But how can we efficiently tell which other entries contain item b? We maintain for each item an index list as a P-tree (referred to as an index P-tree) that has a 1 value for every position that this item exists in. For example, item c will have the following index list (it will be stored as a P-tree but we are just listing the entries in a list for convenience): 0,0,0,1,1,1,1. In other words, item c occurs in the Frequent_Itemsets vector in positions 4, 5, 6 and 7. Every new itemset added to the vector results in the expansion of all index P-trees by either a 1, if the corresponding item is in the new node added, or a 0, otherwise. The TL of the current item is also expanded by 0.

Going back to the previous scenario where the joining of item d with itemset b results in an infrequent itemset and thus node b need to be added to TLd, we simply OR the index P-tree of item b with TLd and store the result in TLd. In general, if we want to add itemset xy….z to some taboo list, say TLI, we AND the index P-trees for all items in the itemset (i.e. AND index P-tree of x with that of y … with that of z). The result will give us where itemset xy….z and all its supersets occur in the Frequent_Itemsets vector. Then we OR the resulting P-tree index with TLI and store the result in TLI which results in appending node xy….z to TLI​.
We maintain the taboo lists and index lists as P-trees as this will provide faster logical operations in addition to compression. Note that in the case of taboo lists, compression could speed node traversal especially in cases where there are many consecutive 1’s. For example, suppose the entries in a taboo list are: 1111 1100. Figure 7 depicts the corresponding P-tree of the given taboo list. In this example, instead of going through the first four nodes sequentially and then skipping them because they are flagged with 1s, using a P-tree to represent the taboo list, we can directly skip the first 4 entries because they form a pure-1 node
 on 2nd level of the P-tree.

Our approach eliminates the need for the two steps required by Apriori to generate candidate itemsets, namely, the join and prune steps. Apriori joins any two k-itemsets sharing the first “k-1” items in the join step and prunes all those (k+1)-itemsets that have at least one infrequent subset in the prune step. Pruning can be accomplished either by searching which incurs an execution time cost or by using special data structures to store frequent itemsets like hash trees as suggested in Error! Reference source not found. which incurs a space cost. In our approach, we combine those two steps into one step because we only form a candidate itemset if and only if all subsets of that itemset are frequent.

Figure 7. The resulting taboo list in P-tree format.

Note that the index P-trees are an exact replica of the Frequent_Itemsets vector but in binary format (i.e. all the items of every itemset in the vector have a 1 value in their index P-trees in the position of the itemset), so we need not physically store the Frequent_Itemsets vector. All frequent itemsets can be derived from the index P-trees. In addition, each TL is only stored for the life of the processing of the corresponding item after which it can be discarded. Also during its life, it is stored as a P-tree and thus is compressed when possible. As a result, our approach has no storage overhead other than the temporary taboo lists each lasting for the duration of the processing of the corresponding items, after which it is discarded.

Performance Analysis

To the best of our knowledge, no work before has attempted to discover rules for analysis of citation graphs like we are doing in this work. To give the reader a clearer view of our efficiency, we developed an implementation for the work suggested herein using P-trees (called P-ARM) and compared it with two contemporary association rule mining approaches both of which use horizontal data representation, namely, FP-Growth (FPG) Error! Reference source not found. which is known to be one of the best state-of-the-art approaches, and Depth-First Apriori Error! Reference source not found. (DFA) which also uses a depth first traversal of the search space. It has often been noted in the data mining literature that experimental comparison results are dependent on the implementations used; as a result, we used publicly available implementations for the approaches we compared with. For FPG, we used the popular implementation of Goethals which is available for download at http://www.cs.helsinki.fi/u/goethals/software/index.html. We used Kosters et al implementation of DFA from the Frequent Itemset Mining Implementations Repository Error! Reference source not found..

Our implementation was coded in C++ and executed on an Intel Pentium-4 2.4GHz processor workstation with 2GB RAM running Debian Linux. To show our efficiency over large datasets, we generated a number of synthetic datasets using IBM’s Quest synthetic data generator Error! Reference source not found. because, to the best of our knowledge, such large datasets are not publicly available such as on the UCI data repository Error! Reference source not found. or on the Frequent Itemset Mining Implementations Repository Error! Reference source not found.. Table 1 below briefly describes each of those datasets where ITEMS is the number of items in the whole dataset, TRANS is the number of transactions in millions, and AVG is the average number of items per transaction for each dataset.

Table 1. Datasets descriptions.

	
	ITEMS
	TRANS
	AVG

	DS1
	100
	20
	10

	DS2
	500
	10
	10

	DS3
	1000
	5
	100

The experiments presented herein are designed to study the performance of our approach against notable contemporary approaches. We tried to create datasets with similar characteristics to citation graph datasets represented in the form suggested in this work especially in terms of depth and width. We focus especially on large datasets that are relatively sparse in order to demonstrate the efficiency of our approach. We take “sparse” to mean few items in most transactions of the dataset. The rationale for focusing relatively on sparse datasets is that, using our data representation model, even though the number of transactions representing edges in the graph can grow enormously, the number of items per transaction (i.e. the number of subjects a publication can belong to) is estimated to be rather small. The average number of items per transaction in DS1 and DS3 is 10% of the total number items in the item space. In DS2, this number drops to 2% making DS2 sparser than DS1 and DS3 (both of which are still considered relatively sparse). Note that we attempted to expand the last dataset, DS3, to ten million records but FPG ran out of memory and DFA took so much time so that we had to terminate it manually.

There are two important parts that need to be highlighted in our approach: (1) the efficiency of the overall algorithm which utilizes a divide-and-conquer methodology and (2) the efficiency for mining frequent itemsets which is the dominant factor in almost all ARM algorithms. For (1), we compare with DFA and FPG which will mine the frequent itemsets over the whole dataset and retain only those that contain both citee and citer items. For (2), we compare with another implementation using P-trees that is based on Apriori (called P-APRIORI). P-APRIORI uses the same algorithm that we use except for the part where it mines frequent itemsets from the citee and citer parts separately; a vertical Apriori implementation based on P-trees as in Error! Reference source not found. substitutes our frequent itemset mining algorithm. For the all experiments, we focus on mining all the frequent itemsets only by varying the minimum support threshold.

Figure 8, Figure 9 and Figure 10 show comparison results for the four approaches described previously on the given datasets at various support thresholds. As is evident from the figures, the two P-tree-based approaches, which are based on the divide-and-conquer algorithm proposed herein show better results over all the given datasets showing improvements of more than one half an order of magnitude in the case of DS2. On the other denser datasets, DS1 and DS3, improvements vary between two times and more than seven times. This demonstrates the effectiveness of the overall algorithm proposed in this work over large and relatively sparse datasets, which is the expected format of citation graph data targeted by our work.

Compared to P-ARRIORI, which does not use the proposed frequent itemset mining, our approach reduces the time into more than one half over DS1 and D3 and less than a half over DS2. Again, this supports our claims regarding the effectiveness of the frequent itemset mining approach integrated into this work.

Performance shows an improvement of more than half an order of magnitude at low support thresholds where the number of itemsets produced is potentially very large. The improvements of our approach can be mainly attributed to the divide-and-conquer methodology utilized, and the Boolean vertical data representation used which is complemented by compressed data structures resulting in very fast itemset intersection operations. In addition, our approach enumerates subsets in a very efficient manner that eliminates non-frequent candidate itemsets without extra storage or time overhead thus resulting in a faster frequent mining algorithm.

It is worth noting that results on smaller publicly available datasets such on Error! Reference source not found. and Error! Reference source not found. were not as encouraging specially when compared with FPG. A justification for this is that FPG views transactions as ordered strings of items and proceeds by storing the transactions in a trie data structure creating an in-memory version of the dataset and then traverses the trie to derive all frequent itemsets. After creating the trie, no database scans are need. In general, this is very feasible in case the dataset is relatively small so as to fit in memory, and fairly dense where it will compress due to the use of tries (after ordering all items in transactions so as to increase the overlap). This observation is demonstrated in our experiments where FPG does not perform well on very large relatively sparse datasets unlike the case of small dense datasets and even small sparse as shown in Figure 11 and Figure 12, respectively, which we include for completeness.

Figure 11 shows the performance results of the above four approaches over “Chess” dataset Error! Reference source not found., which has 75 items and 3196 transactions each containing 37 items (i.e. very dense). FPG clearly outperforms all other approaches on both datasets due to the factors mentioned above. A justification for our performance degradation is not being able to amortize the cost of creating and processing P-trees over very small datasets where even compression does not prove to be effective. Note that using P-trees, we can also compress very dense datasets because of the large numbers of consecutive 1s. Our approach ranks second showing better results than P-APRIORI and DFA, which rank third and fourth, respectively, on both datasets.

Figure 12 depicts the performance results over “BMS-POS” dataset from Error! Reference source not found.. This dataset has 1657 items and 515597 transactions with a maximum of 165 items per transaction (i.e. relatively sparse). To some extent, P-ARM performs better than FPG which in turn performs better than DFA over this dataset; however, even though the performance of FPG is comparatively good, it has degraded compared to its performance over the “Chess” dataset. This supports our previous statement regarding the better performance of FPG over dense datasets where the trie data structure compresses very well. The performance degradation of P-APRIORI suggests poor performance for the Apriori algorithm over this dataset which could not be circumvented by our divide-and-conquer approach. For P-ARM, results have improved greatly from those over the “Chess” dataset which could be justified by the bigger size of this dataset (though still considered relatively small) and its sparsity thus supporting over previous claims.

[image: image345.emf]DS1

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50

Support (%)

Time (s)

P-ARM

FPG

DFA

P-APRIORI

Figure 8. Performance analysis results over DS1.

[image: image346.emf]DS2

0

100

200

300

400

500

600

700

800

900

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support (%)

Time (s)

P-ARM

FPG

DFA

P-APRIORI

Figure 9. Performance analysis results over DS2.

[image: image347.emf]DS3

0

200

400

600

800

1000

1200

1400

20 30 40 50 60

Support (%)

Time (s)

P-ARM

FPG

DFA

P-APRIORI

Figure 10. Performance analysis results over DS3.
[image: image348.emf]Chess

0

50

100

150

200

250

50 60 70 80 90 100

Support (%)

Time (s)

P-ARM

FPG

DFA

P-APRIORI

Figure 11. Performance analysis results over Chess.

[image: image349.emf]BMS-POS

0

20

40

60

80

100

120

0 0.5 1 1.5

Support (%)

Time(s)

P-ARM

FPG

DFA

P-APRIORI

Figure 12. Performance analysis results over BMS-POS.

Result Analysis

We ran our algorithm several times on the dataset described in section Error! Reference source not found. using different support threshold values, and noted the impact on the number of produced intra- and inter-node rules. Miniconf was set to zero. Figure 13 depicts a graphical representation of the number of intra- and inter-node rules produced versus the support value chosen. The figure also depicts a table showing the exact measures in both cases.

Though the number of intra-node rules is, in most cases, larger than that of the inter-node rules, it is interesting that whenever we have intra-node rules, at least one inter-node rule shows. Another noteworthy observation is that, in the support range of [20, 50] only one inter-node rules shows (support is given is absolute values). The rule is

11.30.Pb_CITEE(11.30.Er_CITER,11.27.+d_CITER(conf>=0.294798,supp=94/1448); it associates the 11.20.Pb citee PACS number with the 11.30.Er and 11.27.+d citer PACS numbers with a confidence of approximately 29.5% and a support of 6.5%. This rule has the highest support among all inter-node rules produced by our ARM algorithm. Note that no rule, neither intra-node nor inter-node, is produced when support exceeds 55.

Confidence values for inter-node rules fluctuate between 0.004 and 1 (i.e. from 0.4% to 100%). The following rule has a confidence of 100% and is worth mentioning:

11.20.Dj_2_CITEE (03.65.Db_2_CITER, 03.80.+r_2_CITER (conf=100%, supp=0.35%)

Figure 14 presents some of the inter-rules that were produced at different support values. We include them for completeness. PACS numbers drawn from the citee set and the citer set are appended by _CITEE and _CITER, respectively.

[image: image350.emf]Effect of support on the number of intra- and inter-

node rules

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Minimum support

Number of rules

Inter-

node

rules

Intra-

node

rules

Inter-node rules

2028184236144 1 1 1 1 1 1 1 0

Intra-node rules

853523181019138781595937343 0

1 2 3 4 510152025303540455055

Figure 13. Effect of support on the number of intra- and inter-node rules.

Figure 14. Subset of the set of rules generated using different supported values.

Figure 15. Rules after replacing PACS numbers with their definitions.

In order to understand the semantics of the produced rules, we consulted the description of the PACS numbers available at American Institute of Physics (AIP) Error! Reference source not found. at http://www.aip.org/pacs/pacs03/all.txt. This description associates every PACS number with its corresponding subject matter. For example, the rule with the highest support among inter-node rules: 11.30.Pb_CITEE(11.30.Er_CITER,11.27.+d_CITER (conf>=0.294798,supp=94/1448), can now be semantically rewritten as:
“Super symmetry” (“Charge conjugation, parity, time reversal, and other discrete symmetries” and “Extended classical solutions; cosmic strings, domain walls, texture” (conf>=29.5%, supp=6.4%).

According to our analysis, subject matter “Super symmetry” has an impact on subject matters “Charge conjugation, parity, time reversal, and other discrete symmetries” and “Extended classical solutions; cosmic strings, domain walls, texture” where the latter subject matters have extended from the former in some way. Figure 15 lists rules from Figure 14 with the PACS numbers replaced by their semantic equivalents from AIP.

The discovered rules were analyzed and evaluated by experts in physics field theory. One observation was that most of the rules have older and more general antecedents (citee part) than consequents (citer part) possibly indicating that physics researchers tend to cite the entire history of development of a subject, going back several decades if necessary, thereby, connoting that older and more general subjects are more likely to be cited often with time. It is clear that old and general subjects form the ground for most research subjects that come later thus supporting our claims regarding the ability of the discovered rules to highlight subject extensions and evolution over time. In addition, for most of the rules, it could be confirmed that, in fact, consequent subject matters have extended, in some form, from antecedent subject matters. However, some of the rules require further investigation. Forming chains of rules by matching the antecedent of one rule with the consequent of another, we were able to look many hobs backwards in subject evolution (or forward in subject extensions) and to understand how subjects form and what their future impacts are. Thus, even though we focused only on direct citations by limiting ourselves to the use of single-edge paths as the transactions in our data model, we are able to gain deeper insights on subject evolution and extensions, and future impacts by forming rule chains. All of these observations fit, to a large extent, our motivation for the format of the desired rules, subjective notion of interestingness, and claims regarding their usability.

CONCLUSION
In this paper, we have proposed an efficient model for understanding temporal aspects in publication trends through citation graphs by identifying patterns in the subjects of scientific publications. Our approach has shown good improvements when compared to other cotemporary approaches especially on very large and relatively sparse data.

Patterns of interest could reveal the original subject matters from which other subjects of interest might have extended later in time, the evolution of subjects, and the potential effects of current research on future research. We hope to have initiated a novel research direction which will lead to better understanding of how we ought to understand citation graph data.

We proposed an efficient vertical ARM model for representing citation graph data generating rules capable of associating research subjects of publications written at different points in time. In the future, we plan to study the efficacy of the suggested temporal and subject constraints proposed to reduce the number of considered graph edges by focusing only on the nodes (along with their incoming or outgoing edges) satisfying the given constraints. We would also like to analyze the usefulness of the concepts presented herein when applied to other potential domains such citation mining and web structure mining. In addition,

In our citation data analysis, we have exploited the time factor embedded in the directionality of the edges in the citation graph in an efficient manner. An edge from node X to node in Y in a citation graph implies that paper X cites paper Y and, more importantly, that Y was written before X (ignoring factors such as “preprints” and “self-citations”). The time factor is perhaps one of the main reasons we restricted our analysis to citation graph data; nevertheless, we believe our techniques could be generalized to other application domains. Another future direction in this area would be to analyze different types of directed graphs with the aim of exploiting factors other than the time factor.

3.4.1.3. A Scalable Vertical Model for Mining Association Rules [RRP+04]
Association rule mining (ARM) is a data-mining process for finding all association rules in datasets matching user-defined measures of interest such as support and confidence. Usually, ARM proceeds by mining all frequent itemsets – a step known to be very computationally intensive – from which rules are then derived in a straight forward manner. In general, mining all frequent itemsets prunes the space by using the downward closure (or anti-monotonicity) property of support which states that no itemset can be frequent unless all of its subsets are frequent. A large number of papers have addressed the problem of ARM but not many of them have focused on scalability over very large datasets (i.e. when datasets contain a very large number of transactions). In this paper, we propose a new model for representing data and mining frequent itemsets that is based on the P-tree technology for compression and faster logical operations over vertically structured data and on set enumeration trees for fast itemset enumeration. Experimental results presented hereinafter show big improvements for our approach over large datasets when compared to other contemporary approaches in the literature.
THE PROPOSED APPROACH
The Algorithm
In this section we discuss the underlying tree structure of our algorithm which greatly resembles the SE tree presented before with some branches terminating pre-maturely. Each node in the tree will represent a frequent itemset.

Our algorithm utilizes the downward closure of support to prune the SE tree. Every time we generate a new candidate itemset, I, at some node, n, we compute support(I). If support(I) is greater than or equal to the minimum support threshold, denoted by minsup hereinafter, then we insert node n in the tree. The algorithm is formally outlined in Figure 4.

First, we have to assume some predefined order among the items in our dataset. We ignore all items that are infrequent with respect to minsup. Using this order, we start adding the items to the tree under the root. After adding an item I to the tree, we join I with all itemsets, X, that exist in the tree to the left of I by traversing them in depth-first (DF) order. Any union between item I and itemset X that produces an infrequent itemset results in terminating the processing under X because nodes under X are supersets of X and thus are bound to produce infrequent itemsets when joined with I. On the other hand, any union that produces a frequent itemset results in a new node inserted under I labeled with the union. Insertion of new frequent itemsets under I preserves the order of the X nodes that exist to the left of I.

Figure 4. The Algorithm
An Example

Perhaps walking through an example would help better illustrate the idea. Figure 5 below depicts the tree generated for an example dataset with five items {1, 2, 3, 4, 5} each represented by a P-tree as shown in the figure. Each node shows the itemset it represents (between curly braces) along with the support of the itemset (the number on the right). The tree shows all frequent itemsets for minsup = 3.
To build the tree, we insert the first item, 1, which has a support value of 3 under the root. Since there are no other frequent itemsets in the tree at this point, we quit the processing for this node and move to item 2 which is also frequent with support(2) = 7. After inserting {2} under the root, we start joining 2 with all frequent itemsets to its left. {1} is the only frequent itemset in this case so we form a new itemset {1,2} but the support of this node is 1 which is less than minsup; accordingly, we disregard itemset {1,2}. After that comes 3 with support of 4; so, we insert it next to {2} under the root. 3 is first joined with {1} to form the {1,3} with support 3. {1,3} is inserted under {3}. Similarly, 3 is joined with {2} to form {2,3} which is also frequent and thus is inserted under {3} to the right of {1,3} just like {2} is to the right of {1} (i.e. the order of the nodes is preserved). Similarly we process the last two items in our list, namely, items 4 and 5.
[image: image351.png]

[image: image352.png]{1} 3

{217

{314

{4} 4

5)6

{13} 3

(23)3

{24} 4

{25} 5

(4.5} 4

(245} 4

Figure 5. Tree for dataset {1, 2, 3, 4, 5}.

Taboo Lists

Suppose in Figure 5 we are currently working with node {5}. During the processing span of {5}, it must be joined with nodes {2} and {2,4} and in this order because both of them are frequent itemsets lying to its left. If {2,5} happens to be infrequent then so will {2,4,5} because it is a superset of {2,4}; as a result, our approach so far would generate and test candidates frequent itemset like {2,4,5} that could be eliminated because of the prior information about the infrequent subsets such as {2,5}.

To remedy the problem, we associate a temporary taboo list (TL) with every item, I, under processing where we save all the nodes that produced infrequent itemsets when joined with I. Going back to the previous scenario, if {2,5} is infrequent then we append {2} to the taboo list of item 5 (TL5 for short). In later steps, before computing the support of any new candidate itemset, X, containing item 5, we check if any subset of X is in TL5. If so, we simply discard X. This may seem unfeasible at first glance; however, an efficient implementation has been devised as we shall discuss in more details in the following section.

It is worth mentioning that our traversal through the itemset space using taboo lists is very similar to a popular approach used in the AI literature and known as Tabu search (Glover, 1994). The idea in Tabu search is to traverse the space in a more effective manner by avoiding moves that result in revisiting points in the space previously visited whose outcome are known not to be acceptable (hence the name "tabu”). The fact that the union of I and X produces an infrequent itemset implies that future joins of I with any superset of X will produce an infrequent itemset; a scenario similar in essence to revisiting a point in the search space whose outcome is known to be unsatisfactory and which could have been circumvented by putting the point on a Tabu list. Because of the difference in context and problem definition, we refer to our lists as taboo lists instead of Tabu lists.

IMPLEMENTATION & PERFORMACE ANALYSIS

Implementation

For every new item, I, we create a new node under the root and test for candidate frequent itemsets by joining I with all nodes lying to its left in DF order. The actual node creation order in the tree is the lexicographic subset ordering of the items in the given item list. For example, the node creation order for the set {1,2,3} would be: {1}, {2}, {1,2} ,{3}, {1,3}, {2,3}, {1,2,3}. This ensures that every itemset has all its subsets generated prior to its generation.

For every item, I, we maintain a TLI which stores the itemsets whose supports, when joined with I, are known to be less than minsup and thus the itemsets formed by joining I with any of their supersets are known beforehand to be infrequent so their support values need not be computed. In our implementation, each TLI is maintained as a P-tree having a size equal to the number of nodes to the left of I (i.e. all nodes that need to be joined with I). A value of 1 is used for nodes which, when joined with I, result in an infrequent itemset. The remaining TLI entries will be 0s. For example, for the set of items {1,2,3,4}, suppose that the nodes created so far in the tree are: {1}, {2}, {1,2} ,{3}, {1,3}, {2,3}, {1,2,3}. For item 4, we initialize a TL4 to have seven entries all containing 0s initially. If the union of item 4 with node {2} results in an infrequent itemset, then the second entry in TL4 which corresponds to itemset {2} is flagged with a 1, and so are all other entries containing item 2 (i.e. entries {1,2}, {2,3} and {1,2,3}). But how can we “efficiently” locate all other entries containing item 2? In order to be able to answer the above question, an extra step needs to be performed. We maintain for every item an index list as a P-tree (referred to as an index P-tree) that has a 1 value for every position that this item exists in. For our last example, item 1 will have the following index list (it will be stored as a P-tree but we are just listing the entries in a list for convenience): 1,0,1,0,1,0,1; indicating that by viewing the nodes of the SE tree in node creation order, item 1 occurs in node positions 1, 3, 5 and 7. Every new node added to the tree results in the expansion of all index P-trees by either a 1, if the corresponding item is in the new node added, or a 0, otherwise. The TL of the current item is also expanded by a 0 so as to maintain a length equal to that of the index P-trees in order to facilitate logical operations as we shall describe next.

Going back to the previous scenario where joining {4} with node {2} results in an infrequent itemset and thus node {2} need to be added to TL4, we simply OR the index P-tree of item 2 with TL4. In general, if we want to add node {x, y,…,z} to a taboo list, say TLI, we AND the index P-trees for all items in the node (i.e. AND index P-tree of x with that of y … with that of z). The resulting P-tree will contain a 1 for the occurrence of any superset of itemset {x, y,…,z} including itself. Then we OR the resulting P-tree index with TLI which results in appending node {x, y,…,z} to TLI​.

We maintain all taboo lists and index lists as P-trees as this will result in faster logical operations in addition to compression when possible. An extra advantage for using P-trees to encode taboo lists is the capability of speeding up node traversal especially in cases where there are many consecutive 1s. For example, suppose the entries in a taboo list are: 1111 0011. Figure 7 below shows the corresponding P-tree of the given taboo list.

Figure 6. The resulting taboo list in P-tree format.

In this example, instead of going through the first four nodes sequentially and then skipping them afterwards because they are flagged, using a P-tree to represent the taboo list, we can directly skip the first 4 entries because they form a pure-1 node on 2nd level of the P-tree.

By using this approach, we are indirectly eliminating the need for the two steps needed by Apriori to generate candidate itemsets, namely, the join and prune steps. Apriori joins any two k-itemsets sharing the first “k-1” items in the join step and prunes all those (k+1)-itemsets that have at least one infrequent subset in the prune step. In general, pruning can be accomplished either by searching, which entails a processing-time overhead, or by using complicated data structures to store frequent itemsets like hash trees as suggested in Agrawal and Srikant (1994), which might incur an overhead due to their maintenance and searching especially when they exhibit poor cache locality (Zaki et al., 1997). By using taboo lists in our approach, we combine those two steps into one step because we only form a candidate itemset if and only if all subsets of that itemset are known to be frequent.

Finally, we would like to make the point that the collection of the index P-trees are an exact replica of the tree except for being in binary (i.e. each item involved in the corresponding itemset has a 1 in its index P-tree); consequently, we need not store the tree. All frequent itemsets can be found in the index P-trees. In addition, each TL is only maintained for the processing span of the corresponding item after which it is discarded; during that time, it is stored as a P-tree and, thus, is compressed when possible. As a result, we have no extra storage overhead other than the temporary taboo lists each lasting for the duration of the processing of the corresponding item.

Performance Analysis

To analyze the performance of our approach, we developed an implementation for the work suggested herein using P-trees (called PTREE SE) and compared it with four popular state-of-the-art frequent itemset mining approaches: FP-Growth (FPG) (Han et al., 2000), APRIORI (Agrawal et al., 1993) (Agrawal and Srikant, 1994), Depth-First Apriori (DFA) (Kosters and Pijls, 2003) and ECLAT (Zaki et al., 1997). We chose FPG because it utilizes a compressed data representation model that can be viewed as vertical and horizontal simultaneously (Goethals, 2004). APRIORI and DFA are both Apriori-based implementations with the former using a bread-first traversal of the itemset space and the latter a depth-first traversal. The vertical data representation of ECLAT along with being the first approach to successfully perform depth-first-based frequent itemset discovery (Goethals, 2004) made it a very attractive comparison target.

The data mining community has prominently noted the importance of the availability of implementation benchmarks due to the dependence of experimental comparison results on the implementations used; as a result, for the approaches we compare with, we used publicly available implementations renowned for their speed. FPG and APRIORI were downloaded from Goethals (2003). ECLAT and DFA were downloaded from Frequent Itemset Mining Implementations Repository (2003). We used Borgelt’s implementation (Borgelt, 2003) of ECLAT and Kosters’s implementation of DFA (Kosters and Pijls, 2003). All implementations were coded in C++ and executed on an Intel Pentium-4 2.4GHz processor workstation with 2GB RAM running Debian Linux. In all experiments, we focus on mining all frequent itemsets only without rule generation.

We used the 2k factorial experimental design methodology (Law and Kelton, 2000, chapter 12). The considered factors are the number of transactions in the dataset (cardinality), the number of items (dimensionality) in the dataset, the density of the dataset, and the minimum support threshold specified. The only response of interest is the execution time for mining all frequent itemsets. Our design methodology requires us to choose two opposite values for each of the k factors and then scrutinize the responses at all possible 2k factor-level combinations each referred to as a design point. For simplicity, we generate the design points using the first three factors and then, for every resulting design point represented by a dataset, we probe the behavior of the compared implementations over the corresponding dataset by varying the support threshold and going to low but manageable values.

Choosing levels for the selected factors can become a very complicated task due to its subjective nature. The levels chosen for the cardinality factor are “large” and “small” taking one million transactions as the cutoff (i.e. datasets with less than 1 million transactions are relatively small while those with less than 1 million are large). For the dimensionality factor, we have “high” and “low” levels where high dimensionality exceeds 250 items. The levels for the density factor are “dense” and “sparse”. We take “sparse” to mean few items (out of the total number of items in our item space) in most transactions of the dataset so we set the threshold for this factor at 0.05 meaning that the average number of items per transaction in “sparse” datasets should not exceed 5% of the total number of items in the dataset. Considering all factor-level combinations would amount to eight (or 23) resulting design points each represented by a dataset as shown in Table 1 where ITM is the number of items in the dataset, AVG is the average number of items per transaction, TRANS is the total number of transactions, and DESC is the factor-level combination description for each of the described datasets. We tried to use datasets that highly satisfy the required design points according to the given definitions.

The large datasets, “Synthetic Dataset 1” through “Synthetic Dataset 4”, in addition to “Synthetic Dataset 5” were synthetically generated using IBM’s synthetic data generator. While generating those datasets, we only set the number of transactions, number of items, and average number of items per transaction and used default values for the rest of the variables. The “BMS-POS”, “Accidents” (Geurts et al., 2003) and “Chess” datasets are real-life datasets downloaded from the Frequent Itemset Mining Implementations Repository (2003). Figure 7 through Figure 14 show performance graphs for all the approaches at various support thresholds on each design-point dataset. The reader is advised that curves terminating prematurely (e.g. FPG in Figure 8 terminates at 35% support while other curves show results at 30% support and less) imply that the corresponding approach took too much time before finishing, thus it had to be terminated manually.

Table 2. Datasets descriptions.
	
	ITM
	AVG
	TRAN
	DESC

	Synthetic Dataset 1
	500
	10
	5 mil
	Large High Sparse

	Synthetic Dataset 2
	500
	100
	5 mil
	Large High Dense

	Synthetic Dataset 3
	200
	10
	10 mil
	Large Low Sparse

	Synthetic Dataset 4
	100
	10
	20 mil
	Large Low Dense

	BMS-POS
	1657
	7.5
	515597
	Small High Sparse

	Accidents
	468
	33.3
	340183
	Small High Dense

	Synthetic Dataset 5
	100
	3
	346421
	Small Low Sparse

	Chess
	75
	37
	3196
	Small Low Dense

[image: image353.emf]Synthetic Dataset 1

0

100

200

300

400

500

600

700

800

0 0.25 0.5 0.75 1

Support (%)

Time (s)

PTREE SE FPG APRIORI ECLAT DFA

Figure 7. Performance comparison results over “Synthetic Dataset 1”.

[image: image354.emf]Synthetic Dataset 2

0

100

200

300

400

500

600

700

800

900

1000

15 25 35 45 55

Support (%)

Time (s)

PTREE SE FPG APRIORI ECLAT DFA

Figure 8. Performance comparison results over “Synthetic Dataset 2”.

[image: image355.emf]Synthetic Dataset 3

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20

Support (%)

Time (s)

PTREE SE FPG APRIORI ECLAT DFA

Figure 9. Performance comparison results over “Synthetic Dataset 3”.
[image: image356.emf]Synthetic Dataset 4

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40

Support (%)

Time (s)

PTREE SE FPG APRIORI ECLAT DFA

Figure 10. Performance comparison results over “Synthetic Dataset 4”.
[image: image357.emf]ACCIDENTS

0

100

200

300

400

500

600

10 30 50 70 90

Support (%)

Time (s)

PTREE SE FPG APRIORI ECLAT DFA

Figure 11. Performance comparison results over “Accidents”.

[image: image358.emf]BMS-POS

0

20

40

60

80

100

120

0 0.25 0.5 0.75 1

Support (%)

Time (s)

PTREE SE FPG APRIORI ECLAT DFA

Figure 12. Performance comparison results over “BMS-POS”.

[image: image359.emf]Synthetic Dataset 5

0

20

40

60

80

100

120

0 0.025 0.05 0.075 0.1

Support (%)

Time (s)

PTREE SE FPG APRIORI ECLAT DFA

Figure 13. Performance comparison results over “Synthetic Dataset 5”.

[image: image360.emf]CHESS

0

200

400

600

800

1000

1200

1400

20 30 40 50 60 70 80 90

Support (%)

Time (s)

PTREE SE FPG APRIORI ECLAT DFA

Figure 14. Performance analysis results over “Chess”.

As is evident from the figures, our P-tree-based approach demonstrates superior results against contemporary approaches over all large datasets showing improvements close to one order of magnitude especially over “Synthetic Dataset 2” and “Synthetic Dataset 4” in Figure 8 and Figure 10, respectively. Efficacy over large datasets can be mainly attributed to our vertical processing; a claim which can be justified by referring back to the figures where ECLAT, which also uses pure vertical data processing, shows the best performance among the selected contemporary approaches over all large datasets. Our improvements over ECLAT can be accredited to the utilized SE-tree-based enumeration which is complemented by a compressed data representation model through P-trees. In addition, ECLAT forms a candidate frequent itemset based on two frequent subsets (Goethals, 2004); utilizing taboo lists has completely eradicated this problem in our approach where only candidate frequent itemsets with frequent subsets are generated.

Results on the smaller datasets were not nearly as encouraging suggesting that our performance improves by increasing the level of the cardinality factor; an observation which we find to be very reasonable because our approach uses compressed data structures to vertically process requests for discovering frequent itemsets. Another possible justification for our performance degradation over small datasets is not being able to amortize the cost of creating and processing P-trees and taboo lists over small datasets where compression does not prove to be very effective.

Our experiments did not highlight any effects resulting from the dimensionality factor over low to “relatively” high dimensional datasets. After careful consideration, we realized that the effect and controllability of the dimensionality factor are rather dubious because the actual effect on the time response is largely controlled by the number of frequent one itemsets (i.e. items having single items) which, in turn, depends on the support, density, and cardinality factors making it extremely difficult to control. Note that the number of frequent one-itemset could be very small even if the total number of items is extremely large.

In regard to our last factor, the density factor, we find our results to be largely comparable over most datasets regardless of density. However, it is worth mentioning that, over small datasets, results are more encouraging for denser datasets where PTREE SE ranks third after ECLAT and FPG on both datasets (“Accidents” and “Chess” in Figure 11 and Figure 14, respectively). Over sparser small datasets, the performance degrades considerably for PTREE SE especially on “Synthetic Dataset 5” as shown in Figure 13. Note that using P-trees, we can compress very sparse as well as very dense datasets because of the large numbers of consecutive 0s and 1s, respectively. The density factor does not show evident effects on large datasets.
Our experimental analysis section has also exposed some known characteristics for the contemporary approaches we are comparing with. For example, the performance of FPG improved drastically over smaller datasets which could be justified by the fact that FPG creates an in-memory version of the dataset and then traverses this version to derive all frequent itemsets. As aforementioned, this is very feasible in case the dataset is relatively small so as to fit in memory, and fairly dense where it will compress due to the use of tries (after ordering all items in transactions so as to increase the overlap). Thus, it is very intuitive to expect performance degradations over larger datasets especially when the trie compression is not very effective. For dense datasets, we only noticed improvements for FPG over ECLAT on small dense datasets where FPG outperforms ELCAT on “Accidents” for the only time in our experiments and shows very close performance on “Chess”.
We also observed better results for the horizontal Apriori-based approaches (APRIORI and DFA) over sparse datasets regardless of the cardinality and dimensionality factors which we believe to be very reasonable because Apriori-based approaches are known to operate in a generate-and-test fashion; consequently, their performance degrades tremendously as the number of generated candidate frequent itemsets to be tested increases dramatically which is the case for dense datasets. Though not evident in the graphs, PTREE SE (and even ELCAT) is expected to have a similar performance behavior as it also generates candidate frequent itemsets and then tests their support. It is possible that our expected performance degradations over denser small datasets were circumvented by the vertical data processing, compression, and effective itemset enumeration.

To assess the scalability of the compared approaches, we developed a synthetic dataset with 500 items, an average of 100 items per transaction and one million transactions. We then generated two datasets from this dataset by first doubling the size and then quadrupling it thus generating a total of three datasets each with 500 items and an average of 100 itemsets per transaction but with different cardinalities: one million, two million, and four million transactions, respectively. The rationale for generating datasets by expanding available ones is to be able to vary the dataset size without changing any of the dataset inherent characteristics; in other words, all generated datasets will produce the same frequent itemsets at the same support thresholds (given in percentage) because the same transactions are being repeated a fixed number of times. Accordingly, by fixing the support level and probing the performance of the compared approaches at different dataset sizes, we can isolate and understand the effect of increasing the cardinality on the overall performance of the approaches and thus their scalability. Figure 15 and Figure 16 below show the scalability comparison analysis for all approaches over the aforementioned datasets at two different support threshold values, 40% and 30%, respectively. Note that over the 4-million-transactions dataset in Figure 16, FPG had to be terminated manually after exceeding 2500 seconds in execution time.

As evident from the graphs, our approach shows the best scalability, by far, among all approaches at both support thresholds. Results for ECLAT were also notable which, again, suggests vertical data processing to be the main reason for this dominance in scalability results. FPG and DFA showed the worst scalability performance results. These observation convey yet another important characteristic of P-trees (and of most vertical data structures) showing how applications based on these structures are not affected much by cardinality increase; a behavior generally lacking in most horizontal approaches.

[image: image361.emf]Scalability at support 40%

0

100

200

300

400

500

1 Mil 2 Mil 4 Mil

Dataset size

Execution Time (s)

PTREE SE FPG APRIORI ECLAT DFA

Figure 15. Scalability analysis results at 40% support.
[image: image362.emf]Scalability at support 30%

0

200

400

600

800

1000

1200

1 Mil 2 Mil 4 Mil

Dataset size

Execution Time (s)

PTREE SE FPG APRIORI ECLAT DFA

Figure 16. Scalability analysis results at 30% support.
We will end this section by emphasizing an important point regarding the implementations used to compare our approach with contemporary approaches. As discussed previously, these implementations were selected because they are publicly available and relatively fast compared to other implementations for the same approaches; nevertheless, we do realize that they might not have been optimized uniformly which could have affected their resulting performance in our experimental analysis.
CONCLUSION

In this work we have shown how to efficiently produce candidate frequent itemsets whose subsets are all frequent itemsets without much memory and time overhead using SE-tree enumeration and taboo lists. To improve the efficiency of the frequent itemset-mining process further, we utilize a Boolean vertical data-representation model complemented by compressed data structures, P-trees, resulting in very fast itemset-intersection operations. Note that all of the P-tree-based operations needed to accomplish the task at hand, such as ANDing and ROOTCOUNTing, are performed on the vertically compressed P-trees without the need for any decompression.

We proposed a framework utilizing a number of techniques with the objective of efficiently extracting frequent itemsets and eventually association rules. The conducted experiments indicate the cardinality factor to be the most effective one on performance. Our approach performs best when applied over very large datasets where multiple scans of the database or even an uncompressed in-memory version of the database are very prohibitive. Less evident was the effect of the density factor over small datasets. In addition, further experimentation has demonstrated the scalable nature of our approach and of vertical approaches, in general, as opposed to other horizontal approaches.

Future direction in this area includes devising optimization techniques to integrate into our approach in order to improve the performance over small to mid-sized datasets where our approach did not demonstrate highly comparable results. We would also like to extend the proposed model to efficiently handle situations where users do not wish to utilize the downward closure of support by focusing on confidence pruning (possibly with fixed consequents) only in their quest for association rules such as in precision agriculture and medical research.

We plan to apply the proposed approach over pertinent datasets mainly in the areas of web structure mining and bioinformatics with the hope of furthering our understanding of its practicality in real-life problems. In addition, not much research has focused on updating datasets represented using P-trees in dynamic environments; so we would like to analyze this factor in practice especially over real-life datasets.

Finally, we plan to integrate our work into the DataMIME™ system (Serazi et al., 2004), a universal public data-mining web system developed at North Dakota State University which exploits the P-tree technology for compressed vertical data representations in order to facilitate fast and efficient data mining over large datasets.
3.4.2.
P-DTI (P-tree-based Decision Tree Induction)

P-DTI [DDP02a] is a decision tree classification method using P-trees. By using P-tree structure, fast calculation of measurements, such as information gain or gain ratio, can be achieved. We compare P-tree decision tree induction classification and a classical decision tree induction method with respect to the speed at which the classifier can be built (and rebuilt when substantial amounts of new data arrive).

Experimental results show that P-DTI is significantly faster than existing decision tree classification methods such as C4.5, making it the preferred method for mining on particular data types such as data streams.

[image: image363.emf]Classification Time

0

100

200

300

400

500

600

700

0 200000 400000 600000

Data set size (number of pixels)

Total cost (s)

C4.5

P-tree

Figure 14. Classification cost with respect to the dataset size.

[image: image364.emf]Cost (base-2 log) with respect to dataset size

0

2

4

6

8

10

12

14

16

18

0 200000 400000 600000 800000

Data set size (number of pixels)

cost (ms)

(base-2 log)

Scan cost in C4.5

ANDing cost using

P-trees

Figure 15. Cost comparison between scan and ANDing.

Figure 14 shows that larger data size leads to more significant speed improvement by using P-trees. This is due to the difference of information gain calculation. In C4.5, to test if all the samples are in the same class, one scan on the entire sample set is needed. While using P-trees, we only need to calculate the root counts of the AND of relevant P-trees. These AND operations can be performed very fast. Figure 15 gives the experimental results by comparing the cost of scanning the entire dataset (for different sizes) and all the P-tree AND operations.

3.4.3.
PINE

Podium Incremental Neighbor Evaluator (PINE) [PDD+03] is a P-tree based k-nearest neighbor (KNN) method with distance weighting. Experiments have been performed to evaluate PINE on the real data sets including the aerial TIFF image (with Red, Green and Blue band reflectance values), moisture, nitrate, and yield map of the Oaks area in North Dakota.

In these datasets yield is the class label attribute. We formed test set and training set of equal size and tested KNN with Manhattan, Euclidean, Max, and HOBBit [KDP02] distance metrics; and closed-KNN with the HOBBit metric, and PINE. In PINE, HOBBit was used as the distance function and the Gaussian function was used as the podium function. We specify variance (as 24, and the function is exp(-(22*d) / (2*(2)), where d is the HOBBit distance. Therefore, the mapping is given in Table 1.

Table 1. Gaussian weighs as the function of HOBBit distance

	HOBBit distance
	0
	1
	2
	3
	4
	5
	6
	7

	Gaussian weigh
	1.00
	1.00
	0.97
	0.88
	0.61
	0.14
	0.00
	0.00

The accuracies of different implementations are given in Figure 16 for one dataset. In terms of speed, from Figure 17, we see that there is some additional time cost of using PINE, however, this additional cost is relatively small. Notice that both size and classification time are plotted in logarithmic scale.

We observe that both PINE and closed-KNN are much faster than KNN using any metric. They both increase at a lower rate than KNN methods when the training set size increases.

 [image: image365.emf]Accuracy Comparison for KNN, closed-KNN and PINE

0

10

20

30

40

50

60

70

80

256 1024 4096 16384 65536 262144

Training Set Size (number of tuples)

Accuracy (%)

Raw guessing KNN-Manhattan

KNN-Euclidean KNN-Max

KNN-HOBBit closed-KNN-HOBBit(Ptree)

PINE (Ptree)

Figure 16. Accuracy of KNN, closed-KNN and PINE using different metrics

[image: image366.emf]0.00001

0.0001

0.001

0.01

0.1

1

256 1024 4096 16384 65536 262144

Training Set Size (no. of tuples)

Per Sample Classification Time

KNN-Manhattan KNN-Euclidean

KNN-Max KNN-HOBBit

PINE closed-KNN

Figure 17. Classification time per sample (Size and classification time are plotted in logarithmic scale)

To summarize regarding P-kNN and PINE, we build out P-tree masks for max-rings centered at the unclassified sample in question. We then let the training inhabitants of a ring vote with a vote weight which is inversely related to the radius of the ring. In some sense, this is the ultimate “nearest neighbor” classifier (provided the optimal weighting is discovered). That is, if the class label is known to be (or thought to be) a continuous variable of the feature space points, then there must be an optimal podium weighting scheme (riser height determination) that provides the best classification.

The weights may vary across the underlying feature domain. This complicates the search for an optimal classifier considerably. This “weight variability” problem aside, there is another problem with the PINE method that is even more critical and that is the “pointed nature of max-rings” discussed previously. In a max-ring of radius, r, in a feature space of n dimensions, the main diagonal points are √n times as far away from the center as the dimension intercepts. If, for instance, n=74 (as it did in the ACM KDD-cup competition in 2004), this means that the main diagonal points are more than 8 times as far away from the unclassified points as the intercepts are, yet they both get the same vote. This fact may skew the class assignment considerably.

Also, as previously discussed, a work-around may result by constructing rings (using max-distance) with “shaved” diagonal corners, by intersecting max-rectangles to get a better approximation of a true Euclidean disk (and therefore ring). This certainly does work, however, it does not scale very well.

As the dimension rises, the number of separate rectangles that need to be ANDed goes up rapidly. There may be a way to trade off the smoothness of the boundary against the number of rectangles so as to achieve a reasonable sub-exponential complexity, but, none-the-less, the complexity will likely remain a problem for very high dimensional space.

Another approach to the “curse of the max-ring pointed-ness” (as I will refer to the problem described in the previous paragraph) is as follows. We can use max rings centered at the unclassified sample to isolate successive sets of pertinent training points, using a scalably constructed mask P-tree (difference of two max-disks). Within each of these max-ring about the unclassified sample, a, for each max-ring training point, x, calculate the proper vote weight for that training point, as

1

| x – a |2
or some other inverse relationship to | x – a |. We note this calculation is just (x – a) o (x – a), which we showed above to be of linear complexity with respect to dimension and dimension bit-width.

This approach should ameliorate some of the curse of max ring pointed-ness. However, still, the solution is not completely satisfying since, as we build out our max-rings, the “qualified voters” for a given ring will likely include neighbors √n times as far away as others, and even though we are weighting their votes accordingly, we will not enfranchise voters in the next ring outward until we are done calculating the vote for this ring (and possibly concluding the classification). Intercept points on the next ring out are much closer than diagonal points on the present ring. These “next-ring intercepts” may not get to vote at all, while the “present-ring diagonals” do. Even though we have weighted votes so the “next-ring intercepts” would get the right vote weight, they may not get a chance to vote. Unless we build out rings until the entire feature space is covered, this problem will not go away.

One could reasonably conclude that, once you get far enough away, all weights should be zero anyway, we may only have to build out until the intercepts are beyond this threshold. Then we can safely conclude that only those training points that should vote, have voted, and every such training point has voted with the correct weight.

3.4.4.
PISCES (P-tree Individualized Scalar-product Class Evaluator System)

Related to PINE but employing an entirely different approach to the voting, the PISCES method considers each class subset of the training set as a “pie slice” rather than incrementally building out by rings. On each pie slice, the inner product formula developed above is used to horizontally (ANDing across attributes, not down tuples) evaluate a weighted vote for the entire training set class. The vote is weighted by distance automatically (without sequencing through training points (vertical scan) and without building out vote rings (as in PINE).

PISCES can be set

a. to allow every training point to vote (but with diminished weight as the distance from the unclassified sample increases),

b. or it can be done with a fixed max-disk of voters (doesn’t deal perfectly with the max-disk pointness problem),

c. or it can be done by forming a voter set using the OR of max-rectangles that approximate a true Euclidean disk (as discussed above),

d. or it can be done separately on a series of rings out from the unclassified sample point.

The approaches should get more accurate as you go down this list, but also may get more complex in terms of calculation as move down this list.

The last two are favored because the Euclidean disk approximation need only be done one time (in 3 and the small number of times equal to the number of rings chosen in 4) and then the calculation of the vote for each class is just one additional AND program per class.

In all three approaches (and there may be others that are even better),

i. form a P-tree mask for the qualified voters, call it Pvoters (i.e., every training point or a fixed max-disk or OR{max-rectangles approximate true Euclidean disk})

ii. for every class, c, form Pc^Pvoters (Let X= set of its 1-bit positions)

iii. Choose D > diameter of Pvoters

iv. The c-vote is

 rootcoount(X) * D2 - (X – a) o (X – a)

In 3 above, this gives us a “vote drop-off” function (Radial Basis Function?) of the following shape.

[image: image367]
or if D is chosen significantly larger than the diameter of Pvoters then the drop off is much more graduate as follows:

[image: image368]
and in 4. above, with just two rings, it would be something like the following.

[image: image369]
In PINE we build out rings, letting successive ring training points have the same vote but less and less of a vote as we move outward. Since the votes per class are tallied by simply adding the contribution from each ring to that class vote, this sum is a sum of sums. In PISCES, basically we are just realizing that, as long as we are adding all contributions together anyway, there is not need to know from what ring a summand may have come from as long as it is properly weighted.

That is, we give up the information as to which training point contributed which part if the vote in the end anyway once we sum the votes (the total is all that matters), so a method, such as the PISCES method that accumulates the votes without requiring the identity of the voter gives the correct vote.

For a more thorough discussion of vote fall off functions used in PINE and PISCES, see the discussion of Applications of (X-a)o(X-a) to data mining above in this document.

3.4.5.
Yet Another Approach to Getting Better Votes

Inspired by the PAM and BLOSSOM scoring matrixes (vote assigning matrixes) discussed later, we note that we have yet another flexibility to exploit for vote assignments. Let us return to the first simple example for a walk-through of this flexibility.

(X-a) o (X-a) = SUM(x in X)[(x-a)o(x-a)]

= SUM(x in X)[

(22(x12-a12) +2(x11-a11) +(x10-a10), 22(x22-a22) +2(x21-a21) +(x20- a20)) o

(22(x12-a12) +2(x11-a11) +(x10-a10), 22(x22-a22) +2(x21-a21) + (x20-a20))]

 = SUM(x in X)[

(22x12+2x11+x10 - (22a12+2a11+a10), 22x22+2x21+x20 - (22a22+2a21+a20)) o

(22x12+2x11+x10 - (22a12+2a11+a10), 22x22+2x21+x20 - (22a22+2a21+a20))]

= SUM(x in X)[

24x122 +24x12x11 +23x12x10 –23x12(22a12+2a11+a10) +

22x112 +22x11x10 –22x11(22a12+2a11+a10) +

21x102 + –21x10(22a12+2a11+a10) +

 (22a12+2a11+a10)2 +

24x222 +24x22x21 +23x22x20 –23x22(22a22+2a21+a20) +

22x212 +22x21x10 –22x21(22a22+2a21+a20) +

21x202 + –21x20(22a22+2a21+a20) +

 (22a22+2a21+a20)2]
noting xij2 = xij and aij2 = aij

= SUM(x in X)[

24x12 +24x12x11 +23x12x10 –23x12 (22a12+2a11+a10) +

 22x11 +22x11x10 –22x11 (22a12+2a11+a10) +

 21x10 –21x10 (22a12+2a11+a10) +

24x22 +24x22x21 +23x22x20 –23x22 (22a22+2a21+a20) +

 22x21 +22x21x20 –22x21 (22a22+2a21+a20) +

 21x20 –21x20 (22a22+2a21+a20) +

 (22a12+2a11+a10)2 +

 (22a22+2a21+a20)2]

commuting the orderings of the xi,j a little,

24rcPX^P12 +24rcPX^P11^P12 +23rcPX^P10^P12 –23rcPX^P12 (22a12+2a11+a10) +

 22rcPX^P11 +22rcPX^P10^P11 –22rcPX^P11 (22a12+2a11+a10) +

 21rcPX^P10 –21rcPX^P10 (22a12+2a11+a10) +

24rcPX^P22 +24rcPX^P21^P22 +23rcPX^P20^P22 –23rcPX^P22 (22a22+2a21+a20) +

 22rcPX^P21 +22rcPX^P20^P22 –22rcPX^P21 (22a22+2a21+a20) +

 21rcPX^P20 –21rcPX^P20 (22a22+2a21+a20) +

 (22a12+2a11+a10)2 +

 (22a22+2a21+a20)2 =

Rearranging by collecting highest order bit P-trees (only to suggest possible programming efficiencies),

(X-a) o (X-a) =

 24rcPX^ P12^P11 +23rcPX^P12^P10 –23rcPX^P12 (22a12+2a11+a10 -2) +

 22rcPX^P11^P10 –22rcPX^P11 (22a12+2a11+a10 -1) –

 21rcPX^P10 (22a12+2a11+a10 -1) +

 +24rcPX^P22^P21 +23rcPX^P22^P20 –23rcPX^P22 (22a22+2a21+a20 -2) +

 +22rcPX^P21^P20 –22rcPX^P21 (22a22+2a21+a20 -1) –

 21rcPX^P20 (22a22+2a21+a20 -1) +

 (22a12+2a11+a10)2 +

 (22a22+2a21+a20)2
In PISCES, we

i. form a P-tree mask for a set of qualified voters, call it Pvoters

ii. for every class, c, form PX = Pc^Pvoters (Let X= this set of voters who vote c)

iii. Choose D > diameter of Pvoters

iv. The c-vote is

 root-count(X) * D2 - (X – a) o (X – a)

In the formula for (X-a) o (X-a), the terms,

 24rcPX^ P12^P11 +23rcPX^P12^P10 –23rcPX^P12 (22a12+2a11+a10 -2) +

 22rcPX^P11^P10 –22rcPX^P11 (22a12+2a11+a10 -1) –

 21rcPX^P10 (22a12+2a11+a10 -1)

are the contribution to the final sum provided by

= SUM(x in X)[(x1 – a1) * (x1 – a1)]

= SUM(x in X)[(22(x12-a12) +2(x11-a11) +(x10-a10))*(22(x12-a12) +2(x11-a11) +(x10-a10))]

We can note, e.g., that the 22(x12-a12) term will be only be non-zero if x12≠a12 and such x’s are quite far from a (their high order terms differ) unless all the other x1 bits also differ from their a1 correspondents and with the opposite sign. Therefore, if we want our fall-off vote function to resemble a Gaussian more closely (not tail off like a semi-circle, but more like a Gaussian), then we need only replace the 22 weighting with something smaller. This gives the general idea of the alternative weighting to provide a more Gaussian-like vote drop-off. This is similar to the PAM or BLOSSOM scoring matrix approach to weighting the votes depending upon the exact nature of the mismatch (and allowing the user to choose how that should be done).

3.4.6. P-tree based Outlier Analysis [RRP04] [RWP04][Ren05]
Hawkins eloquently describes an outlier as “an observation as to arouse suspicion that it was generated by a different mechanism.” This notion captures the general spirit of an outlier. Outlier analysis is a process to extract outliers from a large dataset or a large database. The outlier analysis task can be defined as “given a set of n data points, and the expected number of outliers, k, find the top k data points that are considerably dissimilar, exceptional, or inconsistent with respect to the remaining data points.” The outlier analysis task can lead to the discovery of unexpected knowledge or anomaly interests that are critically important in many domains, such as homeland security, computer network, e-commerce, biology, and agriculture.

Most of the current outlier detection algorithms can work well over a small dataset, but are not very efficient over a very large dataset. Huge amounts of data are accumulating in the information society, which puts an urgent need for outlier detection approaches that can run fast over a very large dataset.

We adopt the P-tree data structure to address the scalable outlier mining problem. In this section, we introduce two outlier analysis algorithms using P-trees. Our P-tree based algorithms find outliers efficiently (in terms of speed) from very large datasets, and the algorithms scale well as the data size increases. The efficiency of our methods come from the follows.
1. Pruning technologies. Pruning technologies are proposed to mark off non-outlier candidates. Since non-outlier instances take a large percentage of a whole dataset, pruning speeds up the outlier detection process significantly by reducing the number of iterations.

2. Bulking process. Both pruning process and outlier identification process are conducted in a by-neighborhood way that is much faster than the by-point way.

3. Vertical data structure. The algorithms are constructed using a vertical data structure, the P-tree. The P-tree can compress the original datasets. The operations of the P-tree are bitwise logical operations, such as AND and OR, and these logical operations are much faster than the traditional bitwise logical operations due to the compression feature of the P-tree. Both the compression and the optimized logical operations contribute to the efficiency of the proposed methods.

3.4.6.1. A Vertical Distance-based Outlier Analysis Algorithm

3.4.6.1.1. Definitions of Distance-based (DB) Outliers

Definition of a DB outlier

Knorr and Ng’s defined distance based outlier as:
An object O in a dataset T is a DB (p, D) outlier if at least fraction p of the objects in T lies at a distance greater than or equal to threshold distance, D, from O. An equivalent description can be stated as:
An object O in a dataset T is a DB (p, D) outlier if at most fraction (1-p) of the objects in T lies less than threshold distances D from O.

We give a neighborhood based outlier definition formally in the following paragraph.

Definition 1 (Neighborhood)

The Neighborhood of a data point O with the radius r is defined as a set Nbr (O, r) = {x(X | |O-x|(r}, where, X is the dataset, x is a point in X, and |O-x| is the distance between O and x. It is also called the r-neighborhood of O and the points in this neighborhood are called the neighbors of O. The number of neighbors of O is denoted as N (Nbr (O, r)).
Definition 2 (Outliers)

Based on the neighborhood definition, a point O is considered as a DB (p, D) outlier if N (Nbr (O,D)) ≤ (1-p)*|X|, where |X| is the total size of the dataset X. We define outliers as a subset of the dataset X with N (Nbr(x,D)) ≤ (1-p)*|X|, where x denotes a point in the outlier set. The outlier set is denoted as Ols(X, p, D) = {x(X | N (Nbr(x,D)) ≤ (1-p)*|X|}.
3.4.6.1.2. Properties of Distance-based outliers
Property 1
The max distance of two points in the neighborhood Nbr (O, D) is 2*D, where 2*D means 2 times D.
Proof: Assume that O1, O2 are any two points in Nbr (O, D), the distance between two points O1 and O2 is: Dist (O1, O2) ≤ 2*D. It is observed from this equation that 2*D is the max distance between any two points in the Nbr C (O, D). Therefore, property 1 holds.
Property 2
If N (Nbr (O, D/2)) ≥ (1-p)*|X|, then all the points in Nbr ((O, D/2)) are not outliers.
Proof: Assume that point Q is an arbitrary point in Nbr (O, D/2). Q’s D-neighborhood Nbr (Q, D) completely contains Nbr (O, D/2). Since N (Nbr (Q, D)) ≥ N (Nbr (O, D/2)) ≥ |X|*(1-p), we can conclude that Q is not an outlier according to our outlier definition.

Property 2 can be used as a pruning rule. Based on this property, all points in the Nbr (O, D/2) can be pruned off. The pruning makes the detection process more efficient as we shall demonstrate in our experiments. Figure 1 show the pruning pictorially in Figure1, where the Nbr (O, D/2) is pruned.

Figure Pruning Nbr (O, D/2)

Property 3
If N (Nbr (O, 2D)) < |X| * (1-p), then all the points in the Nbr (O, D) are outliers.
Proof: For any point Q in the Nbr (O, D), Nbr (Q, D)
[image: image370.wmf]Í

 Nbr (O, 2D) holds, which means that the D-neighborhood of Q is a subset of the 2*D-neighborhood of P. From set theory, we have N (Nbr (Q, D)) ≤ N (Nbr (O, 2D)) < |X| * (1-p). According to the aforementioned outlier definition, all the points in Nbr (O, D) are outliers.

According to property 3, all points in Nbr (O, D) can be labeled as outliers. Therefore, property 3 provides a powerful means to label outliers by neighborhood, instead of point by point, which will speed up the outlier detection process significantly. Figure 2 shows the “by-neighbor” process pictorially. All the points in the Nbr (O, D) can be considered without undergoing further processing.

Figure Label Outliers by-neighbors

3.4.6.1.3. VERTICAL OUTLIER DETECTON METHOD WITH LOCAL PRUNING
In this section, we propose a “by-neighbor” outlier detection method with local pruning based on property 2 and property 3 aformentioned.
The “By-neighbor” Outlier Detection Algorithm with Local Pruning
The “by-neighbor” outlier detection algorithm is based on our neighborhood-based outlier definition, property 2 and property 3. The algorithm is described as follows.

Step 1: First, select one point O arbitrarily from the dataset;

Step 2: Second, search for the D-neighborhood of O and
calculate the number of neighbors, N (Nbr(O,D);

In case N (Nbr(O,D) ≥ (1-p)*|X|, where |X| is the total size of the dataset, reduce the radius from D to D/2; then, calculate N(Nbr(O,D/2). If N(Nbr(O,D/2) > (1-p) * |X|, all the D/2-neighbors are not outliers. Therefore, those points need not undergo further testing, which is one of the ways where the efficiency of our algorithm comes into the picture. In figure 6, all points in the small gray neighborhood are pruned off.
In case N (Nbr(O,D) < (1-p)*|X|, the algorithm expands the neighborhood radius from D to 2D and computes N (Nbr (O,2*D). If N (Nbr(O,2*D) < (1-p)*|X|, all the D-neighbors can be claimed as outliers. Those points are inserted into the outlier set and need not undergo further detection either, which contributes to the speed improvement as well; otherwise, only point O is an outlier. In figure 6, all points in the large gray neighborhood are outliers.
Step 3: The process is conducted iteratively until all points in the dataset X are examined.

Figure “By- neighbors” Outlier detection with local pruning

3.4.6.1.4. Vertical Approach Using P-Trees
The algorithm is implemented using the vertical data model, P-Trees. By using P-Trees, the above outlier detection process can be made even faster. The speed comes from: 1) In the P-Tree based approach, the neighborhood search is fast because it is conducted by inequality P-Tree ANDing; 2) the computation of the number of neighbors is efficient because it is done by extracting the value of the root node of the neighborhood P-Tree, and 3) the algorithm prunes points by neighborhood using the optimized P-Trees operation, AND, which accelerates the process significantly.

The vertical method works as follows. First, the dataset to be mined is represented as the set of P-Trees. Secondly, one point O in the dataset is selected arbitrarily; then, the D-neighbors are searched using the fast computation of inequality P-Tree, and the D-neighbors are represented with an inequality P-Tree, which is called a neighborhood P-Tree. In the neighborhood P-Tree, ‘1’ means the point is a neighbor of the point O, while 0 means the point is not a neighbor. Thirdly, the number of points in D-neighbors is calculated efficiently by extracting values from the root node of the neighbor P-Tree Error! Reference source not found.. Finally, do the pruning or “by-neighbor” outlier determination. The pruning process can be executed efficiently by ANDing the unprocessed P-Tree, which represents the unprocessed dataset, with the D-Neighborhood P-Tree. In this case, the points can be pruned by masking the corresponding points in the result P-Trees. The “by-neighbor” outlier labeling can be executed by ORing the D/2-neighborhood P-Tree and the outlier P-Tree, a P-tree representing the outlier set. By searching neighbors using inequality P-Trees and pruning using the P-Tree AND operation, the vertical approach improves the outlier-detection process dramatically in terms of speed. The formal algorithm is shown in figure 7.

Figure 1 Pseudo code of the algorithm
3.4.6.1.5. EXPERIMENTAL DEMONSTRATION

In this section, we design an experiment to compare our method with Knorr and Ng’s nested loop approach (denoted as NL in figures 8 and 9)Error! Reference source not found.. We implemented a P-Tree-based outlier detection method without pruning, named PODM, and P-Tree based outlier detection method using pruning, PODMP, as discussed in detail in section 4. Our purpose is to show our approach’s efficiency and scalability.

We ran the experiment on a 1400-MHZ AMD machine with 1GB main memory, running Debian Linux version 4.0. We tested the algorithms over the National Hockey League (NHL) 1996 dataset. To show how our algorithm scales as data size increases, the dataset is divided into five groups with increasing size, where larger data groups contain repeating records. Figure 8 demonstrates that the two P-Tree-based methods has a significant improvement in speed compared to Knorr and Ng’s Nested Loop method. Also, it is shown that by using pruning and “by-neighbor” labeling, the PODMP benefits from additional speed improvements. It has an order of magnitude of speed improvement over the nested loop approach.
As for scalability, the PODMP is the best among the three. It scales well with increasing dataset sizes, shown in figure.
[image: image371.emf]Comparision of NL, PODM, PODMP

0

200

400

600

800

1000

1200

1400

1600

1800

256 1024 4096 16384 65536

data size

run time

NL

PODM

PODMP

Figure Comparison of NL, PODM, and PODMP

[image: image372.emf]scalability of NL, PODM and PODMP

-200

0

200

400

600

800

1000

1200

1400

1600

1800

256 1024 4096 16384 65536

data size

run time

NL

PODM

PODMP

Figure Comparison of Scalability of NL, PODM, and PODMP

3.4.6.2. A Vertical Density-based Outlier Analysis Algorithm

In this section, we first introduce some definitions related to outlier detection. Then propose a RDF-based outlier detection method with local pruning, which speeds up the outlier detection process dramatically. The algorithm performance is further enhanced by means of the bitwise vertical data structure, P-trees, and its optimized logical operations.
3.4.6.2.1. Outlier Definitions

Whether or to what degree a point is an outlier depends on its consistency with the other objects in the dataset, especially with its neighbors. From the density view, a point P is an outlier if it has much lower density than those of its neighbors. Based on this intuition, we propose some definitions related to outliers.

Definition 3 (neighborhood)

The Neighborhood of a data point P with the radius r is defined as a set Nbr (P, r) = {x(X | |P-x|(r}, where |P-x| is the distance between P and x. It is also called r-neighborhood. The points in this neighborhood are called neighbors of P, direct neighbors of P or direct r-neighbors of P. The number of neighbors of P is defined as N (Nbr (P, r)).
Indirect neighbors of P are those points that are within the r-neighborhood of the direct neighbors of P but not include P’s direct neighbors. They are also called indirect r-neighbors of P.

Definition 4 (density factor)
Given a data point P and the neighborhood radius r, Density factor (DF) of P is a measurement for local density around P, denoted as DF (P,r). It is defined as the number of neighbors of P divided by the radius r.

[image: image373.wmf].

/

))

,

(

(

)

,

(

r

r

P

Nbr

N

r

P

DF

=

 (1)
Neighborhood density factor of the point P, denoted as DFnbr (P, r), is the average density factor of the neighbors of P.

[image: image374.wmf]å

=

=

))

,

(

(

1

)),

,

(

(

/

)

(

)

,

(

r

p

Nbr

N

i

r

p

Nbr

N

q

DF

r

p

nbr

DF

i

where qi is the neighbors of P, i = 1, 2, …, N(Nbr(P,r)).

Relative Density Factor (RDF) of the point P, denoted as RDF (P, r), is the ratio of neighborhood density factor of P over its density factor (DF).

[image: image375.wmf]DF(p)

(p,r)

nbr

DF

RDF(p,r)

/

=

 (2)
RDF indicates the degree at which the density of the point P contrasts to those of its neighbors. RDF can be used as a measurement of how different a point is from its neighbors locally in term of density. We take RDF as an outlierness measurement. Outlierness measurement indicates the degree to which a point can be an outlier in the view of the whole dataset.
Definition 5 (outliers)
Based on RDF, we define outliers as a subset of the dataset X with RDF < t, where t is a RDF threshold defined by case. The outlier set is denoted as Ols(X, t) = {x(X | RDF(x) < t}.
3.4.6.2.2. RDF-based Outlier Detection with Pruning
Given a dataset X and a RDF threshold t, the RDF-based outlier detection is processed in two phases: “find outliers” procedure and “pruning” procedure. The detection process starts with the “find outliers” procedure, which calls “pruning” procedure when necessary. On the other hand the “pruning” procedure also calls “finding outliers” procedure by case.
“Find outliers” process: The “find outliers” procedure starts with an arbitrary point P and a small neighborhood radius r, and calculates RDF of the point. There are three possible local data distributions with regard to the value of RDF.
(a) RDF = 1 ± α. The direct neighbors and the indirect neighbors are uniformly distributed around the point. The point is most likely to be deep in a cluster.

(b) RDF ≤ 1/β. The point P is likely to be a center of a small cluster.
(c) RDF ≥ β. P is an outlier.

(a) RDF = 1 ± α (b) RDF ≤ 1/β (c) RDF ≥ β
Figure Three different local data distributions

In the process above, α is a small value and β is a large value. Choice of α and β has trade off between accuracy and pruning speed. In our experiments, we notice α and β are nearly independent of datasets. When α < 0.3 and β > 12, we observed the results doesn’t change much.
We use different pruning techniques to the three cases above. In case (a), we know that neither the point P is an outlier, nor the direct and indirect neighbors of P are. Since the local neighborhood is distributed uniformly, we increase the neighborhood radius in order to locate points on cluster boundary or outliers. In this case, the “pruning” procedure will be called for fast boundary-finding.

In case (b), the point p is highly likely to be a center point of a dense cluster. In this case, we will prune all neighbors of P. The indirect neighbors of P are likely to be boundary points of the cluster or outliers. So we need to process the indirect neighbors at a fine scale. We calculate RDF of each indirect neighbor using the radius r to get outlierness of those points.
In case (c), RDF is large so P is an outlier. In this case, we will prune all the indirect neighbors of P.
“Pruning” process: The “pruning” procedure is processed as follows. First we increase the radius form r to 2r. Since finding indirect neighbors are computationally expensive, we calculate DF instead RDF first and observe change of DF. In another word, we compare DF (P, r) with DF (P, 2r). If DF (P, r) is close to DF (P, 2r), it indicates that the whole 2r-neighbohood has uniform density. Therefore, we increase (e.g. double or 4 times) the radius until significant change (increase or decrease) is observed. If DF decreases, we know that cluster boundary is reached. If DF increases significantly (larger than δ), it tells us that the neighborhood covers other clusters.

For the decreasing case, the potential outliers may be encountered within the outer ring (the gray area in figure 5). So we need to call “find outliers” procedure to process the points at a fine scale.
For the increasing case, we pick up a point which is likely to be in the higher dense cluster by computing DF. Call “find outliers” procedure until almost all points in the dense cluster are pruned. We then process the remaining points in the ring using “find outliers” procedure.

As we can see, our method detects outliers using “find outliers” process for small candidate outlier sets, which only include boundary points and outliers. This subset of data as a whole is much smaller than the original dataset. This is where the performance of our algorithm lies in.
Also, in our method, the neighborhood radius is highly adaptive with local density of the datasets. Radius increases in case of sparse data to speed up the detection process, while it decreases in case of dense data to guarantee accuracy.

Figure “Pruning” process followed by “Find outliers”
Our method provides not only a binary result (outlier or non-outlier), but also tells users how much it deviates from the other points in the dataset. Given the RDF threshold (t) by the user, the method will mark all points with RDF above the threshold as outliers. Our method provides interaction for users, and user can modify initial radius r (for find outliers procedure), tuning parameters α, β, δ, the threshold t for different datasets.

3.4.6.2.3. Vertical RDF-based Outlier Detection Using P-tree
As we aforementioned, our RDF-based outlier detection approach consists of two procedures: “pruning” and “find outliers.” Automatic alternating of these two procedures accomplishes very efficient outlier detections. In this section we show that both the “pruning” and “find outliers” procedures can be further improved by using the P-trees data structure and its optimal logical operations.

“Pruning” using HOBit metric: “Pruning” is a neighborhood expanding procedure. HOBit metric can be used to speed up the expanding. Given a point P, we define the neighbors of P hierarchically based on the HOBit dissimilarity between P and its neighbors, denoted as ξ-neighbors. ξ-neighbors represents the neighbors with ξ bits of dissimilarity, where ξ = 0, 1 ... 7 if P is an 8-bit value. For example, 2-neighbors represent neighbors of P with 2-bit HOBit dissimilarity to P.

In “pruning” process, we first consider 0-neighbors, which mean the points have the exactly same value as P. Then we expand the neighborhood by increasing HOBit dissimilarity to 1-bit. Both 0-neighbors and 1-neighbors are found after expansion. The process iterates by increasing HOBit dissimilarity. We calculate the density factor, DF (P,ξ), for each ξneighborhood, and observe the changes of DF (P,ξ) along neighborhoods. The expanding process stops until a significant change is observed as defined earlier. Then the whole neighborhood is pruned using P-trees.

The basic calculations in the process above are computing DF (P, ξ) for each ξ- neighborhood and pruning neighborhood. The calculations are implemented using P-trees as follows.

Given a set of P-trees, Pi,j, for the data set, where i = 1, 2 ..., n; j = 1, 2 ..., m; n is the number of attributes; m is the number of bits in each attribute, HOBit dissimilarity is calculated by means of P-tree AND, denoted as (. For any data point, P, let P = b11b12 … bnm, where bi,j is the ith bit value in the jth attribute column of P. The bit P-trees for P, PPi,j , are then defined by

 Pi,j , if bi.j = 1

 PPi,j =

 P’i,j , Otherwise

The attribute P-trees for P with ξ- HOBit dissimilarity are then defined by

Pvi, ξ = Ppi,1 (Ppi,2 (…(Ppi,m-ξ
The ξ-neighborhood P-tree for P are then calculated by

PNp, ξ = Pv1, m-ξ(Pv2, m-ξ(Pv3, m-ξ(…(Pvn, m-ξ

where, PNp, ξ is a P-tree represents the ξ-neighborhood of P. “1” in PNp, ξ means the corresponding point is a ξ-neighbor of P while ‘0’ means it is not a ξ-neighbor. Density factor, DF (P,r) of the ξ-neighborhood is simply the root counts of PNp,r divided by r.

The neighborhood pruning is accomplished by:

PU = PU (PN’p,ξ
where PU is a P-tree represents the unprocessed points of the dataset. It is initially set to all 1’s. PN’p,ξ represents the complement set of the ξ-neighborhood of P. The “pruning” procedure using HOBit metric is shown in figure 6.

Figure “pruning” using HOBit metric
“Find outliers” using Inequality P-trees: “Find outliers” procedure is used to examine relative density of points which are either the boundary points or outliers. We use inequality P-trees to search for neighborhood in a much finer scale, upon which the relative density factor (RDF) is calculated. As we discussed in the previous section, direct neighborhood and indirect neighborhood for a given point P are needed to calculate RDF. The calculation of these neighborhoods, RDF and the pruning techniques are described as follows.

The direct neighborhood P-tree of a given point P within r, denoted as PDNp,r is P-tree representation of its direct neighbors. PDNp,r is calculated by

PDNp,r = Px>p-r (Px(p+r.

The root count of PDNp,r is equal to the number of direct r-neighbors of the point P, denoted as N(Nbr(p,r)). Therefore, the density factor DF (P,r) and the relative density factor, RDF (P,r) are calculated according to equation 1 and 2 respectively.

The calculation of the indirect r-neighborhood P-tree of P, denoted as PINp,r, is accomplished by two processes: first, union all neighborhoods of the direct neighbors of P, and then intersect the result with the complement of the direct neighborhood of P (as shown in figure 7). The two processes combined using P-tree operations to calculate PINp,r as follows:

[image: image376.wmf]I

U

r

p

PDN

r

p

Nbr

N

i

r

qi

PDN

r

p

PIN

,

'

))

,

(

(

1

,

,

=

=

where (stands for OR, and (for AND.

Figure calculation of PINp,r
With the direct neighborhood P-tree PDNp,r, the indirect neighborhood P-tree PINp,r, and RDF, the pruning process is carried as follows with regard to the value of RDF.

In case of RDF (p,r)=1±α for a small number α, we prune the neighborhood off the unprocessed dataset by PU = PU (PDN’P,r (PIN’P,r;

If RDF is very small, less than 1/ β for a large number β, dataset is pruned by PU = PU (PDN’P,r and call “find outliers” procedure to process the P’s indirect neighbors.

If RDF is very large, greater than β for a large number β, P is inserted into the outlier set by Ols = Ols (P, and the dataset is pruned by PU= PU (PDN’P,r (PIN’P,r. The vertical “Find outliers” algorithm is shown in figure 8.

Figure Find outliers Procedure Using P-Trees

The whole vertical RDF outlier detection process is shown in figure 9.

[image: image377]
Figure RDF-based Outlier Detection Using P-trees

To summarize, P-trees structures further speed up our RDF outlier detection process. The speed improvement lies in: a) P-trees make the “pruning” process on fly using HOBit metric; b) P-trees are very efficient for neighborhood search by its logical operations; c) P-tree can be used as a self-index for unprocessed dataset, clustered dataset and outlier set. Because of it, pruning is efficiently executed by logical operations of P-trees.

3.4.6.2.4. Experimental Study
In this section, we experimentally compare our method (RDF) with current approaches: LOF (local outlier factor) and aLOCI (approximate local correlation integral). LOF is the first approach to density-based outlier detection. aLOCI is the fastest approach in the density-based area so far. We compare these three methods in terms of run time and scalability to data size. We will show our approach is efficient and has high scalability.

We ran the methods on a 1400-MHZ AMD machine with 1GB main memory and Debian Linux version 4.0. The datasets we used are the National Hockey League (NHL, 96) dataset and NBA dataset. Due to space limitation, we only show our result on NHL dataset in this paper. The result on NBA dataset also leads to our conclusion in terms of speed and scalability.

The datasets are prepared in five groups with increasing sizes. Figure 10 shows that our method has an order of magnitude improvements in speed compared to aLOCI method.

As for scalability, our method is the most scalable among the three. When the data size is small, our method has the similar run time to those of LOF and aLOCI. However, when data size is large, e.g. 16384, our method starts to outperform these two methods (see figure 11).

[image: image378.emf]0

500

1000

1500

2000

Run Time

Data Size

Run Time Comparisons of LOF, aLOCI, RDF

LOF

0.23 1.92 38.79 103.19 1813.43

aLOCI

0.17 1.87 35.81 87.34 985.39

RDF

0.58 2.1 8.34 37.82 108.91

256 1024 4096 16384 65536

Figure 2 Run Time Comparison of LOF, aLOCI, RDF

[image: image379.emf]Scalability Comparison of LOF,aLOCI,RDF

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

256 1024 4096 16384 65536

Data Size

Run Time

LOF

aLOCI

RDF

Figure 3 Scalability Comparison of LOF, aLOCI, RDF

3.4.6.3. Comprehensive Analysis

We test our algorithms over benchmark datasets-HBK, wood, milk, stock-loss, cancer, http, smtp, ftp-data, other, and ftp with regard to accuracy, speed and scalability. Datasets are shown in table 1.
Table. Benchmark Datasets

	Dataset
	N
	D
	o
	%
	n/d
	Outlier Description

	HBK
	75
	4
	14
	21
	19
	Small cluster, some scatter

	Wood
	20
	6
	4
	20
	3
	Radial, small cluster

	Milk
	85
	8
	17
	20
	11
	Radial (on axis) and in a small cluster

	Stock-

loss
	21
	4
	4
	19
	5
	Scattered

	Cancer
	683
	9
	239
	35
	76
	Scattered

	http
	567497
	3
	2211
	0.4
	200K
	Separate clusters

	Smtp
	95156
	3
	30
	0.03
	30K
	Scattered, outlying

	ftp-data
	30464
	3
	722
	2
	10k
	Outlying cluster, some scattered

	Other
	5858
	3
	98
	2
	2K
	Two clusters

	ftp
	4091
	3
	316
	8
	1k
	Scattered outlying and cluster

Exprimentally, it is proved that our algorithms outperform the rest of the state-of-the-art outlier analysis in terms of speed and scalability. Also, our algorithms are comparable to the state-of-the-art approaches with regard to accuracy. Our alrotihgms produce the same outlier sets as the state-of-the-art approaches. We show the experimental results in figure 18 and figure 19. In figure18, it is shown that our algorithms outperforms the rest of the approaches (in terms of speed) over very large datasets; in figure 19, it is shown that our methods are among the best performers in terms of accuracy.
[image: image380.emf]Run Time Performance on 10 datasets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

DS1(75) DS2(20) DS3(85) DS4(21) DS5(683) DS6(567,497) DS7(95,156) DS8(30,464) DS9(4,858) DS10 (4,091)

datasets

run time

NL

CS

PS

PODLP

LOF

LOCI

TopN

RDF

Figure 18. Run time comparisons over 10 datasets.

[image: image381.emf]Accuracy Comparison over

Benchmark Datasets

0

0.2

0.4

0.6

0.8

1

1.2

HBK wood

milk

stackclass

cancer other

http

smtp

ftp

ftp-data

Datasets

Accuracy(F)

NL

CS

PS

PDBOD

LOF

aLOCI

TopN

RDF

Figure 19. Accuracy comparison on the benchmark datasets.

3.4.7. P-tree based Clustering Analysis
3.4.7.1. Parameter Reduction for Density-based Clustering on Large Data Sets
Clustering on large datasets has become one of the most intensively studied areas with increasing data volumes. One of the problems of clustering on large datasets is minimal domain knowledge to determine the input parameters. In the density based clustering, the main input is the minimum neighborhood radius. The problem becomes more difficult when the clusters are in different densities. In this section, we explore an automatic approach to determine the minimum neighborhood radius based on the distribution of datasets. The algorithm, MINR, is developed to determine the minimum neighborhood radii for different density clusters based on many experiments and observations. MINR can be used together with any density based clustering method to make a nonparametric clustering algorithm. In this paper, we combine MINR with the enhanced DBCSCAN, e-DBCSCAN. Experiments show our approach is more efficient and scalable than TURN* Error! Reference source not found..
Attempts to reduce parameters

There have been many efforts to make clustering process parameter-free, such as OPTICS Error! Reference source not found., CHAMELEON Error! Reference source not found. and TURN*Error! Reference source not found.. OPTICS computes an augmented cluster ordering. This ordering represents the density-based clustering structure of the data. This method is used for interactive cluster analysis. CHAMELEON operates on a derived similarity graph. The algorithm first uses a graph partitioning approach to divide the dataset into a set of small clusters. Then the small clusters are merged based on their similarity measure. CHAMELEON has been found to be very effective in clustering convex shapes. However, the algorithm cannot handle outliers and needs parameter setting to work effectively.
TURN* is a brute force approach. It first decreases the neighborhood radius to so small that every data point becomes noise. Then the radius is doubled each time to do clustering until it finds a “turn” where stabilization occurs in the clustering process Error! Reference source not found.. TURN* uses two constant step sizes 2 and 0.4 to increase and decrease the neighborhood radius respectively. Obviously the step sizes depend on data distribution of the dataset. Even though it chooses big steps, the computation time is not promising for large datasets with various densities.
Enhanced DBSCAN clustering

Given a data set X, the neighborhood radius, r, and the minimum points in the neighborhood, k, we introduce some definitions of density-based clustering and then present our enhanced DBSCAN clustering algorithm.

Definition 1. The neighborhood of a data point p with a radius r is defined as the set Nbr(p, r) = {x(X: |p-x|(r}, where |p-x| is the distance between x and p.
Definition 2. A point p is an internal point if it has at least k neighbors within its neighborhood Nbr(p, r), denoted as |Nbr(p,r)| ≥k. Its neighborhood is called core.
Definition 3. A point p is an external point if the number of its neighbors within its neighborhood Nbr(p, r), is less than k, i.e. |Nbr(p,r)| < k, and it is located within a core.
Figure 1 shows the internal points and external points, given k = 4.

(a)Five internal points (b) Two internal points one external point

Figure 1. Internal and external points (k=4)
Definition 4: A point p is directly density-reachable from a point q if p(Nbr(q, r) and q is an internal point.
Definition 5: A point p is density-reachable from a point q if there is a chain of points x1, x2 ..., xn, q = x1, p = xn such that xi+1 is directly density-reachable from xi+1.

Definition 6: A cluster C is a collection of cores, the centers of which are density reachable from each other.

Definition 7: Boundary points of a cluster is a collection of external points within clusters.
Enhanced DBSCAN: We develop an enhanced DBSCAN algorithm (e-DBSCAN). e-DBSCAN is used as a nested clustering procedure, which is called repeatedly to process clustering in different densities. e-DBSCAN is different from the original DBSCAN in that the boundary points of each cluster are stored as a separate set. The boundary sets are used for cluster merge at the later stage. The enhanced DBSCAN process is summarized as follows:
1. Pick an arbitrary point x, if it is not an internal point, it is labeled as noise. Otherwise its neighborhood will be a rudiment cluster C. Insert all neighbors of point x into the seed store.

2. Retrieve the next point from the seed store. If it is an internal point, merge its neighborhood to cluster C. Insert all its neighbors to the seed store; if it is an external point, insert it to the boundary set of C.
3. Go back to step 2 with the next seed until the seed store is empty.
4. Go back to step 1 with the next unclustered point in the dataset.
When the process is finished, there will be some cluster sets, a noise set and a boundary set for each cluster.

PARAMETER REDUCTION FOR DENSITY-BASED CLUSTERING
There are two input parameters in DBSCAN algorithm: the minimum number of neighbors, k, and the minimum neighborhood radius, r. In fact, k is the size of the smallest cluster. It shouldn’t be varied with different datasets. DBSCAN set k to 4 Error! Reference source not found.. TURN* also treats it as a fixed value Error! Reference source not found.. We also set k to 4.

Therefore, the only input parameter is the minimum neighborhood radius, r. Intuitively, r should depend on the cluster density of the dataset. Different density cluster should have different r. Because of it, DBSCAN presents the user a graph of sorted distance between each point and its 4th nearest neighbor. The user will be asked to find the “valley” which represents the optimal r. The method is only for clusters with the same density. TURN* treats the whole set as an image, tries a range of resolutions (radii) from one end where each point is classified as noise, to the other end where all data points can be included in a single cluster. An optimal resolution is found out of the range by statistic method.
In this section, we first present a few observations based on our experiments on many different datasets. And then we develop a built-in algorithm, MINR, to determine the minimum neighborhood radii for clusters in different densities based on the data distribution. Finally, we develop a nonparametric density based clustering method by combining MINR with e-DBSCAN.

1.1 Experiments and Observations

Observation 1: We define R as a distance between each point x and its 4th nearest neighbor. The points are then sorted based on R in ascending order. Figure 2 shows two datasets DS1 and DS2 and their R-x graphs respectively after sorting. DS1 is a dataset used by DBSCAN. The data size is 200. DS2 is reproduced from a dataset used by CHAMELEON. The original data is 10K and the clusters have similar density. In order to test our algorithm, we insert more data in the 3 clusters on the left up part. The size of DS2 is 17.5K.
As we can see from Figure 2, for a noisy dataset, there is a turning point in the R-x graph where R starts to increase dramatically. Our experiments show most points on the right side of the turning point are noise. If the dataset were clean, there would be no turning point in the graph. DS1 and DS2 are both noisy datasets, therefore there are turning points in Figure 2 (c) and (d). We can even check our observation on the dataset DS1 by eyes. The turning point in (c) is at around 175. There are 24 points on its right side. In fact DS1 has 20 noise points.

[image: image382.png]

(a) DS1 (b) DS2
[image: image383.png]

(c) R-x of DS1 (d) R-x of DS2

Figure 2. DS1 and DS2 and their sorted R-x graphs

Observation 2: Given a neighborhood radius r, we calculate the number of neighbors for each point within the given radius, denoted as K, sort the points in descending order, and get the sorted K-x graph. When r is small, the line is quite smooth. As r increases, the graph starts to have “knees”. When we continue to increase r, the graph becomes smooth again. The rational is that if r is very small or very big, the number of neighbors of each point will be close. One extreme case is when r is so small that every point will have no neighbor but itself. The other extreme case is when r is large enough to cover the whole data set as the neighborhood. Figure 3 shows K-x graphs for DS1 and DS2 for three different radii respectively. Figure 3 (a) and (b) are the cases when r is very small. (c) and (d) are the cases when r is close to the maximum R in the R-x graph. (e) and (f) are the cases when r is very large.

[image: image384.png]T EEE]

 (a) DS1 r = 2 (b) DS2 r = 5

[image: image385.png]'Y TEEN

 (c) DS1 r = 22

 (d) DS2 r = 30

[image: image386.png]

 (e) DS1 r = 50

 (f) DS2 r = 250

Figure 3. Sorted K-x graphs for datasets DS1 and DS2 with different neighborhood radii

From Figure 3, we can see that when the neighborhood radius is close to the maximum R, the K-x graph shows “knees” very clearly. In order to find the “knees” we need to calculate the differentials of the graphs, (Ks. Figure 4 (a) and (b shows the sorted K-x graphs for DS1 and DS2 when the neighborhood radius is close to R. (c) and (d) show the differentials of the graphs respectively.

[image: image387.png]8888 5

 [image: image388.png]GREEEERS

 (a) K-x graph for DS1 (b) K-x graph for DS2

[image: image389.png]

 [image: image390.png]

 (c) (K for DS1 (d) (K for DS2

Figure 4. Sorted K-x graphs of datasets DS1 and DS2 and their differentials (Ks

Both DS1 and DS2 consist of clusters in two different densities and some noise. The knees are close to the points with peak differentials as we can see in (c) and (d). The number of “knees” is equal to the number of cluster densities in the dataset. Intuitively, we infer that the points divided by “knees” belong to different density clusters or noise.
Observation 3: In order to justify our intuition above, we sort the dataset DS2 based on K, and then partition the sorted dataset into three subsets separated by two “knees” in Figure 4 (b). The two “knees” are at positions of 10000 and 15500. Therefore the three partitions are 0 – 10000, 10001 – 15500, and 15501-17500. The three partitions are shown in Figure 5. We can see that partition (a) consists of the denser clusters; partition (b) consists of the less dense clusters; and partition (c) is mainly noise.
[image: image391.png]B

(a) Partition 0 - 10000

[image: image392.png]

(b) Partition 100000 – 15500
[image: image393.png]

(c) Partition 15500 - 17500

Figure 5. Partitions of the sorted DS2 separated by two “knees” at 10000 and 15500
Determination of the neighborhood radii
 Based on the experiments above, we develop an algorithm to automatically determine the minimum neighborhood radii for mining clusters with different densities, MINR, based on the data distribution. The process is as follows:

1. Calculate the distance between each point and its 4th neighbor, R; Find the maximum R;

2. Compute the number of neighbors, K, within the maximum neighborhood radius R for each point;

3. Sort the points in descending order based on K;

4. Calculate the differential (K; Search for the peak (K values;

5. Find the “knee” point right before each peak point with (K = 0.

The “knee” points are denoted as KNi, where i = 1, 2 …m, m is the number of “knees.” The distance between KNi and its 4th neighbor will be the neighborhood radius for clustering the ith dense cluster group. The algorithm is summarized in Figure 6.

Figure 6. MINR algorithm
Nonparametric Density-based Clustering
In this section, we first propose an iterative clustering process given a series of neighborhood radii for different density cluster groups in the dataset, and then develop our nonparametric density based clustering method.
We start clustering using the enhance DBSCAN algorithm, e-DBSCAN, with k = 4 and r = r1. The densest cluster(s) would be formed as shown in Figure 7.

Figure 7. Resulted clusters after clustering with r1: the denser cluster is formed.

Then set r = r2. Only process those unclustered points. The next sparser cluster(s) are formed (See Figure 8). The process continues until r = rm. The remaining unclustered points are noise.

Figure 8. Resulted clusters after clustering with r2: The sparser cluster is formed. The unclustered is noise.

Our nonparametric density-based clustering algorithm is processed as follows. First, calculates a series of neighborhood radii for different density clusters using MINR, then starts iterative clustering process using e-DBSCAN with the radii. Finally, merge any pair of clusters which share most of the boundary points of either cluster. The whole process of our nonparametric clustering algorithm is summarized in 0.

Figure 9. Nonparametric clustering algorithm
PERFORMANCE ANALYSIS

In this section, we compare our nonparametric density-based clustering algorithm (NPDBC) with the performance of TURN*. We tested the algorithms on several data sets. We will show the run time comparisons on the dataset, DS2, we discussed above. In order to make the data contain the clusters in different densities, we artificially insert more data in some clusters to make them denser than the others. The resulted datasets have the sizes from 10k to 200k.

We implemented NPDBC in the C language and run on a 1GHz Pentium PC machine with 1GB main memory, and Debian Linux 4.0. The run time comparison of NPDBC and TURN* is shown in Figure 10.

[image: image394.png]6000
s000
4000
3000
2000
1000

—+—NPDEC s TURN®

.

el

100

200

®

Figure 10. Comparison of NPDBC and TURN*

From Figure 10, we see NPDBC is more efficient than TURN* for large datasets. The reason is that for NPDBC, the parameters are computed once at the beginning of the clustering process, while TURN* algorithm tries different neighborhood radii until the first “turn” is found in case of two different densities. We only compare NPDBC with TURN* on datasets with two different densities. If the density variety increases, NPDBC will outperform TURN* much more. In that case, TURN* wouldn’t stop at the first turning point. It has to continue to search for more knees till the very end. It is obvious that TURN* will fail for large datasets with various densities.

CONCLUSION

In this section, we explore an automatic approach to determine this parameter based on the distribution of datasets. The algorithm, MINR, is developed to determine the minimum neighborhood radii for different density clusters. We developed a nonparametric clustering method (NPDBC) by combining MINR with the enhanced DBCSCAN, e-DBCSCAN. Experiments show our NPDBC is more efficient and scalable than TURN* for clusters in two different densities. The reason is that in NPDBC, the parameters are computed once at the beginning of the clustering process, while TURN* algorithm tries different neighborhood radii until the first “turn” is found in case of clusters in two different densities. When the dataset contains clusters in various densities, our algorithm will be much more efficient. In our future work, we will implement our NPDBC using the vertical data structure, P-tree, the efficient data mining ready data representation.

3.4.7.2. Tree-based Clustering for Gene Expression Data
Data clustering methods have been proven to be a successful data mining technique in analysis of gene expression data. However, some concerns and challenges still remain in gene expression clustering. In this paper, we propose an efficient clustering method using attractor trees. The combination of density-based approach and similarity-based approach takes consideration of clusters with diverse shapes, densities, and sizes. Experiments on common gene expression datasets demonstrate that our approach is more efficient and scalable with competitive accuracy.
THE METHOD
In this section, we propose an efficient agglomerative hierarchical clustering using attractor trees, Clustering using Attractor tree and Merging Process (CAMP). CAMP consists of two processes: (1) clustering by local attractor trees (CLA) and (2) cluster merging based on similarity (MP). The final clustering result is an attractor tree and a set of bit indexes to clusters corresponding to each level of the attractor tree. The attractor tree is composed of leaf nodes, which are the local attractors of the attractor sub-trees constructed in CLA process, and interior nodes, which are the virtual attractors resulted from MP process. 0 is an example of an attractor tree.

Figure 11. The attractor tree

The data set is first grouped into local attractor trees by means of density-based approach in CLA process. Each local attractor tree represents a preliminary cluster, the root of which is a density attractor of the cluster. Then the small clusters are merged level-by-level in MP process according to their similarity until the whole data set becomes a cluster.

Density Function
Given a data point x, the density function of x is defined as the sum of the influence of all data points in the data space X. If we divided the neighborhood of x into neighborhood rings, then points within smaller rings have more influence on x than those in bigger rings. We define the neighborhood ring as follows:

Definition 1. Neighborhood Ring of a data point c with radii r1 and r2 is defined as the set R(c, r1, r2) = {x(X | r1<|c-x|(r2}, where |c-x| is the distance between x and c. The number of neighbors falling in R(c, r1, r2) is denoted as N = || R(c, r1, r2)||.

Definition 2. Equal Interval Neighborhood Ring (EINring) of a data point c with radii r1=k(and r2=(k+1)(is defined as the kth neighborhood ring EINring(c, k, () = R(c, r1, r2) = R (c, k(, (k+1)(), where (is a constant. The number of neighbors falling within the kth EINring is denoted as ||EINring(c, k, ()||.

Let y be a data point within the kth EINring of x. The EINring-based influence function of y on x is defined as:

	 f(y,x) = fk(x) =
[image: image395.wmf]k

1

 k = 1, 2, ...
	(1)

The density function of x is defined as the summation of influence within every EINring neighborhood of x.

	 DF(x)=
[image: image396.wmf]||

)

,

,

(

||

)

(

1

l

k

x

EINring

x

f

k

k

´

å

¥

=

	(2)

Clustering by Local Attractor Trees

The basic idea of clustering by local attractor trees (CLA) is to partition the data set into clusters in terms of density attractor trees. Given a data point x, if we follow the steepest density ascending path, the path will finally lead to a local density attractor. If x doesn’t have such a path, it can be either a local attractor or a noise. All points whose steepest ascending paths lead to the same local attractor form a cluster. The resultant graph is a collection of local attractor trees with the local attractor as the root. The leaves are the boundary points of clusters. An example of a dataset and the attractor trees are shown in Figure 12.

Figure 12. A dataset and the attractor trees

Cluster Merging Process

We consider both relative connectivity and relative closeness, and define similarity between cluster i and j as follows:

	CS(i, j) =
[image: image397.wmf])

,

(

1

)

(

j

i

j

j

i

i

A

A

d

f

h

f

h

+

	(3)

where
[image: image398.wmf]i

h

 is the average height of the ith attractor tree;
[image: image399.wmf]i

f

 is the average fan-out of the ith attractor tree; d(Ai, Aj) is the Euclidean distance between two local attractors Ai and Aj. The calculations of
[image: image400.wmf]i

h

 and
[image: image401.wmf]i

f

are discussed later.

After the local attract trees are built in CLA process, cluster merging process (MP) starts combining the most similar sub-cluster pair level-by-level based on similarity measure. When two clusters are merged, two local attractor trees are combined into a new tree, called a virtual local attractor tree. It is called “virtual” because the new root is not a real attractor. It is only a virtual attractor which could attract all points of two sub-trees. The cluster merging is processed recursively by combining (virtual) attractor trees.
After merging, we need to compute the new virtual attractor Av, the average height
[image: image402.wmf]v

h

, the average fan-out
[image: image403.wmf]v

f

of the new virtual attractor tree. Take two clusters: Ci and Cj, for example, and assume the size of Cj is greater or equal than Ci, i.e. ||Cj|| (||Ci||, we have the following equations:

	Avl =
[image: image404.wmf])

(

||

||

||

||

||

||

jl

il

A

A

Cj

Ci

Cj

+

+

 l = 1, 2 ... d
	(4)

	
[image: image405.wmf]v

h

= Max{
[image: image406.wmf]i

h

,
[image: image407.wmf]j

h

}+
[image: image408.wmf])

,

(

||

||

||

||

||

||

j

i

A

A

d

Cj

Ci

Cj

+

	(5)

	
[image: image409.wmf]v

f

=
[image: image410.wmf]||

||

||

||

*

||

||

*

||

||

Cj

Ci

f

Cj

f

Ci

j

i

+

+

	(6)

where Ail is the lth attribute of the attractor Ai. ||Ci|| is the size of cluster Ci. d(Ai, Aj) is the distance between two local attractors Ai and Aj.
[image: image411.wmf]i

h

and
[image: image412.wmf]i

f

are the average height and the average fan-out of the ith attractor tree respectively.

PERFORMANCE STUDY
We used three microarray expression datasets: DS1 and DS2 and DS3. DS1 contains expression levels of 8,613 human genes measured at 12 time-points. DS2 is a gene expression matrix of 6221 (80. DS3 is the largest dataset with 13,413 genes under 36 experimental conditions. The total run times for different algorithms on DS1, DS2 and DS3 are shown in Figure 13. Note that our approach outperformed k-means, BIRCH and CAST substantially when the dataset is large. In particular, our approach performed almost 3 times faster than k-means and CAST for DS3.

[image: image413.emf]0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

run time(s)

DS1 DS2 DS3

K-means BIRCH CAST CAMP

Figure 13. Run time comparisons
The clustering results are evaluated by means of “Hubert’s (statistic” [Error! Reference source not found.]. The accuracy experiments show CAMP and CAST both are more accurate than the other two. However, CAST is not efficient and scalable.

CONCLUSION

CAMP combines the features of both density-based clustering approach and similarity-based clustering approach. The combination of density-based approach and similarity-based approach takes consideration of clusters with diverse shapes, densities, and sizes, and is capable of dealing with noises. Experiments on common gene expression datasets demonstrated that our approach is more efficient and scalable with competitive accuracy.

3.4.7.3. OPTICS clustering [BKS99]
3.4.7.3.1. Some definitions

Generating distance

The generating distance ε is the largest distance considred for clusters (largest radius for a disk of count at least Mp points to be in a cluster, i.e. ε = largest Mp-core-radius possible). Cluster core-radius for p).

Reachbility Distance

The reachbility distance of p is the smallest distance such that p is density-reachable from a core object, o.

3.4.7.3.2. Algorithm

The algorithm is described as follows.

OPTICS(Objects, e, MinPts, OrderFile):
for each unprocessed obj in objects:

neighbors = Objects.getNeighbors(obj, e)

obj.setCoreDistance(neighbors, e, MinPts)

OrderFile.write(obj)

if obj.coreDistance != NULL:

orderSeeds.update(neighbors, obj)

for obj in orderSeeds:

 neighbors = Objects.getNeighbors(obj, e)

 obj.setCoreDistance(neighbors, e,MinPts)

 OrderFile.write(obj)

 if obj.coreDistance != NULL:

orderSeeds.update(neighbors, obj)

OrderSeeds::update(neighbors, centerObj):

d = centerObj.coreDistance

for each unprocessed obj in neighbors:

newRdist = max(d, dist(obj, centerObj))

if obj.reachability == NULL:

obj.reachability = newRdist

insert(obj, newRdist)

elif newRdist < obj.reachability:

obj.reachability = newRdist

decrease(obj, newRdist)

Figure An Example of OPTICS

[image: image414]
Figure OPTICS walk

3.4.8.
Data Search and Pairwise Alignments in Bioinformatics

Alignment between two or more nucleotide or amino acid (polypeptide) sequences have facilitated the understanding of the relationship between genetic sequence and function or structure. Techniques for aligning and comparing sequences and searching sequence databases for similar sequences (with respect to alignments) is central to bioinformatics. These task center around the definition of a similarity measure. Once a similarity measure is chosen, clustering can be done (e.g., hierarchical dendograms of similarity can be created), and nearest neighbor sets can be isolated (output of BLAST searches upon databases). First we review the standard bioinformatics methods of evaluating similarity between two sequences.

Dot Plots

In simple dot plots, regions of similarity are graphed using a scatter plot of the 1st sequence along the abscissa and the second along the ordinate. Adjacent regions of equality show as diagonal line segments. Visual data mining can give a quick and quite effective assessment of the level of similarity of the two sequences, once the simple dot plot is constructed. More formal analysis of the diagonal line segment situation can also be employed.

To reduce the noise and crowding in simple dot plots, sliding windows of identity (or near identity) can be required before a diagonal line segment is plotted

e.g., for
window size, ws=10 and

cutoff score, cos=8,

if there are ≥ 8 matches between x([1,10] and y([1,10], a plot is made at (1, 1), …,

if there are ≥ 8 matches between x([n-9,n] and y([1,10] a plot is made at (n-9,1),

if there are ≥ 8 matches between x([1,10] and y([2,11] a plot is made at (1, 2), …,

if there are ≥ 8 matches between x([n-9,n] and y([2,11] a plot is made at (n-9,2),

 .

 .

 .

if there are ≥ 8 matches between x([1,10] and y([m-9,m] a plot is made at (1,m-9),…,

if there are ≥ 8 matches between x([n-9,n] and y([m-9,m] a plot is made at (n-9,m-9).

For this case, given two sequences, x and y, we might build a special P-trees, Px,y,10,8 as follows. Over the longest sequence, (or nucleotides sequences, two bits per position and for polypeptide sequences, 5 bits per position), for each bit slice sequence, level-1 is true at position-j iff the predicate, “count(xXORy: [j,j+9])≥2” is true. Then build the universal predicate tree over that level-1.

Simple Alignments

A true alignment is one that reflects the evolutionary relationship between two or more homologs (sequences that share a common ancestor). Homology is not a matter of degree - at any position, sequences either share a common ancestor or they don’t – whereas similarity is in degrees (fractional). There are 3 kinds of changes that can occur at any position, mutation (replacement), insertion (1 or more), deletion (1 or more). The latter two are taken care of by adding gaps (they are much less likely than mutations).

In the simplest case, no gaps are considered. The shorter sequence is moved along the longer producing a sequence of alignment scores,

(i=1..length(longest){ match_score(if=) | mismatch_score(if≠) } .

If gaps are considered, the alignment score is

(i=1..length(longest){ gap_penalty(if_either_has gap) | match_score(if=) | mismatch_score(if≠) } .

CHAPTER 4. MULTI-RELATIONAL DATA MINING

4.1. Multi-Relational Data Mining Introduction

Most data collections that must be managed and mined are composed of many separate relations or files. Database Systems have been developed over the past 40 years to manage multiple relations as one unified database. However multi-Relational Data Mining (MRDM) is in its infancy.

We begin by discussing MRDM. MRDM is a multi-disciplinary field dealing with knowledge discovery from relational databases consisting of multiple tables. Most data mining algorithms operate on a single relation or table, while most real-world databases store information in multiple tables [HK01]. Therefore, the next few years should be an exciting time for multi-relational data mining.

The rise of several application areas in Knowledge Discovery in Databases (KDD) that are intrinsically relational has provided and continues to provide a strong motivation for the development of MRDM approaches. These areas include bioinformatics, web mining and text mining, social network analysis, and etc [Dom03]. MRDM is also a central part of the counter-terrorism effort such as link discovery.

As mentioned earlier, efficiency and scalability have always been important concerns in the field of data mining. Therefore, they are even more important in the multi-relational context, which is inherently more complex. For instance, from the perspective of database, MRDM usually involves one or more joins between tables, as is not the case for classical data mining methods.

A naïve approach to MRDM is to convert multiple relations into a single flat relation. However, it is usually difficult to achieve this conversion without either introducing an unmanageably huge “universal relation” [GUW02] or losing essential information. Previous work using Inductive Logic Programming (ILP) approaches have proven effective with high accuracy in MRDM. Unfortunately, they suffer from poor scalability with respect to the number of relations and the number of attributes in databases [YHY+04]. At this time, there is no good, accurate, efficient, and scalable multi-relational data mining method to handle large databases with a complex schema.

4.2. Naïve Approach

Many data mining requests involve pre-selection, pre-join, and pre-projection of a database to isolate the specific data subset to which the data mining algorithm is to be applied. For example, one might be interested in all Association Rules of a given support threshold and confidence threshold across all the relations of the database. The brute force way to do this is to first join all relations into one universal relation [GUW02] and then to mine that gigantic relation. This is not a feasible solution in most cases due to the size of the resulting universal relation. On the other hand, multiple relations in a database are usually connected via semantic links such as entity-relationship links of an ER model used in the database design. Data stored in the same relation often have closer semantic relationship than those reachable via remote links. The conversion to a single flat data relation might lose some essential semantic information carried by the semantic links in the database design [YHY+04].

4.3. Inductive Logic Programming (ILP)

Another widely used category of approaches to multi-relational data mining is Inductive Logic Programming (ILP). ILP is an area in the intersection of machine learning and programming languages. Dzeroski and Lavrac provide a broad selection of practical ILP approaches to MRDM in [DL01].

ILP is the study of learning methods for data and rules that are presented in first-order predicate logic (FOPL). A relational database can be easily translated into FOPL and be used as a source of data for ILP [DL01]. The following example [MMT+03] gives a set of positive and negative facts for uncle relationships and a set of facts for the relations parent, brother, sister, and husband for the members of a given extended family.

[image: image415]
The goal of ILP is to infer rules given a database of background facts and logical definitions of other relations. For example, we can learn the following rules (written in Prolog syntax) based on the above facts.

[image: image416]
If-then rules in FOPL are formally referred to as Horn clauses. A more formal definition of the ILP problem follows [MMT+03]:

· Given:

· Background knowledge, B, a set of Horn clauses.

· Positive examples, P, a set of Horn clauses (typically ground literals).

· Negative examples, N, a set of Horn clauses (typically ground literals).

· Find: A hypothesis, H, a set of Horn clauses such that:

· ∀p∈P : H∪B ⊨ p (completeness)

· ∀n∈N : H∪B ⊭ n (consistency)

The well known ILP systems include FOIL [QC93], Golem [MF90], and Progol [Mug95]. FOIL is a top-down learner, which builds rules that cover many positive examples and few negative ones. Golem is a bottom-up learner, which performs generalizations from the most specific rules. Progol uses a combined search strategy.

Typically, ILP techniques perform a search through some large hypothesis space, during which many hypotheses are generated and evaluated [BS03]. Therefore, the major shortcoming of ILP is that searching the large hypothesis spaces results in enormous computational demands.

CHAPTER 5. VERTICAL MATERIALIZED VIEWS
FOR MULTIPLE RELATIONS

5.1. Vertical Materialized Views

A view is a derived relation defined in terms of base (stored) relations. A view thus defines a function from a set of base tables to a derived table; this function is typically recomputed every time the view is referenced [GM99].

Views are needed because usually the actual schema of the database is normalized for implementation reasons and the queries are more intuitive using one or more denormalized relations that better represent the real world. Then defining a new relation as a view allows queries to be intuitively specified.

A view can be materialized by storing the tuples of the view in the database. Index structures can be built on the materialized view. Consequently, database accesses to the materialized view can be much faster than re-computing the view. A materialized view is thus like a cache – a copy of the data that can be accessed quickly. Materialized views eliminate the need to expand and re-compute the view definition each time the view is used.

Materialized views find applications in any problem domain that needs quick access to derived data, or where re-computing the view from base data may be expensive or infeasible, or where queries impose very high disk and CPU loads.

For example, consider a retailing database that stores several terabytes of point of sale transactions representing several months of sales data, and supports queries giving the total number of items sold in each store for each item the company carries. These queries are made several times a day, by vendors, store managers, and marketing people. By defining and materializing the result, each query can be reduced to a simple lookup on the materialized view; consequently it can be answered faster, and the CPU and disk loads on the system are reduced. View maintenance algorithms keep the materialized result current as new sale transactions are posted.

As another example, consider a transactional system with orders and items relations, where a large number of queries take a join between the orders and items relations. We can pre-compute this join, and store it as a materialized view. Each query can now use the materialized view, and be answered quicker. At the same time, the CPU and disk loads on the system are reduced, as the time and I/O required to compute the join for every query are no longer needed.

Like a cache, a materialized view provides fast access to data; the speed difference may be critical in applications where the query rate is high and the views are complex so that it is not feasible to re-compute the view for every query, for example on-line analytical processing (OLAP). Further, a view may underlie many higher level interfaces that are each queried seldom but together require that the view be materialized.

Since data mining usually handles relatively static historical data, we can pre-compute and materialize certain information that will often be needed, so that the multi-relational problem can be cast into a single-relational form.

In order to facilitate vertical data mining, we organized materialized view into vertical format. We call this set of vertical structures as Vertical Materialized Views (VMVs).

Definition 1 [Vertical Materialized Views]

Let U(A1,A2, …Ak) be a view in a relational database, we project U onto each attribute, Ai, and call each projection UAi a vertical view. For a vertical view, we always encode each value into binary format (assume n bits), and further partition into n bit vectors, which we call basic vertical views. We pre-compute these basic vertical views and store them. We call them basic vertical materialized views, or just vertical materialized views (VMVs) for attribute Ai.

We store all the vertical materialized views in P-tree format. When encountering any data mining task, by doing relevance analysis and feature selection, we can grab all the relevant materialized view P-trees and be ready for data mining.

5.2. Data Warehouse and Data Cube

According to W. H. Inmon, a leading architect in the construction of data warehouse systems, “a data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management’s decision making process” [Inm96].

Data warehouses usually provide at least one of the following functions.

1. Collects and stores data from several databases into a database of record (data integration).

2. Stores summary tables, and answers OLAP queries.

3. Provides a stable copy of the data for decision support queries.

Materialized views can be useful in each of these three functions. In fact, it is clear that materialized views technology is critical for building good warehouse systems [GM99].

Data warehouses are based on a multidimensional data model. This model views data in the form of a data cube. Since data cubes provide an easy and intuitive way for data analysts to navigate various levels of summary information in the database, they are popular in OLAP. In a data cube, attributes are categorized into dimension attributes, on which grouping may be performed, and measures, which are the results of aggregate functions.

Data cube is a lattice of cuboids, each showing the data at a different level of summarization. The cuboid that holds the lowest level of summarization is called the base cuboid. For example, the 4-D cuboid in Figure 18 is the base cuboid for the given time, item, location, and supplier dimensions. The 0-D cuboid, which holds the highest level of summarization, is called the apex cuboid.

[image: image417]
Figure 18. Lattice of cuboids.

The next sequence of figures shows a simpler lattice of cuboids (3-dimensions, so that we can draw the cube). It involves only time, item and location – actually product, date and country.
In this data warehouse schema, we start with the base cuboid or fact file.

[image: image418]

[image: image419]

[image: image420]

[image: image421]

[image: image422]
The full lattice of cuboids for this datawarehouse scheme is as follows.

[image: image423]

[image: image424]

[image: image425]

[image: image426]

[image: image427]

[image: image428]
[image: image429]
[image: image430]

[image: image431]
5.3. INFORMATICS DATAWAREHOUSE

The following shows an example of a bioinformatics data warehouse.

[image: image432]

4. Gene-Experiment-Organism facts at the center.

The 1-D dimension cuboids, 3. Gene-cuboid, 2. Experiment-cuboid and 1. Organism-cuboid at the outside and just one of the 2-D cuboids, namely the 5. Gene-Organism 2-D cuboid. The other 2-D cuboids would not be shown assuming there are no interesting attributes that, strictly speaking, belong there (that depend only upon, say Gene-Experiments or Experiment-Organisms).

[image: image433]

[image: image434]
The Phylogenetic tree/ring as a Data Warehouse constellation cube. The root may be, e.g., the horizontal dimension of the cube, the next tree level may be the vertical dimension and the next tree level may be the dimension coming out of the page. Thus, it is clear that the dimension of the cube will be very high. However the cube will be very very sparse, so that the P-trees will compress very effectively.

[image: image435]
Next we show the entire Constellation Schema lattice of cuboids. This, of course, may not be the full story, but it does indicate the complexity of this data to some extent.

[image: image436]
To discuss the cardinalities involved in this data warehouse, we will refocus on the central GEO (Gene-Organism-Experiment) Cube.

[image: image437]
This cube will become massive! (curse of cardinality). It may have

 |genes| * |experiments| * |organisms| =

100K * 1K * 1 K =

100 billion cells
In order to data mine it, relevant attributes from other cuboids in the constellation schema will need to be joined to it, making the resulting even more massive. P-trees will drastically compress these data. The basic P-trees for this data set can be created directly from the component basic P-tree sets (without requiring joins).

An example Data mining application, Nearest Neighbor Search (NNS), is one of the most common data mining techniques. In NNS classification, a sample, a=(a1,…an) is assigned a class c(C based on votes by its nearest neighbors in a training database, D(A1,…,An, C). C is the class or attribute of interest e.g., for tissue analysis, C may be {cancer, no_cancer}; for sequence alignment C may be the function, or we may just want to see neighbors ordered by closeness to a. NNS classification employs a distance measure (similarity score) on the A1,…,An attributes to determine the nearest neighbors (e.g., based on Blossum 62 or…)

Sequence alignment versus Nearest Neighbor Search

In NNS, one chooses a “distance” measure to determine neighbors; by

1st choosing a “dimension distances” for each dimension, which can be |a-b| for numeric dimensions or mismatch=1 / match=0 for categorical dimensions…

2nd choosing an inter-dimension distance (e.g., Lq q=1,2,…,∞ i.e., Manhattan, Euclidean,…,Max).

We note that Hamming distance is just mismatch=1/match=0 with the Manhattan combiner.

In sequence alignment the distance function is Hamming, but with an inter-dimension modification to accommodate the so-called indel (insert-delete) evolutionary events (e.g., the Blossum twist).

Current sequence alignment practice can be viewed as standard NNS on an expanded training database to include all evolutionary homologs of DB subject sequences. That is, currently, the query (the unclassified sample) and a subject (the database sequence), are treated symmetrically and the evolutionary events along both branches leading to a common ancestor are scored. These scores determine the distance measure.

[image: image438]

If the DB is expanded to include all subject replicas representing potential paths up and down to the query (homologs), and if sequences include elements representing n-gaps, then sequence alignment is NNS. Then the many NNS methods developed over its long history can all be brought to bear on the problem, including recent strong offerings, e.g., Local Support Vector Machine?

[image: image439]
5.4. 5.4.
Multidimensional Vertical Materialized Views

Any cuboid in a data cube is in fact a materialized view. We call the corresponding VMVs of a cuboid Multidimensional Vertical Materialized Views (MVMVs). Consequently, we call the VMVs of a relational view Relational Vertical Materialized Views (RVMVs).

5.4.1.
Generation of Multidimensional Vertical Materialized Views

We define the VMVs by rotating the horizontal view of relational tables into vertical structures. However, if we always need to generate VMVs by creating a universal table first, the pre-computations of selections, projections, and joins will be very expensive. Joins are especially expensive and are not scalable to large data sets. Fortunately, we can generate MVMVs directly from vertical structures of individual relations. Before showing the algorithm, we first define the Join Mask.

Definition 2 [Join Mask]

If we are joining n relations R1, R2, …, Rn, the Join Mask is a bit vector with its size equaling to |R1|*|R2|*…*|Rn|, where |X| indicates the number of tuples (cardinality) in relation X. Each bit in Join Mask equals to “1” if and only if the corresponding tuple of the Cartesian product overlaps the tuple in the join result.

In fact, the percentage of “1” count of a Join Mask is the selectivity of the join operation (⋈). The join selectivity factor, denoted JS, is defined as follows.

JS = |R1 ⋈ R2 ⋈ … ⋈ Rn| /
[image: image440.wmf]Õ

=

n

i

i

R

1

|

|

Algorithm for Generating Multidimensional Vertical Materialized Views

Suppose we have n relations: R1, R2, … , Rn. Pj(Ri) is the jth basic P-trees of Ri, Pj(Ri) =[x1x2…x|Ri|]. Here each xi represent one bit 0 or 1 and |Ri| denotes the cardinality of table Ri. We can generate the corresponding MVMV of Pj(Ri) as below:

[{{x1}|R1|*|R2|*…*|Ri-1|{x2}|R1|*|R2|*…*|Ri-1|…{x|Ri|}|R1|*|R2|*…*|Ri-1|}|Ri+1|*|Ri+2|*…*|Rn|] & JM,

where {x}t denotes replicating bit x for t times, i.e. xx…x (repeating t times), {X}t denotes replicating pattern X for t times, and JM is the join mask.

In this algorithm we first replicate the bit values by a particular pattern to fit the cuboid. And then use the join mask to filter out tuples that we are not interested in. We use two examples to illustrate this algorithm.

Example 1 [MVMVs of an iceberg cube]

Suppose we have three relational tables R1, R2, and R3. R1 has attributes a11 and a12. R2 has attributes a21, a22, and a23 (encoded into two basic P-trees, a231 and a232). R3 has attributes a31 and a32.

By replication only, we can easily create the vertical bit vectors of the Cartesian product of R1, R2, and R3 with all the attributes, shown in Figure 19 (b).

Suppose we have a cube based on some particular aggregate query. It contains all of the dimensions R1, R2, and R3. The granularity of each dimension is at the join key level. A join key is a key that links a fact table and a dimension table. The fact table associated with a base cuboid is sometimes referred to as the base fact table.

[image: image441]

[image: image442]
Figure 19. An example of MVMVs of an iceberg cube

(a) Three relations and a base fact table; (b) Vertical bit vectors of base cuboid.

In this example, we have the base fact table F with two measurements m1 and m2 (encoded into bit level, m21 and m22). Since F is the result of a join operation, some key combinations might not have meaningful measurements. For example, this situation might be the result of an iceberg query.

An iceberg query computes an aggregate function over an attribute or set of attributes in order to find aggregate values above some specified threshold. Given a relation R with attributes a1, a2, …, an, and b, and an aggregate function, agg_f, an iceberg query is of the form

select
R.a1, R.a2, …, R.an, agg_f(R.b)

from
relation R

group by
R.a1, R.a2, …, R.an

having
agg_f(R.b)>=threshold.

[image: image443]
Figure 20. Join mask of the base fact table.

Given the large quantity of input data tuples, the number of tuples that will satisfy the threshold in the having clause is relatively small. The output result is seen as the “tip of the iceberg,” where the “iceberg” is the set of input data.

We illustrate the join mask of the base fact table F in Figure 20 by a cube format. A cell is empty if the corresponding bit in the join mask is “0”.

The second step of generating the MVMVs is to and the join mask (JM) with all the bit vectors we generated by replication. The results are shown in Figure 21.

[image: image444]
Figure 21. Join Mask and MVMVs

As we can see from the above example, the MVMVs for the n-D cuboid (n is the number of dimension relations) are usually very sparse. By employing the P-tree technology, we can achieve a very significant compression ratio.

Example 2 [MVMVs of a 2-D reflexive relation]

Suppose we have a relation R with its reflexive two-dimensional relationship as shown in Figure 22. This 2-D relationship (Graph G) is represented in bit map format. In bioinformatics, protein-protein interaction is one of the typical applications of this example.

[image: image445]
Figure 22. A relation R with its reflexive 2-D relationship

We can change the format of Graph G into edge table format (Figure 23). In the edge table, we have one entry if and only if the bit position representing two transaction ids is “1”.

[image: image446]
Figure 23. Edge table representation of a graph.

By following the algorithm of generating MVMVs, we can first generate the bit vectors of the Cartesian product of R and itself simply by replications. The results are shown in Figure 24.

[image: image447]
Figure 24. Cartesian product of R and itself.

However, not all the entries in the above figure are meaningful. We create a join mask (JM) according to the edge table and by doing and operations with the join mask, we generate the final MVMVs (Figure 25). We store these MVMVs into compressed P-tree format and can do data mining directly on those compressed vertical structures.

[image: image448]
Figure 25. Join mask and the MVMVs for the reflexive 2-D relationship.

5.4.2.
Materializing from a Base Cuboid

In the previous section, we create MVMVs of the n-D (n is the number of dimension relations) cuboid (base cuboid) from relations of 1-D cuboids. The set of n-D MVMVs is a matter of joining all other cuboids. In this case, each attribute value of each cuboid is replicated the maximum number of times.

In fact, given the cardinality of all the dimension tables, for any MVMV of the n-D cuboid (base cuboid), we can get the corresponding MVMV for any k-D (1≤k<n) cuboid by reducing some replications.

For example, suppose the n-D MVMV for one of the basic P-trees of table Ri is

[y1y2...yc], where c=|R1|*|R2|*...*|Rn|,

and each yk represents bit 0 or 1,

we can get the corresponding 1-D MVMV

([x1x2…x|Ri|]):

[y1 y|R1|*|R2|*...*|Ri-1|+1 y2*|R1|*|R2|*...*|Ri-1|+1 … y(|Ri|-1)*|R1|*|R2|*...*|Ri-1|+1].

(Or xk= yk*|R1|*|R2|*...*|Ri-1|+1, 0≤k<|Ri|.)

This 1-D MVMV can then lead us to any corresponding k-D MVMV.

As a result, we can not only materialize data cube downward into a base cuboid but also upward into any other cuboid. While materializing downward, dimensionality decreases and cardinality increases; whereas while materializing upward, cardinality decreases and dimensionality increases. Therefore, the curse of dimensionality and the curse of cardinality can be transformed into each other by materializing the data cube in a particular direction.

5.5.
Two Common Relational Data Schemas for Data Mining

In the design of relational databases, the entity-relationship data model is commonly used, where a database schema consists of a set of entities and the relationships between them. Such a data model is very appropriate for on-line transaction processing (OLTP), because the major task of OLTP systems is to perform on-line transaction and query processing. However, for on-line analytical processing (OLAP) and data mining, data need to be organized and presented in various formats in order to accommodate the diverse needs of the different users in the role of data analysis and decision making. Therefore, a concise, subject-oriented schema is needed.

The most popular data models for data mining are a star schema and a snowflake schema [HK01]. A schema is called a star schema if all the dimension tables can be joined directly to the fact table. In the star schema, there are a large central table (also called fact table) containing the bulk of the data, with no redundancy, and a set of attendant tables, called dimension tables, one for each dimension. The schema graph resembles a starburst, with the dimension tables displayed in a radial pattern around the central fact table.

A schema is called a snowflake schema if one or more dimension tables do not join directly to the fact table but must join through other dimension tables. The snowflake schema is a variant of the star schema model, where some dimension tables are normalized, thereby further splitting the data into additional tables. The resulting schema graph forms a shape similar to a snowflake.

In the following section, we consider multi-relational data mining on a star model or a snowflake model.

5.6.
Relational Vertical Materialized Views

5.6.1.
Relational Vertical Materialized Views of a Star Model

Definition 2. [RVMVs of a star model]

For a star model, suppose C is the central table, D1, D2, …, Dn are all the dimension tables (as in Figure 26). We can create a view U which is the result of natural joins of all these tables. Further, we can create all the basic vertical materialized views as a lossless representation of U. These vertical materialized views are also called RVMVs of the star model.

[image: image449]
Figure 26. Star model (one level tree).

Since each primary key of the dimension table has a corresponding foreign key in the central table, the cardinality of U would be equal to that of C. This is Lemma 1.

Lemma 1.

Let attribute A be the primary key of relation D and the foreign key of relation C. Let U = D ⋈D.A=C.AC (natural join of D and C). We have |U| = |C|. In fact, if C has k attributes, A, C1, C2, …, Ck-1, then

C = π A, C1, C2, …, Ck-1 (U)

According to Lemma 1, if there is a primary key – foreign key relationship between two relations (say, D and C), we can always map or materialize a column (say, attribute B) of the primary key relation (D) to the foreign key relation (C). We call this kind of mapping P-F materialization. We can view the RVMVs of a primary key relation attribute (say, D.B) a virtual column of the foreign key relation (C.B).

Definition 3. [RVMVs of a dimension non-key attribute]

Let attribute A be the primary key of relation D and the foreign key of relation C.

Let U = D ⋈D.A=C.AC. For any attribute Di (Di≠A), we call π Di (U) the RVMVs of attribute D.Di.

Definition 4. [RVMV of a dimension predicate]

Let attribute A be the primary key of relation D and the foreign key of relation C. Let PD be the result of any predicate on relation D. That is, |PD|=|D| and for any i (0≤i<|D|), PD[i] is either true or false. If we add PD into relation D as a virtual attribute X, we can generate the corresponding RVMV of D.X, π X(D ⋈D.A=C.AC). We also call it the RVMV of a dimension predicate.

By this definition, we can view any attribute as a set of results of predicates, depending on how we encode the attribute. For example, if we encode attribute gender by setting “male” into “1” and “female” into “0”, then all the encoded values of this attribute represent the result of predicate “gender='male'”.

5.6.2.
Association Matrix

Definition 5. [Association matrix]

Let attribute A be the primary key of relation D and the foreign key of relation C. Let VD.A(i) denote the ith value of column D.A and VC.A(j) denote the jth value of column C.A. We create a |D|*|C| Boolean matrix [MDC], which is defined as the following. For any integer i and j, if VD.A(i) = VC.A(j), then [MDC](i, j) =1, otherwise, [MDC](i, j) = 0.

Lemma 2
Let [MDC] be the association matrix of relation D and C. ∀j (0<j≤|C|), there exists one and only one t (0<t≤|D|), such that [MDC](t,j)=1.

Lemma 2 can be proved by referential integrity and the uniqueness of primary key.

Theorem 1

Let [MDC] be the association matrix of relation D and C. Suppose B is an attribute of relation D. Let [MD.B] be the matrix format of D.B ([MD.B](i,j) represents the jth bit position of the ith bit vector of attribute D.B). Let [MC.B] be the matrix format of the RVMV of D.B. We have,

[MD.B] × [MDC] = [MC.B]

Proof. ∀i, j, we have,

 [MD.B ×MDC](i,j)
= ∑k{[MD.B](i,k) ×[MDC](k,j)}
= [MD.B](i,t) ×[MDC](t,j)

<Lemma 2>
= [MD.B](i,t)

<[MDC](t,j)=1>
= VD.B(i,t)
= VC.B(i,j)

<VD.A(t)=VC.A(j)>
= [MC.B](i,j)

5.6.3.
Generating RVMVs for Star Models and Snowflake Models

Figure 27 shows an example to generate vertical materialized views for a star model. C is the central table. D1 and D2 are dimension tables. Attribute C.A is the foreign key of D1.A, and attribute C.B is the foreign key of D2.B. We can generate the materialized views of D1.X and D2.Y and view them as the virtual columns of the central table C, noted as C.X and C.Y.

[image: image450]
Figure 27. Generation of RVMVs for a star model

The snowflake scheme can be viewed as a tree structure, in which each node represents a table and the root represents the central table. (The star model is then a one level tree.) In a snowflake model, each node and its children fall into a star model. According to the properties of the RVMVs of a star model, we can deduct the following theorem.

Theorem 2.

Let C be the central table of a snowflake model. Let U be a materialized view covering all the attributes. Then we have |U| = |C|.

Based on the above property, we can build the RVMVs of a snowflake model in a bottom-up way by propagation of the RVMVs. For the example in Figure 28, we get the view for D2 from H1, H2, …, Hm first. Then we move up the tree and get the view for C from D1, D2, … , Dn.

[image: image451]
Figure 28. A snowflake model example

We store all the RVMVs in P-tree format. When encountering any data mining task, by doing relevance analysis and feature selection, we can grab all the relevant materialized view P-trees and be ready for data mining.

Algorithm for generating RVMVs

We can view each association matrix as a composition of bit maps. For each row in the first table, we create a bit map that is a string of bits corresponding to rows of the second table to indicate whether the primary key and foreign key attributes have the same value.

Suppose the bitmap set {BM1, BM2, …, BM|D|} is the association matrix of table D and C. We can generate the RVMV (PC) of any predicate (PD) by the algorithm in Figure 29. The complexity of this algorithm is O(|D|*|C|).

[image: image452]
Figure 29. Algorithm for generating RVMVs.

5.7.
MVMV vs. RVMV

We describe two VMV approaches in aforementioned sections, vertical materializing data cuboids to MVMVs and vertical materializing dimensional files to RVMVs of the central fact file. In terms of data warehousing terminology, they are corresponding to two OLAP technologies, Multidimensional OLAP (MOLAP) and Relational OLAP (ROLAP).

In MOLAP approach, inherent offset information of data cube allows fast data accessing. In the multidimensional model, data are organized into multiple dimensions, and each dimension contains multiple levels of abstraction defined by concept hierarchies. A number of operations, such as roll-up, slice, dice, and rotate, can be easily calculated to materialize different views, allowing interactive querying and analysis of the data at hand.

In MOLAP each combination of attribute values is required to have a cell in the cuboid. This requirement leads to the difficulty for MOLAP to be applied to large datasets. However, since the MVMVs for base cuboid are very sparse generally, P-trees can significantly help reduce the sizes of the MVMVs.

The MOLAP approach also provides users the convenience to materialize any cuboid either top-down from 1-D cuboids or bottom-up from the base cuboid.

The ROLAP approach usually need indexes as separate files. However, by stripping the data into vertical structures, the partition of data itself can work as an index. According to the descriptions in the previous chapter, range queries and aggregation queries can be calculated efficiently and directly on these vertical structures. ROLAP produces the minimum size of view, though it is harder to rotate the data.

CHAPTER 6. PERFORMANCE ANALYSIS ON MULTI-RELATIONAL DATASETS
We have performed both comprehensive experiments on synthetic databases and an experiment on a real database to show the scalability of our VMV approaches. We compare our approaches with the universal relation approach and the ILP approach. The experiments were performed on a PC with an Intel P4 2.4GHz processor and 2GB RAM, running Redhat Linux 9.

6.1.
Experiments on Synthetic Datasets

6.1.1.
Dataset Description

To evaluate the scalability of our VMV approaches, we have created some synthetic tables, Student, Enrollment, Offering, Course, and Room, in MySQL database. The SQL statements of creating tables are given below.

DROP TABLE IF EXISTS student;

CREATE TABLE student (

sid VARCHAR(20) NOT NULL PRIMARY KEY,

sname VARCHAR(30) NOT NULL DEFAULT '',

gender CHAR NOT NULL,

birthdate DATE NOT NULL,

gpa FLOAT(4,2) NOT NULL DEFAULT 0,

index(sid)

);

DROP TABLE IF EXISTS enrollment;

CREATE TABLE enrollment (

sid VARCHAR(20) NOT NULL,

onum VARCHAR(20) NOT NULL,

grade CHAR NOT NULL,

key(sid, onum)

);

DROP TABLE IF EXISTS offering;

CREATE TABLE offering (

onum VARCHAR(20) NOT NULL PRIMARY KEY,

cnum VARCHAR(20) NOT NULL,

rnum VARCHAR(20) NOT NULL,

pname VARCHAR(30) NOT NULL DEFAULT ''

);

DROP TABLE IF EXISTS course;

CREATE TABLE course (

cnum VARCHAR(20) NOT NULL PRIMARY KEY,

dname VARCHAR(30) NOT NULL DEFAULT '',

cname VARCHAR(30) NOT NULL DEFAULT ''

);

DROP TABLE IF EXISTS room;

CREATE TABLE room (

rnum VARCHAR(20) NOT NULL PRIMARY KEY,

capacity INT(4) NOT NULL DEFAULT 0

);

6.1.2.
Data Capture Time

Our vertical approaches have a prerequisite that the data have to be in our vertical repository. Suppose the original data are in text format. First we import the data into tables of a relational database. Every relational database provides tools for this functionality. Then we capture these data from relational database to our vertical DataMIME™
 [SPD+04] repository

We have developed a graphical user interface for data capture and the system can automatically extract meta-information from relational database. Therefore, this step can be done very conveniently.

Data capture time is the one time extra time for any vertical data mining approach. Figure 30 shows the typical data capture time for different sizes of datasets.

[image: image453.emf]0

2

4

6

8

10

12

14

16

10K 100K 1M 3M 5M 7M 9M

Dataset size (disk storage)

data capture time (sec.)

Figure 30. Data capture time for different sizes of datasets.

6.1.3.
Structure Creation Time

We have done experiments with different sizes of datasets. For each dataset, we run programs to generate MVMVs for base cuboid and RVMVs. We compare the total time with the query execution time for getting the universal table in MySQL database. Figure 31 gives the comparison results with respect to different cardinality of the view.

Generating VMVs is faster than generating the corresponding universal horizontal table using SQL, especially for larger datasets.

[image: image454.emf]0

5

10

15

20

25

30

35

40

45

100 200 400 800 1600 3200

Cardinality of view (k)

Time for view generation (sec.)

Universal Relation

(MySQL)

MVMVs

RVMVs

Figure 31. Comparison of time for view generation with respect to cardinality of view.

We have also compared the time with respect to different numbers of columns of the view. Figure 32 gives the results of different approaches for generating a view of 3200K records, with different number of columns.

We can see that when we only need to do mining on a small set of attributes (suppose this is done by feature selection), our vertical approaches are much more efficient than the universal approach.

The reason is that instead of trying to get the projection from the universal relation, only the VMVs of related columns need to be generated.

[image: image455.emf]0

5

10

15

20

25

30

35

40

0 4 8 12 16

Degree of view

Time for view generation (sec.)

Universal Relation

(MySQL)

MVMVs

RVMVs

Figure 32. Comparison of time for view generation with respect to degree of view.

6.1.4.
Data Mining Task

In the previous chapter, we have reviewed our earlier work on the performance of vertical data mining, including association rule mining, classification, and clustering. Since these core data mining areas are highly related, in this chapter, we only focus on the study of different classification methods upon multiple relations.

Our classification task for the enrollment dataset is to predict grade (class attribute) based on the following attributes, gender (student.gender), GPA (student.gpa), room capacity (room.capacity), and professor name (offering.pname).

There have been numerous comparisons on the different classification methods, and the matter remains a research topic. No single method has been found to be superior over all others for all datasets. Usually, for a small dataset, accuracy is more important than any other criterion. However, if we have a large training set, or if we need to classify in real time (e.g., in streaming environment), computational speed and scalability will be more important issues for the evaluation of classification methods.

6.1.5.
Data Mining Time

We take Progol as the representative for ILP approach, KNN as the one for horizontal data mining, and PINE as the one for vertical data mining. Experiments are conducted to compare the speed of Progol, KNN, and PINE. From Figure 33 one can see that PINE achieves good efficiency. It is much faster than traditional ILP approach and horizontal data mining approach, especially on large datasets.

[image: image456.emf]0

20

40

60

80

100

120

140

160

180

200

20K 40K 60K 80K 100K 500K 900K 1300K1700K

Dataset size (number of tuples)

Data mining time (sec.)

Progol

KNN

PINE

Figure 33. Comparison of data mining time.

6.1.7.
Total Time

For the ILP approach, the data must be extracted from the database into FOPL format. Even without considering the cost of this process, the ILP approach is, no doubt, the most time-consuming one among the three approaches, since structure creation time is much smaller than data mining time. Therefore, we only compare the total time of our vertical approach with the horizontal universal relation approach.

Total time of our vertical approach consists of three parts: time to capture original data into vertical repository (ODCT), time to create vertical structures (VSCT), and time to mine vertically (VDMT).

Total time of the horizontal universal relation approach consists of two parts: time to create the horizontal universal relation (HSCT), and time to mine horizontally (HDMT).

Since vertical data mining is faster than horizontal data mining (i.e., VDMT < HDMT), a hybrid approach that combines horizontal structure creation and vertical data mining might also be interesting to compare. Total time of this hybrid approach consists of three parts: time to create the horizontal universal relation (HSCT), time to capture the horizontal universal relation into vertical repository (UDCT), and time to mine vertically (VDMT).

Figure 34 gives the comparison of the above three approaches on different sizes of datasets. From the figure, one can see that the vertical approach that employs both vertical materialized views and vertical data mining performs faster than horizontal and hybrid approaches.

[image: image457.emf]0

20

40

60

80

100

120

140

160

180

dataset 1 dataset 2 dataset 3 dataset 4 dataset 5

Dataset

Total time (sec.)

vertical

horizontal

hybrid

Figure 34. Comparison of total time.

6.1.8.
Data Mining Accuracy

Experiments are also conducted on several small data sets to compare the accuracy of different approaches. From Figure 35, one can see that PINE achieves better accuracy than KNN and Progol is more accurate in most cases.

[image: image458.emf]74

76

78

80

82

84

86

88

90

Dataset

Accuracy (%)

Progol

KNN

PINE

Progol

80.4 81.2 83.4 88.1

KNN

81.5 80.3 79.6 83.7

PINE

82.1 80.9 80.5 85.2

dataset 1 dataset 2 dataset 3 dataset 4

Figure 35. Comparison of accuracy.

6.1.9.
Compression

We have also conducted some experiments to see how much compression our vertical structure can achieve. We define

compression ratio = compressed size / uncompressed size * 100%.

Figure 36 shows the results on five datasets. The first dataset is very small and leads to a larger compressed size. Therefore, the compression ratio depends on the characteristics of datasets.

Generally speaking, without considering the size of meta-file, we achieve satisfying compression.

[image: image459.emf]0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

350.00%

dataset

1

dataset

2

dataset

3

dataset

4

dataset

5

Dataset

Compression ratio

WinZip

vertical (without meta)

vertical (with meta)

Figure 36. Comparison of compression ratio.

6.2.
Experiments on Real Datasets

Experiments are also conducted on a real dataset which is the yeast gene data used in KDD CUP 2002 task 2. This dataset contains 6373 records, which does not seem to be big.

However, a table of protein-protein interactions that relate the products of pairs of genes leads to a two dimensional cuboid which includes 6373*6373 combinations. The subject of protein-protein interactions represents a vast ensemble of results from biological, biochemical and biophysical studies carried out to date.

Figure 37 gives the time comparison for generating the 2-D cuboid by vertical approach and horizontal database (MySQL) query. From the experiments one can see that our MVMV approach achieves better performance in terms of speed for structure creation.

[image: image460.emf]60

110

160

210

260

310

360

1 2 3 4

Degree of View

Time for view generation (sec.)

MVMVs

MySQL

Figure 37. Comparison of time for view generation for KDD CUP 2002 task 2 dataset.

6.3.
Advantages of Using Multi-Relational VMVs

We summarize the advantages of using vertical materialized views as follows.

1) Vertical materialized views can be generated directly by bit replication and Boolean operations of P-trees without the necessitating the creation of a massive universal relation.

2) Since each VMV is the unit of workload, the whole process will be linear to the number of VMVs if they are generated sequentially. They can also be generated in parallel to improve the performance.

3) Attribute values are encoded into P-trees in a highly compressed manner.

4) By fully vertical partitioning (to the bit position level), only VMVs need to be accessed, instead of many tables; therefore, I/O is minimized.

5) VMVs are ready for vertical data mining, which can be formulated as highly parallelizable, logical operations facilitating fast implementations, and with indices totally eliminated.

CHAPTER 7. VERTICAL STRATEGIES IN SPJ QUERY OPTIMIZATION

Query optimization is one of the most important traditional core areas in database research. In order to obtain the best performance advantages, exceptional select, project, and join (SPJ) strategies need be developed. In addition, it is no longer satisfactory to separate data mining operations from query processing. Data mining is at one end of the query spectrum and standard SPJ queries are at the other. In MRDM, evaluation of a single hypothesis might involve costly SPJ operations. We have done some preliminary work integrating query processing and MRDM [DPS+03].

7.1. One-Table Selections

There are two categories of queries in one-table selections: Equality Queries and Range Queries. Most techniques [WLO+85, OQ97, CI98, CI99] used to optimize them employ encoding schemes – equality encoding and range encoding.

We defined interval P-trees in [DKR+02], in which a tree node has a 1-bit iff all values in the corresponding quadrant are from the interval. So for any one-table selction, we have one corresponding interval P-tree. The ANDing result of all the corresponding interval P-trees represents all the rows satisfy the conjunction of all the restriction in the one-table where clause.

7.2. Select-Project-StarJoin (SPSJ) Queries

A Select-Project-StarJoin query is a SPJ query in which there is one multiway join along with selections and projections. Typically there is a central fact relation to which several dimension relations are joined. The dimension relations can be viewed as points on a star centered on the fact relation.

Consider, for example, the Student (S), Course (C), and Enrollment (E) database shown below (note a bit encoding is shown in italics for certain attributes), and the SPSJ query,

SELECT
S.s, S.name, C.name
FROM
S, C, E
WHERE
S.s=E.s AND C.c=E.c AND S.gen='M' AND

E.grade='A' AND C.term='F';

 _______________ __________________

S|s |name |gen| C|c |name|st|term|

 |0 000|CLAY |M 0| |0 000|BI |ND|F 0|

 |1 001|THAIS|M 0| |1 001|DB |ND|S 1|

 |2 010|GOOD |F 1| |2 010|DM |NJ|S 1|

 |3 011|BARD |F 1| |3 011|DS |ND|F 0|

 |4 100|PERRY|M 0| |4 100|SE |NJ|S 1|

 |5 101|JOAN |F 1| |5 101|AI |ND|F 0|

E|s |c |grade |

 |0 000|1 001|B 10|

 |0 000|0 000|A 11|

 |3 011|1 001|A 11|

 |3 011|3 011|D 00|

 |1 001|3 011|D 00|

 |1 001|0 000|B 10|

 |2 010|2 010|B 10|

 |2 010|3 011|A 11|

 |4 100|4 100|B 10|

 |5 101|5 101|B 10|

The Decomposition Storage Model (DSM) [CK85], Attribute Transposed File model (ATF) [Bat79] and the Band Sequential Model (BSQ) all refer to the vertical partitioning of the original relations into single attribute relations with a consistent surrogate ordering. We further vertical partition some attributes to the bit level - referred to in [WLO+85] as the Bit Transpose Model (BTF) and in [PDD+01, DKR+02] as bit-Sequential (bSQ) storage model. In this chapter, form this point forward, we will use BSQ instead of DSM or ATF, and we will use bSQ instead of BTF.

We organize those attributes expected to be involved in frequent join or select operations into the bSQ format and leave the others (typically large character string attributes) in the BSQ format. Most join and selection attributes are numeric (e.g., S.s, C.c, E.s, E.c), but even if they are categorical, they can first be coded numeric (e.g., S.gender, C.term, E.grade). In our model, the bSQ attributes are then compressed into P-trees. The P-tree dimension is a parameter which can be chosen to optimize compression. P-tree format provides considerable compression and acceleration of the logical operations used to answer the query or data mine.

However, since this example is artificially small, we show the bSQ attributes as uncompressed, Peano-ordered, 2-D matrixes rather than compressed P-trees so that the presentation will be easy to follow. The 2-D matrix forms will always be chosen to be 2n(2n for some n=1,2,3… This will accommodate later inserts (n is incremented by one each time the matrix saturates).

We note that the quadrant-wise compression provided by P-trees will fully compress most of the as yet unused 4n entries. In our simplified presentation as 2n(2n maticies, we simply leave the unused entries blank.

The bSQ attributes for our example are stored as shown below (note, e.g., bit-1 of S.s has been labeled Ss1 for simplicity of notation, etc.). The reader is reminded again that the matrix ordering is Peano or Z ordering, not raster ordering.

Ss1 Ss2 Ss3 Sgen Cc1 Cc2 Cc3

0011 0000 0101 0001 0011 0000 0101

00 11 01 11 00 11 01

Cterm Es1 Es2 Es3

0110 0000 0000 0011

10 0000 1111 1100

 11 00 01

Ec1 Ec2 Ec3 Egrade1 Egrade2

0000 0010 1010 1101 0100

0000 0111 1101 1011 1001

11 00 01 11 00

The BSQ attributes are stored as single attribute tables as follows.

 S.name C.name C.st

 |CLAY | |BI | |ND|

 |THAIS| |DB | |ND|

 |GOOD | |DM | |NJ|

 |BARD | |DS | |ND|

 |PERRY| |SE | |NJ|

 |JOAN | |AI | |ND|

For BSQ character string attributes, LZW [Wel84] (or some other run-length compression) would further reduce storage requirements.

The compression scheme should be chosen so that any range of offset entries can be uncompressed independently. Each of these BSQ files would then require only a few pages, allowing the entire file to be brought into memory whenever any portion of it is needed, eliminating the need for disk-based access paths.

A bit mask is formed for each selection as follows. The bit mask for the selection, S.gen='M', is just the complement of S.gen (since M has been coded as 0). We denote this fact by mS=Sgen'. Similarly, the selection mask for the Course relation is mC=Cterm' and for the Enrollment relations is mE=Eg1 AND Eg2.

mS mC mE
1110 1001 0100
00 01 1001
 00

The selection masks are applied and the resulting reduced relations are semijoined to the central fact relation (in this case, E). The query diagram for this approach is a wheel with E at the center and S, C at the rim.

Logically ANDing mE into the E.s and E.c attributes, reduces E.s and E.c as follows.

Es1 Es2 Es3 Ec1 Ec2 Ec3
∙0∙∙ ∙0∙∙ ∙0∙∙ ∙0∙∙ ∙0∙∙ ∙0∙∙
0∙∙0 1∙∙1 1∙∙0 0∙∙0 0∙∙1 1∙∙1

∙∙ ∙∙ ∙∙ ∙∙ ∙∙ ∙∙
We note that the reduced S.s and C.c attributes would need not be reduced since they are surrogate attributes.

Each E-tuple is compared with the participation masks, mS and mC to eliminate non-participating (E.s, E.c) pairs. The (E.s, E,c) pairs are (000, 000), (011, 001) and (010, 011) in binary or (0,0), (3,1) and (2,3) in decimal. The mask mS and mC reveal that s=0,1,4 and c=1,2,4 are the participating values. Therefore, (3,1) and (2,3) are non-participating pairs and can be eliminated, leaving but one participating (E.s, E.c) pair, namely (0, 0). Therefore, to answer the query only the S.name value at offset 0 and the E.name value at offset 0 are retrieved. The output is (0, CLAY, BI).

To review, once the basic P-trees for the join and selection attributes have been processed to remove all non-participants, only the actual participating BSQ values need to be retrieved.

In our implementation, the basic P-trees files for the join and selection attributes are striped across a cluster of computer systems (Beowulf cluster). The AND operations are extremely fast parallel operations which scale well to very large relations (e.g., ~1 billion tuples). In the performance section of this paper, it is shown that large AND operations take only a few milliseconds.

In the next sub-section, we apply the method to a more complex (bushier) query.

7.3. Select-Project-Join (SPJ) Queries

In this section we detail an example in which more than one join with more than one join attribute is involved. It is shown in [Sco92] that the full elimination of all non-participants can be completed with a “two pass” algorithm.

We organize our query trees using the “constellation” model in which one of the join or fact files is considered central and the others are points in a star around that central attribute. Each secondary point fact file can be the center of a “sub-star”. It is useful to view the query tree as a wheel with the central fact file at the center and its dimension files as spokes of that wheel (any one or more of which can be fact files with query sub-wheels of their own).

We apply the selection masks first at the rim of the query wheel. Then we perform semijoins from the rim toward the central fact file. Finally we perform semijoins back out again. The result is the full elimination of all non-participants [Sco92]. The following is an example of such a query with a central query wheel (around relation, O) and one sub-query-wheel (around relation, E).

SELECT
S.n, C.n, R.capacity

FROM
S, C, E, O, R

WHERE
S.s=E.s AND C.c=O.c AND O.o=E.o AND

O.r=R.r AND S.gen='M' AND C.cred=2 AND

E.grade='A' AND R.capacity=30;

In this query, O is taken as the central fact relation of the following database.

S E_________________
s	n	gen		s	o	grade
0 000	A	M 0		0 000	1 001	B 10
1 001	T	M 0		0 000	0 000	A 11
2 010	S	F 1		3 011	1 001	A 11
3 011	B	F 1		3 011	3 011	D 00
4 100	C	M 0		1 001	3 011	D 00
5 101	J	F 1		1 001	0 000	B 10
 |2 010|2 010|B 10|
 |2 010|3 011|A 11|

 |4 100|4 100|B 10|

 |5 101|5 101|B 10|

C
|c |n|cred|

0 00	B	1 01
1 01	D	3 11
2 10	M	3 11

|3 11|S|2 10|

 O_______________

 |o |c |r |
 |0 000|0 00|0 01|
 |1 001|0 00|1 01|
R_____________ |2 010|1 01|0 00|
r	capacity		3 011	1 01	1 01
0 00	30 11		4 100	2 10	0 00
1 01	20 10		5 101	2 10	2 10
2 10	30 11		6 110	2 10	3 11
3 11	10 01		7 111	3 11	2 10

Following the approach and notation of the first example, the data would be stored as follows.

 Sn

 A

Ss1 Ss2 Ss3 Sgen T

0011 0000 0101 0001 S

00 11 01 11 B

 C

 J

Es1 Es2 Es3 Eo1 Eo2 Eo3

0000 0000 0011 0000 0010 1010

0000 1111 1100 0000 0111 1101

11 00 01 11 00 01

 Cn

Egrade1 Egrade2 Cc1 Cc2 Ccred1 Ccred2 B

1101 0100 00 01 01 11 D

1011 1001 11 01 11 10 M

11 00 S

Oo1 Oo2 Oo3 Oc1 Oc2 Or1 Or2

0011 0000 0101 0011 0000 0001 1100

0011 1111 0101 0011 1101 0011 0110

Rr1 Rr2 Rc1 Rc2
00 01 11 10

11 01 10 11

The selection masks are as follows.

mE mR mC mS

0100 00 00 1110

1001 10 01 00

00

Applying mE, mR and mC to the outer relations,

Es1 Es2 Es3 Eo1 Eo2 Eo3

0000 0000 0011 0000 0010 1010

0000 1111 1100 0000 0111 1101

11 00 01 11 00 01

Rr1 Rr2 Cc1 Cc2

00 01 00 01

11 01 11 01

results in,

Es1 Es2 Es3 Eo1 Eo2 Eo3

∙0∙∙ ∙0∙∙ ∙0∙∙ ∙0∙∙ ∙0∙∙ ∙0∙∙
0∙∙0 1∙∙1 1∙∙0 0∙∙0 0∙∙1 1∙∙1

∙∙ ∙∙ ∙∙ ∙∙ ∙∙ ∙∙
Rr1 Rr2 Cc1 Cc2

∙∙ ∙∙ ∙∙ ∙∙

1∙ 0∙ ∙1 ∙1

The first semijoin phase (toward the center),

S(E(on s),

E(O(on o),

R(O(on r),

C(O(on c),

reduces

Es1 Es2 Es3 Eo1 Eo2 Eo3

∙0∙∙ ∙0∙∙ ∙0∙∙ ∙0∙∙ ∙0∙∙ ∙0∙∙
0∙∙0 1∙∙1 1∙∙0 0∙∙0 0∙∙1 1∙∙1

∙∙ ∙∙ ∙∙ ∙∙ ∙∙ ∙∙

Oo1 Oo2 Oo3 Oc1 Oc2 Or1 Or2

0011 0000 0101 0011 0000 0001 1100

0011 1111 0101 0011 1101 0011 0110
to

Es1 Es2 Es3 Eo1 Eo2 Eo3

∙0∙∙ ∙0∙∙ ∙0∙∙ ∙0∙∙ ∙0∙∙ ∙0∙∙
0∙∙0 1∙∙1 1∙∙0 0∙∙0 0∙∙1 1∙∙1

∙∙ ∙∙ ∙∙ ∙∙ ∙∙ ∙∙
Oo1 Oo2 Oo3 Oc1 Oc2 Or1 Or2

0∙∙∙ 0∙∙∙ 0∙∙∙ ∙∙∙∙ ∙∙∙∙ ∙∙∙1 ∙∙∙0

∙∙∙∙ ∙∙∙∙ ∙∙∙∙ ∙∙∙1 ∙∙∙1 ∙∙∙1 ∙∙∙0

Since there are no common participating tuples, there is no join output (semijoin back out is unnecessary).

7.4.
DISTINCT Keyword, GROUP BY Clause, ORDER BY Clause, HAVING Clause and Aggregate Operations

Duplicate elimination after a projection (SQL DISTINCT keyword) is one of the most expensive operations in query optimisation. In general, it is as expensive as the join operation. However, in our approach, it can automatically be done while forming the output tuples (since that is done in an order). While forming all output records for a particular value of the ORDER BY attribute, duplicates can be easily eliminated without the need for an expensive algorithm.

The ORDER BY and GROUP BY clauses are very commonly used in queries and can require a sorting of the output relation. However, in our approach, if the central relation is chosen to be the one with the sort attribute and the surrogation is according to the attribute order (typically the case – always the case for numeric attributes), then the final output records can be put together and aggregated in the requested order without a separate sort step at no additional cost.

Aggregation operators such as COUNT, SUM, AVG, MAX, and MIN can be implemented without additional cost during the output formation step and any HAVING decision can be made as output records are being composed, as well.

If the Count aggregate is requested by itself, we note that P-trees automatically provide the full counts for any predicate with just one multiway AND operation.

The following example illustrates these points.

SELECT
DISTINCT C.c, R.capacity

FROM
S, C, E, O, R

WHERE
S.s=E.s AND C.c=O.c AND O.o=E.o AND

O.r=R.r AND C.cred>1 AND (E.grade='B' OR

E.grade='A') AND R.capacity>10

ORDER BY C.c;

 E_________________

 |s |o |grade|

 |0 000|1 001|B 10|

 |0 000|0 000|A 11|

S C |3 011|1 001|A 11|

|s |n|gen| |c |n|cred| |3 011|3 011|D 00|

|0 000|A|M 0| |0 00|B|1 01| |1 001|3 011|D 00|

|1 001|T|M 0| |1 01|D|3 11| |1 001|0 000|B 10|

|2 010|S|F 1| |2 10|M|3 11| |2 010|2 010|B 10|

|3 011|B|F 1| |3 11|S|2 10| |2 010|3 011|A 11|

|4 100|C|M 0| | | |4 100|4 100|B 10|

|5 101|J|F 1| | | |5 101|5 101|B 10|

O_______________ R_____________

|o |c |r | |r |capacity|

|0 000|0 00|0 01| |0 00|30 11|

|1 001|0 00|1 01| |1 01|20 10|

|2 010|1 01|0 00| |2 10|30 11|

|3 011|1 01|1 01| |3 11|10 01|

|4 100|2 10|0 00|

|5 101|2 10|2 10|

|6 110|2 10|3 11|

|7 111|3 11|2 10|

 Sn
 A

 T

 S

Ss1 Ss2 Ss3 Sgen B

0011 0000 0101 0001 C

00 11 01 11 J

Es1 Es2 Es3 Eo1 Eo2 Eo3

0000 0000 0011 0000 0010 1010

0000 1111 1100 0000 0111 1101

11 00 01 11 00 01

Egrade1 Egrade2 Cn

1101 0100 Cc1 Cc2 Ccred1 Ccred2 B

1011 1001 00 01 01 11 D

 11 01 11 10 M

 S

Oo1 Oo2 Oo3 Oc1 Oc2 Or1 Or2

0011 0000 0101 0011 0000 0001 1100

0011 1111 0101 0011 1101 0011 0110

Rr1 Rr2 Rcap1 Rcap2

00 01 11 10

11 01 10 11

Apply selection masks:

mE =Egrade1 mR =Rcap1 mC =Ccred1

1101 11 01

1011 10 11

11

results in,

Es1 Es2 Es3 Eo1 Eo2 Eo3

00∙0 00∙0 00∙1 00∙0 00∙0 10∙0

0∙00 1∙11 1∙00 0∙00 0∙11 1∙01

11 00 01 11 00 01

Rr1 Rr2 Cc1 Cc2

00 01 ∙0 ∙1

1∙ 0∙ 11 01

The semijoin (toward center),

E(O(on o=0,1,2,3,4,5),

R(O(on r=0,1,2),

C(O(on c=1,2,3),

reduces

Oo1 Oo2 Oo3 Oc1 Oc2 Or1 Or2

0011 0000 0101 0011 0000 0001 1100

0011 1111 0101 0011 1101 0011 0110

to

Oo1 Oo2 Oo3 Oc1 Oc2 Or1 Or2

0011 0000 0101 ∙∙11 ∙∙00 0001 1100

00∙∙ 11∙∙ 01∙∙ 0011 1101 00∙1 01∙0

Thus, the participants are c=1,2; r=0,1,2; o=2,3,4,5.

Semijoining back again produces the following.

Cc1 Cc2 Rr1 Rr2

∙0 ∙1 00 01

1∙ 0∙ 1∙ 0∙

Es1 Es2 Es3 Eo1 Eo2 Eo3

∙∙∙∙ ∙∙∙∙ ∙∙∙∙ ∙∙∙∙ ∙∙∙∙ ∙∙∙∙
∙∙00 ∙∙11 ∙∙00 ∙∙00 ∙∙11 ∙∙01

11 00 01 11 00 01

And thus, the s participants are

s = 2, 4, 5.

Ss1 Ss2 Ss3

∙∙11 ∙∙00 ∙∙01

0∙ 1∙ 0∙
The output tuples are determined from the participating O.c P-trees as follows.

RootCountPO.c(2) = RootCountOc1^Oc2’=2,

since

Oc1 ^ Oc2’

∙∙11 ∙∙11 = ∙∙11

00∙∙ 00∙∙ 00∙∙

Since the 1-bits are in positions 4 and 5, the two O-tuples have O.o surrogate values 4 and 5. The r-values at positions 4 and 5 of O.r are 0 and 2. Thus, we retrieve the R.capacity values at offsets 0 and 2.

However, both of these R.capacity values are 30. Thus, this duplication is discovered without sorting or additional processing. The only output is (2,30).

Similarly, RootCountPO.c(1) = RootCountOc1’^Oc2=2,

Oc1’ ^ Oc2

∙∙00 ∙∙00 = ∙∙00

11∙∙ 11∙∙ 11∙∙

Since the 1-bits are in positions 2 and 3 this time, the two O-tuples have O.o surrogate values 2 and 3. The r-values at positions 2 and 3 of O.r are 0 and 1. We retrieve the R.capacity values 30 and 20 at R.capacity offsets 0 and 1. The output is
(1, 30) and (1, 20)

The final output is:

 c capacity
 | 2 | 30 |

 | 1 | 30 |

 | 1 | 20 |

Finally we note, if the ORDER BY clause is over an attribute which is not in the relation O (e.g., over student number, s) then we center the query tree (or wheel) on a fact file that contains the ORDER BY attribute (e.g., on E in this case).

If the ORDER BY attribute is not in any fact file (in a dimension file only) then the final query tree can be re-arranged to center on the dimension file containing that attribute.

Since output ordering and duplicate elimination are traditionally very expensive sub-operations of SPJ query processing, the fact that our model and the P-tree data structure provide a fast and efficient way to accomplish these operations is a very favorable aspect of the approach.

CHAPTER 8. CONCLUSION

Mining data that are richer in structure than a single table is rightfully attracting an ever increasing amount of research effort. Multi-relational data mining (MRDM) has gained more and more interest recently and will continue to be very important in the future. MRDM approaches have been successfully applied to a number of problems in a variety of areas, e.g., in the area of bioinformatics.

In this Presentation, we integrate MRDM approaches within actual database management systems (DBMSs). We use the breakthrough vertical database and data mining technology P-tree to solve the non-scalability problem which exists for MRDM in ILP and standard horizontal databases. We develop methods to generate vertical database repository and data mining ready vertical materialized views to facilitate fast vertical mining. We store the vertical materialized views into P-tree format, which is the universal format of our vertical repository. P-trees are lossless and compressed representation of the original data that record count information, in order to facilitate efficient data mining.

Experiments have been conducted to compare our approach with ILP and the horizontal approach. Results show that our vertical mining is dramatically more efficient and scalable than ILP, regardless of the one-time structure creation time. Comparing to the horizontal approach, both one-time structure creation speed and data mining speed are improved, more significantly for larger datasets.

The success lies in several reasons. First, we generate vertical materialized views directly by efficient replication or Boolean operations. Secondly, by fully vertical partitioning (to the bit position level), we only need to read the P-trees that are needed; therefore, the number of I/Os is minimized. Thirdly, the corresponding vertical set of the data is smaller than the original data set; thus, it is more efficient to access the vertical data than the horizontal data of the same amount of information. Finally, data mining can be formulated as highly parallelizable, logical operations facilitating fast implementations, and index is totally eliminated.

REFERENCES

[ARS98]
K. Alsabti, S. Ranka, and V. Singh. CLOUDS: A decision tree classifier for large datasets. In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp.2-8, New York, NY, 1998.

[AS94]
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings of the International Conference on Very Large Data Bases (VLDB), pp.487-499, Santiago, Chile, 1994.

[Bat79]
D. S. Batory. On searching transposed files. ACM Transactions on Database Systems (TODS), 4(4):531-544, 1979.

[BKS99]
Ankerst. M. Breunig, M. Kreigel H.-P., and Sander J.: OPTICS:Ordering points to identify clustering structure. In Proceedings of the ACM SIGMODConference, pp.49-60, Philadelphia, PA,1999.
[BS03]
H. Blockeel and M. Sebag. Scalability and efficiency in multi-relational data mining. ACM SIGKDD Explorations, 5(1):17-30, 2003.

[Cat91]
J. Catlett. Megainduction: a test flight. In Proceedings of the International Workshop on Machine Learning, pp.596-599, San Francisco, CA, 1991.

[CI98]
C.Y. Chan and Y. Ioannidis. Bitmap index design and evaluation. In Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp.355-366, Seattle, WA, 1998.

[CI99]
C.Y. Chan and Y.E. Ioannidis. An efficient bitmap encoding scheme for selection queries. In Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp.216-226, Philadephia, PA, 1999.

[CK85]
G. Copeland and S. Khoshafian. A decomposition storage model. In Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp.268-279, Austin, TX, 1985.

[DDP02a]
Q. Ding, Q. Ding, and W. Perrizo. Decision tree classification of spatial data streams using Peano Count Trees. In Proceedings of the ACM Symposium on Applied Computing (SAC), pp.413-417, Madrid, Spain, 2002.

[DDP02b]
Q. Ding, Q. Ding, and W. Perrizo. Association rule mining on remotely sensed images using P-trees. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Springer-Verlag, Lecture Notes in Artificial Intelligence 2336, pp.66-79, Taipei, Taiwan, 2002.

[DKR+02]
Q. Ding, M. Khan, A. Roy, and W. Perrizo. The P-tree algebra. In Proceedings of the ACM Symposium on Applied Computing (SAC), pp.426-431, Madrid, Spain, 2002.

[DL01]
S. Dzeroski and N. Lavrac (editors). Relational Data Mining. Springer, Berlin, Germany, 2001.

[Dom03]
P. Domingos. Prospects and challenges for multi-relational data mining. ACM SIGKDD Explorations, 5(1):80-83, 2003.

[DPS+03]
Q. Ding, W. Perrizo, V. Shi, and K. Scott. Integrating query processing and data mining in relational DBMSs, In Proceedings of the ISCA International Conference on Computers And Their Applications (CATA), pp.170-173, Honolulu, HI, 2003.

[GGR+99]
J. Gehrke, V. Ganti, R. Ramakrishnan, and W-Y.Loh, BOAT-optimistic decision tree construction. In Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp.169-180, Philadelphia, PA, 1999.

[GM99]
A. Gupta and I.S. Mumick (editors). Materialized Views: Techniques, Implementations, and Applications. Cambridge, MA: The MIT Press, 1999.

[GUW02]
H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete Book. Prentice Hall, 2002.

[HK01]
J. Han and M. Kamber. Data Mining: Concepts and Techniques. San Francisco, CA: Morgan Kaufmann, 2001.

[HPY00]
J. Han, J. Pei and Y. Yin. Mining frequent patterns without candidate generation. In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Dallas, TX, 2000.

[HSD01]
G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams, In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp.97-106, San Francisco, CA, 2001.

[Inm96]
W.H. Inmon. Building the Data Warehouse. New York, NY: John Wiley & Sons, 1996.

[KDP02]
M. Khan, Q. Ding, W. Perrizo. K-nearest neighbor classification on spatial data stream using P-trees. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Springer-Verlag, Lecture Notes in Artificial Intelligence 2336, pp.517-528, Taipei, Taiwan, 2002.

[MAR96]
M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data mining. In Proceedings of the International Conference on Extending Database Technology (EDBT), pp.18-32, Avignon, France, 1996.

[MCR93]
R. Musick, J. Calett, and S. Russell, Decision theoretic subsampling for induction on large databases. In Proceedings of the International Conference on Machine Learning, pp.212-219, San Francisco, CA, 1993.

[MF90]
S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of the Conference on Algorithmic Learning Theory, pp.368-381, Tokyo, Japan, 1990.

[MMT+03]
R. J. Mooney, P. Melville, L. P. Rupert Tang, J. Shavlik, I. de Castro Dutra, D. Page, and V. Santos Costa. Relational data mining with inductive logic programming for link discovery. In H. Kargupta & A. Joshi, editors, Data Mining: Next Generation Challenges and Future Directions. AAAI/MIT Press, 2003.

[Mug95]
S. Muggleton. Inverse entailment and progol. New Generation Computing, Special issue on Inductive Logic Programming, 13(3&4):245-286, 1995.

[OQ97]
P. O’Neill and D. Quass. Improved query performance with variant indexes. In Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp.38-49, Tucson, AZ, 1997.

[PDD+01]
W. Perrizo, Qin Ding, Qiang Ding, A. Roy, Deriving high confidence rules from spatial data using Peano Count Trees. In Proceedings of the International Conference on Web-Age Information Management (WAIM), pp.91-102, Xi’an, China, 2001.

[PDD+03]
William Perrizo, Qin Ding, Anne Denton, Kirk Scott, Qiang Ding, and Maleq Khan. PINE – Podium Incremental Neighbor Evaluator for classifying spatial data. In Proceedings of the ACM Symposium on Applied Computing (SAC), pp. 503-508, Melbourne, FL, 2003.

[PGT+91]
W. Perrizo, J. Gustafson, D. Thureen, D. Wenberg. Domain vector accelerator for relational operations. In Proceedings of the International Conference on Data Engineering (ICDE), pp.491-498, Kobe, Japan, 1991.

[POJ99]
F. Provost, T. Oates and D. Jensen, Efficient progressive sampling. In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA, 1999.

[QC93]
J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In Proceedings of the European Conference on Machine Learning, pp.3-20 Vienna, Austria, 1993.

[Ren05]
Dongmei Ren, “Outlier Analysis using P-trees”, Dissertation, North Dakota State University, 2005.
[ROO01]
D. Rinfret, P. O’Neil, and E. O’Neil. Bit-sliced index arithmetic. In Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp.47-57, Santa Barbara, CA, 2001.

[RRP04]
Dongmei Ren, Imad Rahal, William Perrizo, “A Vertical Outlier Detection Method with Local Pruning,” Accepted for presentation and publication in the proceedings of the 13th ACM Conference on Information and Knowledge Management (CIKM), Washington D.C., U.S.A. Nov. 2004.

[RRP+04]
Imad Rahal, Dongmei Ren, and William Perrizo, “A Scalable Vertical Model for Mining Association Rules,” Journal of Information & Knowledge Management (JIKM), December 2004’s issue.
[RRP+05] Imad Rahal, Dongmei Ren, and William Perrizo, “Exploiting Edges Semantics in Citation Graph Data using an Efficient Vertical Association Rule Mining Model,” Accepted by Knowledge and Information Systems (KAIS).
[RWP04]
Dongmei Ren, Baoying Wang, William Perrizo, “RDF: A Density-based Outlier Detection Method using a Vertical Data Representation Model,” Accepted for presentation and publication in the proceeding of the 4th IEEE International Conference on Data Mining (ICDM), Brighton, UK, Nov. 2004.
[SAM96]
J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data mining. In Proceedings of the International Conference on Very Large Data Bases (VLDB), pp.544-555, Bombay, India, 1996.

[Sco92]
K. A. Scott. Multi-way equijoin query acceleration using hit-lists. Ph.D. Presentation, North Dakota State University, Fargo, ND, 1992.

[SPD+04]
M. Serazi, A. Perera, Q. Ding, V. Malakhov, I. Rahal, F. Pan, D. Ren, W. Wu, and W. Perrizo. “DataMIMETM”. In Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp.923-924, Paris, France, 2004.

[SR02]
Distinguished database profiles. ACM SIGMOD Record, 31(2):50-62, 2002.

[WB98]
M-C. Wu and A. Buchmann. Encoded bitmap indexing for data warehouses. In Proceedings of the International Conference on Data Engineering (ICDE), pp. 220-230, Orlando, FL, 1998.

[Wel84]
T. A. Welch. A technique for high performance data compression. IEEE Computer, 17(6):8-19, 1984.

[WLO+85]
H. K. T. Wong, H.-F. Liu, F. Olken, D. Rotem, and L. Wong. Bit transposed files. In Proceedings of the International Conference on Very Large Data Bases (VLDB), pp.448-457, Stockholm, Sweden, 1985.

[Wu98]
M-C. Wu. Query optimization for selections using bitmaps. Technique Report, DVS98-2, DVS1, Computer Science Department, Technische Universitat Darmstadt, 1998.

[YHY+04]
X. Yin, J. Han, J. Yang, and P. S. Yu. CrossMine: Efficient classification across multiple database relations. In Proceedings of the International Conference on Data Engineering (ICDE), pp. 399-410, Boston, MA, 2004.

pk

pk

pk

fk

fk

fk

…

Dn

D2

D1

C

pk

pk

fk: foreign key

pk: primary key

pk

pk

fk

fk

D2

D1

C

uncle(X,Y) :- brother(X,Z),parent(Z,Y).�uncle(X,Y) :- husband(X,Z),sister(Z,W),� parent(W,Y).

uncle(tom,frank), uncle(bob,john),�¬uncle(tom,cindy), ¬uncle(bob,tom)�parent(bob,frank), parent(cindy,frank),�parent(alice,john), parent(tom,john),�brother(tom,cindy), sister(cindy,tom),�husband(tom,alice), husband(bob,cindy).

X

Y

B

Y

X

B

A

A

D1

D2

C

pk

fk

fk

fk

…

Hm

H2

H1

pk

pk

pk

fk

fk

fk

…

Dn

D2

D1

C

R10

R20

R30

R40

R11 R10

R21 R20

(d)

(c)

(b)

(a)

0

1

0

1

1

1

1

1

0

0

1

1

0

0

1

0

1

0

0

1

0

1

0

1

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

1

1

1

1

1

1

1

1 1

0 0

1 0

0 0

0 0

0 0

0 0

1 1

1 0

0 0

1 1

1 0

1 0

1 1

1 1

1 1

0 0

1 1

1 1

1 1

0 0

1 0

0 0

1 0

R7 R6 R5 R4 R3 R2 R1 R0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0

Input: {BM1, BM2, …, BM|D|}, PD

Output: PC

PC=00…0

For i=1 to |D|

 if (PD[i]) then PC = PC | BMi

πA(R)

1

2

3

4

5

6

7

8

9

10

11

12

3

2

1

2

8

2

2

0

7

5

6

4

1

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

70

80

90

60

1

0

1

1

0

0

0

0

90

70

80

90

60

70

Attribute

900

80

0

0

1

0

0

0

e

a

c

0

0

0

e

100

0

0

1

0

1

1

011

c

d

d

(f)

(e)

(d)

(c)

(b)

1 0

1

0

0

0

0

(a)

0 1

0

0

1 0

1

0

0

0

0

0 1

0

0

1

0

0

1 0

1

0

0 1

0

0

0

0

0

0 1

0

0

1 0

1

0

0

0

0

4-D(base) cuboid

3-D cuboids

2-D cuboids

1-D cuboids

0-D(apex) cuboid

time, item, location, supplier

item,location,supplier

time,location,supplier

time,item,supplier

time,item,location

location,supplier

item,supplier

item,location

time,supplier

time,location

time,item

supplier

location

item

time

all

R3 rrn3 a31 a32

 0 0 1

 1 1 1

 2 0 1

R2 rrn2 a21 a22 a23(a231 a232)

 0 1 1 2 1 0

 1 0 1 2 1 0

 2 0 0 0 0 0

 3 0 0 3 1 1

R1 rrn1 a11 a12

 0 1 0

 1 0 1

a11

1

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

a12

0

0

0

0

0

0

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

a21

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

a22

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

a231

1

0

0

0

0

0

1

1

0

0

0

1

0

0

0

1

1

0

0

0

0

0

0

0

a232

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

a31

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

a32

1

0

0

0

1

0

1

1

0

0

0

1

0

1

0

1

1

0

0

0

1

0

0

0

a32

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

a31

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

a232

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

1

a231

1

1

1

1

0

0

1

1

1

1

1

1

0

0

1

1

1

1

1

1

0

0

1

1

a22

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

a21

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

a12

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

a11

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

F rrn m1 m2 m21 m22)

000 0 1 3 1 1

001 1

010 2

011 3

020 4 0 0 0 0

021 5

030 6 0 3 1 1

031 7 1 2 0 1

100 8

101 9

110 10

111 11 0 3 1 1

120 12

121 13 0 1 0 1

130 14

131 15 1 0 0 0

200 16 0 0 0 0

201 17

210 18

211 19

220 20 1 3 1 1

221 21

230 22

231 23

JM

1

0

0

0

1

0

1

1

0

0

0

1

0

1

0

1

1

0

0

0

1

0

0

0

Join Mask

0

1

2

rrn3

3

2

1

0

0 1

rrn1

rrn2

120

021

110

010

R

Tid a1 a2 a3 a4 a5

t1 1 0 1 0 0

t2 0 1 1 0 1

t3 0 1 0 0 1

t4 1 0 1 1 0

Graph G (as Reflexive 2-D relationship)

 t1 t2 t3 t4

 t1 0 1 1 0

 t2 1 0 0 0

 t3 1 1 1 0

 t4 0 0 0 0

Graph G (as

Edge Table)

G(Tid1 Tid2)

 t1 t2

 t1 t3

 t2 t1

 t3 t1

 t3 t2

 t3 t3

a5’

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

a4’

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

a3’

1

1

0

1

1

1

0

1

1

1

0

1

1

1

0

1

a2’

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

a1’

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

a5

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

a4

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

a3

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

a2

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

a1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

Tid1,Tid2

t1 t1

t1 t2

t1 t3

t1 t4

t2 t1

t2 t2

t2 t3

t2 t4

t3 t1

t3 t2

t3 t3

t3 t4

t4 t1

t4 t2

t4 t3

t4 t4

a5’

0

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

a4’

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

a3’

0

1

0

0

1

0

0

0

1

1

0

0

0

0

0

0

a2’

0

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

a1’

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

a5

0

0

0

0

1

0

0

0

1

1

1

0

0

0

0

0

a4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

a3

0

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

a2

0

0

0

0

1

0

0

0

1

1

1

0

0

0

0

0

a1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

JM

0

1

1

0

1

0

0

0

1

1

1

0

0

0

0

0

Tid1,Tid2

t1 t1

t1 t2

t1 t3

t1 t4

t2 t1

t2 t2

t2 t3

t2 t4

t3 t1

t3 t2

t3 t3

t3 t4

t4 t1

t4 t2

t4 t3

t4 t4

2r

T

X

T

2r

X

2r

T

X

Y (6,4)

Z

2r

T

a

b

010

0

0

1

0

1

0

001

0

0

b

c

a

d

000

0

a

Lookup Table

Attribute

1 0

1

0

0

0

0

R(A1 A2 A3 A4)

010 111 110 001

011 111 110 000

010 110 101 001

010 111 101 111

101 010 001 100

010 010 001 101

111 000 001 100

111 000 001 100

010 111 110 001

011 111 110 000

010 110 101 001

010 111 101 111

101 010 001 100

010 010 001 101

111 000 001 100

111 000 001 100

R[A1] R[A2] R[A3] R[A4]

^

^

^

^

^

^

^

^

^

 0

 0 0

 0 1 0 0

10 01

 0

 0 0

1 0

 01

 0

 0 1

1 0

 01

 0

 0 1

0 1

 0

 0 0

 1 0

 0

 1 0

 0

 0 0

1 0

 01

 0

 1 0

 1 0

 0

 1 0

 0

 0 0

0 0 0 1 01 10

 0

 1 0

 0 1

 01

 0

 0 0

 0 1

 10

 P11 P12 P13 P21 P22 P23 P31 P32 P33 P41 P42 P43

 R11 R12 R13 R21 R22 R23 R31 R32 R33 R41 R42 R43

0 1 0 1 1 1 1 1 0 0 0 1

0 1 1 1 1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0 1 0 0 1

0 1 0 1 1 1 1 0 1 1 1 1

1 0 1 0 1 0 0 0 1 1 0 0

0 1 0 0 1 0 0 0 1 1 0 1

1 1 1 0 0 0 0 0 1 1 0 0

1 1 1 0 0 0 0 0 1 1 0 0

(c)

(b)

(a)

 0 level=3

 1 0 0 0 level=2

 0 0 1 0 1 1 0 1 level=1

 1 1 1 0 0 0 1 0 1 1 0 1 level=0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1111110011111000111111001111111011110000111100001111000001110000

Input:	n, |A|

P1, P2, •••, Pn

Output:	MEDIAN(A)

{

MEDIAN=0

SoFar=0

P=PURE1

for i=n to 1 step -1

 if (SoFar+COUNT(P&Pi’)<=|A|/2)

 {

 SoFar=SoFar+COUNT(P&Pi’)

 P=P&Pi

 MEDIAN = MEDIAN + 2i-1

 }

 else

 P=P&Pi’

return MEDIAN

}

Input:	n

		P1, P2, •••, Pn

Output:	MIN(A)

{

MIN=0

P=PURE1

for i=n to 1 step -1

 if (COUNT(P&Pi’)>0)

 P=P&Pi’

 else

 MIN = MIN + 2i-1

return MIN

}

Input:	n

		P1, P2, •••, Pn

Output:	MAX(A)

{

MAX=0

P=PURE1

for i=n to 1 step -1

 if (COUNT(P&Pi)>0)

 {

 P=P&Pi

 MAX = MAX + 2i-1

 }

return MAX

}

Input:	n

		P1, P2, •••, Pn

Output:	SUM(A)

{

SUM=0

for i=1 to n

 SUM = SUM +(2i-1)*COUNT(Pi)

return SUM

}

{

P=PURE0

Let v=vnvn-1•••v1

k=1

while (vk!=0 && k<=n) k=k+1

if (k<=n) P=Pk

for i=k+1 to n

 if (vi=0) P=P&Pi

 else P=P|Pi

return P

}

Input:	n

		v

		P1, P2,•••, Pn

Output:	P(A>v)

{

P=PURE0

Let v=vnvn-1•••v1

for i=1 to n

 if (vi=0) P=P&Pi

 else P=P|Pi

return P

}

Input:	n

		v

		P1, P2,•••, Pn

Output:	P(A=v)

{

Let v=vnvn-1•••v1

P=PURE1

for i=1 to n

 if (vi=0) P=P&Pi’

 else P=P&Pi

}

 (a) (b)

X (2,1)

Figure 2.1: two-dimensional space showing

various distance between points X and Y.

	Manhattan, d1(X,Y) = XZ+ ZY = 4+3 = 7

 	Euclidian, d2(X,Y) = XY = 5

	Max, d((X,Y) = Max(XZ, ZY) = XZ = 4

B

X

X

A

D

R2

R1

d(A,X)

d(B,X)

(> 45(

Euclidian

B

A

Max

Manhattan

(< 45(

B

A

Euclidian

Max

Manhattan

B

A

B

A

B

A

B

A

R(A1 A2 A3 A4)

2 7 6 1

6 7 6 0

2 7 5 1

2 7 5 7

5 2 1 4

2 2 1 5

7 0 1 4

7 0 1 4

a) horizontally structured

records

b) Scanned vertically

010 111 110 001

011 111 110 000

010 110 101 001

010 111 101 111

101 010 001 100

010 010 001 101

111 000 001 100

111 000 001 100

=

c) Same table, values in binary

010 111 110 001

011 111 110 000

010 110 101 001

010 111 101 111

101 010 001 100

010 010 001 101

111 000 001 100

111 000 001 100

R[A1] R[A2] R[A3] R[A4]

 R11 R12 R13 R21 R22 R23 R31 R32 R33 R41 R42 R43

0 1 0 1 1 1 1 1 0 0 0 1

0 1 1 1 1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0 1 0 0 1

0 1 0 1 1 1 1 0 1 1 1 1

1 0 1 0 1 0 0 0 1 1 0 0

0 1 0 0 1 0 0 0 1 1 0 1

1 1 1 0 0 0 0 0 1 1 0 0

1 1 1 0 0 0 0 0 1 1 0 0

0

0

0

0

0

^

1

1

^

^

^

^

^

^

^

^

 0

 0 0

 0 1 0 0

10 01

 0

 0 0

0 1

 01

 0

 0 1

0 1

 01

 0

 0 1

0 1

 0

 0 0

 1 0

 0

 1 0

 0

 0 0

1 0

 01

 0

 1 0

 1 0

 0

 1 0

 0

 0 0

0 0 0 1 01 10

 0

 1 0

 0 1

 01

 0

 0 0

 0 1

 10

 P11 P12 P13 P21 P22 P23 P31 P32 P33 P41 P42 P43

P11

P11

0 (level-3

0 (level-2

0

0

1 (level-1

P11

0

0

0

0

0

P11

P11

0

0

P11

0

P11

P11

0

0

0

0

0

P11

1

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1

0

0

0

1

1

0

0

1

0

0

0

0

1

1

1

1

1

1

1

0

0

1

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0

0

1

0

1

1

0

1

0

0

0

1

1

1

1

0

1

1

0

1

0

0

0

0

0

1

0

X

Y

Z

Intensity

0

0

0

c)

b)

a)

3

2

3

2 . 2 . 3

0

0

1

2

1

0

0

0

1

1

1

0

1

0

0

0 1

1

1

0

1

0

0

0

1

1

1

0 1

0

0

0

1

0

0

0

0

1

1=001

(111, 001)

10.10.11

(7, 1)

7=111

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

15 (1111)

1

0

0

15 (1111)

0

1

0

15 (1111)

1

1

0

15 (1111)

0

0

1

15 (1111)

1

0

1

15 (1111)

0

1

1

15 (1111)

1

1

1

15 (1111)

2

0

0

15 (1111)

3

0

0

4 (0100)

2

1

0

1 (0001)

3

1

0

12 (1100)

2

0

1

12 (1100)

3

0

1

2 (0010)

2

1

1

12 (1100)

3

1

1

12 (1100)

0

2

0

15 (1111)

1

2

0

15 (1111)

0

3

0

2 (0010)

1

3

0

0 (0000)

0

2

1

15 (1111)

1

2

1

15 (1111)

0

3

1

2 (0010)

1

3

1

0 (0000)

2

2

0

12 (1100)

(

C

(

(

1st EIN-ring

2nd EIN-ring

3rd EIN-ring

C=R(R([c3-r,c3+r]

A=[c1-r, c1+r]([c2-r, c2+r] where R=[-(,+(]

[c2-r, c2+r]

[c1-r, c1+r]

A2

A1

C1

[c3-r, c3+r]

[c2-r, c2+r]

[c1-r, c1+r]

C=[c1-r, c1+r]([c2-r, c2+r](R where R=[-(,+(]

A=R(R([c3-r,c3+r]

A2

A1

C1

C1

C2

A1

0

Is 1st quarter (upper right) Pure-1? False=0

(XoC)C

1

1

unit vector, C

Is 2nd quarter (lower left) Pure-1? False=0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0

0

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1

Is 0th quarter (upper left) Pure-1?

True=1 (since it is pure, branch ends).

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

Is the entire bit-set Pure-1?

False=0

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

semi-circle

 a

0

0

0

1

Is 3rd quarter (lower left) Pure-1? False=0 (But it is pure (pure-0) so branch ends.)

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0

0

0

0

1

0th quarter of 1st quarter Pure1? False=0.

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0

0

0

0

0

1

1st quarter of 1st quarter Pure1? False=0 (but pure -end branch).

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0

0

0

0

0

0

1

2nd quarter of 1st quarter Pure1? True=1 (pure -end branch).

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1

1

0

0

0

0

0

1

3rd quarter of 1st quarter

Pure1? False=0

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0

0

1

0

0

0

0

0

1

0th quarter of 2nd quarter

Pure1? True=1 (end branch)

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1

1

0

1

0

0

0

0

0

1

1st quarter of 2nd quarter

Pure1? True=1 (end branch)

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1

1

1

0

1

0

0

0

0

0

1

2nd quarter of 2nd quarter

Pure1? False=0

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1

1

0

1

0

0

0

0

0

1

3rd quarter of 2nd quarter

Pure1? True=1 (end branch)

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0

0

1

1

0

1

1

0

1

0

0

0

0

0

1

0th quarter of 0th quarter of 1st quarter; Pure1? True=1 (pure, so end branch. Note all leaf nodes are pure.)

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1

1 1 1

1

0

1

1

0

1

0

0

0

0

0

1

1st & 2nd quarter of 0th quarter of 1st quarter; Pure1? True=1 (pure, so end branch. Note all leaf nodes are pure.)

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1 1 1 0

1

0

1

1

0

1

0

0

0

0

0

1

3rd quarter of 0th quarter of 1st quarter; Pure1? False=0

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1 1 1 0

1

0

1

1

0

1

0

0

0

0

0

1

3rd quarter of 0th quarter of 1st quarter; Pure1? False=0

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1

0

1

1

0

1

0

0

0

0

0

1

0th 1st 2nd 3rd quarter of 3rd quarter of 1st quarter; Pure1? False=0

0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1 1 1 0 0 0 1 0

1

0

1

0

1

0

0

0

0

0

1

0th 1st 2nd 3rd quarter of 2nd quarter of 2nd quarter; Pure1? False=0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1 1 1 0 0 0 1 0 1 1 0 1

 Situation space

 a

Start

0

 1

Start

0

 1

Start

0

 1

0

1

0

0

0

0

0

0

0

P

Start

0

 1

Start

0

 1

0

0

Ordering of PTM-tree

 1,3,1

1,3,0

1,3,2

Ordering of HTM

 1.1.3

1,1,1

1,1,0

0

1,1,2

 1

 1,3

 1,0

 1,1

 1,2

dec

RA

0

0

0

0

0

1

0

0

0

0

0

0

0

P

0

1,3,3

 1

 1,1

 1,0

 1,3

 1,2

dec

Second equilateral triangle (90o sector) bounded by longitudinal and equatorial line segments

Equilateral triangle (90o sector) bounded by longitudinal and equatorial line segments

RA

0

0

right

left

right

left turn

Traverse the next level of triangulation, alternating again with left-turn, right-turn, left-turn, right-turn..

right

left

right

left turn

0

0

0

0

0

0

0

P

0

P

0

0

0

0

0

0

0

0

P

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

P

0

0

0

0

0

RA=0o RA=360o

Dec 90o

 dec=0o

 -90o

South Plane

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Mexico

Canada

U.S.A

4Qtr

3Qtr

2Qtr

1Qtr

PC

VCR

TV

Country

Product

Date

(each cell contains sales measurement, e.g., number of sales in these slides, but also may contain many other feature attributes of product-date-country instance.

Total of all product sales by country and quarter

Mexico

Canada

U.S.A

4Qtr

3Qtr

2Qtr

1Qtr

PC

VCR

TV

Country

Product

Date

Total sales by country and date. Rollup along product (e.g., using the aggregate, sum)

Total annual sales

by country and product

Mexico

Canada

U.S.A

4Qtr

3Qtr

2Qtr

1Qtr

PC

VCR

TV

Country

Product

Date

Rollup along date (e.g., using the aggregate, sum)

sales by country

Mexico

Canada

U.S.A

4Qtr

3Qtr

2Qtr

1Qtr

PC

VCR

TV

Country

Product

Date

Rollup along country (e.g., using the aggregate, sum)

Total of all

product sales by

product and date

Total

sales

Total

sales

Total

sales

sales by country

sales by

product,

country

sales by product

sales by product

sales by country, date

sales by date

sales by date

sales by product, country and quarter

Mexico

Canada

U.S.A

4Qtr

3Qtr

2Qtr

1Qtr

PC

VCR

TV

Country

Product

Date

All rollups (e.g., using the aggregate, sum)

sales by product, country

Drilldown on product

Rollup n country

(Sum over country)

3-D(base or fact) cuboid

product, date, country

2-D cuboids

date, country

product,country

product,date

1-D cuboids

country

date

product

0-D(apex) cuboid

all

U.S.A

Mexico

Canada

U.S.A

4Qtr

3Qtr

2Qtr

1Qtr

PC

VCR

TV

Country

Product

Date

Rollup, climbing up the concept hierarchy (on Product, from (VCR, PC, TV) to (computer, non-computer)

comp.

non-comp

Mexico

Canada

U.S.A

4Qtr

3Qtr

2Qtr

1Qtr

PC

VCR

Canada

Country

Product

Date

Mexico

4Qtr

3Qtr

2Qtr

1Qtr

PC

VCR

TV

Country

Product

Date

SLICE (off computer products, i.e., PC)

Mexico

Canada

U.S.A

4Qtr

3Qtr

2Qtr

1Qtr

Canada

VCR

TV

Country

Product

Date

PC

U.S.A

4Qtr

3Qtr

2Qtr

1Qtr

VCR

TV

Country

Product

Date

DICE (off PC, last two quarters, Mexico)

Mexico

g3

Canada

U.S.A

g2

g1

2Qtr

1Qtr

VCR

TV

Country

Product

Date

4Qtr

e3

e2

e1

5. Gene Organism dimensn table

4. Gene Experiment Organism cube

Bioinformatics Data Warehouse Schema

(basic star schema)

g0

e0

 17, 78 12, 60 Mi, 40

 1, 48 10, 75 0 0

 7, 40 0 14, 65 0

16, 76 0 9, 45 Pl, 43

Mexico

Canada

U.S.A

4Qtr

3Qtr

2Qtr

1Qtr

PC

VCR

TV

Country

Product

Date

Pivot/Rotate

Mexico

Canada

U.S.A

4Qtr

3Qtr

2Qtr

1Qtr

PC

VCR

TV

M

Country

Product

UNV

ED

STZ

CTY

3Qtr

2Qtr

H

AD

LAB

S

STR

PI

N

3

2

a

c

h

1

2

2

b

s

h

0

2

4

a

c

a

1

2

4

a

s

a

1

2. Experiment Dimension Table (MIAME)

SubCell-Location

Myta

Ribo

Nucl

Ribo

Function

apop

meio

mito

apop

StopCodonDensity

.1

.1

.1

.9

PolyA-Tail

1

1

0

0

3. Gene Dimension Table

Organism

Species

Vert

Genome Size

human

Homo sapiens

1

3000

fly

Drosophila

melanogaster

0

185

yeast

Saccharomyces

cerevisiae

0

12.1

mouse

Mus

musculus

1

3000

1. Organism Dimension Table

o0

o3

o2

o1

 1 1 1 1

 1 0 0 1

 0 1 0 0

1 0 1 1

 0

 1

 0

1 1

 0

 0

1 0

 1

 0

1 1

 0

 0

0

 1 0 1 1

 0 1 1 1

 1 1 0 1

 1 0 1 0

e3

e2

e1

e0

Genes

SubCell-Location

Myta

Ribo

Nucl

Ribo

Function

apop

meio

mito

apop

StopCodonDensity

.1

.1

.1

.9

PolyA-Tail

1

1

0

0

The Basic Star Schema is part of a Constellation schema:

Multiple fact cubes, including 2-way, 3-way interaction pyramids, pathway cubes, phylogenetic tree/ring…

g3

g2

g1

g0

g3

g2

g1

g0

g3

g2

g1

g0

0

1

0

1

1

1

0

1

1

0

1

0

0

1

0

1

1

1

0

0

e.g., an added 3-way Protein-Protein-Protein Interaction Pyramid

level-2 dimension

level-1 dimension

(root dimension

Phylogentic tree/ring

o3

o2

o1

o0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

o3

o2

o1

o0

o3

o2

o1

o0

 Organisms

Organism

Species

Vert

Genome Size

human

Homo sapiens

1

3000

fly

Drosophila

melanogaster

0

185

yeast

Saccharomyces

cerevisiae

0

12.1

mouse

Mus

musculus

1

3000

e3

e2

Phylogentic tree/ring

o3

o2

o1

o0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

o3

o2

o1

o0

o3

o2

o1

o0

 Organisms

Organism

Species

Vert

Genome Size

human

Homo sapiens

1

3000

fly

Drosophila

melanogaster

0

185

yeast

Saccharomyces

cerevisiae

0

12.1

mouse

Mus

musculus

1

3000

e1

e0

g3

g2

g1

g0

o0

o3

o2

o1

e3

e2

e1

e0

Phylogentic tree/ring

Gene-Exp-Org

g3

g2

g1

g0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

g3

g2

g1

g0

g3

g2

g1

g0

Pathways

Prot-Prot-Prot-ints

PPIs

 Organisms

Experiments

Genes

g3

g2

g1

g0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

g3

g2

g1

g0

g3

g2

g1

g0

g3

g2

g1

g0

g3

g2

g1

g0

1

0

0

1

0

1

1

1

0

0

Organism

Species

Vert

Genome Size

human

Homo sapiens

1

3000

fly

Drosophila

melanogaster

0

185

yeast

Saccharomyces

cerevisiae

0

12.1

mouse

Mus

musculus

1

3000

LAB

PI

UNV

STR

CTY

STZ

ED

AD

S

H

M

N

3

2

a

c

h

1

2

2

b

s

h

0

2

4

a

c

a

1

2

4

a

s

a

1

SubCell-Location

Myta

Ribo

Nucl

Ribo

Function

apop

meio

mito

apop

StopCodonDensity

.1

.1

.1

.9

PolyA-Tail

1

1

0

0

The Constellation

schema

g3

g2

g1

g0

g3

g2

g1

g0

g3

g2

g1

g0

0

1

0

1

1

1

0

1

1

0

1

0

0

1

0

1

1

1

0

0

subject

e3

e2

e1

e0

g3

g2

g1

g0

o0

o3

o2

o1

 1 1 1 1

 1 0 0 1

 0 1 0 0

1 0 1 1

 0

 1

 0

1 1

 0

 0

1 0

 1

 0

1 1

 0

 0

0

 1 0 1 1

 0 1 1 1

 1 1 0 1

 1 0 1 0

query

subject

subject

replica

The GEO Star schema

0

0

1

1

PolyA-Tail

.9

.1

.1

.1

StopCodonDensity

apop

mito

meio

apop

Function

Ribo

Nucl

Ribo

Myta

SubCell-Location

1

a

s

a

4

2

1

a

c

a

4

2

0

h

s

b

2

2

1

h

c

a

2

3

N

M

H

S

AD

ED

STZ

CTY

STR

UNV

PI

LAB

3000

1

Mus

musculus

mouse

12.1

0

Saccharomyces

cerevisiae

yeast

185

0

Drosophila

melanogaster

fly

3000

1

Homo sapiens

human

Genome Size

Vert

Species

Organism

�

Experiments

Organisms

Gene-Exp-Org

e0

e1

e2

e3

o1

o2

o3

o0

g0

g1

g2

g3

e0

e1

e2

e3

Experiments

The GEO cuboid lattice

3000

1

Mus

musculus

mouse

12.1

0

Saccharomyces

cerevisiae

yeast

185

0

Drosophila

melanogaster

fly

3000

1

Homo sapiens

human

Genome Size

Vert

Species

Organism

Organisms

Gene-Exp-Org

e0

e1

e2

e3

o1

o2

o3

o0

g0

g1

g2

g3

e0

e1

e2

e3

1

a

s

a

4

2

1

a

c

a

4

2

0

h

s

b

2

2

1

h

c

a

2

3

N

M

H

S

AD

ED

STZ

CTY

STR

UNV

PI

LAB

Experiments

0

0

1

1

PolyA-Tail

.9

.1

.1

.1

StopCodonDensity

apop

mito

meio

apop

Function

Ribo

Nucl

Ribo

Myta

SubCell-Location

�

Gene-Organism

Gene-Experiment

Organism-Experiment

Experiment

0

0

1

1

1

0

1

0

0

1

0

1

1

0

1

1

1

0

1

0

g0

g1

g2

g3

g0

g1

g2

g3

g0

g1

g2

g3

The GEO constellation

1

a

s

a

4

2

1

a

c

a

4

2

0

h

s

b

2

2

1

h

c

a

2

3

N

M

H

S

AD

ED

STZ

CTY

STR

UNV

PI

LAB

3000

1

Mus

musculus

mouse

12.1

0

Saccharomyces

cerevisiae

yeast

185

0

Drosophila

melanogaster

fly

3000

1

Homo sapiens

human

Genome Size

Vert

Species

Organism

0

0

1

1

1

0

1

0

0

1

g0

g1

g2

g3

g0

g1

g2

g3

g0

g1

g2

g3

g0

g1

g2

g3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

g0

g1

g2

g3

Genes

Experiments

 Organisms

PPIs

Prot-Prot-Prot-ints

Pathways

g0

g1

g2

g3

g0

g1

g2

g3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

g0

g1

g2

g3

Gene-Exp-Org

Phylogentic tree/ring

e0

e1

e2

e3

o1

o2

o3

o0

g0

g1

g2

g3

e0

e1

e2

e3

Experiments

A2

A1

C1

+4

+2

3-D(base or fact) cuboid

product, date, country

2-D cuboids

date, country

product,country

product,date

1-D cuboids

country

date

product

0-D(apex) cuboid

all

+7

+3

+1

+8

+6

+5

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

MINR Algorithm

Input: A data set X

Output: neighborhood radii ri

Calculate the distance between each point and its 4th neighbor, R. Get Rm = max (R).

Compute the number of neighbors within Rm for each point, K.

Sort the points in descending order based on K.

Calculate the differential (K, and find the peak (K position, XPi. Stop if it is at the end of dataset.

For the ith peak (K position, find the “knee” point KNi: if x < XPi and (Ki = 0 and |x- XPi| is the smallest, then KNi = x.

ri = Rx. Increase i and go back to step 4.

+

+

+

+

+

+

+

+

+

+

Densest cluster is formed

r1

Noise

+

+

+

+

+

+

+

+

+

+

r2

Sparser cluster is formed

Densest cluster is formed

Nonparametric Clustering Algorithm

Input: A dataset X

Output: Clusters and noise

Calculate a number of the neighborhood radii: r1, r2 … rm for different density clusters with MINR ():

Iterative Clustering with e-DBSCAN

Check the boundaries of each pair of clusters. If two clusters share most of the boundary of either cluster, merge the two clusters into one.

Local attractor

Virtual attractors

7

6

5

4

3

2

1

e’

e

e’

e

Algorithm: RDF-based Outlier Detection using P-Trees

Input: Dataset T, radius r, RDF threshold t.

Output: An outlier set Ols.

// PU — unprocessed points represented by P-Trees;

// |PU| — number of points in PU

// PO --- outliers;

//Build up P-Trees for Dataset T

PU (createP-Trees(T);

i (1;

WHILE |PU| > 0 DO

x (PU.first; //pick an arbitrary point x

// Zoom out procedure

ZoomOut(x, r, t);

i (i+1

ENDWHILE

Algorithm: “ZoomOut” using P-trees

Input: point x, radius r, RDF threshold t

Output: pruned dataset PU

//PDN(x): direct neighbors of x; PIN(x): indirect neighbors of x

// df is density factor; rdf is relative density factor

PDN(x) = PX≤x+r ∩ PX>x-r

df (0

FOR each point p in PDN(x)

// PN is a temporary P-tree

PN = PX<p+r ∩ PX<p-r;

df (df + |PN|;

ENDFOR

dfavg(df / |PDN(x)|; rdf (|PDN(x)| / dfavg;

//pruning

switch (rdf)

case 1+α:

PU (PU ∩PDN’(x)∩PIN’(x);

ZoomIn(x, δ);

case 1/β:

 PU (PU ∩ PDN’(x);

 FOR each point q in PIN(x)

 	ZoomOut (q,r);

 ENDFOR

case β: // Add point x into the outlier set

 Ols (Ols (x; //(denotes OR

 PU (PU ∩ PDN’(x)∩ PIN’(x);

Indirect Neighborhood

P

Direct Neighborhood

Algorithm: “ZoomIn” using HOBit metric

Input: bij: point p (binary form), DF threshold δ

Output: pruned dataset PU

// Pij is P-tree represented dataset T

// PNi, i-neighborhood of a point

// n is number of attributes,

// m is number of bits in each attribute

// Ptij’ is complement set of Ptij

FOR j = 0 TO m-1

	IF bi,j = 1 Pti,j (Pi,j

	ELSE Pti,j (P’i,j

ENDFOR

FOR i = 1 TO n

	Pvi,1 (Pti,1

	FOR j = 1 TO m-1

		Pvi,j (Pvi,j-1 (Pti,j

	ENDFOR

	i (n – 1

	j (m

ENDFOR

DO

PN (Pt1

	FOR r = 2 TO n

		IF r (i PN (PN (Pti,j

		ELSE PN (PN (Pti,j-1

			i (i – 1

			IF i = 0 j (j -1

ENDFOR

WHILE |PNi| - |PNi-1|) <δ

PU (PU (PN’i-1;	// pruning

IF DF(P,i-1) > DF(P,i)

	FOR each point q in PN’i-1(PNi

	 ZoomOut(q,r,t);

	ENDFOR

ENDIF

Pruning

Find outliers

Find outliers

Find outliers

Algorithm: “Vertical Outlier Detection with Local Pruning”

Input: D: Distance threshold, f: outlier fraction, T: dataset

Output: Ols: outlier set

// N: total number of points in dataset T

//PT: P-tree represented dataset

//PU: P-tree represented unprocessed dataset

//PN: P-tree represented neighborhood

//PO: P-tree represented outlier set

//PNO: P-tree represented non candidate outlier set

// Build up P-Trees set for T;

PT(T;

PU(PT;

WHILE (! PU. size())

{

PN (findNeigborhood (P, D);

m (PN.rootCount (); // retrieve value of the root node

IF m > (1- f) * N

// not outlier

PN (findNeigborhood (P, D/2);

m (PN.rootCount ();

IF m > (1-f) * N

PNO (PNO (PN; // (is OR operation of P-trees

PU (PU ∩ PNO; // pruining

ENDIF

ENDIF

IF m <= (1- f) * N

	PO (PO U P;

	PN (findNeighborhood (P,2D);	

	m (PN.rootCount ();

	IF m < (1-f) * N,

PO (PO (PN;

	ENDIF

ENDIF

}

ENDWHILE

·2D

O

O

·D/2

·D

·D

D

Q

O

2D

D

Nbr(O,D)

D

O

Q

Nbr (O, D/2)

D

D/2

 0

 0 1

 1 0

Input: ordered list of items and minsup

Output: set of frequent itemsets

Algorithm:

Create the root node (the empty set)

For every item, I, in our ordered list of items, do the following:

Generate a new node, n

Label n with I

If support (I) is less than minsup then drop n

If support (I) is greater than or equal to minsup then

Insert n under the root (left to right)

For every node n’, to the left of n (processing the nodes in DF order)

Generate a new node, new_n

Label new_n with the label of n union the label of n’ (i.e. the label of new_n represents the itemset generated by the union of the items in n and n’)

If support of new_n is less than minsup then drop new_n and stop processing under n’

If support of new_n is greater than or equal to minsup then insert new_n in the same position n’ exists under the root

PROC Mine Frequent Itemsets

Input:

A set of P-trees each representing a column where Pi is the P-tree for column i

minsupp

Output:

All frequent itemsets

Method:

For every P-tree check if the ROOTCOUNT is greater than minisupp. The set of columns satisfying this criterion is called Frequent_1_Itemset

Initialize an empty vector of frequent itemsets called Frequent_Itemsets

For each X in Frequent_1_Itemset

Append X to Frequent_Itemsets

For each Y before X in Frequent_Itemsets such that Y (or any of its subsets) is not on the taboo list maintained for X

Let PXY = PX AND PY (notice that now a P-tree is an itemset, it can have 1 or more items, e.g. the P-tree for itemset {5,9} can be derived by ANDing P5 and P9)

If ROOTCOUNT(PXY) >= minsupp, insert PXY in Frequent_Itemsets

Else, insert Y in the taboo list maintained for X

PROC Association Rule Mining

Input:

Two sets of P-trees one for the citee part and one for the citer part such that each P-tree represents a column where Pi is the P-tree for column i

miniconf

minisupp

Output:

All inter-node, intra-node rules combinations such that the confidence (inter-node) >= confidence (intra-node) >= miniconf and support (inter-node) >= minisupp

Method:

S1 = PROC Mine Frequent Itemsets (citee P-trees, minisupp)

S2 = PROC Mine Frequent Itemsets (citer P-trees, minisupp)

S = S1 Join S2

PROC Mine Association Rules (S, minconf)

PROC Mine Association Rules

Input:

A set of frequent itemsets each composed of two parts: citee and citer

miniconf

Output:

All inter-node rules such that the confidence(inter-node rule) >= confidence(corresponding intra-node rule) >= miniconf

 Method:

For every k-itemset, IS, where k>1 check the confidence of the rule A(C such that (a) A ∩ C = Ø, (b) A U C = IS, (c) A is the citee part of the itemset, and (d) C is the citer part of the itemset

Output the inter-node rule A(C if its confidence greater than or equal to the confidence of its corresponding intra-node rule which in turn has must have a confidence greater than or equal to miniconf

 1 0

 1 0

 0

Support =15/1448 (~1%)

11.30.Rd_CITEE--> 12.39.Fe_CITER,12.38.Lg_CITER �(conf>=0.25,supp=15/1448)

12.38.Lg_CITEE-->11.30.Rd_CITER,12.39.Fe_CITER (conf>=0.267857supp=16/1448)

12.10.-g_CITEE-->04.50.+h_CITER,11.25.Mj_CITER (conf>=0.475,supp=20/1448)

11.30.Pb_CITEE-->11.30.Er_CITER,11.27.+d_CITER (conf>=0.294798,supp=94/1448)

Support =20/1448 to Support =50/1448 �(~1.38% to 3.45%)

11.30.Pb_CITEE->11.30.Er_CITER,11.27.+d_CITER (conf>=0.294798,supp=94/1448)

Support =20/1448 to Support =50/1448 �(~1.38% to 3.45%)

“Supersymmetry”-->”Charge conjugation, parity, time reversal, and other discrete symmetries”, “Extended classical solutions; cosmic strings, domain walls, texture” (conf=>0.294798,supp=51/1448)

Support =15/1448 (~1%)

“Chiral symmetries” --> “Chiral Lagrangians”, “Other nonperturbative calculations” (conf=>0.25, supp=15/1448)

“Other nonperturbative calculations”--> “Chiral symmetries”, “Chiral Lagrangians” (conf=>0.267857, supp=15/1448)

 “Unified field theories and models” -->”Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity”, “Compactification and four-dimensional models” (conf=>0.475, supp=19/1448)

“Supersymmetry”-->”Charge conjugation, parity, time reversal, and other discrete symmetries”, “Extended classical solutions; cosmic strings, domain walls, texture” (conf=>0.294798, supp=51/1448)

� A database providing access to a very large number of bibliographies, abstracts, and references found in more 3500 journals in over 100 disciplines.

� Those properties are subject codes drawn from the Physics and Astronomy Classification Scheme (PACS) numbers used in thephysics domain. More on this issue in section 7.5.

� Note that the purpose of data mining is to discover useful and comprehensible knowledge from huge amounts of data.

� As a matter of fact, data mining as a research area can be viewed as a combination of a number of areas such as databases, machine learning, statistics, artificial intelligence, and others.

� Refer to section � REF _Ref75838660 \r \h � * MERGEFORMAT �Error! Reference source not found.� for more details on pure-1 nodes.

� DataMIME™ is a ‘universal’ data mining system developed by our research group. The system exploits a novel technology, the P-tree technology, for compressed vertical data representation which facilitates fast and efficient data mining over large datasets.

PAGE
24

_1068412423.unknown

_1157973235.unknown

_1158057111.unknown

_1159960449.unknown

_1163484767.unknown

_1163487173.unknown

_1163487817.unknown

_1163489199.unknown

_1165302076.unknown

_1183058512.unknown

_1163490550.unknown

_1163487844.unknown

_1163487290.unknown

_1163486460.unknown

_1163486870.unknown

_1163486508.unknown

_1163486368.unknown

_1163486312.unknown

_1163334217.unknown

_1163334432.unknown

_1163484700.unknown

_1163484745.unknown

_1163484597.unknown

_1159962815.unknown

_1159968126.unknown

_1159968202.unknown

_1160308760.unknown

_1159968085.unknown

_1159962783.unknown

_1158062632.unknown

_1158064789.unknown

_1158065162.unknown

_1158065885.unknown

_1159789765.unknown

_1159856981.unknown

_1159960286.unknown

_1159857197.unknown

_1159855971.unknown

_1158070951.xls
Sheet1

		w1		5		w0		620

		w2		0.01

		w3		0				a		1.5

		w4		0

		w5		0

		w6		0

		w7		0

		w8		0

				0		620

				1		608.800625

				2		575.81

				3		522.850625

				4		452.96

				5		370.390625

				6		280.61

				7		190.300625

				8		107.36

				9		40.900625

				10		1.25

				11		-0.049375

				12		49.76

				13		164.650625

				14		359.81

				15		651.640625

				16		1057.76

				17		1597.000625

				18		2289.41

				19		3156.250625

				20		4220

Sheet1

		

Using SUM (-1)nwn(aX)2n
 n=0..2

= w0 - w1(aX)2 + w2(aX)4

Sheet2

		

Sheet3

		

_1159696599.unknown

_1159789479.unknown

_1159696198.unknown

_1158065938.unknown

_1158065561.unknown

_1158065784.unknown

_1158065803.unknown

_1158065746.unknown

_1158065697.unknown

_1158065359.unknown

_1158065390.unknown

_1158065327.unknown

_1158065128.unknown

_1158063373.unknown

_1158064159.unknown

_1158064731.unknown

_1158064353.unknown

_1158064488.unknown

_1158064324.unknown

_1158063952.unknown

_1158064079.unknown

_1158062976.unknown

_1158063318.unknown

_1158062649.unknown

_1158060228.unknown

_1158061210.unknown

_1158062076.unknown

_1158062237.unknown

_1158061337.unknown

_1158061501.unknown

_1158060333.unknown

_1158060632.unknown

_1158060318.unknown

_1158059654.unknown

_1158059822.unknown

_1158059930.unknown

_1158059911.unknown

_1158059790.unknown

_1158059158.unknown

_1158057513.unknown

_1158057998.unknown

_1158052183.unknown

_1158055119.unknown

_1158056306.unknown

_1158056409.unknown

_1158057105.unknown

_1158056341.unknown

_1158055194.unknown

_1158056211.unknown

_1158055182.unknown

_1158054373.unknown

_1158054907.unknown

_1158055052.unknown

_1158054874.unknown

_1158052647.unknown

_1158053149.unknown

_1158053323.unknown

_1158053144.unknown

_1158052374.unknown

_1158050520.unknown

_1158050774.unknown

_1158051870.unknown

_1158051664.unknown

_1158050683.unknown

_1158050695.unknown

_1158050597.unknown

_1158047308.unknown

_1158049038.unknown

_1158049081.unknown

_1158047832.unknown

_1158047005.unknown

_1147455275.unknown

_1156996028.unknown

_1156996096.unknown

_1156998785.unknown

_1157963395.unknown

_1156999002.unknown

_1156996157.unknown

_1156998774.unknown

_1156996049.unknown

_1153229504.unknown

_1153248025.unknown

_1156995853.unknown

_1153231106.unknown

_1153231115.unknown

_1153231245.unknown

_1153230148.unknown

_1153129175.unknown

_1153130009.unknown

_1153129970.unknown

_1153059194.unknown

_1153059215.unknown

_1150541943.unknown

_1069759229.unknown

_1145108978.unknown

_1147454806.unknown

_1147371766.unknown

_1138781758.unknown

_1138781762.unknown

_1144667522.unknown

_1138781761.unknown

_1076246418.unknown

_1069758993.unknown

_1069759099.unknown

_1069759208.unknown

_1069759212.unknown

_1069759206.unknown

_1069759033.unknown

_1068528303.unknown

_1069758917.unknown

_1069758984.unknown

_1069070878.unknown

_1069405106.unknown

_1069070575.unknown

_1068527858.unknown

_1068527874.unknown

_1068415223.unknown

_1067718795.unknown

_1067727839.unknown

_1067730678.unknown

_1067737833.unknown

_1068408479.unknown

_1068410476.unknown

_1068410984.unknown

_1068351642.unknown

_1067738392.unknown

_1067730782.unknown

_1067731226.unknown

_1067731495.unknown

_1067730797.unknown

_1067730740.unknown

_1067729984.unknown

_1067730326.unknown

_1067730499.unknown

_1067730591.unknown

_1067730484.unknown

_1067730493.unknown

_1067730431.unknown

_1067730021.unknown

_1067728257.unknown

_1067728766.unknown

_1067729137.unknown

_1067728539.unknown

_1067728406.unknown

_1067728232.unknown

_1067720792.unknown

_1067727481.unknown

_1067727506.unknown

_1067727011.unknown

_1067727058.unknown

_1067727085.unknown

_1067721454.unknown

_1067721519.unknown

_1067721044.unknown

_1067721043.unknown

_1067719519.unknown

_1067720062.unknown

_1067720176.unknown

_1067719958.unknown

_1067719144.unknown

_1067719175.unknown

_1067719057.unknown

_1067655414.unknown

_1067716251.unknown

_1067717025.unknown

_1067717464.unknown

_1067716732.unknown

_1067716698.unknown

_1067656202.unknown

_1067656277.unknown

_1067662343.unknown

_1067655428.unknown

_1067568430.unknown

_1067655300.unknown

_1067655326.unknown

_1067651948.unknown

_1067651984.unknown

_1067569351.unknown

_1067557015.unknown

_1067565776.unknown

_1067566227.unknown

_1067568294.unknown

_1067566175.unknown

_1067557312.unknown

_1067565197.unknown

_1067556433.unknown

