

WXP 5.0 Users Guide

WXP 5.0 Users Guide

WXP USERS GUIDE
Version 5.0
31 July, 1998
iWXP USERS GUIDE

WXP User Environment
1
1. WXP Overview
1
1.1. User Shell
1
1.2. Data Ingest
1
1.3. Data Parsing and Decoding
2
1.4. Data Analysis and Display
2
1.5. Overlay and Looping Programs
3
1.6. Meteorological Calculations
3
1.7. General Purpose Programs
4
2. User Shell
5
2.1. Shell Basics
5
2.2. Internal Shell Commands
6
2.3. Case Studies
7
3. Program Basics
8
4. Prompts and Menus
9
4.1. Program Prompts
9
4.2. Program Menus
9
4.3. Typical Prompts and Menus
11
5. Resource Basics
15
5.1. Typical Resources
15
5.2. File Resources
15
5.3. Date Resources
15
5.4. Data Analysis Parameters
16
5.5. Database Parameters
16
5.6. Plotting Parameters
16
5.7. Attribute/Color Parameters
16
5.8. Device/Window Parameters
16
5.9. Miscellaneous Parameters
17
6. Setting Resources
18
6.1. Program Defaults
18
6.2. Resource File
18
6.3. Resource File Location
18
6.4. Environment Variables
18
6.5. Command Line
19
6.6. Program Menus and Prompts
19
7. Databases
21
7.1. City Databases (.cty)
21
7.2. Map Databases (.map, .bmap)
22
7.3. Map Lists (.mpl)
22
7.4. Raw Databases (.raw)
23
7.5. Color Tables (.clr)
23
7.6. Color Fill Files (.cfl)
24
7.7. Satellite Enhancement Files (.enh)
24
7.8. Variable Files (.var)
25
7.9. Region Files (.reg)
25
7.10. Time and Level Menu Files (.tim and .lev)
25
7.11. Font Files (.fnt)
26
7.12. Font List File (.fnl)
26
7.13. Symbol Files (.smb)
27
7.14. Bulletin Files (.bul)
27
7.15. Shell Menu Files (wxp.menu)
27
7.16. Lookup Files (.lup)
28
8. Input and Output Files
29
8.1. File Paths
29
8.2. Ingest Programs
29
8.3. Decoder Programs
29
8.4. Analysis Programs
30
8.5. Name Conventions
31
8.6. in_file and out_file Resources
32
9. Filenames
33
9.1. List of Available Files and File Prompt
33
9.2. Direct Filename
33
9.3. Current Filenames
34
9.4. Latest Filenames
34
9.5. Specifying Specific Hours
34
9.6. Specifying a Range of Hours
35
9.7. Multiple Filenames and Looping
35
9.8. Decode Hours
35
9.9. Decode Time Ranges
36
9.10. Sequence Numbers and wxpcurtime Environment Variable
36
10. Plot Domains
38
10.1. Plot Domain
38
10.2. Specifying the Domain
39
10.3. Selecting a Domain for a Map Projection
40
10.4. Selecting a Domain for a non-Map Projection
40
10.5. Selecting a Domain from a File
40
11. Regions
41
12. Forecast Times
43
12.1. Menu
43
12.2. Specifying Forecast Times
43
12.3. Forecast Times and GRIB Data
44
13. Vertical Levels
45
13.1. Menu
45
13.2. Specifying Vertical Levels
45
14. Variables
47
14.1. Menu
47
14.2. Specifying Variables
47
14.3. Variables in GRIB files
48
15. Data Plotting
49
15.1. Station Filtering
49
15.2. Station Data
50
15.3. Plot Types
50
15.4. Plot Attributes
50
15.5. Color based on Value
53
15.6. Plotting Symbols
53
15.7. Saving Raw Files
54
16. Gridding and Contouring
55
16.1. Objective Analysis
55
16.2. Grid Doubling
56
16.3. Saving Grid Files
56
16.4. Contouring
57
16.5. Color Fill Contours
57
16.6. Line Contours
58
16.7. Smooth Contours
59
16.8. Gridpoint Values
59
16.9. Contour Line Labeling
60
16.10. Overlay Map
61
16.11. Color Bar
61
16.12. Plot Attributes
61
16.13. Automatic Intervals
63
16.14. Maximum Number of Lines
63
17. Vector Plotting
64
17.1. Vector Plots
64
17.2. Vector Bar
65
17.3. Wind Barbs
65
17.4. Streamlines
66
17.5. U, V Component Computation
67
17.6. Plot Attributes
67
17.7. Color based on Value
69
18. Map Plotting
70
18.1. DLG (Digital Line Graph) Maps
70
18.2. Multiple Maps and Attributes
71
18.3. Map List Files
71
18.4. Conditional Map Drawing
71
18.5. Regional Map Drawing
72
18.6. Plotting non-maps
72
18.7. Underlay, Overlay Maps
73
18.8. Latitude Longitude Lines
73
18.9. Binary map file interface
74
19. Graphical Output
75
19.1. Device Resource
76
19.2. Geometry Resource
78
19.3. Interactive Commands
79
19.4. Querying Values
80
19.5. Interactive Zoom
80
19.6. Interactive Editing
81
19.7. Postscript Dumps
81
19.8. Image Dumps
81
20. Graphics Color Resources
83
20.1. Colors and Color Table File
83
20.2. Special Printer Colors
84
20.3. Direct Colors
84
20.4. Read/Write Colors
85
20.5. Local Colormaps
85
20.6. Graphics Resources and Attributes
85
20.7. Fill Contour Colors and Attributes
86
20.8. Satellite Enhancement
88
21. Graphics Resources
89
21.1. Draw Resource
89
21.2. Window Control
89
21.3. Full Plots
90
21.4. Changing Plot Labels
90
21.5. Overlay Labels
90
21.6. Changing Time Zones
91
21.7. Color Bar
91
21.8. Output to Image Files
91
21.9. Inverse Images
92
21.10. Viewport Specification
92
22. Station Subsets
93
22.1. Plot Domain
93
22.2. Station Priorities
93
22.3. Station Identifiers
93
23. Text Output
95
23.1. Surface Data
95
23.2. Upper Air Sounding Output
96
23.3. MOS Data Output
98
Present Weather Determination
100
24. Messages
102
24.1. Setting the message resource
102
24.2. Paging options
103
24.3. File output options
103
25. Exit Values
105
Data Ingest
107
26. FOS Text Feeds
107
26.1. Domestic Data Plus and International Data Feeds
107
26.2. FAA 604 Data feed
107
27. Binary Feeds
109
27.1. High-resolution Data Service (Alden format)
109
27.1.1. GRIB Format
109
27.1.2. GRID Format
109
27.1.3. BUFR Format
110
27.2. Unidata McIDAS data stream
110
27.3. Satellite Imagery Data
110
27.4. NIDS (Nexrad Information Dissemination Service)
110
27.5. NOWRad Data
111
27.6. Unisys Radar Mosaic Data
111
27.7. RRWDS Radar Data
111
27.8. NLDN Lightning Data
111
28. NOAAPORT
112
28.1. TEXT Format
112
28.2. GRIB Format
112
28.3. BUFR Format
113
28.4. Redbook Format
113
28.5. Image Format
113
29. Ingest Program
114
29.1. LDM (Local Data Manager)
114
29.2. WXP Ingestor
114
29.2.1. Bulletin File
115
29.2.2. Output Files
119
29.2.3. Log Files
120
29.2.4. Terminating Ingest
120
30. Header Files
121
30.1. Header File Syntax
121
30.2. Creation of Header Files
122
30.3. Header Files and the LDM
122
31. PAN (Product Arrival Notices) Messages
123
31.1. PAN Message Syntax
123
31.2. PAN Message Setup
124
32. Scouring Old Data
125
32.1. Automated Scouring
125
Data Decoding and Parsing
127
33. Surface Data Decoding (METAR/SAO format)
127
34. Synoptic Surface Data Conversion
128
35. Upper Air Data Conversion
129
36. Radar Data Conversion
130
36.1. MDR Radar Conversion
130
36.2. RCM Radar Conversion
130
37. Other Data Conversion
131
37.1. SHEF Data
131
37.2. CLIMAT Data
131
37.3. TAF (Terminal Forecast) Data
131
37.4. Hurricane Data
131
38. Data Parsers
132
38.1. Text Data Parser
132
38.2. Public Forecast Parser
132
38.3. Surface Data Parsing
133
38.4. Upper Air Parsing
133
38.5. MOS Data Parsing
133
38.6. GRIB File Parsing
133
Analysis and Display
135
39. Surface Data Analysis
135
39.1. Surface Plotting
135
39.2. Surface Gridding and Contouring
137
39.3. Surface Time Series Plotting
138
40. Upper Air Data Analysis
140
40.1. Upper Air Plotting
140
40.2. Upper Air Gridding and Contouring
141
40.3. Upper Air Sounding Calculations and Plotting
141
41. Radar Data Analysis
143
41.1. MDR Radar Summary Display
143
41.2. RCM Radar Summary Display
144
41.3. NIDS (Nexrad) Radar Display
145
41.4. Radar Mosaics (NOWRad and Unisys)
146
41.5. RRWDS Radar Site Display (Obsolete)
147
42. Forecast Model Output (MOS) Analysis
148
42.1. MOS Data
148
42.2. MOS Data Plotting
148
42.3. MOS Gridding and Contouring
150
43. Forecast Model Gridpoint (GRIB) Contouring
152
44. Satellite Image Display
154
45. Miscellaneous Analysis
156
45.1. Map and Raw File Plotting
156
45.2. Raw Data Gridding and Contouring
157
45.3. Contour Existing Grids
157
45.4. Wind Vector Display from Existing Grids
157
Annotation, Overlay and Animation
159
46. WXP Loop
159
46.1. WXP Loop Modes
159
47. Scripting, Overlays and Animations
161
47.1. Overlays and Loops
161
47.2. Generating GIF Images
165
47.3. Automating GIF Generation
166
47.4. Use of Scripting with Graphical User Interfaces
167
47.5. Scripting and Postscript Overlay
167
47.6. Scripting and HPGL Overlay
167
47.7. Looping using animated GIFs
168
General Purpose Programs
169
48. Information Programs
169
48.1. File Name Information Program
169
48.2. Resource Determination Program
169
48.3. City Name Determination Program
170
49. Mathematics Programs
171
49.1. Raw Data File Mathematics
171
49.2. Grid File Mathematics
171
50. Meteorological Computations
173
50.1. Sunrise Sunset Computation
173
50.2. Unit Conversions
173
50.3. Domain Computation
173
50.4. Wind Chill Computation
173
50.5. Heat Index Computation
174
50.6. Moisture Parameter Computation
174
50.7. Standard Atmosphere Computation
174
51. Concatenation Programs
175
51.1. Postscript Concatenation
175
51.2. HPGL Concatenation
175
51.3. GIF Concatenation
175
Systems Administration
177
52. System Administration Overview
177
52.1. Files that likely need changing
177
52.1.1. WXP Resource File
177
52.1.2. Ingest Bulletin File
177
52.1.3. Name Convention Files
178
52.1.4. Generating Header Files
179
52.1.5. Automatic Conversion, File Generation and Scouring
179
52.2. Files that likely don't need modification
180
52.2.1. Parse Lookup File
180
52.2.2. Model Lookup File
180
52.2.3. Variable Files
180
52.2.4. Units File
181
52.2.5. Time and Level Menu Files
181
52.2.6. Region Files
181
52.2.7. GRIB Lookup Files
181
52.2.8. Color Table Files
182
52.2.9. Color Fill and Enhancement Files
182
52.2.10. Symbol Files
182
52.2.11. Font List Files
182
52.2.12. Font Files
182
52.2.13. WXP Shell Menu File
182
52.2.14. Case Study Setup Files
182
52.3. Database files that may need to be updated
183
52.3.1. City Database Files
183
52.3.2. City Raw Files
183
52.3.3. Map Files
183
53. Resource File
184
53.1. Resource File Location
184
53.2. Resource File Syntax
185
53.3. Complex Resources
185
53.4. Conditional Resources
186
54. File Name Conventions
188
54.1. File Name Tags
188
54.2. File Name Convention String
189
54.3. Header Files
190
54.4. in_file and out_file Resources
190
55. Parsing Data and Header Files
192
55.1. Parse Lookup File
192
55.2. Text Data
192
55.3. GRIB Data
193
55.4. Automating Header File Generation
193
56. Automatic Data Conversion and Scouring
194
56.1. Surface Data Conversion
194
56.2. Synoptic Data Conversion
194
56.3. Upper Air Data Conversion
195
56.4. MDR Radar Data Conversion
195
56.5. RCM Radar Data Conversion (NOAAPORT Only)
195
56.6. UNIX Cron Setup
195
57. Forecast Model Files
196
57.1. GRIB Data
196
57.2. Model Lookup File
196
58. Variable Files
198
58.1. Variable File Syntax
198
58.2. Variable Definitions
199
58.3. Simple Variables
200
58.4. Composite overlays
200
58.5. Overlay plots
201
58.6. Plotting Attributes
202
58.7. Variable Aliasing
202
58.8. Vectors
202
58.9. Functions
203
58.10. Panel Plots
206
59. Units Conversion
208
60. Time and Level Menu Files
209
61. Shell Menu Setup
211
62. Case Study Setup
212
62.1. Creating Case Studies
212
62.2. Using Case Studies in WXP
212
62.3. Case Study Setup and the WXP Shell
213

WXP User Environment

1. WXP Overview

The Weather Processor can be logically divided into three data processing sections: ingest, decoding and analysis. Each of these logical data processing divisions is treated in some detail in subsequent sections.

[image: image1.png]'WEATHER PROCESSOR DATA FLOW
DataLine

v

AT
Ingest wesT
Ingested Data Ples
namt
Busers Decoters DECODING

Pasearies § Decoded ks §

[—
1 1 Attt

Hardeopy WXBloey

1.1. User Shell

To access the programs, WXP employs a shell called "wxp" which is a menu driven interface into the bulk of the WXP programs.

Programs

· wxp - The WXP user shell (Unix only)

1.2. Data Ingest

WXP needs to get data in order to produce the products. This data can either be archived or real-time data. Real-time data access requires a program called an "ingestor" to read in select specific products and save the data into a coherent data structure.

There are two types of ingestors that WXP employs. The first is the Unidata Local Data Manager (LDM). This is provided to universities and either ingests data directly from the NWS Family Of Services (FOS) or obtains data over a network from another equivalently setup LDM. This process of transferring data from one LDM to another over the Internet is called Internet Data Distribution (IDD).

The second type of ingestor is the WXP ingestor. This is setup to read data from the Domestic Data Plus (DD+), International Data Service (IDS), High Resolution Data Service (HRS) and FAA 604 data circuits. The ingest program saves raw data into user defined data files based on some specified naming convention.

Programs

· ingest - The WXP ingestor

· scour - A Program to remove older ingested data files

1.3. Data Parsing and Decoding

Once the data has been saved to the local disk by the ingest process, it is ready for processing. In some cases, the data are in a format where parsing it is appropriate. By parsing, we refer to selecting a specific product from all the ingested data files. This could be a local forecast, a weather advisory or climate report. WXP offers several specialized parses to aid in viewing the data.

In other cases, the data are encoded and require some degree of preprocessing before they can be used effectively by other WXP programs. There are several decoders available to handle various types of data. In some cases, the encoded data is too complicated to decode every time the data is needed. Often data of a similar type like surface data are encoded in several similar formats and it would be desirable to have one common format for processing. There are cases where the information for one site is split up into several products and it would be desirable to have all of that data collated into a single product or data structure for that site. Also, while decoding, there is the opportunity to correct or eliminate erroneous data that is either generated by the observer, the encoding process or through transmission of the data. The new decoded formats also provide a way to get non-standard data processed. If you have surface data in a format the WXP decoders cannot handle, you can write your own decoder that will produce the WXP format and then be able to plot the data. This also allows data types such as SAO, METAR, DRIBU and SYNOP to be saved in one format.

Decoders Programs

· sacvt - The surface data decoder (SAO, METAR, SPECI)

· smcvt - The surface synoptic data decoder (SYNOP, BUOY, DRIBU, CMAN)

· uacvt - The upper air data decoder

· radcvt - The MDR radar data decoder

· shefcvt - The SHEF data decoder

· climat - The CLIMAT data decoder

· tafcvt - The TAF data decoder

· hurricane - Hurricane advisories decoder

Parsing Programs

· parse - The general purpose parsing program

· sa_parse - The surface data parsing program

· ua_parse - The upper air data parsing program

· fo_parse - The MOS data parsing program

· forecast - The forecast parser

· griblook - The GRIB data parsing program

· hdrparse - Header file generation program

1.4. Data Analysis and Display

The application programs available within WXP can produce a variety of output products. These programs analyze many of the standard meteorological data types including surface, upper air, radar, satellite, model output statistics, and model gridpoint data. These applications use a simple menu structure to guide the user through the different types of data saved in the various types of data files. The analysis programs can plot derived variables such as relative humidity, lifted index and vorticity. The output of these programs can either be plotted data such as a temperature plot or a skew T or it can be contoured plots of gridded fields. The output devices range from X windows to Postscript printing and metafiles.

Surface Data Programs

· sfcwx - Plots surface data

· sfccalc - Contours surface data

· statlog - Plots time series of surface data

Upper Air Data Programs

· upairwx - Plots upper air data

· upcalc - Contours upper air data

· uacalplt - Plots soundings (Skew Ts)

Radar Data Programs

· rad - Plots MDR radar, NIDS, NOWRad and RRWDS data

MOS Data Programs

· fouswx - Plots MOS data

· focalc - Contours MOS data

GRIB Data Programs

· grbcalc - Contours model gridpoint data (GRIB files)

· grbsnd - Plots soundings based on model data

Satellite Data Programs

· xsat - Displays satellite images

Miscellaneous Data Programs

· light - Plots NLDN lightning data

· prfplt - Plots Profiler data

Grid Programs

· contour - Contours existing grids

· vector - Plots vectors and streamlines from existing grids

Raw Data Programs

· mapplt - Plots raw data

· grid - Contours raw data

Mapping Programs

· mapplt - Plots maps and station locations

1.5. Overlay and Looping Programs

These applications work with X windows to provide overlay, annotation and animation capabilities. The wxploop program provides the user with extended overlay, annotation and animation capabilities. The loopset program allows interactive parameter setting with the wxploop program. This allows images to be added or deleted from the loops at any time.

Programs

· wxploop - The annotation, overlay and looping program

· loopset - The interactive front end to wxploop

1.6. Meteorological Calculations

These programs are provided in order to calculate some simple meteorological variables and indices.

Programs

· rawmath - Performs math operations on raw files

· grdmath - Performs math operations on grid files

· wchill - Wind chill computations

· heat - Heat index computations

· moist - Moisture variable computations

· stdatms - Standard atmosphere computations

· suncalc - Sunrise/set computations

· unit - Unit conversion program

· domtran - Domain/projection computation program

1.7. General Purpose Programs

These programs are used to interface with the other WXP programs.

Programs

· wxpfile - Generates file names, dates, labels, etc

· wxpdef - Queries WXP resources

· wxpcity - Queries city, county, state, zone information

· mc2area - Converts packetized McIDAS data to AREA files

· pscat - Concatenates multiple WXP postscript files together

· hpglcat - Concatenates multiple WXP HPGL files together

· gifcat - Concatenates multiple WXP GIF files together

2. User Shell XE "user shell"

The WXP shell is a text menu based interface into the set of WXP programs. Since WXP is split up into more than 40 subprograms, it may be more difficult to remember which program performs which function. The WXP shell provides tailorable menus to simplify access.

2.1. Shell Basics

To invoke the WXP user shell, type in "wxp" from the operating system prompt. Once this occurs, the WXP shell main menu will appear.

 WXP: The Weather Processor - version 5.0-X11

 Main Menu

 1: Parsing Programs

 2: Plotting Programs

 3: Contouring Programs

 4: Meteorological Calculations

 0: Return to previous menu

 -1: Exit WXP shell

 WXP-main>

From the main menu, four submenus may be selected. For example, if you hit "2", the following menu will appear:

 Plot Data Menu

 1: Plot Surface Data

 2: Plot Surface Meteograms

 3: Plot Upper Air Data

 4: Plot Soundings

 5: Plot ETA Model Soundings

 6: Plot MDR Radar Data

 7: Plot NOWRad Data

 8: Plot Lightning Data

 9: Plot MOS Data

 10: Plot MOS Meteograms

 11: Plot Maps

 0: Return to previous menu

 -1: Exit WXP shell

 WXP-plot>

The shell will continue to display selected submenus until the selection is a program to be run. In the menu listed above, all the selections are programs to be run. When you select a program, the shell will run the selected program. It will also display the program and any configured and user command line arguments. If you select "1" the shell will print "Running: sfcwx" and then run the program:

 Running: sfcwx
 SURFACE DATA PLOTTING (Ver 5.0-X11)

 List of available files:
 /home/wxp/convert/96110800.cvt /home/wxp/convert/96110801.cvt
 ...
 /home/wxp/convert/96111120.cvt /home/wxp/convert/96111121.cvt
 /home/wxp/convert/96111122.cvt /home/wxp/convert/96111123.cvt

 Enter the surface filename:

The WXP shell remains active and when the program finishes, control is returned to the WXP shell and the same shell menu is displayed. If you happen to exit with a break (control-C), the shell menu will display.

In order to distinguish between the regular programs and the WXP shell, the prompt prints WXP and the name of the current menu:

 WXP-main>

By convention, the menu item "0" goes back one menu level and "-1" exits the shell.

At any time, you can run any existing command on the system. In other words, the WXP shell behaves like a simplified shell like C-shell. For example, you can run "ls -las" or invoke editors such as "vi" directly from the WXP shell. The shell first checks to see if the command you entered starts with a number (hence a menu selection) or is one of the internal shell commands like "set". If it isn't one of these, it attempts to run the command as listed.

Any menu selection will start with a number such as "1". The shell allows you to add command line parameters to the menu selection. In other words, the shell converts the "1" to the string "sfcwx" and anything else specified is passed along to "sfcwx". For example:

 1 -cu=la -re=mw -va=all -de=d

The shell mode of operation is best for novice or occasional users of the WXP package, as little knowledge of individual program operations is required. For the more experienced user, each program can be run standalone with a multitude of command line and resources available for maximum tailorability.

2.2. Internal Shell Commands XE "user shell:commands"

The WXP shell has some internal commands that are used to set up the WXP environment. These commands are as follows:

· help - displays a simple listing of the internal shell commands.

· menu name - goes to specific menu (name is what shows up in prompt)

· back - goes back one menu level

· menu - displays the current menu (useful when menu listing is off)

· menu off - turns off menu listing, only shell prompt displays

· menu on - turns on the menu listing.

· set - displays the current set of environment variables

· set name=value - sets the environment variable name to value

· case - lists all case studies

· case name - enables the case study named name

· uncase - disable case study feature and returns to using current data

· exit - exits the shell

2.3. Case Studies XE "user shell:case studies"

 XE "case studies"

The WXP shell has a case study interface, which sets up resources (via environment variables) specific for each case study. You can list the case studies by running the "case" command:

 *** Tornadoes ***

 in_torn - Indiana Tornadoes on (2 Jun 1990)

 laf_torn - Lafayette Tornado on (26 Apr 1994)

 ill_torn - Lafayette Tornado on (9 May 1995)

 ...

There is a header line, which can be used to organize the case studies. The name listed (such as "in_torn" is used with the case command to set the appropriate case. Once the case has been selected, the WXP prompt will change showing the case:

 WXP-main> case 90_snow

 Running Case: Cyclone Occlusion over Midwest (3 Dec 1990)

 Main Menu

 ...

 WXP-main[90_snow]>

From this point forward, when you run WXP programs, they will point to data in the case study directory rather than the real-time data directory.

To go back to using real-time data, use the "uncase" command. The prompt will go back to normal reflecting the change.

3. Program Basics

The WXP shell often hides the user from the underlying components of WXP. Each program can be invoked from either the WXP shell or from the operating system shell (such as C shell). Each program uses resources to define default values and provide resource files, environment variables, command line parameters and program interaction to reset these values.

Each program has online help XE "program:help" that can be accessed through the command line with the "-h" option. Here is the output from "sfcwx -h":

sfcwx: This program plots various types of surface data

sfcwx syntax (version:5.0-AIX-X11)

 sfcwx [options...]

Keyed options...

 -df file Resource/defaults file name

 -na name Program name

 -h Print this help

 -ba Run program in batch mode

 -me level Message level to be displayed:

 none,print,error,warn,mess,out1,*out2,out3,out4,debug

 -nc type Naming convention file name

 -fp path File path

 -dp path Raw data path

...

 -ti title Window title

 -ic Open window iconified

 -bg clr Background color

 -ge wxh+x+y Window geometry

Positional options...

 file Input file name

The help first lists the name of the program and a brief description. The second line gives the version of WXP (5.0), the binary type (for IBM AIX workstations) and the graphics type (X11 is X windows). The following lines briefly explain the keyed and position parameters to the program to be invoked on the command line. To get more information on these, consult the program reference.

The programs use the resources to derive the final product. These resources define the location of data, naming conventions, the computation to be performed and the look and feel of the output. The program prompts for those resources that are left unset. This is done with either a simple prompt or a menu. If interactivity is not desired, a batch mode can be set which then sets default values for these unset resources.

The input to the programs is generally some specific type of meteorological data. WXP doesn't group all data into a generic type and provide a single program to access it. WXP realizes that some data types require special treatment and as a result, programs have been developed around the data such as for surface data, upper air data and model gridpoint data.

The output of the program can either other data files as with decoders, textual as with parsers or graphical as with the plotting and contouring programs. The graphical output can either be to a window such as with X windows, or a Postscript or HPGL file for printing, or finally a metafile.

WXP programs attempt to provide a consistent interface for setting up the programs, interacting with the programs, and finally the output of the programs.

4. Prompts and Menus

The ability to guide the user through the rough task of selecting options is critical for most programs. WXP employs a system of prompts and menus to guide the user to the final product. Even though the menu system can provide access to many types of plots, the command line and resource interface is far more powerful. There is a balance between providing basic capabilities to the user through the menus and overwhelming the user with choices.

NOTE for Windows 95/98/NT Version -- In all graphics applications, there is no ability to print messages, prompts and menus to standard output. For these applications, the menus and prompts are disabled. As a result, all pertinent information must be specified on the command line.

4.1. Program Prompts XE "program:prompts"

Many WXP programs prompt the user for information. A prompt is used when the number of options is fairly limited and explanation is not required. Each prompt is a request for a resource value. In some cases, you will enter the exact value for the resource as in a filename.

 /home/wxp/convert/96112205_sao.wxp

 /home/wxp/convert/96112206_sao.wxp

 Enter the surface filename: 96112206

The filename is entered from the list of files. You can abbreviate the value in some cases as in the above example.

In other cases, you will enter an abbreviation for the resource.

 Display (D) or Postscript (P):

The abbreviations will be clearly listed at the prompt.

4.2. Program Menus XE "program:menus" XE "menus:program"
If more information is needed in order to select a resource or parameter, a menu is displayed and the selection is from taken from the menu listing. Menus have a couple of added features. First, they can be nested so that the user can select more than one parameter to display from within a single program. For example, you can select to plot temperature for the Midwest. When you are done looking at this plot, you can select another variable such as temperature or go up a menu level and select a different region. Second, menus often have many more parameters to select than those listed. The programs have predefined variable types, not all of which can be displayed in a simple menu. You can still select the variable type but it will not appear on the menu.

When a resource is to be selected via a menu, a list of choices will appear. Each menu item has a resource value associated with it. By entering the number from the menu, you are essentially entering that value. It is just an abbreviation for the value.

 Region Menu

 1: Contiguous US --------------------

 2: New England 10: Western Canada

 3: Atlantic 11: Eastern Canada

 4: Southeastern 12: Northern Canada

 5: Midwestern 13: North America

 6: Southern Plains 14: Indiana

 7: Northwestern 15: Lafayette

 8: Southwestern

 0: Return to previous menu -1: Exit program

 Enter the region:

There are several ways of entering data at a menu prompt XE "menu:selection" . First, you can enter the number associated with the selection. For example, the Midwest region can be selected by entering "5" at the prompt. Second, the full menu listing can be there is the menu listing. You could have entered "Midwestern". There is also the resource value. To get a list of possible resource values, you can type "?" at the menu prompt:

 Enter the region: ?
 back,us,ne,at,se,mw,sp,nw,sw,--,wc,ec,nc,namer,ind,laf

The values are then listed and the prompt returns. You can see that the associated value is "mw" so this could have been entered as well. There are a number of preset regions that don't show up on the menu because of space concerns. To get a full list of predefined regions XE "regions:predefined" , use the "list" XE "menu:list options" command:

 Enter the region: list
 Abbr Description

 us Contiguous US

 ne New England

 at Atlantic

 ...

 namer North America

 nhem North Hemisphere

 shem South Hemisphere

 hi Hawaii

 ak Alaska

 globe Global

 ...

 europe Europe

 easia East Asia

 ...

 aust Australia

 wpac West Pacific

 antarc Antarctica

Often the values are short and mostly easy to remember. As you get more adept at using WXP, you will rarely look at the menu but will almost always enter the resource value or abbreviation.

Finally, there are non-menu resource values that can be selected. For the region menu, a full plot domain value can be entered. This really generalizes the use of menus to being interfaces into setting the resource:

 Enter the region: 40,-105,1.4

Here, the values represent the central latitude, longitude and the scale size of the plot (1 is appropriate for regional plots).

Most WXP resources can be set from the WXP prompt. To view a list of set resources (those with values other than the program defaults), use the "set" command:

 Enter the variable: set
 Set resources

 default: /home/wxp/etc

 file_path: /home/wxp/etc

 data_path: /home/wxp/data

 con_path: /home/wxp/convert

 grid_path: /home/wxp/grid

 raw_path: /home/wxp/raw

 name_conv: name_conv

 current: la

You can then change any of these or set a new one by specifying the resource and its value:

 Enter the variable: set color_map=lblue

The resource is then set and the variable menu prompt returns. This does not work for all resources because these resources have been already been used (for example filename). This will work for those resources that have yet to be used such as colors, plot types, etc.

Finally, two more options are available. If the user wishes to exit the program, they can enter "-1" at the menu prompt and the program will terminate immediately and return to either the WXP shell or the operating system prompt. When working with menus and submenus, the user can enter "0" to return to a main menu when within a submenu. If the user is at the top menu level or main menu, this option will exit the program.

4.3. Typical Prompts and Menus

Most programs use a similar order to the prompts and menus.

· Filename XE "menu:filename" :
In general, there is a prompt for filename in which a list of files is displayed and a prompt for the appropriate filename.

List of available files:

/home/wxp/convert/96112205_sao.wxp

/home/wxp/convert/96112206_sao.wxp

Enter the surface filename: 96112206

The filename can be entered as the full path "/home/wxp/convert/96112206_sao.wxp", the name of the file "96112206_sao.wxp" or just the date portion of the file "96112206". WXP handles putting the extension and the path on the filename if not specified.

You can also specify latest for the filename. If you enter "cu", the current data file is selected. If the current data file does not exist, an error will be printed and the prompt will reappear. If you enter "la", the last available file is searched for. The current resource will have more information on the options.

· Region XE "menu:region" :
There is a prompt for display region, which represents the area, and the projection the plot will be drawn to.

 Region Menu

 1: Contiguous US --------------------

 2: New England 10: Western Canada

 3: Atlantic 11: Eastern Canada

 4: Southeastern 12: Northern Canada

 5: Midwestern 13: North America

 6: Southern Plains 14: Indiana

 7: Northwestern 15: Lafayette

 8: Southwestern

 0: Return to previous menu -1: Exit program

Enter the region:

The region can be selected from this list, the full list of predefined regions (see "list" option) or a variable region can be selected:

Enter the region: 40,-105,1.4

The values represent the central latitude, longitude and the scale size of the plot (1 is appropriate for regional plots). A full plot domain value can be entered (see the plot_domain resource).

· Forecast Time XE "menu:forecast time" :
The programs that involve forecast data will have a forecast time menu.

 Forecast Time Menu

 1: Initialized 14: 4.5 day

 2: 6 hour 15: 5 day

 3: 12 hour 16: 5.5 day

 4: 18 hour 17: 6 day

 5: 24 hour 18: 6.5 day

 6: 30 hour 19: 7 day

 7: 36 hour 20: 7.5 day

 8: 42 hour 21: 8 day

 9: 48 hour 22: 8.5 day

 10: 60 hour 23: 9 day

 11: 3 day 24: 9.5 day

 12: 3.5 day 25: 10 day

 13: 4 day

 0: Back to previous menu -1: Exit program

Enter the time:

There are several ways to specify the forecast time in addition to above menu values. You can specify a forecast time by using entering the time and its units:

init - Initial time
anal - analysis
12hr - 12 hour forecast
2day - 2 day forecast
4.5day - 4 1/2 day forecast

For more information on the forecast time specification, see the time resource.

· Level XE "menu:level" :
The programs that use upper air data either observational or forecasted, will have a level menu display (this replaces the region menu for simplicity).

 Vertical Level Menu

 1: Sea level 12: 150 mb

 2: Surface 13: 100 mb

 3: 1000 mb 14: 70 mb

 4: 925 mb 15: 50 mb

 5: 850 mb 16: 30 mb

 6: 700 mb 17: 20 mb

 7: 500 mb 18: 10 mb

 8: 400 mb 19: Tropopause

 9: 300 mb 20: Max wind

 10: 250 mb 21: Whole sounding

 11: 200 mb

 0: Back to previous menu -1: Exit program

Enter the level:

The menu lists standard pressure levels but can be used to access other levels. You can specify a level not listed on the menu by just entering a value and the units:

sfc - Surface level
sl - Sea level
mwnd - Maximum wind level
trop - Tropopause level
430mb - 430 mb level (pressure)
850-500mb - 850-500 mb layer
310k - 310 K potential temperature level (isentropic)
2000m - 2000 meter level (height)
50m_ag - 50 meters above ground

For more information on the level specification, see the level resource.

· Variables XE "menu:variable" :
Each program has a predefined set of parameters either defined within the program or through a variable file:

 Variable Menu

 1: All Data 13: Cloud Cover

 2: Temperature 14: Pressure Tendency

 3: Dewpoint 15: 24 Hr Precip

 4: Wind Direction 16: 24 Hr Maximum Temp

 5: Wind Speed 17: 24 Hr Minimum Temp

 6: Wind Gust 18: Snow Depth

 7: Wind Barb 19: Wind Chill Temp

 8: Sea Level Pressure 20: Heat Index

 9: Altimeter Setting 21: Relative Humidity

 10: Present Weather 22: Equiv Potential Temp

 11: Visibility 23: Convergence

 12: Cloud Ceiling 24: Rel Vorticity

 0: Return to previous menu -1: Exit program

Enter the variable:

This menu only lists a small subset of what WXP can calculate. Again, you can list the resource values with the "?" but this will only list those values enabled in the menu. If you want all the available values, you can use the "list" command. You can also create your own variables and modify existing ones. A simple example of this is changing the units of a variable. For example, temperature on surface plots is plotted in Fahrenheit. To change it to Celsius, just put the desired units after the variable separated by a colon ":":

Enter the variable: temp:C

· Contour interval: XE "menu:contour interval"
To display gridded data, the user will be prompted for the contour interval:

Contouring data for 500 mb Temperature (C)

Maximum value: -6.519228

Minimum value: -39.089241

Enter the contour interval:

The maximum and minimum values of the grid are displayed in order for the user to select a decent interval. A rule of thumb is to pick a contour interval that is 1/16th the range from the maximum to the minimum. If the user wished the program to select an appropriate interval, enter "0".

· Plot type: XE "menu:plot type"
The type of plot is normally predefined. Plotting programs will plot the data by default. Grid programs have several possibilities for output plot type.

Color fill (C) or Line (L) contours:

Vectors (V) or Streamlines (S):

The first prompt will appear for the scalar grid fields asking whether the contours are to be regular line contours or filled contours. The second appears when vector fields are to be plotted. The plot selection is either arrowed vectors at each grid point or streamlines. Any of the plot type values can be entered (see the plot_type resource)

· Device: XE "menu:device"
The output device specifies whether the plotted information will appear in a window on the screen or spooled to the printer.

Display (D) or Postscript (P):

In general, the output will be displayed in a window so "d" will be selected. If printed output is necessary, select "p" for postscript. The output will either go to a file or spooled to a printer as specified by the wxpps_print or wxphp_out environment variables.

· File parameter: XE "menu:file parameter"
In some cases, the program will produce output files. This is true of decoders. If the output file exists, whether it be a decoded file, a raw file or a grid file, the program will prompt you as to whether you want to overwrite the file, append to the file or to use the existing file in which the program normally exits.

/home/wxp/convert/97030514_sao.wxp: exists overwrite (Y,N,Use,Over,App):

The value "y" is the same as "Over" or overwrite the file. The value "n" is the same as "Use" which uses the existing file.

5. Resource Basics XE "resource:basics"
Each WXP program has a set of internal resources that can be set to tailor the execution of the program. Each resources has a default value or action compiled into the program. Some of these resources default to a user prompt often with a menu of possible values. When you select a file in a WXP program, you are setting a resource value.

You could just prompt the user for all of the resources but some WXP programs have over 30 available resources. This would make it to difficult to run the program. As a result, many of the resources are not visible (menus or prompts) but can be set either on the command line, through environment variables or through the resource file.

5.1. Typical Resources

WXP has over 50 resources available. Each resource has a resource name and a value that can either be a number, string or a list of values separated by commas. Here is a list of typical resources used in WXP and a brief explanation of what information they contain:

5.2. File Resources XE "resource:file"
· name_conv - This defines the file which stores the naming convention information for WXP. Every file WXP uses must adhere to a specific name convention which specify how date and time information are contained in the file name.

· file_path - This defines the path to locate all WXP database files including city databases (define station locations) and map databases.

· data_path - This defines the path to locate all raw encoded data from the Family of Services. Generally, the decoders and parsers use this resource but it is also used for locating MOS data and some of the model gridpoint data.

· con_path - This defines the path to locate all decoded/converted data files. The WXP decoders will read data in from the data_path and place their output in the con_path directory. Most WXP analysis programs then read from this directory

· grid_path - This is where grid file generated by WXP are saved.

· raw_path - This is where raw files generated by WXP are saved.

· image_path - This is where images generated by WXP are saved.

· file_param - This resource controls how data files are handled. If the file exists, should you overwrite it or append to it.

· in_file - Defines what type of files are going to be used as input into the program. This resource is used to define the input file format as well as the naming convention.

· out_file - Defines the type of output files. For some programs such as decoders, this defines the output file format as well as the naming convention. For others, it specifies whether the program will produce output or not.

· filename - This specifies the actual filename to be used by a program. More than one file can be specified to create loops.

5.3. Date Resources XE "resource:date"
· current - This defines which data files is to be used based on the current time. You can specify to use the latest file or a file which is X number of hours old.

· hour - This limits the current resource to specific hour during the day. This would be used if you want the latest 12Z file.

· num_hour - This specifies how many data files to use. In parsing programs, this extends the search for data to more than one data file. In display programs, this specifies the number of hours to loop through.

· decode_hour - This specifies the exact time to specify for decoding. Only data that is within a specified range of this hour will be saved to the output converted file.

5.4. Data Analysis Parameters XE "resource:data analysis"
· plot_domain - This specifies the domain and projection of the final plot. There are several projections available in WXP.

· region - This is nearly synonymous to plot_domain except it can be used to specify the grid that data are fit to in the contouring programs.

· time - This specifies the forecast time to be used in programs that deal with forecast products.

· level - This specifies the vertical level or layer to be used in the program.

· variable - The variable or parameter to plot.

· identifier - This specifies a list of specific station identifier to use.

· object_param - Specifies the parameters to be used when fitting the data to a grid.

· stat_prior - Determines the priority level of the stations to be used. The higher the number, the more stations will be used.

· parameter - Some general parameters used in non-graphical programs.

5.5. Database Parameters XE "resource:database"
· city_file - This lists the city database file to be used to locate station data.

· map_file - This lists the map files to be used in creating the geographical background maps.

5.6. Plotting Parameters XE "resource:plotting"
· plot_type - Specifies the type of output plot

· draw - Defines which parts of the plot are to be drawn. This is handy for overlays where certain parts of the plot may overlap another.

· con_interval - Specifies the interval to be used in plotting and contouring data.

· con_base - Specifies the base value to be used for contours.

· plot_scale - The scale factor to be used in plotting the data.

· plot_param - Specifies a list of additional plotting and analysis parameters.

· font_list - Lists the fonts to be used in the plots

· color_table - Specifies a file which contains a list of color that will be used in the plots

5.7. Attribute/Color Parameters XE "resource:color attributes"
· color_text - Specifies the colors/attributes of the text labels drawn above and below the plot.

· color_map - Specifies the colors/attributes of the base map used in most programs.

· color_cmap - Specifies the colors/attributes on the color fill contour map overlay.

· color_line - Specifies the colors/attributes of the latitude, longitude lines.

· color_data - Specifies the colors/attributes of plotted data.

· color_wind - Specifies the colors/attributes of the wind barbs.

· color_cloud - Specifies the colors/attributes of the cloud cover symbols.

· color_cont - Specifies the colors/attributes of the line contours.

· color_fill - Specifies the colors/attributes of the color fill contours.

· color_front - Specifies the colors/attributes of the fronts.

5.8. Device/Window Parameters XE "resource:device"
· device - Specifies the output device type and parameters.

· geometry - Specifies the geometry of the window or output plot.

· title - Specifies the title to use on the window.

· icon - Specifies whether to open the window iconified and not visible.

· background - Specifies the background color to be used in the plot

5.9. Miscellaneous Parameters

· help - Provides help for each program

· batch - Specifies to eliminate prompts/menus from program in order to be run in a background/batch mode.

· message - This specifies the message level. This is handy in either reducing the amount of text output from a program or increasing it for informative purposes.

· default - Specifies the location of the resource file

· name - Specifies a program name for resource parsing

· command - Specifies a list of command to run

6. Setting Resources XE "resource:setting"
WXP has several methods for accessing and modifying resources.

6.1. Program Defaults XE "resource:program defaults"
Each program initializes the resource to either a value or the value is prompted for while the program is running. These are hardcoded into the source code and can be modified by the means listed below. For example, the data_path resource defaults to the current directory. Of course you would rarely store data in the current working directory so this resource is usually set to some other value. Some program defaults allow the user to enter the value of the resource through a menu of possible choices and prompt for the value. An example of this is the region and variable resources.

6.2. Resource File XE "resource file"
Often, the hardcoded defaults are not appropriate. As a result, there needs to be a mechanism to reset program defaults or those values that rarely change. To accomplish this, a resource file is available where those resources and the default values are saved. Since the names of resources are common to all WXP programs, there is a way of creating named resources that can be based on the name of the program or toggled from the command line. Unnamed resources are called global resources that are used by all programs.

 *data_path: /home/wxp/data
If a resource needs to be specifically set for a program, you can specify a named resource.

 sacvt.out_file: cdf

6.3. Resource File Location XE "resource file:location of"
The default resource file is ".wxpdef" ("wxp.def" for Windows) More than one file can be specified to create loops.which is stored in your current working directory or the location specified by the wxpdefault environment variable. This is often used to set a system wide resource file. This way, a common environment can be used for all users on the system.

 setenv wxpdefault /home/wxp/etc

It is recommended that this location be set in the user's shell startup script (e.g. .cshrc for C-shell).

To group system and local resource files, each file can be specified separated by a colon ':'.

 setenv wxpdefault /home/wxp/etc:~user/MyWXP.res

The resource files are processed in the order listed so resources listed and the last resource file takes precedence. The resource file location can be changed on the command line of each program.

6.4. Environment Variables XE "resource:environment variable"
At times, program defaults need to be set for multiple program runs. It is unnecessary to continual modify the resource file is these situations. Also, it is not recommended to set those command line arguments every time a program is run. Therefore, a set of environment variables is provided for each resource. The name of the environment variable is just "wxp" + the resource name. So the current resource has an associated environment variable "wxpcurrent". For example:

 setenv wxpcurrent la

will specify to use the latest (la) available file. Each program will use this value for the current resource until this environment variable is either reset or unset.

There are named environment variables as well. This works just like the resource file by specifying "wxp" + program name + "." + resource. So if you want color_data resource for only uacalplt to be red, then you would specify:

 setenv wxpuacalplt.color_data red

Environment variables can be used to set temporary defaults, which can be handy for use with case studies or specialized situations.

6.5. Command Line XE "resource:command line"
Each resource can be specified on the command line. Command line parameters are only valid for that program invocation and will not carry over to the next WXP program run. If more permanent values are to be set, look at setting resource values via the resource file or environment variable.

The syntax for the command line is very similar to the to that for other methods. Most of the resources are keyed resources. To specify that the resource is a keyed resource, the resource name is preceded by a "-". The syntax is "-" + resource name + "=" (optional) + its value.

 sfcwx -region=mw
 sfcwx -variable all

In many cases it would be nice to not list the entire resource name in the key. WXP provides two shortcuts. First, each resource has a 2 (sometimes 3) letter abbreviation associated with it that is listed below.

The term keyed resource means that since each value is keyed, many resources can be set each with its key and entered onto the command line in any order. For example:

 sfcwx -de=d -re=us -me=none -va=all -ti=US_PLOT -cu=la

In most programs, there is a positional (non-keyed) resource. A positional parameter does not need to have the resource specified and ONLY its value is listed:

 sfcwx 96112103

Some programs like wxploop allow you to specify more than one file:

 wxploop sfc1.gif sfc2.gif sfc3.gif sfc4.gif

The term positional means that they are order dependent. For wxploop, it uses this list of files to load GIF images into the program for animation or looping. They are loaded in the order they appear.

Keyed and positional resources can be intermixed on the command line:

 sfcwx -re=us -va=all 96112103 -de=d -me=none -ti=US_PLOT

6.6. Program Menus and Prompts XE "resource:menus and prompts"
For those resources that are not set either from the resource file, environment variables or through the command line, initial defaults are used. In some cases, the default action is to prompt the user for the value for that resource. Often these prompts are preceded by a list of options or menus. By selecting the value from the menu, the value of that resource is set.

Common Resource Abbreviations

PRIVATE
Resource
Abbr
Resource
Abbr
Resource
Abbr
Resource
Abbr

name_conv
nc
file_path
fp
data_path
dp
con_path
cp

grid_path
gp
raw_path
rp
file_param
pf
in_file
if

out_file
of
current
cu
num_hour
nh
hour
ho

decode_hour
dh
plot_domain
pd
region
re
time
ft

level
le
variable
va
identifier
id
stat_prior
pr

object_param
oa
parameter
pa
city_file
cf
map_file
mf

plot_type
pl
draw
dr
con_interval
in
con_base
cb

plot_scale
sc
plot_param
pp
font_list
fl
color_table
ct

color_text
cot
color_map
com
color_cmap
cocm
color_line
coln

color_data
cod
color_wind
cowd
color_cloud
cocd
color_cont
coco

color_fill
cof
color_front
cofr
device
de
geometry
ge

title
ti
icon
ic
background
bg
default
df

name
na
help
h
batch
ba
message
me

7. Databases XE "database"
WXP uses several database files to locate data, draw maps, describe text fonts, etc. These are mostly ASCII files that may be changed, updated or even created by the user. These files are all located in the directory pointed to by the file_path resource.

The types of databases are denoted by the file name extension for each file:

PRIVATE
Extension
Type
Resource

.cty
city database files
city_file

.map
map database files
map_file

.bmap
binary map database files
map_file

.mpl
map listing files
map_file

.raw
raw file database files

.clr
color table files
color_table

.cfl
color fill files
color_fill

.enh
satellite enhancement files
color_fill (xsat only)

.var
variable files
variable

.reg
region file
plot_domain or region

.lev
level menu files

.tim
time menu files

.menu
WXP menu file

.smb
symbol files

.lup
lookup files

.bul
bulletin files
bull_file

.fnl
font list files
font_list

.fnt
font files
font_list

7.1. City Databases (.cty) XE "database:city"

 XE "city database"
City database files are used to locate reporting stations. The data included are the name of the station, the location by country and state/province, the ID of the station (3 to 5 letters), the priority of the station, the latitude and longitude, elevation, and WMO numeric ID. A sample of this type of file is:

MIDLAND REGIONA TX US KMAF 1 31.95 -102.18 872 72265

KANSAS CITY INT MO US KMCI 1 39.32 -94.72 312 72446

MIAMI INTL AIRP FL US KMIA 1 25.82 -80.28 4 72202

MOBILE/BATES FI AL US KMOB 1 30.68 -88.25 67 72223

MINNEAPOLIS-ST MN US KMSP 1 44.88 -93.22 255 72658

OKLAHOMA CITY(A OK US KOKC 1 35.40 -97.60 397 72353

CHICAGO/O'HARE IL US KORD 1 41.98 -87.90 205 72530

These files are available for surface, upper air, radar, MOS and SHEF reporting stations. Some of these files are region specific such as for Europe and South America. The city database may be specified with the city_file resource.

City Database Files

PRIVATE
Database
Type of Stations
Location

sao.cty
Surface SAO/METAR
Global

sao_all.cty
Surface SAO/METAR
Global+non-reporting

upa.cty
Upper air
Global

upa_all.cty
Upper air
Global+non-reporting

syn.cty
Surface Synoptic
Global

syn_all.cty
Surface Synoptic
Global+non-reporting

rad.cty
NEXRAD Radar
United States

mos.cty
Model Output
North America

shef.cty
SHEF
United States

7.2. Map Databases (.map, .bmap) XE "database:map"

 XE "map database"
Map outline databases contain a list of latitude longitude points that delimit continental, political and other geographical outlines. These files are either in an ASCII or binary format. The binary format, even though not editable, draws 4-8 times faster than the ASCII files. A sample from the wxp.map file is.

24 49.00 45.55 -116.92 -124.75 371

48.15 -123.70 48.35 -124.75 47.90 -124.62 47.00 -124.18 46.28 -124.00

46.17 -123.15 46.08 -122.90 45.65 -122.77 45.55 -122.25 45.70 -121.80

45.65 -121.17 46.00 -119.00 46.00 -116.92 46.40 -117.00 49.00 -117.65

49.00 -120.00 49.00 -122.75 48.60 -122.42 48.00 -122.20 47.30 -122.30

47.35 -122.55 47.80 -122.50 48.12 -122.77 48.15 -123.70

14 46.28 42.00 -116.50 -124.55 602

46.00 -116.92 45.60 -116.50 44.48 -117.20 44.30 -117.20 44.15 -116.90

43.80 -117.00 42.00 -117.00 42.00 -120.00 42.00 -122.00 42.00 -124.20

42.83 -124.55 44.00 -124.15 45.00 -124.00 46.28 -124.00

19 49.00 42.00 -111.05 -117.00 903

49.00 -117.00 49.00 -116.05 48.00 -116.05 47.70 -115.75 47.45 -115.75

The database is also broken into line segments that are drawn separately. By default, all programs use the wxp.map file. If the plot domain center point is outside of a range 25 to 80 North and 65 to 160 West, the cont.map and country.map maps will be used. The map database files may be specified with the map_file resource.

For large map databases, it is useful to use a binary version of the file. These files have a .bmap extension. The DLG (Digital Line Graph) maps from the USGS are in this format.

Map Databases

PRIVATE
Database
Coverage
Resolution
Outlines

wxp.map
North America
Low
Continental, Country, State

wxpstate.map
North America
Low
Country, State

cont.map
Global
Low
Continental

country.map
Global
Low
Country

state.map
United States
High
Continental, State

usa_cnty.map
United States
High
County, State

river.map
Global
High
Rivers

zones.map
United States
High
Forecast zones

DLG
United States
High
Digital Line Graph:
Continental, State, County,
Rivers, Roads, Misc. Political Boundaries

7.3. Map Lists (.mpl) XE "database:map list"
These are files that contain a list of files to be used to plot base maps for plots. Complex map specifications cannot be listed on the command line. A map list file allows for very complex maps to be drawn, toggles maps on and off based on domain size and allows for map underlays and overlays. These are specified through the map_file resource with the "fi:" prefix. Some map lists provided with WXP are:

Database
Contents

cnty.mpl
Conditional maps where wxp.map draws at large scales and DLG maps draw at small scale.

county.mpl
County map, county labels and city IDs.

full.mpl
Full DLG map plot.

7.4. Raw Databases (.raw) XE "database:raw, city, county"
There are several databases in WXP Raw file format that can be used to plot information using the raw data plotting program mapplt. These files contain ASCII tabular data that can be modified with respect to NWS changes.

PRIVATE
Database
Contents

cities.raw
City location, zones, FIPS, WFOs, population

counties.raw
County location, zone, FIPS, WFOs, size

state.raw
State zones, WFOs

zones.raw
Forecast zones location, FIPS, WFOs

7.5. Color Tables (.clr) XE "database:color table"

 XE "color table"
Color table files are to be used to specify which colors are going to be used within in the program. The graphics program allocates (locks in) all the colors listed in the file. Each graphics program has color resources to specify and change colors of various components of the plot. Color table files are ASCII files that list a color name along with its RGB (red, green, blue) color values:

Black
0.0
0.0
0.0

White
1.0
1.0
1.0

Red
0.7
0.0
0.0

Green
0.0
0.7
0.0

Blue
0.0
0.0
0.7

Yellow
1.0
1.0
0.3

Cyan
0.0
0.7
0.7

Magenta
0.7
0.0
0.7

DGray
0.3
0.3
0.3

LGray
0.7
0.7
0.7

LRed
1.0
0.3
0.3

LGreen
0.3
1.0
0.3

LBlue
0.3
0.3
1.0

Brown
0.7
0.7
0.0

LCyan
0.3
1.0
1.0

LMagenta
1.0
0.3
1.0

Several color table files are provided with WXP:

PRIVATE
Color Table
Description

wxp.clr
Default color table (16 colors)

sat.clr
Satellite color table with 50 gray shades

rainbow.clr
A rainbow scheme with 23 colors

rainbow2.clr
A rainbow scheme with 46 colors

rainbow4.clr
A rainbow scheme with 92 colors

radar.clr
Radar image color table

gray25.clr
25 gray shades

gray100.clr
100 gray shades

gray200.clr
200 gray shades

7.6. Color Fill Files (.cfl) XE "database:color fill"

 XE "color fill files"
Color fill files are used to specify which colors are to be used in color fill contours. Often these are used if the list of colors and attributes becomes too large to fit on the command line. Color fill files are also used to specify:

· contour values which can be used for contours with an irregular interval

· attributes define how the contours will look

Each line in the file has the following syntax:

[value:]color[:attributes...]

This file can be used with color fill and line contours. For color fills, the attributes will change the fill patterns. For line contours, the attributes can change the line styles. If the color_cont resource is set to "off", then the colors of the line contours are those specified in the file. Here is a sample file:

.01:DDMagenta

.05:DMagenta

.1:MMagenta

.175:BMagenta

.25:Blue

.375:LBlue

.5:Green

.75:LGreen

1:Brown

1.5:Yellow

2:Red

3:Lred

4:LGray

7.7. Satellite Enhancement Files (.enh) XE "database:satellite enhancement"

 XE "satellite enhancement files"
Satellite enhancement files are used to modify or enhance the satellite images in the xsat program. These files are similar to the color fill files except that contour values can be IR Celsius temperatures, color ranges can be specified and colors can be dithered. Here is a sample enhancement file:

MB

0:black

c29:1

2-19

c6:20

21-31

c-31:32

c-32:Cyan1

c-36:Cyan2

c-40:Cyan3

c-44:Cyan4

c-48:Cyan5

c-52:Cyan6

c-54:Blue6

c-56:Blue5

c-58:Blue4

c-60:Blue3

c-62:Blue2

c-64:Green1

c-66:Green2

c-68:Green3

c-70:Green4

c-72:Green5

For low resolution displays, dithering is available. For dithered colors, two colors are specified separated by a "%" and the percent dither. The percent is 0-9 for a 10 level dither or a-z for a 26 level dither. For example: gray%gwhite

7.8. Variable Files (.var) XE "database:variable"

 XE "variable files"
Variable files define how variables are to be used and plotted in the graphics programs. Each graphics program has its own variable file. For example, the sfcwx program as a sfcwx.var file. Each line in the variable file defines a specific variable such as:

temp Temperature 1 +temp [F]

The first parameter is the variable name that is used with the variable resource to specify which variable to plot. The second parameter is the menu label that is seen when the variable menu is printed. The third parameter specifies whether this variable is to appear in the variable menu. This can be a combination of model type "mo=", forecast time "ft=", level "le=" or the value "1" or "0". Wildcard characters are permitted. The final parameter is the variable definition which lists the variable to plot including time and level along with any attributes including its units.

The variable file can contain derived variables such as temperature advection:

tadv Temperature_Advection le=~snd adv(wind,temp:K) [10^-4_K/s]

or composite plots which contain overlays and multiple panels:

depict Weather_Depiction le=sfc :sfc:depict{\

 fr [:cf:lab=0:cof=depict.cfl],\

 map [co=red],\

 cldcv [:cloud],\

 cldcl [:data:lc],\

 wx [:wx:cl]}
7.9. Region Files (.reg) XE "database:region"

 XE "region files"
Region file can be created to alias plot domain specifications. This default region file is wxp.reg. New regions can be added to this file. Here is an example line from the file:

 us Contiguous_US 1 39,-97,2.3

The alias is listed first, followed by a long name (all spaces must be underscores), followed by a menu toggle and finally the plot domain specification. The menu toggle specifies whether the region is to appear in the region menu (1=yes, 0=no). The long name is then used in the menu listing.

7.10. Time and Level Menu Files (.tim and .lev) XE "database:time and level menu"

 XE "time and level menu files"
These files are used to define various menu listings within program. They define a abbreviation which is used to define the time or level (see time or level resource). Second, they give the text to be used in the menu. No spaces are allowed but underscores "_" can be used in their place. Finally, there is a menu toggle that defines when the menu item will appear. This can be a combination of model type "mo=", forecast time "ft=" or level "le=". Wildcard characters are permitted. Here is a sample menu file:

init Initial mo=ngm|eta|avn*

h06 6_hour mo=ngm|eta|avn*

h12 12_hour mo=ngm|eta|avn*

h18 18_hour mo=ngm|eta|avn*

h24 24_hour mo=ngm|eta|avn*

h30 30_hour mo=ngm|eta|avn*

h36 36_hour mo=ngm|eta|avn*

h42 42_hour mo=ngm|eta|avn*

h48 48_hour mo=ngm|eta|avn*

h60 60_hour mo=avn*

h72 72_hour mo=avn*

e3 3.5_day mo=mrf*

d4 4_day mo=mrf*

...

7.11. Font Files (.fnt) XE "database:font"

 XE "font files"
Font files are used to define how text is to be drawn. These are vector fonts that can be scaled. The default font is modern.fnt. Specifying the font_list resource will change the list of fonts used in a program. Multiple fonts may be specified separated by commas. The actual font used is specified as part of a graphics attribute.

PRIVATE
Font Files
Type
Style

modern.fnt
Modern
Normal

modern_bold.fnt
Modern
Bold

modern_ital.fnt
Modern
Italics

roman.fnt
Roman
Normal

roman_bold.fnt
Roman
Bold

roman_ital.fnt
Roman
Italics

gothic.fnt
Gothic

greek.fnt
Greek letters

7.12. Font List File (.fnl)

Since font names can be quite long, a font list file is provided to create font aliases. This works much the same as listing the files with the font_list resource but that aliases for each font are also listed. Here is a sample font list file:

mod modern.fnt

helv #-adobe-helvetica-bold-r-normal-*-12-*-*-*-*-*-*-*

courier #-adobe-courier-bold-r-normal-*-12-*-*-*-*-*-*-*

btimes #-adobe-times-bold-r-normal-*-12-*-*-*-*-*-*-*

times #-adobe-times-medium-r-normal-*-12-*-*-*-*-*-*-*

school #-adobe-new century schoolbook-bold-r-normal-*-12-*-*-*-*-*-*-*

wtimes #Times New Roman:14

warial #Arial

The alias is listed first and the actual font name is listed next. If the font is preceded with a "#", it is a system font and not a WXP font. The first font listed is a WXP font. The next 5 are X11 fonts (Unix) and the last two are Windows fonts. System fonts are generally fixed and won't scale as the window is enlarged. System fonts are not printable. To specify a font, use the color resource: "-cot=white:fo=warial" or the plot parameter "-pp=font:helv". The default font list file is "wxp.fnl" which will be used if it exists. Otherwise, WXP will use the "modern.fnt" file or the fonts listed in the font_list resource. To specify a different font list file, use "-fl=fi:new_fonts.fnl".

7.13. Symbol Files (.smb) XE "database:symbol"

 XE "symbol files"
Symbols files are used to plot various symbols that cannot be plotted with the text fonts. This is especially handy for weather symbols. The symbol file contains a set of symbols defined by a simple character string such as "RW-". Following the string is a set of X,Y points which describe the symbol. An example is:

T .7,.8 .4,.5 .7,.2 .5,.2 L

 .7,.2 .7,.4 L $

RW- .4,.7 .5,.7 .5,.6 .4,.6 .4,.7 L

 .3,.5 .6,.5 .45,.2 .3,.5 L $

RW+ .4,.7 .5,.7 .5,.6 .4,.6 .4,.7 L

 .3,.5 .6,.5 .45,.2 .3,.5 L

 .35,.4 .55,.4 L $

RW .4,.7 .5,.7 .5,.6 .4,.6 .4,.7 L

 .3,.5 .6,.5 .45,.2 .3,.5 L

 .35,.4 .55,.4 L $

R+ .2,.6 .3,.6 .3,.5 .2,.5 .2,.6 L

 .6,.6 .7,.6 .7,.5 .6,.5 .6,.6 L

 .4,.8 .5,.8 .5,.7 .4,.7 .4,.8 L

 .4,.4 .5,.4 .5,.3 .4,.3 .4,.4 L $

WXP comes with several predefined symbol files:

PRIVATE
Symbol File
Description

wx.smb
Standard weather symbols (SAO format)

pwx.smb
Synoptic present weather symbols

ptend.smb
Pressure tendency symbols

cl.smb
Low cloud symbols

cm.smb
Middle cloud symbols

ch.smb
High cloud symbols

sev.smb
Severe weather symbols

7.14. Bulletin Files (.bul) XE "database:bulletin"

 XE "bulletin files"
Bulletin files are used by the WXP ingest program to select products to save and specify what files the selected products are saved in. The default bulletin file is "ingest.bul" but this can be changed using the bull_file resource. Each line in the file specifies a pattern to match a specific WMO product header or a set of products. After the pattern is the action to be performed on the product including overwrite, append, pipe to a program, etc. The final parameter on the line is the filename or program. The filename can contain the same type of wildcard characters allowed in the filename convention.

Pattern Action Filename Header Filename

S[AP] >>-15 %D/%h%m%d%y.sao

S[IMNS] >>-05 %D/%h%m%d%y.syn

SD >>+07 %D/%h%m%d%y.rad

SXUS2[0123] >> %D/%h%m%d%y.cman

U[^AB] >>-65 %D/%12h%m%d%y.upa

ASUS1_ >> %D/%3h%m%d%y.frt

WWUS40 >> %D/%6h%m%d%y.wws

FO >> %D/%12h%m%d%y.mod %D/hd%12h%m%d.mod

7.15. Shell Menu Files (wxp.menu) XE "database:shell menu"

 XE "shell menu files"
The menu file specifies the menus to be used with the WXP shell program. The file lists various menus and menu items. The menu items are generally commands to be run most of which are WXP programs. With this file, the menus can be tailored for specific purposes and programs can be tailored by specifying command line parameters to be invoked automatically when the program is run.

7.16. Lookup Files (.lup) XE "database:lookup"
There are several lookup files associated with WXP. These files provide general types of information not contained in any of the above file types. Each file has a different format which is explained is the appropriate sections:

PRIVATE
Lookup File
Description

Case.lup XE "lookup file:case"
This file is a list of case studies that can be used by the wxp shell program. It provides an alias for the case study along with any resources that are critical for using the case study such as con_path and data_path.

Model.lup XE "lookup file:model"

 XE "model lookup file"
This file defines the model types used in WXP. A model run is often comprised of several types of grids. This file associates a model type as specified with the model resource with a set of file types as specified as name convention tags. If more than one tag or file type is specified, these grids will be pieced together.

Mod_name.lup
This file associates a particular model number form the GRIB code with a character string that is inserted into the plot label.

Parse.lup XE "lookup file:parse"

 XE "parse:lookup file"
This file associates particular WMO headers with file name tags to aid in searching for data. Specifying a product in this file eliminates the need for an in_file resource specification using parse.

source.lup
This file associates a particular data source number from the GRIB code with a character string.

units.lup XE "lookup file:units"

 XE "units:lookup file"
This file lists conversion factors between various units.

variable.lup XE "lookup file:variable"

 XE "variable:lookup file"
This file associates particular variable numbers as listed in the GRIB products with a character string that will be used in the plot label.

8. Input and Output Files XE "input and output"
Most WXP programs will require an data file to process. WXP can process many different types of files and plot information based on their content. Because of this, programs are generally isolated to a specific type of file rather than one generic program to process every file type.

8.1. File Paths XE "file paths"

 XE "input and output:file paths"
The location of data files are specified by a set of resources called path resources. These specify directories where data files are located and where generated data files are to be put. By default, all files go in the local directory but this is often not used since most files will be saved in a directory on a server. WXP provides the user with the following path resources:

· file_path - Specifies location of database files.

· data_path - Specifies location of data files produced by the WXP and LDM ingestors including WMO, HDS and McIDAS data files.

· con_path - Specifies location of converted data files produced by WXP decoders including WXP and netCDF file types.

· grid_path - Specifies location of grid files produced by WXP gridding programs.

· raw_path - Specifies location of raw files produced by WXP plotting programs.

· image_path - Specifies location of image files produced by WXP graphics programs.

8.2. Ingest Programs XE "input and output:ingest program"

 XE "ingestor"
The ingest program whether it be the WXP ingest program or the LDM, will produce several types of files based on the content of the file. This includes surface, upper air, radar, NIDS, GRIB and text data files.

The ingestor has a setup file which defines which data types and products are to be saved as well as defining the file name convention that these files will have. The setup files are either ingest.bul for the WXP ingestor or the pqact.conf file for the LDM. For example, textual forecasts may go into a forecast file based on the date and the have a file extension describing the type of data in that file:

 F[^OT] >> %D/%y%m%d%6h_for.wmo %D/%y%m%d%6h_for.hdr

This will put all the forecast products for 6 hours into a file with a for.wmo extension. The %y%m%d%h are used to create a filename based on the current year, month, day and hour. The final keyword is %D, which is the value of the data_path resource. This is where all ingested data goes. Finally, a header file will be created so quick searching of data can be done.

8.3. Decoder Programs XE "input and output:decoders"

 XE "decoders"
Often it is necessary to decode the ingested data files for easier use by the WXP analysis programs. The decoders rely on a name convention file to define both the input file name and to be used in creating the output file name. Each type of data has a tag that is used to find the naming convention. For example, when converting surface data using the sacvt program, the input tag is sfc_dat and the output tag is sfc_cvt. These will then be crossed referenced in the name convention file:

 sfc_dat %D/%y%m%d%h_sao.wmo
 sfc_cvt %C/%y%m%d%h_sao.wxp

Similar to the ingest setup file, the name convention file uses the same nomenclature for naming its files. In this case, the input to the decoder is from the ingested data files in the data_path directory. The output of the decoder will go into a file in the con_path directory. These path resources can be changed on the command line. Also, the tags themselves can be changed using the in_file and out_file resource.

The out_file resource can also be used to specify the type of decoded output file such as ASCII (wxp) or netCDF (cdf). When specifying a file type, the type is appended to the tag: sfc_cvt_wxp and sfc_cvt_cdf that can be used to denote specific file name conventions for each file type:

 sfc_cvt_wxp %C/%y%m%d%h_sao.wxp

 sfc_cvt_cdf %C/%y%m%d%h_sao.nc

8.4. Analysis Programs XE "input and output:analysis programs"
These programs will either access data from the decoders or from the ingested data. Similar to the decoders, these programs use the name convention file to determine input and output naming conventions. The name convention is also used in providing a list of available files for use at the file name prompt.

 List of available files:

 /home/wxp/convert/96112205_sao.wxp

 /home/wxp/convert/96112206_sao.wxp

 Enter the surface filename: 96112206

The user may wish to select the filename directly from the list or use the current resource to specify a current or latest available file.

These analysis programs often have optional output files that can be created by specifying the out_file resource. In this case, the out_file resource specifies the type of output file and can be used to specify the output name convention tag.

 sfc_grd %G/%v_%m%d%h.grd
 sfc_raw %R/%v_%m%d%h.raw

In this case, special wildcard characters are set to specify internal parameters such as plot variable, vertical level and forecast time.

The contouring (contour) and raw file plotting programs (mapplt and grid) can then use these files. Here is a list of file name tags:

Filename Tags XE "input and output:filename tags"

 XE "filename tags"
PRIVATE
Data Type
Ingested
Decoded
Decoded
netCDF
Decoded
WXP
Grid
Grid
netCDF
Grid
WXP
Raw

Surface
sfc_dat
sfc_cvt
sfc_cvt_cdf
sfc_cvt_wxp
sfc_grd
sfc_grd_cdf
sfc_grd_wxp
sfc_raw

Synoptic
syn_dat
syn_cvt
syn_cvt_cdf
syn_cvt_wxp

Upper Air
upa_dat
upa_cvt
upa_cvt_cdf
upa_cvt_wxp
upa_grd
upa_grd_cdf
upa_cdf_wxp
upa_raw

Radar (MDR)
rad_dat
rad_cvt
rad_cvt_cdf
rad_cvt_wxp

Radar (RCM)
rcm_dat
rcm_cvt

rad_cvt_wxp

MOS
mos_dat

mos_grd
mos_grd_cdf
mos_grd_wxp
mos_raw

MOS NGM*
mos_ngm_dat

 NGM UA*
mos_ngmu_dat

 ETA UA*
mos_etau_dat

 MRFX*
mos_mrfx_dat

Satellite VIS
sat_vis

Satellite IR
sat_ir

Satellite WV
sat_wv

Profiler
prf_dat

Fronts
frt_dat

Watches
wat_dat

Tropical
trp_dat

NLDN
nldn

GRIB**
grib

grd_grd
grd_cdf
grd_wxp

*The MOS tags are not set. Only the strings "ngm", "ngm_ua", "eta_ua", "mrfx" need to appear in the tag for the program to recognize the type of file.

** The GRIB data is defined through a model lookup table.

8.5. Name Conventions XE "input and output:name convention"

 XE "name convention"
The standard naming conventions involve the date and time of the file plus an extension which is based on the file type. The three basic naming conventions are:

· hhmmddyy.eee (hmdy)

· yymmddhh.eee (ymdh)

· yymmddhh_eee.ttt (ymdh_t)

where yy is the last two digits of the year, mm is month of the year, dd is the day of the month and hh is the hour in Universal Time (GMT or Z). Also, the eee is the file extension describing the content of the file and with the ymdh_t naming convention, there is a ttt extension that describes the format of the data. Typical data types and associated file extensions are as follows:

PRIVATE
Raw WMO Data Files
eee
eee.ttt

Raw surface data files
sao
sao.wmo

Raw synoptic air data files
syn
syn.wmo

Raw upper air data files
upa
upa.wmo

Raw MDR radar data files
rad
rad.wmo

Raw RCM radar data files
rcm
rcm.wmo

Raw MOS data files
mod
mod.wmo

Raw forecast data files
for
for.wmo

Raw severe data files
sev
sev.wmo

Raw climate data files
cli
cli.wmo

Raw weather summary files
sum
sum.wmo

Raw front analysis files
frt
frt.wmo

Raw weather watch files
wws
wws.wmo

McIDAS Data Files
eee
eee.ttt

East Visible satellite files
sve
sve.mca

East Infrared satellite files
sie
sie.mca

East Water vapor satellite files
swe
swe.mca

West Visible satellite files
svw
svw.mca

West Infrared satellite files
siw
siw.mca

West Water vapor satellite files
sww
sww.mca

Floater sector satellite files
sfl
sfl.mca

Profiler data files
prf
prf.cdf

WXP ASCII Converted Data Files
eee
eee.ttt

Converted surface data files
cvt
sao.wxp

Converted synoptic data files
cvt
syn.wxp

Converted upper air data files
uac
upa.wxp

Converted MDR radar data files
sdc
rad.wxp

Converted RCM radar data files
rct
rcm.wxp

netCDF Converted Data Files
eee
eee.ttt

Converted surface data files
cvt
sao.cdf

Converted synoptic data files
cvt
syn.cdf

Converted upper air data files
uac
upa.cdf

Converted MDR radar data files
sdc
rad.cdf

HDS Data Files
eee
eee.ttt

NGM model
gbn
ngm.grb

ETA model
gbm
eta.grb

AVN model grid 37
gmi
avn0e.grb

AVN model grid 38
gmj
avn1e.grb

AVN model grid 39
gmk
avn1w.grb

AVN model grid 40
gml
avn0w.grb

AVN model grid 41
gmm
avs0e.grb

AVN model grid 42
gmn
avs1e.grb

AVN model grid 43
gmo
avs1w.grb

AVN model grid 44
gmp
avs0w.grb

MRF model grid 25
gm5
mfn.grb

MRF model grid 26
gm6
mrs.grb

ECMWF model all grids
gbe
ecf.grb

SWW model all grids
gbs
sww.grb

SST analysis
gbt
sst.grb

Snow Cover Analysis
gbc
sca.grb

Profiler data
prf
prf.brf

AIREP data
air
air.brf

Tropical data
trp
trp.wmo

The actual naming conventions are defined in the name convention file. This is setup by the system administrator.

8.6. in_file and out_file Resources XE "input and output:in_file and out_file resouces"
These resources can be used to specify the tags and the resulting file name conventions used in the program. Each program has default tags compiled into the program but they can be overridden on the command line:

 -if=sfc_dat -of=sfc_cvt

The resource can specify a whole file name convention string instead of a tag:

 -if=%C/%y%m%d%h_sao.wxp

or specific files

 -if=/tmp/file.cvt

9. Filenames XE "filenames"
Filenames used in WXP can be specified in several ways. Often, it is left to a prompt in the program but can be specified on the command line or by specifying the resource in the resource file or via environment variables. The syntax of the filename is defined by the file name convention that affects how the file name is specified. There are several resources that can be used to specify the filename:

· filename - this resource specifies the actual filename. This is either prompted for in the program or a positional parameter specified at the end of the command line.

· in_file - this resource specifies the input file name convention. This can be done by specifying a tag that is found in the file name convention file or as an actual file name with wildcard characters.

· out_file - this resource is similar to the in_file resource except it is for output files.

· current - this resource specifies the offset from the current time to use in determining the filename. This has a current and a latest component. The latest component will search a set number of hours for an existing file.

· hour - this resource specifies a set time during the day such as 12Z for a particular filename.

· num_hour - this resource is used to specify a range of files to use. This can be used for generating loops and animations or for decoding data that is spread over multiple files.

9.1. List of Available Files and File Prompt XE "filenames:list of available"
Most programs that prompt the user for a filename will also provide a list of available files.

 List of available files:

 /home/wxp/convert/96112205_sao.wxp

 /home/wxp/convert/96112206_sao.wxp

 Enter the surface filename: 96112206

This list is generated using a search pattern based on the name convention. This pattern is then passed to a program like "ls" or to internal file listing functions, as is the case with the Win32 version. To get the proper list of files, make sure to specify the correct name convention.

Once the list is available, the user can enter the filename. There are several possibilities including a direct filename or using the current resource specification.

9.2. Direct Filename XE "filenames:specifying"

 XE "filenames:direct"
When a direct filename is specified either on the command line of at a file prompt, it takes precedence over any of the other filename specifications. The filename can be specified in a number of ways:

· filename - this is the filename without the extension. The name convention will specify the extension so it is not necessary to specify it. The path as specified in the name convention is automatically prepended to the filename.

· filename.extension - there are cases where the extension is not specified in the name convention and thus it must be entered with the filename. The list of available files will show multiple file extensions when this happens.

· /path/filename.extension - this is the fully pathed filename. Name convention is applied to determine date from filename.

· @/path/filename - this is a full filename but the name convention is overridden.

· #sequence_number - this is a number in the format "yyyymmddhhnn" which exactly specifies the time to use and the filename convention is then used to produce the appropriate filename for that time.

In each case, the program attempts to extract a date/time from the filename using the file name convention. This often is used to label data and plots. This can be used along with the num_hour resource to produce loops. If the filename does not match the naming convention, incorrect date information will be extracted. This could result in a file not being found or a loop incorrectly generating. Using the "@" character disables name convention parsing.

9.3. Current Filenames XE "filenames:current"

 XE "current resource"
Current data files use the current date/time to construct a filename. The name convention must have a date element in order to take advantage of the current feature. Current data files can be specified either by using the current resource (-cu) or by specifying it with the filename resource. When using the filename resource, "cu" or "la" can be used to specify the current file. Everything following these characters is passed to the current file algorithm.

The value of the current resource is actually an offset from the current time. The simplest ways to specify the offset are as follows:

· -cu - uses the current data file no matter what. If the current data file does not exist, the program will exit.

· -cu=1 - uses the data file that is one hour old.

· -cu=3d04 - uses the data file that is 3 days, 4 hours old.

· -cu=0:15 - uses the data file that is 15 minutes old.

9.4. Latest Filenames XE "filenames:latest"

 XE "current resource:latest"
If the current file is not available, the user may want to just use the most current file or latest file. If "-cu=la" is specified, the program will search back through the most recent 500 times, create a filename and check to see if it exists. If the file name convention specifies a file every 12 hours as with upper air data, it will first check the current time, if the file does not exist, it check for the file that would be 12 hours old, and so on. If the file name convention specifies a file every 5 minutes as with NIDS and NOWRad data, it will search back in 5 minute increments.

Now the absolute offset and the latest can be combined. If you wanted the first available data file that is at least 5 hours old, you would specify "-cu=5-la". If you want the file that is 5 hours previous to the latest, you would specify "-cu=la-5". You can have forward searches as in "-cu=3d+la" or "-cu=la+2'. This would find the latest and search forward 2 hours. This will be discussed more in the next section.

Here is the complete syntax of the current resource. Any of the parts can be omitted.

 [#yyyymmddhhnn][+-##d##:##][+-la][+-##d##:##]

#yyyymmddhhnn - sequence number
##d##:## - number of days, hours, minutes (all are optional)
la - find latest in each direction

9.5. Specifying Specific Hours

The hour resource can be used in combination with the current resource to request specific hours. For example, if the latest 12Z file is needed, use "-cu=la -ho=12". The hour resource can be used to specify specific days with the syntax "ddhh". For example, to use the 20Z file on the 14th, specify "-cu=la -ho=1420". To get the latest file on a 12 hour boundary, specify a negative hour. For example, "-cu=la -ho=-12" would yield 12 at 18Z and 00 at 4Z. This can be taken one step farther with an offset. If the first hour after a 12 hour boundary is needed (01 or 13), use the offset "-oohh". The offset "oo" is added to the hour after it is rounded to the nearest boundary. For example, "-cu=la -ho=-106" would yield 13 at 15Z, 19 at 20Z, etc.

9.6. Specifying a Range of Hours

This is useful in a couple of cases. First, in decoding data, the data could be located in several files over a range of hours. To decode all data for a specific time, several files must be parsed. To do this, use the num_hour resource. For example, to decode the previous hours data but also using the current file to get all the reports decoded, use:

 sacvt -cu=1 -nh=1

The number of hours specified represents the requested file plus one hour. Thus two hours of data files are decoded.

This can be used with plotting programs to set up loops.

 sfcwx -cu=la -nh=-5

In this case, a loop of 6 hours, current plus the 5 previous hours, will be generated. The number can represent hours and minutes such as "-nh=-3:20" in which the program will loop through all files within the previous 3 hours and 20 minutes. This is useful for radar data which comes in every 5 minutes. The programs will delete any frames where the data file does not exist.

In addition to specifying the number of hours, a skip factor can be specified. This is useful if not every hour is needed. For example, a plot of 21Z temperatures is needed over 4 days. This can be done as follows:

 sfcwx -cu=la -ho=21 -nh=-96,24 -va=temp ...

Again, the skip factor can be minutes "-nh=-2,0:30" which will display every file over the previous 2 hours with a 30 minute increment.

9.7. Multiple Filenames and Looping

In many programs, there is the ability to list more than one filename on the command line. Decode programs use the list of files to process data. The decode time is the time of the first file listed. The other files are decoded in the order they appear in order to extract data for that decode time.

For plotting programs, the list of files is used to generate a loop. The files are processed in the order listed with the resulting plot inserted into the loop. Any nonexistent data files are not used in the loop.

9.8. Decode Hours
The decode programs need to know the hour to decode to eliminate data which is too far from the requested time. By default, the decoder uses the specified time form either the filename or current resources. Sometimes this is not the time requested for decoding. A good example of this is upper air data. In some cases, upper air data for a particular hour is located in 3 to 4 hourly files (11,12,13 and 14Z). To decode this range, the following can be used "uacvt -cu=la -ho=-212 -nh=-3" but this will use 14Z as the decode hour and of course this will decode little. The decode_hour resource solves this problem, disconnecting the decode hour from the other resources. The correct way to decode this data is:

 uacvt -cu=la -ho=-212 -nh=-3 -dh=-12

Again, the "-12" on the decode hour specifies to use the nearest 12 hourly file. If the number is positive, it would only decode 12Z data and not 00Z data.

Also with upper air and synoptic data, there needs to be a way of including data from surrounding hours. By default, if 12Z synoptic data is decoded, smcvt will only decode 12Z reports. The problem is that some places like Australia report at off hours such as 11 and 23Z and thus these reports would not be included.

9.9. Decode Time Ranges

The decode_hour resource allows the user to specify the time range in minutes where data is valid. This varies from decoder to decoder. For surface data, this will be -15 to +10 minutes. For upper air data, this will be -2 to +2 hours. With the pre and post parameters, the exact range before and after the decode time can be set. Any data outside this range will be decoded but not saved to the output file. The syntax for the decode hour and range is:

-dh=hour:min-pre+post
-dh=hour-pre+post
-dh=:-pre+post
where hour and min can be replaced with "cu" for current data based on the filename or current resource (not based on clock time). In addition, the hour can be replaced with "cu-hour". The pre and post values are in minutes around the decode time. For example, to change the METAR decode time to 20 minutes after the hour with a range of +/- 10 minutes:

 sacvt -cu=la -dh=cu:20-10+10

If the previous hours data needs to be converted but using 3 hourly files including the current and the previous two:

 sacvt -cu=la -dh=cu-1 -nh=-2

If the current time is 19Z, this would decode the 17, 18 and 19Z file to decode the 18Z data.

9.10. Sequence Numbers and wxpcurtime Environment Variable XE "filenames:sequence number"

 XE "filenames:wxpcurtime environment variable"

 XE "wxpcurtime"
WXP offers the concept of a sequence number that is an absolute time specification that is irrelevant of the file naming convention. If you wanted the data file from 12Z 22 Dec 1996, you would specify:

 -cu=#199612221200

The format of the sequence number is 4 digit year, 2 digit month, 2 digit day, 2 digit hour and 2 digit hour. Any value omitted is assumed to be 0 so you could have left off the last two zeros.

Now we can offset from this time:

 -cu=#1996122112-la

which will start at this time and search backward for the first available file.

If you want this sequence number to be the default starting point and don't want to continue to specify it in the current resource, you can set the wxpcurtime environment variable. Since this can only be a sequence number, the number sign "#" can be omitted:

 setenv wxpcurtime 1996122112

This is a nice feature when dealing with case studies and being able to use the current resource with old data. This environment variable would be set to be the most important time of the case, for example, when the tornadoes are occurring. Then the students can just use -cu to reference that time without worrying about the file naming convention. Also, forward and backwards time offsets from the reference time can be by specifying the current resource.

10. Plot Domains XE "plot domain"
For the plotting programs, the output is defined by a specific domain which either can be geographical or Cartesian. The plot_domain resource specifies this output domain.

10.1. Plot Domain XE "plot domain:syntax"
In most cases data is plotted based on a latitude longitude location. Since this is a spherical coordinate system and the plot will be of two dimensions, a transformation must occur. In the case of geographic plots, this is called a projection.

To locate the plot, a simple set of parameters must be specified.

1. the projection must be specified. By default, this is polar stereographic.

2. the central point must be determined which for map projections is by latitude and longitude.

3. the domain size must be specified. This is simply done by specifying a size parameter dx. For regional plots, this size is 1. For the entire contiguous United States, the size is around 2.5. For hemispheric plots, use 8.

The default aspect ratio for the plot is 3 to 2. Once the domain has been determined, all data are then remapped to this domain before plotting.

Often there is more to the domain that needs to be specified. There are projection coordinates such as the projection latitude and longitude, the true latitudes and mapping factor corrections. These can all be specified with the full plot domain specification:

proj[:params],clat,clon,[nx,ny,]dx,dy

where:

· proj - The projection.

MAP PROJECTIONS

· ll or lat - latitude-longitude

· ps or polar - polar stereographic

· me or merc - mercator

· lc or lamb - lambert conformal

· gn - gnomic

· mo - mollweide

· or - orthographic

· sat - satellite

NON-MAP PROJECTIONS

· XY - X Y plot (cartesian)

· XlogY - X log Y plot

· category - category plot

· skewt - SkewT Log P thermodynamic plot

· stuve - Stuve thermodynamic plot

· ema - Emagram thermodynamic plot

· therm - thermodynamic plot

· hodo - hodograph plot

· vert - vertical cross section

· polar - polar plot

· param - A colon ":" delimited list of projection specific parameters. The parameters are:

plat:plon:tlat1:tlat2:factor

Any number of these can be specified.

plat and plon define the projection latitude and longitude.

tlat1 and tlat2 are the true latitudes for the projection.

factor is the map factor necessary to give true distances in 100s km for the projection. This is required for finite differencing and is somewhat arbitrary.

· clat,clon - For map projections, this is the central latitude and longitude of the domain. The clat,clon can be replaced with "id:station" where the latitude and longitude are read in from a city database file (sao.cty by default). If you want to use a different database file, you need to specify it as "id:database_file:station".

For non-map projections, this represents the coordinate of the lower left corner of the domain.

· nx,ny - Specifies the number of grid points or pixels in each direction. For non-grid plots, this acts as the aspect ratio of the domain as nx-1 to ny-1. The default is 25,17 which gives a region with an aspect ratio of 3 to 2. This can be useful in the case where overlays might need to be drawn where the underlying data or image does not adhere to the true projection coordinate system. This is especially true of satellite images where the height of a scan line is not equal to the width of each picture element and therefore dx cannot be equal to dy to give a proper projection. Also, the number of gridpoints is used to scale wind vector length. The longest wind vector is scaled to one grid distance. (OPTIONAL, DEFAULT: 25,17)

For map projections, this is the number of gridpoints in each direction. For non-map projections, this is just the aspect ratio and does not go into the domain size computation.

· dx,dy - Specifies the domain size based on the nx,ny parameters. The larger the value, the larger the domain. For map projections, this is the grid spacing in the X and Y direction. The full domain size is (nx-1)*dx by (ny-1)*dy. In some cases, this can be used to correct for unequal distances. This is especially true of satellite images where the width of one element on a scan line is not equal to the height on the scan line.

For non-map projections, this is strictly the size in X and Y. The origin is defined by clat,clon.

10.2. Specifying the Domain XE "plot domain:use of"
There are several ways to specify the domain. Not all of the above parameters need to be specified in order for the program to know what to plot

PRIVATE
Parameters to specify
Assumed values for others

proj,plon,clat,clon,nx,ny,dx,dy
None

proj:params,clat,clon,nx,ny,dx,dy
None

proj,plon,clat,clon,dx,dy
nx=25,ny=17

proj,clat,clon,nx,ny,dx
dy=dx

proj,clat,clon,dx,dy
nx=25,ny=17

proj,clat,clon,dx
nx=25 ny=17 dy=dx

clat,clon,nx,ny
proj=ps dx=1.2 dy=1.2

clat,clon,dx
proj=ps nx=25 ny=17 dy=dx

size,nx,ny
used for images

proj,clat,clon
nx=25 ny=17 dx=1.2 dy=1.2 (1 for zoom projection)

clat,clon
proj=ps nx=25 ny=17 dx=1.2 dy=1.2

file:region
look up domain in file

region
look up domain in wxp.reg file

proj

NOTE: clat, clon can be replaced by id:xxx
10.3. Selecting a Domain for a Map Projection XE "plot domain:selecting map projection"
In selecting a plot domain, first determine the center latitude and longitude of the domain. This is centered on some meteorological event such as a low pressure system or on a station of interest. Next, determine the rough size of the domain to capture all the data of interest. This is done by estimating the horizontal size of the domain in kilometers and dividing by 100*(nx-1) to get dx and dy. By default, most plots use nx,ny of 25x17. So in other words, a value of 2400 can be use as the divisor. This makes a value of 1 for dx,dy adequate for regional plots and a value of just larger than 2 adequate for the continental US. This is a rough computation because different projections will yield slightly different domain sizes. Finally, adjust the aspect ratio of the plot by changing the nx,ny parameters. These may not need to be changed unless the domain is square or oblong. Here are some examples:

PRIVATE
Plot Domain
Description

39,-97,2.3
United States

id:KORD,.5
Small region centered over Chicago

ll,0,0,37,19,10
The whole globe on a lat-lon projection

ps,90,-90,8
Northern hemisphere

sat:0:-75,34.95,
-82.95,640,427,0.108,0.095
Satellite image projection. The satellite is centered over 75W and the image is centered at 34.95,-82.95. The nx,ny specify the image size which is 640x427. The dx,dy specify the distance between pixels in projection coordinates. In most satellite image cases, these values will not be equal.

zoom,40,-100,2
Zooms in on an image at a particular location (40,-100) and zoom factor (2).

10.4. Selecting a Domain for a non-Map Projection XE "plot domain:selecting non map projection"
In selecting a plot domain, first determine the coordinate of the lower left coordinate of the domain and that will be clat and clon. For simplicity, X is latitude and Y is longitude in this specification. Next determine the rough size of the domain to capture all the data of interest. The X distance is dx and the Y dy. Finally, adjust the aspect ratio of the plot by changing the nx,ny parameters. Remember 2,2 is the smallest possible value.

PRIVATE
xy,-10,0,20,10
XY plot ranging from -10 to 10 in X and 0 to 10 in Y

cat,0,0,10,75
Category plot, plotting first 11 items with a Y range of 0 to 75

10.5. Selecting a Domain from a File XE "plot domain:from file"
There are two ways to select a domain from a file. XE "domain file"
· Single Domain -- in this case the file only contains the plot domain specification such as:

 sat:0:-75,34.95,-82.95,640,427,0.108,0.095

where the plot domain would be -pd=fi:domfile

· Domain File -- in this case the region string is looked up in the domain file. For example, the plot domain would be "-pd=sat.reg:goes_east" and the region goes_east would be looked up in the sat.reg file. See the section on regions in the Users Guide.

11. Regions XE "region"
Specify a full plot domain can be difficult. Therefore, a region file can be created to alias plot domain specifications. This default region file is wxp.reg. New regions can be added to this file. Here is an example line from the file:

 us Contiguous_US 1 39,-97,2.3

The alias is listed first, followed by a long name (all spaces must be underscores), followed by a menu toggle and finally the plot domain specification. The menu toggle specifies whether the region is to appear in the region menu (1=yes, 0=no). The long name is then used in the menu listing.

This alias can now be specified as:

 -pd=us or -re=us

There are preset regions that can be modified by editing the XE "region:wxp.reg file" wxp.reg file.

PRIVATE "TYPE=PICT;ALT=US Regions"

Map of preset US regions

List of all preset regions XE "region:preset"
PRIVATE
Alias
Long Name
Plot Domain

us
Contiguous_US
39,-97,2.3

ne
New_England
42,-76,.9

at
Atlantic
37,82,.9

se
Southeast
31,-88,1.1

mw
Midwest
43,-93,1.1

sp
Southern_Plains
32.5,-100,1.2

nw
Northwest
44,-112,1

sw
Southwest
37,-112,1

wcan
Western_Canada
55,-110,1.3

ecan
Eastern_Canada
53,-75,1.3

ncan
Northern_Canada
70,-100,1.5

hi
Hawaii
21,-157,.6

ak
Alaska
65,-140,1.5

canada
Canada
65,-100,3

namer
North_America
50,-100,49,33,2.2

camer
Central_America
me,15,-90,3

samer
South_America
-30,-60,4

europe
Europe
50,10,3

easia
East_Asia
30,110,3

nasia
North_Asia
61,120,3

wasia
West_Asia
52,60,3

seasia
Southeast_Asia
me,15,100,3

nafr
North_Africa
me,20,10,3

safr
South_Africa
me,-20,25,3

meast
Middle_East
me,30,45,3

aust
Australia
-25,135,3

wpac
West_Pacific
me,20,160,5

antarc
Antarctica
-90,0,3

nhem
North_Hemisphere
90,-90,25,25,8

shem
South_Hemisphere
-90,-90,25,25,8

globe
Global
ll,0,0,73,37,5,5

goese
GOES_East
sat:0.000:-75.000:::,26.529,-68.983,640,427,0.1544,0.1361

goesw
GOES_West
sat:0.000:-135.000:::,27.745,-134.868,640,427,0.1544,0.1362

12. Forecast Times XE "forecast time"
When a program involves viewing forecast information, the ability to determine the forecast time is necessary. This value can also be set with the time resource.

12.1. Menu XE "forecast time:menu"
This menu lists potential forecast times. Since WXP does not make any assumptions as to what forecast times are available, this menu represents potential values of which some might not be valid for a particular model.

 Forecast Time Menu

 1: Initialized 14: 4.5 day

 2: 6 hour 15: 5 day

 3: 12 hour 16: 5.5 day

 4: 18 hour 17: 6 day

 5: 24 hour 18: 6.5 day

 6: 30 hour 19: 7 day

 7: 36 hour 20: 7.5 day

 8: 42 hour 21: 8 day

 9: 48 hour 22: 8.5 day

 10: 60 hour 23: 9 day

 11: 3 day 24: 9.5 day

 12: 3.5 day 25: 10 day

 13: 4 day

 0: Back to previous menu -1: Exit program

Enter the time:

The items in the time menu can be changed with the ".tim" menu files. This will allow you to set appropriate menu items based on model type.

12.2. Specifying Forecast Times XE "forecast time:specifying"
There are several ways to specify the forecast time in addition to above menu values. The syntax is:

time[-range][type]

You can specify a time by using entering the time and its units:

PRIVATE
Value
Description

init
Initial time

anal
analysis

12hr
12 hour forecast

h12
12 hour forecast

2day
2 day forecast

d2
2 day forecast

4.5day
4 1/2 day forecast

e4
4 1/2 day forecast

time
use the value of the time resource (useful in var files)

miss
missing value, take first available

The range is an hour range that is followed by the type of range. The types of ranges are:

PRIVATE
Value
Description

rng
range

avg
average

acc
accumulation

dif
difference

This leads to several possible combinations:

PRIVATE
Value
Description

anal-12acc
12 hour accumulation up to analysis time or 12 hour observed accumulation.

anal-24dif
24 hour difference between current and previous 24 hours.

24hr-12acc
12 hour accumulation up to the 24 hour forecast time.

time-12acc
12 hour accumulation up to time specified in time resource (used in var files).

12.3. Forecast Times and GRIB Data XE "forecast time:GRIB data"
Often gridded model data is specified with a complex time. The time and range syntax is a way of solving the problem of accessing these grids. A simpler way is to specify only the valid time.

 -ft=24hr
 -ft=24hr-12acc

The GRIB search algorithm will find the first grid with that valid time. The more verbose method will also work if there is more than one grid matching the same valid time.

13. Vertical Levels XE "vertical level"
When a program uses upper air data (observed or forecasted), a vertical level needs to be specified. This value can also be set with the level resource.

13.1. Menu XE "vertical level:menu"
The level menu lists possible vertical levels.

 Vertical Level Menu

 1: Sea level 12: 150 mb

 2: Surface 13: 100 mb

 3: 1000 mb 14: 70 mb

 4: 925 mb 15: 50 mb

 5: 850 mb 16: 30 mb

 6: 700 mb 17: 20 mb

 7: 500 mb 18: 10 mb

 8: 400 mb 19: Tropopause

 9: 300 mb 20: Max wind

 10: 250 mb 21: Whole sounding

 11: 200 mb

 0: Back to previous menu -1: Exit program

Enter the level:

The items in the level menu can be tailored in the ".lev" menu file. This will allow the user to toggle items on and off based on model type and forecast time.

13.2. Specifying Vertical Levels XE "vertical level:specifying"
The menu lists standard pressure levels but other levels can also accessed. A specific level can be entered with its value and units:

PRIVATE
Value
Description

Special Levels

snd
Entire vertical column or whole sounding

sfc
Surface level

sfc[100]
Surface level with 100 mb above surface layer average (parcel trajectory)

sl
Sea level

frz
Freezing level

lcl
Lifted condensation level (LCL)

sea
Sea surface

mwnd
Maximum wind level

trop
Tropopause level

top
Top of the atmosphere (not used)

whole
Whole atmosphere

top_frz
Top most freezing level

lcld_bot
Bottom of low cloud layer

lcld_top
Top of low cloud layer

lcld_lyr
Low cloud layer

mcld_bot
Bottom of middle cloud layer

mcld_top
Top of middle cloud layer

mcld_lyr
Middle cloud layer

hcld_bot
Bottom of high cloud layer

hcld_top
Top of high cloud layer

hcld_lyr
High cloud layer

conv_bot
Bottom of convective cloud layer

conv_top
Top of convective cloud layer

conv_lyr
Convective cloud layer

Pressure Levels

430mb
430 mb level (pressure)

sfc[100]-500
Surface to 500 mb trajectory with 100 mb mean layer average

850-500mb
850-500 mb layer

sfc-850mb
surface to 850 mb layer

p430
430 mb pressure level

p850-500
850-500 mb layer

10mb_ag
10 mb above ground level

10-40mb_ag
10-40 mb above ground layer

Potential Temperature Levels

310k
310 K potential temperature level (isentropic)

310-330k
310-330 K isentropic layer

k310
310 K isentropic level

k310-330
310-330 K isentropic layer

Height Levels

2000m
2000 meter level (height)

2000ft
2000 foot level

2000-5000m
2000-5000 meter layer

2000-5000ft
2000-5000 foot layer

h2000
2000 meter level

h2000-5000
2000-5000 meter layer

50m_ag
50 meters above ground level

50ft_ag
50 foot above ground level

50cm_bg
50 cm below ground level

50-200m_ag
50-200 meters above ground layer

50-200ft_ag
50-200 foot above ground layer

50-200cm_ag
50-200 cm below ground layer

Miscellaneous Levels

97sig
.97 sigma level

97-91sig
.97-.91 sigma layer

97eta
.97 eta level

97-91eta
.97-.91 eta layer

2lev
2nd level

2-5lev
2nd-5th level layer

level
use the value of the level resource (used in var files)

miss
missing level, take first available

14. Variables XE "variables"
The ability to specify a specific parameter to plot is generally the last major item to determine. Variables can be those contained in the input files or a hybrid variable based on those basic variables. WXP provides a large range of functions to generate new variable types.

The simple variables are determined by input file type. The hybrid variables are determined through use of a var file. This file can be used to create hybrid variables as well as specify plot information such as color, maps, and multi-panel plots. Variables can be aliased to other variables if needed. Each plotting program has an associated var file.

14.1. Menu XE "variables:menu"
The var file specifies which variables are to appear in this menu and it is dependent on the program.

 Variable Menu

 1: All Data 13: Cloud Cover

 2: Temperature 14: Pressure Tendency

 3: Dewpoint 15: 24 Hr Precip

 4: Wind Direction 16: 24 Hr Maximum Temp

 5: Wind Speed 17: 24 Hr Minimum Temp

 6: Wind Gust 18: Snow Depth

 7: Wind Barb 19: Wind Chill Temp

 8: Sea Level Pressure 20: Heat Index

 9: Altimeter Setting 21: Relative Humidity

 10: Present Weather 22: Equiv Potential Temp

 11: Visibility 23: Convergence

 12: Cloud Ceiling 24: Rel Vorticity

 0: Return to previous menu -1: Exit program

Enter the variable:

This menu only lists a small subset of what WXP can calculate. Again, you can list the resource values with the "?" but this will only list those values enabled in the menu. If you want all the available values, you can use the "list" command. The items in the variable menu can be tailored on and off within the ".var" variable menu file. Special variable definitions are specified in that file as well.

14.2. Specifying Variables XE "variables:specifying"
There are several methods for specifying variables. The simplest is to provide the alias as listed in the var file.

 temp Temperature 1 +temp [F]

In this case, you would specify "temp". This will plot the simple variable "temp". Simple variables are specified by a "+" prefix. From the var file, the default plot parameters are to plot the temperature in F (Fahrenheit).

To modify the units of a particular variable, just put the desired units after the variable name separated by a colon ":":

Enter the variable: temp:C

The plot parameter information can be more extensive:

Enter the variable: temp:C:cf:in=5
In addition to changing the units, the plot type is set to color fill with a contour interval of 5.

Hybrid variables can also by specified for the variable resource:

Enter the variable: conv(wind)

which will compute the convergence of the real winds. The value of wind is aliased in the var file to the U and V wind components specified as a vector quantity. You can generate vector quantities with some functions:

Enter the variable: grad(temp)

This will compute the gradient of temperature. Then by specifying a plot type of vectors, the vector field will be plotted.

14.3. Variables in GRIB files XE "variables:GRIB data"
The variables in a GRIB file are specified using a single number that is cross-referenced to a simple variable in the variable.lup lookup file. In this file, the numbers from 1-255 are reserved for GRIB parameters. Numbers above 255 are user configurable.

 8 hght Height
 11 temp Temperature

This file can be used to access GRIB products not normally in the Family of Services feed. In some cases, the simple variable can mean many different GRIB variables. A good example of this is pressure where there are 4 possible pressure values. In this case, the lookup file contains the possibilities separated by commas:

 1,2,128,129,130 pres Pressure

This way, the value "pres" can be used to capture all of these possible GRIB pressure products.

To get a feel for what is needed to correctly specify a variable in a GRIB file, use the griblook program. By setting the message level to out3 a listing of the parameters is printed out:

448: 12 hour ETA valid 12Z MON 29 SEP 97-500 mb Abs vorticity (/s)

 Model: ETA Time: 12hr Level: 500mb Variable: avort Units: /s
The specific time, level and variable name are listed. You can use these directly in programs like grbcalc.

For more information on the variables available, see variable.lup

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
15. Data Plotting XE "data plotting"
The data plotting uses latitude and longitude values to locate data on a map using a specific projection. The data can either be a floating point value or a character string. When plotted, the data is reformatted based on specific formatting information.

15.1. Station Filtering XE "data plotting:station filtering"

 XE "station filtering"
When plotting data, often the number of stations is more than can be plotted and still be readable. Therefore, a filtering mechanism must be employed. This uses two criteria:

· Station priorities: XE "station priorities"

 XE "priorities" \t "See station priorities"

 XE "station filtering:station priorities" each station in the city database is prioritized. The highest priority (1) represents the largest cities such as Chicago O'Hare and Los Angeles International. An effort has been made to keep these stations evenly spaced to provide the best plots. Priority 2, 3 and 4 stations fill in the gaps between the stations of higher priority. Priority 5 stations are near other reporting stations and priority 6 are within large cities such as Chicago's Midway airport.

PRIVATE
Priority
Description
Station Spacing
Domain Size

1
Major cities
~250 km
>50

2
Major cities
~160 km
>25

3
Smaller cities
~100 km
>12.5

4
Small cities/towns
~70 km
>6.25

5
Stations nearby other higher priority stations
~40 km
>3

6
Stations within cities with higher priority station
~20 km
<3

7
Stations that rarely report

8
Retired stations

If the station does not exist in the station database, its location cannot be determined and therefore will not be plotted. The exceptions to this are ships and buoys where location is given as part of the report. In this case, the station is given a default priority of 4. To change this, use the XE "station priorities:loc_pr option" loc_pr=prior plot parameter.

Automated priorities XE "station priorities:automated setting of"
For plotting, only the highest priority stations get plotted depending on the size of the domain. As the domain size decreases, the program will automatically include more stations, lowering the priority. The domain size XE "domain size"

 XE "station priorities:domain size" is computed from the plot domain as:

 domain_size =(ny-1)*dy

The priority associated with the computed domain size is listed in the table above.

Relative priorities XE "station priorities:relative"
You can specify a relative priority that is based on the automatic priority computed from the domain size. By using "+" or "-" on the priority, it will modify the automated priority either higher or lower, respectively. For example, the domain size is computed at 15. The automatic priority is 3. If the station priority is "+1", the new automatic priority will be 4. Now if the plot size changes, the priority will always be one more than the computed automatic priority.

· Grid filtering: XE "station filtering:grid filtering"

 XE "grid filtering" in this mode, only a set number of stations will plot within a grid box as specified by the plot_domain. The number of stations is specified with the plt_grid plot parameter.

 -pp=plt_grid:2

If no value is specified, only 1 station will plot in each grid box. If the value is greater than 0, it represents the number of stations within that grid box that will plot. If the value is 2, the plotting program will stop plotting data when it has plotted 2 stations within the grid box. If the number is less than 0, it represents the number of grid boxes that one station can be plotted. If the value is -2, only 1 station value will plot in each 2x2 grid area, thus reducing the number of stations plotted.

15.2. Station Data XE "data plotting:station data"
The data used to plot is based on information that is observed or derived from observed data. In most cases this is a numeric value which is formatted into a string for plotting. For example, temperature is a numeric value. The data is plotted centered on the station.

In other cases, the data is already a string and is plotted using some plotting method such as using symbols. An example of text data is cloud cover that is a value such as "C" or "O" for clear or overcast. In these cases, there are special plot types to plot cloud cover symbols based on this data.

15.3. Plot Types XE "data plotting:plot types"

 XE "plot types"
There are several plot types available to handle these types of data.

PRIVATE
Plot Type
Description

data
The raw data value. If the value is text, it plots as is. If not, plots as number with format

value
The numeric value with format

plot
A plot of data (statlog only)

int
Plot the numeric value as an integer

text
The text value plotted as is.

mark
Plot a marker such as a plus "+" at each station. The marker type is dependent on the data. Possible values are:

dot, pnt, ., plus, +, star, *, crcl, circle, o, x,

 sqr, square, #, tri, triangle, ^, itri, itriangle, v

cloud
Plot the data as a cloud cover symbol

wbarb
Plot the data as a wind barb

cbarb
Plot the data as a wind barb leaving room for a cloud cover symbol

dbarb
Plot the data as a wind barb with a dot at the station location

vbarb
Plot the data as a wind vector

wx
Plot the data as a weather symbol. Symbol files can be specified for special symbols

15.4. Plot Attributes XE "data plotting:attributes"

 XE "plot attributes:data plotting"
Plotting attributes affect how the data will be plotted. The types of attributes available include color, size, font, and location.

· Resources XE "data plotting:resources"
The color, line width, text size and scale factor can be set with the following resources:

· color_data - for general data plotting

· color_cloud - for the cloud cover symbols

· color_wind - for the wind barbs/vectors

· color_wx - for the weather symbols

· plot_format - for specific formatting

· con_interval - for coloring plotted data

· con_base - for setting range and base color value

· plot_param - for extra plotting parameters

· Variable Specification XE "data plotting:variable specification"
Other attributes can be changed when specifying the variable or in the variable file. When specifying a variable, the following syntax is used:

[time:level]varname[[units[:attributes...]]]

The time and level parameters are the same as can be specified with the time and level resources. These are often specified with these resources and therefore are optional. The units and attributes are surrounded with brackets "[]".

· Units XE "data plotting:units"
The input data will have a specific set of units that can be modified by listing the new units within the brackets. For example, to change the temperature to Celsius:

 -va=temp:C

The list of available unit conversions is in the units.lup file (See the units conversion section of the Users Guide).

· Attributes XE "data plotting:attributes, specifying"
The attributes are listed after the units. Multiple attributes can be specified separated by colons ":". For example, to plot temperature in C, upper right, in blue with one decimal place:

 -va=temp:C:ur:co=blue:%.1f
Here is a list of available attributes to specify:

PRIVATE
Attribute
Description

type
The type of plot: data, value, int, text, mark, cloud, wbarb, cbarb, dbarb, vbarb, wx

tx=text
Plot this text at each station location.

mk=type
Plot this type of marker at each station location. Possible values for type are: dot, pnt, ., plus, +, star, *, crcl, circle, o, x, sqr, square, #, tri, triangle, ^, itri, itriangle, v

%format
Specifies the printed format of the data. This is a full C format such as "%7.2f". The default is "%.0f" or zero decimal places.

fm=format
Specifies the printed format of the data but text can be added as well as the format. For example, "fm=%7.2fC". The default is "%.0f" or zero decimal places.

ul, uc, ur, tl, tc, tr, cl, cc, cr, bl, bc, br, ll, lc, lr
Specifies the plotting offset (select one)

PRIVATE
Offset
-.012
x=0
+.012

+.02
ul
uc
ur

+.012
tl
tc
tr

y=0
cl
cc
cr

-.012
bl
bc
br

-.02
ll
lc
lr

Default is "cc".

xy=x:y
Specifies the absolute plotting offset. The X and Y values are multiplied by .012.

sz=size
Specifies the size of a data plot (statlog only)

mx=max
Specifies the maximum value in the plot. All values greater than this value will not be plotted.

mn=min
Specifies the minimum value in the plot. All values less than this value will not be plotted.

sf=file
Specifies the symbol file to use in interpretting the data. The string data is passed to the symbol plotting routine and this file is used to plot the actual symbol.

sk=skip
Specifies a plotting skip factor. If not all values are to be plotted, this skip factor can be specified to only plot every skip values.

rs=resource
Specifies to use the listed resource to obtain color/attribute values. This is useful if you want to change attributes on the command line.

co=color
Specifies the color. This is the color name from the color table. If this is the first attribute, the "co=" may be omitted.

wi=width
Specifies the width of lines. This includes lines used in text and markers. The default value is 1.0.

st=style
Specifies the style of lines. Possible values are:

· sol - solid lines (number 1)

· dsh - dashed lines (number 2)

· lsdsh - long short dashed lines (number 3)

· llsdsh - long, long, short dashed lines (number 4)

· dot - dotted lines (number 5)

· # - a number corresponding to the above styles

fo=font
Specifies the font name. See the font_list resource.

fi=fill
fp=fill
Specifies the fill pattern. Possible values are:

· sol - solid fill (number 0)

· st - stippled fill (number 1)

· ost - open stippled (number 2)

· rst - random stipple (number 3)

· lst - large stipple (number 4)

· vln or || - vertical lines (number 5)

· drl or // - diagonal lines moving to upper right (number 6)

· dlr or \\ - diagonal lines moving to lower right (number 7)

· hln or -- - horizontal lines (number 8)

· hat or XX - hatched lines (number 9)

· 0% - 0 % fill (number 10)

· 1% - 11% fill (number 11)

· 2% - 22% fill (number 12)

· 3% - 33% fill (number 13)

· 4% - 44% fill (number 14)

· 5% - 55% fill (number 15)

· 6% - 66% fill (number 16)

· 7% - 77% fill (number 17)

· 8% - 88% fill (number 18)

· 9% - 100 % fill (number 19)

· ## - a number associated with the above patterns

sc=scale
Specifies the scale factor. Most drawn data is scaled by this parameter. The default value is 1.0.

hi=height
This is the height of text and the size of markers. The default value is 1.0.

te=expan
Specifies the text expansion factor. This controls how wide text is plotted. An expansion factor greater than 1 results in fat text. A value less than 1 results in thin text. The default value is 1.0.

ta=HV
Specifies the text alignment in the horizontal (H) and the vertical (V). Possible values for H are:

· l - left

· c - center

· r - right

Possible value for V are:

· t - top (top or ALL letter including parentheses)

· c - cap (top of most letters)

· h - half (centered)

· s - base (bottom of all capital letters)

· b - bottom (bottom of all lower case letters)

15.5. Color based on Value XE "data plotting:color based on value"

The color of the plotted data can be changed based on value of the variable. This uses the same mechanism that the color fill contours use. If a contour interval (con_interval resource) is specified, the data will be colored and an optional color bar can be displayed. The default minimum for the color fill attributes is 0 but this can be changed using the con_base resource.

 sfcwx -cu=la -re=mw -va=temp -in=3 -cb=30 -pp=bar:30:80
[image: image2.png]Surfage Temperature (F Andlysis for 1BZ 3 JUN 88

ER PR = a8

48 a5

A color bar can be displayed but the range on the color bar has to be specified.

15.6. Plotting Symbols XE "data plotting:symbols"
WXP uses a variety of symbols to plot information (see below). Cloud cover and wind barbs/vectors are generated directly by WXP. Wind barbs and vectors are adjusted to true north on the projection. In other words, a wind barb representing a north wind would point towards the north on the projection and not towards the top of the plot. Other symbols such weather symbols are plotted based on a symbol file. For example, weather symbols are in the wx.smb file.

15.7. Saving Raw Files XE "data plotting:raw files"
By default, plotting programs do not save raw data to file. In order to save to a raw file, you must explicitly specify the output with the out_file resource. For example:

 -of=raw[:filename]

specifies to create ASCII raw files. The output filename is dependent on the particular raw name tag. For example, surface data uses the sfc_raw tag and the name convention is looked up in the name convention file:

 sfc_raw %R/%v_%m%d%h.raw

with the output going into the directory pointed to by the raw_path resource. Often, the raw filename will contain the name of the variable (%v), level (%l) and forecast time (%f) in order to distinguish between raw files. It is recommended to include these parameters in the name convention.

If desired, the output filename can be specified with the out_file resource:

 -of=sfcwx.raw

The filename is first used as a file name tag and if not found in the name convention file, used as a filename with the raw_path resource value prepended to the filename.

If the output is standard output, the "std" keyword can be used:

 -of=std

If this is to be piped to another program, it is recommended to set the message level to "none" so that only the raw data displays. In most of these cases, the program is generating data for another program and thus does not need to plot the data. In these cases, it is recommended to turn off plotting with "-pl=none".

16. Gridding and Contouring XE "grid and contouring"
Contouring requires the existence of regular grids. These grids can be pregenerated, as is the case with the GRIB files from HRS or generated by WXP from the raw data using an objective analysis scheme.

16.1. Objective Analysis XE "grid and contouring:objective analysis"

 XE "objective analysis"
Non-gridded data must first be fit to a grid in order to be contoured. This is accomplished using a "Barnes Objective Analysis Scheme" which is done automatically within WXP's contouring programs. These programs read in and process the data, apply functions and change units prior to fitting the data to the grid. The grid is then computed using the objective analysis algorithm. Each gridpoint value is determined by calculating a weighted average of data surrounding the gridpoint. The weight for the stations can be computed as follows:

 weight = exp(-r2/a)

Where:

· r -- is the radius between the data station and the gridpoint.

· a -- is the smoothing (or filter) parameter.

The filter parameter XE "objective analysis:filter parameter" is used to determine how smooth the resulting grid will be. In general, values around 1 are used for high detail and values nearing 10 for smoother grids. Only those stations within the radius of influence XE "objective analysis:radius of influence" (initially set to 3 grid spacings) are included in the weighted average. If no stations fall within this radius, the gridpoint value is set to missing and the resulting grid box is not contoured. Data void regions will show up as missing areas on the contour plot. The number of stations that must fall within the radius of influence for the gridpoint to be valid is defined by min_stats. This defaults to 1.

Subsequent passes through the objective analysis scheme can be performed which attempts to converge the gridpoint value to the value of the nearest station. The second pass is done by bilinearly interpolating station values from the derived grid and computing residuals. Then these station residuals are fit to the same grid and resulting values used to correct the gridpoint values. On the second pass, a convergence factor is applied to the filter parameter to speed up convergence. A drawback of a one pass Barnes scheme is often that maximum and minimum values are smoothed over. The benefit of the second pass is to reestablish the maximum and minimum points in the grid but this is often at the expense of creating a noisy gridded field. Gridding statistics along with RMS errors are displayed if the message level is set to "out3".

 * grid information *

Time and date are = WXP analysis for 04Z 3 JUN 97

Data field 1 = Surface Temperature (F)

Number of stations = 208 stats

Central latitude = 43.0000 deg

Central longitude = -93.0000 deg

Spacing between grid points = 1.1000 cm

Number of grid points (w-e) = 25 pts

Number of grid points (s-n) = 17 pts

Number of passes = 2

Filter parameter = 1.0000 cm**2

Radius of influence = 3.00 grids

Minimum stations at gridpt = 1 stats

Fitting to grid...

Pass: 1...

Computing residuals...

RMS Error for field 1: 1.226064

Pass: 2...

Computing residuals...

RMS Error for field 1: 0.312472

The filter parameter, the radius of influence and number of values can be set with the object_param resource.

 -oa=filter,radinf,passes,converg,min_stats

Once the gridding is complete, subsequent functions may be applied on the grids such as convergence or advection. The grid is then set to the contouring module.

NOTE: Contours over data void regions such as oceans may be erroneous. The radius of influence is provided to help locate these regions. Other types of data such as synoptic data that contain ship and buoy data can be used in these regions to help obtain more valid contours.

16.2. Grid Doubling

It may be necessary to change the resolution of a grid from the default specified in the plot_domain resource. Rather than specifying a new domain, the grid can be doubled or tripled in resolution by using the gridx plot parameter:

 -pp=gridx2

will double the resolution of the grid in each direction. It does the following:

· doubles the gridpoints in each direction

· divides the grid spacing by two

· doubles the radius of influence

Other integral factors can be used such as 3, 4 or 5.

16.3. Saving Grid Files

By default, gridding programs do not save grids to file but use them internally. In order to save gridded fields to file, you must explicitly specify the output with the out_file resource. For example:

 -of=wxp[:filename]

specifies to create WXP ASCII grid files. Other keywords include "wxpb" for binary WXP grid format and "cdf" for netCDF file format. The output filename is dependent on the particular grid name tag. For example, surface data uses the sfc_grd tag and the name convention is looked up in the name convention file:

 sfc_grd %G/%v_%h%m%d.grd

with the output going into the directory pointed to by the grid_path resource. Often, the grid filename will contain the name of the variable (%v), level (%l) and forecast time (%f) in order to distinguish between grids. It is recommended to include these parameters in the name convention.

If desired, the output filename can be specified with the out_file resource:

 -of=sfcwx.grd

The filename is first used as a file name tag and if not found in the name convention file, used as a filename with the grid_path resource value prepended to the filename. If only the filename is listed, the output will be in WXP ASCII format. If another format is desired, specify the format separated by a comma:

 -of=cdf:sfc_grd.cdf

If the output is standard output, the "std" keyword can be used:

 -of=std

If this is to be piped to another program, it is recommended to set the message level to "none" so that only the raw data displays. In most of these cases, the program is generating data for another program and thus does not need to plot the data. In these cases, it is recommended to turn off plotting with "-pl=none".

16.4. Contouring

To visualize the grids, a simple contouring algorithm is used. There are the following plot types:

There are several plot types available to handle these types of data.

PRIVATE
Plot Type
Description

cont
Unknown contour type. Prompt the user for the contour type.

cf
Use color fill contours

lcf
Use a combination of color fill and line contours

ln
Use line contour

dln
Use dash line contours

ndln
Use dashed line contours on negative values, line contours elsewhere. The con_base resource can be used to set the breakpoint.

gvalue
Plot the gridpoint values

The contouring is broken down into 3 segments.

· contours -- the actual contours

· contour labels -- the labels for each of the contour lines

· local maxima/minima -- the extreme values plotted with a H and L with appropriate values

16.5. Color Fill Contours

A color fill contour plot will fill areas between contour lines with a specific color. By default, these 15 colors are:

magenta, lmagenta, blue, lblue, cyan, lcyan, green, lgreen, brown, yellow, red, lred, dgray, lgray, white

The lowest contour value will be filled with magenta and the next highest with light magenta and so on. If there are more than 15 contour levels, the colors will wrap around to magenta again. If necessary, the user may select the color fill colors with the color_fill resource (up to 256 colors can be listed). To obtain the best color fill plot, the user should take care in selecting a contour interval so that around 15 contour levels are displayed. In other words, take the difference between the maximum and minimum, divide by 15 and round up (see automatic intervals).

To not plot a contour level, use "off" for the color. This is useful in overlays. Also, fill patterns can be used to make the contours translucent. A sample plot:

 sfccalc -cu=la -re=mw -va=temp -in=3 -pl=cf -de=d

[image: image3.png]Surface Ternperature (F WXP andlysis for BBZ_3 JUN 88
P s

NTERVAL: 3.0

Since the first color fill color is linked to the lowest value in the grid, looping these images may result in color variations from plot to plot. Using the con_base resource locks in the colors at a specific value so that loops will have consistent colors.

16.6. Line Contours

There are several types of line contour plots. There are straight line contours (ln), dashed line contours (dln), negative dashed line contours (ndln) and color fill and line contours (lcf). When a negative dash line contour type is used, the break-off point between line contours and the dashed contours is 0. Line contours exist at this value and above. Dashed contours appear below this value. The con_base resource is used to set the break point if it is not 0. A sample is:

 sfccalc -cu=la -re=mw -va=pres -in=2 -pl=ln -de=d

[image: image4.png]

By default, all line contours are drawn with the same color and the same attributes. By specifying the color_fill resource, the attributes in the color fill resource will carry over to the line contours. The first attribute is linked to the lowest contour. If the color_cont is set to "off", the colors from the color_fill resource will be used as well.

16.7. Smooth Contours

The WXP contouring algorithm does not smooth contour lines after computing them. Adding spline interpolation sometimes does not give reasonable contours. To get smoother contours, double the gridpoints in the domain. To double the gridpoints, use the "gridx" plot parameter (see grid doubling above). Keep in mind that object analysis parameters ought to be changed as well. The radius of influence should be doubled along with a small increase in the filter parameter:

 -pp=gridx2 -oa=2,6

Tripling the gridpoints can give even better results but can produce plateau effects. Make sure the number of stations going into the objective analysis is enough to merit the increase in resolution by increasing the station priority.

16.8. Gridpoint Values

If the "gvalue" plot type is specified, the output will be plotted values at each gridpoint. The color of the plotted data is controlled by the color_cont resource. If a contour interval is specified, the values are colored based on their values. The contour base can also be set to lock the colors to a specific value range. To format the values, the plot_format resource can be specified. A sample plot:

 sfccalc -cu=la -re=mw -va="temp[C:gvalue:in=2]" -de=d

[image: image5.png]Surface Temperature (C) WXP andlysis for 1BZ 3 JUN 88

7

NTERVA

70 [0: 192 H: 331

16.9. Contour Line Labeling

The contouring routine automatically labels every other contour line only when the contour passes through opposite sides of a grid box. The labels are limited by a skip factor in X and Y. By default, these line labels appear once every nx/5 grid boxes in X and ny/5 grid boxes in Y. For a 25x17 grid, this is every 5 grid boxes in X and 3 in Y. This limits the number of contour labels that get drawn.

Local extremes are also plotted. By default, the extremes are labeled whenever a gridpoint is the minimum value of all the gridpoints that are within 2 gridpoints of that gridpoint for a total of 25 gridpoints. If the value is the maximum value within those 25, it gets an "H" label with the appropriate gridpoint value. If it is the minimum value, a "L" is plotted along with the value.

The labels specification can be adjusted with the lab plot parameter. The syntax is:

 lab=Lab[:Rad][:X][:Y]

where Lab is the number of contour lines between labels. The labels start at the lowest value or the value of con_base and, every Lab'th line is labeled. The default is every other line. Rad is the search radius for local extrema. The default is 2 gridpoints in each direction. The X and Y values specify how many gridpoints in X and Y to skip between labels on a specific contour line where the default is nx/5 and ny/5.

Line labels can be turned off if Lab is 0. If this is the only value specified, both labels and extrema are turned off. If Rad is 0, the extrema are not plotted.

The colors and attributes for the labels are defined by the color_label resource for line contours and color_clabel resource for color fill contours. By default, the line labels are in white and the fill labels are in black.

16.10. Overlay Map

The map is then overlaid in black. The map color and attributes can be changed with the color_map resource for line contours and the color_cmap resource for color fill contours. The defaults are red for line contours and black for color fill contours.

16.11. Color Bar

A color bar can be displayed on the image if the "bar" plot parameter is set. It automatically appears if irregular contour values are specified with the color_fill resource. The bar is drawn in the lower left corner of the plot and shows the colors used in the color fill plot labeled with their associated values:

PRIVATE "TYPE=PICT;ALT=bar_sample.gif (1006 bytes)"

16.12. Plot Attributes

Plotting attributes affect how the data will be contoured. The types of attributes available include color and fill pattern.

· Resources

The color, line width, text size and scale factor can be set with the following resources:

· color_cont - for line contours

· color_fill - for fill contours

· color_label - for line contour labels

· color_clabel - for fill contour labels

· plot_format - for specific formatting

· con_interval - for coloring plotted data

· con_base - for setting range and base color value

· plot_param - for extra plotting parameters

· Variable Specification

Other attributes can be changed when specifying the variable or in the variable file. When specifying a variable, the following syntax is used:

[time:level]varname[[units[:attributes...]]]

The time and level parameters are the same as can be specified with the time and level resources. These are often specified with these resources and therefore are optional. The units and attributes are surrounded with brackets "[]".

· Units

The input data will have a specific set of units that can be modified by specifying the units within the brackets. For example, to change the temperature to Celsius:

 -va=temp[C]

The list of available unit conversions is in the units.lup file (See the units conversion section of the Users Guide).

· Attributes

The attributes are listed after the units. Multiple attributes can be specified separated by colons ":". For example, to plot temperature in C, using blue line contours:

 -va=temp[C:ln:co=blue]

Here is a list of available attributes to specify:

PRIVATE
Attribute
Description

type
The type of plot: cf, lcf, ln, dln, ndln, gvalue

%format
Specifies the printed format of the data. This is a full C format such as "%7.2f". The default is "%.0f" or zero decimal places.

mx=max
Specifies the maximum value in the contour plot. All values greater than this value will not be plotted.

mn=min
Specifies the minimum value in the contour plot. All values less than this value will not be plotted.

co=color
Specifies the color. This is the color name from the color table. If this is the first attribute, the "co=" may be omitted.

wi=width
Specifies the width of lines. This includes lines used in text and markers. The default value is 1.0.

st=style
Specifies the style of lines. Possible values are:

· sol - solid lines (number 1)

· dsh - dashed lines (number 2)

· lsdsh - long short dashed lines (number 3)

· llsdsh - long, long, short dashed lines (number 4)

· dot - dotted lines (number 5)

· # - a number corresponding to the above styles

fo=font
Specifies the font name. See the font_list resource.

fi=fill
fp=fill
Specifies the fill pattern. Possible values are:

· sol - solid fill (number 0)

· st - stippled fill (number 1)

· ost - open stippled (number 2)

· rst - random stipple (number 3)

· lst - large stipple (number 4)

· vln or || - vertical lines (number 5)

· drl or // - diagonal lines moving to upper right (number 6)

· dlr or \\ - diagonal lines moving to lower right (number 7)

· hln or -- - horizontal lines (number 8)

· hat or XX - hatched lines (number 9)

· 0% - 0 % fill (number 10)

· 1% - 11% fill (number 11)

· 2% - 22% fill (number 12)

· 3% - 33% fill (number 13)

· 4% - 44% fill (number 14)

· 5% - 55% fill (number 15)

· 6% - 66% fill (number 16)

· 7% - 77% fill (number 17)

· 8% - 88% fill (number 18)

· 9% - 100 % fill (number 19)

· ## - a number associated with the above patterns

sc=scale
Specifies the scale factor. Most drawn data is scaled by this parameter. The default value is 1.0.

hi=height
This is the height of text and the size of markers. The default value is 1.0.

te=expan
Specifies the text expansion factor. This controls how wide text is plotted. An expansion factor greater than 1 results in fat text. A value less than 1 results in thin text. The default value is 1.0.

in=intrvl
Specifies the contour interval.

cb=base
Specifies the contour base value. The default is the minimum value of the grid.

cof=file
Specifies a color fill attribute file to use for color fill parameters.

lab=lab.rad.X.Y
Specifies the contour labeling options. See the contour label section above.

labs
Specifies to use simple labels (level varabbr (unit))

bar
Specifies to display a color bar.

16.13. Automatic Intervals

By specifying zero (0) as the contour interval, a reasonable interval is computed based on the number of values in the color fills (see color_fill resource).

 interval ~= (max-min)/num_colors

This value is rounded up to the nearest whole number. This is also based on the range of data so if the range is less than 1, the program will make the resulting contour interval a fractional value.

16.14. Maximum Number of Lines

In some cases, the contour interval is specified so small that hundreds of contour lines will be drawn on a plot. This can also occur if there is bad data, which is commonly referred to as a bulls-eye. This can cause problems for the contouring algorithm if it has to draw all these lines. As a result, there is a limit to the number of lines that can be drawn within on grid box. The default number is twice the number of color fill colors. If this is not desirable, the maximum can be reset with the "maxl" plot parameter:

 -pp=maxl:75

If the factor is less than 0, it is a multiplier of the number of color fill colors. For example (using 20 color fill colors):

 -pp=maxl:-5

would yield at most 125 lines in a grid box.

17. Vector Plotting

Vector plotting uses two grid fields to accommodate the X and Y components of the vector. For the most part, this is the U and V wind component grids. To visualize the vector grids, there are the following plot types:

PRIVATE
Plot Type
Description

vect
Plot wind vectors

barb
Plot wind barbs

strm or stream
Plot streamlines

17.1. Vector Plots

Vectors start at the grid location and point in the direction the wind is blowing to. The length of the vector is dependent on its speed. All vectors are scaled so that the largest wind vector is equal to one grid spacing.

When looping wind vector plots, it should be noted that since the wind vectors are scaled to the highest wind speed, the vector lengths for the same wind speed could change from one frame to the next. Use the con_base resource to lock a specific length to a specific speed. The contour base value sets a wind vector of that speed to one grid spacing, thus locking in a length to speed relationship. Remember to pick a value close to the maximum speed or the vectors may be too large or too small.

The plot_scale resource will the vectors if they are too small to read or if the grid spacing is too small as is the case with most of the model data. If this is the case, it is recommended not to plot all wind vectors. The wv_skip=xskip[,yskip] plot parameter force the plotting to skip every skip vectors. Then it might be necessary to set the plot scale to the skip factor in order to make the vectors more readable. A sample is:

 sfccalc -cu=la -re=mw -va=vect -de=d

[image: image6.png]Surface Winds (/s WXP andlysis for 1BZ 3 JUN 98

MAK VECTOR: 1.8 m/s —

17.2. Vector Bar

To label the wind vector plot, a vector bar can be plotted. By default, only the maximum speed is displayed in the lower right corner of the plot. A vector bar is an arrow representing the largest arrow/vector on the plot along with its value. This can be enabled with the "vbar" plot parameter.

17.3. Wind Barbs

Wind barbs start at the grid location and point in the direction the wind is blowing from. This uses a standard wind barb where a full barb represents 10 for whatever parameter is being displayed. A sample is:

 sfccalc -cu=la -re=mw -va=wind[knt] -pl=barb -de=d

[image: image7.png]sis for 167 3 JUN 98

WXP andl

Surfage Winds (knt)

MAX: 210

17.4. Streamlines

Streamlines show the full continuous flow of the vector field that is often used to display winds. The streamline algorithm starts a streamline out of the center of each grid box. The streamline continues until it reaches a maximum length, reaches a grid box with too many streamlines already in it or when the streamline makes more than a 90 degree turn in either direction.

The length of the streamline is set so that it is roughly the length from one end of the domain to the other. The maximum length can be controlled by the plot_scale parameter. The number of streamlines within a grid box is controlled by the con_base resource. The streamline algorithm automatically doubles the grid for this computation. The default is one streamline per grid box but this is roughly 2 since the grid is doubled. Setting the contour base to 2 would double the number of streamlines on the plot.

In order to thin out the streamlines, the wv_skip plot parameter can be invoked. Setting this to 2 would start streamlines out of every other grid box. Since model grids are so dense, it is recommended to set the vector skip parameter to make the streamlines more readable.

The arrows on the streamlines can become rather small to view on large plot domains. There is a streamline scale factor plot parameter "strm_sc=scale" which is used to determine the distance between arrows and the size of the arrows.

A sample is:

 sfccalc -cu=la -re=mw -va=wind[knt] -pl=stream -de=d

[image: image8.png]

17.5. U, V Component Computation

There are two methods for computing U and V wind components. The first method is the compute U as the easterly component of the wind and V as the northerly. This is the default for WXP if the U and V components are individually computed using the uwnd and vwnd variable specification. The second method is compute U and V relative to the grid where U is the component to the right on the grid and V is towards the top of the grid. This can be specified with either the uwndg or vwndg variable specification. A composite vector variable called wind is available in most applications, which are the grid relative winds.

The default for the vector plotting module is to use grid relative winds but this can be forced with the uvgrid plot parameter. If the U and V grids are east/west relative, use the uvew plot parameter to make sure the vectors are properly aligned to the domain.

17.6. Plot Attributes

Plotting attributes affect how the vectors will be plotted. The types of attributes available include color, style, and width.

· Resources

The color, line width, text size and scale factor can be set with the following resources:

· color_cont - for vectors, barbs and streamlines

· color_fill - for multicolored vectors

· plot_format - for specific formatting

· con_interval - for coloring plotted data

· con_base - for setting range and base color value

· plot_param - for extra plotting parameters

· Variable Specification

Other attributes can be changed when specifying the variable or in the variable file. When specifying a variable, the following syntax is used:

[time:level]varname[[units[:attributes...]]]

The time and level parameters are the same as can be specified with the time and level resources. These are often specified with these resources and therefore are optional. The units and attributes are surrounded with brackets "[]".

· Units

The input data will have a specific set of units that can be modified by specifying the units within the brackets. For example, to change the temperature to Celsius:

 -va=wind[knt]

The list of available unit conversions is in the units.lup file (See the units conversion section of the Users Guide).

· Attributes

The attributes are listed after the units. Multiple attributes can be specified separated by colons ":". For example, to plot temperature in C, using blue line contours:

 -va=wind[knt:vect:co=blue]

Here is a list of available attributes to specify:

PRIVATE
Attribute
Description

type
The type of plot: vect, barb, stream

mx=max
Specifies the maximum value in the contour plot. All values greater than this value will not be plotted.

mn=min
Specifies the minimum value in the contour plot. All values less than this value will not be plotted.

co=color
Specifies the color. This is the color name from the color table. If this is the first attribute, the "co=" may be omitted.

wi=width
Specifies the width of lines. This includes lines used in text and markers. The default value is 1.0.

st=style
Specifies the style of lines. Possible values are:

· sol - solid lines (number 1)

· dsh - dashed lines (number 2)

· lsdsh - long short dashed lines (number 3)

· llsdsh - long, long, short dashed lines (number 4)

· dot - dotted lines (number 5)

· # - a number corresponding to the above styles

sc=scale
Specifies the scale factor. This will scale vectors and barbs and scales the maximum length of streamlines. The default value is 1.0.

ss=scale
Specifies the streamline scale factor. Used to determine the distance between arrows and the size of the arrows. The default is 1.0.

cb=base
Specifies the contour base which is used to determine how many streamlines go through a given grid box. The default value is 1.0.

in=intrvl
Specifies a contour interval that is used to color vectors, barbs and streamlines.

sk=skip
Specifies the wind vector skip factor. The default is 1.

vbar
Specifies to plot the vector bar

17.7. Color based on Value

The color of the vectors, barbs and streamlines can be changed based on value of the speed. This uses the same mechanism that the color fill contours use. If a contour interval (con_interval resource) is specified, the data will be colored and an optional color bar can be displayed. The minimum for the color fill attributes is 0.

 sfcwx -cu=la -re=mw -va=strm[knt] -in=2 -pp=bar

[image: image9.png]

18. Map Plotting

Most WXP graphics programs plot maps. By default, the wxp.map file plots for plot domains over North America. Otherwise, the program will draw a map based on the cont.dat and country.dat files. If another map is needed, the map_file resource is used to specify a list of maps to plot. The filenames listed by the resource can be specified as a relative path in which the value of the file_path resource is prepended to the filename or as a full path to avoid the file_path setting.

WXP comes with a rather large set of map databases, all of which can be used to enhance plots. Here is a list of the basic set of maps:

· wxp.map - the standard low resolution map of North America (default for most plots)

· cont.map - low resolution global continental outline map (default for non-N.A. plots)

· country.map - low resolution political outline map (default for non-N.A. plots)

· state.map - high resolution U.S. state outline map

· wxpstate.map - low resolution state outline (derived from wxp.map) for use with cont.map.

· usa_cnty.map - medium accuracy county outline map.

· zones.map - forecast zone map.

There are binary versions of some of these maps created with the map2bin program. These will have a .bmap extension.

18.1. DLG (Digital Line Graph) Maps

There is an optional set of maps derived from the USGS DLG databases. These are high resolution maps containing outlines of:

· country and coast lines

· state outlines

· county outlines (these are exclusive boundaries so you need to plot all three of these).

· roads

· railroads

· streams

· lakes and islands

· major city outlines

· national parks, monuments, forests

· Indian reservations

· military reservations

All of these maps are in binary format due to the resolution and resultant size of the maps. The WXP distribution comes with these maps:

· dlg/nation.bmap

· dlg/coast.bmap

· dlg/state.bmap

· dlg/cnty.bmap

· dlg/rd_int.bmap (Interstate highways)

· dlg/rd_us.bmap (US highways)

· dlg/rd_state.bmap (selected state highways)

18.2. Multiple Maps and Attributes

The map_file resource allows you to specify more than one map if the map file names are separated by a comma. The maps are drawn in the order listed.

 -mf=cont.map,country.map

You can specify as many maps as you want but remember, the plot will get rather cluttered if more than 3 are specified.

In order to distinguish multiple maps, it may be necessary to change the color and style of each of the maps. You can add attributes:

 -mf=cont.map:co=lred:wi=2,country.map:co=red

In this example, the first map is drawn in light red with a line width of 2. The second map is drawn in red.

18.3. Map List Files

If the command line gets to complicated, the map file specification can be put into a file. The above line would look like:

 cont.map:co=lred:wi=2
 country.map:co=red

In a file named "map_globe". Each map is on a different line, not separated by commas as with the resource specification. The file will be listed in the map_file resource as:

 -mf=fi:map_globe

18.4. Conditional Map Drawing

This is the ability to toggle the drawing of maps on and off based on the region of the world and the size of the domain. As the user zooms in on a region, the maps that are drawn will change to add more detail if needed.

The criteria for toggling maps are based on domain size. The domain size is determined by the following formula:

 size = (ny-1)*dy

Ny and Dy are from the plot_domain specification. For example the us domain (as listed in the wxp.reg file) is a 25x17 grid with a spacing of 2.3. This makes the domain size 16*2.3 or 36.8. Here is a table of domain sizes and what they represent

· 200 - hemispheric

· 100 - continental

· 40 - scale of contiguous U.S.

· 15-20 - small U.S. regions

· 10 - 1 to 3 states

· 5 - sub-state scale

You can make the map conditional by putting a ">size" or a "<size" in front of the map file name to specify whether the map is drawn if the domain is greater than size or less than size, respectively.

Here is a sample:

 >20:wxp.map

 <10:dlg/cnty.bmap:co=red

 <20:dlg/nation.bmap:co=lred:wi=2

 <20:dlg/state.bmap:co=lred:wi=2

 <20:dlg/coast.bmap:co=lred:wi=2

 <10:dlg/rd_int.bmap:co=brown

 <3:rf:counties.raw-Name:co=cyan:te=.75

Now remember order is critical. In some cases, you may want a map to draw last so it is not obscured. In this case, I want the interstate highway map to draw on top so it is the most visible. Of course, the interstate map will only draw for state scale domains (size<10). The low resolution wxp.map is replaced by the higher resolution DLG maps at a size of 20. The last line listed is not a map at all but a raw file. This will label each county with its name for very small domains. The counties.raw file has several fields in it but we want to only plot the Name field from that file.

You can combine the "<" and ">" to plot a map within a specified range:

 >5<10:range.map

18.5. Regional Map Drawing

This is the second component of conditional drawing. The DLG databases are only valid over the contiguous U.S. so these map files make no sense if you are drawing a map for Europe. Regional drawing limits a set of maps to a specific region. The region limits are specified on a line with the brackets []:

 [25,50,-125,-75,75]

 >20:wxp.map

 <10:dlg/cnty.bmap:co=red

 <20:dlg/nation.bmap:co=lred:wi=2

 <20:dlg/state.bmap:co=lred:wi=2

 <20:dlg/coast.bmap:co=lred:wi=2

 <10:dlg/rd_int.bmap:co=brown

 <3:rf:counties.raw-Name:co=cyan:te=.75

 []

 cont.map

 country.map

The five numbers of the region limits are the minimum and maximum latitudes, the minimum and maximum longitudes and the maximum domain size. This set of maps (between region specifications) will be drawn if the central latitude and longitude (from the plot_domain resource) is within the range specified and the domain size is less than the maximum size. The domain size is optional. More than one like this can be specified in the map specification file. The blank bracket specification denotes the default set of maps. If the domain matches none of the criteria, the default set of maps is drawn. This must be specified last.

18.6. Plotting non-maps

The map_file resource allows the users to plot non-map files.

· lalo:lat[:lon]
Draw lat-lon lines at the specified interval. This allows the user to control the order and when lat-lon lines are drawn. If lon is omitted, the interval for both is the same.

· rf:rawfile[-variable]
Plots the contents of the raw file This is handy for labeling maps with city and county names.

· im:image[:back:x:y]
This overlays an image on the plot. The image is a GIF image that can be created by WXP or another program and saved in the file image. The value of the image_path resource is prepended to the filename if a relative path.

The back specifies a color that will be transparent. The default is black. If this plot is a reverse/inverted color (white background), the map image may have to be plotted in black in which case you would use white for the transparent color.

The x:y specifies an offset for the image. By default, it is placed relative to the upper left corner of the plotting window. You can offset this positive which is relative to the upper left corner of negative which is relative to the lower right corner.

An example:

 -mf=im:earth_us.gif,+im:wxplogo.gif::-1:-1 -ge=540x400

This plots two images, the first being a relief map of the U.S. and the second being a logo placed on the map in the lower right identifying the plot as being plotted by WXP.

NOTE: when dealing with image background maps, it may be necessary to fix the size of the plot to match the size of the image.

· if:image[:back:x:y]
This overlays an image much like im: except the image is offset from the upper left corner of the window, not the plot.

· mf:metafile
This plots the content of a metafile.

18.7. Underlay, Overlay Maps

The map drawing is done in two ways; as an underlay and as an overlay. For most plotting, the map is an underlay. For color fill contouring, satellite and radar display, the map is an overlay. To control how a map is plotted either as an underlay or an overlay, add either a "-" for underlay or a "+" for overlay:

 -im:usa_relief.gif

 wxp.map

 +im:wxplogo.gif::-1:-1

The image "usa_relief.gif" will always be plotted as an underlay. The WXP logo will always be plotted as an overlay in the lower right hand corner. In this case we are putting relief image under the plot and a logo over the plot. The "wxp.map" will plot either as an underlay or an overlay depending on the default for the type of plot.

18.8. Latitude Longitude Lines

Each of the graphics programs can display latitude-longitude lines on top of the geographical map. These lines can be drawn at any specific interval. The lines are labeled at the left and bottom of the plot. The syntax is:

· lalo:lat[:lon:plus:extra]

where the latitude spacing is lat and longitude is lon. If lon is not specified, it is set to lat. The attributes of these lines are controlled by the color_line resource.

Plus represents whether small plus signs "+" are placed at lat,lon intersections where plus is the interval between pluses. Extra represents where extra lat, lon labels are to be placed where extra is the interval between labels. These labels are offset from prime lines such as the equator and date line. For example, if extra is 45, then the labels are placed at -67.5, -22.5, 22.5 and 67.5.

18.9. Binary map file interface

The mapping programs take binary data files for speed. There is a program called map2bin, which converts the map files into a binary form WXP can handle. WXP automatically senses when it is using a binary map file. Binary map files plot up to 5 times faster.

19. Graphical Output

Many of the WXP programs produce graphical output. The bulk of the graphics is vector oriented but some imagery is used. Vector graphics can be easily created for a variety of output types. Imagery is more complicated and may not be available for some output types.

Graphics output devices are grouped into several categories:

· Display (D) -- display window created by program

For windows systems, the output is a window of size 640x512 that will display somewhere on the display surface based on the window manager. The graphics will then be plotted to an underlying pixmap that will be displayed once the plot is complete. While this is happening, the cursor will appear as a watch or hourglass. This cursor will always note processing of some nature. Once the plotting is completed, the cursor will become a plus. At this time, the plot becomes interactive with zoom, resize, and query capabilities. Window resizing will redraw the plot to the new window size. The plot will remain in the window until the <Enter> key is hit. Once the Enter key is hit, the window will close and control returned to the text portion of the program.

· Window (W) -- window, previously created by another program such as wxploop.

The graphics will be drawn directly to this window without any intervention by the program that created it. Specific ID numbers are needed such as window and pixmap ID, window size, and colormap ID need to be passed to the program when in this mode. These can be obtained directly from the window creation program. When the graphics program is finished, it exits but the creation program remains running with the graphic remaining in the window. This mode can now be used to overlay plots. Secondly, the creation program can create multiple frames, which enables looping.

· Postscript (P) -- postscript output for printers

The output device generates postscript output suitable for printing. Essentially, this mode generates a simple postscript file that either can be written to a file or spooled to a print queue. Output can be either to grayscale printers or to a color postscript device.

PRIVATE
Output
Text/Symbols
Color Fills

grayscale
all black
converts colors to gray shade base on intensity (white -> white, black -> black) unless psrev is specified.

color
actual color except black and white which are inverted
actual colors

Also, this device can be set up so that output can be appended and printed later with the pscat program. This allows for overlay plots much like the window mode.

· HPGL (H) -- plotter output (HPGL)

This output device creates HPGL codes that can be routed to plotters that support HPGL and recent HP Laserprinters that support PCL version 5. The output can be written to a file or spooled directly to a print queue. There is no color support. Also, this device can be set up so that output can be appended and printed later with the hpglcat program. This allows for overlay plots much like the window mode.

· Metafile (M) -- metafile output (WXP Metafile)

The output is an ASCII metafile format that is loosely based on the GKS metafile standard for graphics primitives. In the future, this output my support CGM or GKSM or WMF.

19.1. Device Resource

The output type is specified either at the device prompt or through setting the device resource. If the device is not specified through the resource, the program prompts for it. For general purposes, the output device can be specified using a single character. For example, the display is "d". Additional information may be required for specific output types. For example, the window device needs the window ID. The syntax for each device type is listed below:

· Display syntax:

 d[,Xserver:display]

For the display output, the only additional parameter is the server name that is not often needed. If not specified, the value of the DISPLAY environment variable is used.

· Window syntax:

 w,[Xserver:display],+window_id:pixmap_id[:widthxheight][:colormap_id]

As with the display device, the server ID may be specified, otherwise the value of the DISPLAY environment variable is used. The window and pixmap IDs follow. The pixmap ID is the location the graphics are going to draw. The window ID is passed to the program so that it can gain control of the window for redraws. The window size must be listed if it is different from default size of 640x512. An additional parameter for the colormap can be specified if the window creation program is using a local colormap. The parameters are specified with a colon ":" in between each parameter. There is a second method for specifying window parameters:

w,[Xserver:display],filename

This reads the window information "+window_id:pixmap_id[:widthxheight][:colormap_id]" from the specified file. This can simplify use of wxploop since there needs to be a way to communicate the window information to other programs. This is essential for Windows programs since the Win32 prevents output to standard output. The filename is created with the "wxploop -ba -wn=filename" command.

· Postscript syntax:
 p[,file][,parameters...]
The output file is wxp.ps unless otherwise specified. The output file can be one of the following:

PRIVATE
File
Description

file
A specific output file

+file
Appends to a file. Header and trailing showpage are omitted. This allows for multiple programs to overlay graphics. Once the full file has been generated, the pscat program can be used to put the header and trailer on the file and spool to the printer.

|program
Pipes the output to a specific program. This is often used to spool the output to a print queue by using "|lp".

The parameters are (multiple parameters are separated by commas):

PRIVATE
Parameter
Description

port
Portrait output

land
Landscape output (default)

eps
Encapsulated postscript

noeps
Standard postscript output

color
Setup for color output (colors automatically inverted)

gray
Setup for grayscale output (default)

scale=factor
Scale the output

lwidth=factor
Base line width (def=1.0)

sz=widthxheight
Set paper size in inches.

letter
Letter paper size (8.5x11")

legal
Legal paper size (8.5x14")

11x17
11x17" paper size

a4
A4 paper size (8.3x11.7")

a3
A3 paper size (11.7x16.5")

ansid
ANSI D paper (22x34")

The output file and parameters can be set with the use of the wxpps_print environment variable. PSPRINT can be used for backward compatibility.

 setenv wxpps_print postscript_file
 setenv wxpps_print '|program'
 setenv wxpps_print +filename

The above parameters can be specified with the wxpps_param environment variable:

 setenv wxpps_param letter,color

· HPGL syntax:
 h[,file][,parameters...]

The output file is wxp.hpgl unless otherwise specified. The output file can be one of the following:

PRIVATE
File
Description

file
A specific output file

+file
Output to a file in append mode. Header and trailer are omitted. This allows for multiple programs to overlay graphics. Once the full file has been generated, the hpglcat program can be used to put the header and trailer on the file and spool to the printer.

|program
Pipes the output to a specific program. This is often used to spool the output to a print queue by using "|lp".

The parameters are (multiple parameters are separated by commas):

PRIVATE
Parameter
Description

port
Portrait output

land
Landscape output (default)

pcl
Includes PCL command to switch to HPGL (default)

lj
Laserjet setup (rotates paper)

rot=angle
Rotation angle

scale=factor
Scale the output

lwidth=factor
Base line width (def=0.2)

sz=widthxheight
Set paper size in inches.

letter
Letter paper size (8.5x11")

legal
Legal paper size (8.5x14")

11x17
11x17" paper size

a4
A4 paper size (8.3x11.7")

a3
A3 paper size (11.7x16.5")

ansid
ANSI D paper (22x34")

The output file and parameters can be set with the use of the wxphp_out environment variable.

 setenv wxphp_out HPGL_file
 setenv wxphp_out '|program'
 setenv wxphp_out +filename

The above parameters can be specified with the wxphp_param environment variable:

 setenv wxphp_param ansid,lwidth=.5

· Metafile syntax:

 m[,file]

The output file is wxp.meta unless otherwise specified. The output file can also be set with the wxpmeta_out environment variable.

· Default Printer

By default, WXP directs all printed output to the Postscript filter for output to a Postscript printer. If the default printer is a HP LaserJet, the default printed output needs to go to the HPGL filter. This is done with the wxpprint environment variable:

 setenv wxpprint hpgl

Any output to device "p" will now go to the HPGL filter as if it were directed to device "h".

19.2. Geometry Resource

The geometry of the output can be specified with the geometry resource.

· Display

For the display device, a new window is opened on the screen surface. The geometry is used to size the window and specify its location on the screen. The size is specified as a width and height in pixels. The location is based on distance in pixels from the upper left corner of the display surface. In the X and Y values are negative, then the distance is measured from the lower right corner of the display.

 widthxheight[+x+y]

· Window/Pixmap

For the window device, the window to be drawn to is already open. Its size and information are passed through the device resource. The geometry now specifies the location of the plot inside the window. By specifying a subset of the overall window size, multi-panel plots can be generated. There are three methods for specifying geometry:

· Absolute coordinates - widthxheight[+x+y]
These coordinates represent the absolute location of the plot inside the window in pixel coordinates.

· Panel coordinates - pnxxny[+x+y]
These coordinates represent the relative panel coordinates. The nx and ny represent the number of plots in each direction. The x and y are the offsets measured from the upper left. For example, to produce a 4 panel plot (2x2) and the current plot is the lower left, the geometry would be:

 -ge=p2x2+0+1

· Fractional panel coordinates - pdxxdy[+x+y]
These coordinates represent the fractional panel coordinates. The dx and dy represent the fraction of the overall window (0 < dx < 1) the panel will use. The x and y are the offsets measured from the lower left. For example, to produce a 4 panel plot (2x2) and the current plot is the upper left, the geometry would be:

 -ge=p.5x.5+0+.5

· Postscript
For the postscript device, the geometry represents the size and location of the plot on the page. The units are in .01" (hundredths of an inch). The offset is from the lower left corner of the page (standard Postscript coordinates) For example, if the plot is 4.5"x3.5" in size and offset 1" in each direction, the geometry would be:

 -ge=450x350+100+100

The maximum size of an 8.5x11" page is 1050x800. The page is by default in landscape unless it is changed with the device resource. The default page size can be set in the device resource or with the wxpps_param environment variable. Panel and Fractional coordinates can also be used.

· HPGL
For HPGL plotting devices, the geometry is the same as for Postscript. The geometry represents the size and location of the plot on the page. The units are in .01" (hundredths of an inch). The offset is from the lower left corner of the page. For example, if the plot is 4.5"x3.5" in size and offset 1" in each direction, the geometry would be:

 -ge=450x350+100+100

The maximum size of an 8.5x11" page may be 1050x800. Plotters have smaller page sizes. The page is by default in landscape unless it is changed with the device resource. The default page size can be set in the device resource or with the wxphp_param environment variable. Panel and Fractional coordinates can also be used.

19.3. Interactive Commands

There is a set of commands that can be run once the plot is finished. These either uses the mouse or the keyboard. Keyboard use requires the Meta key. The <Meta> key is system dependent but is generally the Alt key (for IBM PC style keyboards):

PRIVATE
System
<Meta> key

IBM
<Alt>

Sun
<> or <Alt>

HP
<Extend Char>

DEC
<Compose>

PC-Windows 95/NT
<Cntrl>

Here is a list of some of the interactive commands:

PRIVATE
Key Sequence
Description

Resize Window
Redraws data to fit window (in display mode)

<Return>
Closes the window

<Meta>q
Closes the window

<Meta>d
Deletes the current frame (loops only)

<Meta>z
Zooms the image (pixel replication)

<Shift>left_button
Drag mouse to select region for zoom (redraws data)

<Meta>u
Unzooms

<Meta>r
Refresh plot

<Meta>p
Prints the plot

<Meta>m
Outputs data to metafile

<Meta>g
Dumps window to GIF file. If a loop, the entire loop is dumped.

<Meta>x
Dumps window to XWD file (Unix) or to clipboard (Win95/NT). If a loop, the entire loop is dumped (Unix only).

<Meta>l
Toggles loop on and off

<Meta>]
Steps forward (static image) or speeds up loop

<Meta>[
Steps backward (static image) or slows down loop

<Meta>left_button
Steps backward (static image) or slows down loop

<Meta>mid_button
Toggles loop on and off (may not apply to Win95/NT unless you have a 3 button mouse)

<Meta>right_button
Steps forward (static image) or speeds up loop

<Meta>v
View data at cursor

<Meta>e
Edits data point (interactive text prompt)

<Meta>right_button
Drag mouse to edit data point (soundings only)

<Meta>c
Recompute data (soundings only)

<Meta>s
Save data to file

19.4. Querying Values

The data for a particular station can also be queried from the plot by moving to the station location and hitting <Meta>v. The output for a composite plot from sfcwx would look like:

Lat: 40.45 Lon: -86.93 XY: 5.80 -54.56 Pixel: 460.00 325.00

Id: KLAF Lat: 40.42 Lon: -86.93

Var: all - temp=72 dewp=52 pres= wbrbc=90-15 cldcv=B wx=

The first line of data contains the latitude and longitude of the cursor, the projection coordinates of the point and the pixel coordinates. The second line represents location information for a reasonably close station. The third line is the information from that station.

The output from a contour plot would look like:

Lat: 40.65 Lon: -86.94 XY: 5.76 -54.32 Pixel: 459.00 319.00

Id: KLAF Lat: 40.42 Lon: -86.93 Grid: 17.24, 10.38 = 70.36

The second line in this case gives not only a close station but the grid value. The first two numbers are the relative grid coordinates, which gives a rough idea on how close the cursor is to a gridpoint. The last number is a value bilinearly interpolated from the surrounding gridpoints.

NOTE: Since Windows does not allow standard output on graphical applications, queried output will not be displayed. This output is only available if the program messages are redirected to a file through the message resource.

19.5. Interactive Zoom

For most WXP plots, there is the ability to interactively zoom the image. This completely redraws the image with the new plot domain resource. To zoom an image, move to the location of a corner of the region to zoom into. Then while pressing the <Meta>left mouse button, move the cursor to the opposite end of the region. A rubber band box will appear on the screen denoting the selected region. Once the region has been selected, release the mouse button and the screen will clear and the plot will redraw. For plotted data, this may result in more stations being plotted. Stations are plotted based on priority and the priority is set based on domain size. The smaller the domain, the lower the priority is set and the more stations get plotted. For grids, this redraws the grid with the new plot domain. For satellite images, this zooms in on the image.

In order to restore the original image, press <Meta>u for unzoom.

19.6. Interactive Editing

In some cases, data can be modified by the user directly form the plot.

Editing Gridpoint Data
Once a grid has been contoured, its values can be modified. To do this, hit the <Meta>e key and a prompt will appear:

Grid: 12, 10 Val = 66.98 New value:

The user can enter a new value. To see the change, the plot must be refreshed with the <Meta>r key. If the output needs to be saved, the <Meta>s key will save the modified grid to a grid file.

Sounding Modification
Once the diagram has been plotted, the sounding can be modified. This can be done by moving the cursor to the line which is to be modified, holding down the <Shift-right button> and moving the cursor to where the new value will be. If the cursor is right of the temperature line, the temperature sounding is modified. If the cursor is left of the dewpoint line, the dewpoint is modified. This can only be done on the existing levels. This can also be done on the hodograph.

In many cases, the sounding has too much detail to effectively select a level or data point. It is recommended that the user zoom the plot by using the <Shift-left button> and dragging a box around the area to be zoomed. Remember to start at a corner.

Once the sounding is modified, the plotted data/parameters/indices will update to reflect the changed sounding. The parcel will not automatically update. This can be done with the <Meta>r refresh command. The modified sounding can be saved to a raw file using the <Meta>s save command. This can be read in by uacalplt to be replotted.

19.7. Postscript Dumps

If the user has opened a window (device display) for plotting, the graphics commands that produce the plot are cached. These commands can be rerun to refresh the plot on the screen. They can also be rerun to produce Postscript output for a printer. With the mouse in the window, hit the <Meta>p keys and the output will be saved to the destination specified in the wxpps_print environment variable (see above).

19.8. Image Dumps

In addition to Postscript dumps, the output can be saved to an image file. There are two methods of producing image dumps:

· Interactive dumps from the window. The user can hit:

<Meta>g to produce a GIF file
<Meta>x for a XWD file (Unix) or copy to clipboard (Windows)

The filename is based on the window title. For GIF files, it is based on the first 5 letters of the window title "title.gif". If this is done from within a loop, the filename will also have the loop index "title_in.gif". For XWD files, extension is ".xwd" rather than ".gif".

· Forced dumps from the command line. This can be accomplished by specifying the "gif:filename" from the plot_param resource or through the out_file resource. The filename is run through the file name convention file as a tag first. Two special keys exist: "%p" for program name and "%i" for frame index. If the filename does not match and existing name convention tag, it is taken as a filename with file name keys (such as %I for image path) expanded.
20. Graphics Color Resources

20.1. Colors and Color Table File

The colors used by WXP are defined in the wxp.clr color table file and are read in by the program shortly after the graphics window opens. The colors are specified as: optional color index, color name and the appropriate RGB color fractions (0-1). By default, WXP uses the following color table:

[ind] name red green blue

 Black 0.0 0.0 0.0

 White 1.0 1.0 1.0

 Red 0.7 0.0 0.0

 Green 0.0 0.7 0.0

 Blue 0.0 0.0 0.7

 Yellow 1.0 1.0 0.3

 Cyan 0.0 0.7 0.7

 Magenta 0.7 0.0 0.7

 DGray 0.3 0.3 0.3

 LGray 0.7 0.7 0.7

 LRed 1.0 0.3 0.3

 LGreen 0.3 1.0 0.3

 LBlue 0.3 0.3 1.0

 Brown 0.7 0.7 0.0

 LCyan 0.3 1.0 1.0

 LMagenta 1.0 0.3 1.0

Even though only 16 colors are specified, a total of 256 colors can be allocated. If the index is not specified, the indices start with 0 and increment by one for each line in the file. To change the color table, the color_table can be specified with a new color table filename that is formatted the same as the above list. More than one color table can be listed separated by commas. The programs use color names based on the default color table so it is useful to have these colors in any color table that is used.

Color Tables and the Color Fill Resource

In most cases, the color_fill resource is set manually. This resource defines a set or range of colors to use in color fill contours. In most cases, the color fill resource is set to a range of colors in the color table such as "0-23". To simplify the process, the color fill resource is automatically set to the colors in the first color table file specified in the color_table resource. For example:

 -ct=rainbow.clr,wxp.clr

If the rainbow.clr color table file has 24 colors in a rainbow progression in it, the color fill resource is set to 0-23 by default. If the rainbow color table has more than 24 colors in it, the keyword "end" can be inserted into the file after the last color to be used in the color fill.

 ...

 MBRed 0.8 0. 0.

 MRed 0.6 0. 0.

 DRed 0.4 0. 0.

 End

 White 1. 1. 1.

 ...

Colors and Color Resources

Each type of graphic whether it is a line or text will be plotted in a specific color based on the above list. The colors can be changed by specifying the appropriate resource for that graphical item. For example, the color_map resource is used to change the color of the background map from the default "red". The resource can be specified on the command line:

 sfcwx -com=lblue

to change the color of the map to light blue. The color name "Off" can be specified to turn the display off for that particular piece of information. This is particularly important for overlays. If Black is used, the object is still plotted but in black resulting in a destructive overlay. Also, the value "End" can be used to delimit the end of a color fill color list.

Allocating Colors to Colormaps

If using a windowing system, the result of specifying a color table is to allocate those colors in the server's default color database or colormap. This means that while the window appears on the screen, those colors cannot be changed. When the window is closed, those colors are deallocated so that other programs can use those color indices.

NOTE: When plotting to an already opened window (device=w), the colors have to be allocated by the program which opened the window (i.e. wxploop). Since the program that opened the window is the only program that can allocate colors to a colormap, it is necessary to make sure this program allocates the color that may be used in the plots. If the plotting program allocates the colors, they will be deallocated once the plotting program ends and the next plotting program could overwrite and change the colors from the original plot. In other words, when running wxploop, make sure it allocates all the colors needed in the plot:

 wxploop -ct=wxp.clr,rainbow.clr

20.2. Special Printer Colors

For Postscript output, several special color values can be used. These colors can change line thickness and color but are not valid for display or window output. These values are:

PRIVATE
Printer Color
Description

pblk
Thin black line (.2 pica)

pbblk
Bold black line (.8 pica)

ptblk
Thick black line (1.6 pica)

pgry
Thin gray line (.2 pica)

pbgry
Bold gray line (.8 pica)

ptgry
Thick gray line (1.6 pica)

pwht
Thin white line (.2 pica)

pbwht
Bold white line (.8 pica)

ptwht
Thick white line (1.6 pica)

Also, the line thickness can be changed with the width graphics attribute (wi=width).

20.3. Direct Colors

A program is not restricted to those colors listed in the color table. A direct color can be used in place of the color names from the color table. The syntax is #rrggbb. Each color gets a 2 digit hexadecimal number. No color is 00 and maximum color is ff. For example:

 -com=#ff80a0

This would create and allocate a color that is 100% red, 50% green and 75% blue. From this point forward in the program, the name designation #ff80a0 will work but this is not recommended since this is not pre-allocated in the color table. This color could inadvertently get changed. This is not a problem on 16 or 24 bit displays.

20.4. Read/Write Colors

WXP uses read/write colors whenever possible to enable program to flash color values. Read only colors are allocated based on color. If there is another color identical to the one being allocated, it is not allocated and the identical color used. Since read/write colors are allocated based on index and not color, identical colors will get different color indices that may run the colormap out of colors. To disable read/write colors, specify the norwclr plot parameter.

20.5. Local Colormaps

In some cases, it is necessary to allocate a local colormap for processing images. This can happen when working on servers that have several windows active each allocating their own colors (such as Netscape). Often when these programs are running, there are few if any colors available in the default colormap. When a WXP program then tries to allocate a color, it fails and returns the closest available color that might not even be close. The results are graphics with few colors, often unreadable. With a local colormap, the program has access to all 256 colors in the colormap and not just those that have not been allocated. To use a local colormap, the wxplocal_cmap environment variable can be specified (LOCAL_CMAP can be used):

 setenv wxplocal_cmap on

or the lcmap plot parameter can be specified.

NOTE: On some displays, a local colormap means the colors are only preserved with the cursor is actually in the window (window focused). This means the colors will flash and change to other colors once the cursor leaves the window or another window is raised. This might be an undesirable result.

NOTE: 16 and 24 bit displays do not have colormaps.

20.6. Graphics Resources and Attributes

WXP graphics programs will recognize attribute descriptions appended to the end of the various color resources. These attributes include line width, style, fill patterns, text width, height and thickness. The color resource syntax is:

 color[:attrib...]

Here is a list of the possible attributes:

PRIVATE
Attribute
Description

co=color
Specifies the color. This is the color name from the color table. If this is the first attribute, the "co=" may be omitted.

wi=width
Specifies the width of lines. This includes lines used in text and markers. The default value is 1.0.

st=style
Specifies the style of lines. Possible values are:

· sol - solid lines (number 1)

· dsh - dashed lines (number 2)

· lsdsh - long short dashed lines (number 3)

· llsdsh - long, long, short dashed lines (number 4)

· dot - dotted lines (number 5)

· # - a number corresponding to the above styles

fo=font
Specifies the font name. See the font_list resource.

fi=fill
fp=fill
Specifies the fill pattern. Possible values are:

· sol - solid fill (number 0)

· st - stippled fill (number 1)

· ost - open stippled (number 2)

· rst - random stipple (number 3)

· lst - large stipple (number 4)

· vln or || - vertical lines (number 5)

· drl or // - diagonal lines moving to upper right (number 6)

· dlr or \\ - diagonal lines moving to lower right (number 7)

· hln or -- - horizontal lines (number 8)

· hat or XX - hatched lines (number 9)

· 0% - 0 % fill (number 10)

· 1% - 11% fill (number 11)

· 2% - 22% fill (number 12)

· 3% - 33% fill (number 13)

· 4% - 44% fill (number 14)

· 5% - 55% fill (number 15)

· 6% - 66% fill (number 16)

· 7% - 77% fill (number 17)

· 8% - 88% fill (number 18)

· 9% - 100 % fill (number 19)

· ## - a number associated with the above patterns

sc=scale
hi=height
Specifies the scale factor. For text, this is the text height. For markers, this is the size of the marker. The default value is 1.0.

te=expan
Specifies the text expansion factor. This controls how wide text is plotted. An expansion factor greater than 1 results in fat text. A value less than 1 results in thin text. The default value is 1.0.

Each of these can be specified with single characters (backward compatible with version 4). For example "w1.0" can be used for width, "h1.0" can be used for height, "s3" can be used for style, "f8" can be used for fill pattern, "t2" can be used for font, and "e1.0" can used for text expansion.

NOTE: Fill patterns may not work with Windows 95, 98 or NT for overlays.

20.7. Fill Contour Colors and Attributes

The color_fill resource allows a great deal of tailoring of contour plots and satellite images. The syntax for each color fill parameter is:

 [value:]color[:attribute...]

In the simplest form, the color fill list is just a list of colors to be used by the program to display color fill contours. The first color is associated with the lowest contour value unless changed with the con_base resource.

 magenta,lmagenta,blue,lblue,cyan,lcyan,green,lgreen,
 brown,yellow,red,lred,dgray,lgray,white

Each color may also have attributes listed that modify the appearance of the color fill contours.

 dgray:fi=vln,dgray

which uses a different fill pattern for the first color fill range. This can be used in conjunction with line contours if the color_cont resource is set to "off". These attributes can be used to tailor the lines:

 brown,brown:st=dot,brown:st=dot,brown:st=dot,brown:st=dot

which is used to make every 5th line solid and all others dotted.

Color ranges may also be specified to simplify the list. For example:

 2-4 or red-blue

would be equivalent to red,green,blue. The attributes for the entire range come from the attributes listed for the first color in the range.

Finally, values can be attached to each color fill value. This locks in a particular color to a specific contour range and can specify contour values that are not regular and thus cannot be specified with the con_interval resource.

 .01:DDMagenta,.05:DMagenta,.1:MMagenta,.175:BMagenta,.25:Blue,

 .375:LBlue,.5:Green,.75:LGreen,1:Brown,1.5:Yellow,2:Red,

 3:Lred,4:LGray

This specifies the color fills for a precipitation field. When values are specified, a color bar automatically appears since this is necessary to denote irregular contour values.

As color fill settings get more complicated, it becomes more convenient to put the values in a file. WXP has a color fill file that can be specified with the color_fill resource:

 -cof=prec.cfl

The file has the same information except the values are put of different lines without the commas:

 .01:DDMagenta

 .05:DMagenta

 .1:MMagenta

 .175:BMagenta

 .25:Blue

 .375:LBlue

 .5:Green

 .75:LGreen

 1:Brown

 1.5:Yellow

 2:Red

 3:Lred

 4:LGray

Up to 256 color fill values can be specified.

Contour Labels

The labels on the contour plot and color bar are based on the value listed. For example, the first value listed would be labeled ".01". To change this label, use the label parameter ".01:DDMagenta:la=min" or "85:red:la=HOT".

20.8. Satellite Enhancement

Satellite enhancement uses the existing color fill setup where values can be specified for colors. The major differences are as follows:

· The color values are image pixel values ranging from 0 to 255.

· The value may be specified as an image pixel value or as a infrared temperature based on the GOES conversion scheme. The value is preceded by a "c" if it is a temperature. For example, "c-25" specifies the image pixel value corresponding to -25 Celsius. This way infrared images can be enhanced based on the temperatures the image represents.

NOTE: This works only for increasing image pixel values. As the image pixel values increase, the temperatures DECREASE and therefore temperature values must be listed in decreasing order.

· The colors can be specified with dither value and color. This is handy for screens that cannot support gray shades such as monochrome displays. Dither colors are specified by using the following syntax:

black%6white

The original or background color is specified followed by a "%", then the dither percent value and the dither or foreground color. The above example uses the 3x3 dither matrix and gives possible dither values of 0 through 9. The result is a 6/9 dither of white over black. Using 0 for the dither value gives the original color. Using 9 for the value gives the only dither color. This is somewhat restrictive for monochrome screens, so a second dither scheme is provided which is a 5x5 dither matrix. This gives a total of 26 possible dither values that are specified by lower case alphabetic characters "a" through "z". The value "a" gives the original color and "z" gives the dither color. For example:

black%mwhite

gives a 12/25 dither.

The color fill file or more appropriately the enhancement file has an additional line at the beginning of the file that names the enhancement. Here is the MB enhancement file:

 MB

 0:black

 c29:1

 2-9

 c6:10

 11-15

 c-31:16

 c-32:cyan

 c-43:lcyan

 c-54:lblue

 c-60:blue

 c-64:green

 c-70:lgreen

 c-76:brown

 c-81:yellow

 c-90:black

21. Graphics Resources

This describes some of the standard characteristics of all graphical output.

21.1. Draw Resource

The draw resource is used to toggle on and off various parts of the plot. The plot contains two basic regions. The text label areas above and below the plot and the plot itself. The text labels can appear in six regions around the plot, left, center and right. The plot contains a background map or grid and the data plotted as text, symbols or contours. There is a plot border which is a rectangle surrounding the plot. The other possibility is the radar summary that is separate from data. There are these possible options for draw:

· text - The text labels above and below the plot (all labels and border)

· text_ul - The text label in the upper left

· text_uc - The text label in the upper center

· text_ur - The text label in the upper right

· text_ll - The text label in the lower left

· text_lc - The text label in the lower center

· text_lr - The text label in the lower right

· bord - The plot border

· map - The background map

· grid - The background grid (synonymous with map)

· data - The data plotted as text, symbols or contours

· sum - The radar summary

· all - All of the above

· none - No graphics generated

By default, all draw types are turned on. If any of the above are specified, all types are turned off and only those types listed will be turned on. For example, if the data and map are needed but no text labels, specify:

 -dr=map,data

Draw types can be added and removed by putting a "+" or "-" in front of the draw type. If this is done, the types are not turned off initially. For example, if only the upper right label and border is to be removed, specify:

 -dr=-text_ur,-bord

21.2. Window Control

When the window device "-de=w,…" is specified, by default, there is no control over the remote wxploop window. To add control over the remote window, there are several window control commands added to WXP. They are specified with the plot_param resource:

· -pp=clear -- Clears the window prior to drawing. By default the original window remains to allow overlays.

· -pp=new -- Creates a new pixmap and makes this the draw window. This forces wxploop to copy the existing pixmap to the newly created one so that the drawing program continues to draw to the same window. The drawing program then draws to the new window in the loop.

· -pp=kill -- Kills the wxploop window at the termination of the graphics program and closes wxploop as well.

21.3. Full Plots

In some cases, it is necessary for the plotted data to fill the entire window. By default, WXP allots room above and below the plot for labels to be displayed. To turn this feature off, use the "full" plot parameter.

 -pp=full

21.4. Changing Plot Labels

The label resource is used to change the text labels that appear above and below the plot. Each label must by preceded with a location specifier:

<div align="center">
PRIVATE
ul
uc
ur

PLOT

ll
lc
lr

</div>
followed by a color ":" and the text. The string may have spaces but the string must be quoted. Underscores can be placed in the string to denote spaces if needed. Multiple labels are separated by commas.

Special Characters

There are special characters that can be used to use date information in the label:

· %y -- last two digits of the year

· %m -- the two digit month

· %b -- the three letter month abbreviation

· %d -- the two digit day

· %h -- the two digit hour

· %n -- the two digit minute

· %% -- the percent sign

· _ -- underscore is replaced by a space

21.5. Overlay Labels

When more than one plot is overlaid, the labels are lined up top to bottom. The font size is reduced in order to make sure the labels appear on the window. For example:

Surface Temperature (C)

850 mb Wind speed (knt)

In some cases, as defined in the variable files, the labels can be condensed for composite plots where there are more the 3 or 4 overlays. By grouping variables, only one label appears.

Also, there is the ability to use shorten labels by using the label encoding plot parameters:

PRIVATE
Value
Description
Syntax
Lines
Example

labmin
minimal labels
level varabbr
single
850 temp

labsimp
simple labels
level varabbr (unit)
single
850 temp (C)

labnorm
normal labels
level variable (unit)
multi
850 mb Temperature (C)

labcomp
complete labels
level variable (unit)-format
multi
850 mb Temperature (C) - %.1f

 -pp=labsimp

Will use the simple labels. If there is an overlay, the label will appear concatenated on one line.

Multiprogram Overlay
Within a single program, it knows how many overlay products there are and adjusts the labels accordingly. If more than one program with wxploop or Postscript is being used, then the overlay line adjustments have to be done manually. This is done with the "over" plot parameter. The syntax is "over:num:max" where max is the total number of overlays (used for text scaling) and num is the number of the current overlay number (0 to max-1).

21.6. Changing Time Zones

By default, WXP displays all times in universal time (UTC). The programs use "Z" for the time zone label for simplicity. To change the time zone displayed on the plots, use the "tz" plot parameter. The syntax is tz:label:offset. For example:

 -pp=tz:EST:-5

would plot the time in Eastern Standard Time. The "EST" is only for the label. The critical part is the time offset "-5" which is the number of hours from UTC. The result would be a string like "835 EST 14 MAR 98"

To get time to display as AM/PM, add a plus "+" to the beginning of the label "+EST". The result would be "4:00 PM EST 23 FEB 98".

21.7. Color Bar

A color bar can be displayed on the image if the "bar" plot parameter is set. It appears in the lower left corner of the plot and shows the colors used in the color fill plot labeled with their associated values:

PRIVATE "TYPE=PICT;ALT=bar_sample.gif (1006 bytes)"

If there are too many labels, appropriate ones will be skipped. If colored plotting is enabled, the color bar can also be used. If multicolored/multistyles contour lines are used, the color bar will draw colored lines rather than filled regions. The lines will also reflect the line style.

In some cases, the color bar is automatically drawn. To disable this, use the "nobar" plot parameter. To set the range of the color bar, specify the max and min values with the "bar:min:max" plot parameter:

 -pp=bar:-10:45

The labels on the color bar can be changed with the color_fill resource. If values for the color fills are listed, these values will be used for the color bar labels exactly as they are listed. In addition, there is a "la=label" option to the color fill resource for more specific labels.

21.8. Output to Image Files

There is a GIF image encoder/decoder built into WXP. This allows graphics to be saved in image format for future use and use with web servers. There are three methods for saving images to file:

· Automatically by adding "gif=filename" to either the out_file or the plot_parameter resource. The filename is either a file name convention tag or an exact filename. There are two wildcards that can be placed in the filename: %p which is the program name/window title and %i which is the index of the image in a loop.

· Automatically through wxploop's interface program loopset.

loopset save 0 filename

The same %p and %i wildcards can be used in the filename.

· Manually by hitting <Meta>g in the window. The output will be a file which is the first 5 characters of the window title plus ".gif". The image_path resource value is prepended to the filename. If the image is part of a loop, the image number in the loop is added to the filename "ttttt-##.gif" where ## is the image number starting at 0.

If the program has created a loop of images and the program is looping the images, the image save will save all the images in the loop. If the loop is stopped, only that image is saved to file.

Interlaced GIF Images
To save GIF images in interlaced format, use the "gifinter" plot parameter.

 -pp=gifinter

21.9. Inverse Images

By default, WXP uses a black background with data plotted in green and a map in red. For some applications, it is required for WXP to have white backgrounds. This is especially true for GIF images that go on a web server whose purpose is to be printed. When inverted, only a couple of colors change. First, the background color defaults to white. Any piece of information that is plotted in white is now plotted in black. Those plotted in yellow are now plotted in brown. There are two methods for inverting the image:

· Automatically by specifying "inv" for the plot parameter or by setting the wxpinverse environment variable:

 setenv wxpinverse on

By specifying pscolor for printed output, the colors are automatically inverted.

· Manually by changing the background and specific colors to achieve the desired results.

21.10. Viewport Specification

In some cases, the user may want control over exactly where in the window the plot is being displayed. This can be done in a number of ways. One way is with wxploop and the geometry specification. If you are not using wxploop, the geometry relates to the window and not the plot. As a result, the viewport size can be specified with the "vp_size" plot parameter. The syntax is: "dxxdy[+x+y]". These coordinates represent the fractional panel coordinates. The dx and dy represent the fraction of the overall window (0 < dx < 1) the panel will use. The x and y are the offsets measured from the lower left. For example, to produce a 4 panel plot (2x2) and the current plot is the upper left, the geometry would be:

 -pp=vp_size:.5x.5+0+.5
22. Station Subsets

Most WXP programs use city database files to search for station locations. WXP provides a couple of ways to subset the list of stations so that not all stations are plotted or printed out.

22.1. Plot Domain

For most plotting programs, only those stations that are within the established plot domain. For gridding applications, the objective analysis requires stations outside the plot domain to produce proper gridpoint values. Therefore, the domain is extended by an extra 3 gridpoints in each direction. For example:

 sa_parse -re=mw -cu -id=all

will only list those stations in the Midwest region.

22.2. Station Priorities

Each station in the city database is prioritized. Station priorities are assigned from 1 (highest, a city like Chicago) to 6 (lowest). For most graphical applications the station priority is set automatically. To manually set the priority, use the stat_prior resource. Once set, all lower priority stations are filtered out of the plot.

22.3. Station Identifiers

The simplest means for searching for a specific station is to list it with the identifier resource. Any number of stations can be listed separated by commas if more than one station is needed.

sa_parse -cu -id=KPHL,KIAD,KDEN

Date: 18Z 4 JUN 98

KIAD 041751Z 22008KT 10SM BKN037 BKN050 20/12 A2982 RMK AO2 SLP095 T02000122 10206 20161 58011

KDEN 041753Z 04011KT 1/4SM R35L/4000VP6000FT DZ BR OVC001 06/06 A2986 RMK AO2 SFC VIS 1 1/2 SLP091 P0000 60000 T00610061 10078 20056 53003

KPHL 041754Z 28018KT 10SM SCT060 BKN250 20/07 A2979 RMK AO2 SLP086 T02000072 10206 20139 58016

The station identifier resource has the ability to parse for more than a list of stations. Here is a list of keywords:

· Name=station_name -- This can be used to parse for the station name (column 1) out of the city database file. An example would be "name=cleveland". The names can be abbreviated. The program uses the first one that matches.

· ST=state -- This uses the name of the state. If the state is 2 characters, it is the state abbreviation such as "ST=PA". If it is 5 characters, it is the state and country, such as "ST=MN_US".

· CN=country -- This uses the 2 character name of the country such as "CN=DL" for Germany.

· ID=ident -- This uses the 3 or 4 letter identifier (ICAO). The "ID=" can be omitted.

· Ra<lat,lon,range -- This uses all stations that are within range km of the specified center point lat,lon.

· P=prior -- This uses all stations that have exactly that priority.

· P<prior -- This uses all stations that have that priority or less. This is the equivalent of specifying the stat_prior resource.

· P>prior -- This uses all stations that have that priority or greater.

· Lat<latitude -- This uses all stations that have a latitude less than or equal to latitude.

· Lat>latitude -- This uses all stations that have a latitude greater than or equal to latitude.

· Lon<longitude -- This uses all stations that have a longitude less than or equal to longitude.

· Lon>longitude -- This uses all stations that have a longitude greater than or equal to longitude.

· Elev<elevation -- This uses all stations that have an elevation less than or equal to elevation.

· Elev>elevation -- This uses all stations that have an elevation greater than or equal to elevation.

· WMO=wmo -- This uses the station with this WMO number.

· WMO<wmo -- This uses all stations that have an WMO number less than or equal to wmo.

· WMO>wmo -- This uses all stations that have an WMO number greater than or equal to wmo.

23. Text Output

There are several types of text output from programs.

23.1. Surface Data

There are 4 formats for surface data output:

· raw - this prints the raw undecoded data:

KBIV 070242Z AUTO 13006KT 5SM -RA BR SCT015 15/15 A2995 RMK AO2 P0002 TSNO

· pln - this prints a single line of decoded output:

ID TIME T TD RH DIR SPD GST ALT SLP VIS CIL COV WX MAX MIN PR6 PR24 SC

KLNP 0240 52 43 71 150 4 002 10 CLR

K4BK 2347 69 52 54 310 10 114 30 CLR 72 59

· plns - this is a 2 line output of decoded output plus an optional third line for comments:

 ID Tp Time Vis PWx SLPres T Td WD-WS WG Alt PT Max Min

 CHt CCv CHt CCv CHt CCv CHt CCv CHt CCv L:M:H Rn3 Rn6 Rn12 Rn24 SC

PATL SP 0335 10.0 64 51 290- 4 29.58

 43 SCT : :

 COMMENT: AO1

PAEH SP 0335 10.0 49 43 340- 4 29.66

 6 SCT : :

 COMMENT: AO1

· psyn - this prints out a single line of decoded output setup for synoptic data:

 ID Cht Cv Vis PWx SLPres T Td WD-WS WG Te PT Rn6 Rn24 SC L:M:H

KSLC 250 F 15.0 1004.7 68 58 280- 7

· psimp - this prints out a single line of decoded data more appropriate for general use:

 ID Temp Dew Winds Press Clouds Prec Weather

 F F deg knt mb 100ft cov in

 MGGT 64 63 360 at 14 ------ --- ---- heavy drizzle

 MGGT 64 63 360 at 14 ------ --- ---- heavy drizzle

 PAWR 55 46 90 at 3 1024.0 --- ----

 PASD 46 39 50 at 5 ------ --- ----

· pfull - this is a multi-line output per station more appropriate for general use:

Data for: KHOU

Report time: 0450 Z

Temperature: 82 F = 27.5 C

Dewpoint: 78 F = 25.3 C

Winds: 160 deg at 6 knt

Altimeter setting: 29.85 in Hg

Sea level pressure: 1010.8 mb

Clouds:level 1: 1500 feet few

 level 2: 2500 feet scattered

Visibility: 10.00 miles

Heat index: 89.5 F

Column headings include:

ID - Station identifier

Tp - Type of report (SA,RS,SP)

Time - Time of the report in GMT

Vis - Visibility in miles

PWx - Present weather (RW-F for example)

SLP/SLPres - Sea level pressure in mb

T - Temperature in F

Td - Dewpoint in F

DIR/WD - Wind direction

SPD/WS - Wind speed (separated from direction by a hyphen)

GST/WG - Gust data (left blank if none reported)

Alt - Altimeter setting in inches of Hg

PT - Pressure tendency in standard coded form (310 for example)

PR6/Rn6 - 3 or 6 hour precipitation in inches (separated from PT by a colon)

PR24/Rn24 - 24 hour precipitation in inches

Te - Extreme temperature in F

Max - maximum temperature in F

Min - minimum temperature in F

SC - Snow cover in inches

CIL/CHt - Cloud ceiling height data

COV/Cv/CCv - Cloud coverage data for each cloud level as text "SCT" or eighths "1/8"

L, M, H - Low, middle and high cloud type information (separated by colons)

23.2. Upper Air Sounding Output

The first section is the station location information that is printed at message level out1a:

Date:0000Z 30 SEP 97

Station: ILX

WMO ident: 74560

Latitude: 40.15

Longitude: -89.33

Elevation: 178.00

The next section is the raw sounding data. This is a merged set of mandatory and significant level data. Additional computations are performed. Here is a list of the columns printed (all printed at mess level out1a [see red text] unless specified)

· LEV -- level number. Special levels are denoted with SFC (surface), TRP (tropopause), WND (max wind).

· PRES -- pressure of level in mb

· HGHT -- geopotential height in m (intermediate levels interpolated using hypsometric approximation)

· TEMP -- temperature in C

· DEWP -- dewpoint in C

· RH -- relative humidity in %

· DD -- dewpoint depression in C (mess level out1b)

· WETB -- wetbulb temperature in C (mess level out1b)

· DIR -- wind direction in deg (intermediate levels interpolated using significant wind level data)

· SPD -- wind speed in knt (intermediate levels interpolated using significant wind level data)

· THETA -- potential temperature in K (mess level out1b)

· THE-V -- virtual potential temperature in K (mess level out1b)

· THE-W -- wetbulb potential temperature in K (mess level out1b)

· THE-E -- equivalent potential temperature in K (mess level out1b)

LEV PRES HGHT TEMP DEWP RH DD WETB DIR SPD THETA THE-V THE-W THE-E W

 mb m C C % C C deg knt K K K K g/kg

 0 1000 -1

SFC 980 178 26.4 6.4 28 20.0 14.7 280 19 301.3 302.4 288.6 319.7 6.15

 2 925 678 22.2 2.2 27 20.0 11.3 280 47 302.0 302.9 287.6 316.6 4.85

 3 850 1403 15.2 -0.8 33 16.0 7.1 280 46 302.1 302.8 287.1 315.0 4.24

 4 700 3001 0.0 -6.0 64 6.0 -2.6 295 50 302.5 303.1 286.5 313.2 3.49

...

The next section displays standard sounding parameters and indices. Most of the information is printed at message level out1d except for thickness, lifted, showalter, total totals and K indices, which is at message level out1c (red text).

Sounding variables and indices
1000-500 mb thick: 5631.00 m
Freezing level: 700.00 mb = 3001.00 m = 9845.68 ft

Wetbulb zero: 740.60 mb = 2536.94 m = 8323.18 ft

Precipitable water: 0.65 inches

Sfc-500 mean rel hum: 36.73 %

Est. max temperature: 27.28 C = 81.10 F

Sfc-Lift cond lev (LCL): 729.89 mb = 2656.89 m = 8716.74 ft T: 3.27 C

700-500 lapse rate: 4.68 C/km

ThetaE index: 11.23 C Layer 925.0- 598.0 mb

Conv cond level (CCL): 689.45 mb = 3121.77 m = 10241.90 ft

 Mean mixing ratio: 5.11 g/kg

 Conv temperature: 27.64 C = 81.75 F

Cap Strength: 3.86 C

Lifted Index: 5.67 C Risk: None
Lifted Index @300 mb: 7.03 C

Lifted Index @700 mb: 0.59 C

Showalter Index: 6.96 C Risk: None
Total Totals Index: 39.00 C Risk: None
 Vertical Totals Index: 27.50 C

 Cross Totals Index: 11.50 C

K Index: 20.70 Risk: 20-40 % chance of thunderstorms
Sweat Index: 178.00 Risk: None

Energy Index: 1.12 Risk: None

The next section involves a parcel trajectory. The parcel is taken from some initial condition and raised vertically to the top of the sounding. The default parcel uses a 100 mb mean layer above the surface. The parcel type can be changed with the par plot parameter:

par=pres:temp:dew

Temperature and dewpoint are optional. If not specified, the sounding temperature
and dewpoint are used.

PRIVATE
Type
Pres
Temp
Dew

pressure level
pres
temp
dew

surface level
sfc
temp
dew

max temperature
maxt
--
--

pressure layer
layer
thick
--

The data are printed at message level out2b except for CAPE, convective inhibition and cap strength that is printed at level out2a (red text).

Parcel Indices

Parcel: using 100 mb layer

CAPE (B+): 10.89 J/kg

Max Up Vert Vel: 4.67 m/s

Conv Inhibition (B-): 30.45 J/kg

Cap Strength: 5.49 C
Lift Cond Lev (LCL): 696.21 mb = 3044.15 m = 9987.25 ft

Lev Free Conv (LFC): 681.21 mb = 3217.42 m = 10555.70 ft

Equ Level (EL): 631.21 mb = 3818.50 m = 12527.73 ft

B at Equ Level: 7.84 J/kg

Max Parcel Lev (MPL): 611.21 mb = 4071.09 m = 13356.44 ft

The next section displays significant wind level data. Storm relative winds are computed based on a mean storm motion. This is computed using the mean wind of the lower 6km of the atmosphere. The storm direction is deflected 30 deg clockwise and the speed is 75% of the 6km mean speed. The output is at message level out3a (red text) except for the storm relative winds which is at out3b.

Wind level data

 Storm motion: 325 at 43 knt

--

 TRUE/GROUND REL | STORM REL

 LEV P H DIR SPD U V | DIR SPD U V

 mb m knt m/s | knt m/s

--

 0 980 178 280 19 18.7 -3.3 | 170 32 -5.6 31.9

 1 966 305 280 30 29.5 -5.2 | 190 30 5.3 30.0

 2 932 610 275 46 45.8 -4.0 | 215 38 21.6 31.2

 3 925 678 280 47 46.3 -8.2 | 219 35 22.0 27.0

 ...

The next section is wind parameters and indices. This is printed at message level out2d except for mean winds, storm direction, helicity and energy-helicity index which are at level out2c (red text)

Wind Parameters

Mean winds (0-6000m): 295.4 at 57.0 knts

Storm direction: 325.4 at 42.8 knts
Shear (0-3000m) pos: 2.6 neg: 4.7 tot: 7.3 10-3/s

Storm rel Dir Shear (0-3000m): 69.6 deg

Storm rel helicity (0-3000m) pos: 310.7 neg: -7.0 tot: 303.7 m^2/s^2
 ave: 101.2 10^-3 m/s^2 rel: 0.84

Storm rel vorticity (0-3000m) horiz: 8.0 stream: 6.7 10^-3/s

Energy-Hel index: 0.02
Bulk Rich Number: 0.13

Bulk Shear: 85.84 m/s

The next section shows storm layer parameters. All of this information is printed at message level out3c.

Storm Parameters

Depth Mean Inflow| Shear | Helicity | Vorticity

 AGL Dir Spd Dir Spd| Pos Neg Tot| Pos Neg Tot Ave Rel | Hor Strm

 m knt knt| 10^-3/s | m^2/s^2 m/s^2 | 10^-3/s

 500 278 36 200 32| 0.0 28.8 28.8|225.6 0.0 225.6 451.2 1.00| 29.7 29.6

1000 279 41 210 33| 0.0 14.0 14.0|225.6 -7.0 218.6 218.6 0.94| 15.3 14.4

1500 280 43 213 33| 0.9 9.3 10.2|229.6 -7.0 222.6 148.4 0.88| 11.1 9.8

2000 281 44 215 33| 1.1 7.0 8.1|249.4 -7.0 242.5 121.2 0.89| 9.0 7.9

2500 282 45 217 32| 1.7 5.6 7.3|280.2 -7.0 273.2 109.3 0.89| 8.0 7.1

3000 284 45 219 31| 2.6 4.7 7.3|310.7 -7.0 303.7 101.2 0.84| 8.0 6.7

4000 289 47 225 28| 2.8 4.6 7.3|351.2 -7.0 344.3 86.1 0.75| 7.9 6.0

5000 294 51 237 26| 3.3 4.6 7.9|458.4 -7.0 451.4 90.3 0.73| 8.5 6.2

6000 295 57 248 29| 2.7 5.6 8.4|458.4-100.4 358.0 59.7 0.50| 9.0 4.5

23.3. MOS Data Output

There are three types of MOS output depending on the model used.

Model NGM

 NGM MOS data for IND

Initial time: 00Z 29 SEP 97

 HOUR TIME TEMP DEW DIR SPD CIL COV VIS WX MX/MN POP12 SNOW

 6 29/ 6Z 59 53 260 11 250 BKN 10

 12 29/12Z 54 49 240 11 250 SCT 10

 18 29/18Z 70 48 250 22 250 SCT 10

 24 30/ 0Z 66 50 290 18 250 SCT 10 73 21

 30 30/ 6Z 57 50 280 12 250 BKN 10

 36 30/12Z 54 49 280 12 250 BKN 10 52 30

 42 30/18Z 65 51 300 15 20 BKN 10

 48 1/ 0Z 60 50 320 11 250 SCT 10 68 8

 54 1/ 6Z 54 50 310 5 CLR

 60 1/12Z 51 48 300 5 CLR 49 0

The columns are:

· HOUR - forecast hour

· TIME - valid time

· TEMP - forecasted temperature (F) at valid time

· DEW - forecasted dewpoint (F) at valid time

· DIR - wind direction (deg) at valid time

· SPD - wind speed (knt) at valid time

· CIL - cloud ceiling (100s ft) at valid time

· COV - cloud cover at valid time

· VIS - visibility (mi) at valid time

· WX - estimated weather at valid time

· MX/MN - extreme temperature (either maximum or minimum) over 12 hour period prior to valid time

· POP12 - probability of precipitation over 12 hour period prior to valid time

· SNOW - estimated snowfall during 12 hour period prior to valid time

Model NGM_UA, ETA_UA

 NGM MOS data for IND

Initial time: 00Z 29 SEP 97

 HOUR TIME PSL PREC DIR SPD THK LI VERT

 0 29/ 0Z 1004 280 18 5630 1 3.9

 6 29/ 6Z 1005 0.00 300 21 5550 3 1.8

 12 29/12Z 1005 0.00 260 21 5560 5 -3.8

 18 29/18Z 1001 0.00 240 19 5600 5 -1.2

 24 30/ 0Z 999 0.00 270 28 5600 2 0.6

 30 30/ 6Z 1002 0.00 280 23 5580 5 -0.3

 36 30/12Z 1004 0.00 290 24 5580 7 -0.9

 42 30/18Z 1009 0.00 310 12 5600 8 -3.0

 48 1/ 0Z 1013 0.00 330 15 5610 8 -3.5

Total: 0.00

The columns are:

· HOUR - forecast hour

· TIME - valid time

· PSL - sea level pressure (mb)

· PREC - estimated precipitation (in) over 6 hour period prior to valid time

· DIR - boundary layer wind direction (deg) at valid time

· SPD - boundary layer wind speed (knt) at valid time

· THK - 1000-500 mb thickness (m) at valid time

· LI - 4 layer lifted index

· VERT - 700 mb vertical velocity (mb/sec)

Model MRF
 MRF MOS data for IND

Initial time: 00Z 28 SEP 97

 DAY DATE MAX NRM MIN NRM CLOUDS WINDS POP12

 0 28 SEP 72 71 (+1) 49 61 9 31

 1 29 SEP 68 71 (-3) 51 49 (+2) 42 39 8 14 16 24

 2 30 SEP 67 71 (-4) 49 49 (+0) 55 68 9 11 31 25

 3 1 OCT 67 71 (-4) 45 49 (-4) 44 39 5 7 17 8

 4 2 OCT 73 71 (+2) 47 49 (-2) 31 41 4 7 9 12

 5 3 OCT 72 71 (+1) 52 49 (+3) 37 45 6 8 14 21

 6 4 OCT 73 71 (+2) 50 49 (+1) 42 52 7 9 19 22

 7 5 OCT 68 71 (-3) 49 49 (+0) 50 50 6 10 25 22

The columns are:

· DAY - forecast day

· DATE - valid date

· MAX - maximum temperature (F) for that day

· NRM - normal maximum temperature (F) followed by departure from normal

· MIN - minimum temperature (F) for that day

· NRM - normal minimum temperature (F) followed by the departure from normal

· CLOUDS - cloud coverage (%). The first number is at 12Z and the second number is at 00Z the next day

· WINDS - wind speed (knt). The first number is at 12Z and the second number is at 00Z the next day

· POP12 - 12 hour probability of precipitation (%). The first number is at 12Z and the second number is at 00Z the next day

Present Weather Determination

The estimated type of weather on NGM plots is based on the following information:

· Precipitation based on probability of precipitation > 30%,

· Precipitation type based on PTYPE field (rain, snow, freezing rain),

· Precipitation intensity based on quantitative precipitation QPF field (see below),

· Existence of thunderstorms based on probability of thunderstorm > 20%,

· Existence of severe thunderstorms based on severe thunderstorm probability > 30%,

· Existence of obscuration (fog/haze) based on VIS field < 1 mile where obscuration type determined by OBVIS field.

Precipitation type and intensity based on 6 hour information

PRIVATE
Type
1
2
3
4
5

Rain
R-
R-
R-
R
R+

Freezing
ZR-
ZR-
ZR
ZR+
ZR+

Snow
S-
S-
S
S+
S+

Precipitation type and intensity based on 12 hour information

PRIVATE
Type
1
2
3
4
5
6

Rain
R-
R-
R-
R-
R
R+

Freezing
ZR-
ZR-
ZR-
ZR
ZR+
ZR+

Snow
S-
S-
S-
S
S+
S+

24. Messages

Each WXP program will produce various types of textual output. The bulk of this is informative in terms of menus, prompts and messages describing the processing of data and what is going on behind the scenes. The output is then prioritized by message level. The major levels are as follows:

· none - this turns off ALL printing and in not recommended unless you are running the program in a batch mode or from within a shell script. This will turn off printing of prompts and errors messages.

· print - this is REQUIRED output in the program and is relegated to prompts and menus that must be printed for the proper working of programs.

· error - these are program ending error messages. If an error occurs that forces the program to terminate, it will print out an error message.

· warn - these are messages that often indicate a problem in the program but do not force the program to terminate.

· mess - these are general messages which are often descriptive. These include a printout of the program name and version level and descriptions of what the program is doing as in reading databases, fitting data to a grid.

· out1 - out4 - various types of general output from the program. If the program performs calculations, these will be printed out at these levels. Levels out1 and out2 are printed by default and these represent output that is most commonly displayed. Levels out3 and out4 contain extraneous data that you may still want to look at but would overclutter the display if were printed by default.

· debug - these are debug messages that are often left in WXP programs to trace down any possible bugs in the program. Setting this level will produce large amounts of output, which require either a pager like pg or more or piping the output to a file.

There are sublevels which allow the user to be even more selective. They are as follows in the order list:

· printa, printb, printc, printd

· errora, errorb

· warnc, warnd

· messa, messb, messc, messd

· out1a, out1b, out1c, out1d

· out2a, out2b, out2c, out2d

· out3a, out3b, out3c, out3d

· out4a, out4b, out4c, out4d

· debuga, debugb, debugc, debugd

Each program will list what is printed under each level in the Program Reference.

NOTE for Windows 95/NT -- Graphics applications will not display text messages to standard output. Therefore text printing in these cases is disabled. If the text output of a graphics program is still needed, you must specify for the output to go to a file (see file output option below).

24.1. Setting the message resource

By using the message resource, you can selectively turn on and off various types of output. The first form just specifies a message level:

 -me=out1

This will enable the level out1 (and all of its sublevels) plus all levels of higher priority (including print, error, warn, mess).

WXP also allows you to selectively turn levels on and off:

 -me=+out3a,+out4

This will still default to out2 so all higher priority levels will be included but you will also print out all messages with either out3a or out4 priorities. To print just those levels, you need to turn off all printing first:

 -me=none,+out3a,+out4

This way you can be highly selective.

24.2. Paging options

In some WXP programs, the amount of text output requires an automatic pause. This is set so that one page of text (22 lines) is shown at any one time. You will see the following:

 Press return to continue

You must hit the return key to see the next screenful of output.

In some cases like printing the output, you may want to turn this feature off:

 -me=nopage

In some cases, you may want to pause program output (especially in debug model) on programs that don't have automatic pauses. To do this, you specify:

 -me=page

If the 22 line limit is a bit too small (since Xterms can have 50 or more lines in them), you can change the number of lines:

 -me=page,line=50

24.3. File output options

Since all output from WXP goes through the message facility, it is easy to turn messages on and off by setting the message level. The other capability would be to output the text to a file. WXP offers several possibilities. The first is to output the text directly to a file with no output to the screen.

 -me=fi:filename

This will direct all output to filename. If you want to echo the output to the screen as well, add a plus "+":

 -me=+fi:filename

This next option is the same as the "+" option except that the file will be overwritten.

 -me=-fi:filename

The final option is to prepend a date/time string to the beginning of each line in the data file:

 -me=@fi:filename

The output will look like:

 96 DEC 7 22:13:15 UTC -- Searching for ILX...

There is one more possibility and that is to pipe the output to another program. For example, we want to print the sounding data directly from WXP without saving the output to a file first:

 uacalplt -cu -id=ILX -me="+fi=|print"

All the output that goes to the screen will also be piped to the printer (the print command in this case). You will notice the quotes around the specification. This is to make sure the "|print" is not interpreted by the shell. If you leave the quotes off, the output will only go to the printer and nothing will show up on the screen. This setup insures the user will see the output on the screen and also get a hardcopy of the output.

25. Exit Values

When a program terminates and returns to the WXP shell or operating system shell, it will return a value resolvable by the shell called an exit value that can resolve whether the program ran successfully or not. If an error occurred, the exit value will explain, to a certain degree, the type of error so that a shell script can handle the error and perform any error recovery. The following is a list of possible exit values.

PRIVATE
Name
Value
Description

WNOERR
0
No error, program ran successfully

WEMISC
1
Miscellaneous error

WNORUN
2
Unable to run a specified program

WNOMEM
3
Not enough memory to dynamically allocate an array

WNOGKS
4
Unable to produce graphics

WNOLINE
5
Ingest communications port not responding

WNOBATCH
8
Could not run in batch mode

WNOINIT
9
Could not initialize program parameters

WNOINPF
10
Input data file not found

WNODATF
11
Database file not found

WNOOUTF
12
Unable to create output file

WNOTMPF
13
Unable to create temporary data file

WNOIPC
14
Unable to create or use IPC

WNOINP
15
No input data

WNODATA
30
No pertinent data found in data file

WNOSTA
31
Station identifier was not found in data file

WIGRID
52
Incompatible grid files

Data Ingest

26. FOS Text Feeds

The ingest component of WXP reads data from National Weather Service (NWS) Family of Services (FOS). FOS contains several text based data feeds including the Domestic Data Service (DDS), Public Products Service (PPS), Domestic Data Plus (DDP) which is a combination of DDS and PPS and the International Data Service (IDS). There is one more text-based service that is normally available, which is the FAA 604 data feed. These are all asynchronous data streams running at 9600 or 19200 baud with seven data bits, one stop bit and even parity. All data feeds broadcast several types of meteorological information ranging from standard surface and upper air reports to pilot reports, forecast information, model output statistics and model gridpoint data. Often, the ingest process is started for each type of data feed available at your site.

26.1. Domestic Data Plus and International Data Feeds

The Domestic Data feed is a general meteorological data stream providing observed data as well as textual forecast information for North America and surrounding areas. The International feed contains global observed data. The data are arranged into bulletins according to WMO headers that categorize each different type of data reported. A partial list of these WMO headers, their types and description are given in the Appendix (WMO Header Descriptions for Domestic Data Plus Service). The WMO headers can be deduced from the data feed in the following way: a SOH (Start of Header - ASCII character 1) precedes a three digit sequence number. This information is followed by a carriage return, carriage return, line feed [CR][CR][LF] sequence. The next line of data contains the WMO header information, receiving station and time. The format of the header and associated product are as follows:

 [SOH][CR][CR][LF]

 seq[CR][CR][LF]

 header[CR][CR][LF]

 data..........

 [CR][CR][LF][ETX]

Where:

· seq -- A sequence number which is incremented one for each successive bulletin.

· header -- The WMO header information describing the type, origin and observation time of the data.

The information contained within the bulletin follows this sequence immediately. Individual reports for each station or location are separated by a RS (Report Separator - ASCII character 30) character and the station identifier directly follows the RS character. All lines are terminated with a [CR][CR][LF] character sequence. After the last reported data in the bulletin, an ETX character (End of Text - ASCII character 3) appears.

26.2. FAA 604 Data feed

The FAA 604 data feed concentrates on providing data to the aviation community and, as a result, non-aviation information may or may not be provided on a regular basis. Surface, upper air and radar data are reliably broadcast on this feed. The data are arranged into bulletins with a specific FAA bulletin number categorizing each different type of data reported. A partial list of these bulletin numbers, their types and description are given in the Appendix (FAA 604 Bulletin Number Descriptions).

The bulletin number can be deduced from the data feed in the following way: an eight byte sequence which is usually preceded by a SOH (Start of Header - ASCII character 1) and followed by a STX (Start of Text - ASCII character 2). The format of the header and associated product are as follows:

 [SOH]seq00bul[STX]

 data...

 [ETX]

Where:

· seq -- A sequence number which is incremented one for each successive bulletin.

· bul -- The bulletin number describing the type of data.

The actual data within the bulletin follows the STX character. Individual reports for each station or location are separated by a RS (Report Separator - ASCII character 30) character anted by a RS (Report Separator - ASCII character 30) character and the station identifier directly follows the RS character. All lines are terminated with a [CR][CR][LF] character sequence. After the last reported data in the bulletin, a ETX character (End of Text - ASCII character 3) appears.

27. Binary Feeds

The WXP ingestor can read in and process data from the High-resolution Data Service (HDS). This data circuit provides gridded output fields that have been derived from the various types of numerical and analytical models. The Unidata McIDAS channel available to Unidata sites provides satellite imagery. The NIDS data feed provides real-time Doppler radar images from each of the operational WSR88D sites. WXP also can process WSI's NOWRad radar composite product. The WXP ingestor cannot handle McIDAS, NIDS and NOWRad feeds. They can be ingested through the LDM.

27.1. High-resolution Data Service (Alden format)

The HDS data circuit delivers numerical forecast model data in terms of grid fields that contain information for a specific variable and pressure level. These grids are delivered with a leading product header and a trailing checksum. The product header is a standard WMO header which are described in the Appendix (WMO Headers for Gridpoint Data. The product can be described as follows:

 [SOH][CR][CR][LF]
 seq[CR][CR][LF]
 header[CR][CR][LF]
 data..........
 [CR][CR][LF][ETX]
 CC

Where:

· seq -- A sequence number which is incremented one for each successive bulletin.

· header -- The WMO header information describing the type, origin and observation time of the data.

· CC -- The 16 bit CCITT checksum.

To determine if a product is valid, pass all bytes of the product from the [SOH] to the last checksum byte to the CCITT checksum algorithm and if the results is 0, the product is correct, otherwise the product is corrupted.

The data are encoded into four different formats. The first format is a straight ASCII format for all textual administrative messages.

27.1.1. GRIB Format

The second format is the GRIB format (binary grid) for gridded data transmission. The GRIB format is a binary data format where all gridpoint data is packed into its most efficient form. The GRIB format is laid out into six sections:

· Indicator block: the characters "GRIB" plus product size.

· Product definition block: this block describes all data contained in the product

· Grid definition block: this block describes in detail the layout of the grid (OPTIONAL)

· Bit map block: this block is used to define where valid data is located is a sparse grid (OPTIONAL)

· Binary data block: binary packed gridpoint data

· End of record block: the characters "7777"

27.1.2. GRID Format

The third format is the GRID format. This is a ASCII equivalent to the GRIB format. Because this is an ASCII character stream, gridpoint and floating point resolution is usually restricted in order to maintain small product size. The GRID format is laid out into six sections:

· Indicator block: the characters "GRID"

· Product definition block: this block describes all data contained in the product

· Grid definition block: this block describes in detail the layout of the grid (OPTIONAL)

· Gridpoint data block: packed gridpoint data

· Checksum information block (OPTIONAL)

· End of record block: redundant identification plus the characters "777="

27.1.3. BUFR Format

The fourth format is BUFR format. This is a binary format for storing non-gridded data. The BUFR format is laid out into the following sections:

· Indicator block: the characters "BUFR" plus product size.

· Identification block: this describes the contents of the product

· Data description block: this describes the type and format of data contained in the product

· Data section: the packed data

· End of record block: the characters "7777"

27.2. Unidata McIDAS data stream

This data stream is a composite stream developed to supply real-time data to McIDAS display systems. This data circuit does provide hourly navigated digital satellite imagery as well as surface, upper air, radar, model gridpoint and profiler data. As of now, WXP will only handle satellite data. In general there are 4 satellite image products:

· Visible sector

· Infrared sector

· Water vapor

· Floater sector of specified location and resolution

The visible, infrared and water vapor images are provided both GOES east and west.

In addition to the satellite data, the broadcast also contains:

· Surface and upper air data

· Radar summary data

· Raw textual data (SA only)

· HDS gridpoint data

· Profiler data

27.3. Satellite Imagery Data

WXP supports McIDAS AREA files, GOES Tap (obsolete) and NOAAPORT satellite imagery. WXP cannot ingest McIDAS AREA files (use LDM) and GOES Tap images.

27.4. NIDS (Nexrad Information Dissemination Service)

NIDS provides a feed of real-time Nexrad Doppler radar data. The feed is broken down by Nexrad site with the user selecting a particular set of sites to receive. Each site provides a set of products once every 5 minutes. The products range from reflectivity and velocity at various elevations to composite reflectivity, precipitation total and wind data. The data are broadcast in NIDS format. The specification is available from the NWS.

27.5. NOWRad Data

WSI Corp provides a radar summary product with a resolution of 2 and 8 km. This is a composite of the available NWS radar sites (WSR-57, 74 and 88D). The products are available once 5 minutes for the 2 km image and every 15 minutes for the 8km image. The NOWRad data are broadcast in a proprietary binary format.

27.6. Unisys Radar Mosaic Data

Unisys Corp provides a composite radar summary product with a resolution of 2, 4 and 8 km with a selection of base reflectivity, precipitation, precip tops and storm attributes. This is a composite of the available NWS radar sites (WSR-57, 74 and 88D). The products are available approximately once every 5 minutes.

27.7. RRWDS Radar Data

As with GOES tap data, there is currently no mechanism within WXP to ingest this data but the rad program will display them. There are several mechanisms to ingest this data stream available through commercial vendors.

27.8. NLDN Lightning Data

SUNY Albany provides access to NLDN data to university sites. This data is individual strike data and comes in once every 6 minutes over the LDM.

28. NOAAPORT

The WXP ingestor cannot directly read the NOAAPORT data stream but it can process the data from it assuming it is reformatted into standard WMO header/product configuration. The Unisys Gateway Server is one potential reformatting solution.

This data feed provides data in a variety of formats. NOAAPORT is divided into 4 channels:

· NWSTG - This is essentially the Family of Services (FOS) data. It contains data from the Domestic, Public and International services as well as the binary GRIB products from the High Res. service.

· GOES East - This is an array of satellite images in various predetermined projections from the GOES East satellite. There are composites east/west images on this channel..

· GOES West - This is an array of satellite images in various predetermined projections from the GOES West satellite. There are composites east/west images on this channel..

· Extra - This is reserved for non-standard operational and research oriented products.

WXP expects the data to be in the WMO header/product format:

 [SOH][CR][CR][LF]

 seq[CR][CR][LF]

 header[CR][CR][LF]

 data..........

 [CR][CR][LF][ETX]

 [SOH]...

Where:

· seq -- A sequence number which is incremented one for each successive bulletin.

· header -- The WMO header information describing the type, origin and observation time of the data.

NOAAPORT replaces the first two lines of the WMO header format with a NOAAPORT specific header and at this time, WXP cannot decode and use this.

NOAAPORT provides data in a variety of formats:

28.1. TEXT Format

This is standard type of product from the old family of services where the data section is a ASCII text product. This is either formatted text such as a METAR observation or MOS product or unformatted, human readable, text such as a public forecast.

28.2. GRIB Format

The second format is the GRIB format (binary grid) for gridded data transmission such as gridpoint data from the forecast models. The GRIB format is a binary data format where all gridpoint data is packed into its most efficient form. The GRIB format is laid out into six sections:

· Indicator block: the characters "GRIB" plus product size.

· Product definition block: this block describes all data contained in the product

· Grid definition block: this block describes in detail the layout of the grid (OPTIONAL)

· Bit map block: this block is used to define where valid data is located is a sparse grid (OPTIONAL)

· Binary data block: binary packed gridpoint data

· End of record block: the characters "7777"

28.3. BUFR Format

The third format is BUFR format. This is a binary format for storing non-gridded data such as soundings and wind profiler data. The BUFR format is laid out into the following sections:

· Indicator block: the characters "BUFR" plus product size.

· Identification block: this describes the contents of the product

· Data description block: this describes the type and format of data contained in the product

· Data section: the packed data

· End of record block: the characters "7777"

28.4. Redbook Format

This format is a binary metafile format for graphical type products that cannot be placed in either GRIB or BUFR format.

28.5. Image Format

This format is a GRIB like format for satellite imagery. It is laid out in two sections:

· Product definition block: this block describes all data contained in the product as well as the projection/navigation

· Binary data block: binary pixel/image data

29. Ingest Program

These data feeds need to be read in by the computer and saved in a fashion compatible with the analysis package. This process is call "data ingest". WXP can process data from two ingest programs. The first is the Local Data Manager (LDM) provided to universities by Unidata. The second is the WXP ingest program.

29.1. LDM (Local Data Manager)

For Unidata/university sites, the software package called the LDM is available to read in select and process information from the various data feeds. With the proper setup of the "pqact.conf" file, the LDM can be set up so that WXP can process its output. The discussion of the LDM is in the Installation Guide.

29.2. WXP Ingestor

The WXP ingestor program "ingest" is set up to read in and process each of the Family of Service or NOAAPORT feeds. Considering that several megabytes of data are broadcast on each of these feeds each day, the ingest program must offer a means to select products (or discard unneeded ones) and file them in a fashion that makes it easier for programs to search for appropriate data.

The ingest program can receive data from four sources:

· File -- this is a file of raw ingested data from FOS or NOAAPORT. This can be fed through the ingest program for addition product selection and management. To specify a file, list the filename on the command line to the ingest program.

· Serial Port -- this is a standard RS/232 type serial port that is configured for baud rate and parity. WXP has several presets for various FOS feeds such as domestic data and public products. Otherwise, the port parameters are set with the in_file resource. To specify a serial port, list the device driver (/dev/ttya) or port (COM1 for Windows).

· Named Pipe (FIFO) -- this is a named pipe (Unix only). This is a file on disk that acts as a queue where one process can write data to the pipe and the ingest program can read that data from the pipe. This is handy for interfacing the WXP ingestor with non-WXP ingestors. To specify a named pipe, list the filename of the named pipe. WXP will determine if it is a named pipe or a file.

· Socket -- a socket is a network connection that acts like a queue. One program feeds data to a socket while the WXP ingestor reads data from the socket and processes it. WXP uses a TCP/STREAM socket to preserve data integrity. The WXP ingestor acts as the socket server and binds itself to the socket. To specify a socket, use the keyword "sock:port" with the port address. A recommended port address is something in the range of 5000 (this is to eliminate conflicts with other TCP/IP applications). The other application which acts as a client must know the IP address of the machine the WXP ingestor is running on and the port number it bound to.

The ingest program uses a pattern matching scheme to select products. Each pattern has an associated action that is to be performed on the matched product. These actions include:

· write - write the product to a file. If the ingestor matches a new product, the new product will overwrite the contents of the file.

· append - append each new matched product to the end of the file. This is the most common action as it is easier to a single file with a few hundred products than it is to manage hundreds of small files.

· pipe - pipe the contents of the product to the standard input of a specified program. With the pipe action, further processing of the data can be done before writing the output to file. Also, this can be used to mail products to other users.

· run - run a specified program once the matched product is received. This can be used to flag a user when a severe weather statement is received.

29.2.1. Bulletin File

The ingest programs uses a setup file to allow the user to setup which products to process. This setup file is called a bulletin file. The bulletin filename is specified with the bull_file resource. The bulletin file contains a list of headers, actions and commands to be performed:

header [action] [command/filename...] [header file]

header [action] [command/filename...] [header file]

...

Header
The header can specify the exact header or a pattern to which headers can be matched. The headers listed in the file can use the following wildcard characters:

PRIVATE
. or ?
match a single character

- or *
match any character

[letters]
match a character from the set.

[^letters]
match any character except those from the set

(str1|str2...)
match strings

_
underscore matches a space

/data
match extra information

Some example header strings are:

PRIVATE
AB
Anything that starts with AB

S[AP]
SA or SP

(W|AC|RG)
Starts with W or AC or RG

F[^O]
Anything that starts with F, second character NOT O

FQUS1_KIND
Full header specification with spaces as underscores

*_KIND
Wildcard match on any product that ends with KIND

/SFP
Matches the AWIP header SFP

When the product is GRIB, the header is parsed for specific product parameters. This information can then be used to select the product. The syntax for this selection is:

/[Xvvv][Xvvv][Xvvv]...

Where X is:

· M -- model number

· G -- grid number

· L -- level type

· H -- level value

· T -- forecast time

· V -- variable number

· vvv -- the value of the parameter

The values for each parameter are listed in the WXP Product Description Appendix. Using the internal GRIB parameters is more reliable than selecting by the WMO header because more than one product may have the same header:

HVAC98 KWBC 070000 from Sea Wave model
HVAC99 KWBC 070000 from Aviation model

To separate the two products, use the model specifications: /M77 for the Aviation model and /M10 for the Sea Wave model.

Actions
The actions are:

PRIVATE
>>
append to file with header

append
same as above

>
write to file with header, previous content overwritten

write
same as above

#
write to file without header, previous contents overwritten

file
same as above

|
pipe product to listed command

pipe
same as above

@
run command when product complete

run
same as above

Also, the action can be prepended by a set of flags:

· R -- specifies to save the file as a raw file and not strip control characters.

· B -- specifies a product to be a binary product and not strip unprintable characters

· P -- specifies to send a PAN message at the completion of a product

Command or Filename
The command is generally the file to save the output or the command to run with the pipe or run actions. The command can have several escape characters:

Examples based on system time 1455Z Jan 12, 1997,
product header FPUS5 KIND 281512

PRIVATE
Wildcard
Explanation
Example

@tag
Name convention tag

%Y
current system year
1997

%y
current system year (last 2 digits)
97

%b
current system month (3 letters)
jan

%m
current system month
01

%d
current system day
12

%j
current system Julian day
12

%h
current system hour
14

%n
current system minute
55

%pd
product day
28

%ph
product hour
15

%pn
product minute
12

%T
product type
FPUS5

%t
product type (lower case)
fpus5

%L
product locale
KIND

%l
product locale (lower case)
kind

%D
data_path resource

%C
con_path resource

%R
raw_path resource

%G
grid_path resource

%W
watch_path resource

%I
image_path resource

%F
file_path resource

Some of the above wildcards can be preceded with a number. For dates, the number is a modifier that rounds down to the nearest value that is a multiple of that number. For example, "%6h" would round down to the nearest 6 hour boundary. For the previous example, it results in the value 12.

For the product type and locale, this number is used in a substring operation. The first digit of the number is the offset into the string and the second digit refers to the number of characters to use. For example, "%12T" results in "FP". To get "IND", use "%23L".

Header Files
To aid in the parsing of products from the various feeds, a header file can be created by the ingest program. This essentially lists the header of each product in the file along with its byte offset into the file. Since most parsing is based on header, it is far easier to search the smaller header file than to parse through the much larger product file.

To produce these files automatically by the ingestor, add the file name convention to the end of the line in the bulletin file:

F[^O] >> %D/%y%m%d%6h_for.wmo %D/%y%m%d%6h_for.hdr

The first name convention listed "%D/%y%m%d%6h_for.wmo" is the filename where the actual product is saved. The second name convention "%D/%y%m%d%6h_for.hdr" is where the header file information is saved. The syntax of the file is as follows:

offset header / extra

offset header / extra

....

where:

· offset -- is the byte offset into the file,

· header -- is the product header in its entirety is listed after the offset

· extra -- extra information about the product which is normally the AWIPS header

A sample from a forecast data header file:

 0 FPUS86 KPQR 282359 / OPUPDX

 3264 FPUS85 KGGW 290001 / OPUGGW

 3548 FPAK11 PAYA 282207 / &ZCZC JNULFPYAK

 4190 FPUS73 KFGF 282359 / NOWFAR

For more information on header files, see the section on header files.

Sample Bulletin File
Pattern Action Filename Header Filename

#

S[AP] >>-15 %D/%y%m%d%h_sao.wmo

S[IMNS] >>-05 %D/%y%m%d%h_syn.wmo

SD >>+07 %D/%y%m%d%h_rad.wmo

U[^AB] >>-65 %D/%y%m%d%12h_upa.wmo

ASUS1_ >> %D/%y%m%d%3h_frt.wmo

WWUS40 >> %D/%y%m%d%6h_wws.wmo

FO >> %D/%y%m%d%12h_mod.wmo %D/%y%m%d%12h_mod.hdr

A >> %D/%y%m%d%6h_sum.wmo %D/%y%m%d%6h_sum.hdr

C >> %D/%y%m%d%6h_cli.wmo %D/%y%m%d%6h_cli.hdr

W >> %D/%y%m%d%6h_sev.wmo %D/%y%m%d%6h_sev.hdr

F[^O] >> %D/%y%m%d%6h_for.wmo %D/%y%m%d%6h_for.hdr

#

Specific forecast products

#

FXUS01 > %D/fore/48hr

FXUS02 > %D/fore/3-5d_Hem

FPUS5_KIND | /home/local/bin/parse - -ph=FPUS5_KIND -id=%%INZ029 -pa=dollar -of=%D/fore/laf_zone -me=none

*_KIND >> %D/Indy/%m%d.dat

#

HDS products

#

Y/M89 >> %D/%y%m%d%12h_eta.grb %D/%y%m%d%12h_eta.hdr

Y/M39G211 >> %D/%y%m%d%12h_ngm.grb %D/%y%m%d%12h_ngm.hdr

Y/M64G211 >> %D/%y%m%d%12h_ngm.grb %D/%y%m%d%12h_ngm.hdr

Program Output

The default output of the ingest program is to reformat the products, removing the control character sequence and formatting the header and product as follow:

** header ***

product

** header ***

....

This allows the ingestor to reparse data ingested by the WXP ingestor to increase granularity of data files. For example, you may want to take the forecast files from the initial ingest and parse for products out of KIND.

When the ingest program is running, it will display a list of the products being broadcast on the data feed. The selected product's header will be preceded by "**" and the discarded products will be preceded by "--". The action and the output file will also be displayed.

SAAK70 KAWN 080800 RTD 97 JAN 8 08:38:29Z

Append to: /home/wxp/data/97010808.sao

**SACN85 CWAO 080834 ** 97 JAN 8 08:38:29Z

Append to: /home/wxp/data/97010808.sao

**SPUS70 KWBC 080837 ** 97 JAN 8 08:38:29Z

Append to: /home/wxp/data/97010808.sao

**SPUS80 KWBC 080837 ** 97 JAN 8 08:38:30Z

Append to: /home/wxp/data/97010808.sao

**SPCN46 CWAO 080835 ** 97 JAN 8 08:38:30Z

Append to: /home/wxp/data/97010808.sao

**SACN85 CWAO 080834 ** 97 JAN 8 08:38:30Z

Append to: /home/wxp/data/97010808.sao

**SXUS91 KNKA 080837 ** 97 JAN 8 08:38:30Z

Append to: /home/wxp/data/97010808.sfc

**SPCN42 CWAO 080836 ** 97 JAN 8 08:38:30Z

Append to: /home/wxp/data/97010808.sao

**FPUS3 KBUF 080836 ** 97 JAN 8 08:38:30Z

Append to: /home/wxp/data/97010806.for

**FPUS4 KBUF 080837 ** 97 JAN 8 08:38:30Z

Append to: /home/wxp/data/97010806.for

If the product contains GRIB data, the GRIB header is decoded to give further information about the product:

**HVKA99 KWBC 061200 ** 97 JAN 6 18:58:42Z

AVN analysis - 1000 mb V wind component (m/s)

Append to: /home/wxp/data/97010612_avn1w.grb

**HVLA99 KWBC 061200 ** 97 JAN 6 18:58:44Z

AVN analysis - 1000 mb V wind component (m/s)

Append to: /home/wxp/data/97010612_avn0w.grb

**HVMA99 KWBC 061200 ** 97 JAN 6 18:58:47Z

AVN analysis - 1000 mb V wind component (m/s)

Append to: /home/wxp/data/97010612_avs0e.grb

**HVNA99 KWBC 061200 ** 97 JAN 6 18:58:49Z

AVN analysis - 1000 mb V wind component (m/s)

Append to: /home/wxp/data/97010612_avs1e.grb

**HVOA99 KWBC 061200 ** 97 JAN 6 18:58:51Z

AVN analysis - 1000 mb V wind component (m/s)

Append to: /home/wxp/data/97010612_avs1w.grb

**HVPA99 KWBC 061200 ** 97 JAN 6 18:58:53Z

AVN analysis - 1000 mb V wind component (m/s)

Append to: /home/wxp/data/97010612_avs0w.grb

**HPIA98 KWBC 061200 ** 97 JAN 6 18:58:55Z

AVN analysis - Surface Pressure (Pa)

Append to: /home/wxp/data/97010612_avn0e.grb

29.2.2. Output Files

The ingest program reformats the products when it saves them to file. First it strips the bulk of the control characters out of the file. This is to allow text editors and word processors to be able to read in and process the data. In replacing the control characters, the ingest program delimits headers with asterisks "**".

** header ***

product

** header ***

....

A sample of an DD+ output file is:

** FPUS73 KFGF 282359 ***

NOWFAR

SHORT TERM FORECAST

NATIONAL WEATHER SERVICE EASTERN ND/GRAND FORKS ND

656 PM CDT THU MAY 28 1998

NDZ006>008-014>016-290600-

BENSON-CAVALIER-PEMBINA-RAMSEY-TOWNER-WALSH-

INCLUDING THE CITIES OF -CAVALIER-DEVILS LAKE-GRAFTON-LANGDON-

656 PM CDT THU MAY 28 1998

.NOW...

SCATTERED SHOWERS AND AN ISOLATED THUNDERSTORM CAN BE EXPECTED NORTH OF

A LINE FROM CANDO TO GRAFTON THROUGH SUNSET. THE HEAVIER SHOWERS MAY

PRODUCE UP TO ONE HALF AN INCH OF RAIN. WEST WINDS GUSTING TO 25 MPH

WILL DECREASE AFTER SUNSET. BY MIDNIGHT TEMPERATURES WILL RANGE FROM 55

IN CANDO AND PEMBINA TO 63 IN DEVILS LAKE AND GRAFTON.

$$

** FPUS73 KDMX 290003 ***

NOWDSM

SHORT TERM FORECAST

NATIONAL WEATHER SERVICE DES MOINES IA

703 PM CDT THU MAY 28 1998

IAZ004>007-015>017-023>028-033>039-290603-

ALGONA-ESTHERVILLE-FORT DODGE-IOWA FALLS-MASON CITY-WATERLOO-

703 PM CDT THU MAY 28 1998

.NOW...

...A TORNADO WATCH REMAINS IN EFFECT UNTIL 900 M...

EXPECT LTLE CHANGE IN THE WEATHER EARLY THIS EVENING WITH

PERIODIC SHOWERS AND THUNDERSTORMS. SOME STORMS WILL BE SEVERE WITH

DAMAGING WINDS...LARGE HAIL AND POSSIBLY A TORNADO. BE PREPARED TO

SEEK SAFE SHELTER ON SHORT NOTICE. TEMPERATURES SHOULD MAINLY BE IN

THE 70S WITH COULD BE A BIT COOLER NEAR STORMS.

$$

** FPUS74 KFWD 290004 ***

NOWFTW

...

29.2.3. Log Files

The ingest program logs appropriate information in a log file. By default, this file is named "ingest.log" and is put in the file_path directory. The program logs when ingest starts and stops, lists all unselected products and notes any corrupted products from HRS. Each entry is timestamped:

98 MAY 15 15:11:51Z : Unselected product: GPNG98 KWBC 151200 / GRID 07092 10101

98 MAY 15 15:11:51Z : Unselected product: GPNI98 KWBC 151200 / GRID 07092 10101

98 MAY 15 15:13:18Z : Unselected product: NWUS43 KFSD VERIFY / WVMFSD

98 MAY 15 15:13:20Z : Unselected product: NWUS43 KFSD VERIFY / WVMFSD

98 MAY 15 15:13:20Z : Unselected product: NWUS43 KFSD VERIFY / WVMFSD

The log file name can contain name convention wildcard characters such as "/home/wxp/logs/noaa-%m%d.log" where the %m and %d are replaced with the month and day so that log files are generated for each day the ingestor is running.

29.2.4. Terminating Ingest

 Ingest may be stopped in two ways. First, if the ingest program is running in the foreground, the break or interrupt key may be hit and the message "Break: do you want to quit (k/y/n): " appears. This allows the user to quit or return to ingest if the break key was hit by accident. If y is specified, the ingest program ends following the end of the current product. If k is specified, the ingest program ends immediately. If the ingest program is running as a background task (UNIX only), the user may also issue the kill command from the operating system specifying the process identifier of the ingest program.

OPERATIONS NOTE: The ingest program may be listed in the "/etc/rc" (Unix startup script) or "autoexec.bat" (for MS-Windows) so ingest will be started whenever the system is first booted up or powered on. Since no environment variables are set upon system initialization, program resources must be specified by either specifying the resource file with "-df=/home/wxp/etc" or by specifying the data_path and file_path parameters, respectively .

30. Header Files

To aid in the parsing of products from the various feeds, a header file can be created by the ingest program. This essentially lists the header of each product in the file along with its byte offset into the file. Since most parsing is based on header, it is far easier to search the smaller header file than to parse through the much larger product file. The use of header files improves the speed of data parsing by nearly an order of magnitude, especially if the file does not exist on a local hard drive. For GRIB data, header files provide a simple means to pull specific grids from a large GRIB file. These files can be larger than 10MB and thus full parsing for a grid can be time consuming. The header file means a program can seek directly to the grid location thus reading 2-5KB of data rather than the entire file. This not only speeds up data processing but also reduces network traffic.

30.1. Header File Syntax

The syntax of the file is as follows:

offset header / extra

offset header / extra

....

where:

· offset -- is the byte offset into the file,

· header -- is the product header in its entirety is listed after the offset

· extra -- extra information about the product which is normally the AWIPS header

A sample from a forecast data header file:

 0 FPUS86 KPQR 282359 / OPUPDX

 3264 FPUS85 KGGW 290001 / OPUGGW

 3548 FPAK11 PAYA 282207 / &ZCZC JNULFPYAK

 4190 FPUS73 KFGF 282359 / NOWFAR

 6865 FPAK57 PAJK 290001 CCA / &ZCZC JNUZFPAK

 9613 FPUS73 KLBF 290002 / NOWLBF

 10092 FPUS73 KGRB 290001 / NOWGRB

 10588 FPAK11 PAFA 290005&ZCZC FAILFPFAI / AKZ007-290530-

 11366 FCCN51 CWAO 290001 AAA / TAF AMD CYUY 290001Z

 11592 FPAK57 PAJK 290001 CCA / &ZCZC JNUZFPAK

 14342 FPAK11 PAFA 290005 / &ZCZC FAILFPFAI

The header file is from a GRIB product, the decoded GRIB information is listed including model number, grid number, forecast time, level type, level number and variable/parameter number. To decode these numbers, see the Appendix (WXP Product Descriptions). Since GRIB headers are not unique, this information is needed to uniquely describe the contents of the product.

3087563 YORB10 KWBE 131500 / 85 212 6 100 100 39

3102432 ZORE10 KWBE 131500 / 85 212 9 100 100 39

3117301 YCUA99 KWBE 131500 PAA / 85 215 0 100 1000 41

3230510 YCUA85 KWBE 131500 PAA / 85 215 0 100 850 41

3336000 YCUA70 KWBE 131500 PAA / 85 215 0 100 700 41

3352511 YCUA50 KWBE 131500 PAA / 85 215 0 100 500 41

3368533 YCUA25 KWBE 131500 PAA / 85 215 0 100 250 41

3474022 YTUA98 KWBE 131500 PAA / 85 215 0 105 2 11

3487852 YUUA98 KWBE 131500 PAA / 85 215 0 105 10 33

3583433 YVUA98 KWBE 131500 PAA / 85 215 0 105 10 34

3599668 YRUA98 KWBE 131500 PAA / 85 215 0 105 2 52

3635495 YPUA98 KWBE 131500 PAA / 85 215 0 1 0 1

30.2. Creation of Header Files

The creation of header is done automatically by the WXP ingestor if the header file name convention is added to the bulletin file. For example for forecast data:

F[^O] >> %D/%y%m%d%6h_for.wmo %D/%y%m%d%6h_for.hdr

The first name convention listed "%D/%y%m%d%6h_for.wmo" is the filename where the actual product is saved. The second name convention "%D/%y%m%d%6h_for.hdr" is where the header file information is saved. It is recommended that header files be created for any product that requires parsing. Here is a list:

· Any text files such as forecasts, climatic data, MOS data, advisories, warnings and summaries.

· Any GRIB data such as any files from the HRS feed.

The sample ingest bulletin file also lists those products that need header files.

30.3. Header Files and the LDM

The LDM cannot generate header files so WXP has two programs that will generate header files for LDM data.

· hdrparse - for text based header files

· griblook - for GRIB based header files.

For header files to work, they must be continually generated as the data arrives. This means that a script should be run in cron once a minute to generate these files. Here is a sample script:

#! /bin/csh -f

setenv wxpdefault /home/wxp/etc

foreach model (eta ngm ruc \

 avn_n0e avn_n1e avn_n0w avn_n1w \

 avn_s0e avn_s1e avn_s0w avn_s1w \

 mrf_nh mrf_us mrf_ak mrf_hi mrf_pr \

 mrf_nhem mrf_shem)

 /home/wxp/bin/griblook -cu=la -mo=$model -ou=hdrfile -pf=app -me=none

end

foreach type (for_dat sev_dat cli_dat sum_dat mos_dat)

 /home/wxp/bin/hdrparse -cu=la -if=$type -pf=app -me=none

end

Both programs are run in append mode so that they only parse what has come in since the last running of the program. The program uses the existing header file to find out the location of the last product seen when the program ran last. It then starts parsing from that point and appends the new products to the end of the existing header file. This reduces the execution time of the script considerably.

31. PAN (Product Arrival Notices) Messages

Product arrival notices are sent at the completion of a product to a specified PAN receiving program. The PAN receiver will use this message to trigger an action based on the arrival of that product. For example, a PAN receiver might be interested in the arrival of severe thunderstorm warning messages so it can warn the user. The PAN message is broadcast over a socket using a UDP transmission. This is a connectionless process where the PAN is sent to a specific address and port and it is up to the PAN receiver to be active and waiting for the message using a receive from call.

31.1. PAN Message Syntax

The PAN message is sent as a single line of information for each product received by the ingestor. The information in the PAN message is broken up into fields delimited by a bar "|":

ID|Server|###|YYYYMMDDhhmmss|WMO/Extra|Filename|Offset|Size

Fields:

· ID -- Message Type ID (901 for NOAAPORT)

· Server -- NOAAPORT server number which uniquely identifies server (0-99)

· ### -- Sequence number from server (0-999). Increments by one for each PAN sent from that server. It cycles through numbers 0 to 999 and back to 0.

· YYYYMMDDhhmmss -- Timestamp of when product is sent from WXP ingestor.

· WMO/Extra -- WMO Header plus additional information. For text products, this is the first 20 bytes of the product (newlines and unprintables changed to spaces). This will often contain the AWIPS header. For GRIB products, this is the decoded header information from the GRIB Product Definition Block. Included is the model number (PDS Octet 6), grid type (PDS Octet 7), valid/forecast time (derived from PDS Octet 19,20 and 21), vertical level type (PDS Octet 10), level value (PDS Octet 11-12) and parameter (PDS Octet 9).

· Filename -- Filename including full path. This is the filename that the WXP ingestor saved the product to. NOTE: This filename and path may be different from the filename and path you need to access the data. If the data is mounted on an NFS drive, the appropriate NFS path will need to be substituted for the path listed here.

· Offset -- Byte offset of product header in file. This is the exact location (first byte in file is 0) of the start of the product header. An fseek using this number is all that is needed to locate the product.

· Size -- Size in bytes of product from header to end of product including any leading or trailing blank lines

Examples:

901|45|909|19980428152512|SDXX99 KWBC 281522 / RCMFWS|/home/wxp/data/98042815_rad.wmo|75975|2410|

· 901 - identifies NOAAPORT PAN message

· 45 - identifies local NOAAPORT server

· 909 - is the sequence number

· 19980428152512 - Date product arrived on server and PAN message sent (depends on server time). It arrived at 15:25:12Z on 24 APR 1998

· SDXX99 KWBC 281522 - WMO header

RCMFWS - AWIPS header

· /home/unisys/wxp/data/98042815_rad.wmo - server filename where product is located. Each file can contain more than one product

· 75975 - byte offset in file

· 2410 - product size in bytes

901|45|907|19980428152510|YSRG98 KWBD 281200 PAA / 89 212 4030036 1 0 66|/home/wxp/model/98042812_eta2.grb|3412593|32943|

· 901

· 45 - identifies local NOAAPORT server

· 907 - is the sequence number

· 19980428152510 - Date product arrived on server and PAN message sent

· YSRG98 KWBD 281200 PAA - WMO header

89 212 4030036 1 0 66 - Extra GRIB info, model 89 is Eta model, grid 212 is AWIPS grid 212, time 4030036 is a 6 hour accumulation from forecast hour 30 to 36, level type 1 is surface, level 0 is ignored for surface and parameter 66 is snow depth.

· /home/unisys/wxp/model/98042812_eta2.grb

· 3412593 - byte offset in file

· 32943 - product size in bytes

31.2. PAN Message Setup

To set up the WXP ingestor for PAN messages the following pieces of information must be added to the "ingest.bul" file. At some point in the file, a PAN configuration line must be added.

PAN Setup

@PAN id=45 sock:steve:5566 sock:dev5:5000 pan.log

The "@PAN" is a keyword in the bulletin file for the PAN configuration line. The "id=45" specifies the NOAAPORT unique server ID which is broadcast as field 2 in the PAN message. The rest of the line lists destinations. The "sock" keyword specifies the PAN go over a UDP socket. The string "steve:5566" is the network name of the destination computer and the TCP/IP port number. If the sock keyword is omitted, the PAN is save to the listed filename such as "pan.log". Up to 10 destinations can be listed. Each destination is addressed starting with 0 and going to 9 in the order listed on the PAN line.

By default, no PAN messages are sent even if the PAN line is added to the bulletin file. To enable PAN messages, the "P" flag must be added to the action for each product being saved on the server. For example a product line would look like:

Pattern Action Filename Header Filename

FT >> %D/%y%m%d%h_term.wmo %D/%y%m%d%h_term.hdr

To enable this product type for PAN messages, add the "P" flag to the action.

FT P>> %D/%y%m%d%h_term.wmo %D/%y%m%d%h_term.hdr

This will send a PAN message to all listed destinations whenever this products is received. If you don't want to send a PAN to all destinations, the destination IDs can be listed:

FT P035>> %D/%y%m%d%h_term.wmo %D/%y%m%d%h_term.hdr

In this case, PAN messages will only be sent to the 0, 3 and 5th destinations.

32. Scouring Old Data

Since the ingest program only saves data to disk, there needs to be a mechanism to clean up old data to prevent the disk from filling up. WXP provides a simple scour program that will delete data based on a size or age limit. The syntax of the program is:

scour /home/wxp/data msize=400

The first parameter is the directory to scour and the second parameter is the size in megabytes to scour to. This will delete the oldest files in the directory until the directory size is 400 megabytes.

Data can be deleted based on age:

scour /home/wxp/convert age=10

This will remove all files that are greater than 10 days old.

32.1. Automated Scouring

To insure scour is run, it is recommended that it be installed into the cron list for the user that is running the ingestor (to prevent permission conflicts). Here is a sample scour script for normal WXP processing:

#! /bin/csh -f

scour_data: removes old data files

/home/wxp/bin/scour /home/wxp/data msize=500

/home/wxp/bin/scour /home/wxp/convert msize=25

Here is a sample scour script for NOAAPORT WXP processing:

#! /bin/csh -f

scour_data: removes old data files

/home/wxp/bin/scour /home/wxp/data msize=300

/home/wxp/bin/scour /home/wxp/text msize=150

/home/wxp/bin/scour /home/wxp/model msize=500

/home/wxp/bin/scour /home/wxp/convert msize=100

/home/wxp/bin/scour /home/wxp/sat msize=500

Data Decoding and Parsing

33. Surface Data Decoding (METAR/SAO format)

The surface observation data conversion program called sacvt parses all station identifiers in the hourly file that are in METAR and SAO formats (obsolete). It will handle automated AMOS and ASOS reports. The following information is decoded:

· ID -- station identifier

· TYPE -- type of report (hourly, special, etc)

· TEMP -- temperature

· DEWPT -- dewpoint

· WIND -- wind speed, direction and gust

· ALT -- altimeter setting

· SLP -- sea level pressure

· VIS -- visibility

· CLD -- cloud layer information including height and coverage

· WX -- present weather

· PTEND -- 3 hour pressure tendency and type indicator

· PREC -- 3, 6, 12 and 24 hour precipitation totals

· TMAX -- 6 and 24 hour maximum temperature

· TMIN -- 6 and 24 hour minimum temperature

· SNOW -- snow cover

· CTYPE -- low, middle and high cloud types

· SOLAR -- equivalent solar radiation (SAO only)

· Any special comments that are needed to clarify current conditions.

The decoding process takes each report and decodes as much of the information as possible. If the report is malformed or corrupted in transmission, it is likely the decoder won't completely decode the product. The undecoded portion of the report goes into the comment section that is saved to the output data file. All of the reports are decoded but not all of them make it to the output file. By default, only standard observations are saved (no specials) and only those reports that were observed from 15 minutes before the hour to 10 minutes after the hour. If duplicate reports exist, they are all copied, by default, to the output file. Some useful parameters to set are:

· spec - save specials as well

· range:start:end - specifies time range for reports. The default is -15:10. This can be used to extract second and third hourly reports from those stations that report more than once an hour.

· dup - remove all duplicates

· update - remove duplicates and update existing reports with corrections

In addition, there is the ability to decode multiple hour data files if reports are spread out over several hours. To decode more than one hour, use the num_hour resource to specify how many hours before or after the current file to read. The decode_hour resource is helpful if the range of hours is both ahead and behind the desired hour. For example, you need to decode 12Z and files used are between 10-14Z. The current hour would be 14Z, the number of hours is -4 and the decode hour is 12.

Once decoded, the output is put into either an ASCII or netCDF format. NetCDF is preferable for data interchange to non-WXP applications. The ASCII format is preferable for WXP applications even though WXP will read the netCDF format.

34. Synoptic Surface Data Conversion

The synoptic surface observation data conversion program called smcvt decodes all station information that is encoded in the synoptic (SYNOP), synoptic ship (SYNOP SHIP), drifting buoy (DRIBU) or CMAN (SYNOP) data format. Stationary buoys and ship data report under the SYNOP format. The synoptic surface data is reported worldwide every 6 hours. This is the global standard for reporting surface data and thus better global coverage can be obtained by using synoptic data. The U.S. on the other hand does not use synoptic format and thus these reports should be augmented with U.S METAR reports. Surface reports contain the following encoded information:

· ID -- station identifier

· TEMP -- temperature

· DEWPT -- dewpoint

· SLP -- sea level pressure

· CEIL -- cloud ceiling

· COVER -- cloud coverage,

· VIS -- visibility

· WIND -- wind direction and speed

· PTEND -- pressure tendency for a 3 hour period

· PREC6 -- precipitation amounts for 6 hours

· WX -- present and past weather

· CTYPE -- cloud type information for low, medium and high clouds

· EXTT - extreme temperatures

· PREC -- 1,3,6,12 or 24 hour precipitation

· SNOW -- snow cover in inches (reported at 12 GMT)

· SST -- sea surface temperature

· WAVE -- sea wave height and period

The conversion program tries to match the coded data to a synoptic coding standard. Corrupted reports will cause the decoding process to terminate for that report. Regional codes will not be decoded. The resulting information is then saved in either ASCII WXP format or netCDF format just as with sacvt. The output file may save the ID either as the WMO number (as broadcasted) or as a station ICAO ID (3 or 4 letter). If the station does not have an ICAO ID, one will be derived from the WMO number using the 2 letter country prefix and the last 3 numbers of the WMO number. Country prefixes are listed in the Global Station Information Appendix.

35. Upper Air Data Conversion

The upper air data conversion program called uacvt reformats and collates the data into a compact form. The upper air data is broadcast twice a day (observed at 0000 GMT and 1200 GMT) with special soundings taken at 0600 and 1800 GMT. Upper air data for a station is sent in up to 8 parts:

· TTAA -- contains lower atmosphere (below 100 mb) mandatory level data that normally arrives within an hour after observation. These data give height, temperature, dewpoint, wind directions and speed data for set pressure levels:

surface, 1000, 925, 850, 700, 500, 400, 300, 250, 200, 150 and 100 millibars plus tropopause and maximum wind level data.

· TTCC -- contains upper atmosphere (above 100 mb) mandatory level which arrives shortly after the TTAA data. These data give height, temperature, dewpoint, wind directions and speed data for set pressure levels:

70, 50, 30, 20 and 10 millibars

· TTBB -- contains lower atmosphere significant level data. Significant level data contain temperature and dewpoint information at pressure levels other than the mandatory levels where changes in the temperature and dewpoint profiles occur.

· TTDD -- contains upper atmosphere significant level data. Significant level data contain temperature and dewpoint information at pressure levels other than the mandatory levels where changes in the temperature and dewpoint profiles occur

· PPAA -- contains lower atmosphere mandatory level wind information. This information is included in the TTAA data but some stations only report wind data and thus the PPAA is more appropriate

· PPCC -- contains upper atmosphere mandatory level wind information. This information is included in the TTCC reports but like the PPAA is for stations that only report winds.

· PPBB -- contains lower atmosphere (below 50,000 feet) significant wind data at heights. These data only contain wind direction and speed information at heights in between mandatory levels reported at even multiples of 1000 feet.

· PPDD -- contains upper atmosphere (above 50,000 feet) significant wind data at heights. These data only contain wind direction and speed information at heights in between mandatory levels reported at even multiples of 1000 feet.

The conversion process performed on these various reports takes two steps. The first step is to parse consecutive hourly data files for the occurrence of upper air data, since these data are generally captured over a two to four hour period. Once the appropriate upper air data is found (either a TTAA, TTBB, TTCC, TTDD, PAA, PPBB, PPCC or PPDD report) within one of the files, it is decoded and placed into a structured array for all reporting stations. Significant levels are then sorted and duplicate levels removed. This gives three arrays of data for a particular station. The first contains all the mandatory levels to 10 millibars plus the tropopause and maximum wind level. The second contains all the significant level information and the third contains the significant wind levels. The three arrays for each station are saved in a single file in either ASCII WXP or netCDF format with the file name representing the hour of the report.

36. Radar Data Conversion

36.1. MDR Radar Conversion

The radar conversion program radcvt reads the Manually Digitized Radar (MDR) data and decodes the echo reports for each radar site and compiles them into a radar summary. The domestic data feed does provide a radar summary but that has been only a recent addition and is broadcast at the end of the hour. Also, the summaries did not give the following information:

· ID -- station identifier

· COVER -- precipitation coverage

· PTYPE -- precipitation type (rain, snow, thunderstorms)

· PTREND -- precipitation trend (increasing, decreasing, no change)

· MAXTOP -- maximum precipitation tops

· MOVE -- precipitation area and cell movement

This information is appended to the radar summary in the decoded file so that annotated summaries may be created. The MDR reports are taken at 35 minutes past each hour and broadcast on the DD+ data circuit within ten minutes following observation.

36.2. RCM Radar Conversion

RCM (Radar Coded Messages) are available on NOAAPORT and provides radar echo data on a grid 4 times the resolution of the MDR grid (1/4th MDR grid) or roughly 12km resolution (NIDS is 1km, NOWRad is 2km). The radar conversion program takes these RCMs and decodes them and compiles a radar summary. The RCMs include storm attribute information which is also included in the converted file:

· ID -- storm identifier

· TOPS -- echo tops

· MOVE -- storm movement

· HAIL -- hail probability

· TVS -- Tornado Vortex Signature location

· MESO -- Mesocyclone location

RCM data is broadcast twice an hour (:15 and :45) and can be decoded within 10 minutes of observation.

37. Other Data Conversion

37.1. SHEF Data

The SHEF data conversion program shefcvt decodes hydrological / climatological data and places the output in a raw file. Unlike the previous decoders, this does not place data into a special format. The information from both .A and .B report types are decoded.

37.2. CLIMAT Data

CLIMAT data are broadcast at the beginning of a month and contain monthly max/min information as well as averages. The decoder program called climat converts the WMO CLIMAT format into a raw file.

37.3. TAF (Terminal Forecast) Data

The tafcvt program provides the ability to decode and reformat TAF data. It produces an English version of the TAF for general distribution. Unlike other decoders, tafcvt does not create and output file.

37.4. Hurricane Data

The hurricane program decodes the standard hurricane products and produces a set of output files:

· track.dat - text based track file including forecasted track.

· track.raw - this is very similar to the track.dat file but it is formatted as a WXP raw file for use with mapplt to create tracking charts.

· track.dom - the domain for the entire storm track used by mapplt to plot tracking chart. This calculates the range of lat and lon and adds 5 degrees in order to create a plot domain that fully encompasses the entire track.

· last.dom - last position of storm used by xsat for satellite plots.

· storm.html - full HTML file for that storm, uses image.list file to insert image snapshots of storm, also inserts segments of latest TPC advisories as described above.

· image.list - this file is a list of images that have been saved for viewing. This file is NOT created by hurricane but is used by the program to create links in the storm.html file.

· storm.line - single line status listing for storm.

38. Data Parsers

Parsers are different from decoders in that they only select from existing data. A parse may reformat the data but no decoding is done. A parse is used to search for a particular METAR report or a particular public forecast. WXP provides several data parsing programs:

38.1. Text Data Parser

The parse program is a generic parser for specific text products. This program will search through multiple raw data files for a product based on a product pattern matching scheme:

Product Pattern Matching
PRIVATE
 . or ?
match a single character

- or *
match any character

[letters]
match a single character from the set.

[^letters]
match any character except those from the set.

(str1[|str2...])
match strings

_
underscore matches a space.

/secondline
second line parsing

Second line parsing is also possible. For many products, the second line of the product is the AWIPS header:

 ** FPUS1 KIND 022030 ***

 SFPIN

which is this case is "SFPIN". To parse for this, specify either "FPUS1_KIND" or "/SFPIN".

To parse for more than one product, wildcards can be used:

 FPUS[145]_K(CHI|IND)

will parse various public forecasts (FPUS1, 4 and 5) from Chicago and Indianapolis. This program will also parse for specific station identifiers and forecast zones. A identifier is and character sequence that begins a line and is NOT the product header. The only exceptions to this are with:

· upper air data: uses the station identifier in the TTAA,TTBB, etc. reports

· frontal data: uses the valid time in the product

· forecast zones: uses the product zone specification.

The parse program is set up to parse for the first (resource parameter=first) or last occurrence (last) of requested data. By default, the program will display the full bulletin or for identifiers, the line which contains the identifier. If more data is needed, the program can list a set number of lines after the match (line=#), list up to the first blank line (blank) or dollar sign (dollar). Blank lines can be eliminated (noblank), headers can be eliminated (nohdr) or just the headers can be printed (hdr). The parse program will, if specified, save data to a data file with the file name consisting of the name of the earliest hourly data file plus the first three characters of the bulletin identifier as an extension.

38.2. Public Forecast Parser

This program will parse for state and metropolitan forecasts, state forecast discussions and coded city forecasts. This program will also parse for specific forecast zones by decoding the zone header in the state zone forecasts. This program provides a simpler interface into the generic parse program.

38.3. Surface Data Parsing

This sa_parse program will search for a specific list of stations in a ingested raw surface file or in a decoded surface data file. The input can be raw ingested data file in which the raw report (METAR/SAO) is displayed. If the input is a converted file, the output is a tabular list of decoded information from each station.

ID TIME T TD RH DIR SPD GST ALT SLP VIS CIL COV WX MAX MIN PR6 PR24 SC

KLNP 0240 52 43 71 150 4 002 10 CLR

K4BK 2347 69 52 54 310 10 114 30 CLR 72 59

The search list is based on the plot_domain, stat_prior, and identifier resources. See the Station Sets section of the Users Guide for more information.

38.4. Upper Air Parsing

The ua_parse program is a way of printing out information for a particular upper air sounding. The output includes a table of input data such as temperature, height, dewpoint and winds and a list of sounding parameters including stability indices and wind parameters. The output is equivalent to the output of uacalplt but without the option to plot a sounding.

38.5. MOS Data Parsing

The fo_parse program reformats the MOS data into a simple table. The input can be NGM, ETA MOS, upper air MOS from NGM and ETA and the MRF MOS parameters.

 NGM MOS data for IND

Initial time: 00Z 29 SEP 97

 HOUR TIME TEMP DEW DIR SPD CIL COV VIS WX MX/MN POP12 SNOW

 6 29/ 6Z 59 53 260 11 250 BKN 10

 12 29/12Z 54 49 240 11 250 SCT 10

 18 29/18Z 70 48 250 22 250 SCT 10

 24 30/ 0Z 66 50 290 18 250 SCT 10 73 21

 30 30/ 6Z 57 50 280 12 250 BKN 10

 36 30/12Z 54 49 280 12 250 BKN 10 52 30

 42 30/18Z 65 51 300 15 20 BKN 10

 48 1/ 0Z 60 50 320 11 250 SCT 10 68 8

 54 1/ 6Z 54 50 310 5 CLR

 60 1/12Z 51 48 300 5 CLR 49 0

38.6. GRIB File Parsing

The griblook program is useful for parsing HRS GRIB files for their contents. Since these data are in a binary format, it cannot by viewed with a file listing program. The griblook program will read every grid contained in the file and give a brief summary of the type of data saved in the grid. The program can parse for specific grids in the file.

0: ETA analysis for 0000Z 29 SEP 97-100 mb Vertical velocity (Pa/s)

 1: ETA analysis for 0000Z 29 SEP 97-150 mb Vertical velocity (Pa/s)

 2: ETA analysis for 0000Z 29 SEP 97-200 mb Vertical velocity (Pa/s)

 3: ETA analysis for 0000Z 29 SEP 97-250 mb Vertical velocity (Pa/s)

 4: ETA analysis for 0000Z 29 SEP 97-300 mb Vertical velocity (Pa/s)

...
Analysis and Display

39. Surface Data Analysis

39.1. Surface Plotting

Surface plotting involves the printing of text and/or symbols on a user defined map. The surface plotting program is sfcwx. The amount of available surface data, if fully plotted, can result in station data overlapping other plotted data. As a result, a filtering mechanism is used to limit the number of stations plotted. The plotting filter can be done using two criteria:

· Station priorities: each station in the city database is prioritized. Priorities run from 1 (highest) to 6 (lowest). The lower the priority, the more stations plot. The default priority is set by the domain size but can be modified using the stat_prior resource.

· Grid filtering: in this mode, only a set number of stations will plot within a grid box as specified by the plot_domain. There is no control over which station plots. Its first come, first plot.

The data are plotted on a user defined base map. This plotting domain is determined either by entering the domain as part of the plot_domain resource or through the Region menu. The menu will have a list of preset regions but if a new region is desired, a plot domain can be specified. The easiest way to do this is by specifying the central latitude and longitude along with a plot size. The plot sizes run from .5 for state or province sized maps to 1 for regional maps, 2.5 for country wide maps and 5 for continental maps. The size of the domain will determine the default station priority to plot. If needed, the latitude and longitude can be replaced with a specific station identifier to center the plot on.

The default background map is a simple low resolution map containing the US plus most of North America (wxp.map). If the plot domain is outside the US, the global maps (cont.map, country.map) will display.

Once the plotting domain has been selected, a variable will be plotted. This can be specified through the variable resource or through a variable menu. a menu of possible surface variables to be plotted is listed. This is a preset list of variables to plot but the whole list is defined by the internal surface variables and those defined in the sfcwx.var file. These include all reported variables saved by the convert process plus derived variables like potential temperature, relative humidity, lifted condensation level (LCL), wind chill and heat index. In addition, there is a composite plot of data:

PRIVATE "TYPE=PICT;ALT=sfc_plot_lgnd.gif (2463 bytes)"

The composite plot of all data displays temperature, dewpoint, sea level pressure, cloud cover, wind speed and direction and current weather. Valid meteorological symbols that are used to represent weather are:

PRIVATE "TYPE=PICT;ALT=weather_lgnd.gif (5257 bytes)"

The wind barb symbols point in the direction from which the wind is blowing and the number of barbs correspond to the wind speed. Each long barb represents ten knots, each half barb represents five knots, and each pennant (looks like a small triangle) represents 50 knots.

PRIVATE "TYPE=PICT;ALT=winds_lgnd.gif (2825 bytes)"

Missing data are not plotted. The sfcwx program will also generate flight conditions based on ceiling and visibility information and will plot "VFR", "MVFR" or "IFR". Also, NCEP frontal analyses can be plotted.

Finally, the data type information is printed in the upper left and date/time information is printed in the upper right. A sample surface plot is:

sfcwx -cu=la -re=mw -va=all -de=d
PRIVATE "TYPE=PICT;ALT=sfc_all.gif (26188 bytes)"

39.2. Surface Gridding and Contouring

Surface data are gridded and contoured using the sfccalc program. This program reads surface converted files to fit a specific variable to a grid. These variables represent standard observed and several derived variables. Examples of available derived variables include potential temperature, vapor pressure, relative humidity, wind chill, heat index, convergence and vorticity. As in the surface plotting program, data selection via priority level is necessary to reduce computation time. The grid conforms to the regions used in the surface data plotting program. When using the subregions, more stations are used and, therefore, a more resolute grid is obtained. Using higher priority stations, and, therefore, more reliable data, also reduces grid contamination from bad data elements. Grids can be saved to a file for later use by this program and the contour program. An example of a surface temperature and wind vector field is:

sfccalc -cu=la -re=mw -va=temp -in=3 -pl=cf -de=d
PRIVATE "TYPE=PICT;ALT=col_fill.gif (21419 bytes)"

39.3. Surface Time Series Plotting

Surface station time series may be plotted with the statlog program. This program can work in either of two modes. The first searches through a series of surface converted data files for a specified station identifier. The second uses surface MOS station data which will be discussed later. The resulting time series information is displayed in a tabular format for easy user viewing. Then, a meteogram will be displayed. The all data meteogram contains temperature, dewpoint plotted in the top graph. This plot scale adjusts to the maximum and minimum temperatures in the data set. The second graph contains cloud level information. Here short lines represent cloud height plotted on a logarithmic height scale. A short line represents scattered (2/8), two dashes are broken (6/8) and a long line for overcast. An X specifies obscured. Cloud ceilings are listed if the ceiling is below 10,000 feet. The third graph is the pressure chart. This will represent sea level pressure or altimeter setting if sea level pressure is not reported at the station. Other plotted information is current weather, snow cover, 3 and 6 hour precipitation totals, visibility in miles, cloud cover, winds and gusts:

statlog -cu=la -nh=-25 -id=KPHL -de=d -va=all
PRIVATE "TYPE=PICT;ALT=statlog.gif (14617 bytes)"

40. Upper Air Data Analysis

40.1. Upper Air Plotting

Upper air data may be plotted with the upairwx program. This program works much like the surface plotting program, except upper air data are sparse and relatively evenly spaced, so that subregional displays and station prioritization are not needed. Instead, a specific pressure, height or isentropic level must be picked. In general, pressure levels are picked ranging from the surface to 10 mb including tropopause and maximum wind levels. If the level is not a mandatory level, the data will be interpolated from a merged sounding including mandatory and significant level data. Once the level has been selected, the menu listing the available upper air variables to be plotted is displayed. These variables represent raw data stored in the upper air converted files plus several derived variables. Some variables like temperature can be averaged over a layer "850-500mb" where the layer is specified as the level. Others are only valid at specific levels such as station pressure and 1000-500 mb thickness. These variables are available on the sounding level. A composite upper air station plotting model is:

PRIVATE "TYPE=PICT;ALT=ua_plot_lgnd.gif (2020 bytes)"

and a sample composite plot is:

upairwx -cu -le=500 -va=all -de=d
PRIVATE "TYPE=PICT;ALT=upairwx.gif (18439 bytes)"

40.2. Upper Air Gridding and Contouring

The upper air gridding and contouring program is upcalc. This program works in the same manner as the surface gridding program and the upper air data plotting program. A pressure level is selected for gridding and the variables represent the input data plus derived variables such as potential temperature, vapor pressure, mixing ratio and relative humidity. Once a level and variable have been selected, the gridding and contouring are performed. Wind vectors and streamlines of upper air data may also be plotted.

upcalc -cu -le=300 -va=wspd -pl=cf -in=10 -ct=rainbow.clr -cof=0-23 -de=d
PRIVATE "TYPE=PICT;ALT=upcalc.gif (22803 bytes)"

40.3. Upper Air Sounding Calculations and Plotting

Vertical sounding information for a particular station can be displayed by using the uacalplt program. This program reads in data for a specific upper air station, lists the data, performs standard sounding calculations and plots the sounding on one of the following:

· Skew-T log-P -- an energy conserving diagram in which the temperature and potential temperature lines are perpendicular. In this diagram, the temperature lines are offset at a 45 deg angle sloping to the upper right. And example of a skewt is below.

· Emagram -- an energy conserving diagram similar to the Skew T except that the temperature lines are not skewed to the right.

· Stuve -- not an energy conserving diagram but one where potential temperature lines (adiabats) are straight.

· Hodograph -- displays winds with height on a polar grid. On this plot, the wind direction is the angle and the wind speed is the radius from the center. Concentric circles are plotted at 20 knot intervals for easier definition of actual wind speed. Also, the plot is annotated with the mandatory level pressure above and to the right of the location of the wind.

Each different type of line is represented by a different color. The horizontal blue lines represent pressure lines while the vertical blue lines are temperature lines. The sloping green lines are dry adiabats or the lines air parcels follow when lifted. The sloping cyan lines are moist adiabats which represent the lines air parcels follow when saturated and releasing latent heat. The dashed yellow lines are mixing ratio lines which represent moisture content in the atmosphere. The sounding data are displayed in white with the left white line representing the dewpoint line and the right line representing the temperature line. The wind barbs on the right edge of the diagram represent the winds at various elevations with the top of the diagram representing compass north. The winds at mandatory levels are plotted at their pressure levels, whereas the winds at height levels are plotted at their standard atmosphere pressure level. Also, a parcel trajectory drawn as a yellow line is added to the thermodynamic plot to reflect sounding stability.

uacalplt -cu -id=KFWD -me=out2 -pl=skewt
PRIVATE "TYPE=PICT;ALT=skewt.gif (27427 bytes)"

41. Radar Data Analysis

41.1. MDR Radar Summary Display

Radar summary data may be displayed using the rad program. This program will read either an hourly raw file or decoded MDR file and display the manually digitized radar summary report. The radar summary plot may be annotated with various pieces of information such as precipitation type, trend, echo tops, cell movement and severe weather watch boxes (see below).

These radar data estimate the intensity of radar echoes inside a grid box 48 kilometers on a side. The grid is a fourth of the LFM (Limited Fine Mesh prediction model) grid. The echo values representing the highest echo value in the box are ranked on a scale of one to six. Since the intensity of precipitation reported within a MDR radar grid box is the maximum intensity within that box and not an average precipitation intensity, precipitation coverage is often overestimated, especially in cases of convective precipitation.

PRIVATE
Intensity
DBz
Color
Precip Intensity
Approx.Rainfall Rate (inches/hour)

Stratiform
Convective

1
20-30
Blue/DGreen
"-" -- Light
0.0 to 0.1
0.0 to 0.2

2
30-40
Cyan/Green
"" -- Moderate
0.1 to 0.5
0.2 to 1.1

3
40-45
Green/LGreen
"+" -- Heavy
0.5 to 1.0
1.1 to 2.2

4
45-50
Yellow/Yellow
"++" -- Very Heavy

2.2 to 4.5

5
50-55
Red/Orange
"x" -- Intense

4.5 to 7.1

6
>55
Magenta/Red
"xx" -- Extreme

> 7.1

Annotation of the radar summary is available to display other pieces of MDR information. Most information such as precipitation type and intensity is plotted at the radar location. The maximum echo top information is plotted at the location of the top. The watch box information is plotted as a box representing the actual location of the watch area. Inside the box is the watch number and type "T567" or "S568" and expiration time "08Z".

NOTE: The locations for the watches are derived from the "sao_all.cty" city database file. Some stations may not be listed in that database and therefore the box may not display. If this is the case, the program will display a warning message and the user may add the station into this database file.

rad -cu=la -re=us -va=all -de=d
PRIVATE "TYPE=PICT;ALT=mdr.gif (19924 bytes)"[image: image10.png]

41.2. RCM Radar Summary Display

RCM (Radar Coded Messages) are similar to the MDR reports. RCM data is on a grid 1/4th the size of the MDR grid or roughly 12km resolution. RCM summaries are generated from the individual site RCMs using the radcvt program and are displayed using the rad program. The rad program can read in and display individual RCM site data or display the national summary. The radar summary plot may be annotated with various pieces of information such as storm ID, echo tops, movement, hail, TVS (Tornado Vortex Signatures), mesocyclone location, and severe weather watch boxes (see MDR above).

These radar data estimate the intensity of radar echoes with the same 6 levels as does the MDR data (see above).

rad -if=rcm_cvt -cu=la -re=us -va=sum -pp=numplt=1 -de=d

[image: image11.png]eeeeeeeeeeeeeeeeeeee

Al data 03457 22 JUL 98
5.

41.3. NIDS (Nexrad) Radar Display

The NIDS data feed provides roughly 20 radar products sent every 5 minutes from each site. These products include base reflectivity and velocity, composite reflectivity, precipitation estimates, echo tops and VAD winds. The rad program will display the products a projection based on the radar site and range of data unless the plot domain is changed. Most products include 16 levels of data that have a default color fill table associated with them. The composite reflectivity product includes a storm attributes table that can be added to the plot (see below).

Composite Attributes Plots
PRIVATE
 Type
Description

Red triangle
Tornado Vortex Signature (TVS)

Yellow circle
Mesocyclone

Green *
> 75% Hail

Green x
> 50% Hail

Wind barb
Cell movement

Text UL
Storm ID

Text UR
Echo tops

rad -na=nids -dp=/wxp/data/nids 9806050608.cref -va=comp

PRIVATE "TYPE=PICT;ALT=nids.gif (47877 bytes)"

VAD winds plot as a time cross-section of wind barbs which are color coded showing a level of wind gusts (RMS speed deviation).

41.4. Radar Mosaics (NOWRad and Unisys)

The rad program handles two type of radar mosaics:

· WSI's NOWRad -- 2 and 8 km base reflectivity mosaic (16 level) which covers the contiguous US.

· Unisys Mosaics -- 2, 4 and 8 km mosaics of reflectivity, tops and precipitation (8 and 16 level). The coverage includes the contiguous US.

The rad program will display these products either on their original projection (no plot domain specified) or remapped to the requested plot domain.

rad -if=nids -dp=/wxp/data/rad_mosaic -ct=radar.clr -cof=nowrad.cfl

-mf=fi:map_county -re=41,-77,.25 -cu=la

PRIVATE "TYPE=PICT;ALT=rad_mos.gif (53056 bytes)"

HYPERLINK "rad_mos.gif"

41.5. RRWDS Radar Site Display (Obsolete)

The rad program will also display Remote Radar Weather Display Systems (RRWDS). This option will take directionally scanned radar echo information from a single radar site and display it on a background map.

42. Forecast Model Output (MOS) Analysis

42.1. MOS Data

There are two types of model output: surface and upper air.

Surface MOS

Surface MOS data is provided either from the Nested Grid Model (NGM) or Medium Range Forecast (MRF). These statistics are based upon the statistical climatology of how the conditions of a station react to the surrounding conditions represented by gridpoint values. The output of the NGM includes (to 60 hours):

· Temperature at valid time

· Dewpoint at valid time

· Wind direction, speed

· Cloud cover

· Cloud height

· Visibility in miles

· Extreme temperature (max, min temperature)

· Probability of precipitation (6 and 12 hour)

· Probability of thunderstorm activity

· Precipitation type

· Quantitative precipitation in inches

The MRF MOS product gives forecast data out to 7 days and includes:

· Maximum temperature for the day

· Minimum temperature for the day

· Wind speed at 12 hour intervals

· Cloud cover at 12 hour intervals

· Probability of precipitation for 12 hour periods

Upper Air MOS

This is forecast output which is derived directly from the models. These are referred to as upper air MOS to avoid confusion with the surface MOS. This output includes:

· Sea level pressure

· 1000-500 mb thickness

· 4 layer lifted index

· 700 mb vertical velocity

· Quantitative precipitation (more accurate than surface MOS)

· Surface wind speed and direction

· Temperature at various levels

· Relative humidity at various levels

The NGM and Eta models provide these statistics.

42.2. MOS Data Plotting

Model Output Statistics (MOS) data may be plotted with the fouswx program. This program works much like the surface plotting program except a forecast time menu replaces the region menu. MOS data cover many of the same stations that report surface data so data filtering (priority, grid filter) are applied based on the domain. The forecast time menu ranges from 6 to 60 hours for NGM surface MOS, 1 to 7 days for MRF MOS, initial to 48 hours for upper air MOS. Once the forecast time has been selected, the menu listing the available variables to be plotted is displayed. There are several varieties of composite data plots:

· NGM/LFM all data: This plots a cloud cover symbol with wind barb, forecasted temperature-upper left, forecasted dewpoint-lower left, predicted weather (symbol based on 6 hour forecast data)-left center, 6 hour probability of precipitation-upper right.

· NGM/LFM climate data: This plots a cloud cover symbol with wind barb, extreme temperature-upper left, predicted weather (symbol based on 12 hour forecast data)-left center, 12 hour probability of precipitation-upper right.

· LFM_UA/NGM_UA/ETA_UA all data: This pots a wind barb, lifted index-upper left, 1000-500 mb thickness (10m)-lower left, sea level pressure (last 3 digits)-upper right, 6 hour precipitation-lower right.

· MRF climate data: This plots maximum temperature-upper left, minimum temperature-lower left, departure from normal-upper right.

· MRFX climate data: This plots a cloud cover symbol, maximum temperature-upper left, minimum temperature-lower left, 24 probability of precipitation-upper right.

PRIVATE "TYPE=PICT;ALT=mos_plot_lgnd.gif (2507 bytes)"

Present Weather Determination
The estimated type of weather on NGM plots is based on the following information:

· Precipitation based on probability of precipitation > 30%,

· Precipitation type based on PTYPE field (rain, snow, freezing rain),

· Precipitation intensity based on quantitative precipitation QPF field (see below),

· Existence of thunderstorms based on probability of thunderstorm > 20%,

· Existence of severe thunderstorms based on severe thunderstorm probability > 30%,

· Existence of obscuration (fog/haze) based on VIS field < 1 mile where obscuration type determined by OBVIS field.

Precipitation type and intensity based on 6 hour information

PRIVATE
Type
1
2
3
4
5

Rain
R-
R-
R-
R
R+

Freezing
ZR-
ZR-
ZR
ZR+
ZR+

Snow
S-
S-
S
S+
S+

Precipitation type and intensity based on 12 hour information

PRIVATE
Type
1
2
3
4
5
6

Rain
R-
R-
R-
R-
R
R+

Freezing
ZR-
ZR-
ZR-
ZR
ZR+
ZR+

Snow
S-
S-
S-
S
S+
S+

fouswx -cu -ft=h24 -va=all -de=d
PRIVATE "TYPE=PICT;ALT=fouswx.gif (23258 bytes)"

42.3. MOS Gridding and Contouring

The MOS data gridding and contouring program is focalc. This program works similar to the surface gridding program and the MOS data plotting program. A forecast time is selected for gridding and the variables to be contoured represent the input data plus standard derived variables. Once a forecast time and variable have been selected, the gridding and contouring are performed and displayed. Wind vectors may also be plotted using U and V wind component grids as input.

focalc -cu=la -ft=d2 -va=maxt -ct=rainbow.clr -cof=0-23 -de=d -pl=cf -in=5 -cb=0
PRIVATE "TYPE=PICT;ALT=focalc.gif (19788 bytes)"

43. Forecast Model Gridpoint (GRIB) Contouring

The forecast model gridpoint data contouring program is grbcalc. This program reads in and decodes GRIB data, derives the appropriate variables and contours the grid. The gridpoint data are saved in large data files that contain all the possible gridded fields for a particular model runtime. Since all grids are grouped together, three pieces of information must be specified in order to determine which grid to contour. First, the user must select the forecast time. Time selections range from the initialized fields to out to ten day forecasts depending on the forecast model. The second selection involves the choice of a vertical level. These gridded data are placed on mandatory levels but also include tropopause and maximum wind level data. In addition, there are some sounding and surface level data provided for those variables. The third piece of required information is the variable or parameter. There are standard variables in which the gridded fields are broadcast as part of a model's data stream. These variables include temperature, geopotential height, U and V wind components, and relative humidity. From these variables several derived variables may be generated. The variable selection closely resembles the upcalc program. As mentioned above several sounding variables such as sea level pressure, quantitative precipitation, stability variables and thickness are provided. Since not all models will have all times, levels and variables available, it is recommended to view the available grids using the griblook program. When these three pieces of information have been specified, the program searches for the appropriate grids needed to generate the requested output. Additional computations are performed and the output grid or grids are then contoured. Once a variable has been derived, the gridded field may be saved in a gridded file for later use.

NOTE: WXP can display GRIB files directly from sites such as NOAA/NCEP/NIC. There is no need to process these grids with the WXP ingestor. Grbcalc and contour can display these grids but cannot compute derived grids unless all grids for the computation are in the same file. Thus, it is recommended to download multigrid files. If the downloaded file contains only one grid, it should be combined (concatenated) with other similar grids into one coherent GRIB file.

grbcalc -cu=la -mo=eta -ft=h24 -le=850 -va=temp -in=2 -pl=cf -ct=rainbow.clr -cof=0-23 -de=d -cb=-20
PRIVATE "TYPE=PICT;ALT=grbcalc.gif (24538 bytes)"

44. Satellite Image Display

The satellite image display program is xsat program. This program reads three formats of satellite images:

· McIDAS Area files
Area files come in various sizes and resolutions. The image file includes a navigation block to aid programs in determining the location of the image so that data may be overlaid on the image. This navigation block contains the orbit information of the satellite which is used to locate the satellite over the earth's surface and the information needed to translate scan lines and image elements to locations on the earth's surface. Since the image is navigated, it can be remapped. The image retains the original digital information so that enhancements may be applied and temperatures may be inferred from the infrared images.

· NOAAPORT image files
NOAAPORT images are preset image files that are formatted similar to GRIB files. There is a product definition block which defines the satellite, image type, and projection. The image then follows as a sequence of 8 bit pixel values which can be enhanced using any of the standard enhancement techniques. The image can be navigated and remapped.

· Unisys image files

This is a generic image format used by Unisys for transmission of satellite imagery. In most cases, these are sectorized images with no navigation. Pseudo-navigation can be added with the grid_domain resource. Some of the images are remapped to a Lambert Conformal projection and these can be remapped. The image contains a small header in ASCII which describes the product. The 8 bit image data follows.

· WXP image files

These are general purpose image files. This contains 8 bit image data plus a navigation block equivalent to the projection grid given in grid files. Since the image is navigated, it can be remapped. The image has 8 bits of resolution and may be enhanced with any of the standard enhancement techniques.

Once the image is read in, the colors are determined from the color table and enhancement scheme. The pixels (intensities) within the image are then converted to the appropriate colors. The recommended color table is "sat.clr" which provides a 50 level gray scale for the image. Other color tables are available and up to 256 colors can be specified. The color fill resource can be used to enhance the satellite image. Several enhancement (.enh) files are provided. The image may also be dithered for display on displays that have depth less than 8 bits. The image may also be set up for overlay on top of another image where black regions on the image become transparent allowing the underlying image to show through.

The image is display in its original form. This means that if the image is too large for the window, only the upper left portion of the image will display. To view more of the image, use the plot_domain resource. There are two useful methods:

· zoom:clat:clon:factor
This will zoom the image by the factor listed centered on the specified clat,clon. If the image has no navigation, this will be the pixel location to center on.

· full plot domain
By specifying a full plot domain, the image will be remapped to that domain. Region keywords can also be used.

Enlargements are done by linear pixel interpolation.

After the remapping, the final plot domain of the image that will display in the window is determined. This can be used for overlay plots.

The image may also be printed using a Postscript interface built into the xsat program. This creates a gray scale image based on a 640x512 sized window. Also, a color enhanced image can be printed in color postscript. Navigation is used to overlay a map for final output.

xsat -cu=la -if=sat_ir -pd=us -ct=sat.clr -cof=sat_mb.enh -pp=irbar
PRIVATE "TYPE=PICT;ALT=xsat.gif (110965 bytes)"[image: image12.png]

45. Miscellaneous Analysis

45.1. Map and Raw File Plotting

The map plotting program called mapplt can be used for five purposes:

· Base Maps -- drawing simple base maps by specifying domain information via the region or plot_domain resource. This is also handy for adding maps to overlay plot when the plot is complete rather than when the programs want to display the map.

· Text Labels -- annotating plots by allowing text labels to be placed above and below the plotting area. This is done by specifying labels on the command line. The location and alignment of the labels are specified a location prefix VH: followed by the text string. This will place text either above 'u' or below 'l' the plot, either left 'l', right 'r' or centered 'c'. Multiple labels may be specified. This is handy if the user wants control over what the final labels are to be for an overlay plot. The wxpfile program can be used to generate certain labels.

· Raw File Plotting -- displaying data from raw data files. If the user has created a raw data file, use this program to display the results. If the raw file contains multiple columns, all columns can be plotted or a specific one can be selected based on column number of header string. Also, a specific station identifier can be specified to only plot that station's data from the raw file. Also, the raw file may contain annotation and attributes information that can modify a station's output. A sample hurricane chart plotted from a raw file can be seen below.

· City Database Plotting -- displaying station locations from a city database file. This can be handy in locating various reporting stations and for determining which stations have a certain plotting priority. The color of the output can be changed based on its station priority.

· Plotting Locations -- plotting specific stations or specific locations using the identifier resource. This can be used to plot the location of a specific set of stations either by searching for its location in the city databases or by specifying a latitude and longitude. Also, the same annotation/attribute information as is specified in the raw data files to plot weather symbols or wind barbs.

mapplt -pd=ll,23.10,-63.60,25,17,2.76,2.76 track.raw-ID:ll:co=black \

 track.raw-LINE:mk=plus:co=black track.raw-LINE:wi=3 -de-d

PRIVATE "TYPE=PICT;ALT=track.gif (12788 bytes)"

45.2. Raw Data Gridding and Contouring

A program is provided to grid and contour data from raw data files called grid. Raw data files can be generated by non-WXP programs or by any of the plotting programs such as sfcwx, upairwx and fouswx. This allows data to be manipulated prior to the gridding process such as with the rawmath program. The grid program will take raw data, fit it to a grid and then contour it as all other gridding and contouring programs do. The resulting grid can be saved to a file for future use.

45.3. Contour Existing Grids

The contour program is provided to contour existing grids. This includes grids generated by sfccalc, upcalc, focalc, grid and grbcalc as well as the model GRIB files. This program also uses a file name extension to extract a specific grid from a multiple grid file.

45.4. Wind Vector Display from Existing Grids

The vector program is provided to display vector plots given two existing grids (U and V components). This program will work just as well with non-wind data such as gradients of a particular variable as it will with wind components but is generally used for displaying wind vectors. The program will prompt the user for two grid files and then will draw the vectors.

Annotation, Overlay and Animation

46. WXP Loop

The wxploop program is an interactive program that allows WXP programs to overlay and animate. This program sets up a bitmap (or pixmap) which can be used as a canvas for several WXP programs. A bitmap/pixmap is a reserved area of memory that mimics the display window so that graphics can be drawn to it just as if it were to the window. Multiple programs can all draw to the same bitmap allowing products to be overlaid. Second, the program can open up several bitmaps, each acting as a separate canvas and the resulting bitmaps can be looped to show animation.

PRIVATE "TYPE=PICT;ALT=wxploop.gif (3292 bytes)"

Information can be drawn onto the window or a pixmap in one of three ways:

· using the annotation features of wxploop to draw lines, text and filled areas,

· using the window or pixmap ID to allow another program to draw directly to that window or pixmap,

· importing an image (XWD,GIF) file into the loop.

46.1. WXP Loop Modes

Wxploop can be run in one of two operational modes:

· INTERACTIVE
Interactive mode allows the user to communicate with the wxploop program, issuing commands to it via the loopset program. Once wxploop is started, a message queue is opened allowing interprocess communications with the loopset program. This message queue key ID is based on the window_num resource. Only one wxploop program can be invoked per message queue/window number. If a queue exists for a particular window number and wxploop is run, wxploop will exit with a warning "Unable to create message queue". At this point, either the queue must be deleted or another window number must be picked. The window number allows multiple instances of wxploop to be run each having its own interactive interface. The loopset command has been set up with the "alloc" command which returns the next available window number after 20.

The program initially starts in STOP mode and runs any commands passed through the command line. Then, if any image files either X window dump or GIF are specified, these are added to the loop in the order they appeared on the command line. Once the first image is loaded, the main window is opened and the program will animate the images (go to LOOP mode) once all are loaded into the program. After the images are loaded, the program animates those images and waits for commands to be entered via loopset where pixmaps can be created and deleted, images annotated and loop parameters changed.

At any point through loopset, a window ID of the main window can be queried. This window ID can then be passed to any WXP graphics program by specifying the window device. Example return:

+8627531:8627533:800x600 or +8627531:8627533 (if size is the default 640x512)

Also, pixmaps can be created. The pixmap ID can be queried and graphics drawn directly to the pixmap by specifying its ID and size to the device resource.

· BATCH
wxploop can also be run in a batch configuration. By specifying a window number of -1, the wxploop program does not open up a message queue. This alleviates the problem of having to allocate a different message queue for each wxploop window. Obviously, this lack of interactivity limits the capability of wxploop. This configuration is optimal for simple overlay displays and cannot be used for animation since there is no way to create pixmaps with a shell script.

The program will run those commands pass on the command line and load any images in listed on the command line. The program will then print the window ID of the main window allowing WXP programs to access that window with the window specification under the device resource.

Then the wxploop program will automatically background itself. This way, the window ID can be set to a shell variable and passed to another graphics program. Manual backgrounding is not necessary with "&" on the command line and is also not recommended.

NOTE for X Windows: When plotting graphics to a wxploop window or pixmap, it is highly recommended to allocate all colors used in the final graphic by using the "color" command. If this is not done, only the default color table is loaded (normally "wxp.clr"). Even though each WXP program allocates its own colors, these only remain allocated for the duration of each graphics program that is independent of wxploop. Once the graphics program exits, the colors are deallocated and those colors displayed on a wxploop window or pixmap may be changed by the next program that wishes to allocate colors. Running the "color" command in wxploop will allocate those colors in the color table. If a graphic uses multiple color table, the "color" must be run again to allocate the other color tables. This command does not deallocate any previous colors.

Once a loop has been created, it can be saved to either X window dump or GIF files. Then these files can be read back into wxploop later on and again animated. Another key feature is the check command that will determine if an image is already in the loop based on image titles.

47. Scripting, Overlays and Animations

The resource interface to WXP makes it ideal for use within scripts. There are three main uses of the command line interface: generating overlays and loops, generating GIF images and Graphical User Interfaces (GUIs).

47.1. Overlays and Loops

Using Individual Programs

Most WXP programs can produce overlays and loops just as long as it is from the same data type. In other words, a surface plotting program can plot temperatures and overlay a contour of pressure as well as loop them over several hours.

sfcwx -cu=la -re=mw -va="temp,pres[:ln:in=4:co=lred]" -nh=-5 -de=d
PRIVATE "TYPE=PICT;ALT=sfcover.gif (19356 bytes)"

The variable setting of "-va=temp,pres[:ln:in=4:co=lred]" first plots temperature and then overlays a line contour of pressure in light red at an interval of 4 mb. The num_hour setting "-nh=-5" will generate a loop of 6 images containing the latest hour and the previous 5 hours.

Using wxploop and loopset

The surface plotting program cannot overlay a surface contour on a satellite picture. In order to do this, wxploop must be used. This can be done manually using wxploop, xsat, and sfccalc but it is easier to write it into a script. Wxploop acts as a canvas to accept graphics commands from xsat and sfccalc. When wxploop is run in batch mode, the window ID information is written to standard output which is then captured in the wxpdevice environment variable for use by the WXP graphics programs. In most cases, WXP graphics are non-destructive. This means a data plot or line contour will overlay on a satellite image or contour plot easily (see image below). If the overlay is a color fill contour plot or satellite image, it will cover the underlying image. For a satellite image, there is the ability to specify an overlay (-pp=over) along with an appropriate enhancement scheme which blacks out parts of the image that are supposed to be transparent. The xsat program uses the color "black" as a transparent color. For color fill contours, there are fill patterns which allow the background to show through. There is the ability to turn off certain color levels by specifying "off" for a color fill color. For overlay maps, again, there is a transparent color which defaults to black. Also, it is critical to control plot labels. The text above and below the plot will overlap making them impossible to read so the draw resource must be used to toggle text labels off. To tailor plot labels, use the label resource or mapplt.

#! /bin/csh -f

Set up device to hold output of wxploop which is window ID

setenv wxpdevice w,,`wxploop -wn=-1 -ba -ti=overlay \
 -ct=sat.clr,wxp.clr`

Run xsat to display satellite data

xsat -cu=la -if=sat_ir -re=us

Run sfccalc to overlay contours. Notice the use of draw (dr) set to data

so that only the contours are displayed. Notice the use of color_cont (coco)

to change the color of the line contours to light red

sfccalc -cu=la -re=us -va=pres -in=2 -pl=ln -dr=data -coco=lred -pp=gridx2 \
 -oa=4,8

PRIVATE "TYPE=PICT;ALT=satover.gif (118799 bytes)"

Another method is to save the window information to a file. The window number in wxploop is actually a filename. Then the window information part of the device resource is the same filename. This is useful for Windows users since Win32 prevents use of standard output.

#! /bin/csh -f

Save window ID to file /tmp/win

wxploop -wn=/tmp/win -ba -ti=overlay -ct=sat.clr,wxp.clr

setenv wxpdevice w,,/tmp/win

Run xsat to display satellite data

xsat -cu=la -if=sat_ir -re=us

Run sfccalc to overlay contours. Notice the use of draw (dr) set to data

so that only the contours are displayed. Notice the use of color_cont (coco)

to change the color of the line contours to light red

sfccalc -cu=la -re=us -va=pres -in=2 -pl=ln -dr=data -coco=lred -pp=gridx2 \
 -oa=4,8

To create a loop, put a loop into the script. There are some other changes to be made. First, the frames in the loop (called pixmaps) need to be created. This uses the loopset command to communicate with wxploop through a message queue. Creating a message queue adds some overhead into the script. Wxploop won't run if the message queue exists. To solve this problem, "loopset -wn=1 clean" could be run to delete the queue or "loopset alloc" could be run to return the first available message queue. When wxploop terminates, the queue is deleted but sometimes wxploop terminates abnormally leaving the queue.

The next item is to run loopset to create the pixmap and return the window information as before. Once the pixmap is created, it becomes the canvas that the graphics programs use. Wxploop then loops through each of the pixmap to create the loop.

NOTE: Queues are not implemented in Windows/Win32.

#! /bin/csh -f

Set up device to hold output of wxploop which is window ID

wxploop -wn=1 -ba -ti=overlay -ct=sat.clr,wxp.clr

Loop over hours

foreach hour (6 5 4 3 2 1 0)

 setenv wxpdevice w,,`loopset -wn=1 cr pix`

Run xsat to display satellite data

 xsat -cu=$hour -if=sat_ir -re=us

Run sfccalc to overlay contours. Notice the use of draw (dr) set to data

so that only the contours are displayed. Notice the use of color_cont (coco)

to change the color of the line contours to light red

 sfccalc -cu=$hour -re=us -va=pres -in=2 -pl=ln -dr=data -coco=lred \

 -pp=gridx2 -oa=4,8

end

Using wxploop in Windows/Win32

This is possible but not easy to implement. First, Win32 eliminates standard output so the window information must be written to a file. Also, queues are not implemented in Win32 so this eliminates the ability to use loopset to tell wxploop to create a new pixmap. Third, graphics programs are automatically backgrounded in batch files so xsat and sfccalc would run simultaneously and the resulting product would be unusable. A possible solution is to put a sleep command in the batch file to slow down the process. Another solution is to use a different shell like Korn shell which is available from some software vendors.

#! /bin/ksh -f

Save window ID to file

wxploop -wn=/tmp/win -ba -ti=loop -ct=sat.clr,wxp.clr

setenv wxpdevice w,,/tmp/win

for hour in 6 5 4 3 2 1 0 ; do

Display satellite data, use new window command to create new pixmap

 xsat -cu=la -if=sat_ir -re=us -pp=new

Run sfccalc to overlay contours. Notice the use of draw (dr) set to data

so that only the contours are displayed. Notice the use of color_cont (coco)

to change the color of the line contours to light red

 sfccalc -cu=la -re=us -va=pres -in=2 -pl=ln -dr=data -coco=lred -pp=gridx2 \
 -oa=4,8

done

Complicated Overlays

These overlay scripts can be rather complicated overlaying more than just two products. This requires more annotation and control over the output. First, common resource values should be set as environment variables. This gives the script a single point to change these parameters and also reduces what is needed on the command line of each program. Second, labels need to be generated using wxpfile to describe the plotted data. Once specialized labels are set, only the data needs to be plotted "-dr=data" from each graphics program. The map is generated at the appropriate time with mapplt. Once the plot is done, mapplt is called to put the specialized labels on the plot.

#! /bin/csh -f

Preset common resources

setenv wxpgeometry 900x650

setenv wxpcurrent la

setenv wxpmessage print

setenv wxpregion us

Open up a WXPloop window with size 900x650, title it SFC_Map,

lock in colors from wxpcolor, and setup the return key to close the window

WXPloop returns the window ID which is set to the dev shell variable

setenv wxpdevice w,,`wxploop -ba -wn=-1 -ct=sat.clr,wxp.clr -ti=SFC_Map`

Generate a label for the plot with wxpfile

set label=`wxpfile -if=sfc_cvt -ou=date`

Generate a label for the frontal data based on the latest front file time

set frtlabel=`wxpfile -if=frt_dat -ou=hour`

Plot a IR satellite picture

xsat -dr=data -if=sat_ir

Plot a stippled radar summary

rad -dr=sum -pp=bar,fill:1 -va=sum -com=red

Overlay a map

mapplt -dr=map

Plot the fronts using sfcwx and adjust the colors

sfcwx -if=front -dr=data -cofr=lblue:w3,lred:w3,lblue,lred,lmagenta

Plot isobars with twice the gridpoints for a smoother plot, used priority 3

stations and filter/smoothing parameter of 5, radius of influence of 7, no

contour labels

sfccalc -pr=3 -oa=4,8 -dr=data -va=pres -coco=blue -pp=gridx2,lab:0 -in=4 -pl=ln

Plot surface data for priority 1 stations

sfcwx -dr=data -pr=1 -va=all

Use mapplt to plot labels on map

mapplt -dr=text "uc:Surface data plot for $label" "lr:Fronts at $frtlabel"

PRIVATE "TYPE=PICT;ALT=satsfcmap.gif (223615 bytes)"

The keys to a good overlay plot is to:

· Use wxploop to open and title window and set its size, saving the window ID to be passed to plotting programs

· Use draw resource to turn off labels that could clutter the plot

· Use wxpfile to help generate labels that will be plotted with mapplt

· Adjust colors and fill types so that various plot types are easy to locate

· Use message level print or none to clean up script by reducing extraneous messages

47.2. Generating GIF Images

A nice feature of WXP is the integrated GIF file generator. If a image dump is needed from an overlay graphic, it can be accomplish by one of two methods:

· Direct the last graphics generating command, usually mapplt, to dump the image with the gif parameter:

mapplt -dr=text -pp=gif:sfc_map.gif \

 "uc:Surface data plot for $label" "lr:Fronts at $frtlabel"

This can be used to dump GIF files from programs not in a script.

· Use wxploop to dump the image:

wxploop -ba -ge=900x650 -ct=wxp.clr -ti=SFC_Map

set pixid=`loopset -me=print cr pix`

Graphics commands

...

Direct wxploop to save window to file

loopset save 0 sfc_map.gif

Close the window

loopset kill

It is possible for a single script to generate more than one image. This is preferred since the overhead of starting and stopping wxploop can be expensive. At the end of each plot, the window/pixmap must be cleared so that the next image can be generated.

· Direct from program using the clear plot parameter to clear the window between plots, the gif parameter to dump the GIF file and the kill parameter to close wxploop when done.

wxploop -ba -wn=/tmp/win

setenv wxpdevice w,,/tmp/win

Graphics commands

…

progx -pp=gif:plot1.gif

prog1 -pp=clear

Graphics commands

…

progx -pp=gif:plotx.gif,kill

· Use wxploop to dump the image with loopset calls to save the GIF image, clear the window and kill wxploop.

setenv wxpwindow_num xx

wxploop -ba -ge=900x650 -ct=wxp.clr -ti=SFC_Map

set pixid=`loopset que win`

Graphics commands

…

loopset save 0 plot1.gif

loopset clear

Graphics commands

…

loopset save 0 plotx.gif

loopset kill

47.3. Automating GIF Generation

These scripts can now be run automatically using cron to generate images for local use of for a web server. Here are some recommendations:

· WXP Requires an X server to be running to generate the GIF images

· It is a good idea to run these iconified "-ic" so the GIF generation is not intrusive to those using that machine

· The scripts should use a local color map to prevent problems if the default color map runs out of colors:

 setenv wxplocal_cmap on

· Include the setting of the path and wxpdefault environment variable since cron often uses a default environment setting

Create a list of scripts and add them to the cronfile:

35 * * * * /home/wxp/scripts/sfc_map

47.4. Use of Scripting with Graphical User Interfaces

Even though WXP does not come with a graphical user interface (GUI), its command line and scripting capabilities makes it ideal to link with an external GUI. Many GUI programs such as Tcl/Tk are capable of generating command lines that can be used by WXP. Obviously, the number of options that WXP has would make it difficult to ideally use WXP from a GUI, a GUI can be used to quickly test various options to tailor a plot. The resulting command line or script can be saved to a file for future use.

47.5. Scripting and Postscript Overlay

The Postscript interface allows overlays for printing output by using the append option to the postscript device specification. In general, any overlay product can be printed by replacing the window device parameters with an appropriate append print option. Here is a sample script:

#! /bin/csh -f

Set up device for Postscript append, remove file first

rm wxp.ps

Run sfcwx to display surface data

sfcwx -cu -re=mw -va=all -de=p,+wxp.ps

Run sfccalc to overlay contours.

sfccalc -cu -re=mw -va=st -in=5 -pl=ln -dr=data -coco=lblue -de=p,+wxp.ps

Run pscat to place header and trailer info on file and send to printer

pscat wxp.ps

The append option for Postscript will eliminate the header (setup and macro definition) and trailer (showpage). Postscript then allows the second program to overlay its graphics upon the first programs graphics. The pscat program is used to put the header and trailer on the file making it ready for printing. If the wxpps_print environment variable is set, the output can be spooled directly to the printer:

setenv wxpps_print '|lp -dps'

47.6. Scripting and HPGL Overlay

The HPGL interface is nearly identical to that of the postscript interface except it produces PCL5 output compatible with most modern HP laserprinters and plotters. This is especially handy for printing to HP's wide bed plotters (2x3 foot output). Here is a sample script:

#! /bin/csh -f

Set up device for HPGL append, remove file first

rm wxp.hpgl

Run sfcwx to display surface data

sfcwx -cu -re=mw -va=all -de=h,+wxp.hpgl

Run sfccalc to overlay contours.

sfccalc -cu -re=mw -va=st -in=5 -pl=ln -dr=data -coco=lblue -de=h,+wxp.hpgl

Run pscat to place header and trailer info on file and send to printer

hpglcat wxp.hpgl

The append option for HPGL will eliminate the header (setup and macro definition) and trailer (reset). The hpglcat program is used to put the header and trailer on the file making it ready for printing. If the wxphp_out environment variable is set, the output can be spooled directly to the printer:

setenv wxphp_out '|lp -dhp'

47.7. Looping using animated GIFs

When developing a loop for a web server, it is possible to take pregenerated GIF images and concatenate them together. This can be done with the gifcat program:

gifcat -s -o eta_pres_loop.gif \

 eta_pres_init.gif eta_pres_6h.gif eta_pres_12h.gif eta_pres_18h.gif \

 eta_pres_24h.gif eta_pres_30h.gif eta_pres_36h.gif eta_pres_42h.gif \

 eta_pres_48h.gif

General Purpose Programs

48. Information Programs

48.1. File Name Information Program

The wxpfile program is used to determine information on various files. This program has several modes which is helpful for loops and overlays as well as general information. This program has several modes:

· File name generation: This program can generate ingested and converted data file names along with the full path specification based on the tags in the name convention file. Also, wxpfile can generate the next or previous file in the sequence. This is handy since -cu=5,-cu=4 may not give consecutive hours if the hour changes between runs. With this option, specifying the 14 GMT file as input will give the 15 GMT file as output. This also works for upper air data. It will also generate header file names.

· Sequence numbers: Sequence numbers are a generic way of representing time (yyyymmddhh). This program will create sequence numbers based on a specific file. This is handy in identifying the time used in each image of the loop without having to rely on file naming conventions. With the sequence number known, this can be feed back into a WXP program for overlay purposes.

· Time differences: The program will compute time differences. This is handy if a loop needs to be updated. Inquire the sequence number of the last image in the loop and feed it to wxpfile. The difference between that image and current will be returned in hours. Then a script can just loop through that many images to update the loop with current data.

· Date/time strings: This program can be used to generate date/time strings for use in scripts and titling images in the loop. This string is derived from date and time of an existing file based on file type.

· Date/time/forecast strings: Wxpfile can be used to generate forecast date strings used by grbcalc. For example:

 3 day MRF valid 12Z 15 DEC 97

 18 hour NGM valid 6Z 13 DEC 97

 WXP analysis for 12Z 12 DEC 97

This combined with mapplt can be used to annotate images where the text labeling has been turned off.

· File existence: This program can test for file existence

· File size: This program will list file sizes

· File deletion: This program will delete specific files based on file type and time offset.

48.2. Resource Determination Program

Another handy program is wxpdef that can be used to inquire resources saved in the resource file. This can be used if the values for a particular program name are not known or if values from a different program name are needed. For example:

 wxpdef .data_path

 /home/wxp/data

Also this may be used to get resource values not normally used by WXP but set in the file. For example, the resource file may contain an image_path resource that specifies location of GIF files. The wxpdef program may inquire these values.

48.3. City Name Determination Program

This program called wxpcity is useful for getting information about cities, counties, forecast zones and states. The input files to wxpcity are WXP raw files and thus can be plotted with mapplt. Individual columns from the file can be obtained. The information saved in these files include:

· location

· size

· WMO and ICAO ids

· zone and FIPS ids

· controlling WFO for public and state forecasts and warning

wxpcity Indianapolis

Indianapolis 39.73 -86.27 KIND 72438 IN 097 047 KIND KIND KIND KIND 53 63 73 -5N

49. Mathematics Programs

49.1. Raw Data File Mathematics

The program to perform mathematics on raw data file is called rawmath. Raw data can be either entered by hand or created by a program such as sfcwx or upairwx. Once a raw data file has been created, math can be performed on it using this program. The output of these computations can either be sent to mapplt for plotting or grid for gridding and contouring. The operations available with rawmath are:

PRIVATE
rawmath rawa add rawb = rawc
rawmath rawa sub rawb = rawc
rawmath rawa mul rawb = rawc
rawmath rawa div rawb = rawc
rawmath rawa mod rawb = rawc
Standard functions add, subtract, multiply, divide and modulus
rawa, rawb, rawc are raw data files

rawmath rawa add #number = rawb
Add a constant number to a station.

rawmath rawa mul #number = rawc
Scale a value by number

rawmath sum rawa rawb ... = rawd
Sum station values

rawmath ext rawa = rawd
Extract a field from a raw file

rawmath rawa merge rawb = rawd
Merge two like raw files

rawmath series rawa rawb ...= rawd

Also "-" can be used for a filename to read from standard input or write to standard output. This can be used to change units or to scale output. For operations between files, stations are matched before the operation is performed. This can be used to get a plot of 24 hour temperature change:

(sfcwx -re=us -pr=3 -va=st -of=std -dr=none -cu ; \

 sfcwx -re=us -pr=3 -va=st -of=std -dr=none -cu=24) | \

 rawmath - sub - = - "24 hour Temp change (F)" | \

 mapplt -re=us -if=raw -de=d -

49.2. Grid File Mathematics

A program to perform mathematics on grid files is called grdmath. Grid data files are generally not entered by hand but are generated from a gridding program such as sfccalc, upcalc, and grid or by directly referencing a GRIB file. Once the grid file exists, grdmath can be called and the output sent to programs such as contour or vector. The operations available with grdmath are:

PRIVATE
grdmath grida add gridb = gridc
grdmath grida sub gridb = gridc
grdmath grida mul gridb = gridc
grdmath grida div gridb = gridc
Standard functions add, subtract, multiply and divide
grida, gridb, gridc, gridu, gridv are grid files

grdmath grida add #number = gridb
Add a constant number to a grid

grdmath grida mul #number = gridc
Scale a grid by number

grdmath sum grida gridb ... = gridd
Sum grids

grdmath avg grida gridb ... = gridd
Average grids

grdmath dx grida = gridb
Finite difference in x

grdmath dy grida = gridb
Finite difference in y

grdmath cvg gridu gridv = gridb
Convergence

grdmath vort gridu gridv = gridb
Vorticity

grdmath adv grida gridu gridv = gridb
Advection of grida

grdmath spd gridu gridv = gridb
Speed given u and v wind components

grdmath interp grida factor gridb = gridc
Interpolates between two grids using factor

grdmath grida add #cor = gridb
Add coriolis parameter to grida

Also "-" can be used for a filename to read from standard input or write to standard output. For example, to convert the temps to Celsius:

sfccalc -re=us -va=st -pl=none -of=std -cu -pf=calc | \

 grdmath - sub #32 = - | grdmath - mul #.555555 = - "Temperature (C)" |

 contour -in=5 -pl=cf -de=d -

Multiple grids can be moved around by using ():

(grdmath uwind.grd sub ugeos.grd = - ;

 grdmath vwind.grd sub vgeos.grd = -) |

 vector -de=p -la "500 mb Ageos Wind vectors" - -

This will plot ageostrophic wind vectors. Notice that both the U and V component is read in through standard input.

50. Meteorological Computations

The Weather Processor contains several programs to perform often-used meteorological and non-meteorological calculations. These programs take input from the keyboard and display the results in a tabular form on the display.

50.1. Sunrise Sunset Computation

The suncalc program is used to compute sunrise, sunset and twilight. The input to the program is a location that can be a station identifier or latitude and longitude. The second input is the date. This can either be:

· day+minute - where a date and a minute change is specified. The output is a table of solar azimuth, ascension and declination and zenith angle for every minute throughout the day in increments of the minute change.

· day - where the date is specific. The output is a table of sunrise, sunset, twilight, solar noon, length of day and twilight.

· month - where the month is specified. The output is a table of sunrise, sunset, twilight and length of day for each day of the month.

· year - where the year is specified. The output is a table of sunrise and sunset times for every day of the year.

50.2. Unit Conversions

The unit program is used to convert units. This uses the WXP unit interface. The input is a value, its units and the desired units.

unit 25 C F

77.000000

50.3. Domain Computation

The domtran program is used to convert between various domain values. There are three coordinate systems used:

· latitude, longitude

· projection x,y - the X and Y coordinates on the projection plane of the specified latitude and longitude.

· grid x,y - the relative location of the point to grid specified in the plot_domain resource. This can also be the pixel coordinate.

domtran -pd=us earth2proj 40,-90

6.755947,-55.022774

domtran -pd=us earth2grid 40,-90

14.937368,7.268939

50.4. Wind Chill Computation

The wchill program calculates wind chill factors. The wind chill program first displays a wind chill chart for quick reference and then prompts the user for temperature and wind speed. From this information, the wind chill factor is calculated. The wind chill factor is relatively meaningless for a temperature greater than 50F because the wind cools the skin's surface less for warmer temperatures. Also, the wind chill factor changes little for wind speeds greater than 40 miles per hour. At these speeds, the wind removes nearly all heat produced at the skin's surface.

50.5. Heat Index Computation

The heat program first displays a heat index chart for quick reference and then prompts the user for temperature and dewpoint. From this information, the heat index is calculated. The heat index is relatively meaningless for temperatures less than 65F, since below this temperature, the skin loses more heat than is produced. Also, the heat index is meaningless for dewpoints less than 65F, since the drier air leads to evaporative cooling of the skin's surface. A second index called the temperature-humidity index is calculated for comparison and a textual heat stress condition such as normal, low, medium, high or extreme based on the temperature-humidity index is displayed.

50.6. Moisture Parameter Computation

The moist program derives various moisture variables given three of the four variables: temperature, dewpoint, and station pressure or station elevation. The information displayed includes wetbulb temperature, vapor pressure, saturation vapor pressure, relative humidity, specific humidity, mixing ratio, saturation mixing ratio and equivalent potential temperature.

50.7. Standard Atmosphere Computation

The stdatms program relates pressure, height and temperature. Information is provided for height or pressure in one of the following units:

Height: meters, feet

Pressure: millibars, Pascals, mm of mercury, inches of mercury, lbs/square inch and atmospheres

The program then calculates the height, pressure and temperature (in various units) at that specific level for a standard atmosphere.

51. Concatenation Programs

51.1. Postscript Concatenation

This pscat program is used to set up appended postscript files for printing to a Postscript printer. Generally, when Postscript output is specified, a printable file is generated. The program may then directly send the file to the printer using the pipe option to the printer device specification. When the "append" option is set, the output file is missing the Postscript header and trailer information necessary for printing. When all plots have been appended to the file, the pscat program may be used to put the header and trailer information back on the file so that it is then printable. The output can be directly spooled to the printer if the wxpps_print environment is set.

51.2. HPGL Concatenation

This hpglcat program is used to set up appended HPGL files for printing to a HP laserprinter or plotter or device that accepts PCL5. Generally, when HPGL output is specified, a printable file is generated. The program may then directly send the file to the printer using the pipe option to the printer device specification. When the "append" option is set, the output file is missing the PCL/HPGL header and trailer information necessary for printing. When all plots have been appended to the file, the hpglcat program may be used to put the header and trailer information back on the file so that it is then printable. The output can be directly spooled to the printer if the wxphp_out environment is set.

51.3. GIF Concatenation

The gifcat program will concatenate GIF files to produce an animated GIF file. This is handy for use with a web server for animation and looping. For example:

gifcat -s -o eta_pres_loop.gif \

 eta_pres_init.gif eta_pres_6h.gif eta_pres_12h.gif eta_pres_18h.gif \

 eta_pres_24h.gif eta_pres_30h.gif eta_pres_36h.gif eta_pres_42h.gif \

 eta_pres_48h.gif

Systems Administration

52. System Administration Overview

In earlier versions of WXP, there was little ability to tailor the input and output of WXP. For example the file naming conventions were hard coded into WXP. If the files did not fit the naming convention, it often didn't work well with WXP. Another example was the use of variables where the units were hard coded and there was no way to derive new variables. This lack of tailorability made WXP easy to use but limited its capabilities. With WXP 5, most of limitations have been removed. The result is a set of configuration files to tailor everything from input to output. This makes WXP somewhat harder to use. WXP comes with a default configuration that may not need to be changed. If there is a need to change the configuration, this section will describe each of the configuration files and what may need to be changed. To set WXP up, there are a few configuration files that need to be checked.

52.1. Files that likely need changing

52.1.1. WXP Resource File

The first is the WXP resource file. This is critical since some base resources drive all WXP programs. There are a couple of critical resources to set in the resource file:

· file_path -- This tells every WXP program where the database and configuration files are located. This usually points to a directory such as "/home/wxp/etc" or "/usr/local/etc". It is important to install all the configuration and database files in this directory.

· data_path -- This tells WXP where the ingested raw data files are located. This is usually a directory like "/home/wxp/data".

· con_path -- This tells WXP where all the converted data files are located. This is usually a directory like "/home/wxp/convert".

· raw_path -- This tells WXP where all the raw data files produced by WXP are saved. This is usually a directory like "/home/wxp/raw".

· grid_path -- This tells WXP where all the grid files produced by WXP are saved. This is usually a directory like "/home/wxp/grid".

· image_path -- This tells WXP where all the images produced by WXP are saved. This is usually a directory like "/home/wxp/image".

· name_conv -- This tells WXP which file name convention to use. This is the name of a name convention file saved in the file_path directory. There are 3 base name convention files to choose from: ymdh, hmdy, and the default ymdh_t or name_conv. The first two are provided for those sites that require 8.3 file names (old DOS standard).

The resource file location can be anywhere but is usually in the file_path directory. The location is specified by the wxpdefault environment variable.

 setenv wxpdefault /home/wxp/etc

This is normally added to either the .cshrc file or to the systems environment file for system wide use. For more on the setting of resources, see the section of the Users Guide on the resource file.
52.1.2. Ingest Bulletin File

The selection of products and the output filenames are controlled by the ingest bulletin file. WXP uses a standard selection scheme and output filename convention. The default bulletin file can be used but in many cases, the output filenames and grouping of products may need to be changed. The bulletin file syntax is:

header [action] [command/filename...] [header file]

header [action] [command/filename...] [header file]

...

The header is a regular expression pattern to make WMO headers. The action is how the product matching the header is processed. Actions include file, append, pipe to a program and run a command when the product completes. The command/filename specifies which command to run in the case of the pipe and run actions or the filename to save the product to. This filename can contain wildcard characters which define the date and time of arrival as well as components of the header. This way, files can be named based on when the product arrives. Generally, headers are sorted by type and appended to files with the name based on the date the product arrived and the type of data. Here is a sample of a bulletin file:

Pattern Action Filename Header Filename

#

S[AP] >>-15 %D/%y%m%d%h_sao.wmo

S[IMNS] >>-05 %D/%y%m%d%h_syn.wmo

SD >>+07 %D/%y%m%d%h_rad.wmo

U[^AB] >>-65 %D/%y%m%d%12h_upa.wmo

ASUS1_ >> %D/%y%m%d%3h_frt.wmo

WWUS40 >> %D/%y%m%d%6h_wws.wmo

FO >> %D/%y%m%d%12h_mod.wmo %D/%y%m%d%12h_mod.hdr

A >> %D/%y%m%d%6h_sum.wmo %D/%y%m%d%6h_sum.hdr

C >> %D/%y%m%d%6h_cli.wmo %D/%y%m%d%6h_cli.hdr

W >> %D/%y%m%d%6h_sev.wmo %D/%y%m%d%6h_sev.hdr

F[^O] >> %D/%y%m%d%6h_for.wmo %D/%y%m%d%6h_for.hdr

For example, all SA bulletins go into an hourly file named year, month, day, hour with an extension of "_sao.wmo". There is a 15 minute offset to get early products. All products starting with "W" go into a 6 hourly file with the extension "_sev.wmo". All of these files go into the "%D" or data_path directory. In addition, header files are generated for the severe weather files to aid in parsing.

The default bulletin file is "ingest.bul" and is located in the file_path directory. For more information on the use of the bulletin file, see the ingest program section of the Users Guide.

NOTE: For those sites using the LDM ingestor, the pqact.conf file serves as the bulletin file. Refer to the users guide for the LDM for more information. For those sites using a different ingestor, refer to the users guide for the setup of those ingestors. For WXP to work optimally, the files should be laid out similarly.

52.1.3. Name Convention Files

Once the data has been saved to disk for local use, the rest of WXP can be used to decode, parse, manipulate or display the data. The name convention file is set up to emulate the files generated by the WXP ingestor. If this is the case, the default name convention file "name_conv" need not be changed. In some cases, there will be data ingested by other programs and the files saved into a different naming convention. The name convention file allows the WXP programs to handle these files. A good example of this is NLDN, NIDS and NOWRad data that WXP cannot ingest at this time. There is also the case of files, FTPed from other sources that may have strange naming conventions. Each WXP program uses a file name tag, which is searched for, in the name convention file for a match. This is then converted into a name convention often based on the date and type of file. For example surface data has the following tags:

sfc_dat -> sacvt -> sfc_cvt, sfc_cvt_wxp (WXP format), sfc_cvt_cdf (netCDF format).

sfc_cvt -> sfcwx -> sfc_raw (raw output), sfc_grd (grid output),

sfc_grd_wxp (WXP grid output), sfc_grd_cdf (netCDF grid output)

These name conventions are then set in the name convention file:

 sfc_dat %D/%y%m%d%h_sao.wmo

 sfc_cvt_cdf %C/%y%m%d%h_sao.nc

 sfc_cvt %C/%y%m%d%h_sao.wxp

 sfc_raw %R/%y%m%d%h-%v_sao.raw

 sfc_grd_cdf %G/%y%m%d%h-%v_sao.nc

 sfc_grd %G/%y%m%d%h-%v_sao.grd

Not all of these need to be set for each type. In general only the "sfc_dat" and "sfc_cvt" need to be set. These tags can be changed using the in_file and out_file resources. To get more information on use of the name convention file, see the name conventions section of the Users Guide.

52.1.4. Generating Header Files

The WXP ingestor automatically generates header files for those files listed in the bulletin file. If another ingestor generates the files, header files may need to be generated for these files. To do this, use the hdrparse and griblook programs. For more information, see the parsing data and header files section of the Users Guide.

52.1.5. Automatic Conversion, File Generation and Scouring

As a final note for setup, the computer will need to be set up to automatically convert data, generate files and scour ingested data. This is done using the cron task in Unix. The following tasks need to be setup:

· convert surface data once an hour

· convert radar data once an hour

· convert upper air data once every 12 hours

· generate header files for non-WXP ingested data on a regular basis

· scour ingested data

· scour converted data

For more information on these tasks, see the automatic data conversion and scouring section of the Users Guide.

52.2. Files that likely don't need modification

52.2.1. Parse Lookup File

For most WXP program, they can find data files by use of the name convention tag. For parsing, there is an additional method, which simplifies the process. When the parse program parses for a WMO header, it searches the parse lookup file "parse.lup" to cross reference headers to name convention tags. This eliminates the need to specify the in_file file name tag. The syntax of the file is:

 pattern tag

The pattern can be a regular expression. It returns the tag of the first match in the file. That name convention is used to setup the filenames to search for the desired product. For more information on the parse lookup file, see the parsing data and header files section of the Users Guide.

52.2.2. Model Lookup File

For gridded data from the forecast models, information is broadcast on a set of grids. Often these grids are saved into output files based on the model and grid type. In some cases, several types of grids are broadcast from a single model. For example, the Eta model has grids that cover the US (211), Alaska (207). In other cases, the grid is broken into subgrids, as is the case with the aviation model. The global grids are broken up into 8 subgrids which must be pieced together to produce the final global grid. In addition, similar to the parse lookup table, there needs to be a mapping between model type (model resource) and the file name tags. The "model.lup" file serves these purposes. The syntax of the model lookup file is:

 model geometry tags[#grid]...

The model is the name of the model used in the model resource (-mo=eta). The piece section defines how grids are to be pieced together. The tags[#grid]... is a list of file name tags to use for the filenames. If the grid is specified, only those grids matching this grid number are parsed from the file. Here is a sample:

eta 1 grib_eta#211

eta_ak 1 grib_eta#207

ngm 1 grib_ngm#211

avn 4x2 grib_avn_n1w,grib_avn_n0w,grib_avn_n0e,grib_avn_n1e,

grib_avn_s1w,grib_avn_s0w,grib_avn_s0e,grib_avn_s1e

mrf 1x2 grib_mrf_n,grib_mrf_s

For more information, see the forecast model files section of the Users Guide.

52.2.3. Variable Files

Variable files define how variables will be derived and plotted by the WXP analysis programs. There is a variable file set up for each WXP analysis program. This allows each program to be setup differently, offering a different user interface. The variable file syntax is as follows:

 abbrev name toggle definition

· abbreviation - This define an abbreviation which is used to define the variable for use in the variable resource.

· name - this is the text to be used in the menu listing. No spaces are allowed but underscores "_" can be used in their place.

· toggle - this is a menu toggle which defines when the menu item will appear in the variable menu of the program.

· definition -- This defines which variable will be plotted and how it is to be plotted. The syntax of the definition is:

time:level:variable:units:attributes...

The time, level and variable are used to search for the variable in the input data file. In some cases, time and level can be ignored. The units is used to define the output units and attributes define how the variable is to be plotted. The definition can be a series of these definitions for overlays. The variable can be a function of other variables in order to derive new variables.

For more information on variable files, see the variable files section of the Users Guide.

52.2.4. Units File

WXP uses a units lookup file "units.lup" to define how to convert from one set of units to another. This file has most of the standard units conversions but new ones can be added it needed. The syntax is:

 in out conversion

where in is the input units, out is the output units and conversion is the conversion between the two units. For example, the conversion from C to F is "*1.8+32". For more information on units, see the units conversion section of the Users Guide.

52.2.5. Time and Level Menu Files

These files define which times and levels will appear in the forecast time and vertical level menus in appropriate WXP programs. These files are similar to the variable files except there is no need for the definition section. The file contains only the abbreviation, name and toggle sections. For more information on these files, see the time and level menu files section of the Users Guide.

52.2.6. Region Files

WXP uses a default region file called "wxp.reg". In this file, there is a list of all regions that can be used in WXP and their appropriate plot_domain specifications. Often, the default set of regions does not satisfy the users needs so new regions can be added to this file if needed. The syntax of this file is similar to the variable and menu files:

 abbr name toggle plot_domain

This file also controls which regions will show up in the region menu for appropriate WXP programs. For more information on region files, see the database section of the Users Guide.

52.2.7. GRIB Lookup Files

There are two GRIB lookup files that may need to be changed. GRIB parameters often change to reflect new models and variables. The model lookup table is "mod_name.lup". This is a cross reference between model number in the GRIB file and a label to be used on the output. For example model number 89 is the Eta model. The second lookup file pertains to GRIB variables or parameters. This file is "variable.lup". This cross references the variable number, its abbreviation used in the variable files (see above) and a label to use on the plots. An example of a line from this file is:

 11 temp Temperature

GRIB variable 11 maps to temperature. Any variable used in WXP that has the abbreviation "temp" will be given the label "Temperature".

52.2.8. Color Table Files

Color table files give a cross reference between a color name and its RGB values for display. This allows colors to be specified by name for easier usability. Colors from these color tables can be used with any color resource or as part of the color fill listing of contour colors. Several color table files are provided to use in different situations but new color tables can be created to serve a particular purpose. The syntax of the file is:

 [index] name red green blue

The name is a string (no spaces) and the RGB values are floating point numbers between 0 and 1. To use a color table file, just specify it with the color_table resource. For more information on color table files, see the graphics colors section of the Users Guide.

52.2.9. Color Fill and Enhancement Files

These files list a set of colors to be used in color fill contours. Not only can the file contain a list of colors, but it also can specify attributes for files and line contours as well as contour levels for non-uniform contour intervals. The user may wish to define their own color fill or enhancement schemes and then specify the file with the color_fill resource. For more information on color table files, see the graphics colors section of the Users Guide.

52.2.10. Symbol Files

These files are used to plot various meteorological symbols. The file contains a mapping between a meteorological code such as "RW-" and a set of line and fill commands to draw the appropriate symbol. In general, these files are not modified but at times there will be the need to define new symbols.

52.2.11. Font List Files

This files define a list of fonts, either WXP, X windows or Windows fonts to use in the programs. The file contains a mapping between a font alias and a full font name and size. If the fonts are WXP fonts, they are defined in WXP font files.

52.2.12. Font Files

These files define a set of WXP fonts to use in the display of text on plots. The file contains a mapping between a printable ASCII character and a set of line commands to draw the character.

52.2.13. WXP Shell Menu File

This file defines the menus to show in the WXP shell. These can be changed to fit individual needs. For more information on WXP shell menu files, see the WXP shell menu files section of the Users Guide.

52.2.14. Case Study Setup Files

This file defines the case studies available to the WXP shell. These can be changed to fit individual needs. For more information on case studies, see the case study setup section of the Users Guide.

52.3. Database files that may need to be updated

52.3.1. City Database Files

City database files are critical for plotting since they define where stations reports are located. For the most part, these files are up to date but there are times that these file need to be updated. There are two reasons to change a city database file:

· add or delete a station from the file

· change a stations priority to affects the priority filter for plotting

52.3.2. City Raw Files

These are raw files that are used with the wxpcity program. They include: cities.raw, counties.raw, zones.raw, states.raw. These will need to updated to reflect changes to zones and forecast office responsibility.

52.3.3. Map Files

Generally, these files do not need to be modified. The DLG map files at times will need to updated to reflect changes to roads.

53. Resource File

The resource file is used to modify program default values. Thus this is often referred to as a defaults file. Each line in the resource file represents a different resource value being set. All WXP programs share a single set of resource names. The resource itself is not specific to a particular program. There is the concept of a named resource that can be program or invocation specific. Unnamed resources are referred to as global resources.

In general, there is a single setup for all WXP programs on a single set of networked computers. As a result, system wide, default resource values are set up in a system resource file. The user may wish to create their own resource file that can augment or override the system resource file.

53.1. Resource File Location

The default resource file is .wxpdef which is stored in your current working directory or the location specified by the wxpdefault environment variable. If the .wxpdef file does not exist, then file Wxp.res is used. This is often used to set a system wide resource file. This way, a common environment can be used for all users on the system.

 setenv wxpdefault /home/wxp/etc

It is recommended that this location be set in the user's shell startup script (e.g. .cshrc for C-shell).

The user may also want to use their own set of resources which would be specified:

 setenv wxpdefault MyWXP.resources

or you can specify a complete path to the file:

 setenv wxpdefault /home/wxp/etc/CaseWXP.res

To group system and local resource files, each file can be specified separated by a colon ':'.

 setenv wxpdefault /home/wxp/etc:~user/MyWXP.res

The resource files are processed in the order listed so resources listed in the last resource file takes precedence. The resource file location can be changed on the command line of each program.

 setenv wxpdefault /home/wpx/etc

To group system and local resource files, each file can be specified separated by a colon ':'.

 setenv wxpdefault /home/wxp/etc:~user/MyWXP.res

The resource files are processed in the order listed so resources listed in the last resource file takes precedence.

NOTE: It is recommended that the wxpdefault environment variable be set in the login shell's startup script (e.g. .cshrc for C-shell).

The value of resource file location can be changed at any time or can be specified on the command line of each program:

 sfcwx -default=/home/user/synoptic.res ...

53.2. Resource File Syntax

The resource file contains a list of resource defaults used by all WXP programs. Each line in the resource file contains a resource and its default value:

resource_name: default_value

Resources can be tailored by program, by name or set globally:

· Global - these are used by all programs and are listed at the top of the resource file. A global resource is used unless a named resource is specified to override the global resource. These are specified by preceding the resource name with an asterisk:

*resource_name: default_value

For example, to set the global data_path resource:

*data_path: /home/wxp/data

· Named Program - these are used only by a specific program. These are specified by preceding the resource name with the name of the program and a period:

WXP_program.resource_name: default_value

A program specific resource can be set:

grbcalc.data_path: /home/wxp/model

This value will override the global data_path resource.

· Named - these are used when special cases need to be defined (e.g. working with synoptic data rather than SAO/METARs). These are specified by preceding the resource name with a specific name chosen by the user:

special_name.resource_name: default_value

For example:

ngm.model: ngm

To enable the name, the user must specify the name on the command line when the program is executed:

grbcalc -name=ngm ...

53.3. Complex Resources

Named resources can have complex names in order to organize defaults. A wildcard character "*" can be used to use complex resource defaults in more than one case. For example the following resource structure is desired:

grbcalc

 data_path: /home/wxp/model

 plot_domain: ngm

 ngm

 model: ngm

 prec

 color_table: rainbow.clr

 color_fill: prec.cfl

 color_cmap: white

 variable: prec

 plot_type: cf

 level: snd

A full resource name would be grbcalc.ngm.prec.level but we want to carry over all the resources from grbcalc and ngm. These can be specified with a combination of absolute and wildcard resource specifications.

grbcalc*data_path: /home/wxp/model

grbcalc*plot_domain: ngm

*ngm*model: ngm

*ngm.prec.color_table: rainbow.clr

*ngm.prec.color_fill: prec.cfl

*ngm.prec.color_cmap: white

*ngm.prec.variable: prec

*ngm.prec.plot_type: cf

*ngm.prec.level: snd

The named resource will be specified as:

grbcalc -name=grbcalc.ngm.prec

and this will use all the resources listed above. This way resource files can be simplified and changing one resource can propagated quickly to the other complex resources.

There is a shortcut so the program name does not need to be specified every time:

grbcalc -name=+ngm.prec

and the program name is automatically prepended.

53.4. Conditional Resources

In some cases, resources may need to be changed in rare occasions. For example, a data feed is down and an alternate feed needs to be used. An example of this is:

IF NOAAPORT

grbcalc*data_path: /data/model

ELIF WXP

grbcalc*data_path: /home/wxp/model

ELSE

grbcalc*data_path: /home/wxp/data

END LDM

In this case, the first line is used if NOAAPORT is defined, otherwise the second if WXP is defined or the third otherwise. You can define NOAAPORT in two places. You can add a line to the resource file:

DEF NOAAPORT

This carries over to all subsequent resource files. You can undefine a tag with:

UNDEF NOAAPORT

The more common method is to add the definition to the wxpdefault environment variable:

setenv wxpdefault +noaaport:~devo/.wxpdef

or

grbcalc -default +noaaport:~devo/.wxpdef

54. File Name Conventions

The file name convention file ties the file tags to the actual data file names. The name convention specifies how date and data type are to be formatted into the filename, making it easier for programs to find data files that are current or at a specific time.

Each line in the data file contains a specific file name convention for a particular type of data. The line contains a name convention tag followed by the name convention string.

 tag filename [headerfilename]
54.1. File Name Tags

The tag is important as most WXP programs use specific tags to find specific name conventions. The tag itself has two parts: a data type followed by a file type. For example, surface data saved by the ingestor would have a tag of sfc_dat which is input to the surface conversion program. The input and output tags for surface data are:

sfc_dat -> sacvt -> sfc_cvt, sfc_cvt_wxp (WXP format), sfc_cvt_cdf (netCDF format).
sfc_cvt -> sfcwx -> sfc_raw (raw output), sfc_grd (grid output),

sfc_grd_wxp (WXP grid output), sfc_grd_cdf (netCDF grid output)

These name conventions are then set in the name convention file:

 sfc_dat %D/%y%m%d%h_sao.wmo

 sfc_cvt_cdf %C/%y%m%d%h_sao.nc

 sfc_cvt %C/%y%m%d%h_sao.wxp

 sfc_raw %R/%y%m%d%h-%v_sao.raw

 sfc_grd_cdf %G/%y%m%d%h-%v_sao.nc

 sfc_grd %G/%y%m%d%h-%v_sao.grd

Not all of these need to be set for each type. In general only the "sfc_dat" and "sfc_cvt" need to be set. Here is a list of the common file name tags:

PRIVATE
Data Type
Ingested
Decoded
Decoded
netCDF
Decoded
WXP
Grid
Grid
netCDF
Grid
WXP
Raw

Surface
sfc_dat
sfc_cvt
sfc_cvt_cdf
sfc_cvt_wxp
sfc_grd
sfc_grd_cdf
sfc_grd_wxp
sfc_raw

Synoptic
syn_dat
syn_cvt
syn_cvt_cdf
syn_cvt_wxp

Upper Air
upa_dat
upa_cvt
upa_cvt_cdf
upa_cvt_wxp
upa_grd
upa_grd_cdf
upa_cdf_wxp
upa_raw

Radar (MDR)
rad_dat
rad_cvt
rad_cvt_cdf
rad_cvt_wxp

MOS
mos_dat

mos_grd
mos_grd_cdf
mos_grd_wxp
mos_raw

 NGM*
mos_ngm_dat

 NGM UA*
mos_ngmu_dat

 ETA UA*
mos_etau_dat

 MRFX*
mos_mrfx_dat

Satellite VIS
sat_vis

Satellite IR
sat_ir

Satellite WV
sat_wv

Profiler
prf_dat

Fronts
frt_dat

Watches
wat_dat

Tropical
trp_dat

NLDN
nldn

GRIB**
grib

grd_grd
grd_cdf
grd_wxp

* The MOS tags are not set. Only the strings "ngm", "ngm_ua", "eta_ua", "mrfx" need to appear in the tag for the program to recognize the type of file.

** The GRIB data is defined through a model lookup table.

54.2. File Name Convention String

The name convention string is generally a combination of the file path and a name convention based on date and file type. The string uses a wildcard substitution system much like the formatting of the printf function. Anything not part of a wildcard is taken literally. Here is a list of the wildcards:

PRIVATE
Wildcards
Description

PATHS

%F
file_path resource

%D
data_path resource

%C
con_path resource

%G
grid_path resource

%R
raw_path resource

%I
image_path resource

%W
watch_path resource

DATE

%Y
Current year (1900-)

%y
Current year (00-99)

%B
Current month (JAN-DEC)

%b
Current month (jan-dec)

%m
Current month (01-12)

%j
Current Julian day (0-365)

%d
Current day (01-31)

%h
Current hour (00-23)

%n
Current minute (00-59)

PRESET VALUES

%r
region

%l
vertical level

%f
forecast time

%v
variable

%x
model

%p
program name

%i
loop/frame index

%e
tag extension

To handle multiple hour/minute files, a number can be added to the wildcard. A %6h represents a data file created once every 6 hours or a 6 hour compilation file. A %5n specifies that a data file is created once every 5 minutes. Some samples based on date 14Z 29 Sep 1997:

PRIVATE
Name Convention String
Sample Filename

%D/%y%m%d%h.sao
/home/wxp/data/97092714.sao

%C/%12h%m%d%y.uac
/home/wxp/convert/12092797.uac

%G/%y%m%d%12h_%f_%l_%v.grd
/home/wxp/grid/97092712_h24_500_temp.grd

File Name Extension

Most of the preset values are set by the program and can be used in the naming convention. The extension is used with the in_file and out_file resource to extend the name convention at runtime. For example, a NIDS specification exists in the name convention file:

 nids-sfsu %D/%h/%y%m%d%h%5n.%v_%i

 nids-denver %D/%e/%h/%y%m%d%h%5n.FTG.wsi

 nids %D/nids/%Y%m%d%h%5n_%e

When specifying the in_file resource, the tag can have an extension added to the tag:

 -in_file nids_bref1

Everything after the last underscore "_" is considered the extension. When this type of tag is specified, the name convention file is search for this tag or the "nids" tag and will use whatever it finds first. If it finds the "nids" tag, it will use the string "bref1" as the extension and replace the "%e" wildcard with this string. This allows for generic tags that can be used for more than one file type. The resulting filename would be:

 /home/wxp/data/nids/199709291455_bref1

If more than one tag starts with "nids" the first match will always be used. This means that a generic tag such as "nids" should always be placed after more specific tags such as "nids-sfsu".

54.3. Header Files

For some file types, header files are generated by the WXP ingestor. The name convention file needs to specify the name convention of these files as well. As with the bulletin file syntax, the name convention syntax is to append the header file naming convention onto the end of the line. For example:

#

Raw text data for parsing

#

all_dat %D/%y%m%d%h.wmo %D/%y%m%d%h.hdr

for_dat %D/%y%m%d%6h_for.wmo %D/%y%m%d%6h_for.hdr

sev_dat %D/%y%m%d%6h_sev.wmo %D/%y%m%d%6h_sev.hdr

sum_dat %D/%y%m%d%6h_sum.wmo %D/%y%m%d%6h_sum.hdr

cli_dat %D/%y%m%d%6h_cli.wmo %D/%y%m%d%6h_cli.hdr

#

GRIB data

#

grib_eta %D/%y%m%d%12h_eta.grb %D/%y%m%d%12h_eta.hdr

grib_ngm %D/%y%m%d%12h_ngm.grb %D/%y%m%d%12h_ngm.hdr

grib_ruc %D/%y%m%d%3h_ruc.grb %D/%y%m%d%3h_ruc.hdr

If the header file convention is omitted, WXP will not use the header file. It is recommended that the header file be used in all cases.

54.4. in_file and out_file Resources

These resources can be used to specify the tags and the resulting file name conventions used in the program. Each program has default tags compiled into the program but they can be overridden on the command line:

 -if=sfc_dat -of=sfc_cvt

Additional wildcard characters can also be specified. Any lowercase letter other than those listed above can be used. These wildcards are appended to the tag and separated with colons ":". The syntax is wilcard=value:

 -if=sfc_grd:v=st:r=5

The wildcards of v and r are replaced in the name convention with their values.

 sfc_grd %G/%h%d_%v%r.grd

becomes:

 /home/wxp/grid/1204_st5.grd

If the filename string does not match a file name tag, it is used as a file name convention string:

 -if=%C/%y%m%d%h.cvt

or specific files (without wildcard characters)

 -if=/tmp/file.cvt

55. Parsing Data and Header Files

55.1. Parse Lookup File

For most WXP program, they can find data files by use of the name convention tag. For parsing, there is an additional method that simplifies the process. When the parse program parses for a WMO header, it searches the parse lookup file "parse.lup" to cross reference headers to name convention tags. This eliminates the need to specify the in_file file name tag. The syntax of the file is:

 pattern tag

The pattern can be a regular expression. It returns the tag of the first match in the file. That name convention is used to setup the filenames to search for the desired product. Here is a sample parse lookup file:

 FO mos_dat

 FT term_dat

 W sev_dat

 F for_dat

 C cli_dat

 S sfc_dat

 U upa_dat

 AC sev_dat

 A sum_dat

In this case, all products whose WMO header starts with "W" will be searched for in the files with the tag "sev_dat".

55.2. Text Data

When parsing data, most of the data is processed a line at a time. This means that searching for a particular product in a file can consume tremendous amounts of time. To simplify the process, there are header files which list the product headers in a separate file along with byte offsets into the actual ingested data file. This file then becomes a lookup table for specific products. The use of a header file speeds up searching for products by nearly an order of magnitude and is recommended for all data files.

The LDM, as well as non-WXP ingestors, does not create header files. The hdrparse program is used to post process the ingested data and create the header files. To run hdrparse, the file name convention file must be set up with a header file name syntax:

 for_dat %D/%y%m%d%h_for.wmo %D/%y%m%d%h_for.hdr

 sev_dat %D/%y%m%d%h_sev.wmo %D/%y%m%d%h_sev.hdr

 sum_dat %D/%y%m%d%h_sum.wmo %D/%y%m%d%h_sum.hdr

 cli_dat %D/%y%m%d%h_cli.wmo %D/%y%m%d%h_cli.hdr

For each listed file type, there is the name convention for the ingested file plus a second listing that is the name convention of the header file. If the second name convention is omitted, WXP assumes there are no header files for this particular type of file. Once the name convention file is set up to use header files, run header parse on the type of file:

 hdrparse -cu=la -if=for_dat

and this will generate the header file. The header output will appear on the screen. The num_hour resource can be used to create header files over several hours.

Once done, programs like parse, forecast and fouswx will run faster and network traffic reduced since direct access into large files requires the transfer of a smaller amount of data than a line by line search through the file would.

55.3. GRIB Data

As with text data, parsing large GRIB files can be made easier with header files. Again, header file name conventions are specified in the name convention file:

grib_eta %D/%y%m%d%12h_eta.grb %D/%y%m%d%12h_eta.hdr

grib_ngm %D/%y%m%d%12h_ngm.grb %D/%y%m%d%12h_ngm.hdr

grib_ruc %D/%y%m%d%3h_ruc.grb %D/%y%m%d%3h_ruc.hdr

These header files are produce automatically by the WXP ingestor. Again, the LDM does not generate these file so the griblook program must be run to generate these files:

 griblook -cu=la -mo=eta -ou=hdrfile -pf=app

This will update the current header file for the ETA model grids.

55.4. Automating Header File Generation

For header files to work, they must be continually generated as the data arrives. This means that a script should be run in cron once a minute to generate these files. Here is a sample script:

#! /bin/csh -f

hdrcreate: Creates a set of header files for various non-WXP ingested files

setenv wxpdefault /home/wxp/etc

foreach model (eta ngm ruc \

 avn_n0e avn_n1e avn_n0w avn_n1w \

 avn_s0e avn_s1e avn_s0w avn_s1w \

 mrf_nh mrf_us mrf_ak mrf_hi mrf_pr \

 mrf_nhem mrf_shem)

 /home/wxp/bin/griblook -cu=la -mo=$model -ou=hdrfile -pf=app -me=none

end

foreach type (for_dat sev_dat cli_dat sum_dat mos_dat)

 /home/wxp/bin/hdrparse -cu=la -if=$type -pf=app -me=none

end

Both programs are run in append mode so that they only parse what has come in since the last running of the program. The program uses the existing header file to find out the location of the last product seen when the program ran last. It then starts parsing from that point and appends the new products to the end of the existing header file. This reduces the execution time of the script considerably.

56. Automatic Data Conversion and Scouring

Whereas many WXP programs can access the raw ingested data directly, some of WXP's programs use converted files as input. These converted files can be generated by running programs such as sacvt, smcvt, uacvt and radcvt. In some cases, these programs can be run manually prior to running the surface, upper air and radar programs but it is recommended to automate this task so the end user does not have to run these decoders. Automating the task guarantees a current decoded file will be available but in some cases, it will not contain all the data since some data will come in between conversion times. It is recommended to convert often.

A second task to automate is the generation of header files for non-WXP ingested data. This is recommended for sites using the LDM ingestor. This involves running the hdrparse and griblook programs. For more information on header files, see the parsing data and header files section of the Users Guide.

The last task is to scour old data to prevent data and converted files from exhausting available disk space. For more information on a script for scouring data, see the scouring old data section of the Users Guide.

56.1. Surface Data Conversion

METAR data is only valid over land surfaces but report once an hour. METARs are also rather sparse outside of the US. Synoptic data gives better global coverage including ship and buoy reports to cover ocean areas but they only are reported reliably once every 6 hours. To produce a surface plot with the best data coverage, it is necessary to use more than the standard METAR data. Many ships and buoys report data every hour and thus could be added to the output converted file. Here is a script that does the additional conversion:

#! /bin/csh -f

sfcconvert: converts surface data and adds hourly ship and cman reports for

coverage over ocean areas.

setenv wxpdefault /home/wxp/etc

set path=(/home/wxp/bin $path)

/home/wxp/bin/sacvt -cu -pf=over -me=print -pa=update

/home/wxp/bin/smcvt -cu -dh=cu-15+15 -of=sfc_cvt -pa=update -pf=app \

 -me=print -ou=ship,cman,buoy,dribu

/home/wxp/bin/smcvt -cu -dh=cu-15+15 -if=cman_dat -pa=update -of=sfc_cvt \

 -pf=app -me=print

56.2. Synoptic Data Conversion

Synoptic data normally reports once every 6 hours. It provides the best global coverage but since it is somewhat different from METAR surface data, it is usually placed in a separate converted file. Some sites such as Australia don't report on standard hours such as 0, 6, 12 and 18Z. As a result, synoptic data is converted over a range of 3 hours surrounding the standard hours to give the best global coverage possible. Here is a sample synoptic conversion script:

#! /bin/csh -f

synconvert: converts synoptic data over a 3 hour period to catch reports on

off hours.

setenv wxpdefault /home/wxp/etc

set path=(/home/wxp/bin $path)

/home/wxp/bin/smcvt -ho=-106 -cu -nh=-2 -dh=-6 -if=syn_dat -pf=over -me=none

56.3. Upper Air Data Conversion

Upper air data conversion is simpler than the surface and synoptic conversion. For LDM sites, the conversion has to span two hours to get late reports put in the 01 and 13Z files. Here is an upper air conversion script:

#! /bin/csh -f

uaconvert: converts upper air data over a 2 hour period to catch late reports

setenv wxpdefault /home/wxp/etc

set path=(/home/wxp/bin $path)

/home/wxp/bin/uacvt -pf=over -ba -me=out3 -ho=-12 -nh=1

56.4. MDR Radar Data Conversion

The MDR radar composite is created using the radcvt program. This should be run once or twice an hour.

#! /bin/csh -f

radconvert: converts MDR radar data

setenv wxpdefault /home/wxp/etc

set path=(/home/wxp/bin $path)

/home/wxp/bin/radcvt -pf=over -ba

56.5. RCM Radar Data Conversion (NOAAPORT Only)

The RCM radar composite is created using the radcvt program. This should be run at least twice an hour.

#! /bin/csh -f

rcmconvert: converts RCM radar data

setenv wxpdefault /home/wxp/etc

set path=(/home/wxp/bin $path)

/home/wxp/bin/radcvt -inp=rcm -pf=over -ba

56.6. UNIX Cron Setup

In order to automate this process, it is recommended that these conversion processes be scheduled to occur at regular intervals. For Unix systems, this is done through the cron program. In some cases, these scripts will need to be run manually. Here is a sample cronfile:

Cronfile for user wxp: /home/wxp/cronfile

 7,13,20,45 * * * * /home/wxp/scripts/saconvert

30 2,8,14,20 * * * /home/wxp/scripts/synconvert

45,59 * * * * /home/wxp/scripts/radconvert

0,30 * * * * /home/wxp/scripts/rcmconvert

40 8,9,11,20,21,23 * * * /home/wxp/scripts/uaconvert

hdrcreate used for LDM ingest

* * * * * /home/wxp/scripts/hdrcreate

scour to clean up old data

35 * * * * /home/wxp/scripts/scour_data

The hdrcreate script needs only to be run if the ingestor is not WXP.

57. Forecast Model Files

57.1. GRIB Data

GRIB is a compressed grid file format which is used heavily for the transmission of gridded data. The HRS data feed uses this format almost exclusively. The grid decoder module in WXP decodes these grids on the fly so there is no need for an intermediate format.

The standard method for storing GRIB data is to put all grids from a single model into one file. For example, the ETA model has nearly 1500 grids which are available on HRS. WXP uses a standard search procedure to find grids in these files. Since all the information passed in GRIB files are numeric, there needs to be a lookup table for actual parameters such as 500 mb and temperature. Most of the GRIB parameters for forecast time, level and parameter/variable are defined in WXP (see the time, level and variable resources).

Since GRIB data can be corrupted, it is necessary to check for bad data when decoding a GRIB product. Since data is compressed from a normal 4 bytes per gridpoint to 6-12 bits per gridpoint, when a byte is missed, it can cause very bad values from one gridpoint to the next. If the difference between one gridpoint to the next is more than half the possible range (6 bits=64 range, bad if >32), it is considered a bad datapoint. If this is a consistent feature, the rest of the grid is flagged as bad. The default is 5 bad gridpoints in 20. This can be changed with the max_bad=num plot parameter resource.

57.2. Model Lookup File

The model lookup file is a way for WXP to determine which grids go with which model. In some cases, more than one model file is associated with the model or more than one grid type within a model. Each line of the file represents another model type that is specified . The syntax is:

 alias geometry tag[#type]

The alias is a keyword that is specified with the model resource. The geometry is the way the grids fit together when pieced together. A value of 1 means there is only one grid type with the mode. A value of XxY represents a segmented model. For example, 4x2 means there are 8 grid types to be pieced together. The list of grids follow with the first 4 going into the top row from left to right and the second 4 in the bottom row. The list of grids is generally a name convention tag that is referenced in the name convention file for the exact filename. An additional grid type can be specified if a specific grid type needs to be extracted from the file.

Here is a sample:

eta 1 grib_eta#211

eta_ak 1 grib_eta#207

ngm 1 grib_ngm#211

avn_us 1 grib_avn_us

avn 4x2 grib_avn_n1w,grib_avn_n0w,grib_avn_n0e,grib_avn_n1e,

grib_avn_s1w,grib_avn_s0w,grib_avn_s0e,grib_avn_s1e

avn_nhem 4x1 grib_avn_n1w,grib_avn_n0w,grib_avn_n0e,grib_avn_n1e

avn_shem 4x1 grib_avn_s1w,grib_avn_s0w,grib_avn_s0e,grib_avn_s1e

avn_whem 2x2 grib_avn_n1w,grib_avn_n0w,grib_avn_s1w,grib_avn_s0w

avn_ehem 2x2 grib_avn_n0e,grib_avn_n1e,grib_avn_s0e,grib_avn_s1e

avn_na 2x1 grib_avn_n1w,grib_avn_n0w

avn_nae 3x1 grib_avn_n1w,grib_avn_n0w,grib_avn_n0e

avn_asia 2x1 grib_avn_n0e,grib_avn_n1e

avn_eur 3x1 grib_avn_n0w,grib_avn_n0e,grib_avn_n1e

avn_sam 2x1 grib_avn_s0w,grib_avn_s0e

mrf 1x2 grib_mrf_nh,grib_mrf_sh

mrf_nhem 1 grib_mrf_nh

mrf_shem 1 grib_mrf_sh
The ETA model has two grid types which are in the same file and must be separated. The AVN model has 8 subgrids which need to be pieced together. There are several aliases for the AVN model each specifying a different combination of the grids to be pieced together. In other words, only those grids that need to be pieced together ought to be specified. Any grids above and beyond this represents wasted CPU time trying to find the grids.

58. Variable Files

Most plotting is done by specifying a variable to plot. The variable is then used by the program to select data from the input data file. In general, the type of output is specified by resources such as plot_type, color_data, or plot_format. In its simplest form, the variable file acts just the same as the time and level menu files. The biggest difference is the last column which represents the variable information. This column allows for variable aliasing, composite plots and overlay products.

Each program that uses the variable resource and/or has a variable menu has its own .var file. For example, sfcwx has a variable file named sfcwx.var. The program then parsing this file to determine how to process each variable request.

58.1. Variable File Syntax

This file is a list of variables and each variable has a list of commands which specify which variable to plot and how to plot it. The syntax of each line in the file is:

 Abbrev Name Toggle Definition

· Abbreviation - This define an abbreviation which is used to define the variable for use in the variable resource.

· Name - this is the text to be used in the menu listing. No spaces are allowed but underscores "_" can be used in their place.

· Toggle - this is a menu toggle which defines when the menu item will appear. This can be one of the following:

· 1 -- the item always appears

· 0 -- the item never appears. This is not useful in a menu file but is in a variable file.

· mo=model -- a model type. This is the string specified by the model resource.

· ft=time -- a forecast time. This is a string either specified by the time resource or at the time menu prompt

· le=level -- a vertical level. This is a string either specified by the level resource or at the level menu prompt

Wildcard characters are permitted. Each of the above strings can be logically and'd or or'd.

PRIVATE
. or ?
match a single character

*
match any character

[letters]
match a single character from the set.

[^letters]
match any character except those from the set.

str
match string

~str
true if doesn't match string

str1|str2...
match a set or strings (logical or). Pipe "|" separates strings

str1&str2...
match all strings (logical and). Ampersand "&" separates strings

_
underscore matches a space.

· Definition -- This defines which variable will be plotted and how it is to be plotted. The syntax of the definition is:

time:level:variable:units:attributes...

The syntax of this is explained below.

A simple entry will look like:

temp Temperature 1 anal:sfc:temp [F]

where:

· temp -- is the name used for the variable resource "-va=temp".

· Temperature -- is the menu label which will show up in the variable menu

· 1 -- specifies that temperature will always appear in the menu

· anal:sfc:temp[F] -- is the variable definition. This states that an analysis of surface temperature in Fahrenheit will be plotted.

Here is a sample variable file.

temp Temperature le=~snd&le=~sfc temp [C]

stemp Temperature le=sfc :2m_ag:temp [C]

t_rh Temp_Rel_Hum 0 temp,rhum

dewp Dewpoint le=~snd&le=~sfc dewp(t_rh) [C]

sdewp Dewpoint le=sfc :2m_ag:dewp(t_rh) [C]

wind Winds le=~snd&le=~sfc wind<uwnd,vwnd> [m/s:wind]

swind Winds le=sfc wind<:10m_ag:uwnd,:10m_ag:vwnd> [m/s:wind]

wind8 Winds 0 wind<:850:uwnd,:850:vwnd> [m/s:wind]

wind3 Winds 0 wind<:300:uwnd,:300:vwnd> [m/s:wind]

wdir Wind_Direction le=~snd dir(wind) [deg]

wspd Wind_speed le=~snd spd(wind) [knt]

58.2. Variable Definitions

The variable definition is a quite powerful tool for defining variables, aliasing variables, generating composite, overlay and multipanel plots. The syntax of the definition is:

 time:level:variable[units:attributes...]
 variable[units:attributes...]

The sections of the definition are:

· time -- This is the forecast time that the variable is valid. This uses a standard time reference (see time resource)

· level -- This is the level that the variable is valid. This uses a standard level reference (see level resource)

· variable -- This is the variable to plot. This can either be a variable defined in the program (internal variables), in the file (GRIB variables) or a reference to another variable in the variable file (variable aliasing).

· units -- This is the units to plot the variable in. The program will recompute the variable with the new units prior to plotting.

· attributes -- This defines how the variable will appear on the plot. This defines the plot type, colors, etc.

The variable definition can be up to 1000 characters long, can include spaces for readability and can span lines (as long as "\" is the last character of the line). Also, the time and level can be omitted, assuming program defaults (normally the values of the time and level resources).

The definition can also specify functions, vectors and composite plotting.

The resulting plot will be labeled based not on the menu listing but on the variable to plot. This is looked up in the variable.lup file which should cross-reference the variable name "temp" with a full name such as in "Temperature". The program will then tack on the units to produce a final label of "Temperature (F)".

58.3. Simple Variables

The default output of a variable is integral. In some cases like altimeter setting, plotting to 2 decimal places is required. This can be established using a plot attribute:

alt Altimeter_Setting 1 alt [:%.2f]

The output format uses a standard C printf floating point format.

In some cases, the data might be not numeric. This is the case with cloud cover which can be a string such as "B" for broken. To plot the data rather than the value, specify a plot type of data:

cldcv Cloud_Cover 1 cldcv [:data]

It is also possible to plot the cloud cover as a symbol. WXP provides a couple of default symbols such as cloud cover and wind barbs. To plot symbols, just specify a different plot type:

cldcv Cloud_Cover 1 cldcv [:cloud]

In some cases, WXP does not provide symbols directly. To handle this, there is a symbol file which cross-references the data with a list of drawing commands. In one case, present weather, there is a plot type (wx) that will read in and use the symbol file wx.smb. In other cases, it must be explicitly specified. Notice, the plot type is still "wx" but that a different symbol file (or weather file) is specified.

ptype Pressure_Tendency 0 ptend [mb/3hr:wx:wf=ptend.smb]

58.4. Composite overlays

In some cases, it is nice to be able to define new plot types as composites of several variables. The variable definition then becomes a list of variables, separated by commas.

lmhcd Clouds 0 city [:mk=pnt],\

 lcld [:wx:wf=cl.smb:xy=0-.5],\

 mcld [:wx:wf=cm.smb:xy=0+.5],\

 hcld [:wx:wf=ch.smb:xy=0+1]

This specifies a set of variables to plot. First, the city location will plot as a point (mk=pnt attribute). Then, the low, medium and high clouds will plot as symbols, each using a specific symbol file which cross-references the value to a set of plotting commands. In order to keep each plot from overlapping, an x,y offset is applied to the plot. The offset is normalized so that 1 is roughly the vertical size of text plotted on the screen.

The problem with the above plot is that the label that appears on the plot lists all of the variables. It would be nice to have a composite plot with only one label like "All Data". This is accomplished by enclosing the variables in braces "var{var1,var2,...}". Only the first variable var is looked up in the variable.lup file. In this case, it will plot "All data".

all All_Data 1 all{\

 +temp [F :ul],\

 +dewp [F :ll],\

 :sl:+pres [mb:data:ur],\

 +wbrbc [:cbarb],\

 +cldcv [:cloud],\

 +wx [:wx:cl]}

This will plot temperature upper left (attribute ul), dewpoint lower left, sea level pressure upper right, wind barbs (plot type cbarb plots a barb but allows for a cloud cover symbol), cloud cover symbols (plot type cloud) and present weather (plot type wx). The plusses in front of the variable name will be explained later.

When using this with the statlog program, composite plotting can also be used to put more than one variable on a graph.

all All_Data 1 temp {temp,dewp} [F :plot:sz=.18],\

 extt [F :value],\

 wx [:wx],\

 snwdp [in :value],\

 prec [in :value:%.2f],\

 vis [mi :value],\

 wgst [knt:value],\

 wind { \

 wind [knt:cbarb],\

 cldcv [% :cloud] },\

 cld [ft :plot:sz=.14],\

 cldcl [100_ft:data],\

 pralt [mb :plot:sz=.14]
In this case, the temperature and dewpoint are plotted on the same graph and the attribute information "[F :plot:sz=.18]" refers to the plot and not each individual variable. A new plot type is introduced. "plot" specifies that this will be a plotted graph. There is one other example of compositing. The wind section includes both wind and cldcv which will produce a standard cloud cover and wind barb. If this is not specified, the cloud cover and barbs will plot on separate lines.

58.5. Overlay plots

Overlay is the ability to put two or more plots on the plot and the same time. This is often used with contour plots but can be plotted data over a contour plot:

comp1 Composite_1 0 temp [:cf:in=5],\

 strm [:co=black],\

 cldcv [:co=black]

Again, multiple variables are specified separated by commas. In this case, temperature is contoured (plot type color fill cf) with an interval of 5, overlaid with streamlines, colored in black and cloud cover symbols in black.

Complete plots can be specified but the more complex the plot, the more control is needed. In some cases, the map needs to be specifically plotted:

cpres Composite_Surface le=snd prec [in:cf:cof=prec.cfl:bar:labs],\

 map [:co=red],\

 slp [mb:ln:co=lcyan:in=4],\

 thk [m :ln:cof=thick.cfl:co=off:cb=5400:in=60]

In this case, 4 variables are being plotted.

· prec -- quantitative precipitation in inches, plotted as a color fill contour (cf), using a specific color fill file which lists the values and colors (cof=prec.cfl), labeling the plot with a color bar (bar) and specifying to use short text labels in upper left (labs).

· map -- overlay the map in red (co=red)

· slp -- overlay the sea level pressure plotted in millibars, using light cyan (co=lcyan) line contours (ln) at an interval of 4 (in=4).

· thk -- overlay 1000-500 mb thickness in meters, plotted as line contours, line styles defined in the thick.cfl file (cof=thick.cfl), colors turned off to force use of thick file (co=off), contour base set to 5400 to make sure solid line appears at value 5400 (cb=5400) and a contour interval of 60 (in=60).

This example is also using variable aliasing. The variables prec, slp, and thk are defined elsewhere in the variable file. This will be discussed later.

58.6. Plotting Attributes

For a full list of possible attributes, see the following pages:

· Data Plotting

· Gridding and Contouring

· Vector Plotting

58.7. Variable Aliasing

In order to simplify the variable file, variable aliasing is possible. What aliasing does is allow the user to specify a variable that is defined elsewhere in the variable file. Taking the above example, the variable prec, slp and thk are actually:

prec Quant_precipitation le=snd prec [in]

slp Sea_level_pressure le=snd :sl:pres [mb]

thk 1000-500_mb_thickness le=snd :p1000-500:thick (:500:hght:m,:1000:hght:m)[m]

The variable in this case is also prec but if the variable abbreviation matches the variable type, no further searching is done. In the case of sea level pressure, it is actually pressure at sea level. For thickness, this is actually 1000 mb height and 500 mb height run through the function thick. That function will just difference the two grids. The function thick has a specific level designation in order to format the label properly The function name is looked up in the variable.lup file to get a full label. The resulting label would be:

1000-500 mb Thickness (m)

In some cases, aliasing can have side effects. To prevent aliasing, add a plus "+" in front of the variable name. This forces the program to immediately search internal variables rather than a recursive search of the variable file. This also clarifies the difference between aliases and real variables.

wdir Wind_Direction 1 +wdir [deg]

In this case, "wdir" can be used as an alias elsewhere in the file but "+wdir" tells the program to use the internal variable "wdir" and not the alias.

58.8. Vectors

In some cases, grids need to be grouped in order to represent vector quantities. This is done by enclosing the components in "var<var1,var2>". The variable var is only used to name the plot. The variables var1 and var2 define the X and Y components of the vector. This is handy for defining wind as a vector quantity.

wind Wind_vectors le=~snd&le=~sfc wind<uwndg,vwndg> [m/s:wind]

This defines a wind vector based on grid relative U and V wind components. The alias wind can then be used elsewhere to represent these components. For example, convergence:

conv Convergence le=~snd conv(wind) [10^-5_/s]

This will apply the function conv (convergence) to the grid relative U and V wind components. This simplifies the use of vector quantities and makes the variable file more readable.

58.9. Functions

Often simple variables do not cover all the possible variable types. In the case of grids, functions can be applied to create new variables.

tadv Temperature_Advection le=~snd adv(wind,temp:K) [10^-4_K/s]

The advection function adv takes 3 parameters: U, V and a parameter to advect. The U and V are represented by the variable wind which is a vector field defined elsewhere in the variable file. With many of the functions, the program will make an attempt to produce a label. In the case of advection, it produces a label like "Surface Temperature Advection (10^-4_K/s)". In other cases, the name must be forced. For example, the advection function could have been listed as "adv-tadv". This will run the adv function but it will use the variable tadv to lookup a label from the variable.lup file.

Some functions can get quite elaborate:

p10ht 1000_mb_height 0 :p1000:mul-hght (sub (slp:mb, #1000), #8.4) [m]

This computes an estimated 1000 mb height based on sea level pressure. This can now be used in a pseudo-thickness computation:

pthk 1000-500_mb_thickness 0 :p1000-500:thick (:500:hght:m, p10ht) [m]

Here is an example of wind shear:

wind8 Winds_850 0 wind<:850:uwnd,:850:vwnd> [m/s:wind]

wind3 Winds_300 0 wind<:300:uwnd,:300:vwnd> [m/s:wind]

shr83 Shear 0 vdiff(wind3,wind8)

mshr83 Mag_Shear 0 mag(shr83)

In this case, a shear value is computed. The variable shr83 is a vector quantity that can be plotted as vectors or streamlines. The variable mshr83 is the magnitude which can be contoured.

Function List

· max(grid1,grid2)
Computes the maximum value at each gridpoint based on the values in the grids grid1, grid2, etc. More than two grids can be listed

· min(grid1,grid2)
Computes the minimum value at each gridpoint based on the values in the grids grid1, grid2, etc. More than two grids can be listed

· sum(grid1,grid2)
Computes the sum of each gridpoint based on the values in the grids grid1, grid2, etc. More than two grids can be listed.

· add(grid1,grid2)
Same as sum

· avg(grid1,grid2)
Computes the average at each gridpoint based on the values in the grids grid1, grid2, etc. More than two grids can be listed

· interp(grid1,grid2|value,grid3)
This interpolates between the grid specified in grid1 and the grid in grid3 based on the value specified either in grid2 or the value. This does a simple linear interpolation. A value of .5 would essentially give an average. A value of .8 will return a value that is .8 of the way to the second grid.

· sub(grid1,grid2)
This subtracts grid2 from grid1.

· thick(grid1,grid2)
Same as sub

· mul(grid1,grid2)
Multiplies the grids in grid1 and grid2.

· div(grid1,grid2)
Divides the values in grid1 by the values in grid2.

· mod(grid1,grid2)
Does the modulus of grid1 divided by grid2. This produces the remainder of the division computation.

· sqrt(grid1)
Does the square root of all values in grid1.

· abs(grid1)
Returns the absolute value of the values in grid1.

· log(grid1)
Takes the logarithm of each value in grid1

· log10(grid1)
Takes the logarithm base 10 of each value in grid1

· exp(grid1)
Exponentiates (ex) the values in grid1 . This is the inverse of the log function

· pow(grid1,grid2)
This performs for power function of the values in grid1 raised to the power of the values in grid2.

· sin(grid1)
Performs the trigonometric function sine of the values in grid1. Input values are in degrees

· cos(grid1)
Performs the trigonometric function cosine of the values in grid1. Input values are in degrees

· tan(grid1)
Performs the trigonometric function tangent of the values in grid1. Input values are in degrees

· asin(grid1)
Performs the trigonometric function arcsine of the values in grid1. Output values are in degrees

· acos(grid1)
Performs the trigonometric function arccosine of the values in grid1. Output values are in degrees

· atan(grid1)
Performs the trigonometric function arctangent of the values in grid1. Output values are in degrees

· atan2(grid1,grid2)
Performs the trigonometric function arctangent of the values in grid1 divided by grid2. The sign of 2 values determines the quadrant. This is the equivalent of the C atan2 function. Output values are in degrees

· dewp(grid1,grid2)
Computes the dewpoint based on temperature in grid1 and the relative humidity in grid2

· rhum(grid1,grid2)
Computes the relative humidity based on temperature in grid1 and the dewpoint in grid2

· wetblb(grid1,grid2)
Computes the wetbulb temperature based on temperature in grid1 and the relative humidity or dewpoint in grid2.

· wchill(grid1,grid2,[grid3])
Computes the wind chill temperature based on the temperature in grid1 and wind speed in grid2, or the U wind component in grid2 and the V wind component in grid3.

· heat(grid1,grid2)
Computes the heat index temperature based on temperature in grid1 and the relative humidity or dewpoint in grid2.

· theta(grid1,[grid2])
Computes the potential temperature based on temperature in grid1 and the pressure in grid2. The pressure is optional if grid1 is on a pressure surface (i.e. 500mb).

· thetae(grid1,grid2,[grid3])
Computes the equivalent potential temperature based on temperature in grid1, the relative humdity or dewpoint in grid2 and the pressure in grid3. The pressure is optional if grid1 is on a pressure surface (ie 500mb).

· thetav(grid1,grid2,[grid3])
Computes the virtual potential temperature based on temperature in grid1, the relative humidity or dewpoint in grid2 and the pressure in grid3. The pressure is optional if grid1 is on a pressure surface (i.e. 500mb).

· vtemp(grid1,grid2,[grid3])
Computes the virtual temperature based on temperature in grid1, the relative humidity or dewpoint in grid2 and the pressure in grid3. The pressure is optional if grid1 is on a pressure surface (i.e. 500mb).

· vapor(grid1,[grid2])
Computes the vapor pressure based on dewpoint in grid1, or the temperature in grid1 and the relative humidity in grid2.

· shum(grid1,[grid2],[grid3])
Computes the specific humidity based on dewpoint in grid1 and pressure in grid2, or temperature in grid1, relative humidity in grid2 and pressure in grid3. The pressure is optional if grid1 is on a pressure surface (i.e. 500mb).

· mixrat(grid1,[grid2],[grid3])
Computes the mixing ratio based on dewpoint in grid1 and pressure in grid2, or temperature in grid1, relative humidity in grid2 and pressure in grid3. The pressure is optional if grid1 is on a pressure surface (ie 500mb).

· spd(grid1,grid2)
Computes the wind speed based on U wind component in grid1 and the V wind component in grid2.

· mag(grid1,grid2)
Computes the vector magnitude based on X component in grid1 and the Y component in grid2.

· dir(grid1,grid2)
Computes the vector/wind direction based on X/U wind component in grid1 and the Y V wind component in grid2.

· ugeos(grid1)
Computes the U geostrophic wind component based on geopotential height in grid1.

· vgeos(grid1)
Computes the V geostrophic wind component based on geopotential height in grid1.

· uq(grid1,grid2)
Computes the U Q-vector component based on geopotential height in grid1 and temperature in grid2.

· vq(grid1,grid2)
Computes the V Q-vector component based on geopotential height in grid1 and temperature in grid2.

· dx(grid1)
Finite differences (dgrid1/dx) the grid grid1 in the X direction.

· dy(grid1)
Finite differences (dgrid1/dy) the grid grid1 in the Y direction.

· grad(grid) => xgrid ygrid
Gradient of the grid. Outputs 2 grid vector, one for the X component and the second for the Y component.

· vdiff(xgrid1,ygrid1,xgrid2,ygrid2) => xgrid ygrid
Computes a vector difference. Outputs 2 grids: X and Y.

· dot(xgrid1,ygrid1,xgrid2,ygrid2)
Computes a dot product.

· cross(xgrid1,ygrid1,xgrid2,ygrid2) => xgrid ygrid
Computes a vector cross product. Outputs 2 grids: X and Y.

· lapl(grid1)
Computes the Laplacian of grid1.

· conv(grid1,grid2,[grid3])
Computes the convergence of the vector/wind field based on the U wind component in grid1 and the V wind component in grid2. If grid3 is specified, the convergence is done on the grid field in grid3.

· diverg(grid1,grid2,[grid3])
Computes the divergence of the vector/wind field based on the U wind component in grid1 and the V wind component in grid2. If grid3 is specified, the divergence is done on the grid field in grid3.

· def1(grid1,grid2)
Computes the first deformation term of the vector/wind field based on the U wind component in grid1 and the V wind component in grid2.

· def2(grid1,grid2)
Computes the second deformation term of the vector/wind field based on the U wind component in grid1 and the V wind component in grid2.

· rvort(grid1,grid2)
Computes the vorticity or curl of the vector/wind field based on the U wind component in grid1 and the V wind component in grid2.

· avort(grid1,grid2)
Computes the absolute vorticity of the wind field based on the U wind component in grid1 and the V wind component in grid2.

· adv(grid1,grid2,grid3)
Computes the advection of a specified field in grid3 by the wind with the U wind component in grid1 and the V wind component in grid2.

NOTE: The grid specifications can be replaced by numeric constants with the syntax:

 #number

in most of the above functions. For example, the number 5.32 would be entered "#5.32".

58.10. Panel Plots

Overlay plots put one plot on top of another. The panel option allows plots to be separated into 4 or 6 panels. The attributes for the panel option are the panel size and location information:

· nxxny[+x+y]
These coordinates represent the relative panel coordinates. The nx and ny represent the number of plots in each direction. The x and y are the offsets measured from the upper left. For example, to produce a 4 panel plot (2x2) and the current plot is the lower left, the geometry would be:

 2x2+0+1

· dxxdy[+x+y]
These coordinates represent the fractional panel coordinates. The dx and dy represent the fraction of the overall window (0 < dx < 1) the panel will use. The x and y are the offsets measured from the lower left. For example, to produce a 4 panel plot (2x2) and the current plot is the upper left, the geometry would be:

 .5x.5+0+.5

A sample panel setup:

c4p Composite_4_panel 0 panel [.5x.5+0+0],\

 c850,\

 panel [.5x.5+.5+0],\

 c700,\

 panel [.5x.5+0+.5],\

 c500,\

 panel [.5x.5+.5+.5],\

 c300

This will generate a 4 panel plot of composite plots. The upper left panel will be a composite 850 plot. The upper right panel will be a composite 700 mb plot. The lower left panel will be a composite 500 mb plot. The lower right panel will be a 300 mb composite plot.

59. Units Conversion

WXP offers the ability to change the units of a variable prior to plotting. Each variable has a specific unit associated with it when it is read in from the raw or converted data file. When a new unit is specified, the units.lup file is searched for a combination of the old and new units and performs the appropriate conversion. Each line in the file represents a different unit conversion. The format of each line is:

 Old_unit New_unit Conversion

The old and new units are specified as character strings typical for those units such as "m/s" and "C". The units are case insensitive. Once the conversion is done, the variable now has the new units label attached to it which is carried to new computations.

The conversion is a "y=mx+b" setup. The slope is preceded by a "*" and the intercept is preceded with a "+" or "-". Only one of the two are necessary. If the slope is missing, it is assumed to be 1 and the intercept is assumed to be 0. For example a conversion from Fahrenheit to Celsius (C=.55555*F-17.77777) would look like:

 F C *.55555-17.77777

The units file is then a set of possible conversions. More may be added if needed. If a conversion is not listed, the units are changed but the value remains the same.

A sample of the file is as follows (comment lines are preceded with a "#"):

#

Temperature

F - fahrenheit

C - Celsius

K - Kelvin

#

F C *.55555-17.77777

F K *.55555+255.37222

C F *1.8+32

C K +273.15

K F *1.8-459.67

K C -273.15

dF dC *.55555

dF dK *.55555

dC dK *1

dC dF *1.8

dK dC *1

dK dF *1.8

NOTE: there is a distinction between C and dC. dC values represent difference values such as dewpoint depression or lifted index. The conversion to difference in K (dK) would be different from the conversion of C to K. This is reflected in this notation.

60. Time and Level Menu Files

WXP offers the ability to tailor the appearance of most menus shown in WXP. The variable menus will be discussed later because their syntax is slightly different. Each program that has a forecast time menu will have an associated time menu file such as "grbcalc.tim". The same holds for level menus such as "upcalc.lev". The file contains a list of possible menu items, abbreviations used to define the item to WXP and a toggle which specifies when the item is to appear. The syntax of each line is:

 Abbrev Name Toggle

· Abbreviation - This define an abbreviation which is used to define the time or level. These must conform to the syntax for these resources (see time or level resource).

· Name - this is the text to be used in the menu listing. No spaces are allowed but underscores "_" can be used in their place.

· Toggle - this is a menu toggle which defines when the menu item will appear. This can be one of the following:

· 1 -- the item always appears

· 0 -- the item never appears. This is not useful in a menu file but is in a variable file.

· mo=model -- a model type. This is the string specified by the model resource.

· ft=time -- a forecast time. This is a string either specified by the time resource or at the time menu prompt

· le=level -- a vertical level. This is a string either specified by the level resource or at the level menu prompt

Wildcard characters are permitted. Each of the above strings can be logically and'd or or'd.

PRIVATE
. or ?
match a single character

*
match any character

[letters]
match a single character from the set.

[^letters]
match any character except those from the set.

str
match string

~str
true if doesn't match string

str1|str2...
match a set or strings (logical or). Pipe "|" separates strings

str1&str2...
match all strings (logical and). Ampersand "&" separates strings

_
underscore matches a space.

Here is a sample time menu file:

init Initial mo=ngm|eta|avn*

h06 6_hour mo=ngm|eta|avn*

h12 12_hour mo=ngm|eta|avn*

h18 18_hour mo=ngm|eta|avn*

h24 24_hour mo=ngm|eta|avn*

h30 30_hour mo=ngm|eta|avn*

h36 36_hour mo=ngm|eta|avn*

h42 42_hour mo=ngm|eta|avn*

h48 48_hour mo=ngm|eta|avn*

h60 60_hour mo=avn*

h72 72_hour mo=avn*

e3 3.5_day mo=mrf*

d4 4_day mo=mrf*

...

For example, the 12 hour menu will display whenever the model type is ngm or eta or any match of a avn model. This goes against the model resource value.

Here is a sample level menu file:

sfc Surface mo=eta

1000mb 1000_mb 1

850mb 850_mb mo=~mrf*

700mb 700_mb mo=~mrf*

500mb 500_mb 1

400mb 400_mb mo=~mrf*

300mb 300_mb mo=~mrf*

250mb 250_mb mo=~mrf*

200mb 200_mb mo=~mrf*

150mb 150_mb mo=~mrf*

100mb 100_mb mo=~mrf*

trop Tropopause mo=avn*|ngm

wind Max_wind mo=avn*|ngm

snd Whole_sounding mo=~mrf*

In this case, the 1000 mb and 500 mb items always appear. The surface item only appears for the eta model. The 850 mb item only appears if the model is not of type mrf. In other words, if the model value starts with mrf, this item won't appear.

61. Shell Menu Setup

The WXP User's shell uses a menu to select programs and options. In order to make the shell more extensible, the menu items and the menus themselves can be changed at any time. This is done by modifying the "wxp.menu" file located in the WXP database directory (see file_path). This file lists all the menus, the labels used to describe each action and the command to run when the item is selected. The format of the file is as follows:

 type label command

The type is either a "M" for menu or "I" for item. The menu type denotes the beginning of a menu listing. The subsequent lines will be item lines until the next menu line with those items being displayed as part of that menu.

The label is a single string that is used to describe the menu item in more detail than just the command. This string cannot contain white space so any white space characters must be replaced by underscores "_". The number of characters is limited to 40.

The command is simply the command to run for that item. It is the command and any command line parameters. If the item is of type menu, the command becomes the short name of the menu and is used with the "menu name" command to go to that menu. If the menu item is a reference to a submenu, the command will be "menu name" where name is the short name listed with each menu. The number of characters is limited to 50.

Here is a sample wxp.menu file:

 M Main main

 I Parsing_Programs menu parse

 I Plotting_Programs menu plot

 I Contouring_Programs menu contour

 I Meteorological_Calculations menu calc

 M Parse_Data parse

 I Parse_Raw_Surface_Data sa_parse

 I Parse_Surface_Data sa_parse -if=cvt

 I Parse_Series_of_Surface_Data sa_parse -nh=-6 -if=cvt

 I Parse_Upper_Air_Data ua_parse

 I Parse_MOS_Air_Data fo_parse

 I Parse_Forecasts forecast

 I Parse_Text_Data parse

 M Plot_Data plot

 I Plot_Surface_Data sfcwx

 I Plot_Surface_Meteograms statlog

 ...

The first menu is always the main menu. Lets break this down:

· M - denotes menu type

· Main - the label to be used with the menu will be "Main"

· main - the short name of the menu

In this menu, all the items in this menu go to submenus. Let's look at the first item:

· I - denote item type

· Parsing_Programs - the label used in the menu will be "Parsing Programs"

· menu parse - this runs the menu command to go to the "parse" submenu

Now if we look at the parse submenu, each item now runs a program. In some cases, you will notice that command line parameters are specified. This can be handy if you need to specialize an program for a particular application. This is especially handy in a classroom situation where special commands may need to be easily accessed through the WXP menu.

62. Case Study Setup

62.1. Creating Case Studies

WXP is ideally setup for use with case study data. By default, WXP names all of its files with the date/time and file type. This means files can be copied to a different directory and still used by WXP just as long as the files are not renamed. This is accomplished by using the data_path, con_path and name_conv resources. Since the path resources are pointers to a specific directory, they can be changed at any time to point to a different location. The name convention file uses these pointers (%D, %C) to not lock files to specific directories. Therefore, all data files should be accessible no matter what directory they are located.

In order to setup a case study, first examine the directory structure used by WXP. This can be very simple such as "/home/wxp/data" and "/home/wxp/convert" or more complex. The best way to create a case study is to copy the directory configuration into a case study directory:

 /home/wxp/data --> /home/wxp/case/980527/data

 /home/wxp/convert --> /home/wxp/case/980527/convert

Now, copy the raw data files into the data directory. It is recommended to copy surface, upper air and MDR radar files. Also, model data, NIDS and mosaic radar files as well as some satellite images should be copied. Remember these added files are large and can consume large quantities of disk space. It is not necessary to copy converted files since they can be recreated with the WXP decoders. Sometimes it is nice to copy files that might be specific to the case study into a etc directory such as name convention, city database file, etc.

NOTE: It is recommended to compress the data in these directories. Raw data files compress well and will provide the ability to save more case studies to disk. When the case study is to be used, uncompress the data. Case study data can also be saved to CD-ROM.

62.2. Using Case Studies in WXP

To use case study data, use the wxpdata and wxpcon environment variables:

 setenv wxpdata /home/wxp/case/980527/data

 setenv wxpcon /home/wxp/case/980527/convert

This overrides the default settings in the resource file. The same name convention file can be used since it links files to the data_path and con_path resources. If a different name convention is needed, just set the name convention environment variable:

 setenv wxpname_conv /home/wxp/case/980527/etc/name_conv

Finally, it is nice to turn back the clock to the case study. This can be done with the wxpcurtime environment variable:

 setenv wxpcurtime 9805282300

This will reset the time used for the current and latest files to 23:00Z on May 28, 1998. Now, the current and latest resources can be used to access files for this case study. The reason for this is that searching for the latest file only goes back a couple of weeks. Searching for the latest file in a case study will produce an error since its search will not go back far enough to see the case study data. The wxpcurtime environment variable solves this problem. This also allows standard scripts that reference current or latest data to work with case study data.

As a final note, the wxpcurtime variable could be set to a time of significance such as a tornado touchdown or hurricane landfall. This will make it easy for users to access the important time of the case study. The current resource can offset ahead in time to gain access to files post wxpcurtime.

62.3. Case Study Setup and the WXP Shell

To setup the cases, the "case.lup" is used. This file lists each case study and the resources to set and is located in the WXP database directory (see file_path). There are two types of lines in this file. The first is a header line. The syntax is:

header Description

The second type is the case line. The syntax is:

case name alias alias

The first string after the case string can be "nolist" which specifies to not list the case study in the case listing. This allows you to setup large numbers of cases without making the case listing in the WXP shell to large to view.

Following the case line is the description line which is used to describe the case. This can be up to 80 characters.

The following lines then list WXP resources to be set through environment variables.

Here is a sample:

header *** Winter Cyclones ***

case nolist 20nov94

Cyclone Occlusion over Plains and Midwest (20 Nov 1994)

data_path /home/wxp/case/20nov94

con_path /home/wxp/case/20nov94

curtime 199411220000

case 07jan97 444

Cyclone and Snow event over Midwest (07-10 Jan 1997)

data_path /home/wxp/case/07jan97

con_path /home/wxp/case/07jan97

curtime 199701091200

The header line is used to list the following case studies as winter cyclones. The first case "20nov94" will not be listed when the "case" command is invoked but still can be used. The second line "Cyclone..." is a long description of the case. The next three lines set the "data_path" and "con_path" resources with the environment variables "wxpdata_path" and "wxpcon_path". The last line sets the "wxpcurtime" environment variable to reset the current time to the most important time of the case study so that the current resource can be used with the case study.

Page: 212

9 June, 1998
9 June, 1998

Page:213

