Electric Field of a Dipole
1 Calculating and Displaying the Electric Field
1.1 Objectives
In this activity you will write a VPython program that calculates (exactly) and displays the electric field of a dipole at many observation locations, including locations not on the dipole axes. These instructions assume that you have already written a program to calculate and display the electric field of a single point charge. To calculate and display the field of a dipole you will need to:
• Instruct the computer to calculate electric field (you may wish to review your work from the previous lab: Calculating and displaying the electric field of a single charged particle)
• Apply the superposition principle to find the field of more than one point charge
• Learn how to create and use a loop to repeat the same calculation at many different observation locations
• Display arrows representing the magnitude and direction of the net field at each observation location
1.1.1 Time
You should finish Part I in 60 minutes or less. Check with your instructor to see whether you are also supposed to do part II.
1.2 Program loops
A program ``loop'' makes it easy to do repetitive calculations, which will be important in calculating and displaying the pattern of electric field near a dipole.
1.2.1 Multiple observation locations
To see the pattern of electric field around a charged particle, your program will calculate the electric field at multiple locations, all lying on a circle of radius
[image: image15.png]Predictions

Real World | Visual Output

 centered on the dipole, in a plane containing the dipole. Instead of copying and pasting code many times, your calculations are carried out in a loop.
Suppose that one of the planes containing the dipole is the
[image: image2.wmf]xy

 plane. The coordinates of a location on a circle of radius
[image: image3.wmf]R

 in the
[image: image4.wmf]xy

 plane, at an angle
[image: image5.wmf]q

 to the
[image: image6.wmf]x

-axis, can be determined using direction cosines for the unit vector to that location:

[image: image7.wmf]ñ

-

á

),0

(90

cos

,

cos

=

ˆ

q

q

o

r

[image: image8.wmf]ñ

á

,0

sin

,

cos

=

ˆ

q

q

r

Therefore the observation location is at
[image: image9.wmf]ñ

á

,0

sin

,

cos

q

q

R

.
1.3 Read and Explain a Minimal Working Program
A minimal runnable program has been provided in the space below. DO NOT RUN THE PROGRAM YET.

• Read the program carefully together, line by line. Make sure everyone in the group understands the function of each program statement. Reading and explaining program code is an important part of learning to create and modify computational models.
• After reading every line of the program, answer the following questions:
 - System: What is the physical system being modeled? What is the charge of each particle?
 - System: Approximately what should the pattern of electric field look like?
from __future__ import division

from visual import *

constants

oofpez = 9e9 # stands for One Over Four Pi Epsilon-Zero

qe = 1.6e-19 # proton charge

s = 4e-11 # charge separation

R = 3e-10 # display Enet on a circle of radius R

scalefactor = 1.0 # for scaling arrows to represent electric field

objects

Represent the two charges of the dipole by red and blue spheres:

plus = sphere(pos=vector(s/2,0,0), radius=1e-11, color=color.red)

qplus = qe # charge of positive particle

neg = sphere(pos=vector(-s/2,0,0), radius=1e-11, color=color.blue)

qneg = -qplus # charge of negative particle

calculations

theta = 0

while theta < 2*pi:

 rate(2) # tell computer to go through loop slowly

 ## Calculate observation location (tail of arrow) using current value of theta:

 Earrow = arrow(pos=R*vector(cos(theta),sin(theta),0), axis=vector(1e-10,0,0), color=color.orange)

 ## write instructions below to tell the computer how to calculate the correct

 ## net electric field Enet at the observation location (the position of Earrow):

 ## change the axis of Earrow to point in the direction of the electric field at that location

 ## and scale it so it looks reasonable

 ## Assign a new value to theta

 theta = theta + pi/6
[image: image1.wmf]R

On the left side of the whiteboard, draw a sketch showing the source charges and how you think the pattern of their electric field should look.
 - Program: Will the program move one arrow in an animation, or create many arrows?
 - Program: Will the program as it is now written accurately model the real system?
On the right side of the whiteboard, draw a sketch of how the pattern of electric field displayed by the program will look, based on your interpretation of the code.
 Checkpoint: Ask your instructor to look over your work.
Navigate to http://profmason.com/?page_id=1824 copy and paste the code into an empty vpython window and save it. Remember to give it the extension ``.py''.
Run the program after everyone agrees on both predictions. Discuss how closely your prediction of what the program would do matches what you see in the visual output.
1.4 Modify the Minimal Program
1.4.1 Organizing the Calculations
 Briefly explain why you can't use this equation:
[image: image10.wmf]3

0

dipole

2

4

1

=

r

qs

E

pe

It is possible to waste a lot of time writing a program if you do not have a clear outline of the sequence of instructions to guide your work. To avoid this:
On your whiteboard, briefly outline the steps involved in calculating the net electric field at a single observation location due to the contributions of both of the charges in the dipole. Make your outline detailed, as if you were reminding a friend how to do it. For example, the first step might be:
1. Find the relative position vector
[image: image11.wmf]p

r

r

 from the location of the positive charge to the observation location
2. ...
3. ...
1.4.2 Writing Code
• At the appropriate location in the program, insert VPython instructions to tell the computer how to calculate the electric field at the first observation location. Your instructions should follow the outline you wrote on the whiteboard. Be sure to use symbolic names.
• A note on naming objects: It is okay to use the same name for every arrow. The name Earrow is ``recycled'' each time through the loop; it is like a sticker that is moved to a new arrow when that arrow is created.
 • Print the value of the electric field at each observation location: print(E)
1.4.3 Arrows representing the electric field
• Run your program. It should calculate and display the electric field as arrows at multiple locations on a circle surrounding the particle. Do not display the relative position vectors -- there are too many of them, and they will clutter up the display.
• Your program should print the value of each observation location, and Enet at that location.
• Look at your display. Does it make sense? Do the magnitudes and directions of the orange arrows make sense?
 Make sure everyone in the group agrees that the display looks like the field of a dipole!
Checkpoint: Ask your instructor to look over your work.
1.5 Adding more locations in a different plane
• Add code to compute and display the electric field at evenly spaced locations lying in a circle of radius
[image: image12.wmf]R

 in a different plane--a plane that also contains the dipole axis. A plane perpendicular to the original plane is a good choice.
• Rotate the ``camera'' with the mouse to get a feeling for the nature of the 3D pattern of electric field.
 Make sure everyone in the group agrees that the display looks right.
Discuss your display with a neighboring group.
Finally, show your display to your instructor.
Post a version of your program on your blog and include a screen shot.
You may be asked to make some changes to the program, and answer some questions about it.
2 Part II: A Proton Moves Near a Dipole
Ask your instructor if you are supposed to do this part of the activity.
Create a perpetual loop (while True:) that continually calculates the net electric field. Place a proton initially at rest at a location on the perpendicular axis of the dipole, then release it, and animate its motion by calculating the electric force, then applying the Momentum Principle
[image: image13.wmf]t

F

p

p

i

f

D

+

net

=

r

r

r

 to update the momentum, then updating the position, in a loop. Note that in order to calculate the force on the proton you always have to calculate the electric field of the dipole at the current location of the proton. Leave a trail, so you can study the trajectory:
 proton = sphere(... make_trail=True) # include a trail
 while True:

 obslocation = proton.pos

 # calculate the electric field

 ...

 # calculate the electric force and update the proton momentum

 ...

 # update the proton's position:

 ...

Try a
[image: image14.wmf]t

D

 of around 1e-17 s, to start with. The trajectory is quite surprising. Think about whether this trajectory is consistent with the Energy Principle.
 If you are using a version of VPython older than 5.70 (execute print(version) to see what version you have installed), you need to create a curve object to represent the trail, and continually append points to the curve object:
 trail = curve(color=proton.color) # this goes before the loop
 while True:

 ...

 trail.append(pos=proton.pos) # in the loop, after updating proton.pos

2.1 Playing around
Here are some suggestions of things you might like to try after turning in your program.
• Add a circle of observation locations in the xz plane.
• If there are red-cyan stereo glasses available (red lens goes on left eye), you can display true stereo by adding the following statement near the start of your program (for more about this, see the section ``Controlling Windows'' in the Visual reference manual available from the Help menu):
 scene.stereo = `redcyan'

• In the Visual reference manual available on the Help menu, in the section on ``Mouse Interactions'', there is documentation on how to make your program interact with the mouse. To wait for a mouse click and get its location, do this in a perpetual loop (while True:) that calculates the net electric field:
 while True:
 # replace obslocation calculation with this:

 obslocation = scene.mouse.getclick().pos # wait for mouse click

 ... # calculate the electric field at obslocation

If instead you want to drag the mouse and continuously update the electric field, remove the arrow and print statements from inside a perpetual loop that calculates the net electric field, and create just one arrow before starting the loop, then continuously update that arrow's attributes:
 Earrow = arrow(axis=(0,0,0), color=color.orange)
 scene.autoscale = False # prevent large mouse moves from autoscaling the scene

 while True:

 rate(30) # check for a mouse move 30 times per second

 obslocation = scene.mouse.pos()

 # calculate Enet

 ...

 Earrow.pos = obslocation

 Earrow.axis = scalefactor*Enet

• Make a stack of dipoles, and display the electric field.
• Make a ``quadrupole'' out of two opposed dipoles, and display the electric field. The dipoles can be aligned on one axis (+- - +) or they can be placed one above the other, with opposite orientations:
 + -
- +
You'll need to increase scalefactor , because the two dipoles nearly cancel each other's fields.
_1394393459.unknown

_1394393464.unknown

_1394393466.unknown

_1394393468.unknown

_1394393470.unknown

_1394393471.unknown

_1394393467.unknown

_1394393465.unknown

_1394393462.unknown

_1394393463.unknown

_1394393460.unknown

_1394393457.unknown

_1394393458.unknown

_1394393456.unknown

