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Introduction

This reference is intended to represent all the concepts described in [1], organizing them in a manner consistent with UML. The focus is on semantics. The definitions are presented in a simple metaclass table format that emphasizes content rather than format. Additional properties related to presentation (formatting) and traceability (to the original source code files) may be included, but are not defined here. 
Names. The names of metaclass definitions are taken first (when possible) from the type names defined by UML [5].  When no corresponding UML name exists, we resort (in turn) to the terms provided by the Microsoft .NET SystemCodeDOM framework [26], Microsoft’s Intermediate Language (MS-IL) [27], the Java Virtual Machine (JVM) Specification [35], the EDG Abstract Syntax tree specification [41], and the target language.  

Semantics. Each definition provides a specification of its semantics based on semantic definitions provided by UML, MS-IL, and the JVM.  For most definitions, this  involves the specification of a common semantics in accordance with [1, section 4]. Formal constraints (preconditions, postconditions, invariants, and supporting definitions) are written in the OMG’s Object Constraint Language (OCL) [5] [9].  

When specifying the common semantics of a structural element (e.g., Classifier, Component, Feature), we generally assume all UML defined constraints apply so long as they do not contradict any other standard (e.g., the JVM or MS-IL) to which the definition must conform.  

When specifying the common semantics of an action, we generally specify a precondition strong enough to satisfy all the competing standards (e.g., UML, JVM, and MS-IL) and a postcondition that captures only those conditions that they all guarantee.  The set of exceptions associated with the action is the union of the sets of exceptions associated with each standard
.

The semantic definitions are currently brief, but will be expanded upon as needed to support various analysis and adaptation tools.  Section 4 provides links to a number of more formal definitions of the UML, MS-IL and JVM semantics upon which our semantics is based.

Subsetting UML. Where definitions are taken from UML, we include only those UML attributes and relationships between elements that are of interest.  As a result, the definitions in this section are a subset of the full UML definitions.  The intent, however, is to subset the UML definitions, and not to create competing representations of the same information.

Correspondence to MS-IL and JVM. Alternative names appear in the list of references to make the correspondence between concepts explicit, e.g. the UML term Attribute corresponds to the.NET term MemberField.  Names appearing in the Extends and Type rows of the table are clickable cross references in Word, making it easy to navigate the definitions.

Correspondence to target languages. Each metaclass definition includes a section describing how it maps to corresponding concepts in various target languages.  In the current version, the focus is on C++ and Java, and to a mapping of metaclass definitions to productions in the grammars of these two languages.

The target language mappings for UML concepts are intended to be consistent with the Rational Rose mapping to the target languages that are mentioned [14] [15].  In particular associations and association ends are defined with this representation in mind.

Unlike most target languages, all type conversions in the XCIL representation are explicit.  

XML representation. [2] discusss the mapping of metaclass definitions (in table form) to XML Schema using the OMG XMI 2.0 rules.  These rules are quite flexible.  They permit a number of mappings of the same definition to XML, alternately using XML attributes, XML elements, and different forms of linking between XML elements.  

On one hand, this flexibility can be a problem in that applications must be prepared to handle a variety of related formats.  On the other, the choice of any particular representation can be a problem in that it may not be what is needed for a particular form of analysis/adaptation.  To deal with these issues, we propose to:

1.
Choose a base XML representation that is a subset of what the XMI 2.0 rules suport.

2.
Provide XSLT mappings of this base representation to/from XMI (for UML tools), MS-IL assembly language (for .NET), and JVM assembler (for the Java platform).

3.
Support other XML representations by defining XSLT rules to map to/from this base representation

The variations in XML style permitted by the XMI 2.0 rules are discussed in [2].  It is assumed that the base representation will be defined in the style used by the examples in [3].

This base representation should be close enough to the UML, MS-IL, and JVM standards that mapping to/from them should be trivial.

XML representations tailored to specific forms of analysis and adaptation are supported by defining XSLT rules that translate to/from the base representation.  In general, these transformations are expected to involve filtering (to eliminate elements and attributes that are not needed), generalization (the replacement of an element or attribute value with a more general one, e.g. type=Integer32 with type=Integer), and reorganization of the elements (to provide a structure optimized for a particular form of analysis or adaptation). 

XML Examples. [3] provides a number of examples related to the representation of C++ programs in XCIL.  In future, other language examples will also be added.

1 XCIL translation

TBD: Briefly discuss the mapping of UML models and programming languages to XCIL, and the ability to merge information from multiple sources, e.g. a model and source code that desribe the same set of packages and classes.

…

Suggest the possibility of merging information from other types of tools as well, e.g. T-VEC formal specs.

…

Reference the paper What is a Pointcut? for further details.

2 XCIL definition

2.1 Model Management

The following definitions are related to the overall organization of the system into a nested hierarchy of packages. 

2.1.1 Package

	Metaclass
	Package

	Extends
	Namespace, GeneralizableElement

	Description
	A grouping of model elements

	Refs
	[5, p. 2-192, Figure 2-32], [5, pp. 2-194, 2-197, 2-201], [5, p. B-13, package],

[26, CodeNameSpace],

.namespace [27, pp. 10, 132], 

package [35, p. 24, section 2.7.2]

	CompositeEnd
	inv

	Description
	An invariant considered a part of the precondition and postcondition of every public operation defined by the package and its subtypes

	Type
	Set (Constraint)

	DefaultValue
	{true}

	Multiplicity
	*

	CompositeEnd
	feature

	Description
	The set of features directly associated with the package

	Type
	Set (Feature)

	Multiplicity
	*


Each package has a name (inherited from ModelElement) and may be nested within other packages (since any ModelElement, including a Package, may appear within a parent of Package).

A Package may directly contain features representing global functions and data.  Global functions are represented as methods with an ownerScope set to classifier.  Global data items are represented as attributes with ownerScope set to classifier.  

Inv supports the specification of user defined package invariants in an OCL-like style. It is equivalent to associating a constraint with the element that has the stereotype «invariant», but less cumbersome to write.  The invariant is implicitly a part of the precondition and the postcondition of every public operation.

2.1.1.1 Semantics

The semantics of packages are those common to the UML concept of Package, the MS-IL concept of Namespace, and the JVM concept of package.  

Generalization relationships between packages are not supported (as in UML), and it is not possible to import elements from other packages (as in Java and C++).  As a result, all names must be fully qualified (as in MS-IL and the JVM). 

2.1.1.2 Language mappings

Packages are used to represent C++ namespaces and Java packages.  

Unnamed packages in Java [38, p. 119] and C++ [46, p. 177] can be represented in the obvious way, as Packages without a name.

In C++ “the global scope is just another namespace” [46, p. 847].  As a result we can model it as a package, e.g. with name=”Global”.  Features associated with this package represent functions and data members with File scope [44, p. 15].

2.1.2 Subsystem

	Metaclass
	Subsystem

	Extends
	Package, Classifier

	Description
	A package representing a behavioral unit of a physical system

	Inv
	-- Every subsystem has at least one StartSubsystem operation

	Refs
	[5, p. 192, Figure 2-32], [5, p. 200, Subsystem], [5, p. 204, Subsystem]


As in UML, a subsystem is a package that represents a behavioral unit of a physical system. “Apart from defining a namespace for its contents, a subsystem serves as a specification unit for the behavior of its contained model elements.  The contents of a subsystem are divided into two subsets: 1) specification elements and 2) realization elements.  The specification elements, together with operations and receptions of the system, are used to give an abstract specification of the behavior offered by the realization elements.  Subsystems contained in the realization part represent subordinate subsystems, i.e. subsystems at the level below in the containment hierarchy, hence owned by the current subsystem” [5, p. 204, Subsystem].

“A subsystem has no behavior of its own.  All behavior defined in the specification of the subsystem is jointly offered by the elements in the realization subset of its contents.  In general, since subsystems are classifiers, they can appear anywhere a classifier is expected.”

2.1.2.1 Semantics

The semantics of Subsystem are those defined by UML.

2.1.2.2 Related types
The following types of operations may be associated with subsystems in order to specify how they are initialzed and how their execution is triggered:
2.1.2.2.1 InitializeSubsystem

	Metaclass
	InitializeSubsystem

	Extends
	Operation

	Description
	Initialize the subystem

	Inv
	-- An InitializeSubsystem operation may only be associated with a Subystem


An InitializeSubystem operation is an operation that initializes or reinitializes the subsystem without triggering the execution of its top level process/thread. 

2.1.2.2.2 StartSubsystem

	Metaclass
	StartSubsytem

	Extends
	Operation

	Description
	Start the subsystem’s top level process/thread

	Inv
	-- An StartSubsystem operation may only be associated with a Subystem


A StartSubystem operation is an operation that triggers the execution of the subsystem’s top level process/thread.  
2.1.2.2.3 Main
	Metaclass
	Main

	Extends
	StartSubsystem

	Description
	Initialize the subsystem, then start the top level process/thread

	Inv
	-- An Main operation may only be associated with a Subystem


A Main operation is an StartSubsystem operation that both initializes the subsystem and triggers the execution of it’s top level process/thread.  
2.1.2.3 Language mappings

In mapping from UML, an InitializeSubsystem operation is considered to be any operation with the stereotype «InitializeSubystem».  Similarly StartSubsystem and Main operations are considered to be operations with the stereotypes «StartSubystem» and «Main».
…

2.2 Core

The following definitions correspond to concepts in the UML Core Package. They support the structural definition of the system in terms of classes, attributes and associations, operations and methods. 

2.2.1 Component

	Metaclass
	Component

	Extends
	Classifier 

	Description
	An assembly of executables that implement a set of interfaces

	Refs
	[5, p. 2-17, Figure 2-8], [5, pp. 2-20, 2-34, 2-63, 3-179],

[12, chapter 25, Components]

[26, CodeCompileUnit],

.assembly extern, .assembly [27, p. 9],

C++ source code file,

Java Archive (JAR) file, Java source code file

	AssociationEnd
	interface

	Description
	The set of model elements that specify client interfaces

	Type
	Set (ModelElement)

	Multiplicity
	*

	Refs
	resident [5, p. 2-35], [5, p. 2-17, Figure 2-8, ElementResidence]

	AssociationEnd
	implementation

	Description
	The set of artifacts that implement the component

	Type
	Set (Component)

	Multiplicity
	*


Booch [12, p. 349, Kinds of Components] identifies three kinds of components.  Work product components are the artifacts of the development process.  They include the UML models and diagrams, source code files, and data files from which deployable components are created.  Deployable components are collections of elements in an executable form as Dynamic Link Libraries (DLLs) and JAR files.  Execution components are instances of deployable components created during system execution, e.g. a COM+ object instantiated from a DLL, or a Java object instantiated from a class definition in a JAR file. 

2.2.1.1 Semantics

The semantics of component libraries are those common to UML components [5, pp. 2-34, 2-63], MS-IL assemblies [27, p. 9],  Java JAR files, and target language source files.

The semantics of SourceFile must be consistent with the notion of a compilation unit in the various target languages.

A Component definition may only contain definitions for Features, Datatypes, Interfaces, Classes, Associations, Dependencies, Constraints, Signals, DataValues and Objects.

A Component has no features.

2.2.1.2 Subtypes

2.2.1.2.1 TranslationUnit

	Metaclass
	TranslationUnit

	Extends
	Component

	Description
	The unit of compilation

	CompositeEnd
	ownedElement

	Type
	ModelElement


Most programming languages support the notion of separate compilation.  In such languages, a translation unit is the smallest unit that can be separately compiled.  The semantics of TranslationUnit are assumed to be those common to C++, Java, and Ada95 and the other languages supported by the JVM and .NET.

2.2.1.2.2 SourceFile

	Metaclass
	SourceFile

	Extends
	Component

	Description
	A file containing the source code for a module, typically representing one or more classes or interfaces.

In UML, a source file is represented as a component with the stereotype «source».

	Refs
	[5, p. 2-20, Stereotypes], [12, p. 350, Kinds of components], [12, p. 355, Modeling Source Code]

	Attribute
	fileName

	Description
	The name of the file

	Type
	StringValue

	Attribute
	version

	Description
	The version number (if any) associated with the file

	Type
	StringValue

	Attribute
	language

	Description
	The language (C++, Java, Ada95, etc.) in which the source code is written

	Type
	StringValue


2.2.1.2.3 ExecutableComponentLibrary

	Metaclass
	ExecutableComponentLibrary

	Extends
	Component

	Description
	A library containing one or more executable components


2.2.1.3 Language mappings

SourceFile maps to the program source files (.h, .cpp, .java, etc.) associated with the target language.  

ExecutableComponentLibrary maps to Java JAR files, .NET assemblies, and Windows DLLs.

In most C++ implementations, a translation unit corresponds to a source file after preprocessing [46, p. 197, section 9.1 Separate Compilation]. In most Java implementations, a translation unit (referred to as a compilation unit) corresponds to a source file, which may in turn import and export other compilation units. “Types declared in different compilation units can depend on each other, circularly. A Java compiler must arrange to compile all such types at the same time” [38, pp. 117-118, section 7.3 Compilation Units].

2.2.2 ModelElement 

	Metaclass
	ModelElement

	Description
	An abstraction drawn from the system being modeled.

	Refs
	[5, p. 2-14, Figure 2-5], [5, pp. 2-47, 2-67, 2-82, 2-85]

	Attribute
	name

	Description
	The name of the element within its Namespace

	Type
	Name

	Attribute
	id

	Description
	The id that uniquely identifies the element in XML

	Type
	StringValue

	Attribute
	documentation

	Description
	An optional comment, description, or other explanation of the element

	Type
	StringValue

	Refs
	[5, pp. 2-37, 2-64]

	AssociationEnd
	namespace

	Description
	The namespace to which the element belongs (if any)

	Type
	Namespace

	Multiplicity
	0 .. 1

	Attribute
	visibility

	Description
	The visibility of the element in the namespace (if any)

	Type
	VisibilityKind

	CompositeEnd
	templateParameter

	Description
	An optional list of template parameters associated with the element

	Type
	Sequence (TemplateParameter)

	Multiplicity
	*

	CompositeEnd
	binding

	Description
	An optional binding specifying how the model element has been instantiated from another model element with template parameters (if indeed it was)

	Type
	Binding

	Multiplicity
	0..1

	CompositeEnd
	constraint

	Description
	The constraints (if any) associated with the element, in addition to those defined for it by UML

	Type
	Set (Constraint)

	Multiplicity
	*

	CompositeEnd
	specDefinition

	Description
	Pseudo attributes and operations defined solely to support the formal specification of other constraints (as in [9, section 2.4.4])

	Type
	Set (Constraint)

	Multiplicity
	*

	CompositeEnd
	taggedValue

	Description
	An arbitrary property associated with the element based on an associated tag definition.  

Tags are simple name-value pairs.  The values of tags are arbitrary strings.

	Type
	Set (TaggedValue)

	Multiplicity
	*

	AssociationEnd
	stereotype

	Description
	The stereotypes (if any) associated with the metaclass.

Each stereotype Extends the metaclass through the definition of additional constraints and tag definitions [5, p 2-82].  Constraints and tag definitions may also be directly associated with an individual element (below).

	Type
	Set (Stereotype)

	Multiplicity
	*


Model elements have names and may be associated with a namespace.  

A distinct id identifies the element in XML.  It may be composed of the element’s name and a number, or take any other form that ensures the id is unique within the definition of the overall model that contains the element.

Documentation may optionally be associated with model elements, representing comments or other descriptions.  

Model elements may also be stereotyped and tagged with arbitrary meta-level properties, as an extension to the predefined semantics of UML.

Model elements with template parameters represent templates.  Any model element may be parameterized, and any model element may be an instantiation of another. 

2.2.2.1 Grammar

templateParameter ::= ‘(‘ ( <TemplateParameter> )? (‘,’ <TemplateParameter>)* ‘)’

TemplateParameter ::= <TypeParameter> | <inout-Parameter>

TypeParameter ::= <name> ‘:’ ‘type’ <baseType>

inout-Parameter ::= (<kind>)? <name> ‘:’ <type> (‘=’ <defaultValue>)?
<TypeParameter> represents a TypeParameter, while <inout-Parameter> represents a Parameter whose kind is ‘in’, ‘out’, or ‘inout’.

<name> and <baseType> are the values of the corresponding TypeParameter properties.

<kind>, <name>, <type>, and <defaultValue> are the values of the corresponding Parameter properties.

2.2.2.2 Semantics

The semantics of ModelElement are those defined by UML [5, pp. 2-47, 2-67, 2-82, 2-85].  

If the model element is an instanitation of another, then the arguments associated with its binding must be type compatible with the corresponding template parameters of the other element.

2.2.2.3 Related classes

2.2.2.3.1 TemplateParameter

	Metaclass
	TemplateParameter

	Extends
	ModelElement

	Description
	A type or value used to parameterize a model element


The semantics of TemplateParameter are those common to TypeParameter and Parameter.

2.2.2.3.2 Binding

	Metaclass
	Binding

	Extends
	Relationship

	Description
	A relationship that specifies how one model element is instantiated from another model element with template paramters

	Refs
	[5, pp. 2-27, 2-48, 2-60, 2-78, 3-54]

	AssociationEnd
	instantiationOf

	Description
	The model elements to be instantiated

	Type
	ModelElement

	CompositeEnd
	templateArgument

	Description
	A list of template arguments

	Type
	Sequence(ConstantExpression)

	Multiplicity
	*


The semantics of Binding are based on those specified by UML [5, pp. 2-27, 2-48, 2-60, 2-78].

The template arguments must be constant expressions. 

2.2.2.3.3 FriendRelationship

	Metaclass
	FriendRelationship

	Extends
	Relationship

	Description
	A relationship between model elements that implies the target element is visible/accessible  to the source element

	Refs
	[5, p. 2-53], [5, p. 3-92, Figure 3-50]

[14, pp. 27, 65, 229, …]


The semantics of the FriendRelationship are those defined by UML [5, p. 2-53].

FriendRelationships map to use of the keyword friend in C++.

2.2.2.4 Language mappings

None.  ModelElement is an abstract metaclass.

2.2.3 Namespace 

	Metaclass
	Namespace

	Extends
	ModelElement

	Description
	A model element that contains (owns) a set of uniquely named model elements.  

Each contained element is owned by at most a single namespace.   The concrete subclasses of Namespace constrain the type of elements the Namespace may contain.  Namespace is an abstract metaclass.

	Refs
	[5, p. 2-14, Figure 2-5], [5, pp. 2-49, 2-68]

	CompositeEnd
	ownedElement

	Description
	The elements owned by the Namespace

	Type
	Set (ModelElement)

	Multiplicity
	*


A Namespace “owns” the model elements that appear in it, and no model element may appear in more than one namespace.

2.2.3.1 Semantics

The semantics of Namespace are those defined by UML [5, pp. 2-49, 2-68].  Elements appearing within the namespace, other than generalizations, must have unique names.  

Subtypes of Namespace may restrict the types of model elements that the name space contains.

2.2.3.2 Language mappings

None.  Namespace is an abstract metaclass.  Package (rather than Namespace) maps to the more concrete notion of a C++ (or MS-IL) namespace.

2.2.4 Relationship 

	Metaclass
	Relationship

	Extends
	ModelElement

	Description
	A semantic connection among model elements

	Refs
	[5, p. 2-15, Figure 2-6], [5, pp. 2-36, 2-54]


A relationship represents a connection between model elements. 

2.2.4.1 Semantics

The semantics of Relationship depend upon its subtype.

The children of Relationship include Association and Generalization, each representing a different type of relationship, with specific semantics.

Other types of relationships are also defined by UML, but are not currently of interest here.

2.2.4.2 Language mappings

None.  Relationship is an abstract metaclass.

2.2.5 GeneralizableElement 

	Metaclass
	GeneralizableElement

	Extends
	ModelElement

	Description
	A model element that may be subtyped (as part of a generalization relationship)

	Refs
	[5, p. 2-14, Figure 2-5], [5, pp. 2-42, 2-65, 2-75]

	Attribute
	isAbstract

	Description
	Is the element abstract (rather than concrete)?

	Type
	Boolean

	DefaultValue
	false

	Attribute
	isLeaf

	Description
	Is this element a leaf, which cannot have associated subtypes?

	Type
	Boolean

	DefaultValue
	false

	AssociationEnd
	generalization

	Description
	The parents (supertype) relationships involving the generalizable element

	Type
	Set (Generalization)

	Multiplicity
	*


Generalizable elements may be connected via subtyping (Generalization) relationships. Generalization implies both the inheritance of namespace elements and substitutability (subtyping).

2.2.5.1 Semantics

The semantics of GeneralizableElement are those defined by UML [5, pp. 2-42, 2-65, 2-75].  

Circular inheritance is not allowed.  

To be referenced, parents must appear in the namespace of the GeneralizableElement (either directly or by importing them).  

A GeneralizableElement may only be a child of a GeneralizableElement of the same kind.

Most importantly, the use of the subtyping (Generalization) relationship between generalizable elements implies behavioral subtyping in accordance with LSP: an instance of a child is substitutable for an instance of a parent in any context in which the parent appears.  See the subtypes of GeneralizableElement (such as Classifier) for related constraints.

2.2.5.2 Related types

2.2.5.2.1 Generalization

	Metaclass
	Generalization

	Extends
	Relationship

	Description
	The subtyping relationship, which implies substitutability in accordance with LSP

	Refs
	[5, p. 2-15, Figure 2-6], [5, pp. 2-44, 2-66, 2-75, 3-86, 3-87]

	AssociationEnd
	parent

	Description
	The supertype in the generalization relationship

	Type
	GeneralizableElement

	Attribute
	implictReplication

	Description
	Did the user implicitly specify that inherited elements be redefined/replicated, e.g. in cases involving repeated inheritance [20, p. 547]?

	Type
	Boolean

	Attribute
	implementation

	Description
	Does inheritance involve only the implementation?

	Type
	Boolean


The semantics of Generalization are those defined by UML 1.4.  In accordance with this definition, the use of Generalization implies both inheritance and compliance with the subtyping rules defined by LSP.  Details specific to the various types of Generalizable elements are discussed as part of their individual definitions (see Classifier and Class).  The semantics of inheritance and subtyping have also been extended to include the redefinition of operations and fields as in current UML 2 proposals (see Operation and Field).   

The implicitReplication property should be set to true when the user implicitly specifies that inherited elements be redefined/replicated, e.g. in cases where elements are inherited by more than one path through the inheritance hierarchy (repeated inheritance [20, p. 547]).  In C++, this corresponds to the default use of non-virtual inheritance.

There are also additional properties of the Generalization relationship that we can include if we later need/want them, e.g. subtypes may be grouped into disjoint sets using discriminants, each such group may be marked as complete or incomplete, etc.

2.2.5.3 Language mappings

GeneralizableElement maps to class and interface definitions in target languages such as C++ and Java.  The property isAbstract determines whether the target language class is marked as abstract.  In Java, the property isLeaf determines whether the target language definition is marked as final.

In UML, the value of the implementation property (above) is based on use of the UML stereotype «implementation».

In C++, the implementation property should be set to true when inheritance is declared to be protected or private (rather than public).

In C++, the value of the implicitReplication property should be set to true when the user fails to associate the keyword virtual with an inheritance relationship (since such relationships implicitly specify the replication/redefinition of repeatedly inherited elements).

2.2.6 Classifier 

	Metaclass
	Classifier

	Extends
	Namespace, GeneralizableElement


	Description
	A model element that defines a set of structural and behavioral features, e.g. an Interface or Class.

	Refs
	[5, p. 2-14, Figure 2-5], [5, pp. 2-30, 2-61]

	CompositeEnd
	inv

	Description
	An invariant considered a part of the precondition and postcondition of every public operation defined by the classifier and its subtypes

	Type
	Set (Constraint)

	DefaultValue
	{true}

	Multiplicity
	*

	CompositeEnd
	feature

	Description
	The set of features defined by the classifier

	Type
	Set (Feature)


Classifier is the parent of Interface, Class, and Datatype in the metamodel.  It defines structure and behavior in terms of features (attributes, operations, and methods). The features, associations, and constraints defined by a Classifier are inherited by all its subtypes (children).

2.2.6.1 Semantics

The semantics of Classifier are those defined by UML [5, pp. 2-30, 2-61].  However, only the attributes and associations given above are of interest.

Inv supports the specification of user defined invariants in an OCL-like style. It is equivalent to associating a constraint with the element that has the stereotype «invariant», but less cumbersome to write.  Such invariants must be established by constructors (object initialization methods) and maintained by other operations associated with the Classifier.  The invariant is implicitly a part of the precondition and the postcondition of every public operation.

The use of the subtyping (Generalization) relationship between classifiers implies behavioral subtyping as well as inheritance: an instance of a child is substitutable for an instance of a parent in any context in which the parent appears.  The required relationships between parent and child elements are those defined by Liskov [18], and described (less formally) by Meyer [19][20].
The subtyping relationship can be extended to include multiple dispatch as described by Castagna [21] and Leavens [39] by stereotyping the Classifier (with «multipleDispatch»).
The UML 1.4 semantics of for inheritance involve taking the union of the all the features inherited by a given classifier together with those defined by the classifier itself.  The model is considered ill-formed if this result contains more than one feature with the same signature.  
This rule is applied recursively to deal with hierarchies with a depth greater than two, i.e. the feature set formed for each classifier is inherited by each of its children, the feature set formed for each of these children is inherited by their children, etc.
Because features are combined using union, each inherited feature will appear only once in the result, even if it is inherited by more than one path (appears in the feature set of more than one parent).  [In the terminology of Bertrand Meyer [Object Oriented Software Construction], features are shared rather than replicated]. Because a Classifier is a Namespace, the resulting set of features may not contain different features with the same signature. 

The introduction of feature redefinition in UML 2 extends these semantics.  If redefinition is not used, the results are the same as before. Where redefinition is used, however, we replace all redefined features inherited by a classifier with their new definitions before we form the overall union.  [This gives us a choice of replicating features if we explicitly redefine them but does not affect the fact that repeatedly inherited features are shared by default].
The semantics of inheritance and subtyping are discussed further in the definitions of Generalization and Class.  The redefinition of inherited elements is discussed in the definitions for Operation and Field.   

2.2.6.2 Language mappings

Classifier is an abstract metaclass and has no direct mapping to most languages.  Specific types of classifiers (e.g., classes and interfaces), however, do have a direct mapping to corresponding language features.
In comparison to most programming languages (e.g., C++, Java, Eiffel), separately defined features with the same signature do not have the same identity in XCIL.  This allows us to distinguish repeated inheritance (inheritance of the same feature by more than one path) from the inheritance of independently defined features that happen to have the same signature.
Consider the C++ classes A, B, C, and D, arranged to form a diamond:

Example 1.  Assume A defines an implementation of a member function f and a field x of type int.

Let B and C publicly inherit from A, specifying A as a virtual base class (class B : virtual public A {…}; class C: virtual public A {…};).

Let D publicly inherit from B and C (class D : public B, public C {…};).

This is represented in XCIL as follows:

Class A defines an operation f, a method f that implements this operation, and an attribute x.

The property isAbstract of class A is set to false since the definition includes a method and a field.

Classes B and C are connected to A by Generalization’s in which A is specified to be the parent. The property implicitReplication is set to false since the user has explicitly specified that repeatedly inherited elements be shared by making A a virtual base class.

B and C each inherit the operation f, the method f, and the attribute x from A.

D inherits these features as well, via the generalizations connecting it to both B and C.

Because the semantics of UML inheritance involve union, those features that are inherited by more than a single path appear only once in D (are shared).

Example 2.  Assume A defines an implementation of a member function f and a field x of type int.

Let B and C publicly inherit from A, specifying A as an ordinary (non-virtual) base class (class B : public A {…}; class C: public A {…};).

Let D publicly inherit from B and C (class D : public B, public C {…};).

One way to represent this in XCIL is as follows:

Class A defines an operation f, a method f that implements this operation, and an attribute x.

The property isAbstract of class A is set to false since the definition includes a method and a field.

Classes B and C are connected to A by Generalization’s in which A is specified to be the parent.  The property implicitReplication is set to true since the user has implicitly specified that repeatedly inherited elements be replicated (the default in C++).

B and C each inherit the operation f, the method f, and the attribute x from A.

Because the semantics of C++ dictate that the elements inherited from A be replicated when inherited by more than one path, D contains:

· new definitions of the operation f and the field x that redefine/rename those inherited from B,

· new definitions of the operation f and the field x that redefine/rename those inherited from C,

The implicitRedefinition property is set to true for each of these new definitions since they were not explicitly specified by the user, but introduced implicitly to match the semantics of C++.

Due to their redefinition, the features inherited from A by D are replicated rather than shared.

The features must be renamed as part of this redefinition to avoid a violation of the UML constraint that all features within the same namespace (the namespace associated with D) have distinct signatures.

Technically, the names of the new features need not correspond to their old names, although it is convenient to generate them by qualifying their old names with the names of the parent classes, e.g. giving us the features B.f, B.x, C.f, and C.x. 

Example 3.  Assume A defines a pure virtual member function f.

Let B and C publicly inherit from A, specifying A as a virtual base class (class B : virtual public A {…}; class C: virtual public A {…};).

Let B redefine the inherited operation f, specifying a more specific return type.

Let D publicly inherit from B and C (class D : public B, public C {…};).

This is represented in XCIL as follows:

Class A defines an operation f.

The property isAbstract of class A is set to true since no method is associated with f.

Classes B and C are connected to A by Generalization’s in which A is specified to be the parent.  The property implicitReplication is set to false since the user has explicitly specified that repeatedly inherited elements be shared by making A a virtual base class.

B introduces a new definition of f with a different return parameter type.  This version of the operation redefines the version of operation f associated with class A.

C inherits the operation f from A.

D inherits both definitions of f, which are considered distinct. This would normally lead to the definition of two operations in D when we take the union of inherited features. The semantics of C++, however, dictate that the two definitions of f be joined in class D.

To match these semantics, we introduce a new definition of f in class D that redefines both the version of f inherited from B and that inherited from C. Because this does not represent a redefinition explicitly specified by the user, the property implicitRedefinition is set to true.

Example 4.  Finally consider the case in which we independently define operations with the same signature in different parent classes.

Assume C++ classes B and C both define a member function f with the same signature.

Let D publically inherit from B and C (class D : public B, public C {…};).

In C++, the two inherited definitions of f are treated as a single definition in class D.

This is represented in XCIL as follows:

Class B defines an operation f with a given signature.

Class C defines a different operation f with the same signature.

In order to match the semantics of C++, we introduce a third definition of f in class D that redefines those inherited from B and C.  Because this does not represent a redefinition explicitly specified by the user, the property implicitRedefinition is set to true.

2.2.7 Feature 

	Metaclass
	Feature

	Extends
	ModelElement

	Description
	An element that describes the structure or behavior of a classifier

	Refs
	[5, p. 2-14, Figure 2-5], [5, pp. 2-40, 2-65]

	Attribute
	ownerScope

	Description
	Does the feature belong to the Classifier (classifier) or to instances of the Classifier (instance)?

	Type
	ScopeKind

	DefaultValue
	instance

	Attribute
	visibility

	Description
	The visibility of the feature to other classifiers (public, protected, private, package)


The attribute ownerScope specifies whether the feature belongs to the classifier, or to instances of the classifier.

Visibility is inherited from ModelElement and specifies the level of access provided to other classifiers.

2.2.7.1 Semantics

The semantics of Feature are those defined by UML [5, pp. 2-40, 2-65].  However, only the attributes and associations given above are of interest.

2.2.7.2 Language mappings

An ownerScope with the value classifier corresponds to a Java or C++ field/method/function marked as static.

The values of visibility directly correspond to those supported by Java and C++.

2.2.8 Field

	Metaclass
	Field

	Extends
	Feature, Variable

	Description
	A feature whose value is a part of the state of an object or class, e.g. an attribute or association

	Refs
	StructuralFeature [5, p. 2-14, Figure 2-5], [5, pp. 2-54, 2-69]

	AssociationEnd
	redefines

	Description
	Any inherited fields overridden (redefined) by this field

	Type
	Set (Field)

	Multiplicity
	*

	Attribute
	implicitRedefinition

	Description
	Does the field represent an implicit redefinition (e.g., to match a particular language semantics) rather than a redefinition explicitly specified by the user? 

	Type
	Boolean

	DefaultValue
	false

	Attribute
	multiplicity

	Description
	The number of values that the feature may hold, typically specified as a range (min .. max) or ‘*’ (zero or more).

In the common case in which the multiplicity is 1..1, the feature is a scalar.

	Type
	Multiplicity

	Attribute
	ordering

	Description
	Are the values associated with the feature ordered?

	Type
	OrderingKind


Field inherits type from Variable.
Because Field is a kind of Feature, fields may be associated either with a Classifier, or with each instance of a classifier (through the value of ownerScope).
The redefines relationship allows a field in a subtype to redefine one or more inherited fields.  The redefined fields need not have the same name as the new definition (i.e., renaming is one form of redefinition).
2.2.8.1 Semantics

The semantics of Field are those defined by UML [5, pp. 2-54, 2-69] for StructuralFeature.

The type of a Field must be a Class, DataType, or Interface.
Field redefinition is based on current UML 2 proposals.  Semantically it implies compliance with the Liskov Substitution Principle (LSP) with respect to changes in the field’s signature and visibility.  A field may also be renamed with no change in semantics.  No other properties can be changed by redefinition.
When a single field redefines more than one inherited field, the inherited fields are effectively joined in the inheriting classifier.  

The property implicitRedefinition allows us to distinguish between cases where redefinition is used implicitly to match the semantics of a particular language (e.g., C++ or Java) and cases in which the redefinition is explicitly specified by the user as part of that language (as in UML 2 and Eiffel).

2.2.8.2 Language mappings

Field maps to the concept of a field in Java, and to the concept of a data member in C++.  Fields may hold either data values (attributes) or pointers to other entities (which represent the ends of an association). 

2.2.9 BehavioralFeature 

	Metaclass
	BehavioralFeature

	Extends
	Feature

	Description
	The specification or implementation of an executable feature

	Refs
	[5, p. 2-14, Figure 2-5], [5, pp. 2-26, 2-59], [5, p. 2-102, Figure 2-14], [5, p. 5-12, Figure 5-10]

	Attribute
	isQuery

	Description
	Does execution of the feature return a result without side effects?

	Type
	Boolean

	DefaultValue
	false

	CompositeEnd
	pre

	Description
	A precondition associated with execution of the feature

	Type
	Set (Constraint)

	DefaultValue
	{true}

	Multiplicity
	*

	CompositeEnd
	post

	Description
	A postcondition associated with execution of the feature

	Type
	Set (Constraint)

	Multiplicity
	*

	AssociationEnd
	raisedSignal

	Description
	A list of signals raised by the feature, including exceptions thrown

	Type
	Sequence (Signal)

	Multiplicity
	*


Behavioral features include both behavioral specifications (operations) and implementations (methods).

2.2.9.1 Semantics

The semantics of BehavioralFeature are those specified by UML [5, pp. 2-26, 2-59].  

Pre and post provide a formal specification of the feature itself in an OCL-like style.  Strictly speaking, they are provided simply as a convenient way to write these types of constraints, and are semantically equivalent to attaching constraints with the stereotypes «precondition» and «postcondition» to the element (which is a bit more cumbersome for the modeler).

Raised signals representing exceptions have a semantics defined by Exception.

Raised signals representing asynchronous events have a semantics defined by TBD.

2.2.9.2 Language mappings

BehavioralFeatures map to functions in C++ and to methods in Java.

Setting isQuery to true corresponds to declaring a C++ function const (specifying that it does not modify the target object, ‘this’).

The raisedSignal list corresponds to the specification of a list of exceptions thrown by a function or method in these languages.

raisedSignal also allows us to specify the signals thrown by a C function (which represent asynchronous events).

TBD: Consider how Java and MS-IL events fit with signals (if at all).

2.2.10 Attribute

	Metaclass
	Attrribute

	Extends
	Field 

	Description
	A structural feature capable of holding one or more values of a specified type.

	Refs
	[5, p. 2-14, Figure 2-5], [5, pp. 2-25, 2-59, 3-42], [5, p. B-3, attribute], 

[26, CodeMemberField],

.field [27, p. 13],

.field  [36, p. 31, 2.5]


Attribute inherits type and most of its other interesting properties from Field.  It adds the ability to specify an initial value, which can be computed at the time the object is initialized.  The values of attributes associated with instances may also be set by constructors.

2.2.10.1 Semantics

The semantics associated with attributes and attribute initialization are those common to UML [5, pp. 2-25, 2-59], MS-IL fields [27, p. 13], and fields in the JVM [36, p. 31, 2.5].  

This includes constraints on the order of the order of initializer/constructor execution, both for a single class and for the system as a whole.

The type of the Expression used to initialize an Attribute must be compatible with its type.

Data invariants over the attributes of a class may be specified as class level constraints.  It is the responsibility of the class constructor to establish the invariant, and the responsibility of other operations defined or inherited by the class to maintain it.  Effectively the class invariant is a part of the postcondition for the class constructor, a part of the precondition for the class destructor, and a part of both the precondition and the postcondition for every other public operation.

To avoid dangling pointers [33, p. 6, BIL Pointer Confinement Policy], no attribute may hold a reference to a local variable or parameter allocated in a method’s stack frame.

2.2.10.2 Language mappings

Attributes map to fields in Java and to data members in C++.  

In contrast to association ends, which are also represented as fields, the values of attributes belong to a single instance of a classifier.  They are not shared (referenced by more than one object).

One simple way to make this distinction is to consider all fields that represent pointers and collections of pointers to be association ends.  The remaining fields are then attributes.

It is unclear how the order of initialization in languages such as C++ (which leave elaboration order undefined) maps to the proposed semantics.

2.2.11 Operation

	Metaclass
	Operation

	Extends
	BehavioralFeature

	Description
	The specification of a service that can be requested from an object to effect behavior

	Refs
	[5, p. 2-14, Figure 2-5], [5, pp. 2-50, 2-69, 2-76, 3-45], [5, p. B-13, operation]

[26, CodeMemberMethod],

.method [27, p. 14],

.method [36, p. 34, 2.6]

	AssociationEnd
	redefines

	Description
	Any inherited operations overridden (redefined) by this operation

	Type
	Set (Operation)

	Multiplicity
	*

	Attribute
	implicitRedefinition

	Description
	Does the operation represent an implicit redefinition (e.g., to match a particular language semantics) rather than a redefinition explicitly specified by the user?

	Type
	Boolean

	DefaultValue
	false

	Attribute
	isLeaf

	Description
	Is this a leaf operation, which cannot be overridden in subclasses?

	Type
	Boolean

	DefaultValue
	false

	Attribute
	concurrency

	Description
	What synchronization policy applies to calls to the operation?

	Type
	CallConcurrencyKind

	DefaultValue
	sequential

	CompositeEnd
	parameter

	Description
	The operation parameters.

	Type
	Sequence (Parameter)

	Multiplicity
	*

	Attribute
	variableParameterList

	Description
	Is the parameter list open ended (variable)?

	Type
	Boolean

	DefaultValue
	false

	Attribute
	implicitConversionOperation

	Description
	Can the operation be used to perform an implicit type conversion?

	Type
	Boolean

	DefaultValue
	false


The redefines relationship allows an operation in a subtype to redefine one or more inherited operations.  The redefined operations need not have the same name as the new definition (i.e., renaming is one form of redefinition). 
2.2.11.1 Grammar

Based on UML [12, p. 129]:

parameter ::= ‘(‘ ( <inout-Parameter> )? (‘,’ <inout-Parameter>)* (‘…’)? ‘)’ (‘:’ <return-Parameter>)?

inout-Parameter ::= (<kind>)? <name> ‘:’ <type> (‘=’ <defaultValue>)?

return-Parameter ::= <type>
<inout-Parameter> represents a Parameter whose kind is ‘in’, ‘out’, or ‘inout’, while <return-Parameter> represents a Parameter whose kind is ‘return’.

<kind>, <name>, <type>, and <defaultValue> are the values of the corresponding Parameter properties. 

An ellipsis (‘…’) indicates additional unspecified parameters may follow (the parameter list is open-ended).

2.2.11.2 Semantics

The semantics of Operation are those common to UML [5, pp. 2-50, 2-69, 2-76], to MS-IL [27, p. 14], and to the JVM [36, p. 34, 2.6].
User defined preconditions and postconditions may be specified as constraints with the stereotypes «precondition» and «postcondition» respectively [5, p. 2-36].

Parameters must be uniquely named. 

The attribute variableParameterList indicates whether the parameter list is open ended.  If set, additional arguments (not appearing in the parameter list) may be supplied with the call.

The value of the variableParameterList attribute is a part of the feature’s signature, i.e., behavioral features with different values of this attribute are distinct.

Only operations with an ownerScope instance may have multiple implementing methods.  Each of these methods must be defined by a different class/package, allowing us to select a unique method based on the run time class of the target object at the point of call (dynamic dispatch).  

An operation with ownerScope classifier must have exactly one implementing method and that method must be associated with the same class/package that defines the operation.
Operation redefinition is based on current UML 2 proposals.  Semantically it implies compliance with the Liskov Substitution Principle (LSP) with respect to changes in the operation’s signature, its visibility, and the types of signals (exceptions) it may raise.  An operation may also be renamed with no change in semantics.  No other properties can be changed by redefinition.
When a single operation redefines more than one inherited operation, the inherited operations are effectively joined in the inheriting classifier.  

The property implicitRedefinition allows us to distinguish between cases where redefinition is used implicitly to match the semantics of a particular language (e.g., C++ or Java) and cases in which the redefinition is explicitly specified by the user as part of that language (as in UML 2 and Eiffel).

2.2.11.3 Subtypes

2.2.11.3.1 InstanceOperation

	Metaclass
	InstanceOperation

	Extends
	Operation

	Description
	An operation associated with the instances of a classifier

	Attribute
	ownerScope

	Value
	instance

	CompositeEnd
	target

	Description
	A parameter representing the target object

	Type
	Parameter


The kind of the target parameter must be in (if the operation is a query) or inout (if it is not).  Its type must be that of the class that defines the operation.

2.2.11.3.2 ClassOperation

	Metaclass
	ClassOperation

	Extends
	Operation

	Description
	An operation associated with a classifier

	Attribute
	ownerScope

	Value
	classifier


2.2.11.4 Language mappings

Operations correspond to purely abstract member functions in C++, and to abstract methods in Java.  isLeaf indicates whether an operation is final, in the Java sense.  Java’s use of the keyword synchronized corresponds to concurrenty = guarded.

When concrete functions members (or concrete methods) are defined by subclasses, they map to become XML method definitions linked to the XML definition of the operation.

When we encounter a concrete member function (method) that has no corresponding operation definition, we first create one, then create a method definition, and link the two. 

The variableParameterList attribute is used to indicate that a call to a function may accept a variable number of arguments (as in C++).

implicitConversionOperation can be used to mark a C++ constructor [46, p. 284, section 11.7.1] or conversion operator [46, p. 275, section 11.4] that can be used to perform an implicit type conversion.

2.2.12 MethodType

	Metaclass
	MethodType

	Extends
	ReferenceType, AddressableEntity

	Description
	The type of a behavioral feature, represented by the types of its parameters

	CompositeEnd
	parameter

	Description
	The method parameters.

	Type
	Sequence (Parameter)

	Multiplicity
	*

	Attribute
	variableParameterList

	Description
	Is the parameter list open ended (variable)?

	Type
	Boolean

	DefaultValue
	false


A MethodType provides a definition of the parameter types of an operation sufficient to support the declaration of variables that represent method references and pointers. 

2.2.12.1 Grammar

Based on UML [12, p. 129]:

parameter ::= ‘(‘ ( <inout-Parameter> )? (‘,’ <inout-Parameter>)* (‘…’)? ‘)’ (‘:’ <return-Parameter>)?

inout-Parameter ::= (<kind>)? <name> ‘:’ <type> (‘=’ <defaultValue>)?

return-Parameter ::= <type>
<inout-Parameter> represents a Parameter whose kind is ‘in’, ‘out’, or ‘inout’, while <return-Parameter> represents a Parameter whose kind is ‘return’.

<kind>, <name>, <type>, and <defaultValue> are the values of the corresponding Parameter attributes. 

An ellipsis (‘…’) indicates additional unspecified parameters may follow (the parameter list is open-ended).

2.2.12.2 Semantics

Parameters must be uniquely named. 

The attribute variableParameterList indicates whether the parameter list is open ended.  If set, additional arguments (not appearing in the parameter list) may be supplied with the call.

The value of the variableParameterList attribute is a part of the feature’s signature, i.e., behavioral features with different values of this attribute are distinct. 

2.2.12.3 Language mappings

The variableParameterList attribute is used to indicate that a call to a function may accept a variable number of arguments (as in C++).

2.2.13 Method

	Metaclass
	Method

	Extends
	BehavioralFeature, MethodType

	Description
	The implementation of an operation

	Inv
	-- Compared to the pre and post for the operation implemented by the method
-- The method’s pre must be weaker than or the same as that for the operation
-- The method’s post must be stronger than or the same as that for the operation

	Refs
	[5, p. 2-14, Figure 2-5], [5, pp. 2-47, 2-66], [5, p. B-11, method],

[26, CodeMemberMethod],

.method [27, p. 14],

.method [36, p. 34, 2.6]

	AssociationEnd
	specification

	Description
	The operation implemented by the method

	Type
	Operation

	Attribute
	implicitOverride

	Description
	Does the method implicitly override an inherited method with a matching signature? 

	Type
	Boolean

	DefaultValue
	false

	Attribute
	inline

	Description
	Should calls to the method be inlined (if possible)?

	Type
	Boolean

	DefaultValue
	false

	CompositeEnd
	body

	Description
	The implementation of the method as a block

	Type
	Block


A method provides an implementation for an operation.  Often a number of methods (associated with different classifiers) provide alternate implementations for the same operation.  The body of the method consists of a series of statements. 

2.2.13.1 Semantics

The semantics of Method are those common to UML [5, pp. 2-47, 2-66], MS-IL [27, p. 14], and the JVM [36, p. 34, 2.6].

If the operation is a query, then the body of the method must not produce any side effects.

The signature of the method must “match” that of the operation it implements.

Compared to the pre and postconditions for the operation it implements, the method’s precondition must be weaker than or the same as that associated with the operation, and the method’s postcondition must be stronger than or the same (in accordance with LSP).
The visibility of the method must be the same as the operation it implements.

The operation implemented by the method must either be defined by or inherited by the classifier that owns the method.

The method must implement the last overridden definition of the operation.

There may be at most one method defined for each operation in a given classifier.
Additional constraints, however, are required to ensure the body of the method is well-formed and consistent with the specification.  For example, if the signature of the operation specifies a return parameter, the method body must terminate with the execution of a MethodReturn that generates a value of the appropriate type.  If the operation permits the throwing of only certain exceptions, then the throwing of an exception that is not in this list should not be permitted.  And so on.

The attribute implicitOverride indicates whether the method implicitly overrides an inherited method with a matching signature.  If the method does not override an inherited method at all, or if the overriding is explicitly specified by the user (as in C#), this property should be set to false.  Otherwise, if the method does override an inherited method and this is implied by language rules for matching signatures (as in C++ and Java), this property should be set to true.

The attribute inline is regarded as a hint to the compiler that the method should be considered as a candidate for inlining.  It does not gurantee that calls to the method will always be inlined.  In particular, calls that involve dynamic dispatch are generally not inlined irrespective of the value of this attribute.

The inlining of a method should not affect its semantics.

2.2.13.2 Subtypes

2.2.13.2.1 InstanceMethod

	Metaclass
	InstanceMethod

	Extends
	Method

	Description
	A method associated with the instances of a classifier

	Attribute
	ownerScope

	Value
	instance

	CompositeEnd
	target

	Description
	An parameter representing the target object

	Type
	Parameter


The kind of the target parameter must be in (if the operation is a query) or inout (if it is not).  Its type must be that of the class that defines the operation.

2.2.13.2.2 ClassMethod

	Metaclass
	ClassMethod

	Extends
	Method

	Description
	A method associated with a classifier

	Attribute
	ownerScope

	Value
	classifier


2.2.13.3 Language mappings

Member functions in C++ and methods in Java that are concrete (are not declared pure virtual or abstract) map to methods.  

2.2.14 Parameter

	Metaclass
	Parameter

	Extends
	Variable, TemplateParameter

	Description
	An unbound variable used in the specification of an operation, a message, an event, a template, etc.

	Refs
	[5, p. 2-14, Figure 2-5], [5, p. 2-51, 2-69]

[26, CodeParameterDeclarationExpression]

	Attribute
	kind

	Description
	The kind of parameter (in, out, inout, return)

	Type
	ParameterDirectionKind

	CompositeEnd
	defaultValue

	Description
	An expression whose value is used as the argument for the parameter when no actual argument is supplied

	Type
	Expression

	Multiplicity
	0 .. 1


2.2.14.1 Semantics

The semantics of Parameter include those common to UML [5, p. 2-51, 2-69], MS-IL, and the JVM.

The defaultValue of a Parameter must be compatible with its type.

When default parameter values are overridden, the default parameter value associated with a call should always be determined by the run time type of the target object.

2.2.14.2 Language mappings

The kind property is related to the use of keywords such as const (in C++), final (in Java), or in, out and inout (in Ada), which restrict read/write access to individual parameters.

C++ does not handle overridden default parameter values correctly, as explained by Scott Meyers [47, Item 38]. 

2.2.15 TypeParameter

	Metaclass
	TypeParameter

	Extends
	TemplateParameter

	Description
	A template parameter that represents a type, e.g. the element type of a collection

	Refs
	[44, p. 342, type-argument], [46, p. 331, section 13.2.3, type parameter]

	AssociationEnd
	baseType

	Description
	The most general type that can be supplied as an argument

	Type
	Classifier

	DefaultValue
	Classifier

	Multiplicity
	0..1


2.2.15.1 Semantics

The semantics of TypeParameter are those common to template type parameters in C++ and constrained generic type parameters in languages such as Ada95 and Eiffel.

2.2.15.2 Language mapping

A TypeParameter with  baseType of Class maps to a template type parameter in C++, specified using the keyword class [46, p. 331].  In languages like Eiffel that support constrained generics, the baseType may be set to a subtype of Class rather than Class itself.

2.2.16 Variable

	Metaclass
	Variable

	Extends
	AddressableEntity

	Description
	An assignable entity that represents a  portion of the system’s state, i.e. an attribute, an array element, an out or inout parameter, or a local variable

	Attribute
	volatile

	Description
	May the variable’s value be changed externally, e.g., by hardware?

	Type
	Boolean

	DefaultValue
	false

	AssociationEnd
	type

	Description
	The type of the variable

	Type
	Classifier

	Attribute
	changeability

	Description
	What changes to the value of the field are permitted after initialization?

	Type
	ChangeableKind

	DefaultValue
	changeable

	CompositeEnd
	initialValue

	Description
	An expression that specifies the initial value of the variable (if any)

	Type
	Expression

	Multiplicity
	0..1


The term variable is used by many authors to refer to any assignable entity.  Unfortunately the same term is used by others to refer only to local variables.  In XCIL, we use the terms Variable (for any assignable entity) and LocalVariable (for a variable defined by a method body).

2.2.16.1 Semantics

The semantics of Variable are those common to all its subtypes, i.e. Attribute, AssociationEnd, ArrayElement, Parameter, and LocalVariable. 

The meaning of volatile is that common to C++ and Java. 

2.2.16.2 Language mappings

Individual language mappings are provided for each subtype of Variable (Attribute, AssociationEnd, ArrayElement, Parameter, and LocalVariable).

2.2.17 Constraint

	Metaclass
	Constraint

	Extends
	ModelElement

	Description
	A restriction associated with a model element, e.g., a class invariant, a precondition, postcondition, or state invariant

	Refs
	[5, p. 2-14, Figure 2-5], [5, pp. 2-35, 2-64, 2-78, 2-85]

	AssociationEnd
	constrainedElement

	Description
	The model element to which the constraint applies.

	Type
	ModelElement

	CompositeEnd
	body

	Description
	The boolean expression that expresses the constraint

	Type
	BooleanExpression


2.2.17.1 Semantics

Constraints [5, p. 2-35] are defined as well formed boolean expressions over model elements.  UML provides OCL as a notation for specifying constraints
. UML, however, permits the use of tool specific and target language specific notations as well.  

2.2.17.2 Subtypes

2.2.17.2.1 OclConstraint

	Metaclass
	OclConstraint

	Extends
	Constraint

	Description
	A constraint expressed in the OMG’s Object Constraint Language

	Refs
	[5, chapter 6]

	CompositeEnd
	body

	Type
	OclExpression


2.2.17.3 Language and tool mappings

Constraints may either be directly expressed in tool specific and language specific notations (such as those for T-VEC, the Java Modeling Language (JML), and Perfect Developer).  They may also be mapped from OCL to these notations.

2.2.18  ReferenceType

	Metaclass
	ReferenceType

	Extends
	Classifier

	Description
	A type that represents a mutable entity, with state and identity, that can be shared (referenced by more than one entity)

	Refs
	[27, pp. 125..126],

object reference [28, p. 4, section 1.1.2],

[31, p. 55, Chapter 3, Understanding the Common Type System], [31, p. 56, Figure 3.1], [31, p. 58, Figure 3.4], [31, p. 58, Reference Types]

.interface [36, p. 61..61, 278]


2.2.18.1 Semantics

The semantics of ReferenceType are those common to MS-IL and Microsoft’s Common Type System (CTS) [27, pp. 125..126] [31, p. 55, Chapter 3], and to the JVM [36, pp. 61..62, 278].

Reference types include object types (classes), interface types, and pointer types.  Instances of reference types have a potentially changeable state, an identity, and can be shared (aliased). The literal value null is used to specify an undefined reference.

“Reference types have the fundamental property that assignments of such has alias semantics.  If we copy a reference and modify the datum to which the reference refers, then both references will refer to the modified datum.  [Dataypes], by contrast have value semantics for assignment.  If we make a copy of a value structure and modify one copy, the other copy is unchanged.” [31, p. 55..56].

2.2.18.2 Language mappings

ReferenceType maps directly to the use of the term reference type in Microsoft’s Common Type System (and MS-IL), and the JVM.  In both, reference types include interfaces and object classes. Arrays are considered a subtype of object class.  In CTS and MS-IL, subtypes of ReferenceType are also used to represent explicit pointers, both “managed” and “unmanaged”, and references to delegates [31, p. 58, Figure 3.4].  Details are provided with the subtype definitions (for Interface, Class, Array, and Pointer.

2.2.19 Interface

	Metaclass
	Interface

	Extends
	ReferenceType

	Description
	A named set of operations that characterize the behavior of an element

	Refs
	[5, p. 2-17, Figure 2-8], [5, pp. 2-46, 2-66, 2-76, 3-51],

[27, p. 140],

.interface [36, p. 38, 2.7]

	Attribute
	isAbstract

	Value
	true


2.2.19.1 Semantics

The semantics of Interface are those common to UML [5, pp. 2-46, 2-66, 2-76], MS-IL [27, p. 140], and the JVM [36, p. 38, 2.7], extended to permit interfaces to include named constants (as in Java) and methods with class scope (as in MS-IL).

All of the features of an Interface must be operations, named constants (attributes with changeability set to frozen), or methods with an ownerScope set to classifier.

All of the features defined by an Interface must be public.

An Interface definition cannot contain definitions of other model elements (such as classes, other interfaces, etc.). 

An interface must also always be abstract (isAbstract, inherited from GeneralizableElement = true).

2.2.19.2 Language mappings

Interfaces are used to represent C++ classes (and structs) that define only pure virtual member functions, named constants, and static (class level) functions.

They map directly to Java interfaces, and to Java classes that contain only abstract methods.

Java interfaces may be marked as public, making them visible to any code that has access to the package in which they appear.  If an interface is not declared public then it is accessible only within the package in which it is declared. 

In C++, all top level interface definitions are public unless they appear in a nonpublic namespace.

2.2.20 Class

	Metaclass
	Class

	Extends
	ReferenceType, StructuredType, AddressableEntity 

	Description
	A description of a set of objects that share the same set of attributes, operations, methods, associations and semantics

	Refs
	[5, p. 2-15, Figure 2-6], [5, pp. 2-28, 2-60, 2-73, 3-36], [5, p. B-4, class], 
.class [27, pp. 10, 135],

.class [36, p. 30, 2.3; p. 433, B.4.3], .super [36, p. 31, 2.4], .implements [36, p. 39]

	Attribute
	isActive

	Description
	Does each instance of the class define its own thread of control?

	Type
	Boolean


2.2.20.1 Semantics

The semantics of Class are those common to UML [5, pp. 2-28, 2-60, 2-73], MS-IL [27, pp. 10, 135], and the JVM [36, p. 30, 2.3; p. 433, B.4.3], [36, p. 31, 2.4], [36, p. 39].

If a class is concrete (isAbstract, inherited from GeneralizableElement = false), then all the operations of the class should have an associated method.

A Class definition may only contain the definitions of other classes, associations, generalizations, constraints, dependencies, datatypes and interfaces
.

Nested class definitions have a semantics consistent with that for nested classes in C++, Java and other target languages that support a simple nesting of class definitions with no implied linkage between their instances.

The semantics of inheritance and subtyping are discussed in the definitions of Generalization and Classifier.  The redefinition of inherited elements is discussed in the definitions for Operation and Field.

A number of examples related to the XCIL representation of C++ inheritance relationships and overriding are given below.

2.2.20.2 Language mappings

Class maps directly to the concept of class in both C++ and Java. 

Java classes may be marked as public, making them visible to any code that has access to the package in which they appear.  If a class is not declared public then it is accessible only within the package in which it is declared.

In C++, all top level class definitions are public unless they appear in a nonpublic namespace.

Nested classes map to the C++ concept of a nested class.

In Java, nested classes map to statically declared nested classes (not inner classes).

A method (member function) that is declared to be abstract (pure virtual) maps to an operation.

A method (member function) that has a body maps to a method that implements a corresponding operation.

The relationship between operations and methods in XCIL is used to model C++ virtual member functions.  (All methods in Java are virtual unless they are declared final or the definition of the class is sealed).  

Example 1. Consider a class A, with a subclass B.

Let A define a member function f, declared in C++ to be virtual.

Let B override the implementation of f.

This is represented as follows:

In A, we have an operation named f, and a method that implements it.

In B, we have a method f that implements the operation f defined by A.

The property isLeaf is set to false in the definition of the operation f to indicate overriding is permitted (i.e., that f is virtual).

Example 2. Consider a class A, with a subclass B.

Let A define a member function f that in C++ is not declared to be virtual.

Let B also define a member function f.

This is represented as follows:

In A, we have an operation named f, and a method that implements it.

In B, we have a different operation, also named f, and a method that implements it.

The property isLeaf is set to true in the definition of the operation f in class A to indicate overriding does not apply (i.e. that f is not virtual).
The value of this property for the operation f in class B depends upon whether it is declared virtual (and is overriddable in subclasses of B).

Example 3. Consider a class A, with a subclass B.

Let A define member function f, declared in C++ to be both abstract and virtual (i.e., pure virtual).

Let B provide an implementation of f.

This is represented as follows:

In A, we have an operation named f.

In B, we have a method f that implements the operation f defined by A.

The property isLeaf  is set to false in the definition of the operation f to indicate overriding is permitted (i.e., that f is virtual). 

Example 4.  Consider a class A, with a subclass B.

Let A define a member function f that returns a value of type A, declared in C++ to be virtual.

Let B override the implementation of f, changing its return type to B.

This is represented as follows:

In A, we have an operation named f, and a method that implements it.

In B, we have an operation f that redefines the operation f defined by A (using the redefines relationship between operations), and a method that implements this redefined operation.
The property isLeaf is set to false in the definition of the operation f in class A to indicate overriding is permitted (i.e., that f is virtual). 

Example 5. Consider a class A, with a subclass B.

Let A define member function f, declared in C++ to be both abstract and virtual (i.e., pure virtual).

Let B provide an implementation of f, changing its return type to B.
This is represented as follows:

In A, we have an operation named f.

In B, we have an operation f that redefines the operation f defined by A (using the redefines relationship between operations), and a method that implements this redefined operation.
The property isLeaf  is set to false in the definition of the operation f in class A to indicate overriding is permitted (i.e., that f is virtual).
Note: Java inner classes (non-static nested classes) and the MS-IL notion of Delegates will be addressed in a later version of this specification.

2.2.21 Union

	Metaclass
	Union

	Extends
	Classifier, StructuredType

	Description
	A structure that stores the value of exactly one of a set of fields at any given time


Typically the fields of a union are all physically allocated at the same address.  As a result, the size of the union is the size of the largest of its fields.

2.2.21.1 Semantics

The semantics of Union are those common to C++ unions and Ada discriminated records.

2.2.21.2 Subtypes

2.2.21.2.1 DiscriminatedUnion

	Metaclass
	DiscriminatedUnion

	Extends
	Union

	Description
	A union which includes a field (the discriminant) that specifies which of the remainiing fields it currently holds

	Attribute
	discriminant

	Description
	A field that specifies which of the remainiing fields the union currently holds

	Type
	Classifier


2.2.21.2.2 NondiscriminatedUnion

	Metaclass
	NondiscriminatedUnion

	Extends
	Union

	Description
	A union which does not include a field that specifies which of the remainiing fields it currently holds


2.2.21.3 Language mappings

Union maps to the C++ concept of union.  A discriminated union corresponds to an Ada discriminated record. 

2.2.22 DataType 

	Metaclass
	DataType

	Extends
	Classifier

	Description
	A type whose values have no identity, are immutable, and cannot be shared

	Refs
	[5, p. 2-17, Figure 2-8], [5, pp. 2-36, 2-64, 2-78,  2-91], [5, p. B-6, datatype], 

value type [27, p. 141],

primitive type [35, p. 61, section 3.2, “Like the Java programming language …”]

	Attribute
	size

	Description
	The size (in bits) of values of the type

	Type
	Integer


2.2.22.1 Semantics

The semantics of Datatype are those common to UML [5, pp. 2-36, 2-64, 2-78, 2-91], to MS-IL value types [27, p. 141], and to JVM primitive types [35, p. 61, section 3.2, “Like the Java programming language …”].

We may create new datatype values from existing Datatype values (e.g., we can add two numbers to produce a third number).  Datatype values themselves, however, are immutable.  

Similarly, although we may have explicit pointers to variables that contain datatype values, datatype values themselves have no inherent identity, and (unlike instances of the reference types) cannot be shared.

The definition of a DataType can only contain operations.

All operations associated with a DataType must be queries.

A Datatype definition cannot contain the definitions of other model elements (classes, other datatypes, etc.).

2.2.22.2 Language mappings

Datatypes map to primitive types in C++ and Java, and to value types in C#.  

In Java, String is a data type (String values are immutable), while StringBuffer is not (instances of StringBuffer have a state that can be changed).

In C++, structs differ from classes only in terms of default visibility. They are not data types. 

In C#, however, structs represent value classes which fit the definition of Datatype.

2.2.23  StructuredType

	Metaclass
	StructuredType

	Extends
	Classifier, AddressableEntity

	Description
	A type whose instances have component elements or attributes


2.2.23.1 Semantics

A StructuredType defines values (instances) that have component elements or attributes.  It may be either a ReferenceType or a Datatype.

2.2.23.2 Language mappings

Structured types include classes, unions, strings, arrays and other collection types in languages such as C++ and Java.  Both C++ structs and C# structs are also structured types, although the first is a reference type, while the second is a datatype. 

2.2.24  StructuredDataType

	Metaclass
	StructuredDataType

	Extends
	StructuredType, DataType

	Description
	A datatype whose instances have component elements or attributes


2.2.24.1 Semantics

A StructuredDatatype defines datatype values (instances) that have component elements or attributes, but (like all datatype values) have no mutable state, and cannot be shared (aliased).  

2.2.24.2 Language mappings

Structured data types map to C# structs.

In languages such as C++ and Java, structured datatypes can be implemented by defining structs or classes whose methods have no side effects.  The methods of such classes either represent queries or compute new values of the type from existing ones.

For example, Java String is a structured datatype implemented in this way.  We can extract characters or substrings from a string without changing its value (queries), or we can construct new strings by combining existing ones (e.g., using concatenation), but we cannot change the contents of a String value once it has been constructed.

In contrast to this, Java StringBuffers are structured types, but not structured datatypes.  We can change the contents of a StringBuffer, different variables can hold references to the same StringBuffer (aliasing), and a change to the buffer via one reference will affect the value seen by all.  

In languages such as Java that do not support pointers to variables, aliasing is not a concern when using data types (e.g., String).  It can only occur when using reference types (e.g., StringBuffer).

However, in languages such as C++ that support pointers to variables, we can create a situation analogous to the use of reference types through the use of pointers to variables that hold datavalues.

In practical terms, the use of strutctured datatypes (Java String) is often far less efficient than the use of corresponding reference types (StringBuffer).  This is true due to the overhead associated with the creation (and eventual destruction) of new values when operations such as concatenation are used. 

2.2.25 AliasType

	Metaclass
	AliasType

	Extends
	Classifier

	Description
	An alias for an existing type

	Refs
	AliasType [6, p. 3-15, table entry], [6, p. 3-32, Figure 3-4, MOF Data Type Elements], [6, p. 3-36]

typedef [44], [46]

	AssociationEnd
	aliasFor

	Description
	The type the AliasType represents

	Type
	Classifier


An AliasType introduces a synonym for an existing type analogous to the use of typedef in C++.

2.2.25.1 Semantics

The semantics of AliasType are those common to the UML Meta-Object Facility (MOF) definition of AliasType and the C++ definition of typedef.

An AliasType does not introduce a new type, but provides a synonym (alias) for a given type, the referenced type.  This type may be an existing type. or an instantiation of a type with template parameters.

An AliasType may appear anywhere the referenced type may appear.

The semantics of the model are unchanged if all occurences of an AliasType are replaced by occurences of the referenced type.

An AliasType is similar to a subtype of a UML Class or Datatype.  AliaasTypes differ from subtypes, however, in that a) they cannot extend their parent classifier definition, and b) if more than one alias is created for a type, they are treated as the same type with regard to assignment and type compatibility.

In this regard, the use of subtypes is generally preferable since subtypes can be extended to include new attributes and operations, and since they are strongly typed (are not treated as the same type, but as distinct types, with explicit conversions between them).
2.2.25.2 Language mappings

AliasType maps to typedef in C++.

2.2.26 AssociationEnd

	Metaclass
	AssociationEnd

	Extends
	Field

	Description
	An endpoint that connects an association to a classifier

	Refs
	[5, p. 2-15, Figure 2-6], [5, pp. 2-22, 2-58, 2-70]

	CompositeEnd
	qualifier

	Description
	Any qualifiers required to specify the links represented by the association end 

	Type
	Sequence(Attribute)

	Multiplicity
	*

	Attribute
	aggregation

	Description
	The type of aggregation (if any) represented by the association end

	Type
	AggregationKind


In the metamodel, an AssociationEnd is the part of an Association that specifies its connection to a particular Classifier.

Other than aggregation and qualifier, the properties of an AssociationEnd are those of a Field.  As in UML, the type of the AssociationEnd need not be the run time class of the target instances, but may be an associated supertype.

2.2.26.1 Semantics

The semantics of AssociationEnd are those defined by UML  [5, pp. 2-22, 2-58, 2-70].

Unlike UML, however, an AssociationEnd is classified by XCIL as a Field.  This is due to the fact that it is represented in this way in the code of most target languages (i.e. association ends are fields representing pointers or collections of pointers to target instances), and in the code generated by most UML tools (e.g. Rose).

The semantics of AssociationEnd should therefore also be consistent with its mapping to C++ and Java by tools such as Rose [14, p. 31, Code Generated for Association Relationships] [15, p. 20, Variables with Reference Types].

2.2.26.2 Language mappings

The simplest implementation of associations involves the use of pointers
.  Each end of the association is implemented as a field (C++, Java) representing either a single pointer or a collection of pointers (array, list, set, etc.) to the other participants.  If the association end represents a collection of pointers, qualifiers associated with that end represent either array indices, or parameters to methods defined by the collection type that return pointer values it contains.

Fields that do not represent pointers or collections of pointers are considered attributes (rather than association ends). 

See [14, p. 31, Code Generated for Association Relationships] [15, p. 20, Variables with Reference Types].

2.2.27 Thread

	Metaclass
	Thread

	Extends
	Classifier

	Description
	A stereotype of classifier that represents a thread of control

	Inv
	-- Every thread has at least one StartThread operation

	Refs
	«thread» stereotype of Classifier [5, p. 2-32],

Microsoft .NET System.Threading,

[35, p. 58, section 2.19] [35, p. 397, chapter 8]

	Attribute
	maxStack

	Description
	The maximum size of the stack, in bytes

	Type
	Integer

	AssociationEnd
	memoryPool

	Description
	The memory pools (heaps) accessible to the thread

	Type
	Set (MemoryPool)

	Multiplicity
	1..*


In UML models, threads are represented by classifiers with the stereotype «thread».

2.2.27.1 Semantics

The semantics of Thread are those common to UML, to the Microsoft .NET threading model, and to Java threads.

Real-time threads are defined as subtypes of Thread, e.g. based on the Real-time Java model and others.

2.2.27.2 Subtypes

2.2.27.2.1 RealTimeThread

	Metaclass
	RealTimeThread

	Extends
	Thread

	Description
	A thread with hard real-time deadlines


2.2.27.2.2 FixedPriorityThread

	Metaclass
	FixedPriorityThread

	Extends
	RealTimeThread

	Description
	A real-time thread whose priority is fixed at the time it is created


2.2.27.3 Related types

2.2.27.3.1 StartThread

	Metaclass
	StartThread

	Extends
	Operation

	Description
	Start execution of the thread

	Inv
	-- An StartThread operation may only be associated with a Thread


A StartThread operation is an operation that triggers execution of a thread.  
2.2.27.4 Language mappings

Thread maps to the operating system. .NET or Java notion of a light weight thread.
In mapping from UML, a StartThread operation is considered to be any operation with the stereotype «StartThread».
2.3 Datatypes

The following definitions represent predefined data types (value types in MS-IL parlance), related literals, and expressions.  Although we begin with the definitions provide by UML, it has been necessary to extend these to support the primitive types, operations, and expressions of target languages such as Ada, Java and C++. 

2.3.1 AggregationKind

	Metaclass
	AggregationKind

	Extends
	Enumeration

	Description
	An enumeration that specifies the type of aggregation (if any) represented by the association end

	Refs
	[5, p. 2-92]

	EnumerationLiteral
	none

	Description
	This association end is not attached to the whole in a whole-part relationship

	EnumerationLiteral
	aggregate

	Description
	This association end is attached to the whole in a whole-part relationship, although the semantics of the relationship are weak (little more than an ordinary association)

	EnumerationLiteral
	composite

	Description
	This association end is attached to the whole in a whole-part relationship, and the semantics of the relationship are strong (implies no sharing of parts with other instances, and constraints on the life times of the whole and the parts)


AggregationKind is an enumeration that specifies the type of aggregation (if any) represented by the association end.  

2.3.1.1 Semantics

The semantics associated with the values of AggregationKind are those defined by UML [5, p. 2-92].

Only the value composite has any real semantics.  The use of composition implies that the aggregated instances (parts) are not shared (are referenced only by a single classifier instance that owns them), and that they cannot stand alone (destruction of the whole implies destruction of the parts).  Parts, however, can be added or removed from the whole without destroying it.

2.3.1.2 Language mappings

No direct mapping.  The semantics of composition may be enforced using a number of different policies (patterns), but none are enforced by the target language.  Garbage collection will collect the parts of a composition when the whole is destroyed if we can ensure no other references to the parts exist. 

2.3.2 Boolean 

	Metaclass
	Boolean

	Extends
	Enumeration

	Description
	A datatype that represents logical conditions with the values true and false

	Refs
	[5, pp. 2-91, 2-93, 6-37],

bool  [27, p. 156],

boolean [35, p. 7], [35, p. 66, section 3.3.4], [36, p. 243, 10.11]

	EnumerationLiteral
	true

	EnumerationLiteral
	false


The data type Boolean, with literal values true and false.

2.3.2.1 Semantics

The conventional, logical definition of a boolean type consistent with its use by the propositional calculus and predicate calculus.

2.3.2.2 Language mappings

Some languages lack a primitive type for boolean values, or have a legacy of using integer values to represent true (nonzero or 1) and false (0).  CastExpression provides conversions between such representations and type Boolean.

In C++, the type bool uses the value 1 to represent true and the value 0 to represent false.  Nonzero values are converted to 1 when mapping the integer types to bool.  Nonnull pointer values are also converted to true, while null pointer values are converted to false [50, p. 14].  There is also a legacy using type names such as BOOL and values such as TRUE and FALSE to represent booleans prior to the introduction of bool as part of the language standard.

2.3.3 CallConcurrencyKind

	Metaclass
	CallConcurrencyKind

	Extends
	Enumeration

	Description
	An enumeration specifying the synchronization policy associated with a call to a given operation

	Refs
	[5, p. 2-93]

	EnumerationLiteral
	sequential

	Description
	Synchronization must be provided by clients, i.e. the object itself supports only sequential calls

	EnumerationLiteral
	guarded

	Description
	Synchonization is provided by the object on calls to the method

	EnumerationLiteral
	concurrent

	Description
	No synchronization is required because the operation performs correctly when called by concurrent threads


2.3.3.1 Semantics

The semantics associated with the values of CallConcurrencyKind are those defined by UML [5, p. 2-93].

2.3.3.2 Language mappings

A CallConcurrencyKind of guarded maps to Java use of the synchronized keyword.

2.3.4 ChangeableKind

	Metaclass
	ChangeableKind

	Extends
	Enumeration

	Description
	An enumeration that specifies whether a feature is changeable after initialization. 

	Refs
	[5, p. 2-94]

	EnumerationLiteral
	changeable

	Description
	No restrictions on modification

	EnumerationLiteral
	frozen

	Description
	The value may not be changed after initialization

	EnumerationLiteral
	addOnly

	Description
	If the multiplicity is not fixed, values may be added after initialization, but not removed


ChangeableKind specifies the changeability of a structural feature or association after it has been initialized.  For an association, it refers only to changes via a particular end of the association.  The association may still be manipulated from the other end unless it is similarly restricted.

2.3.4.1 Semantics

The semantics associated with the values of ChangeableKind are those defined by UML [5, p. 2-94].

2.3.4.2 Language mappings

The value frozen corresponds to the use of const for data members in C++.

2.3.5 Character

	Metaclass
	Character

	Extends
	DataType

	Description
	A character in some alphabet (ASCII, Unicode, etc.)

	Inv
	size >= 8

	Refs
	[5, pp. 2-98, 6-36],

char [27, p. 156],

char [35, p. 62] [36, p. 231]


2.3.5.1 Semantics

The semantics of Character are those common to char [27, p. 156] and char [35, p. 62] [36, p. 231]. 

2.3.5.2 Subtypes

2.3.5.2.1 AsciiCharacter

	Metaclass
	AsciiCharacter

	Extends
	Character

	Description
	A character from the ASCII ISO Latin-1 character set

	Inv
	size >= 8


2.3.5.2.2 UnicodeCharacter

	Metaclass
	UnicodeCharacter

	Extends
	Character

	Description
	A character defined by the Unicode standard

	Inv
	(size = 16) and (size >= AsciiCharacter::size)


2.3.5.3 Language mappings

Character maps directly to the primitive character types of most languages.  Nearly all languages support the basic (ASCII ISO Latin-1) character set (8 bits).  Many also provide a definition of wide characters or support for the Unicode standard (16 bits).  Java does so directly.  wchar_t provides support for Unicode characters in C++. The first 128 characters of the Unicode character encoding are the ASCII characters. In C++, sizeof(wchar_t) ( sizeof(char) ( 8 bits [46, p. 75].  

In some languages (such as C++ and Java), it is possible to perform arithmetic on characters.  As a result, in C++, wchar_t is typically an alias for another integer data type, such as short.  In XCIL, and at the MS-IL and JVM level, arithmethic operations are not defined directly on characters.  To perform arithmetic on character values, they must be converted to integers. Conversions from character values to integer values and from integer values to character values are provided by CastExpression.

2.3.6 Enumeration

	Metaclass
	Enumeration

	Extends
	DataType

	Description
	A datatype whose range consists of a set of predefined values, called enumeration literals

	Refs
	[5, pp. 2-39, 2-68, 3-57, 6-8, 6-38], [5, B-8, enumeration],

enumeration type [27, p. 143]

	CompositeEnd
	literal

	Description
	The set of enumeration literals defined by the type

	Type
	Set (EnumerationLiteral)


2.3.6.1 Semantics

The semantics of Enumeration are those common to UML [5, pp. 2-39, 2-68] and MS-IL [27, p. 143].

The semantics of EnumerationLiteral are those defined by UML [5, pp. 2-39, 2-65].

2.3.6.2 Related types

2.3.6.2.1 EnumerationLiteral

	Metaclass
	EnumerationLiteral

	Extends
	LiteralValue

	Description
	A datatype whose range consists of a set of predefined values, called enumeration literals

	Refs
	[5, pp. 2-39, 2-65]

enumeration type [27, p. 143]


2.3.6.3 Language mappings

In C++, an enum declaration creates a distinct integer type with named constants (literals).  The names of the enumeration literals must be distinct, and the only operation defined for enumerated data types is assignment [50, p. 17].

Enumeration literals can be mapped to named constants in languages that do not support enumeration types (such as Java).

2.3.7 Integer

	Metaclass
	Integer

	Extends
	Number

	Description
	A datatype representing a finite set of integer values

	Refs
	[5, pp. 2-91, 6-34],

int8, unsigned int8, int16, unsigned int 16, int32, unsigned int32, int64, unsigned int64 [27, p. 156], 

byte, short, int, long [35, p. 62]


2.3.7.1 Semantics

The conventional mathematical definition of a range of integer values [TBD].

The semantics of integer operations are defined separately (by Add, Subtract, etc.).

2.3.7.2 Subtypes

2.3.7.2.1 Integer8

	Metaclass
	Integer8

	Extends
	Integer

	Description
	A 8 bit signed integer

	Refs
	[5, pp. 2-91, 6-34],

int8 [27, p. 156], 

byte [35, p. 62]

	Attribute
	size

	Value
	8


2.3.7.2.2 Integer16

	Metaclass
	Integer16

	Extends
	Integer

	Description
	A 16 bit signed integer

	Refs
	[5, pp. 2-91, 6-34],

int16 [27, p. 156], 

short [35, p. 62]

	Attribute
	size

	Value
	16



2.3.7.2.3 Integer32

	Metaclass
	Integer32

	Extends
	Integer

	Description
	A 32 bit signed integer

	Refs
	[5, pp. 2-91, 6-34],

int32 [27, p. 156], 

int [35, p. 62]

	Attribute
	size

	Value
	32


2.3.7.2.4 Integer64

	Metaclass
	Integer64

	Extends
	Integer

	Description
	A 64 bit signed integer

	Refs
	[5, pp. 2-91, 6-34],

int64 [27, p. 156], 

long [35, p. 62]

	Attribute
	size

	Value
	64


2.3.7.2.5 UnsignedInteger8

	Metaclass
	UnsignedInteger8

	Extends
	Integer

	Description
	An 8 bit unsigned integer

	Refs
	[5, pp. 2-91, 6-34],

unsigned int8 [27, p. 156]

	Attribute
	unsigned

	Value
	true

	Attribute
	size

	Value
	8


2.3.7.2.6 UnsignedInteger16

	Metaclass
	UnsignedInteger16

	Extends
	Integer

	Description
	A 16 bit unsigned integer

	Refs
	[5, pp. 2-91, 6-34],

unsigned int 16 [27, p. 156]

	Attribute
	unsigned

	Value
	true

	Attribute
	size

	Value
	16


2.3.7.2.7 UnsignedInteger32

	Metaclass
	UnsignedInteger32

	Extends
	Integer

	Description
	A 32 bit unsigned integer

	Refs
	[5, pp. 2-91, 6-34],

unsigned int32 [27, p. 156]

	Attribute
	unsigned

	Value
	true

	Attribute
	size

	Value
	32


2.3.7.2.8 UnsignedInteger64

	Metaclass
	UnsignedInteger64

	Extends
	Integer

	Description
	A 64 bit unsigned integer

	Refs
	[5, pp. 2-91, 6-34],

unsigned int64 [27, p. 156]

	Attribute
	unsigned

	Value
	true

	Attribute
	size

	Value
	64


2.3.7.2.9 ShortInteger16Plus

	Metaclass
	ShortInteger16Plus

	Extends
	Integer

	Description
	A short signed integer whose size is implementation specific, but must be at least 16 bits

	Inv
	(size >= 16) and (size >= AsciiCharacter::size)

	Refs
	[46, p. 75]


A C++ short int [46, p. 75] of unspecified size. The size and range of values associated with a particular implementation may be determined by instantiating the numeric_limits template class [46, pp. 658-660].  This, in turn, allows a mapping to one of the fixed size Integer types for the specific implementation (if desired).
2.3.7.2.10 UnsignedShortInteger16Plus

	Metaclass
	UnsignedShortInteger16Plus

	Extends
	Integer

	Description
	A short unsigned integer whose size is implementation specific, but must be the same as ShortInteger16Plus

	Inv
	size = ShortInteger16Plus::size

	Refs
	[46, p. 75]


A C++ unsigned short int [46, p. 75] of unspecified size. The range of values and precision associated with a particular implementation may be determined from numeric_limits [46, pp. 658-660].  This, in turn, allows a mapping to one of the fixed size Integer types for the specific implementation (if desired).
2.3.7.2.11 Integer16Plus

	Metaclass
	Integer16Plus

	Extends
	Integer

	Description
	A signed integer whose size is implementation specific, but must be at least that of ShortInteger16Plus

	Inv
	size >= ShortInteger16Plus::size

	Refs
	[46, p. 75]


A C++ int [46, p. 75] of unspecified size. The size and range of values associated with a particular implementation may be determined by instantiating the numeric_limits template class [46, pp. 658-660].  This, in turn, allows a mapping to one of the fixed size Integer types for the specific implementation (if desired).

2.3.7.2.12 UnsignedInteger16Plus

	Metaclass
	UnsignedInteger16Plus

	Extends
	Integer

	Description
	An unsigned integer whose size is implementation specific, but must be the same as Integer16Plus

	Inv
	size = Integer16Plus::size

	Refs
	[46, p. 75]


A C++ unsigned int [46, p. 75] of unspecified size. The size and range of values associated with a particular implementation may be determined by instantiating the numeric_limits template class [46, pp. 658-660].  This, in turn, allows a mapping to one of the fixed size Integer types for the specific implementation (if desired).
2.3.7.2.13 LongInteger32Plus

	Metaclass
	LongInteger32Plus

	Extends
	Integer

	Description
	A long signed integer whose size is implementation specific, but must be at least 32 bits, and must be at least that of Integer16Plus

	Inv
	(size >= 32) and (size >= Integer16Plus::size)

	Refs
	[46, p. 75]


A C++ long int [46, p. 75]. The size and range of values associated with a particular implementation may be determined by instantiating the numeric_limits template class [46, pp. 658-660].  This, in turn, allows a mapping to one of the fixed size Integer types for the specific implementation (if desired).

2.3.7.2.14 UnsignedLongInteger32Plus

	Metaclass
	UnsignedLongInteger32Plus

	Extends
	Integer

	Description
	An unsigned integer whose size is implementation specific, but must be the same as LongInteger32Plus

	Inv
	size = LongInteger32Plus::size

	Refs
	[46, p. 75]


A C++ unsigned long int [46, p. 75] of unspecified size. The size and range of values associated with a particular implementation may be determined by instantiating the numeric_limits template class [46, pp. 658-660].  This, in turn, allows a mapping to one of the fixed size Integer types for the specific implementation (if desired).

2.3.7.3 Language mappings

All target languages support integers as a primitive type.  Differences, however, arise in the sizes of integer representations, the degree of support provided for unsigned values, and the semantics of overflow and underflow.

In C++, for instance, the sizes of the integer types are implementation specific.  The only restrictions are that an ordinary integer value be at least are large as a short integer value, and that a long integer value be at least as large as an ordinary integer value.  The bit sizes of the numeric types are given by specializations of the numeric_limits template [46, p. 658, section 22.2 Numeric Limits].

2.3.8 Multiplicity

	Metaclass
	Multiplicity

	Extends
	DataType

	Description
	A range specifying the number of values that may be stored in a structural feature or the number of target links that may appear at an association end.

	Refs
	[5, pp. 2-91, 2-95], [5, p. 2-96, MultiplicityRange]

	Attribute
	lower

	Description
	The lower bound of the range

	Type
	Integer

	DefaultValue
	1

	Attribute
	upper

	Description
	The upper bound of the range, or a special value indicating no upper bound

	Type
	UnlimitedInteger

	DefaultValue
	1


Multiplicity ranges are written as ‘lower .. upper’ in UML.  

‘lower .. *’ is used to represent a range with a lower bound, but no upper bound.  

‘*’ by itself represents the range ‘0 ... *’.

If no multiplicity is specified, it is, by default, “1..1”.

2.3.8.1 Semantics

The semantics associated with Multiplicity are those defined by Multiplicity and MultiplicityRange in UML [5, pp. 2-95, 2-96]. 

For the sake of simplicity, however, we combine these concepts and represent multiplicity to a single range.

The value of lower must be greater than or equal to zero.

The value of upper must be greater than or equal to lower.

2.3.8.2 Language mappings

The multiplicity range can be used to set or bound the sizes of collections used to implement attributes and associations in the implementation.  Of these, arrays and vectors are usually supported at a language level, while sets, lists, and other collection types are provided by standard language libraries.

2.3.9 Name

	Metaclass
	Name

	Extends
	StringValue

	Description
	A Name is a string value used to identify a model element.

	Refs
	[5, p. 2-96], [27, p. 131, simple name], [35, p. 6, section 2.2]


Names are strings used to identify model elements. 

2.3.9.1 Language mappings

Names map to identifiers in the target language.  The target language syntax for identifiers is typically more restrictive than that of an arbitrary string.  Identifiers may also be case sensitive in some languages, while in other languages they are not.  As a result, the names of model elements may require translation. 

2.3.10 Number

	Metaclass
	Number

	Extends
	DataType, AddressableEntity

	Description
	A datatype representing a numeric value

	Attribute
	unsigned

	Description
	Is the value unsigned?

	Type
	Boolean

	DefaultValue
	false


2.3.10.1 Semantics

The semantics of Number are those common to all its subtypes (Integer, Real, Complex, etc.) .

Numbers may be eiher signed or unsigned.

2.3.10.2 Language mappings

Number is used represent the numeric types of languages such as C++, Java, Ada, etc.  Its subtypes map to primitive types in these languages, and to classes (e.g. for Complex) in the runtime libraries that support them.

2.3.11 OrderingKind

	Metaclass
	OrderingKind

	Extends
	Enumeration

	Description
	An enumeration specifying whether the values associated with a given structural feature are ordered or unordered

	Refs
	[5, p. 2-97]

	EnumerationLiteral
	ordered

	Description
	The values associated with the structural feature are ordered

	EnumerationLiteral
	unordered

	Description
	The values associated with the structural feature are unordered


2.3.11.1 Semantics

The semantics associated with the values of OrderingKind are those defined by UML [5, p. 2-97].

2.3.11.2 Language mappings

The value of OrderingKind can be used to choose from the collection types provided by language and language specific libraries.

2.3.12 ParameterDirectionKind

	Metaclass
	ParameterDirectionKind

	Extends
	Enumeration

	Description
	An enumeration that specifies whether a parameter is an input, an output, both an input and an output, or a return value

	Refs
	[5, p. 2-97]

	EnumerationLiteral
	in

	Description
	Indicates the parameter is strictly an input

	EnumerationLiteral
	out

	Description
	Indicates the parameter is strictly an output

	EnumerationLiteral
	inout

	Description
	Indicates the parameter is both an input and an output

	EnumerationLiteral
	return

	Description
	Indicates the parameter is a return value


ParameterDirectionKind is an enumeration that specifies whether a parameter is an input, an output, both an input and an output, or a return value. 

2.3.12.1 Semantics

The semantics associated with the values of ParameterDirectionKind are those common to UML [5, p. 2-97], MS-IL, and the JVM.

2.3.12.2 Language mappings

The values of ParameterDirectionKind are related to the use of keywords such as const (in C++), final (in Java), and in, out and inout (in Ada), and to the use of pass by reference and pass by value.

2.3.13 Real

	Metaclass
	Real

	Extends
	Number

	Description
	A datatype representing a finite set of real number values

	Refs
	[5, p. 6-32],

float32, float64 [27, p. 156],

float, double [35, p. 63]


2.3.13.1 Semantics

The semantics of arithmetic on floating point reals are defined by the IEEE 754 floating point standard [23].

 Both the floating point and fixed point types are approximations of the mathematical reals. Not every literal can be represented exactly, and not every calculation produces a value that can be represented except as an approximation of the true mathematical result.  The Ada Language Reference Manual provides a good overview of the issues.  The accuracy attributes of the FloatingPoint and FixedPoint types (below) are based on the Ada model.  Other related references include [24] and [25].

2.3.13.2 Subtypes 

2.3.13.2.1 Float

	Metaclass
	Float

	Extends
	Real

	Description
	A real number represented as a floating point value

	Attribute
	unsigned

	Description
	Is the value unsigned?

	Type
	Boolean


2.3.13.2.2 Float32

	Metaclass
	Float32

	Extends
	Float

	Description
	A real number represented as a 32 bit floating point value

	Refs
	[5, p. 6-32],

float32 [27, p. 156],

float [35, p. 63]

	Attribute
	size

	Value
	32


2.3.13.2.3 Float64

	Metaclass
	Float64

	Extends
	Float

	Description
	A real number represented as a 64 bit floating point value

	Refs
	[5, p. 6-32],

float64 [27, p. 156],

double [35, p. 63]

	Attribute
	size

	Value
	64


2.3.13.2.4 UnspecifiedFloat

	Metaclass
	UnspecifiedFloat

	Extends
	Float

	Description
	A real number represented as a floating point value whose bit size and precision are implementation specific

	Refs
	[46, pp. 74-75]


A C++ float [46, pp. 74-75]. The range of values and precision associated with a particular implementation may be determined by instantiating the numeric_limits template class [46, pp. 658-660].  This, in turn, allows a mapping to one of the fixed size floating point types for the specific implementation (if desired).
2.3.13.2.5 UnspecifiedDouble

	Metaclass
	UnspecifiedDouble

	Extends
	Float

	Description
	A real number represented as a floating point value whose bit size and precision are implementation specific, but at least that of an UnspecifiedFloat

	Inv
	size >= UnspecifiedFloat::size

	Refs
	[46, pp. 74-75]


A C++ double [46, pp. 74-75]. The range of values and precision associated with a particular implementation may be determined by instantiating the numeric_limits template class [46, pp. 658-660].  This, in turn, allows a mapping to one of the fixed size floating point types for the specific implementation (if desired).
2.3.13.2.6 UnspecifiedLongDouble

	Metaclass
	UnspecifiedLongDouble

	Extends
	Float

	Description
	A real number represented as a floating point value whose bit size and precision are implementation specific, but at least that of an UnspecifiedDouble

	Inv
	size >= UnspecifiedDouble::size

	Refs
	[46, pp. 74-75]


A C++ long double [46, pp. 74-75]. The range of values and precision associated with a particular implementation may be determined by instantiating the numeric_limits template class [46, pp. 658-660].  This, in turn, allows a mapping to one of the fixed size floating point types for the specific implementation (if desired).

2.3.13.2.7 Fixed

	Metaclass
	Fixed

	Extends
	Real

	Description
	A real number represented as a fixed point value


2.3.13.3 Language mappings

Most languages support floating point and the IEEE standard.  A few (such as Ada) also support fixed point.   In languages that do not support fixed point, fixed point arithmetic can be performed using scaled integer values.

In C++ and Java support is provided for the floating point types float, double and long double.   In Java these have prescribed sizes, while in C++, the sizes of the floating point types are given by a specialization of the numeric_limits template [46, p. 658, section 22.2 Numeric Limits].

“Java supports three floating point values that are not numbers: Nan, NEGATIVE_INFINITY, and POSITIVE_INFINIITY.  Such facilities are permitted in a platform dependent fashion in C++, but they are not required” [50, p. 16].

2.3.14 ScopeKind

	Metaclass
	ScopeKind

	Extends
	Enumeration

	Description
	An enumeration that specifies whether a feature belongs to a Classifier or to the instances of a Classifier

	Refs
	[5, p. 2-98]

	EnumerationLiteral
	classifier

	Description
	The feature is associated with the Classifier rather than its instances 

	EnumerationLiteral
	instance

	Description
	The feature is associated with individual instances of the Classifier


ScopeKind is an enumeration that specifies whether a feature belongs to a Classifier (has classifier scope), or to its instances (has instance scope). 

2.3.14.1 Semantics

The semantics associated with the values of ScopeKind are those defined by UML [5, p. 2-98].

2.3.14.2 Language mappings

The value classifier corresponds to the use of static in Java and C++.

2.3.15 StringValue

	Metaclass
	StringValue

	Extends
	StructuredDataType, Vector

	Description
	A finite sequence of character values

	Refs
	[5, 2-98, 6-36]

	Attribute
	elementType

	Type
	Character


StringValue (as defined here) is an immutable type.  Strings can be combined with other strings to produce new string values.  The contents of an existing string, however, cannot be manipulated in order to change it.  Mutable strings are currently considered to be vectors of characters.

2.3.15.1 Semantics

The semantics of String are those common to the UML/OCL String type, and to strings (as immutable values) in MS-IL and the JVM.

2.3.15.2 Subtypes

2.3.15.2.1 AsciiStringValue

	Metaclass
	AsciiStringValue

	Extends
	StringValue

	Attribute
	elementType

	Type
	AsciiCharacter


2.3.15.2.2 UnicodeStringValue

	Metaclass
	UnicodeStringValue

	Extends
	StringValue

	Attribute
	elementType

	Type
	UnicodeCharacter


2.3.15.3 Language mappings

Java provides the types String (equivalent to StringValue above) and StringBuffer (which can be directly modified). Java strings may be composed of Unicode characters.

Nearly all target languages (including Java and C++) provide string literals.

2.3.16 UnlimitedInteger

	Metaclass
	UnlimitedInteger

	Extends
	DataType

	Description
	A datatype representing a finite set of non negative integer values, augmented by the special value ‘unlimited’

	Refs
	[5, pp. 2-99]


Unlimited integer values are used to represent the upper bound of a range, e.g. for Multiplicity.

2.3.16.1 Semantics

The semantics of UnlimitedInteger are those defined by UML [5, pp. 2-99].

2.3.16.2 Language mappings

None. 

2.3.17 VisibilityKind

	Metaclass
	VisibilityKind

	Extends
	Enumeration

	Description
	An enumeration that specifies the visibility of an element outside its enclosing namespace

	Refs
	[5, p. 2-99]

	EnumerationLiteral
	public

	Description
	Other elements may see and use the element 

	EnumerationLiteral
	protected

	Description
	Descendants of the source element may see and use the element

	EnumerationLiteral
	private

	Description
	Only the source element may see and use the element

	EnumerationLiteral
	package

	Description
	Elements in the same package may see and use the element


VisibilityKind is an enumeration that specifies the visibility of an element outside its enclosing namespace. 

2.3.17.1 Semantics

The semantics associated with the values of VisibilityKind are those defined by UML [5, p. 2-99].

2.3.17.2 Language mappings

The values of VisibilityKind map directly to those supported by Java and C++.

2.4 CollectionTypes

The following definitions represent represent both mutable and immutable collections.  These include arrays and vectors, as defined by MS-IL and the JVM.  In future, we may include other collection types from the Java and .NET frameworks and the collection types of OCL.

2.4.1 Array

	Metaclass
	Array

	Extends
	Class

	Description
	A potentially multidimensional array

	Refs
	[27, pp. 160-162, 266, 265-267]

[35, pp. 11, 15, 38, 39, 44, 88, 153, 158, 161, 175, 176, 181, 183, 188, 189, 191, 192, 200, 201, 230, 231, 261, 263, 310, 312, 339, 343, 354, 355, 381]

	AssociationEnd
	elementType

	Description
	The type of the array elements

	Type
	Classifier

	Attribute
	numberOfDimensions

	Description
	The number of array dimensions

	Type
	Integer

	CompositeEnd
	dimension

	Description
	The array contents, represented (conceptually) as a sequence of elements along each of its dimensions

	Type
	Sequence (Dimension)

	Multiplicity
	1..*


2.4.1.1 Semantics

The semantics of Array are those common to MS-IL and the JVM. 

Ragged arrays are permitted, i.e., each dimension need not have the same number of elements. 
2.4.1.2 Related types

2.4.1.2.1 Dimension

	Metaclass
	Dimension

	Extends
	ModelElement

	Description
	A sequence of elements representing a single array dimension

	Attribute
	numberOfElements

	Description
	The number of array elements associated with this array dimension

	Type
	Integer

	AssociationEnd
	element

	Description
	The elements associated with this array dimension

	Type
	Sequence (ArrayElement)

	Multiplicity
	*


2.4.1.2.2 ArrayElement

	Metaclass
	ArrayElement

	Extends
	Variable

	Description
	A variable that represents an array element


2.4.1.3 Language mappings

An Array maps to a potentially multi-dimensional array in target languages such as C++ as Java. 

In Java and C#, arrays are objects.  

“In C++, arrays are not objects and do not possess any methods.  They do not ‘know’ their extent.  The only operation that is normally performed on an array is the subscript” [50, p. 18, section 2.5, Arrays].  As a result, the C++ concept of an array provides only a subset of the features associated with an MS-IL and the JVM array, which is the basis for the XCIL definition given above. 

2.4.2 Vector

	Metaclass
	Vector

	Extends
	Array

	Description
	A single dimension array

	Refs
	Vector [27, pp. 160..162]

Single dimension array [35, pp. 11, 15, 38, 39, 44, 88, 153, 158, 161, 175, 176, 181, 183, 188, 189, 191, 192, 200, 201, 230, 231, 261, 263, 310, 312, 343, 354, 355, 381]

	Attribute
	numberOfDimensions

	Value
	1


2.4.2.1 Semantics

The semantics of Vector are those common to MS-IL vectors and single dimensional arrays in the JVM.

2.4.2.2 Language mappings

A Vector maps to a single dimensional array in target languages such as C++ as Java.

2.5 Common Behavior

The following definitions are taken from the Common Behavior package of the UML specification [5]. 

2.5.1 Instance

	Metaclass
	Instance

	Extends
	ModelElement

	Description
	A run time instance of a model element

	Refs
	[5, p. 2-104, Figure 2-16], [5, pp. 2-106, 2-112]

	AssociationEnd
	instanceOf

	Description
	The instantiated model element

	Type
	ModelElement


2.5.1.1 Semantics

The semantics of Instance are those defined by UML, and those common to its subtypes Object and DataValue.

2.5.1.2 Language mappings

Instance is an abstract metaclass.  Target language mappings are provided for its concrete subtypes. 

2.5.2 AddressableInstance

	Metaclass
	AddressableInstance

	Extends
	Instance

	Description
	A run time instance of an addressable entity (an lvalue)

	AssociationEnd
	instanceOf

	Type
	AddressableEntity

	AssociationEnd
	address

	Description
	The run time address of the instance

	Type
	Integer


2.5.2.1 Semantics

The semantics of VariableInstance are those associated with an lvalue in languages such as C++ and Java.

2.5.2.2 Language mappings

Instance is an abstract metaclass.  Target language mappings are provided for its concrete subtypes. 

2.5.3 Object

	Metaclass
	Object

	Extends
	AddressableInstance

	Description
	An instance of a class, allocated in a given stack frame or heap

	Refs
	[5, p. 2-104, Figure 2-16], [5, pp. 2-109, 2-115, 2-116]

[27],

[35, p. 12]

	AssociationEnd
	instanceOf

	Description
	The run  time class of the object

	Type
	Class


2.5.3.1 Semantics

The semantics of Object are those common to UML, MS-IL and the JVM.

2.5.3.2 Language mappings

Object maps to the class Object in Java.

2.5.4 VariableInstance

	Metaclass
	VariableInstance

	Extends
	AddressableInstance

	Inv
	-- The value of the instance is compatible with the type of the variable
value.type().isSubtypeOf (instanceOf.type())

	Description
	A run time instance of a variable (a modifiable lvalue)

	AssociationEnd
	instanceOf

	Type
	Variable

	CompositeEnd
	value

	Description
	The run time value of the variable

	Type
	Classifier


2.5.4.1 Semantics

VariableInstance represents a run time instance of a variable.  It has an address (inherited from AddressableInstance) representing its location in memory.  The semantics of VariableInstance are those associated with a modifiable lvalue in languages such as C++ and Java.  They should also be consistent with the use of run time variable addresses/references by the JVM and MS-IL.

2.5.4.2 Subtypes

2.5.4.2.1 ObjectFieldInstance

	Metaclass
	ObjectFieldInstance

	Extends
	VariableInstance

	Description
	A run time instance of an object field

	Inv
	-- The ownerScope of the field must be instance
instanceOf.ownerScope() = instance

	AssociationEnd
	instanceOf

	Type
	Field


ObjectFieldInstance represents a run time instance of a particular object field.

2.5.4.2.2 ClassFieldInstance

	Metaclass
	ClassFieldInstance

	Extends
	VariableInstance

	Description
	A run time instance of a class field

	Inv
	-- The ownerScope of the field must be classifer
instanceOf.ownerScope() = classifier

	AssociationEnd
	instanceOf

	Type
	Field


ClassFieldInstance represents a run time instance of a particular class field. 

2.5.4.2.3 GlobalFieldInstance

	Metaclass
	GlobalFieldInstance

	Extends
	VariableInstance

	Description
	A run time instance of a global field

	Inv
	-- The ownerScope of the field must be classifer
instanceOf.ownerScope() = classifier

	AssociationEnd
	instanceOf

	Type
	Field


GlobalFieldInstance represents a run time instance of a particular global field. 

2.5.4.2.4 ArrayElementInstance

	Metaclass
	ArrayElementInstance

	Extends
	VariableInstance

	Description
	A run time instance of an array element

	AssociationEnd
	instanceOf

	Type
	ArrayElement


ArrayElementInstance represents a run time instance of a particular array element. 

2.5.4.2.5 VectorSliceInstance

	Metaclass
	VectorSliceInstance

	Extends
	VariableInstance

	Description
	A run time instance of a vector slice


VectorSliceInstance represents a run time instance of a particular vector slice. 

2.5.4.2.6 ArgumentInstance

	Metaclass
	ArgumentInstance

	Extends
	VariableInstance

	Description
	A run time instance of a parameter

	AssociationEnd
	instanceOf

	Type
	Parameter


ArgumentInstance represents a run time instance of a particular argument.

2.5.4.2.7 LocalVariableInstance

	Metaclass
	LocalVariableInstance

	Extends
	VariableInstance

	Description
	A run time instance of a local variable

	AssociationEnd
	instanceOf

	Type
	LocalVariable


LocalVariableInstance represents a run time instance of a particular local variable.

2.5.4.3 Language mappings

VariableInstance represents a run time instance of a variable, allocated as an object field, a class field, a global field, an array or vector element, a slice of a given vector, an argument, or a local variable.

2.5.5 MethodInstance

	Metaclass
	MethodInstance

	Extends
	AddressableInstance

	Description
	A run time instance of a method

	AssociationEnd
	instanceOf

	Type
	Method


2.5.5.1 Semantics

TBD

2.5.5.2 Subtypes

2.5.5.2.1 InstanceMethodInstance

	Metaclass
	InstanceMethodInstance

	Extends
	MethodInstance

	Description
	A run time instance of a method associated with the instances of a class

	Inv
	-- The ownerScope of the method must be instance
instanceOf.ownerScope() = instance


InstanceMethodInstance represents a run time instance of a particular method associated with the instances (objects) of a class.

2.5.5.2.2 ClassMethodInstance

	Metaclass
	ClassMethodInstance

	Extends
	MethodInstance

	Description
	A run time instance of a method associated with a class

	Inv
	-- The ownerScope of the method must be classifier
instanceOf.ownerScope() = classifier


ClassMethodInstance represents a run time instance of a particular method associated with a class. 

2.5.5.2.3 GlobalMethodInstance

	Metaclass
	GlobalMethodInstance

	Extends
	MethodInstance

	Description
	A run time instance of a method associated with a package

	Inv
	-- The ownerScope of the method must be classifier
instanceOf.ownerScope() = classifier


ClassMethodInstance represents a run time instance of a particular method associated with a package.

2.5.5.3 Language mappings

MethodInstance represents a run time instance of a particular method, associated with the instances (objects) of a class, associated with a class, or associated with a package (a global method).

2.5.6 DataValue

	Metaclass
	DataValue

	Extends
	Instance

	Description
	An instance of a DataType, allocated in a given stack frame or heap

	Refs
	[5, p. 2-104, Figure 2-16], [5, pp. 2-106, 2-112, 2-116]

[27, value type],

[35, primitive type]

	AssociationEnd
	instanceOf

	Description
	The run time type of the data value

	Type
	DataType


2.5.6.1 Semantics

The semantics of DataValue are those common to UML, to instances of MS-IL value types, and to instances of JVM primitive types.

2.5.6.2 Language mappings

DataValue represents instances of the primitive types of languages such as C++ and Java.  In C#, data values represent instances of both the primitive types and type struct.

2.5.7 Exception

	Metaclass
	Exception

	Extends
	Signal

	Description
	A signal raised in response to an execution fault

	Refs
	[5, p. 2-102, Figure 2-14], [5, pp. 2-106, 2-112, 2-117], [5, p. 2-342, section 2.23.3]


2.5.7.1 Semantics

The semantics of Exception are those common to UML, MS-IL, and the JVM.

Exceptions representing specific types of faults, may be defined as subtypes of Exception (or CheckedException), with their own attributes.

2.5.7.2 Subtypes

2.5.7.2.1 CheckedException

	Metaclass
	CheckedException

	Extends
	Exception

	Description
	An exception that must be declared in the lists of exceptions for all methods in which it is thrown, and for which all clients must provide a handler


As in Java, all checked exceptions thrown by a method must be declared as part of the method’s specification.

Conversely clients must provide a handler for every checked exception that may be thrown.

2.5.7.2.2 UncheckedException

	Metaclass
	UncheckedException

	Extends
	Exception

	Description
	An exception that need not be declared in the lists of exceptions for the methods in which it is thrown, and for which the client need not provide a handler


2.5.7.2.3 ArithmeticException

	Metaclass
	ArithmeticException

	Extends
	UncheckedException

	Description
	An exceptional arithmetic situation has arisen, such as integer division by zero

	Refs
	[35, p. 209, ArithmeticException]


2.5.7.2.4 ArrayTypeMismatchException

	Metaclass
	ArrayTypeMismatchException

	Extends
	UncheckedException

	Description
	An attempt has been made to store into an array element a value whose class is not the required type

	Refs
	[35, p. 209, ArrayStoreException], [28, p. 97, ArrayTypeMismatchException]


2.5.7.2.5 ClassifierInitializationError

	Metaclass
	ClassifierInitializationError

	Extends
	UncheckedException

	Description
	A runtime error detected during the initialization of a classifier by the runtime system

	Refs
	[35, p. 52, section 2.17.5]


2.5.7.2.6 ClassifierResolutionError

	Metaclass
	ClassifierResolutionError

	Extends
	UncheckedException

	Description
	A reference to a classifier cannot be resolved at runtime

	Refs
	[35, p. 166, section 5.4.3.1], [35, p. 158, section 5.3],  [28, p. 95, isinst, TypeLoadException]


ClassifierResolutionError represents any exception that can be thrown as a result of an attempt to resolve a reference to a classifier at runtime.  It can occur only if the system attempts to resolve class references dynamically.

2.5.7.2.7 DivideByZeroException

	Metaclass
	DivideByZeroException

	Extends
	ArithmeticException

	Description
	An attempt was made to divide by zero

	Refs
	[28, p. 50, div.un, DivideByZeroException]


2.5.7.2.8 FieldResolutionError

	Metaclass
	FieldResolutionError

	Extends
	VariableResolutionError

	Description
	A reference to a field cannot be resolved at runtime

	Refs
	[35, p. 167, section 5.4.3.2], [35, p. 158, section 5.3],  [28, p. 116, stfld, MissingFieldException]


FieldResolutionError represents any exception that can be thrown as a result of an attempt to resolve a reference to a field at runtime.  It can occur only if the system attempts to resolve field references dynamically.

2.5.7.2.9 IndexOutOfBoundsException

	Metaclass
	IndexOutOfBoundsException

	Extends
	VariableResolutionError

	Description
	Either an index (e.g., to an array or vector) or a subrange (used to specify a vector slice or substring) was out of range

	Refs
	[35, p. 209, IndexOutOfBoundsException], [28,p. 97, IndexOutOfRangeException]


2.5.7.2.10 InstantiationError

	Metaclass
	InstantiationError

	Extends
	UncheckedException

	Description
	An attempt was made to create an instance of an interface or abstract class

	Refs
	[35, p. 51, InstantiationError]


2.5.7.2.11 InvalidCastException

	Metaclass
	InvalidCastException

	Extends
	UncheckedException

	Description
	An attempt has been made to cast a reference to an entity to an inappropriate type

	Refs
	[35, p. 209, ClassCastException], [28, p. 92, InvalidCastException]


2.5.7.2.12 MethodResolutionError

	Metaclass
	MethodResolutionError

	Extends
	ReferenceResolutionError

	Description
	A reference to a field cannot be resolved at runtime

	Refs
	[35, p. 167, section 5.4.3.3, IncompatibleClassChangeError, NoSuchMethodError, AbstractMethodError, IllegalAccessError], 
[35, p. 168, section 5.4.3.4, IncompatibleClassChangeError, NoSuchMethodError], 
[35, p. 158, section 5.3, NoClassDefFoundError, LinkageError, ClassFormatError, UnsupportedClassVersionError, ClassCircularityError],  
[28, p. 110, MissingMethodException]


MethodResolutionError represents any exception that can be thrown as a result of an attempt to resolve a reference to a method at runtime.  It can occur only if the system attempts to resolve method references dynamically. 

Note: Although dynamic binding/dynamic dispatch may involve the resolution of method references at runtime, it typically does not.  Instead dispatch tables are constructed that contain the addresses of already resolved methods.  Dispatch then involves the selection of one of these methods at the point of call based on the run time classes of the target object (and potentially the other arguments).

2.5.7.2.13 NegativeArraySizeException

	Metaclass
	NegativeArraySizeException

	Extends
	UncheckedException

	Description
	An attempt was made to create an array or a vector with a negative size

	Refs
	[35, p. 209, NegativeArraySizeException]


2.5.7.2.14 NoSuchElementException

	Metaclass
	NoSuchElementException

	Extends
	VariableResolutionError

	Description
	An attempt was made to access an element of an empty vector

	Refs
	[35, p. 209, NoSuchElementException]


2.5.7.2.15 NullReferenceException

	Metaclass
	NullReferenceException

	Extends
	VariableResolutionError

	Description
	An attempt was made to use a null reference in a case where a reference to an addressable entity is required

	Refs
	[35, p. 44, NullPointerException], [28, p. 116, stfld, NullReferenceException]


2.5.7.2.16 OverflowException

	Metaclass
	OverflowException

	Extends
	ArithmeticException

	Description
	The result of an arithmetic operation does not fall within the range of values that can be represented by the result’s type

	Refs
	[28, p. 19, add.ovf, OverflowException]


2.5.7.2.17 ReferenceResolutionError

	Metaclass
	ReferenceResolutionError

	Extends
	UncheckedException

	Description
	A reference to a field cannot be resolved at runtime


ReferenceResolutionError represents any exception that can be thrown as a result of an attempt to resolve a reference to an addressable entity at runtime.  

2.5.7.2.18 SecurityException

	Metaclass
	SecurityException

	Extends
	UncheckedException

	Description
	A security violation was detected

	Refs
	[35, p. 44, SecurityException], [28, p. 37, calli, SecurityException]


2.5.7.2.19 OutOfMemoryError

	Metaclass
	OutOfMemoryError

	Extends
	UncheckedException

	Description
	A requested instance cannot be allocated from a memory pool at runtime due to a lack of available memory

	Refs
	[35, p. 212, OutOfMemoryError]


2.5.7.2.20 VariableResolutionError

	Metaclass
	VariableResolutionError

	Extends
	ReferenceResolutionError

	Description
	A reference to a variable cannot be resolved at runtime


VariableResolutionError represents any exception that can be thrown as a result of an attempt to resolve a reference to a variable at runtime.  

2.5.7.3 Language mappings

Exceptions are directly supported by target languages such as Java and C++.  The metaclass Exception maps to the Java class Throwable, with its subclasses Exception and Error. The standard subclasses of Exception other than RuntimeException are all checked exception classes, with a semantics enforced by the language. Subclasses of Error and RuntimeException represent unchecked exceptions.

There is no prescribed exception class hierarchy in C++.  Instead, an exception may be an instance of any class or primitive type. The C++ Standard Template Library (STL), however, does define a class exception, with subclasses logic_error, runtimne_error, bad_alloc, bad_cast, bad_exception, and bad_typeid [50, p. 186].  C++ does not enforce the semantics of checked exceptions.

2.5.8 Signal

	Metaclass
	Signal

	Extends
	Classifier

	Description
	An asynchronous trigger for some action

	Refs
	[5, p. 2-102, Figure 2-14], [5, pp. 2-110, 2-116, 2-117]


2.5.8.1 Semantics

The semantics of Signal are those common to UML, and to MS-IL and JVM exceptions.

2.5.8.2 Language mappings

Signals could be mapped to events in MS-IL and Java with some additional effort.

2.6 Action Foundation

The following definitions are based on those in the Action Foundation section of the UML specification [5, p. 2-221, section 2.17].

2.6.1 Action 

	Metaclass
	Action

	Extends
	ModelElement

	Description
	The basic unit of behavioral specification

	Refs
	[5, pp. 2-228, 2-343],

[5, p. 2-339, “A jump handler may be attached to an action (primitive or composite …”],

[27, p. 35] [27, p. 32, 34-35, 275-281, .try],

[35, pp. 42, 149] [36, p. 124, section 5.6, begin-label, end-label]

	Attribute
	strict

	Description
	Is the action ‘strict’ with respect to the evaluation of its inputs?

	Type
	Boolean

	DefaultValue
	true

	Attribute
	isReadOnly

	Description
	Does the action have any potential side effects?

	Type
	Boolean

	CompositeEnd
	pre

	Description
	A precondition associated with execution of the action

	Type
	Set (Constraint)

	DefaultValue
	true

	Multiplicity
	*

	CompositeEnd
	post

	Description
	A postcondition associated with execution of the action

	Type
	Set (Constraint)

	Multiplicity
	*

	AssociationEnd
	exception

	Description
	A list of all exceptions that may be thrown as a result of executing the action

	Type
	Sequence (Exception)

	Multiplicity
	*

	AssociationEnd
	jumpHandler

	Description
	The jump handlers attached to the action

	Type
	Sequence (JumpHandler)

	Multiplicity
	*


Action is the supertype of all actions, whether individual or composite.

The run time inputs and outputs of an action are specified as parameters, analogous to pins in the UML Actions Semantics, and identical to the parameter specifications for behavioral features.

The effect of executing an action may be specified in terms of its precondition and postcondition (analogous to the specification of a behavioral feature). 

A list is provided of all exceptions that mayh be thrown as a result of executing the action.  The conditions under which each exception is thrown are specified as part of the postcondition.  When no list of exceptions is specified, it is assumed that any exception might be thrown.  An explicitly empty list indicates that no exceptions are thrown.
Jump handlers (e.g., to catch exceptions) may be attached to any action.  Such handlers apply not only to the action itself, but to all actions that it contains.

2.6.1.1 Semantics

The semantics of Action are those common to the UML definition of Action, to MS-IL and JVM instructions, and to groups of MS-IL and JVM instructions.

When an action has more than one input, the order of evaluation of the associated arguments is generally undefined, although a particular action may explicitly define it. If the value of an output parameter depends on an order of evaluation that is undefined, then the parameter’s value is also undefined.

Also, depending upon the action, not all input arguments may need to be evaluated in order for it to execute.  For example, the semantics of a ConditionalExpression is such that only the chosen expression is evaluated, while the other expression is not. 

If an action is ‘strict’, then all its input arguments must be evaluated before the action is applied [52, p. 324, section 20.10 Semi-strictness] [22, pp. 162-164, 243-247, 262-276].  This is the typical case, although it is not true of certain actions (such as the ‘short circuit’ boolean operators) for which the value of strict is defined to be false.

When an action has more than one output, all output parameters take on their computed values simultaneously at the point at which execution of the action completes (and have no defined value before then).

2.6.1.2 Language mappings

Actions map to statements and groups of statements in languages such as C++ and Java.  An action with an assigned Jump handler corresponds to a try block., while the Jump handlers correspond to catch clauses and finally clauses. 

In most languages, the order of evaluation for arguments to most operations is undefined. In C++, for instance, the value of the expression “v[q] = q++;” is undefined since it depends upon whether the left or right argument to the assignment expression is evaluated first. 

2.6.2 Pin

	Metaclass
	Pin

	Extends
	Parameter

	Description
	A parameter associated with an action

	Refs
	[5, p. 2-233, Pin], [5, p. 2-232, InputPin], [5, p. 2-232, OutputPin]

	CompositeEnd
	argument

	Description
	An expression representing the argument associated with the parameter

	Type
	Expression


Pins allow inputs and outputs associated with actions to be specified in a manner similar to that for operations.  An action has parameters (pins) just like an operation.  Like operation parameters, action parameters (pins) have a type and a kind (in, out, inout, or return) that lets us specify what type of data is being transferred, and to distinguish between what is read and what is written by the action.

Just as with operations, the type of any argument expression must be compatible with the type of the parameter (pin).  For example, an IntegerAdd has two pins, left and right, each of type Integer.  The arguments associated with these pins must be IntegerExpressions (return a result of type Integer or some Integer subtype).

For an operation, arguments are specified at the point of call, and different calls may involve different arguments.  For an action, arguments are specified at the point an instance of the action appears, and each appearance of the action is like a call to some corresponding micro-code routine or VM implementation.

Overall the idea is a) to identify the inputs and outputs associated with actions, b) to distinguish inputs from outputs, and c) to specify the type of data required by or produced by the action.

2.6.2.1 Semantics

The semantics of Pin extend those of Parameter in a manner similar to that for UML Pins.  

The type of the argument associated with a Pin must be compatible with the declared type of the Pin (just as the type of an argument passed to an operation must be compatible with the declared type of the corresponding parameter).

2.6.2.2 Language mappings

… 

2.6.3 Statement

	Metaclass
	Statement

	Extends
	Action

	Description
	An action that does not return a value (is of type void) 

	Refs
	[26, CodeStatement]

	Attribute
	isReadOnly

	Value
	false


The execution of a Statement does not produce a value, but may have side effects.

2.6.3.1 Semantics

Statements do not have a type (i.e., do not evaluate to a value of a given type) and may not appear in expressions.

All Statements have potential side effects.

2.6.3.2 Language mappings

Nearly all target languages support a dichotomy involving expressions and statements. Operations such as assignment, however, may be considered a statement in one language and an expression in others (i.e., an expressions that both returns a value and produces a side effect).

2.6.4 Expression 

	Metaclass
	Expression

	Extends
	Action

	Description
	An action that evaluates to a result of a given type 

	Refs
	[5, p. 2-92, Figure 2-12], [5, pp. 2-94, 3-10], [5, p. 2-103, Figure 2-15],

[5, p. 6-7, section 6.3.6 General Expressions],

[26, CodeExpression]

	Pin
	result

	Kind
	return

	Description
	The result of evaluating the expression

	Type
	Classifier


2.6.4.1 Semantics

The semantics of Expression are those common to UML [5, p. 2-94] and its subtypes.

2.6.4.2 Language mappings

All target languages support expressions involving operators and functions.  Differences arise primarily in terms of the nature of the operators, their precedence, and their evaluation order (left to right, right to left, etc.).

2.6.5 ExpressionStatement

	Metaclass
	ExpressionStatement

	Extends
	Statement

	Description
	A statement whose execution involves the evaluation of a single expression whose result is then discarded

	Refs
	expression-statement [46, p. 803]

ExpressionStatement [38, p. 447]

	CompositeEnd
	expression

	Description
	The expression that is evaluated when the statement is executed

	Type
	Expression


2.6.5.1 Semantics

The semantics of ExpressionStatement are those associated with the evaluated expression.

2.6.5.2 Language mappings

ExpressionStatement corresponds to an expression-statement in the C++ grammar and to an ExpressionStatement in Java.

2.6.6 BinaryExpression

	Metaclass
	BinaryExpression

	Extends
	Expression

	Description
	An expression that takes two arguments

	Refs
	[26, CodeBinaryOperatorExpression]

	Pin
	left

	Description
	The left parameter

	Type
	Classifier

	Pin
	right

	Description
	The right parameter

	Type
	Classifier


2.6.6.1 Semantics

The semantics of BinaryExpression are those common to its subtypes (e.g., Add, Subtract, LogicalAnd, Assign, etc.).  The expression has two parameters, left and right.  The Kind of these parameters (in, out) is determined by each subtype.

2.6.6.2 Language mappings

None.  BinaryExpression is an abstract metaclass.

2.6.7 UnaryExpression

	Metaclass
	UnaryExpression

	Extends
	Expression

	Description
	An expression that takes a single argument

	Pin
	argument

	Type
	Classifier


2.6.7.1 Semantics

The semantics of UnaryExpression are those common to its subtypes (e.g. UnaryPlus, Box, Unbox, DecrementAndRead, etc.).  The expression has a single input parameter, argument.  The Kind of this parameter (in, out) is determined by each subtype.

2.6.7.2 Language mappings

None.  UnaryExpression is an abstract metaclass.

2.6.8 ReferenceExpression

	Metaclass
	ReferenceExpression

	Extends
	Expression

	Description
	A description of an addressable entity sufficient to determine its location in memory

	RaisedSignal
	{ReferenceResolutionError}

	Pin
	result

	Type
	AddressableEntity


2.6.8.1 Semantics

A ReferenceExpression is a compile time expression that refers to a run time instance of an AddressableEntity.  This is an opaque reference, although it may be converted to an explicit pointer using CastReferenceToPointer. The entity described by the reference may be readable and writeable (a variable) or executable (a method).

ReferenceExpression is an abstract class.  Concrete subclasses provide descriptions of individual entities sufficient to determine the run time location of their instances in memory (e.g., the address of an object field, computed by adding a field offset to an object address).

A ReferenceResolutionError may be thrown if the system attempts to resolve the reference to the addressable entiry at runtime.

2.6.8.2 Subtypes

2.6.8.2.1 ObjectReference

	Metaclass
	ObjectReference

	Extends
	ReferenceExpression

	Description
	A reference to an object or the literal value null

	Pin
	result

	Type
	Object


An object reference returns either a reference to a run time instance of a Class (an object) or the literal value null.

2.6.8.2.2 VariableReference

	Metaclass
	VariableReference

	Extends
	ReferenceExpression

	Description
	A reference to a variable

	RaisedSignal
	{VariableResolutionError}

	Refs
	[41, eok_lvalue, eok_address_of_value], 

[38, p. 453, LeftHandSide]

	AssociationEnd
	variable

	Description
	The definition of the referenced variable (field, local variable, array element, etc.)

	Type
	Variable

	Multiplicity
	0..1

	Pin
	result

	Type
	VariableInstance


A variable definition is referred to in XML by its id. If a variable definition is specified, the type of the result is the type of the referenced variable.

A VariableResolutionError may be thrown if the system attempts to resolve the reference to the variable definition at runtime.

2.6.8.2.3 ObjectFieldReference

	Metaclass
	ObjectFieldReference

	Extends
	VariableReference

	Description
	A reference to a specified object field

	Pre
	-- The object reference must not be null
(object <> () and 

-- The ownerScope of the field must be instance
(variable.ownerScope() = instance) 

-- The field’s visibility must permit access by the action

	RaisedSignal
	{NullReferenceException, FieldResolutionError}

	Refs
	[41, eok_field, eok_lvalue_from_struct_rvalue], 

[38, p. 453, FieldAccess]

	Pin
	object

	Description
	A run time reference to the object that contains the field

	Kind
	in

	Type
	Object

	AssociationEnd
	variable

	Description
	The definition of the referenced field

	Type
	Field

	Multiplicity
	1

	Pin
	result

	Type
	ObjectFieldInstance


The field definition is referred to in XML by its id.  The ownerScope of the field must be instance.  

The field’s visibility must permit access by the action.

The type of the result is the type of the referenced field.

The address associated with the object field instance is typically computed at run-time by adding a static offset (based on the position of the field within the list of fields defined by its class) to the run-time address of the object.

NullReferenceException is thrown if object is null.

FieldResolutionError may be thrown if the system attempts to resolve the reference to the field at runtime.

Object fields correspond to member fields in C++ and instance fields in Java. In both C++ and Java, they are referenced using an expression of the form “object.fieldName”.
2.6.8.2.4 DynamicObjectFieldReference

	Metaclass
	DynamicObjectFieldReference

	Extends
	VariableReference

	Description
	A reference to an object field with an offset specified at runtime

	Pre
	-- The object reference must not be null
(object <> () and 

-- The field offset must not be null
(offset <> ()

-- The field’s visibility must permit access by the action

	RaisedSignal
	{NullReferenceException, FieldResolutionError}

	Refs
	[43, p. 121, pointer to data member]

	AssociationEnd
	variable

	Multiplicity
	0

	Pin
	object

	Description
	A run time reference to the object that contains the field

	Kind
	in

	Type
	Object

	Pin
	offset

	Description
	The offset associated with the field

	Type
	FieldOffset

	Pin
	result

	Type
	ObjectFieldInstance


The field’s visibility must permit access by the action.

The type of the result is the type of the referenced field.

The address associated with the object field instance is computed at run-time by adding the dynamically specified offset to the run-time address of the object.

NullReferenceException is thrown if object is null.

FieldResolutionError may be thrown if the field offset is null.

The field offset corresponds to a “pointer to data member” in C++, which is really not a pointer, but an offset to the field within an object of a given type [43, p. 121, pointer to data member].

2.6.8.2.5 ClassFieldReference

	Metaclass
	ClassFieldReference

	Extends
	VariableReference

	Description
	A reference to a specified class field

	Pre
	-- The ownerScope of the field must be classifier
variable.ownerScope() = classifier

-- The field’s visibility must permit access by the action

	RaisedSignal
	{FieldResolutionError}

	Refs
	[38, p. 453, FieldAccess]

	AssociationEnd
	variable

	Description
	The definition of the referenced field

	Type
	Field

	Multiplicity
	1

	Pin
	result

	Type
	ClassFieldInstance


The field definition is referred to in XML by its id.  The ownerScope of the field must be classifier.  

The field’s visibility must permit access by the action.

The type of the result is the type of the referenced field.

The address associated with the class field instance is typically computed statically (at compile/link time) based on its definition within its class.  

If classes are dynamically loaded, the address of the class field may be computed at load-time by adding a field offset (based statically on the definition of the field within its class) to the load address of the class. 

FieldResolutionError may be thrown if the system attempts to resolve the reference to the field at runtime.

Class fields correspond to static fields in languages such as C++. In C++, they are referenced using an expression of the form “className::fieldName”.  In Java they are referenced using an expression of the form “className.fieldName”.

2.6.8.2.6 GlobalFieldReference

	Metaclass
	GlobalFieldReference

	Extends
	VariableReference

	Description
	A reference to a specified global field

	Pre
	-- The ownerScope of the field must be classifier
variable.ownerScope() = classifer

-- The field’s visibility must permit access by the action

	RaisedSignal
	{FieldResolutionError}

	Refs
	[27, p. 194, Global Fields]

[38, p. 453, FieldAccess]

	AssociationEnd
	variable

	Description
	The definition of the referenced field

	Type
	Field

	Multiplicity
	1

	Pin
	result

	Type
	GlobalFieldInstance


The field definition is referred to in XML by its id. The ownerScope of the field must be classifier.

The field’s visibility must permit access by the action.

The type of the result is the type of the referenced variable.

The address associated with the global field instance is typically computed statically (at compile/link time) based on its definition within its package (C++ namespace). 

FieldResolutionError may be thrown if the system attempts to resolve the reference to the field at runtime.

Global fields correspond to external static fields in languages such as C++.

2.6.8.2.7 ArrayElementReference

	Metaclass
	ArrayElementReference

	Extends
	VariableReference

	Description
	A reference to an array element

	SpecDefinition
	-- The relative position of the element within the array as an integer value
def: position () : Integer = pos (variable.type(), 1, 0)

def: pos (array: Array, dim: Integer, sum: Integer) : Integer = 

if (dim < array.numberOfDimensions()) then (sum + index.at(dim))

else pos (array, dim + 1, sum * array.dimension().at(dim).numberOfElements()) endif

	Pre
	-- The variable must be an array type
(variable.type().isSubtypeOf(Array)) and 

-- The array reference must not be null
(object <> () and

-- The number of indices must match the number of array dimensions
(index(size() = variable.numberOfDimensions()) 

-- The index values must specify an element within the bounds of the array

	RaisedSignal
	{NullReferenceException, IndexOutOfBoundsException}

	Refs
	[38, p. 453, ArrayAccess]

	Pin
	object

	Description
	A run-time reference to the array 

	Kind
	in

	Type
	Array

	Pin
	index

	Description
	The indices of the element within the array

	Kind
	in

	Type
	Sequence (Integer)

	Pin
	result

	Type
	ArrayElementInstance


The definition of the array variable is referred to in XML by its id.

The type of the result is the type of the referenced element.

The array indices must be Integer values.  They may be constants or involve run time computation.

The OCL expression position() returns the relative position of the referenced element within the array as an integer value.

The address associated with the array element instance is typically computed by adding the run time address of the array object to an offset computed from the element indices, a knowledge of element type and size, and a knowledge of the number of elements associated with each dimension.

A NullReferenceException is thrown if the array reference is null.

An IndexOutOfBoundsException is thrown if the indices do not specify an element within the bounds of the array.

2.6.8.2.8 VectorElementReference

	Metaclass
	VectorElementReference

	Extends
	VariableReference

	Description
	A reference to a vector element

	Pre
	-- The variable must be a vector type
(variable.type().isSubtypeOf(Vector)) and

-- The vector reference must not be null
(object <> () and

-- The index value must specify an element within the bounds of the vector

	RaisedSignal
	{NullReferenceException, IndexOutOfBoundsException}

	Refs
	[38, p. 453, ArrayAccess]

	Pin
	object

	Description
	A run-time reference to the vector

	Kind
	in

	Type
	Vector

	Pin
	index

	Description
	The index of the element within the vector

	Kind
	in

	Type
	Integer

	Pin
	result

	Type
	ArrayElementInstance


The definition of the vector variable is referred to in XML by its id.

The index must be an IntegerExpression.  It may be a constant or involve run time computation.

The address associated with the vector element instance is typically computed by adding the run time address of the vector object to an offset based on the element index and a knowledge of element type and size. 

A NullReferenceException is thrown if the vector reference is null.

An IndexOutOfBoundsException is thrown if the index does not specify an element within the bounds of the vector.

2.6.8.2.9 VectorSliceReference

	Metaclass
	VectorSliceReference

	Extends
	VariableReference

	Description
	A reference to a subsequence (slice) of the elements of a vector

	Pre
	-- The variable must be a vector type
(variable.type().isSubtypeOf(Vector)) and

-- The vector reference must not be null
(object <> ()

-- The values of first and last must specify elements within the bounds of the vector

	Post
	-- If first is less than last, then the reference is to an empty vector slice

	RaisedSignal
	{NullReferenceException, IndexOutOfBoundsException}

	Pin
	object

	Description
	A run-time reference to the vector

	Kind
	in

	Type
	Vector

	Pin
	first

	Description
	The index of the first element in the subsequence

	Kind
	in

	Type
	Integer

	Pin
	last

	Description
	The index of the last element in the subsequence

	Kind
	in

	Type
	Integer

	Pin
	result

	Type
	VectorSliceInstance


The vector definition is referred to in XML by its id.

The semantics of references to vector slices are those defined by Ada.

The values of first and last must both be IntegerExpressions, and both must specify elements within the bounds of the vector.

The addresses of the first and last vector elements are typically computed by adding the run time address of the vector object to an offset based on each element index and a knowledge of element type and size.

If first is less than or equal to last, the reference is to an empty vector slice (vector slice of length zero). 

A NullReferenceException is thrown if the vector reference is null.

An IndexOutOfBoundsException is thrown if first and last do not specify an element within the bounds of the vector.
2.6.8.2.10 ArgumentReference

	Metaclass
	ArgumentReference

	Extends
	VariableReference

	Description
	A reference to an argument in a given stack frame

	RaisedSignal
	{}

	Refs
	[38, p. 453, Name]

	Pin
	activationRecord

	Description
	The method activation record (stack frame) in which the variable appears.

	Kind
	in

	Type
	MethodActivation

	Multiplicity
	0..1

	AssociationEnd
	variable

	Description
	The definition of the parameter associated with the argument

	Type
	Parameter

	Multiplicity
	1

	Pin
	result

	Type
	ArgumentInstance


The parameter definition is referred to in XML by its id.

The current method activation record (stack frame) at the point of reference is assumed if none is specfied.

The address associated with the argument instance is typically computed at run time by adding a method activation record address to a static offset (based on the position of the parameter within the called method’s parameter list). 

There are no exceptions associated with the evaluation of a reference to an argument.

2.6.8.2.11 LocalVariableReference

	Metaclass
	LocalVariableReference

	Extends
	VariableReference

	Description
	A reference to a local variable in a given stack frame

	RaisedSignal
	{}

	Refs
	[38, p. 453, Name]

	Pin
	activationRecord

	Description
	The method activation record (stack frame) in which the variable appears

	Kind
	in

	Type
	MethodActivation

	Multiplicity
	0..1

	AssociationEnd
	variable

	Description
	The definition of the referenced variable

	Type
	LocalVariable

	Multiplicity
	1

	Pin
	result

	Type
	LocalVariableInstance


The definition of the local variable is referred to in XML by its id. 

The current method activation record (stack frame) at the point of reference is assumed if none is specfied.

The address associated with the local variable instance is typically computed at run time by adding a method activation record address to a static offset (based on the position of the local variable within list of local variables defined by the blocks associated with the called method). 

There are no exceptions associated with the evaluation of a reference to an argument.

2.6.8.2.12 MethodReference

	Metaclass
	MethodReference

	Extends
	ReferenceExpression

	Description
	A reference to a method of an object or class

	RaisedSignal
	{SecurityException}

	AssociationEnd
	method

	Description
	The definition of the referenced method

	Type
	Method

	Multiplicity
	0..1

	Pin
	result

	Type
	MethodInstance


A method definition is referred to in XML by its id.

A SecurityException may be thrown if system security does not permit access to the given method by the action.

2.6.8.2.13 InstanceMethodReference

	Metaclass
	InstanceMethodReference

	Extends
	MethodReference

	Description
	A reference to a specified instance method

	Pre
	-- The ownerScope of the method must be instance
method.ownerScope() = instance

	AssociationEnd
	method

	Multiplicity
	1

	Pin
	result

	Type
	InstanceMethodInstance


The ownerScope of the method must be instance.

The address of an instance method is typically computed (at compile/link time) based on its definition within its class.  

Instance methods correspond to member functions in languages such as C++.
2.6.8.2.14 DynamicInstanceMethodReference

	Metaclass
	DynamicInstanceMethodReference

	Extends
	MethodReference

	Description
	A reference to an instance method whose offset is specified at runtime

	AssociationEnd
	method

	Multiplicity
	0

	Pin
	offset

	Description
	The offset associated with the method

	Type
	MethodOffset

	Pin
	result

	Type
	InstanceMethodInstance


The address of the instance method is computed at run-time by indexing the dispatch table associated with the object’s class using the specified offset.

The method offset corresponds to a pointers to a function member in C++.

2.6.8.2.15 ClassMethodReference

	Metaclass
	ClassMethodReference

	Extends
	MethodReference

	Description
	A reference to a class method

	Pre
	-- The ownerScope of the method must be classifier
method.ownerScope() = classifier

	AssociationEnd
	method

	Multiplicity
	1

	Pin
	result

	Type
	ClassMethodInstance


The ownerScope of the method must be classifier. 

Class methods correspond to static (non-member) functions in languages such as C++.

The address of a class method is typically computed (at compile/link time) based on its definition within its class.  

2.6.8.2.16 GlobalMethodReference

	Metaclass
	GlobalMethodReference

	Extends
	MethodReference

	Description
	A reference to a global method (a method associated with a package)

	Pre
	-- The ownerScope of the method must be classifier
method.ownerScope() = classifier

	AssociationEnd
	method

	Multiplicity
	1

	Pin
	result

	Type
	GlobalMethodInstance


The ownerScope of the method must be classifier. 

The address of a class method is typically computed (at compile/link time) based on its definition within its package.  

Global methods correspond to global functions in languages such as C++ that are defined within a given namespace.

2.6.8.2.17 OperationReference

	Metaclass
	OperationReference

	Extends
	MethodReference

	Description
	A reference to a method that implements a given operation

	Pre
	-- The ownerScope of the operation must be instance
operation.ownerScope() = instance

	AssociationEnd
	operation

	Description
	The definition of the operation implemented by the referenced method

	Type
	Operation

	Pin
	result

	Type
	MethodInstance


The operation definition is referred to in XML by its id.

2.6.8.2.18 InstanceOperationReference

	Metaclass
	InstanceOperationReference

	Extends
	InstanceMethodReference

	Description
	A reference to a method that implements a given instance operation

	Pre
	-- The ownerScope of the operation must be instance
operation.ownerScope() = instance

	AssociationEnd
	class

	Description
	The definition of the class with which the method is associated

	Type
	Class

	Pin
	result

	Type
	InstanceMethodInstance


The ownerScope of the operation must be instance. The referenced method is the method that implements the operation with respect to the given class.

The address of an instance method is typically computed (at compile/link time) based on its definition within the given class.

Instance methods correspond to member functions in languages such as C++.

Note: With support for run-time reflection, it should also be possible to specify the class used to select the implementing method using an Expression.

2.6.8.2.19 ClassOperationReference

	Metaclass
	ClassOperationReference

	Extends
	MethodReference

	Description
	A reference to a method that implements a given class operation

	Pin
	result

	Type
	ClassMethodInstance


The ownerScope of the operation must be classifier.  The referenced method is the single method that implements the operation.

Class methods correspond to static (non-member) functions in languages such as C++.

The address of a class method is typically computed (at compile/link time) based on its definition within its class.  

2.6.8.2.20 GlobalOperationReference

	Metaclass
	GlobalOperationReference

	Extends
	MethodReference

	Description
	A reference to a method that implements a given global operation (an operation associated with a package)

	Pin
	result

	Type
	GlobalMethodInstance


The ownerScope of the operation must be classifier.  The referenced method is the single method that implements the operation.

Global methods correspond to global functions in languages such as C++ that are defined within a given namespace.

The address of a class method is typically computed (at compile/link time) based on its definition within its class or package. 

2.6.8.3  Related types

2.6.8.3.1 MethodOffset

	Metaclass
	MethodOffset

	Extends
	DataType

	Description
	The offset to a method within the dispatch table for an object

	Refs
	[43, pp. 120-123, pointer to function member]


A method offset represents a “pointer to function member” in C++ [43, pp. 120-123, pointer to function member].
2.6.8.3.2 FieldOffset

	Metaclass
	FieldOffset

	Extends
	DataType

	Description
	The offset to a field within an object

	Refs
	[43, pp. 120-123, pointer to data member]


A field offset represents a “pointer to data member” in C++ [43, pp. 120-123, pointer to data member].

“A pointer to member is not a pointer.  A pointer to member is not an address of anything, and it doesn’t refer to any particular object or location … A pointer to data member is generally implemented as an offset.  That is, taking the address of a data member (as with &Hourly::rate_) gives the number of bytes from the start of the class object at which the data member occurs.  Typically, this offset value is incremented by 1, so that the value 0 can represent a null pointer to data member.  Deferencing a pointer to data member typically involves manufacturing an address by adding the offset (decremented by 1) stored in the pointer to data member to the address of a class object.” [43, p. 121]

2.6.8.4 Language mappings

In general, reference expressions must either evaluate to null or must refer to a valid entity of the specified type.

C++ references represent a restricted form of ReferenceExpression, one in which a reference can never be null. 

2.6.9 ReadDataElement

	Metaclass
	ReadDataElement

	Extends
	Expression

	Description
	Read a data element (variable or constant)


2.6.9.1 Semantics

The semantics of ReadDataElement are those common to its subtypes, ReadVariable and ConstantExpression.

2.6.10 ReadVariable

	Metaclass
	ReadVariable

	Extends
	ReadDataElement

	Description
	Read a variable (attribute, argument, local variable, etc.)

	RaisedSignal
	{VariableResolutionError}

	Refs
	[41, eok_rvalue]

	AssociationEnd
	variable

	Description
	The definition of the referenced variable

	Type
	AddressableEntity


2.6.10.1 Semantics

The semantics of ReadVariable are those common to its subtypes (which operate on different types of variables). 

The list of raised signals associated with ReadVariable includes those associated with its subtypes since VariableResolutionError is a supertype of those exception types.

2.6.10.2 Language mappings

ReadVariable corresponds to a C++ expression that represents the value of a variable of some type. 

2.6.11 WriteVariable

	Metaclass
	WriteVariable

	Extends
	Expression

	Description
	Write to a variable (attribute, argument, local variable, etc.), returning some related result

	Refs
	WriteVariableAction [5, p. 2-289]

	Attribute
	writesResult

	Description
	Is the value written to the variable the same as the returned result?

	Type
	Boolean


2.6.11.1 Semantics

The semantics of WriteVariable are those defined by UML [5, p. 2-289] that are common to its subtypes.

2.6.11.2 Language mappings

WriteVariable corresponds to an expressions in C++ and Java that write to variables, whether this expressed directly as assignment or in terms of operators such as ++ and --.

2.6.12 ConstantExpression 

	Metaclass
	ConstantExpression

	Extends
	ReadDataElement

	Description
	An expression that can be evaluated at compile time


2.6.12.1 Semantics

The semantics of ConstantExpression require that it be possible to compute the expression’s value at compile time. 

2.6.12.2 Language mappings

The grammars of target languages such as C++ and Java contain include constant expressions.

2.6.13 Assign

	Metaclass
	Assign

	Extends
	BinaryExpression, WriteVariable

	Description
	Assign a value to a variable

	Pre
	-- The type of the value to be written must the same type as the variable to be written
if left.type().isSutbypeOf(DataType) 

then left.type() = right.argument()type()

else right.argument()type().isSubtypeOf (left.type())

endif

	Post
	-- The result of the expression has been assigned to the variable
(left = result) and

-- The type of the result is that of the assigned value
(left.argument().type() = result.argument().type())

	Refs
	WriteVariableAction [5, p. 2-289],

stfld<token> [27, p. 258] [28, p. 116], stloc.0, stloc.1, stloc.2, stloc.3 [27, p. 256], stelem.<type> [27, p. 267] [28, p. 115], starg, starg.s, starg.0, starg.1, starg.2, starg.3 [27, pp. 254, 255], stind.<type> [27, pp. 246, Indirect storing] [28, p. 81], unaligned (prefix) [28, p. 87], volatile (prefix) [28, p. 88],

putfield [35, p. 88, section 3.11.5] [35, p. 348] [35, p. 379, section 7.8 Working with Class Instances], wide Tstore, Tstore, Tstore_0, Tstore_1, Tstore_2, Tstore_3 [35, p. 82, table 3.2] [35, p. 83, 3.11.2],Tastore [35, p. 82, table 3.2], [35] iinc,

	
	[41, eok_assign, eok_iassign, eok_fassign, eok_passign eok_cassign, eok_sassign, eok_bassign, eok_pmassign, eok_xassign]

	Attribute
	writesResult

	Value
	true

	Pin
	left

	Description
	The variable to be written

	Kind
	out

	Type
	VariableInstance

	Pin
	right

	Description
	The value to be written

	Kind
	in

	Type
	Classifier


2.6.13.1 Semantics

The semantics of Assign are based on those defined by UML for WriteVariableAction, and are those common to its subtypes (which operate on specific types of variables).

A distinction is made between data types and reference types due to concerns about the size of the variable and the size of the assigned value.  

For a data type, the type of the variable and the size of the assigned value must be identical to ensure their sizes also match (or a cast must be performed to make them so).  

For a reference type, polymorphic assignment (the assignment of a subtype value to a variable whose declared type represents a supertype) is permitted since all references are assumed to be the same physical size.

In XCIL, assignment and the evaluation of the variable reference (lvalue) that is the target of the assignment are separate actions.  As a result, the exceptions associated with variable resolution are associated with VariableReference and its subtypes rather than directly with Assign.
2.6.13.2 Subtypes

The following “assignment operators” represent a combination of assignment with other operators (arithmetic, logical, string and vector).  

The semantics of these operators can be understood in terms of equivalence.  In C++ and Java, for instance, ‘x *= 4;’ is equivalent to ‘x = x * 4;’.  

Expressed more generally, in terms of the left and right arguments to a binary expression and using the names of definitions appearing in this paper, we can say ‘left MultiplyAssign right’ is equivalent to ‘left Assign (left Multiply right)’. 

2.6.13.2.1 DirectAssign

	Metaclass
	DirectAssign

	Extends
	Assign

	Description
	Perform a simple, direct assignment, without any additional computation

	Post
	-- The variable contains the assigned value
(left = right) and

-- which is also returned as the value of the expression
(result = right) and

(result.argument().type() = right.argument().type())

	RaisedSignal
	{}


Maps to “=” in languages such as C++ and Java.

2.6.13.2.2 ComputeAndAssign

	Metaclass
	ComputeAndAssign

	Extends
	Assign

	Description
	Perform a computation, followed by an assignment


2.6.13.2.3 MultiplyAssign

	Metaclass
	MultiplyAssign

	Extends
	ComputeAndAssign

	Description
	Perform a computation equivalent to ‘left DirectAssign (left Multiply right)’

	Post
	-- The variable contains old variable value * right argument value
(left = left@pre * right) and

-- which is also returned as the value of the expression
(result = left@pre * right)

	RaisedSignal
	{OverflowException}

	Attribute
	overflow

	Description
	Is an exception thrown when arithmetic overflow occurs?

	Type
	Boolean

	DefaultValue
	false

	Pin
	right

	Type
	Number


Semantically MultiplyAssign is equivalent to performing a Multiply involving left and right, followed by assignment of the result to left. The multiplication has the semantics of either IntegerMultiply or FloatMultiply based on the types of the associated arguments. No runtime exceptions are thrown by MultiplyAssign when the arguments are of type Float.

Maps to “*=” in languages such as C++ and Java.

2.6.13.2.4 DivideAssign

	Metaclass
	DivideAssign

	Extends
	ComputeAndAssign

	Description
	Perform a computation equivalent to ‘left DirectAssign (left Divide right)’

	Post
	-- The variable contains old variable value / right argument value
(left = left@pre / right) and

-- which is also returned as the value of the expression
(result = left@pre / right)

	RaisedSignal
	{ArithmeticException, DivideByZeroException}

	Attribute
	overflow

	Description
	Is an exception thrown when arithmetic overflow occurs?

	Type
	Boolean

	DefaultValue
	false

	Pin
	right

	Type
	Number


Semantically DivideAssign is equivalent to performing a Divide involving left by right, followed by assignment of the result to left. The division has the semantics of either IntegerDivide or FloatDivide based on the types of the associated arguments. No runtime exceptions are thrown by DivideAssign when the arguments are of type Float.

Maps to “/=” in languages such as C++ and Java.

2.6.13.2.5 RemainderAssign

	Metaclass
	RemainderAssign

	Extends
	ComputeAndAssign

	Description
	Perform a computation equivalent to ‘left DirectAssign (left Remainder right)’

	Pin
	right

	Type
	Number


Maps to “%=” in languages such as C++ and Java.

2.6.13.2.6 AddAssign

	Metaclass
	AddAssign

	Extends
	ComputeAndAssign

	Description
	Perform a computation equivalent to ‘left DirectAssign (left Add right)’

	Post
	-- The variable contains old variable value + right argument value
(left = left@pre + right) and

-- which is also returned as the value of the expression
(result = left@pre + right)

	RaisedSignal
	{OverflowException}

	Attribute
	overflow

	Description
	Is an exception thrown when arithmetic overflow occurs?

	Type
	Boolean

	DefaultValue
	false

	Pin
	right

	Type
	Number


Semantically AddAssign is equivalent to performing an Add of left and right, followed by assignment of the result to left. The addition has the semantics of either Add or one of its subtypes based on the types of the associated arguments. No runtime exceptions are thrown by AddAssign when the arguments are of type Float. 

Maps to “+=” in languages such as C++ and Java.

2.6.13.2.7 SubtractAssign

	Metaclass
	SubtractAssign

	Extends
	ComputeAndAssign

	Description
	Perform a computation equivalent to ‘left DirectAssign (left Subtract right)’

	Post
	-- The variable contains old variable value - right argument value
(left = left@pre - right) and

-- which is also returned as the value of the expression
(result = left@pre - right)

	RaisedSignal
	{OverflowException}

	Attribute
	overflow

	Description
	Is an exception thrown when arithmetic overflow occurs?

	Type
	Boolean

	DefaultValue
	false

	Pin
	right

	Type
	Number


Semantically SubtractAssign is equivalent to performing a Subtract involving left and right, followed by assignment of the result to left. The addition has the semantics of Subtract or one of its subtypes based on the types of the associated arguments. No runtime exceptions are thrown by SubtractAssign when the arguments are of type Float.

Maps to “-=” in languages such as C++ and Java.

2.6.13.2.8 ShiftRightSignedAssign

	Metaclass
	ShiftRightSignedAssign

	Extends
	ComputeAndAssign

	Description
	Perform a computation equivalent to ‘left DirectAssign (left ShiftRightSigned right)’

	Pin
	right

	Type
	Integer


Maps to “>>=” with an signed argument in languages such as C++ and Java. 

2.6.13.2.9 ShiftRightUnsignedAssign

	Metaclass
	ShiftRightUnsignedAssign

	Extends
	ComputeAndAssign

	Description
	Perform a computation equivalent to ‘left DirectAssign (left ShiftRightUnsigned right)’

	Pin
	right

	Type
	Integer


Maps to “>>=” with an unsigned argument in languages such as C++ and Java.

2.6.13.2.10 ShiftLeftAssign

	Metaclass
	ShiftLeftAssign

	Extends
	ComputeAndAssign

	Description
	Perform a computation equivalent to ‘left DirectAssign (left ShiftLeft right)’

	Pin
	right

	Type
	Integer


Maps to “<<=” in languages such as C++ and Java.

2.6.13.2.11 BitwiseAndAssign

	Metaclass
	BitwiseAndAssign

	Extends
	ComputeAndAssign

	Description
	Perform a computation equivalent to ‘left DirectAssign (left BitwiseAnd right)’

	Pin
	right

	Type
	Integer


Maps to “&=” in languages such as C++ and Java.

2.6.13.2.12 BitwiseXorAssign

	Metaclass
	BitwiseExclusiveOrAssign

	Extends
	ComputeAndAssign

	Description
	Perform a computation equivalent to ‘left DirectAssign (left BitwiseXor right)’

	Pin
	right

	Type
	Integer


Maps to “^=” in languages such as C++ and Java.

2.6.13.2.13 BitwiseOrAssign

	Metaclass
	BitwiseOrAssign

	Extends
	ComputeAndAssign

	Description
	Perform a computation equivalent to ‘left DirectAssign (left BitwiseOr right)’

	Pin
	right

	Type
	Integer


Maps to “|=” in languages such as C++ and Java.

2.6.13.2.14 PointerAssign

	Metaclass
	PointerAssign

	Extends
	Assign

	Description
	A normal assignment, except with pointers.


2.6.13.3 Language mappings

In target languages such as C++ and Java, Assign corresponds to an assignment expression.

The subtypes of Assign map to the specified assignment operators in C++ and Java.

2.6.14 DynamicInitialization

	Metaclass
	DynamicInitialization

	Extends
	Statement

	Description
	An expression that dynamically initializes a variable.

	Refs
	[36, a_dynamic_init]

	Pin
	variable

	Description
	The run time instance of the variable to be initialized

	Kind
	out

	Type
	VariableInstance

	Pin
	initialization

	Description
	The initial value of the variable

	Kind
	in

	Type
	Classifier


variable is an expression referring to the variable to be inialized.  initialization specifies its initial value.

2.6.14.1 Semantics

TBD

2.6.14.2 Language mappings

TBD

2.7 Composite Actions

The following definitions correspond to those appearing in the section on Composite Actions in the UML specification [5, p. TBD, section TBD].   The definitions, however, are intentionally simpler than those provided by the UML Action Semantics.  Instead they correspond more closely to the definitions typically found in a conventional Abstract Syntax Tree (AST).  A mapping to the UML Action Semantics representation (involving pins, explicit control and data flows, etc.) should be possible given the assumption that actions are intended to execute sequentially (as in most programming languages). 

2.7.1 Block

	Metaclass
	Block

	Extends
	Statement

	Description
	A simple grouping of variable declarations and statements

	Refs
	GroupAction [5, pp. 2-252, 2-347]

	CompositeEnd
	classifier

	Description
	A list of classifiers declared with the block as their scope

	Type
	Sequence(Classifier)

	Multiplicity
	*

	CompositeEnd
	variable

	Description
	A list of variables declared with the block as their scope

	Type
	Sequence(LocalVariable)

	Multiplicity
	*

	CompositeEnd
	statement

	Description
	A list of statements (subactions) associated with the block

	Type
	Sequence(Statement)

	Multiplicity
	*


A Block represents a simple composition of a set of statements and associated local variables.  

To support local class definitions (e.g., in C++), classifier definitions are also permitted within a block.

2.7.1.1 Semantics

The semantics of Block are those defined by GroupAction in UML [5, pp. 2-252, 2-347], extended  to permit Classifier definitions within the Block.

The semantics of local classifier definitions should be those common to C++ and other target languages that support this.

2.7.1.2 Language mappings

A Block maps to a block or compound statement in most target languages.  This compound statement may represent either a method body or a group of statements within a method body.  

Not all target languages allow local variables to be declared in compound statements within a method body, although most do.

Classifier definitions that appear within a block map to local class declarations in C++ [44, p. 188, section 9.8 Local Class Declarations] or to local type names [44, p. 189, section 9.9 Local Type Names].

2.7.2 LocalVariable

	Metaclass
	LocalVariable

	Extends
	Variable

	Description
	A local variable associated with the execution of a group action

	Refs
	[5, p. 2-258],

local variable [27, pp. 175, 221-224, 255, 256],

.locals record [34 , pp. 45, 65, 70],

variable, local variable [36, pp. 13, 14, 38, 71, 79, 82, 84, 121, 137-138, 142, 143-144, 145, 152, 180, 365, 366, 402, 403]

	AssociationEnd
	scope

	Description
	The block that defines the local variable

	Type
	Block

	Attribute
	multiplicity

	Description
	The number of values that the variable may hold, typically specified as a range (min .. max) or ‘*’ (zero or more).

In the common case in which the multiplicity is 1..1, the variable is a scalar.

	Type
	Multiplicity

	Attribute
	ordering

	Description
	Are the values associated with the variable ordered?

	Type
	OrderingKind


LocalVariable inherits type from Variable.

2.7.2.1 Semantics

The semantics of LocalVariable are those common to UML, MS-IL, and the JVM.

The initialValue of the variable must be compatible with its type.

In general, to avoid dangling pointers [33, p. 6, BIL Pointer Confinement Policy], no local variable should be allowed to hold a reference to another local variable or argument allocated in a method’s stack frame.  This rule can be relaxed somewhat, to allow stack references involving nested functions, as described in [33, pp. 23-25, section 3].

2.7.2.2 Language mappings

LocalVariable maps directly to the local variables of target languages such as C++ and Java.

2.7.3 Clause

	Metaclass
	Clause

	Extends
	Statement

	Description
	A guarded action consisting of a test and body

	Refs
	[5, p. 2-248],

[26, CodeConditionStatement.TrueStatements],

[26, CodeConditionStatement.FalseStatements]

	CompositeEnd
	test

	Description
	A guard on the execution of the body of the clause

	Type
	Expression

	CompositeEnd
	body

	Description
	The statement executed when the guard evaluates to true

	Type
	Statement


A Clause is a simple guarded command equivalent to an if statement with no else action.

2.7.3.1 Semantics

Semantically a Clause is a kind of guarded statement.

If the test evaluates to true, the body is executed.  Otherwise it is not.

The test must be a BooleanExpression, i.e. an Expression that returns a Boolean value.

The body of the Clause may be a Block containing any number of other actions.

2.7.3.2 Language mappings

A Clause maps to an if statement with no else action in languages such as C++ and Java.

2.7.4 ConditionalStatement 

	Metaclass
	ConditionalStatement

	Extends
	Statement

	Description
	A statement that chooses at most one of a number of alternative sequences of actions to execute based on the evaluation of one or more test conditions

	Refs
	ConditionalAction [5, p. 2-250]


ConditionalStatement captures the abstract notion of exclusive choice.  When a Conditional Statement is executed, at most one of a number of alternative sequences of actions will be selected and executed.

2.7.4.1 Semantics

The semantics of ConditionalStatement are those common to its subtypes IfStatement and SwitchStatement.

The body of at most one of the clauses associated with a ConditionalStatement is executed when the action is executed.

2.7.4.2 Language mappings

Target languages mappings are provided for the subtypes of ConditionalStatement, e.g. IfStatement and SwitchStatement. 

2.7.5 IfStatement

	Metaclass
	IfStatement

	Extends
	ConditionalStatement

	Description
	A conditional action that chooses whether to execute a true clause (or an optional else clause) based on evaluation of a single test

	Refs
	ConditionalAction equivalent to if then … else … [5, p. 2-250],

[26, CodeConditionStatement],

	CompositeEnd
	test

	Description
	If test is true, the then statement is executed, otherwise the else statement is executed (if present), or no action is taken

	Type
	Expression

	CompositeEnd
	then

	Description
	Equivalent to “then”

	Type
	Statement

	CompositeEnd
	else

	Description
	An optional else statement

	Type
	Statement

	Multiplicity
	0..1


IfStatement represents a conventional if statement with a true action with an optional else action.

2.7.5.1 Semantics

An If Statement is equivalent to:

if (test) trueAction

or

if (test) trueAction else falseAction

as formally defined by [TBD].

The test must be a BooleanExpression, i.e. an Expression that returns a Boolean value.

Either of the actions may be a Block containing some number of other actions and variables.

2.7.5.2 Language mappings

IfStatement maps to a conventional if statement in target languages such as C++ and Java.

2.7.6 SwitchStatement

	Metaclass
	SwitchStatement

	Extends
	ConditionalStatement

	Description
	A conditional action that chooses which of several clauses to execute based on the possible values (cases) of a single expression

	Refs
	ConditionalAction equivalent to case/switch [5, p. 2-250],

switch [27, p. 242] [28, p. 85],

tableswitch [35, p. 358], lookupswitch [35, p. 323] [35, p. 381, section 7.10 Compiling Switches]

	CompositeEnd
	caseExpression

	Description
	The expression whose value is used to choose the body of a clause to execute

	Type
	Expression

	CompositeEnd
	cases

	Description
	The clauses representing ‘cases’ of the caseExpression’s value

	Type
	Sequence (SwitchCase)

	Multiplicity
	*


2.7.6.1 Semantics

A SwitchStatement involves the evaluation of an Expression whose value is used to choose the body of a clause to execute.

The tests associated with the clauses of SwitchStatement represent comparisons with this expression’s value referred to as guards.  They must be ConstantExpressions (expressions which can be evaluated at compile time).

The guards of a switch statement are evaluated in order.  At most one of them is executed.  If the fallThrough property associated with the case is set, execution continues with the body of the clause representing the next case.  Otherwise (by default), execution continues with the statement following the switch statement as a whole.

No case may block the execution of a subsequent case. As a result, the guards associated with the cases must be unique, may not overlap.  There may be at most one default case associated with the SwitchStatement and it must come last.

The semantics of a SwitchStatement are formally defined by [TBD]. 

2.7.6.2 Related classes

2.7.6.2.1 SwitchCase

	Metaclass
	SwitchCase

	Extends
	Clause

	Description
	A single case in a switch statement.

	Refs
	None

	CompositeEnd
	test

	Description
	A comparison of caseExpression to one or more compile time values

	Type
	Expression

	Attribute
	fallThrough

	Description
	Does execution of this case fall through to execution of the next?

	Type
	Boolean

	DefaultValue
	false


2.7.6.2.2 DefaultSwitchCase

	Metaclass
	DefaultSwitchCase

	Extends
	SwitchCase

	Description
	A single default case in a switch statement.

	Refs
	None

	CompositeEnd
	test

	Description
	The default case, which is always executable (since it’s test evaluates to true)

	Value
	true


2.7.6.3 Language mappings

SwitchStatement is supported by C, C++ and Java, although there is a concern with its ‘fall through’ semantics in these languages.  A tamer form of SwitchStatement is provided by Ada, which also requires that all possible values of the test expression be covered by the cases.

2.7.7 LoopStatement

	Metaclass
	LoopStatement

	Extends
	Clause

	Description
	An action that repeatedly executes its body while its test condition evaluates to true

	Refs
	LoopAction [5, p. 2-255]


A LoopStatement repeatedly executes the body of a clause so long as its test evaluates to true.

To accommodate loops that guarantee at least one iteration, we consider their test condition to be of the form ‘while (theFirstTimeThrough or normalTest)’, rather than ‘while (normalTest)’.

2.7.7.1 Semantics

The semantics of LoopStatement are those common to the subtypes ForLoop, WhileLoop, and DoWhileLoop.

2.7.7.2 Language mappings

Languages mappings are provided for each of the subtypes of LoopStatement.

2.7.8 DoWhileLoop

	Metaclass
	DoWhileLoop

	Extends
	LoopStatement

	Description
	A loop that executes its body once, then repeats so long as its test evaluates to true

	Refs
	LoopAction equivalent to do { … } while (test) [5, p. 2-255],

do while loop [31, p. 283, Pre- and post-tested loops],

do while loop [36, p. 257, Compiling Control Constructs]


2.7.8.1 Semantics

A DoWhileLoop is semantically equivalent to a WhileLoop with an additional clause in its test condition:

declaration/initialization of a Boolean variable firstTimeThrough with an intial value of true

while (firstTimeThrough or normalTest) {body; set firstTimeThrough to false}
using the formal definition of while provided by [TBD].

The variable firstTimeThrough is only conceptual, and can only be referenced as indicated above.  

In an actual implementation the body would typically occur before the normal test, and no variable would be required.

2.7.8.2 Language mappings

Directly supported by most target languages.  

2.7.9 ForLoop

	Metaclass
	ForLoop

	Extends
	LoopStatement

	Description
	A loop that executes its body for each value of a loop index in a given range

	Refs
	LoopAction equivalent to for (init; test; iterate) { … } [5, p. 2-255],

[26, CodeIterationStatement],

for loop [31, p. 285, Harder cases: the for loop],

for loop [35, p. 365, section 7.2] [36, p. 257, Compiling Control Constructs]

	CompositeEnd
	initialization

	Description
	An action executed once, before the first execution of the loop’s body

	Type
	Statement

	Multiplicity
	0..1

	CompositeEnd
	increment

	Description
	An action executed each time the body of the loop has completed, e.g., to update the loop index

	Type
	Expression


The initialization statement is executed once, before the first execution of the loop’s body.  It may set the value of the loop index and other variables.  Alternately, the initial value of the loop index may be specified as the initialValue of the variable index.

The increment expression is executed each time the body of the loop has completed, e.g., to update the loop index.

The test for termination is the test associated with the clause inherited from LoopStatement.

2.7.9.1 Semantics

The semantics of a ForLoop are equivalent to:

declaration/initialization of the loop index

execution of the initialization statement (if any)

while (test) {body; increment}
as formally defined by [TBD].

The loop index is accessible only by the actions within the ForLoop.

2.7.9.2 Language mappings

For loops are directly supported by target languages such as C++ and Java. 

2.7.10 WhileLoop

	Metaclass
	WhileLoop

	Extends
	LoopStatement

	Description
	A loop that executes its body so long as its test evaluates to true

	Refs
	LoopAction equivalent to while (test) { … }  

while loop  [31, p. 283, Pre- and post-tested loops],

while loop [35, p. 372, section 7.5] [36, p. 257, Compiling Control Constructs]


2.7.10.1 Semantics

A WhileLoop is semantically equivalent to:

label: body

if (test) goTo label
Its semantics are more formally defined  by [TBD]. 

2.7.10.2 Language mappings

While loops are directly supported by target languages such as C++ and Java.
2.8 Actions to Load and Initialize Classes

The following actions are related to the loading and initialization of classes.  

2.8.1 InitalizeClass

	Metaclass
	InitializeClass

	Extends
	ClassOperation

	Description
	A class operation that initializes fields associated with the class (analogous to the initialization of instance fields by an object’s constructor)

	Refs
	.cctor method [27, p. 224, ClassConstructors]

<clinit> method [35, pp. 78, 106, 115, 116, 135, 137]

	Attribute
	ownerScope

	Value
	classifier


InitializeClass defines a class operation to be called by the run time environment to initialize the attributes associated with a class (as opposed to its instances).

2.8.1.1 Semantics

The semantics of InitializeClass are those common to MS-IL [27, p. 224, ClassConstructors] and the JVM  [35, pp. 78, 106, 115, 116, 135, 137].

The InitializeClass method takes no parameters.

2.8.1.2 Language mappings

The initialization of class fields is specified in C++ and Java by associating initializers with static data members (static fields).

2.9 Create and Destroy Object Actions

The following definitions are based on the Object Actions in the Read and Write Actions section of the UML specification [5, p. 2-260, section 2.19.1].  Additional definitions are provided for methods to initialize and finalize objects (which are called by the run time environment).

2.9.1 CreateObject

	Metaclass
	CreateObject

	Extends
	Expression

	Description
	Allocate a new object without initializing it

	Post
	-- The result is a newly created instance of the specified class
(result.argument().type() = class) and

(class.allInstances() – class.allInstances()@pre = {result})

	RaisedSignal
	{OutOfMemoryError, ClassifierResolutionError, InstantiationError, ClassifierInitializationError}

	Refs
	CreateObjectAction [5, pp. 2-209, 2-276],

newobj [27, p. 263]  [28, p. 110],

object references (returned by newobj and newarr) [28, p. 4, section 1.1.2],

new [35, p. 88, section 3.11.5] [35, p. 341]   [35, p. 379, section 7.8 Working with Class Instances] [35, p. 341]

	AssociationEnd
	class

	Description
	The class to be instantiated

	Type
	Class

	AssociationEnd
	memoryPool

	Description
	The pool (if any) from which the object is to be allocated

	Type
	MemoryPool

	Multiplicity
	0..1

	Pin
	result

	Type
	Object


The CreateObject action returns a new instance of the specified class as its result.

2.9.1.1 Semantics

The semantics of CreateObject are those common to UML [5, pp. 2-209, 2-276], MS-IL [27, p. 263]  [28, p. 110], and the JVM [35, p. 88, section 3.11.5] [35, p. 341]   [35, p. 379, section 7.8 Working with Class Instances].

Before allocating the requested object, any fields associated with the class and its superclasses that have not been initialized are initialized.

The Object returned is a newly created instance of the specified Class. This is an opaque reference, although it may be converted to an explicit pointer using CastReferenceToPointer.

OutOfMemoryError is thrown if there is insufficient memory to allocate an instance of the object.

ClassifierResolutionError, InstantiationError, and ClassifierInitializationError may be thrown if the class reference is resolved at runtime.

Note: OCL2 [9, p. A-31] proposes an operation oclIsNew that can be used in the postcondition to specify that an instance of an object has been created.  We do not use it here because it does not seem necessary, and because OCL2 has yet to be adopted.

2.9.1.2 Language mappings

The use of new in target languages such as C++ and Java maps to the action CreateObject, followed by InitializeObject.

CreateObject also corresponds to the use of more primitive memory allocation mechanisms such as malloc.

2.9.2 DestroyObject

	Metaclass
	DestroyObject

	Extends
	Statement

	Description
	Deallocate an object

	Post
	-- The object no longer exists
object.argument().type().allInstances() = 

object.argument().type().allInstances()@pre(excluding(object)

	Refs
	DestroyObjectAction [5, p. 2-277],

[35, p. 56, section 2.17.7]

	Pin
	object

	Description
	The object to be destroyed

	Kind
	in

	Type
	Object


2.9.2.1 Semantics

Any FinalizeObject method associated with the object should be executed before deallocation.

2.9.2.2 Language mappings

The delete operator in C++ maps to FinalizeObject, followed by DestroyObject.

DestroyObject also corresponds to the use of more primitive memory allocation mechanisms such as free.

2.9.3 FinalizeObject

	Metaclass
	FinalizeObject

	Extends
	InstanceOperation

	Description
	An operation to finalize an object before deallocating it, releasing any additional resources that it “owns”

	Pre
	-- The class invariant holds

target().argument().type().inv()

	Refs
	«destroy» stereotype [5, p. 2-27]

	Attribute
	ownerScope

	Value
	instance


FinalizeObject defines an operation to be called by the run time environment to finalize an Object before deallocating (destroying) it.

2.9.3.1 Semantics

FinalizeObject must be called before deallocating an object.

Typically it is responsible for deallocating any resources owned by the object.

The class invariant is a part of the precondition of FinalizeObject, but is not part of its postcondition.

At most one FinalizeObject operation may be associated with a class.

FinalizeObject takes no parameters.

2.9.3.2 Language mappings

The FinalizeObject operation is the class destructor in C++.

2.9.4 InitializeObject

	Metaclass
	InitalizeObject

	Extends
	InstanceOperation

	Description
	An operation that initializes the object’s attributes and establishes its invariant (if any)

	Pre
	-- Nothing can be assumed about the current state of the allocated object
true

	Post
	-- The class invariant holds
target().argument().type().inv()

	Refs
	«create» stereotype [5, p. 2-27],

«constructor» method [5, p. 3-41],

.ctor method [27, p. 224, Instance Constructors], initobj [27, p. 263],

<init> method [35, pp. 78, 106, 115, 116, 135, 137]  [35, p. 379, section 7.8 Working with Class Instances]


InitializeObject defines an operation called by the run time environment to initialize an instance of a Class (an Object) after allocating (creating) it.  More than one InitializeObject operation may be defined by a class.

An InitializeObject operation may also be called by clients to re-initialize after it has been allocated.

2.9.4.1 Semantics

An InitializeObject operation must be called after a new object is allocated and before any of its other methods are executed.  It establishes any invariant associated with the class. 

The object to be initialized is specified as the target of the operatation. It’s type must represent a concrete class.

To make it easier to use InitializeObject in initialValue expressions, the operation returns a reference to the initialized object.

2.9.4.2 Language mappings

Constructors in C++ and Java map to InitializeObject operations.  The parameters are those of the constructor.  Since constructors may not be overridden in these languages, isLeaf must be true. 

2.9.5 IsClassified

	Metaclass
	IsClassified

	Extends
	BooleanExpression

	Description
	Determine whether an object is an instance of a given classifier

	Post
	-- If input is null, return false
if (input = () then (result = false) else

-- otherwise if isDirect is true, return true if input is a direct instance of classifier
if isDirect then (result = input.isInstanceOf(classifier))

-- otherwise, return true if input is an instance of classifier or one of its subtypes
else (result = inout.isSubtypeOf(classifier)) endif endif

	RaisedSignal
	{ClassifierResolutionError}

	Refs
	ReadIsClassifiedObjectAction [5, p. 2-260, section 2.19.1], [5, p. 2-281],

isinst [27, p. 263] [28, p. 95],

instanceof [35, p. 88, section 3.11.5] [35, p. 278], 

[41, eok_dynamic_cast],

eok_dynamic_cast [46, pp. 130, 408-414],

dynamic_cast [47, p.. 173, Item39], [48, p. 12, Item 2]

	Attribute
	isDirect

	Description
	Test whether the input is directly an instance of the given classifier (rather than an instance of a subclass)?

	Type
	Boolean

	Pin
	input

	Description
	The object to be tested

	Kind
	in

	Type
	Object

	AssociationEnd
	classifier

	Description
	The classifier against which the instance is to be tested

	Type
	Classifier


2.9.5.1 Semantics

The semantics of IsClassified is that common to UML, MS-IL and the JVM.

The action determines whether the input object is an instance of a statically specified Classifier. 

If input is null, IsClassified returns false.

Otherwise, if isDirect is set to true, IsClassified returns true if the input object is a direct instance of the specified Classifier.  

Otherwise, IsClassified returns true if the input object is an instance of the specified Classifier or one of its subtypes.

ClassifierResolutionError may be thrown if the reference to the classifier is resolved at runtime.

2.9.5.2 Language mappings

Equivalent tests are possible using instanceOf and reflection in Java, and the run time type information of C++. 

2.9.6 Box

	Metaclass
	Box

	Extends
	UnaryExpression

	Description
	Convert a data value to an object reference

	Refs
	box <token> [27, p. 264] [28, p. 90]

	AssociationEnd
	dataType

	Description
	The type of value to be boxed

	Type
	DataType

	Pin
	argument

	Description
	The value to be boxed

	Kind
	in

	Type
	DataType

	Pin
	result

	Type
	Object


The dataType definition is referred to in XML by its id.  

2.9.6.1 Semantics

The semantics of Box are those defined by MS-IL.

2.9.6.2 Subtypes

…

2.9.6.3 Language mappings

…

2.9.7 Unbox

	Metaclass
	Unbox

	Extends
	UnaryExpression

	Description
	Revert a boxed data value from object form to its data type form

	Refs
	unbox <token> [27, p. 264] [28, p. 120]

	AssociationEnd
	dataType

	Description
	The data type of the boxed value

	Type
	DataType

	Pin
	argument

	Description
	The boxed data value

	Kind
	in

	Type
	Object


2.9.7.1 Semantics

The semantics of Unbox are those defined by MS-IL.

2.9.7.2 Subtypes

…

2.9.7.3 Language mappings

…

2.9.8 MemoryPool

	Metaclass
	MemoryPool

	Extends
	ModelElement

	Description
	A memory pool (heap) from which objects may be allocated

	Attribute
	size

	Description
	The size of the memory pool, in bytes

	Type
	Integer


2.9.8.1 Semantics

The semantics of MemoryPool are those common to the heaps used by MS-IL and the JVM. including Real-Time Java.

2.9.8.2 Subtypes

…

2.9.8.3 Language mappings

MemoryPool maps to the heap used languages such as C++ and Java.

2.10 Read and Assign Field Actions

The following definitions are based on the Attribute Actions in the Read and Write Actions section of the UML specification [5, p. 2-260, section 2.19.2].

2.10.1 ReadObjectField

	Metaclass
	ReadObjectField

	Extends
	ReadVariable

	Description
	Read the value of an object field

	Pre
	-- The object reference must not be null
(object <> () and

-- The ownerScope of the field must be instance
 (variable.ownerScope() = instance) 

-- The field’s visibility must permit access by the action

	Post
	-- The type of the result is the type of the field
result.argument.type() = variable.type()

	RaisedSignal
	{NullReferenceException, FieldResolutionError}

	Refs
	ReadAttributeAction [5, p. 2-260, section 2.19.2] [5, p. 2-280]

ldfld<token> [27, p. 258] [28, p. 99], volatile (prefix) [28, p. 88],

getfield  [35, p. 88, section 3.11.5] [35, p. 248]  [35, p. 379, section 7.8 Working with Class Instances],

[41, eok_pm_dot_field, eok_pm_arrow_field, eok_value_field,  eok_value_bit_field, eok_extract_bit_field]

	Pin
	object

	Description
	A run time reference to the object that contains the field

	Kind
	in

	Type
	Object

	AssociationEnd
	variable

	Description
	The definition of the referenced field

	Type
	Field


The field definition is referred to in XML by its id.  The ownerScope of the field must be instance.


2.10.1.1 Semantics

The semantics of ReadObjectField are those common to the UML definitions for AttributeAction and ReadAttributeAction for an attribute with ownerScope instance.

The field’s visibility must permit access by the action.

The type of the result is the type of the field.

A NullReferenceException is thrown if object is null.

A FieldResolutionError may be thrown if the system attempts to resolve the reference to the field at runtime.

2.10.1.2 Language mappings

ReadObjectField corresponds to a C++ expression representing the value of an instance data member.

2.10.2 ReadClassField

	Metaclass
	ReadClassField

	Extends
	ReadVariable

	Description
	Read the value of a class field

	Pre
	-- The ownerScope of the field must be classifier
variable.ownerScope() = classifier

-- The field’s visibility must permit access by the action

	Post
	-- The type of the result is the type of the field
result.argument().type() = variable.type()

	RaisedSignal
	{FieldResolutionError}

	Refs
	ReadAttributeAction [5, p. 2-260, section 2.19.2] [5, p. 2-280]

ldsfld<token> [27, p. 258] [28, p. 103],

getstatic [35, p. 88, section 3.11.5] [35, p. 250],

[41, eok_rvalue_dot_static, eok_lvalue_dot_static, eok_points_to_static]

	AssociationEnd
	variable

	Description
	The definition of the referenced field

	Type
	Field


The field definition is referred to in XML by its id. The ownerScope of the field must be classifier.


2.10.2.1 Semantics

The semantics of ReadClassField are those common to the UML definitions for AttributeAction and ReadAttributeAction for an attribute with ownerScope classifier.

The field’s visibility must permit access by the action.

The type of the result is the type of the field.

A FieldResolutionError may be thrown if the system attempts to resolve the reference to the field definition at runtime.

2.10.2.2 Language mappings

ReadClassField corresponds to a C++ expression representing the value of a static data member.

2.10.3 ReadGlobalField

	Metaclass
	ReadGlobalField

	Extends
	ReadVariable

	Description
	Read the value of a global field, associated with a particular package

	Pre
	-- The ownerScope of the field must be classifier
variable.ownerScope() = classifier

-- The field’s visibility must permit access by the action

	Post
	-- The type of the result is the type of the field
result.argument()type() = variable.type()

	RaisedSignal
	{FieldResolutionError}

	Refs
	ReadAttributeAction [5, p. 2-260, section 2.19.2] [5, p. 2-280]

[27, p. 194, Global Fields]

	AssociationEnd
	variable

	Description
	The referenced field

	Type
	Field


The field definition is referred to in XML by its id. The ownerScope of the field must be classifier.


2.10.3.1 Semantics

The semantics of ReadGlobalField are those common to the UML definitions for AttributeAction and ReadAttributeAction for an attribute with ownerScope classifier.

The field’s visibility must permit access by the action.

The type of the result is the type of the field.

A FieldResolutionError may be thrown if the system attempts to resolve the reference to the field definition at runtime.

2.10.3.2 Language mappings

ReadGlobalField corresponds to a C++ expression representing the value of a variable defined at file level, within a given namespace (a global variable). 

2.10.4 AssignInstanceField

	Metaclass
	AssignInstanceField

	Extends
	Assign

	Description
	Assign a value to an object field

	Pre
	-- The ownerScope of the field must be instance
left.ownerScope() = instance

-- The field’s visibility must permit access by the action

	Refs
	WriteAttributeAction [5, p. 2-260, section 2.19.2]  [5, p. 2-289]

stfld<token> [27, p. 258] [28, p. 116], volatile (prefix) [28, p. 88],

putfield [35, p. 88, section 3.11.5] [35, p. 348] [35, p. 379, section 7.8 Working with Class Instances] [35, p. 348]

[41, eok_assign, eok_iassign, eok_fassign eok_passign eok_cassign, eok_sassign, eok_bassign, eok_pmassign, eok_xassign] 

when the left hand side of the assignment represents an object field

	Pin
	left

	Description
	The field to be written

	Kind
	out

	Type
	ObjectFieldInstance


Where the ownerScope of the field must be instance.

2.10.4.1 Semantics

The semantics of AssignInstanceField are those common to the UML definitions for AttributeAction and WriteAttributeAction for an attribute with ownerScope instance.

The type of the rightHandSide must be compatible with the type of the field.

The field’s visibility must permit access by the action. 

2.10.4.2 Language mappings

AssignInstanceField corresponds to a C++ assignment expression whose left hand side refers to an instance data member. 

2.10.5 AssignClassField

	Metaclass
	AssignClassField

	Extends
	Assign

	Description
	Assign a value to a class field

	Pre
	-- The ownerScope of the field must be classifer
left.ownerScope() = classifier

-- The field’s visibility must permit access by the action

	Refs
	WriteAttributeAction [5, p. 2-260, section 2.19.2]  [5, p. 2-289]
stsfld<token> [27, p. 258] [28, p. 118],

putstatic [35, p. 88, section 3.11.5] [35, p. 350],

[41, eok_assign , eok_iassign, eok_fassign, eok_passign, eok_cassign, eok_sassign,, eok_bassign, eok_pmassign, eok_xassign]

when the left hand side of the assignment represents a class field.

	Pin
	left

	Description
	The field to be written

	Kind
	out

	Type
	ClassFieldInstance


Where the ownerScope of the field must be classifier. 

2.10.5.1 Semantics

The semantics of AssignField are those common to the UML definitions for AttributeAction and WriteAttributeAction, and to the semantics defined by its own subtypes, AssignInstanceField and AssignClassField.

The type of the rightHandSide must be compatible with the type of the field.

The field’s visibility must permit access by the action.

2.10.5.2 Language mappings

AssignClassField corresponds to a C++ assignment expression whose left hand side refers to a static data member.  

AssignGlobalField corresponds to a C++ assignment statement whose left hand side refers to a variable defined at file level, within a given namespace.

2.10.6 AssignGlobalField

	Metaclass
	AssignGlobalField

	Extends
	Assign

	Description
	Assign a value to a globally defined field, associated with a package

	Pre
	-- The ownerScope of the field must be classifer
left.ownerScope() = classifier

-- The field’s visibility must permit access by the action

	Refs
	WriteAttributeAction [5, p. 2-260, section 2.19.2]  [5, p. 2-289]

[27, p. 194, Global Fields]

	Pin
	left

	Description
	The field to be written

	Kind
	out

	Type
	GlobalFieldInstance


Where the ownerScope of the field must be classifier. 

2.10.6.1 Semantics

The semantics of AssignField are those common to the UML definitions for AttributeAction and WriteAttributeAction, and to the semantics defined by its own subtypes, AssignInstanceField and AssignClassField.

The type of the rightHandSide must be compatible with the type of the field.

The field’s visibility must permit access by the action.

2.10.6.2 Language mappings

AssignGlobalField corresponds to a C++ assignment statement whose left hand side refers to a variable defined at file level, within a given namespace (a global variable).

2.11 Read and Assign Array Actions

The following definitions provide read and write actions for arrays and strings similar to those for objects.    

2.11.1 Concatenate

	Metaclass
	Concatenate

	Extends
	BinaryExpression

	Description
	Concatenate two character values, producing TBD

	Refs
	[41, eok_concat]

	Pin
	result

	Type
	TBD


2.11.1.1 Semantics

TBD

2.11.1.2 Language mappings

According to [41], this represents concatenation in Fortran.

2.11.2 CreateMultidimensionalArray

	Metaclass
	CreateMultidimensionalArray

	Extends
	Expression

	Description
	Allocate a new multidimensional array, without initializing it

	Pre
	-- The number of dimensions must be >= 0
(numberOfDimensions >= 0) and

-- The number of elements in each dimension must be >= 0
(numberOfElements(size() = numberOfDimensions) and

(numberOfElements(forAll(self >= 0)

	Refs
	CreateObjectAction [5, pp. 2-209, 2-276],

newobj [27, pp. 160-162, 263] [28, p. 110],

multianewarray [35, p. 88, section 3.11.5]  [35, p. 339]

	Pin
	numberOfDimensions

	Description
	The number of array dimensions

	Kind
	in

	Type
	Integer

	Pin
	numberOfElements

	Description
	The number of elements in each dimension

	Kind
	in

	Type
	Sequence (Integer)

	AssociationEnd
	elementType

	Description
	The type of the array elements

	Type
	Classifier

	Pin
	result

	Type
	Array


2.11.2.1 Semantics

The semantics of CreateMultidimensionalArray are those common to UML, MS-IL and the JVM.

The number of array dimensions must be a positive integer value.

The length of the sequence numberOfElements must be the same as the specified numberOfDimensions.

2.11.2.2 Language mappings

…

2.11.3 CreateVector

	Metaclass
	CreateVector

	Extends
	Expression

	Description
	Allocate a new single dimension array (vector), without initializing it

	Pre
	-- The number of elements must be >= 0
numberOfElements >= 0

	Refs
	CreateObjectAction [5, pp. 2-209, 2-276],

newarr [27, pp. 160-162, 265-266] [28, p. 109],

newarray, anewarray [35, p. 88, section 3.11.5] [35, pp. 343, 181] [35, p. 381, section 7.9 Arrays] [35, p. 343]

	Pin
	numberOfElements

	Description
	The number of elements in the vector

	Kind
	in

	Type
	Integer

	AssociationEnd
	elementType

	Description
	The type of the vector elements

	Type
	Classifier

	Pin
	result

	Type
	Vector


2.11.3.1 Semantics

The semantics of CreateMultidimensionalArray include those inherited from Array.

They should be consistent with the semantics of vectors in MS-IL and single dimension arrays in the JVM.

The numberOfDimensions of a Vector is one.

2.11.3.2 Language mappings

…

2.11.4 ReadArrayElement

	Metaclass
	ReadArrayElement

	Extends
	ReadVariable

	Description
	Read an array element

	Pre
	-- The variable must be an array type
(variable.type().isSubtypeOf(Array)) and

-- The array reference must not be null
(object <> () and

-- The number of indices must match the number of array dimensions
(index(size() = variable.numberOfDimensions()) 

-- The index values must specify an element within the bounds of the array

	Post
	-- The type of the result is the type of the array element
result.argument.type() = variable.asType(Array).elementType()

	RaisedSignal
	{NullReferenceException, IndexOutOfBoundsException}

	Refs
	ldelem.<type> [27, p. 266] [28, p. 96],

Taload [35, p. 82, table 3.2], aaload [35, p. 175], baload [35, p. 188],

caload [35, p. 191], daload [35, p. 200], faload [35, p. 230], iaload [35, p. 261], laload [35, p. 310], saload [35, p. 354],

[41, eok_subscript, eok_value_fsubscript]

	Pin
	object

	Description
	A run-time reference to the array

	Kind
	in

	Type
	Array

	Pin
	index

	Description
	The indices of the element within the array

	Kind
	in

	Type
	Sequence (Integer)


The indices must be within the bounds associated with the array.

2.11.4.1 Semantics

The semantics of ReadArrayElement are those common to MS-IL and the JVM.

The number of array indices given (by index) must match the numberOfDimensions of the array containing the element to be read.

The type of the expression ReadArrayElement is the elementType of the array. 

A NullReferenceException is thrown if the array reference is null.

An IndexOutOfBoundsException is thrown if the indices do not specify an element within the bounds of the array.

2.11.4.2 Language mappings

ReadArrayElement maps to expressions that reference an array element in target languages such as C++ and Java. 

2.11.5 ReadVectorElement

	Metaclass
	ReadVectorElement

	Extends
	ReadVariable

	Description
	Read a vector element

	Pre
	-- The variable must be a vector type
(variable.type().isSubtypeOf(Vector)) and

-- The vector reference must not be null
(object <> () and

-- The index value must specify an element within the bounds of the vector

	Post
	-- The type of the result is the type of the array element
result.argument().type() = variable.asType(Array).elementType()

	RaisedSignal
	{NullReferenceException, IndexOutOfBoundsException}

	Refs
	ldelem.<type> [27, p. 266] [28, p. 96],

Taload [35, p. 82, table 3.2],

[41, eok_subscript, eok_value_fsubscript]

	Pin
	object

	Description
	A run-time reference to the vector object

	Kind
	in

	Type
	Vector

	Pin
	index

	Description
	The index of the element within the vector

	Kind
	in

	Type
	Integer


The index must be within the bounds associated with the vector.

2.11.5.1 Semantics

The semantics of ReadVectorElement are those common to MS-IL and the JVM.

The type of the expression ReadArrayElement is the elementType of the vector.

A NullReferenceException is thrown if the vector reference is null.

An IndexOutOfBoundsException is thrown if the index does not specify an element within the bounds of the vector.

2.11.5.2 Language mappings

ReadArrayElement maps to expressions that reference an array element in target languages such as C++ and Java.

2.11.6 ReadVectorLength

	Metaclass
	ReadVectorLength

	Extends
	IntegerExpression

	Description
	Get the length of a single dimension array (vector)

	Refs
	ldlen [27, p. 258] [28, p. 101],

arraylength [35, p. 88, section 3.11.5] [35, p. 183]

	AssociationEnd
	vector

	Description
	The definition of the vector whose length is to be determined

	Type
	Vector


The vector definition is referred to in XML by its id.

2.11.6.1 Semantics

The semantics of ReadVectorLength are those common to MS-IL [27, p. 258] [28, p. 118] and the JVM [35, p. 88, section 3.11.5] [35, p. 183].

ReadVectorLength is an IntegerExpression that returns a value greater than or equal to zero.

2.11.6.2 Subtypes

2.11.6.2.1 ReadStringLength

	Metaclass
	ReadStringLength

	Extends
	ReadVectorLength

	Description
	Get the length of a string

	Refs
	[41, eok_char_length]


When the vector represents a String (vector of characters).

2.11.6.3 Language mappings

…

2.11.7 ReadVectorSlice

	Metaclass
	ReadVectorSlice

	Extends
	ReadVariable

	Description
	Get a subsequence (slice) of the elements of a vector

	Pre
	-- The variable must be a vector type
(variable.type().isSubtypeOf(Vector)) and

-- The vector reference must not be null
(object <> ()

-- The values of first and last must specify elements within the bounds of the vector

	Post
	-- If first is less than last, then the result is an empty vector slice

	RaisedSignal
	{NullReferenceException, IndexOutOfBoundsException}

	AssociationEnd
	variable

	Description
	The definition of the referenced vector

	Type
	Vector

	Pin
	object

	Description
	A run-time reference to the vector object

	Kind
	in

	Type
	Vector

	Pin
	first

	Description
	The index of the first element in the subsequence

	Kind
	in

	Type
	Integer

	Pin
	last

	Description
	The index of the last element in the subsequence

	Kind
	in

	Type
	Integer

	Pin
	result

	Type
	Vector


The vector definition is referred to in XML by its id. 

2.11.7.1 Semantics 

The value of last must be greater than or equal to the value of first.

Both must be within the bounds of the vector. 

If first is less than or equal to last, the result is an empty vector slice (a vector slice of length zero).
Otherwise, the length of the vector slice returned by the expression is last – first + 1.

The value returned by the expression represents a copy of the selected elements in the same order in which they appear in the given vector. 

A NullReferenceException is thrown if the vector reference is null.

An IndexOutOfBoundsException is thrown if first and last do not specify an element within the bounds of the vector.

2.11.7.2 Language mappings

Languages such as Ada support the general concept of vector slices and expressions that return vector slices.

2.11.8 AssignArrayElement

	Metaclass
	AssignArrayElement

	Extends
	Assign

	Description
	Assign a value to an array element

	Refs
	stelem.<type> [27, p. 267] [28, p. 115],

Tastore [35, p. 82, table 3.2], aastore [35, pp. 176..177],

bastore [35, p. 189], castore [35, p. 192], dastore [35, p. 200], fastore [35, p. 231], iastore [35, p. 263], lastore [35, p. 312], sastore [35, p. 355],

[41, eok_assign, eok, eok_iassign, eok_fassign, eok_passign, eok_cassign, eok_sassign, eok_bassign, eok_pmassign, eok_xassign]

when the left hand side of the assignment represents an array element

	Pin
	left

	Description
	The array element to be written

	Kind
	out

	Type
	ArrayElementInstance


2.11.8.1 Semantics

The semantics of AssignArrayElement are those common to MS-IL and the JVM.

The number of array indices given (by index) must match the numberOfDimensions of the array containing the element to be read.

The type of value to be written must be compatible with the elementType of the array.

2.11.8.2 Language mappings

In target languages such as C++ and Java., AssignArrayElement corresponds to an assignment statement whose left hand side refers to an array element.

2.11.9 AssignVectorElement

	Metaclass
	AssignVectorElement

	Extends
	Assign

	Description
	Assign a value to a vector element

	Refs
	stelem.<type> [27, p. 267] [28, p. 115],

Tastore [35, p. 82, table 3.2],

[41, eok_assign, eok, eok_iassign, eok_fassign, eok_passign, eok_cassign, eok_sassign, eok_bassign, eok_pmassign, eok_xassign]

when the left hand side of the assignment represents a vector element

	Pin
	left

	Description
	The vector element to be written

	Kind
	out

	Type
	ArrayElementInstance


2.11.9.1 Semantics

The semantics of AssignVectorElement are those common to MS-IL and the JVM.

The type of value to be written must be compatible with the elementType of the array.

2.11.9.2 Language mappings

In target languages such as C++ and Java., AssignVectorElement corresponds to an assignment statement whose left hand side refers to a vector element.

2.12 Read and Assign Argument Actions

The following read and write actions deal with arguments associated with the stack frame of the current method.

2.12.1 ReadArgument

	Metaclass
	ReadArgument

	Extends
	ReadVariable

	Description
	Read an argument in the current stack frame

	RaisedSignal
	{}

	Refs
	ReadVariableAction [5, p. 2-285],

ldarg, ldarg.s, ldarg.0, ldarg.1 [27, pp. 254, 255], [28, p. 56],

wide Tload, Tload, Tload_0, Tload_1, Tload_2, Tload_3 [35, p. 82, table 3.2] [35, p. 83, 3.11.2] [35, p. 375, section 7.6 Receiving Arguments],

aload, aload_<n> [35, pp. 179, 180], dload, dload_<n> [35, pp. 207..208], fload, fload_<n> [35, pp. 237..238], iload, iload_<n> [35, pp.274..275], lload, lload_<n> [35, pp. 319..320]

	AssociationEnd
	variable

	Description
	The definition of the referenced parameter 

	Type
	Parameter


The parameter definition is referred to in XML by its id.

2.12.1.1 Semantics

The semantics of ReadArgument are those common to UML, MS-IL and the JVM.

The parameter must be an argument of the current method.

The parameter’s kind must be in or inout.

There are no exceptions associated with the reading of an argument.

2.12.1.2 Language mappings

ReadArgument corresponds to a C++ expression that represents the value of an argument.

2.12.2 AssignArgument

	Metaclass
	AssignArgument

	Extends
	Assign

	Description
	Assign a value to an argument

	Refs
	WriteVariableAction [5, p. 2-289]

starg, starg.s, starg.0, starg.1, starg.2, starg.3 [27, pp. 254, 255], [28, p. 80],

wide Tstore, Tstore, Tstore_0, Tstore_1, Tstore_2, Tstore_3 [35, p. 82, table 3.2] [35, p. 83, 3.11.2],

astore, astore_<n> [35, pp. 184..185], dstore, dstore_<n> [35, p. 215..216], fstore, fstore_<n> [35, p. 245..246], istore, istore_n> [35, pp. 299..300], lstore, lstore_<n> [35, pp. 330..331]

[41, eok_assign, eok_iassign, eok_fassign, eok_passing, eok_cassign, eok_sassign, eok_bassign, eok_pmassign, eok_xassign]

when the left hand side of the assignment represents a local variable

	Pin
	left

	Description
	The argument to be written

	Kind
	out

	Type
	ArgumentInstance


2.12.2.1 Semantics

The semantics of AssignArgument are those common to UML, MS-IL and the JVM.

The parameter must be an argument of the current method.

The parameter’s kind must be out or inout.

2.12.2.2 Language mappings

In target languages such as C++ and Java., AssignArgument corresponds to an assignment statement whose left hand side refers to an argument.

2.13 Read and Assign Local Variable Actions

The following read and write actions deal with local variables associated with the frame of the current method. 

2.13.1 ReadLocalVariable

	Metaclass
	ReadLocalVariable

	Extends
	ReadVariable

	Description
	Read a local variable in the current stack frame

	RaisedSignal
	{}

	Refs
	ReadVariableAction [5, p. 2-285],

ldloc.0, ldloc.1, ldloc.2, ldloc.3 [27, pp. 254, 255], [28, p. 62],

wide Tload, Tload, Tload_0, Tload_1, Tload_2, Tload_3 [35, p. 82, table 3.2] [35, p. 83, 3.11.2] [35, p. 375, section 7.6 Receiving Arguments]

aload, aload_<n> [35, pp. 179, 180], dload, dload_<n> [35, pp. 207..208], fload, fload_<n> [35, pp. 237..238], iload, iload_<n> [35, pp.274..275], lload, lload_<n> [35, pp. 319..320]

	AssociationEnd
	variable

	Description
	The definition of the local variable to be read

	Type
	LocalVariable


The definition of the local variable is referred to in XML by its id.

2.13.1.1 Semantics

The semantics of ReadLocalVariable are those common to UML, MS-IL and the JVM.

The variable must be a local variable of the current method.

There are no exceptions associated with the reading of a local variable.

2.13.1.2 Language mappings

ReadLocalVariable corresponds to a C++ expression that represents the value of a local variable. 

2.13.2 AssignLocalVariable

	Metaclass
	AssignLocalVariable

	Extends
	Assign

	Description
	Assign a value to a local variable

	Refs
	WriteVariableAction [5, p. 2-289]

stloc.0, stloc.1, stloc.2, stloc.3 [27, p. 256], [28, p. 82],

wide Tstore, Tstore, Tstore_0, Tstore_1, Tstore_2, Tstore_3 [35, p. 82, table 3.2] [35, p. 83, 3.11.2],

[41, eok_assign, eok_iassign, eok_fassign, eok_passing, eok_cassign, eok_sassign, eok_bassign, eok_pmassign, eok_xassign]

when the left hand side of the assignment represents a local variable

	Pin
	left

	Description
	The local variable to be written

	Kind
	out

	Type
	LocalVariableInstance


2.13.2.1 Semantics

The semantics of AssignLocalVariable are those common to UML, MS-IL and the JVM.

The variable must be a local variable of the current method.

2.13.2.2 Language mappings

In target languages such as C++ and Java., AssignLocalVariable corresponds to an assignment statement whose left hand side refers to a local variable.

2.14 Pre and Post Increment/Decrement Actions

The following actions deal with the incrementing and decrementing of memory locations (variables) and other values referred to by expressions.  Such actions involve the reading a variable, the incrementing or decrementing of the value read, and assignment of the modified value to the original variable.  Either the original value or the modified value of the variable is returned by the expression. 

2.14.1 DecrementAndRead

	Metaclass
	DecrementAndRead

	Extends
	UnaryExpression, WriteVariable

	Description
	Decrement, then read a given variable

	Pre
	-- The variable must be an Integer, VectorElementPointer, or ArrayElementPointer

	Post
	-- If the variable is an Integer
if argument.type().isSubtypeOf(Integer) then

-- the value of the variable has been decremented
(argument = argument@pre - 1) 

else

-- If the variable is a vector element pointer
if argument.isSubtypeOf(VectorElementPointer) then

-- it now points to the previous vector element
argument.value().index() = argument.value().index()@pre - 1

-- If the variable is an array element pointer
else

-- it now points to the previous array element
argument.value().position() = argument.value().position()@pre - 1

endif

endif

-- The new value of the variable is returned as the value of the expression
and (result = argument)

	RaisedSignal
	{OverflowException}

	Refs
	[27] Analogous to ReadAndDecrement
[41, eok_pre_decr, eok_ipre_decr, eok_fpre_decr, eok_ppre_decr].

[48, Item 6]

	Attribute
	writesResult

	Value
	true

	Attribute
	overflow

	Description
	Is an exception thrown when arithmetic overflow occurs?

	Type
	Boolean

	DefaultValue
	false

	Pin
	argument

	Description
	The variable instance (lvalue) to be decremented, then read

	Kind
	inout

	Type
	VariableInstance


2.14.1.1 Semantics

The semantics of DecrementAndRead are those common to C++ and Java.

The value returned by DecrementAndRead is that of the variable after it has been decremented.

In XCIL, assignment and the evaluation of the variable reference (lvalue) that is the target of the assignment are separate actions.  As a result, the exceptions associated with variable resolution are associated with VariableReference and its subtypes rather than directly with DecrementAndRead.

2.14.1.2 Language mappings

DecrementAndRead represents application of the predecrement operator to an lvalue expression in C++ and Java, e.g., - -expression.

2.14.2 IncrementAndRead

	Metaclass
	IncrementAndRead

	Extends
	UnaryExpression, WriteVariable

	Description
	Increment, then read a given variable

	Pre
	-- The variable must be an Integer, VectorElementPointer, or ArrayElementPointer

	Post
	-- If the variable is an Integer
if argument.type().isSubtypeOf(Integer) then

-- the value of the variable has been incremented
 (argument = argument@pre + 1) 

else

-- If the variable is a vector element pointer
if argument.isSubtypeOf(VectorElementPointer) then

-- it points to the next vector element
argument.value().index() = argument.value().index()@pre + 1

-- If the variable is an array element pointer
else

-- it points to the next array element
argument.value().position() = argument.value().position()@pre + 1

endif

endif

-- The new value of the variable is returned as the value of the expression
and (result = argument)

	RaisedSignal
	{OverflowException}

	Refs
	[27] Analogous to ReadAndIncrement
[35] iinc, followed by iload

[41, eok_pre_incr, eok_ipre_incr, eok_fpre_incr, eok_ppre_incr].

[48, Item 6]

	Attribute
	writesResult

	Value
	true

	Attribute
	overflow

	Description
	Is an exception thrown when arithmetic overflow occurs?

	Type
	Boolean

	DefaultValue
	false

	Pin
	argument

	Description
	The variable instance (lvalue) to be incremented, then read

	Kind
	inout

	Type
	VariableInstance


2.14.2.1 Semantics

The semantics of IncrementAndRead are those common to the C++ and Java.

The value returned by DecrementAndRead is that of the variable after it has been incremented.

In XCIL, assignment and the evaluation of the variable reference (lvalue) that is the target of the assignment are separate actions.  As a result, the exceptions associated with variable resolution are associated with VariableReference and its subtypes rather than directly with IncrementAndRead.

2.14.2.2 Language mappings

IncrementAndRead represents application of the preincrement operator to an lvalue expression in C++ and Java, e.g., ++expression.

2.14.3 ReadAndDecrement

	Metaclass
	ReadAndDecrement

	Extends
	UnaryExpression, WriteVariable

	Description
	Read, then decrement the value referred to by an expression

	Pre
	-- The variable must be an Integer, VectorElementPointer, or ArrayElementPointer

	Post
	-- The result of the expression is the previous value of the variable
(result = argument@pre) and

if argument.type().isSubtypeOf(Integer) then 

-- If this is an integer variable, its value has been decremented
(argument = argument@pre - 1) 

else

if argument.isSubtypeOf(VectorElementPointer) then

-- If a vector element pointer, it now points to the previous vector element
argument.value().index() = argument.value().index()@pre - 1

else

-- If an array element pointer, it now points to the previous array element
argument.value().position() = argument.value().position()@pre - 1

endif

endif

	RaisedSignal
	{OverflowException}

	Refs
	<push var handle>

<duplicate handle>

<load value from handle>

ldc.i4.1

sub

<assign to handle>

[31, p. 248]

<push var reference>

dup

ldind.14

ldc.i4.1

sub

stind.14

[31, p. 249]

	
	and [31, p. 249, figure 8.18], for array values

iload, followed by iinc, when dealing with arguments and local variables

[41, eok_post_decr, eok_ipost_decr, eok_fpost_decr, eok_ppost_decr],

[48, Item 6]

	Attribute
	writesResult

	Value
	false

	Attribute
	overflow

	Description
	Is an exception thrown when arithmetic overflow occurs?

	Type
	Boolean

	DefaultValue
	false

	Pin
	argument

	Description
	The variable instance (lvalue) to be read, the decremented

	Kind
	inout

	Type
	VariableInstance


2.14.3.1 Semantics

The semantics of ReadAndDecrement are those common to the C++ and Java. 

They should be consistent with the MS-IL instruction sequence referenced above.

The value returned by ReadAndDecrement is that of the referenced value before it has been decremented.

In XCIL, assignment and the evaluation of the variable reference (lvalue) that is the target of the assignment are separate actions.  As a result, the exceptions associated with variable resolution are associated with VariableReference and its subtypes rather than directly with ReadAndDecrement.

2.14.3.2 Language mappings

ReadAndDecrement represents application of the postdecrement operator to an expression in C++ and Java, e.g., expression- -.

2.14.4 ReadAndIncrement

	Metaclass
	ReadAndIncrement

	Extends
	UnaryExpression, WriteVariable

	Description
	Read, then increment the value referred to by an expression

	Pre
	-- The variable must be an Integer, VectorElementPointer, or ArrayElementPointer

	Post
	-- The result of the expression is the previous value of the variable
(result = argument@pre) and

if argument.type().isSubtypeOf(Integer) then 

-- If this is an integer variable, its value has been incremented
(argument = argument@pre + 1) 

else

if argument.isSubtypeOf(VectorElementPointer) then

-- If an vector element pointer, it now points to the next vector element
argument.value().index() = argument.value().index()@pre + 1

else

-- If an array element pointer, it now points to the next array element

argument.value().position() = argument.value().position()@pre + 1

endif

endif

	RaisedSignal
	{OverflowException}

	Refs
	<push var handle>

<duplicate handle>

<load value from handle>

ldc.i4.1

add

<assign to handle>

[31, p. 248]

	
	<push var reference>

dup

ldind.14

ldc.i4.1

add

stind.14

[31, p. 249]

	
	and [31, p. 249, figure 8.18], for array values 

iload, followed by iinc, when dealing with arguments and local variables

[41, eok_post_incr, eok_ipost_incr, eok_fpost_incr, eok_ppost_incr],

[48, Item 6]

	Attribute
	writesResult

	Value
	false

	Attribute
	overflow

	Description
	Is an exception thrown when arithmetic overflow occurs?

	Type
	Boolean

	DefaultValue
	false

	Pin
	argument

	Description
	The variable instance (lvalue) to be read, the incremented

	Kind
	inout

	Type
	VariableInstance


2.14.4.1 Semantics

The semantics of ReadAndIncrement are those common to the C++ and Java. 

They should be consistent with the MS-IL instruction sequence referenced above.

The value returned by ReadAndDecrement is that of the referenced value before it has been incremented.

In XCIL, assignment and the evaluation of the variable reference (lvalue) that is the target of the assignment are separate actions.  As a result, the exceptions associated with variable resolution are associated with VariableReference and its subtypes rather than directly with ReadAndIncrement.

2.14.4.2 Language mappings

ReadAndIncrement represents use of the postincrement operator on a variable in C++ and Java, e.g., expression++.
2.15 Indirect Read and Assign Actions

The following definitions are based on the indirect read and write operations of MS-IL.  They deal with arbitrary variables (representing attributes, arguments, and local variables), identified by their address.

2.15.1 ReadIndirect

	Metaclass
	ReadIndirect

	Extends
	ReadVariable

	Description
	Read from a memory location whose address is given by a pointer

	Refs
	ldind.<type> [27, pp. 246, Indirect loading] [28, p. 60], 

ldobj <token> [27, p. 262] [28, p. 102], 

unaligned (prefix) [28, p. 87], volatile (prefix) [28, p. 88],

[41, eok_indirect] 

	Pin
	pointer

	Description
	A pointer to the variable to be read

	Kind
	in

	Type
	VariablePointer


2.15.1.1 Semantics

The semantics of ReadIndirect are those defined by MS-IL. Pointer is an in parameter since it does not represent the variable to be written, but a pointer to it.

2.15.1.2 Language mappings

ReadIndirect corresponds to use of the “*” operator in C++. 

2.15.2 AssignIndirect

	Metaclass
	AssignIndirect

	Extends
	BinaryExpression

	Description
	Assign a value to a memory location whose address is given by a pointer

	Refs
	stind.<type> [27, pp. 246, Indirect storing] [28, p. 81], 

stobj <token> [27, p. 262] [28, p. 117], cpobj <token> [27, p. 262] [28, p. 93], initobj [27, p. 263] [28, p. 94], 

cpblk [28, p. 48], 

unaligned (prefix) [28, p. 87], volatile (prefix) [28, p. 88],

Assign a value to a memory location referred to by a pointer, i.e. by applying

[41, eok_indirect]

to the left hand side of

[41, eok_assign, eok_iassign, eok_fassign, eok_passing, eok_cassign, eok_sassign, eok_bassign, eok_pmassign, eok_xassign]

	Pin
	left

	Description
	A pointer to the variable to be written

	Kind
	in

	Type
	VariablePointer

	Pin
	right

	Description
	The value to be written

	Kind
	in

	Type
	Classifier


2.15.2.1 Semantics

The semantics of AssignIndirect are those defined by MS-IL.


The left argument of the assignment must be a VariablePointer.  It is an in parameter since it does not represent the variable to be written, but a pointer to it.

The right argument must be a value of the type pointed to by the left argument.

To avoid dangling pointers, we may impose additional constraints, e.g., no address (pointer) may be stored indirectly via another address (pointer) [33, p. 6, BIL Pointer Confinement Policy].

2.15.2.2 Language mappings

AssignIndirect corresponds to the deferencing of a pointer on the left hand side of an assignment statements in languages such as C++.

2.16 Computational Action Foundation

The following definitions are based on those in the Computation Actions sections of the UML specification [5,p. 2-291, section 2.20].  They provide a foundation for other computational actions (arithmetic, logical, etc.) that appear in the sections that follow.

2.16.1 BooleanExpression

	Metaclass
	BooleanExpression

	Extends
	Expression

	Description
	An expression that produces a boolean result

	Refs
	[5, p. 2-92, Figure 2-12], [5, p. 2-93]

	Pin
	result

	Type
	Boolean


2.16.1.1 Semantics

The semantics of BooleanExpression are those common to UML  [5, p. 2-93] and conventional logic [TBD].

2.16.1.2 Language mappings

BooleanExpression represents expressions in target languages such as C++ and Java that can be considered to represent the logical values true and false.  It includes simple expressions that directly refer to boolean variables, boolean literals, and calls to functions and operators that return boolean values.

Boolean expressions and arithmetic are unfortunately intertwined in many target languages.  The goal is to avoid such entanglements internally, and stick to a definition of BooleanExpression that involves only Boolean (true/false) rather than numeric values.  Explicit casts should be used to convert numeric values to boolean values.

2.16.2 CharacterExpression

	Metaclass
	CharacterExpression

	Extends
	Expression

	Description
	An expression that produces a character value as its result

	Pin
	result

	Type
	Character


2.16.2.1 Semantics

The semantics of CharacterExpression are those inherited from Expression.

The result of evaluating the Expression is a value of type Character.

2.16.2.2 Language mappings

CharacterExpression represents an expression in target languages such as C++ and Java that returns a Character value. It includes simple expressions that directly refer to character variables, character literals, and calls to functions and operators that return character values.

2.16.3 ConditionalExpression

	Metaclass
	ConditionalExpression

	Extends
	Expression

	Description
	An expression that returns the value of either of two subexpressions based on the result of a test (equivalent to the question operator in C++)

	Post
	-- The result is the value of the expression chosen by the test
result = if test then trueExpression else falseExpression endif

	RaisedSignal
	{}

	Refs
	[41, eok_question], 

[38, p. 367-368],

[46, operator?, p. 134], [44, p. 78]

	CompositeEnd
	test

	Description
	A guard on the execution of the body of the clause

	Type
	Expression

	CompositeEnd
	trueExpression

	Description
	The expression whose result is returned if the test evaluates to true

	Type
	Expression

	CompositeEnd
	falseExpression

	Description
	The expression whose result is returned if the test evaluates to false

	Type
	Expression


2.16.3.1 Semantics

The semantics of ConditionalExpression are those common to C++ [46, p. 134] [44, p. 78] and Java [38, p. 367-368].  The test, of type Boolean, is used to choose between two expressions.  The result is the value of trueExpression if test evaluates to true, and the value of falseExpression otherwise.  Only the chosen expression is evaluated. trueExpression and falseExpression must be of the same type, which determines the type of the result.  This type must either be a numeric type (subtype of Number), Boolean, ReferenceType, or Pointer.  

2.16.3.2 Language mappings

…

2.16.4 FloatExpression

	Metaclass
	FloatExpression

	Extends
	Expression

	Description
	An expression that produces a floating point result

	Pin
	result

	Type
	Float


2.16.4.1 Semantics

The semantics of FloatExpression are those inherited from Expression.

The result of evaluating the Expression is a value of type Float.

2.16.4.2 Language mappings

FloatExpression represents an expression in target languages such as C++ and Java that returns a value of a floating point type. It includes simple expressions that directly refer to floating point variables, floating point literals, and calls to functions and operators that return floating point values.

2.16.5 IntegerExpression

	Metaclass
	IntegerExpression

	Extends
	Expression

	Description
	An expression that produces an integer result

	Refs
	[5, p. 2-92, Figure 2-12], [5, p. 2-93]

	Pin
	result

	Type
	Integer


2.16.5.1 Semantics

The semantics of IntegerExpression are those inherited from Expression.

The result of evaluating the Expression is an Integer value.

2.16.5.2 Language mappings

IntegerExpression represents an expression in target languages such as C++ and Java that returns a value of one of the integer types. It includes simple expressions that directly refer to integer variables, integer literals, and calls to functions and operators that return integer values.

2.16.6 LiteralValue

	Metaclass
	LiteralValue

	Extends
	ConstantExpression

	Description
	A literal (constant) value of some type

	Refs
	LiteralValueAction [5, p. 2-295],

ldc.<type> [27, p. 245] [28, p. 58], ldstr [27, p. 262] [28, p. 105],

Tipush, ldc [35, p. 318], ldc_w iconst [35, p. 316], ldc2_w iconst [35, p. 317], Tconst [35, p. 82, table 3.2] [35, p. 83, 3.11.2],

	Attribute
	value

	Description
	The literal’s value, represented as a string in a grammar defined by the expression’s type

	Type
	StringValue


LiteralValue represents a constant value of a specified type. It inherits its type property from Expression, and the property value from ConstantExpression. The value of the literal is specified in a syntax defined by the expression’s type.

Note: It is recommended that we use the grammar of the UML’s Object Constraint Language (OCL) [5, Chapter 6] [9] to represent literal values, since this is the grammar used by XPSL [4].  It, however, is generally possible to define an arbitrary EBNF grammar for each XCIL defined type.

2.16.6.1 Semantics

The semantics associated with a literal value are the same as those associated with other values of its type.  The literal’s value must be compatible with the expression’s type.

2.16.6.2 Subtypes

2.16.6.2.1 IntegerLiteral

	Metaclass
	IntegerLiteral

	Extends
	LiteralValue

	Description
	A literal representation of an integer value

	Refs
	bipush [35, p. 190], iconst_<i> [35, p. 264], lconst_<l> [35, p. 314], ldc [35, p. 318], ldc_w iconst [35, p. 316], ldc2_w iconst [35, p. 317], sipush [35, p. 356]

	Pin
	result

	Type
	Integer


2.16.6.2.2 FloatLiteral

	Metaclass
	FloatLiteral

	Extends
	LiteralValue

	Description
	A literal representation of a floating point value

	Refs
	dconst_<d> [35, p. 204], fconst_<f> [35, p. 234], ldc [35, p. 318], ldc_w iconst [35, p. 316], ldc2_w iconst [35, p. 317]

	Pin
	result

	Type
	Float


2.16.6.2.3 CharacterLiteral

	Metaclass
	CharacterLiteral

	Extends
	LiteralValue

	Description
	A literal representation of a character

	Pin
	result

	Type
	Character


2.16.6.2.4 StringLiteral

	Metaclass
	StringLiteral

	Extends
	LiteralValue

	Description
	A literal representation of a string value

	Refs
	ldstr [27, p. 262],

ldc [35, p. 318], ldc_w iconst [35, p. 316], ldc2_w iconst [35, p. 317]

	Pin
	result

	Type
	StringValue


2.16.6.2.5 null

	Metaclass
	null

	Extends
	LiteralValue

	Description
	A value representing a null (empty) instance of a reference type

	Refs
	[27, p. 185, nullref], 

ldnull [28, p. 64],

null [35, p. 6], aconst_null], 

[31, pp. 67, 78, 79, 82],

[35, p. 6, 66, 89, 178, null reference], 

[38, pp. 19, 27, 30], [46, p. 88]

	Pin
	result

	Type
	ReferenceType


null maps to the use of null by Java and the JVM, the use of nullref by MS-IL, and the use of a zero (null) pointer value in C++. 

2.16.6.3 Language mappings

LiteralValue represents the literal values of the integer, floating point, fixed point, boolean, enumeration, and string types, and the literal value representing a null pointer (pointer to no object).

2.16.7 NullAction

	Metaclass
	NullAction

	Extends
	Statement

	Description
	An action that has no effect

	Refs
	NullAction [5, p. 2-292, Figure 2-54] [5, p. 2-296],

nop [27, p. 244] [28, p. 70],

nop [35, p. 345]


2.16.7.1 Semantics

… 

2.16.7.2 Language mappings

…  

2.16.8 NumericExpression

	Metaclass
	NumericExpression

	Extends
	Expression

	Description
	An expression that returns a number as its result

	Pin
	result

	Type
	Number


2.16.8.1 Semantics

The semantics of NumericExpression are those inherited from Expression.

The result of evaluating the Expression is a Number.

2.16.8.2 Language mappings

NumericExpression represents an expression in a target languages such as C++ that returns a number as a result.  It includes simple expressions that directly refer to numeric variables, numeric literals, and calls to functions and operators that return numeric values.

2.16.9 SequenceExpression

	Metaclass
	SequenceExpression

	Extends
	Expression

	Description
	An expression that represents the evaluation of a sequence of subexpressions and returns the value of the last expression in this sequence

	Refs
	[41, eok_comma],

[46, operator,]

	CompositeEnd
	subexpression

	Description
	The sequence of subexpressions to be evaluated.

	Type
	Sequence (Expression)

	Multiplicity
	1..*


2.16.9.1 Semantics

The semantics of SequenceExpression must be consistent with those defined for the Comma operator in C++.

2.16.9.2 Language mappings

SequenceExpression maps to use of the Comma operator in C++.

2.16.10 SizeOf

	Metaclass
	SizeOf

	Extends
	Expression

	Description
	An expression that returns the size of a data type

	Refs
	sizeof [27, p. 265] [28, p. 114]

sizeof [28, p. 114]

	AssociationEnd
	dataType

	Description
	The definition of the datatype whose size is returned by the expression

	Type
	DataType


The dataType definition is referred to in XML by its id.

2.16.10.1 Semantics

The semantics of SizeOf are defined by MS-IL.

2.16.10.2 Language mappings

SizeOf maps to the use of sizeof in languages such as C++.

2.16.11 StringValueExpression

	Metaclass
	StringValueExpression

	Extends
	Expression

	Description
	An expression that produces a StringValue as its result

	Pin
	result

	Type
	StringValue


2.16.11.1 Semantics

The semantics of StringValueExpression are those inherited from Expression.

The result of evaluating the Expression is a value of type StringValue.

2.16.11.2 Language mappings

StringValueExpression represents expressions in target languages such as C++ and Java that produce an immutable string value. It includes simple expressions that directly refer to variables that hold immutable strings, string literals, and calls to functions and operators that return immutable string values.

2.17 Address Computations

The following actions return the addresses of various elements, e.g. attributes, methods, local variables, arrays.  They correspond to equivalent operations defined by MS-IL. 

2.17.1 AddressableEntity

	Metaclass
	AddressableEntity

	Extends
	ModelElement

	Description
	An entity (class, method, parameter, local variable) whose instances have a run-time address


2.17.1.1 Semantics

The type AddressableEntity specifies which other entities (its subtypes) describe things that may be referred to by a Pointer at run time. 

A reference to an addressable entity is an Expression and may appear in other expressions in accordance with the rules for type compatibility.

2.17.1.2 Language mappings

The use of “void *” in C++ to represent a pointer to an entity of unspecified type corresponds to the definition of a Pointer that refers to an AddressableEntity (of no particular type) in XCIL. 

2.17.2 Pointer

	Metaclass
	Pointer

	Extends
	ReferenceType, AddressableEntity

	Description
	An explicit reference to an addressable entity

	Refs
	typedref  native int, native unsigned int [27, p. 156],

unmanaged pointers [28, p. 5, section 1.1.3.1], managed pointers [28, p. 5, section 1.1.3.2],

Pointer [31, p. 58, Reference Types], Pointer [31, p. 58, Figure 3.4], Pointer [31, p. 73, Managed and unmanaged pointers]

null [35, p. 6]

	Attribute
	managed

	Description
	Is the referenced object allocated in garbage collected (managed) memory? [31, p. 73, Managed and unmanaged pointers]

	Type
	Boolean

	DefaultValue
	true

	Attribute
	levelOfIndirection

	Type
	Integer

	DefaultValue
	1

	AssociationEnd
	refType

	Description
	The definition of the type of the entity referred to by the pointer

	Type
	AddressableEntity

	CompositeEnd
	value

	Description
	The current value of the pointer

	Type
	ReferenceExpression

	Multiplicity
	0..1


The refType definition is referred to in XML by its id.

2.17.2.1 Semantics

Variables whose declared type is a ReferenceType represent references.  Such references are opaque.  The addresses they represent cannot be manipulated.  The only operations on such references are involve assignment to type-compatible variables, comparison using equality and inequality, and use of the reference to gain access to the referenced object.

In contrast, variables whose type is Pointer represent explicit references that can be manipuled.  For instance, it is possible to increment and decrement array element pointers, add or subtract values from them, and subtract one pointer from another if they both refer to the same array dimension. 

Since the JVM does not support pointers in this sense, our definition of pointer semantics is based on Microsoft’s MS-IL, and on languages with pointer operations (such as C++).

refType specifies the type of the entity referred by the Pointer.  

The value of the Pointer is a reference to an entity this type.

The levelOfIndirection associated with the Pointer must be greater than or equal to one.  If greater than one, it represents a pointer to a pointer to and instance of the referenced type, a pointer to a pointer to a pointer to an instance of the referenced type, etc. 

The deallocation of referenced objects is the responsibility of the application unless the pointer is managed.  Otherwise, it is the responsibility of the garbage collector.

Managed pointers cannot be null, and a managed pointer cannot point to another managed pointer [28, p. 6].

Explicit conversions between pointers and references are provided by CastReferenceToPointer and CastPointerToReference.

2.17.2.2 Subtypes

2.17.2.2.1 ObjectPointer

	Metaclass
	ObjectPointer

	Extends
	Pointer

	Description
	A pointer that references an object

	AssociationEnd
	refType

	Type
	Object

	CompositeEnd
	value

	Type
	ObjectReference


2.17.2.2.2 VariablePointer

	Metaclass
	VariablePointer

	Extends
	Pointer

	Description
	A pointer to an assignable entity, e.g. an attribute, out or inout argument, local variable, etc.

	CompositeEnd
	value

	Type
	VariableReference


2.17.2.2.3 SimplePointer

	Metaclass
	SimplePointer

	Extends
	Pointer

	Description
	A pointer to an entity that is not an element of a collection


2.17.2.2.4 ElementPointer

	Metaclass
	ElementPointer

	Extends
	Pointer

	Description
	A pointer to an entity that is an element of a collection


2.17.2.2.5 ObjectFieldPointer

	Metaclass
	ObjectFieldPointer

	Extends
	SimplePointer, VariablePointer

	Description
	A pointer to a field of an object

	Refs
	[41, eok_pm_field]

	CompositeEnd
	value

	Type
	ObjectFieldReference


Where the ownerScope of the field must be instance.

2.17.2.2.6 ClassFieldPointer

	Metaclass
	ClassFieldPointer

	Extends
	SimplePointer, VariablePointer

	Description
	A pointer to a field of a class

	CompositeEnd
	value

	Type
	ClassFieldReference


Where the ownerScope of the field must be classifier.

2.17.2.2.7 ArrayElementPointer

	Metaclass
	ArrayElementPointer

	Extends
	ElementPointer, VariablePointer

	Description
	A pointer to an array element

	CompositeEnd
	value

	Type
	ArrayElementReference


Array pointers provide access to arrays using pointers in a C++ style.

The pointer always refers to an element of the given array, the element appearing at the position given by index.

2.17.2.2.8 VectorElementPointer

	Metaclass
	VectorElementPointer

	Extends
	ElementPointer, VariablePointer

	Description
	A pointer to a vector element (element of a single dimesion array)

	CompositeEnd
	value

	Type
	VectorElementReference


Vector pointers provide access to vectors using pointers in a C++ style.

An array element pointer or vector element pointer must contain a reference that lies within the array bounds or is most one position past the upper bound of each dimension.  

2.17.2.2.9 ArgumentPointer

	Metaclass
	ArgumentPointer

	Extends
	SimplePointer, VariablePointer

	Description
	A pointer to a method argument

	CompositeEnd
	value

	Type
	ArgumentReference


2.17.2.2.10 LocalVariablePointer

	Metaclass
	LocalVariablePointer

	Extends
	SimplePointer, VariablePointer

	Description
	A pointer to a local variable

	CompositeEnd
	value

	Type
	LocalVariableReference


2.17.2.2.11 MethodPointer

	Metaclass
	MethodPointer

	Extends
	SimplePointer

	Description
	A pointer to a method associated with either an object or a class

	CompositeEnd
	value

	Type
	MethodReference


2.17.2.2.12 InstanceMethodPointer

	Metaclass
	InstanceMethodPointer

	Extends
	MethodPointer

	Description
	A pointer to a method associated with an object

	CompositeEnd
	value

	Type
	InstanceMethodReference


Where the ownerScope of the method must be instance.

2.17.2.2.13 ClassMethodPointer

	Metaclass
	ClassMethodPointer

	Extends
	MethodPointer

	Description
	A pointer to a method associated with a class

	CompositeEnd
	value

	Type
	ClassMethodReference


Where the ownerScope of the method must be classifier.

2.17.2.3 Language mappings

Pointer directly maps to a pointer type in languages such as C++.  Although C++ does not require run time checks to ensure pointer values remain in bounds, we still consider it an error if an array element pointer or vector element pointer contains an index that does not lie within the array bounds or is most one position past its upper bound.  This is consistent with the C++ view that “if a pointer points outside the bounds of the array, except at the first location beyond the high end of the array, the result is undefined” [44, p. 73].

2.17.3 PointerExpression

	Metaclass
	PointerExpression

	Extends
	Expression

	Description
	An expression that returns a pointer

	Refs
	Transient pointer [28, p. 6, section 1.1.3.3]

	Pin
	result

	Type
	Pointer


2.17.3.1 Semantics

The semantics of PointerExpression are those inherited from Expression.

The result of evaluating the Expression is a Pointer.

CastReferenceToPointer can be used to convert any ReferenceExpression to a PointerExpression.

2.17.3.2 Subtypes

2.17.3.2.1 SimplePointerExpression

	Metaclass
	SimplePointerExpression

	Extends
	Expression

	Description
	An expression that returns a simple poiner

	Pin
	result

	Type
	SimplePointer


2.17.3.2.2 ElementPointerExpression

	Metaclass
	ElementPointerExpression

	Extends
	Expression

	Description
	An expression that returns an element pointer

	Pin
	result

	Type
	ElementPointer


2.17.3.2.3 ArrayElementPointerExpression

	Metaclass
	ArrayElementPointerExpression

	Extends
	Expression

	Description
	An expression that returns a pointer to an array element

	Pin
	result

	Type
	ArrayElementPointer


2.17.3.2.4 VectorElementPointerExpression

	Metaclass
	VectorElementPointerExpression

	Extends
	Expression

	Description
	An expression that returns a pointer to a vector element

	Pin
	result

	Type
	VectorElementPointer


2.17.3.2.5 MethodPointerExpression

	Metaclass
	MethodPointerExpression

	Extends
	Expression

	Description
	An expression that returns a pointer to a method

	Pin
	result

	Type
	MethodPointer


2.17.3.3 Language mappings

PointerExpression represents expressions in target languages such as C++ that return a pointer. It includes simple expressions that directly refer to pointer variables, the literal value null, and calls to functions or operators that return pointer values.

In C++, there is a close association between pointers and arrays.  A pointer to an array element or the subscripting of a pointer to an array element [50, p. 36] can be represented by applying CastReferenceToPointer to an ArrayElementReference or VectorElementReference.

2.17.4 GetAddress

	Metaclass
	GetAddress

	Extends
	PointerExpression

	Description
	Get the address of some entity (object, attribute, datatype value, array element, argument, or local variable)

	Refs
	[41, eok_address_of_value, eok_loc]


2.17.4.1 Semantics

The semantics of GetAddress are those common to all its subtypes (below). 

2.17.4.2 Subtypes

2.17.4.2.1 GetVariableAddress

	Metaclass
	GetVariableAddress

	Extends
	GetAddress, VariableReference

	Description
	Get the address of a variable

	Pin
	result

	Type
	VariablePointer


2.17.4.2.2 GetInstanceFieldAddress

	Metaclass
	GetInstanceFieldAddress

	Extends
	GetVariableAddress, ObjectFieldReference

	Description
	Get the address of an object field

	Refs
	ldflda.<length> [27, p. 258] [28, p. 100], 

[41, eok_field, eok_lvalue_from_struct_rvalue]

	Pin
	result

	Type
	ObjectFieldPointer


Where the ownerScope of the field must be instance.

2.17.4.2.3 GetClassFieldAddress

	Metaclass
	GetClassFieldAddress

	Extends
	GetVariableAddress, ClassFieldReference

	Description
	Get the address of a class field

	Refs
	ldsflda.<length> [27, p. 258] [28, p. 104] 

	Pin
	result

	Type
	ClassFieldPointer


Where the ownerScope of the field must be classifier.

2.17.4.2.4 GetArrayElementAddress

	Metaclass
	GetArrayElementAddress

	Extends
	GetVariableAddress, ArrayElementReference

	Description
	Get the address of an array element

	Refs
	ldelema.<length> [27, p. 266] [28, p. 98]

	Pin
	result

	Type
	ArrayElementPointer


2.17.4.2.5 GetVectorElementAddress

	Metaclass
	GetVectorElementAddress

	Extends
	GetVariableAddress, VectorElementReference

	Description
	Get the address of a vector element

	Refs
	ldelema.<length> [27, p. 266] [28, p. 98]

	Pin
	result

	Type
	VectorElementPointer


2.17.4.2.6 GetArgumentAddress

	Metaclass
	GetArgumentAddress

	Extends
	GetVariableAddress, ArgumentReference

	Description
	Get the address of an argument (in the current frame)

	Refs
	Load argument address

ldarga.<length> [27, p. 254] [28, p. 57]

	Pin
	result

	Type
	ArgumentPointer


2.17.4.2.7 GetLocalVariableAddress

	Metaclass
	GetLocalVariableAddress

	Extends
	GetVariableAddress, LocalVariableReference

	Description
	Get the address of a local variable (in the current stack frame)

	Refs
	Load local variable address

ldloca.<length> [27, p. 256] [28, p. 63],

[41, eok_address_of_value]

	Pin
	result

	Type
	LocalVariablePointer


2.17.4.2.8 GetInstanceMethodAddress

	Metaclass
	GetInstanceMethodAddress

	Extends
	GetAddress, InstanceMethodReference

	Description
	Get the address of an instance method

	Refs
	ldvirftn [27, p. 260] [28, p. 107],

[41, eok_virtual_function_ptr]

	Pin
	result

	Type
	InstanceMethodPointer


Where the ownerScope of the specified method must be instance.

2.17.4.2.9 GetClassMethodAddress

	Metaclass
	GetClassMethodAddress

	Extends
	GetAddress, ClassMethodReference

	Description
	Get the address of a class method

	Refs
	ldftn [27, p. 260] [28, p. 59]

	Pin
	result

	Type
	ClassMethodPointer


Where the ownerScope of the specified method must be classifier.

2.17.4.3 Language mappings

… 

2.18 Arithmetic Computations

The following definitions correspond to arithmetic operations defined by MS-IL and the JVM.  

2.18.1 Add

	Metaclass
	Add

	Extends
	BinaryExpression

	Description
	Add two values

	Post
	-- If unsigned is set, then left and right are interpreted as unsigned numeric values

-- and the result is the unsigned sum of these values

-- Otherwise left and right are interpreted as signed numeric values
-- and the result is the signed sum of these values

	RaisedSignal
	{OverflowException}

	Refs
	add, add.ovf, add.ovf.un [27, pp. 247, 249] [28, pp. 18, 19],

Tadd [35, p. 82, table 3.2], [35, p. 83, 3.11.2], iadd [35, p. 260], fadd [35, p. 228],

dadd [35, p. 198], ladd [35, p. 309],

[41, eok_add, eok_iadd, eok_fadd, eok_padd, eok_padd_subsc, eok_xadd]

	Attribute
	overflow

	Description
	Is an exception thrown when arithmetic overflow occurs?

	Type
	Boolean

	DefaultValue
	false

	Attribute
	unsigned

	Description
	Are the arguments and result of the computation unsigned?

	Type
	Boolean

	DefaultValue
	false


2.18.1.1 Semantics

The semantics of Add are those common to MS-IL and the JVM.  

If overflow is true, an exception is thrown when arithmetic overflow occurs.  Otherwise the result wraps modulo the size of the result, and no exception is thrown.

If unsigned is true, then the arguments to Add are interpreted as unsigned numeric values, and the result is the unsigned sum of these values.  Otherwise both arguments are interpreted as signed numeric values, and the result is the signed sum of these values.

2.18.1.2 Subtypes 

2.18.1.2.1 IntegerAdd

	Metaclass
	IntegerAdd

	Extends
	Add, IntegerExpression

	Description
	Add two integer values

	Pre
	-- left and right must be Integer values of the same type

	Post
	-- The result is an integer value of this type

	Refs
	add, add.ovf, add.ovf.un [27, pp. 247, 249] [28, pp. 18, 19]

iadd [35, p. 82, table 3.2], [35, p. 83, 3.11.2], [35, p. 260]

[41, eok_add, eok_iadd]

	Pin
	left

	Kind
	in

	Type
	Integer

	Pin
	right

	Kind
	in

	Type
	Integer


left and right must be Integer values of the same type.  The result is an Integer value of this type.

2.18.1.2.2 FloatAdd

	Metaclass
	FloatAdd

	Extends
	Add, FloatExpression

	Description
	Add two floating point values

	RaisedSignal
	{}

	Refs
	add, add.ovf, add.ovf.un [27, pp. 247, 249] [28, pp. 18, 19]

fadd [35, p. 82, table 3.2], [35, p. 83, 3.11.2], [35, p. 228]

[41, eok_add, eok_fadd]

	Attribute
	overflow

	Value
	false

	Pin
	left

	Kind
	in

	Type
	Float

	Pin
	right

	Kind
	in

	Type
	Float


left and right must be Float values of the same type. The result is a Float of this type computed in accordance with the IEEE 754 standard in a manner consistent with the JVM and MS-IL specifications.

As defined by the JVM and MS-IL, although overflow, underflow or loss of precision may occur, FloatAdd never throws a runtime exception.

2.18.1.2.3 PointerAdd

	Metaclass
	PointerAdd

	Extends
	Add, ArrayElementPointerExpression

	Description
	Add an integer value to an array element pointer

	Refs
	add.ovf.un [27, pp. 249] [28, pp. 18, 19]

[41, eok_padd]


One of the two arguments (left, right) must be an ArrayElementPointer, while the other must be an Integer. The result is an ArrayElementPointer to an element within the same array.

2.18.1.2.4 VectorElementPointerAdd

	Metaclass
	VectorElementPointerAdd

	Extends
	Add, VectorElementPointerExpression

	Description
	Add an integer value to a vector element pointer

	Refs
	add.ovf.un [27, pp. 249] [28, pp. 18, 19]

[41, eok_padd_subsc]


One of the two arguments (left, right) must be a VectorElementPointer, while the other must be an Integer. The result is an VectorElementPointer to an element within the same vector.

The operation adds an integer value (either positive or negative) to the index associated with a vector pointer.  If the resulting index is not wihin the bounds associated with the vector, the result is undefined.

2.18.1.3 Language mappings

Add maps to use of the ‘+’ operator in most languages.  Some languages, such as Java, specify explicitly that overflow/underflow is not reported as an exception [38].  Other languages, such as C++, specify that the handling of overflow is implementation dependent [44, p. 46]. According to Stroustrup and Ellis: “Most existing implementations of C++ ignore integer overflows. Treatment of division by zero and all floating point exceptions vary among machines, and is usually adjustable by a library function.” [44, p. 46] 

2.18.2 BitwiseAnd

	Metaclass
	BitwiseAnd

	Extends
	BinaryExpression, IntegerExpression

	Description
	Compute the bitwise AND of two integer values

	Refs
	and [27, p. 249] [28, p. 20],

Tand [35, p. 82, table 3.2] [35, p. 83, 3.11.2], iand [35, p. 262], land [35, p. 311],

[41, eok_and]


2.18.2.1 Semantics

The semantics of BitwiseAnd are those common to MS-IL and the JVM. The arguments (left and right) must be Integer values of the same type. The result is an Integer value of this type.

2.18.2.2 Language mappings

…

2.18.3 BitwiseComplement

	Metaclass
	BitwiseComplement

	Extends
	UnaryExpression, IntegerExpression

	Description
	Compute the bitwise complement of an integer value

	Refs
	not [27, p. 250] [28, p. 71],

[41, eok_complement]


2.18.3.1 Semantics

The semantics of BitwiseComplement are those defined by MS-IL. The argument must be an Integer value. The result is an Integer value of the same type.

2.18.3.2 Language mappings

…

2.18.4 BitwiseOr

	Metaclass
	BitwiseOr

	Extends
	BinaryExpression, IntegerExpression

	Description
	Compute the bitwise OR of two integer values

	Refs
	or [27, p. 249] [28, p. 72],

Tor [35, p. 82, table 3.2] [35, p. 83, 3.11.2], ior [35, p. 294], lor [35, p. 325],

[41, eok_or]


2.18.4.1 Semantics

The semantics of BitwiseOr are those common to MS-IL and the JVM. The arguments (left and right) must be Integer values of the same type. The result is an Integer value of this type.

2.18.4.2 Language mappings

…

2.18.5 BitwiseXor

	Metaclass
	BitwiseXor

	Extends
	BinaryExpression, IntegerExpression

	Description
	

	Refs
	xor [27, p. 250] [28, p. 89],

Txor [35, p. 82, table 3.2] [35, p. 83, 3.11.2],

[41, eok_xor]


2.18.5.1 Semantics

The semantics of BitwiseXor are those common to MS-IL and the JVM. The arguments (left and right) must be Integer values of the same type. The result is an Integer value of this type.

2.18.5.2 Language mappings

…

2.18.6 Divide

	Metaclass
	Divide

	Extends
	BinaryExpression, NumericExpression

	Description
	Divide one value by another to obtain a quotient or floating point result

	Post
	-- If unsigned is set, then left and right are interpreted as unsigned numeric values

-- and the result is the unsigned result of dividing left by right

-- Otherwise left and right are interpreted as signed numeric values
-- and the result is the signed result of dividing left by right

	RaisedSignal
	{ArithmeticException, DivideByZeroException}

	Refs
	div, div.un [27, pp. 247] [28, pp. 49, 50],

Tdiv [35, p. 82, table 3.2] [35, p. 83, 3.11.2], idiv [35, p.265], fdiv [35, p. 235], ddiv [35, p. 205], ldiv [35, p. 315]

[41, eok_divide, eok_idivide, eok_fdivide, eok_xdivide]

	Attribute
	unsigned

	Description
	Are the arguments and result of the computation unsigned?

	Type
	Boolean

	DefaultValue
	false


2.18.6.1 Semantics

The semantics of Divide are those common to MS-IL and the JVM. The result is a Number.

2.18.6.2 Subtypes

2.18.6.2.1 IntegerDivide

	Metaclass
	IntegerDivide

	Extends
	Divide, IntegerExpression

	Description
	Divide one integer value by another

	Refs
	div, div.un [27, pp. 247] [28, pp. 49, 50],

idiv [35, p. 82, table 3.2] [35, p. 83, 3.11.2], [35, p.265]

[41, eok_divide, eok_idivide]

	Pin
	left

	Kind
	in

	Type
	Integer

	Pin
	right

	Kind
	in

	Type
	Integer


left and right must be Integer values of the same type. The result is an Integer of this type.

2.18.6.2.2 FloatDivide

	Metaclass
	FloatDivide

	Extends
	Divide, FloatExpression

	Description
	Divide one floating point value by another

	RaisedSignal
	{}

	Refs
	div, div.un [27, pp. 247] [28, pp. 49, 50],

fdiv [35, p. 82, table 3.2] [35, p. 83, 3.11.2], [35, p. 235]

[41, eok_divide, eok_fdivide]

	Attribute
	overflow

	Value
	false

	Pin
	left

	Kind
	in

	Type
	Float

	Pin
	right

	Kind
	in

	Type
	Float


left and right must be Float values of the same type. The result is a Float of this type, computed in accordance with the IEEE 754 standard in a manner consistent with the JVM and MS-IL specifications.

As defined by the JVM and MS-IL, although overflow, underflow or loss of precision may occur, FloatDivide never throws a runtime exception.

2.18.6.3 Language mappings

Divide maps to use of the ‘/’ operator or ‘div’ in most languages.  In C++, “the result of dividing or taking the remainder of a negative integer value – the result is either rounded toward zero or toward negative infinity, depending on the platform” [50, p. 4]. In Java, integer division always truncates toward zero.

Some languages, such as Java, specify explicitly that overflow/underflow is not reported as an exception [38].  Other languages, such as C++, specify that the handling of overflow is implementation dependent [44, p. 46]. According to Stroustrup and Ellis: “Most existing implementations of C++ ignore integer overflows. Treatment of division by zero and all floating point exceptions vary among machines, and is usually adjustable by a library function.” [44, p. 46]

2.18.7 Exponentiation

	Metaclass
	Exponentiation

	Extends
	BinaryExpression, FloatExpression

	Description
	Raise a value to the power specified by another

	Refs
	[41, eok_ I_to_I_expon, eok_f_to_I_expon, eok_x_to_I_expon, eok_f_to_f_expon, eok_x_to_x_expon]


2.18.7.1 Semantics

…  

2.18.7.2 Subtypes

…

2.18.7.3 Language mappings

Exponentiation maps to operations that raise a number to a power, e.g. in languages such as Fortran.

2.18.8 Multiply

	Metaclass
	Multiply

	Extends
	BinaryExpression, NumericExpression

	Description
	Multiply two values

	Post
	-- If unsigned is set, then left and right are interpreted as unsigned numeric values

-- and the result is the unsigned product of these values

-- Otherwise left and right are interpreted as signed numeric values
-- and the result is the signed product of these values

	RaisedSignal
	{OverflowException}

	Refs
	mul, mul.ovf, mul.ovf.un [27, pp. 247, 249] [28, pp. 67, 68],

Tmul [35, p. 82, table 3.2] [35, p. 83, 3.11.2], imul [35, p. 276], fmul [35, p. 239], dmul [35, p. 209], lmul [35, p. 321]

[41, eok_multiply, eok_imultiply, eok_fmultiply, eok_xmultiply]

	Attribute
	overflow

	Description
	Is an exception thrown when arithmetic overflow occurs?

	Type
	Boolean

	DefaultValue
	false

	Attribute
	unsigned

	Description
	Are the arguments and result of the computation unsigned?

	Type
	Boolean

	DefaultValue
	false


2.18.8.1 Semantics

The semantics of Multiply are those common to MS-IL and the JVM. 

If overflow is true, an exception is thrown when arithmetic overflow occurs.  Otherwise overflow occurs but no exception is thrown.

If unsigned is true, then the arguments to Multiply are interpreted as unsigned numeric values, and the result is the unsigned product of these values.  Otherwise both arguments are interpreted as signed numeric values, and the result is the signed product of these values.


2.18.8.2 Subtypes

2.18.8.2.1 IntegerMultiply

	Metaclass
	IntegerMultiply

	Extends
	Multiply, IntegerExpression

	Description
	Multiply two integer values

	Refs
	mul, mul.ovf, mul.ovf.un [27, pp. 247, 249] [28, pp. 67, 68],

imul [35, p. 82, table 3.2] [35, p. 83, 3.11.2], [35, p. 276]

[41, eok_multiply, eok_imultiply]

	Pin
	left

	Kind
	in

	Type
	Integer

	Pin
	right

	Kind
	in

	Type
	Integer


left and right must be Integer values of the same type. The result is an Integer of this type.

2.18.8.2.2 FloatMultiply

	Metaclass
	FloatMultiply

	Extends
	Multiply, FloatExpression

	Description
	Multiply two floating point values

	RaisedSignal
	{}

	Refs
	mul, mul.ovf, mul.ovf.un [27, pp. 247, 249] [28, pp. 67, 68],

fmul [35, p. 82, table 3.2] [35, p. 83, 3.11.2], [35, p. 239]

[41, eok_multiply, eok_fmultiply]

	Attribute
	overflow

	Value
	false

	Pin
	left

	Kind
	in

	Type
	Float

	Pin
	right

	Kind
	in

	Type
	Float


left and right must be Float values of the same type. The result is a Float of this type, computed in accordance with the IEEE 754 standard in a manner consistent with the JVM and MS-IL specifications.

As defined by the JVM and MS-IL, although overflow, underflow or loss of precision may occur, FloatMultiply never throws a runtime exception.

2.18.8.3 Language mappings

Multiply maps to use of the ‘*’ operator in most languages.  Some languages, such as Java, specify explicitly that overflow/underflow is not reported as an exception [38].  Other languages, such as C++, specify that the handling of overflow is implementation dependent [44, p. 46]. According to Stroustrup and Ellis: “Most existing implementations of C++ ignore integer overflows. Treatment of division by zero and all floating point exceptions vary among machines, and is usually adjustable by a library function.” [44, p. 46]

2.18.9 Negate

	Metaclass
	Negate

	Extends
	UnaryExpression, NumericExpression

	Description
	Negate a value

	Refs
	neg [27, p. 248], [28, p. 69],

Tneg [35, p. 82, table 3.2] [35, p. 83, 3.11.2], ineg [35, p. 277], fneg [35, p. 241], dneg [35, p. 211], lneg [35, p. 322]

[41, eok_negate, eok_inegate, eok_fnegate, eok_xnegate]


2.18.9.1 Semantics

The semantics of Negate are those common to MS-IL and the JVM. 

The argument to Negate must be a numeric type (i.e. an Integer or Real).

2.18.9.2 Subtypes

2.18.9.2.1 IntegerNegate

	Metaclass
	IntegerNegate

	Extends
	Negate, IntegerExpression

	Description
	Negate an integer value

	Refs
	neg [27, p. 248], [28, p. 69],

ineg [35, p. 277]

[41, eok_negate, eok_inegate]

	Pin
	argument

	Kind
	in

	Type
	Integer


argument must be an IntegerExpression.

2.18.9.2.2 FloatNegate

	Metaclass
	FloatNegate

	Extends
	Negate, FloatExpression

	Description
	Negate a floating point value

	Refs
	neg [27, p. 248], [28, p. 69],

Tneg [35, p. 82, table 3.2] [35, p. 83, 3.11.2], fneg [35, p. 241]

[41, eok_negate, eok_fnegate]

	Pin
	argument

	Kind
	in

	Type
	Float


argument must be a FloatExpression.

2.18.9.3 Language mappings

…

2.18.10 Remainder

	Metaclass
	Remainder

	Extends
	BinaryExpression, NumericExpression

	Description
	Compute the remainder resulting from the division of one value by another

	Refs
	rem, rem.un [27, p. 247] [28, pp. 74, 75],

Trem [35, p. 82, table 3.2] [35, p. 83, 3.11.2], irem [35, p.295], frem [35, p. 242], drem [35, p. 212], lrem [35, p. 326]

[41, eok_remainder]

	Attribute
	unsigned

	Description
	Are the arguments and result of the computation unsigned?

	Type
	Boolean

	DefaultValue
	false


2.18.10.1 Semantics

The semantics of Remainder are those common to MS-IL and the JVM.

2.18.10.2 Subtypes

2.18.10.2.1 IntegerRemainder

	Metaclass
	IntegerRemainder

	Extends
	Remainder, IntegerExpression

	Description
	Compute the remainder resulting from the division of one integer value by another

	Refs
	rem, rem.un [27, p. 247] [28, pp. 74, 75],

irem [35, p. 82, table 3.2] [35, p. 83, 3.11.2], [35, p.295]

[41, eok_remainder]

	Pin
	left

	Kind
	in

	Type
	Integer

	Pin
	right

	Kind
	in

	Type
	Integer


left and right must be Integer values of the same type. The result is an Integer of this type.

2.18.10.2.2 FloatRemainder

	Metaclass
	FloatRemainder

	Extends
	Remainder, FloatExpression

	Description
	Compute the remainder resulting from the division of one floating point value by another

	Refs
	rem, rem.un [27, p. 247] [28, pp. 74, 75],

frem [35, p. 82, table 3.2] [35, p. 83, 3.11.2], [35, p. 242]

[41, eok_remainder]

	Pin
	left

	Kind
	in

	Type
	Float

	Pin
	right

	Kind
	in

	Type
	Float


left and right must be Float values of the same type. The result is a Float of this type.

2.18.10.3 Language mappings

In C++, “the result of dividing or taking the remainder of a negative integer value – the result is either rounded toward zero or toward negative infinity, depending on the platform” [50, p. 4].

2.18.11 Shift

	Metaclass
	Shift

	Extends
	BinaryExpression, IntegerExpression

	Description
	Shift an integer value a specified number of bit positions to either the left or the right

	Refs
	

	Pin
	left

	Kind
	in

	Type
	Integer

	Pin
	right

	Kind
	in

	Type
	Integer


left and right must be IntegerExpressions. The result is also an Integer.

2.18.11.1 Semantics

The semantics of Shift are those common to its subtypes.

The argument left is shifted (left or right) the number of bit positions specified by the argument right.  The value of right must be between zero and one less than the size of left.

2.18.11.2 Subtypes

2.18.11.2.1 ShiftLeft

	Metaclass
	ShiftLeft

	Extends
	Shift, IntegerExpression

	Description
	Shift an integer value a specified number of bit positions to the left

	Refs
	shl [27, p. 250] [28, p. 77]

Tshl [35, p. 82, table 3.2] [35, p. 83, 3.11.2], ishl [35, p. 297], lshl [35, p. 328]

[41, eok_shiftl]


The semantics of ShiftLeft are those common to MS-IL and the JVM. The result is an Integer.

2.18.11.2.2 ShiftRight

	Metaclass
	ShiftRight

	Extends
	Shift, IntegerExpression

	Description
	Shift an integer value a specified number of bit positions to the right

	Refs
	…


The semantics of ShiftRight are those common to its subtypes (ShiftRightUnsigned and ShiftRightSigned).

2.18.11.2.3 ShiftRightSigned

	Metaclass
	ShiftRightSigned

	Extends
	ShiftRight, IntegerExpression

	Description
	Shift an integer value a specified number of bit positions to the right, extending the sign bit

	Refs
	shr [27, p. 250] [28, p. 78]

Tshr [35, p. 82, table 3.2] [35, p. 83, 3.11.2], ishr [35, p. 298], lshr [35, p. 329]

[41, eok_shiftr]


The semantics of ShiftRightSigned are those common to MS-IL and the JVM. The result is an Integer.

2.18.11.2.4 ShiftRightUnsigned

	Metaclass
	ShiftRightUnsigned

	Extends
	ShiftRight, IntegerExpression

	Description
	Shift an integer value a specified number of bit positions to the right without extending the sign bit

	Refs
	shr.un [27, p. 250] [28, p. 79]

Tushr [35, p. 82, table 3.2] [35, p. 83, 3.11.2], iushr [35, p. 302], lushr [35, p. 333]

[41, eok_shiftr]


The semantics of ShiftRightUnsigned are those common to MS-IL and the JVM. The result is an Integer.

2.18.11.3 Language mappings

In C++, the semantics of a right shift are implementation specific.  It may be implemented using either sign extension (ShiftRightSigned) or by filling with zeros (ShiftRightUnsigned).  The result of a shift operator is also undefined if the right operand (number of bits to shift) is greater than or equal to the length in bits of the left operand [44, p. 74].

In Java, separate operators are defined for ShiftRightSigned (>>) and ShiftRightUnsigned (>>>).

2.18.12 Subtract

	Metaclass
	Subtract

	Extends
	BinaryExpression

	Description
	Subtract one value from another

	Post
	-- If unsigned is set, then left and right are interpreted as unsigned numeric values

-- and the result is the unsigned result of subtracting right from left

-- Otherwise left and right are interpreted as signed numeric values
-- and the result is the signed result of subtracting right from left

	RaisedSignal
	{OverflowException}

	Refs
	sub, sub.ovf, sub.ovf.un [27, pp. 247, 249]  [28, pp. 83, 84]

Tsub [35, p. 82, table 3.2] [35, p. 83, 3.11.2], isub [35, p. 301], fsub [35, p. 247], dsub [35, p. 217], lsub [35, p. 332]

[41, eok_subtract, eok_isubtract, eok_fsubtract, eok_psubstract, eok_pdiff, eok_xsubtract]

	Attribute
	overflow

	Description
	Is an exception thrown when arithmetic overflow occurs?

	Type
	Boolean

	DefaultValue
	false

	Attribute
	unsigned

	Description
	Are the arguments and result of the computation unsigned?

	Type
	Boolean

	DefaultValue
	false


2.18.12.1 Semantics

The semantics of Subtract are those common to MS-IL and the JVM.

If overflow is true, an exception is thrown when arithmetic overflow occurs.  Otherwise the result wraps modulo the size of the result, and no exception is thrown.

If unsigned is true, then the arguments to Subtract are interpreted as unsigned numeric values, and the result is the unsigned result of subtracting right from left.  Otherwise both arguments are interpreted as signed numeric values, and the result is the signed result of subtracting right from left. 

2.18.12.2 Subtypes

2.18.12.2.1 IntegerSubtract

	Metaclass

	IntegerSubtract

	Extends
	Subtract, IntegerExpression

	Description
	Subtract one integer value from another

	Refs
	sub, sub.ovf, sub.ovf.un [27, pp. 247, 249]  [28, pp. 83, 84]

isub [35, p. 82, table 3.2] [35, p. 83, 3.11.2], [35, p. 301]

[41, eok_subtract, eok_isubtract]

	Pin
	left

	Kind
	in

	Type
	Integer

	Pin
	right

	Kind
	in

	Type
	Integer


left and right must be Integer values of the same type. The result is an Integer of this type.

2.18.12.2.2 FloatSubtract

	Metaclass
	FloatSubtract

	Extends
	Subtract, FloatExpression

	Description
	Subtract one floating point value from another

	RaisedSignal
	{}

	Refs
	sub, sub.ovf, sub.ovf.un [27, pp. 247, 249]  [28, pp. 83, 84]

fsub [35, p. 82, table 3.2] [35, p. 83, 3.11.2], [35, p. 247]

[41, eok_subtract, eok_fsubtract]

	Attribute
	overflow

	Value
	false

	Pin
	left

	Kind
	in

	Type
	Float

	Pin
	right

	Kind
	in

	Type
	Float


left and right must be Float values of the same type. The result is a Float of this type computed in accordance with the IEEE 754 standard in a manner consistent with the JVM and MS-IL specifications.

As defined by the JVM and MS-IL, although overflow, underflow or loss of precision may occur, FloatSubtract never throws a runtime exception.

2.18.12.2.3 PointerSubtract

	Metaclass
	PointerSubtract

	Extends
	Subtract, IntegerExpression

	Description
	Subtract one array element pointer value from another, producing an integer result

	Refs
	sub, sub.ovf, sub.ovf.un [27, pp. 247, 249]  [28, pp. 83, 84]

[41, eok_subtract, eok_psubstract, eok_pdiff]

	Pin
	left

	Kind
	in

	Type
	ArrayElementPointer

	Pin
	right

	Kind
	in

	Type
	ArrayElementPointer


left and right must be ArrayElementPointers.  The result is an Integer.

Both pointers must point to elements of the same dimension of the same array. Otherwise the result of the operation is undefined.

2.18.12.2.4 VectorElementPointerSubtract

	Metaclass
	VectorElementPointerSubtract

	Extends
	Subtract, IntegerExpression

	Description
	Subtract one vector element pointer from another

	Refs
	sub, sub.ovf, sub.ovf.un [27, pp. 247, 249]  [28, pp. 83, 84]

[41, eok_subtract, eok_psubstract, eok_pdiff]

	Pin
	left

	Kind
	in

	Type
	VectorElementPointer

	Pin
	right

	Kind
	in

	Type
	VectorElementPointer


left and right must be VectorElementPointers. The result is an Integer.

Both pointers must point to elements of the same vector.  Otherwise the result of the operation is undefined.

2.18.12.3 Language mappings

Subtract maps to use of the ‘-’ operator in most languages.  Some languages, such as Java, specify explicitly that overflow/underflow is not reported as an exception [38].  Other languages, such as C++, specify that the handling of overflow is implementation dependent [44, p. 46]. According to Stroustrup and Ellis: “Most existing implementations of C++ ignore integer overflows. Treatment of division by zero and all floating point exceptions vary among machines, and is usually adjustable by a library function.” [44, p. 46]

2.18.13 UnaryPlus

	Metaclass
	UnaryPlus

	Extends
	UnaryExpression

	Description
	Consider a given value to be positive

	Refs
	[41, eok_unary_plus]


2.18.13.1 Semantics

…

2.18.13.2 Language mappings

…

2.19 Type conversions

The following definitions deal with type casts and conversions. 

2.19.1 CastExpression

	Metaclass
	CastExpression

	Extends
	UnaryExpression

	Description
	The conversion (casting) of an element of one type to that of another

	Refs
	[26, CodeCastExpression],

[41, eok_cast, eok_base_class_cast, eok_derived_class_cast, eok_pm_base_ class_cast, eok_lvalue_cast, eok_bool_cast, eok_test_logical, eok_static_cast],

[44, p. 31, chapter 4, Standard Conversions], [44, p. 67, section 5.4, Explicit Type Conversion],

const cast [46, pp. 131, 232], dynamic cast [46, pp.130, 384, 408, 409, 410, 412, 413, 774], static cast [46, pp. 130, 159, 413], reinterpret cast [46, pp. 130, 256],

[47, p. 10], const_cast [47, p.. 91, Item21]

	Attribute
	isImplicit

	Description
	Is the conversion implicit, or was it specified explicitly in the source code or model?

	Type
	Boolean

	DefaultValue
	true

	Attribute
	lossOfSemantics

	Description
	Are the two types logically related, or does the conversion involve a a potential loss of semantic information?

	Type
	Boolean

	Attribute
	lossOfData

	Description
	Does the conversion involve a potential loss of data?

	Type
	Boolean

	Attribute
	lossOfPrecision

	Description
	Does the conversion involve a potential loss of precision?

	Type
	Boolean

	Attribute
	isStaticallyCheckable

	Description
	Can we determine statically whether the conversion should logically be allowed?

	Type
	Boolean

	DefaultValue
	true

	Attribute
	isDynamicallyChecked

	Description
	Is a runtime check performed (if required)?

	Type
	Boolean

	DefaultValue
	false

	Pin
	argument

	Description
	The value to cast

	Kind
	in

	Type
	Classifier


The argument represents the value to be cast.  The type of the cast expression, inherited from Expression, represents its new type.

2.19.1.1 Semantics

Casting may involve a type safe reinterpretation of a reference without conversion, the conversion of a value of one type to that of another without loss of data or precision, or the conversion of a value of one type to that of another with a potential loss of data or precision.  

If the two types are not logically related, we may also have to rely on convention (e.g., the interpretation of an integer value not equal to zero as ‘true’) in order to avoid a loss of semantic information and type safety with respect to the result. 

The correctness of a cast may be checked at compile time, at run time, or taken on faith (an unchecked reinterpretation of a value with no guarantees of type safety.

The property isStaticallyCheckable indicates whether a compile time check is sufficient.  If the conversion is not statically checkable, isDynamicallyChecked indicates whether a run time check is performed.  If a conversion is not statically checkable and no run time check is performed, the conversion may still be logically correct.  It, however, is then up to the user or to supporting tools to prove the conversion is type safe.

The casting of a reference type to that of a supertype (upcasting) is always type safe, involves only reinterpretation, and can be checked at compile time.  The casting a reference type to that of a subtype (downcasting) also involves reinterpretation, but requires a run time check to ensure that it is type safe.

In addition to casting object references, it is possible to perform casts on pointers to attributes and methods, causing them to be interpreted as pointers to the same features in a supertype or subtype.

Although they are not related by inheritance, type conversions between the numeric types are usually permitted.  Such conversions, however, may involve either the loss of data or precision.  This depends upon the representations of the numeric values (in bits), and the ability of approximate nature of real values (which only represent certain number, the model numbers, exactly).

Pointer types may be cast to corresponding reference types.

Element pointers may be cast to simple pointers to the same element.

2.19.1.2 Subtypes

2.19.1.2.1 SupertypeCast

	Metaclass
	SupertypeCast

	Extends
	CastExpression

	Description
	Treat an instance of a given type as an instance of one of its supertypes

	RaisedSignal
	{}

	Refs
	ReclassifyObjectAction [5, p. 2-260, section 2.19.1] [5, p. 2-286],

[41, eok_base_class_cast],

[44, p. 31, chapter 4, Standard Conversions], [44, p. 67, section 5.4, Explicit Type Conversion]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false

	Pin
	argument

	Type
	ReferenceType

	Pin
	result

	Type
	ReferenceType


The type safe casting of an instance of a reference type to the type represented by one of its supertypes (an upcast). 

The old type is the type of the argument.  The new type is the type of the cast expression.  Both must be reference types (XML references to ReferenceType or one of its subtypes), and the argument type must be a subtype of the cast expression type.

2.19.1.2.2 SubtypeCast

	Metaclass
	SubtypeCast

	Extends
	CastExpression

	Description
	Treat an instance of a given type as an instance of one of its subtypes

	RaisedSignal
	{InvalidCastException}

	Refs
	ReclassifyObjectAction [5, p. 2-260, section 2.19.1] [5, p. 2-286],

castclass [27, p. 263] [28, p. 92],

checkcast [35, p. 193],

[41, eok_derived_class_cast],

[44, p. 31, chapter 4, Standard Conversions], [44, p. 67, section 5.4, Explicit Type Conversion]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false

	Attribute
	isStaticallyCheckable

	Value
	false

	Pin
	argument

	Type
	ReferenceType

	Pin
	result

	Type
	ReferenceType


The casting of an instance of a reference type to the type represented by one of its subtypes (a down cast). 

The old type is the type of the argument.  The new type is the type of the cast expression.  Both must be reference types (XML references to ReferenceType or one of its subtypes), and the argument type must be a supertype of the cast expression type.

To be type safe, a run time check is required (isDynamicallyChecked should be set to true).

If isDynamicallyChecked is not set, then InvalidCastException is not thrown by the action.

2.19.1.2.3 SupertypeInstanceMethodCast

	Metaclass
	SupertypeInstanceMethodCast

	Extends
	CastExpression

	Description
	Treat a method of a given type as if it were the same method in one of its supertypes

	Refs
	[41, eok_pm_base_class_cast],

[43, pp. 120-123, pointer to function member], 

[44, p. 38, section 4.8, Pointers to Members], [44, p. 70, section 5.4, Explicit Type Conversion]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false

	Pin
	argument

	Type
	MethodOffset

	Pin
	result

	Type
	MethodOffset


The casting of an offset to an instance method of a given type to an offset to a corresponding instance method in a supertype.

In C++, the term “pointer to member” is used to refer to the offset. “A pointer to a member of a class may be converted to a pointer to a member of a class derived from that class provided the (inverse) conversion from the derived class to the base class pointer is accessible (§11.1) and provided this conversion can be done unambiguously (§10.1.1)”.

“The rule for conversion of pointers to members (from pointer to member of base to pointer of member of derived) appears inverted compared to the rule for pointers to objects (from pointer to derived to pointer to base) (§4.6, §10).  This inversion is necessary to ensure type safety.”

“This may seem backwards at first. Consider:

class B {

public:

int bi;

};

class D : public B {

public:

int di;

};

B b;

B* bp = &b;

int B::*bpm;

D d;

D* dp = &d;

int D::*dpm;
Now suppose bpm is implicitly converted to pointer to member of D, as in the following:

bpm = &B::bi;

d.*bpm = 1;

// OK – set d.bi

dp->*bpm = 2;
// OK – set d.bi
“Because a D object always contains an object of its base class, B, converting bpm (which points to a member of a B object) to a pointer to member of D makes it point to D’s bi.”

“On the other hand, an implicit conversion of dpm to pointer to member of D’s base class cannot be allowed.

dpm = &D::di;

b.*dpm = 3; 

// error: b has no member di

bp->*dpm = 4;
// error: b has no member di
An object of class B has no member di. Thus implicit conversion from a pointer to a derived class to a pointer to member of its base class cannot be allowed.”

“Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions of such pointers do not apply to pointers to members.  In particular, a pointer to member cannot be converted to a void *” [44, p. 39].

2.19.1.2.4 SubtypeInstanceMethodCast

	Metaclass
	SubtypeInstanceMethodCast

	Extends
	CastExpression

	Description
	Treat a method of a given type as if it were the same method in one of its subtypes

	Refs
	[41, eok_pm_derived_class_cast],

[43, pp. 120-123, pointer to function member],

[44, p. 38, section 4.8, Pointers to Members], [44, p. 70, section 5.4, Explicit Type Conversion]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false

	Attribute
	isStaticallyCheckable

	Value
	false

	Pin
	argument

	Type
	MethodOffset

	Pin
	result

	Type
	MethodOffset


The casting of an offset to an instance method of a given type to an offset to a corresponding instance method in a subtype.  

See section 3.19.1.2.3 for a discussion of conversions involving pointers to function members (method offsets) in C++.

2.19.1.2.5 SupertypeObjectFieldCast

	Metaclass
	SupertypeObjectFieldCast

	Extends
	CastExpression

	Description
	Treat a field of a given type as if it were the same field in one of its supertypes

	Refs
	[41, eok_pm_base_class_cast],

[43, pp. 120-123, pointer to data member],

[44, p. 67, section 5.4, Explicit Type Conversion]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false

	Pin
	argument

	Type
	FieldOffset

	Pin
	result

	Type
	FieldOffset


The casting of an offset to a field of a given type to an offset to the same field in a supertype.

See section 3.19.1.2.3 for a discussion of conversions involving pointers to data members (field offsets) in C++.

2.19.1.2.6 SubtypeObjectFieldCast

	Metaclass
	SubtypeObjectFieldCast

	Extends
	CastExpression

	Description
	Treat a feature of a given type as if it were the same feature in one of its subtypes

	Refs
	[41, eok_pm_derived_class_cast],

[43, pp. 120-123, pointer to data member],

[44, p. 67, section 5.4, Explicit Type Conversion]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false

	Attribute
	isStaticallyCheckable

	Value
	false

	Pin
	argument

	Type
	FieldOffset

	Pin
	result

	Type
	FieldOffset


The casting of an offset to a field of a given type to an offset to the same field in a subtype.

See section 3.19.1.2.3 for a discussion of conversions involving pointers to data members (field offsets) in C++.

2.19.1.2.7 DataTypeConversion

	Metaclass
	DatatypeConversion

	Extends
	CastExpression

	Description
	Convert a value of one datatype to a value of another, related datatype

	RaisedSignal
	{OverflowException}

	Refs
	conv.<to type>, conv.ovf.<to type>, conv.ovf.<to type>.un [27, pp. 250-252] [28, pp. 44-47]

i2T, l2T, f2T, d2T [35, p. 82, table 3.2] [35, p. 86, 3.11.4]

[41, eok_cast, eok_bool_cast, eok_test_logical, eok_static_cast],

[44, p. 31, chapter 4, Standard Conversions], [44, p. 67, section 5.4, Explicit Type Conversion],

static cast [46, pp. 130, 159, 413], reinterpret cast [46, pp. 130, 256]

	Attribute
	overflow

	Description
	Is an exception thrown if the result can not be represented in the result type?

	Type
	Boolean

	DefaultValue
	false

	Pin
	argument

	Type
	DataType

	Pin
	result

	Type
	DataType


The conversion of a value of one datatype to a value of another related data type.

The old type is the type of the argument.  The new type is the type of the cast expression.  The argument to the cast expression and the type of the result must both be data types.  Depending upon the size and nature of the two types, a DatatypeConversion may involve a loss of data or precision. 

If the overflow property is true, then OverflowException is thrown if the result can not be represented in the result type.  Otherwise, no exception is thrown. 

2.19.1.2.8 CastToInteger

	Metaclass
	CastToInteger

	Extends
	DataTypeConversion, IntegerExpression

	Description
	Cast a value to an integer type

	Refs
	conv.<to type>, conv.ovf.<to type>, conv.ovf.<to type>.un [27, pp. 250-252] [28, pp. 44-47]

	Attribute
	unsigned

	Description
	Are the argument and result treated as unsigned values?

	Type
	Boolean

	DefaultValue
	false


If unsigned is true, then the argument and result of the conversion are treated as unsigned values and any widening of the result involves zero-extension.  Otherwise, if unsigned is false, then any widening of the result involves sign-extension.

2.19.1.2.9 CastToLargerInteger

	Metaclass
	CastToLargerInteger

	Extends
	CastToInteger

	Description
	Cast a value of a smaller integer type to a value of a larger integer type

	Refs
	conv.<to type>, conv.ovf.<to type>, conv.ovf.<to type>.un [27, pp. 250-252] [28, pp. 44-47]

i2l [35, p. 258]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false

	Pin
	argument

	Type
	Integer


The size of argument’s type must be smaller than or the same as the type of the cast expression. Both types are specified in XML as id references to Integer or one of its subtypes.

2.19.1.2.10 CastToSmallerInteger

	Metaclass
	CastToSmallerInteger

	Extends
	CastToInteger

	Description
	Cast a value of a larger integer type to a value of a smaller integer type

	Refs
	conv.<to type>, conv.ovf.<to type>, conv.ovf.<to type>.un [27, pp. 250-252] [28, pp. 44-47]

i2b [35, p. 254], i2s [35, p. 259], l2i [35, p. 308]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	true

	Attribute
	lossOfPrecision

	Value
	false

	Pin
	argument

	Type
	Integer


The size of argument’s type must be larger than or the same as the type of the cast expression. Both types are specified in XML as id references to Integer or one of its subtypes.

2.19.1.2.11 CastIntegerToBoolean

	Metaclass
	CastIntegerToBoolean

	Extends
	DataTypeConversion, BooleanExpression

	Description
	Cast an integer value to a boolean, mapping zero to false, and all non-zero values to true

	Refs
	MS-IL instructions treat integer value zero as false, and any non-zero integer value as true

JVM instructions treat integer value zero as false, and the integer value one as true [35, p. 66, section 3.3.4]

[41, eok_bool_cast]

	Attribute
	lossOfSemantics

	Value
	true

	Attribute
	lossOfData

	Value
	true

	Attribute
	lossOfPrecision

	Value
	false

	Pin
	argument

	Type
	Integer


2.19.1.2.12 CastBooleanToInteger

	Metaclass
	CastBooleanToInteger

	Extends
	CastToInteger

	Description
	Cast a boolean value to an integer, mapping false to zero, and true to one

	Attribute
	lossOfSemantics

	Value
	true

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false

	Pin
	argument

	Type
	Boolean


Although technically there is no loss of data or precision when converting from Boolean to Integer, the resulting integer value is not really a numeric quantity, but an integer representation of a boolean value.

2.19.1.2.13 CastIntegerToCharacter

	Metaclass
	CastIntegerToCharacter

	Extends
	DataTypeConversion, CharacterExpression

	Description
	Cast an integer value to a character

	Refs
	conv.<to type>,

i2c [35, p.255],

[41, eok_cast, eok_static_cast]

	Attribute
	lossOfSemantics

	Value
	true

	Attribute
	lossOfData

	Value
	true

	Attribute
	lossOfPrecision

	Value
	false

	Pin
	argument

	Type
	Integer


2.19.1.2.14 CastToLargerFloat

	Metaclass
	CastToLargerFloat

	Extends
	DataTypeConversion, FloatExpression

	Description
	Cast a value of a smaller floating point type to a value of a larger floating point type

	Refs
	conv.<to type>, conv.ovf.<to type> [27, pp. 250-252] [28, pp. 44-47]

f2d [35, p. 225]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false

	Pin
	argument

	Type
	Float


The size of argument’s type must be smaller than or the same as the type of the cast expression. Both types are specified in XML as id references to Float or one of its subtypes.

2.19.1.2.15 CastToSmallerFloat

	Metaclass
	CastToSmallerFloat

	Extends
	DataTypeConversion, FloatExpression

	Description
	Cast a value of a larger floating point type to a value of a smaller floating point type

	Refs
	conv.<to type>, conv.ovf.<to type> [27, pp. 250-252] [28, pp. 44-47]

d2f [35, p. 198]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	true

	Attribute
	lossOfPrecision

	Value
	true

	Pin
	argument

	Type
	Float


The size of argument’s type must be larger than or the same as the type of the cast expression. Both types are specified in XML as id references to Float or one of its subtypes.

2.19.1.2.16 CastIntegerToFloat

	Metaclass
	CastIntegerToFloat

	Extends
	DataTypeConversion, FloatExpression

	Description
	Cast an integer value to a floating point value

	Refs
	conv.<to type>, conv.ovf.<to type> [27, pp. 250-252] [28, pp. 44-47], 

i2f [35, p.257], i2d [35, p.256], i2f [35, p.256], l2d [35, p.306], l2f [35, p.307],

[41, eok_cast, eok_static_cast]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	true

	Pin
	argument

	Type
	Integer


Casting an Integer to a Float may result in a loss of precision if the significand of the IEEE floating point value has fewer bits than the Integer value.

“C++ is much more flexible with conversions than is Java.  For example, assigning a floating point value to an integer variable is illegal in Java without a cast but is perfectly acceptable in C++” [50, p. 16].

2.19.1.2.17 CastFloatToInteger

	Metaclass
	CastFloatToInteger

	Extends
	CastToInteger

	Description
	Cast a value to a value, …

	Refs
	conv.<to type>, conv.ovf.<to type> [27, pp. 250-252] [28, pp. 44-47], 

f2T, d2T [35, p. 82, table 3.2] [35, p. 86, 3.11.4],

d2i [35, p. 196], d2l [35, p. 197], f2i [35, p. 226], f2; [35, p. 227],

[41, eok_cast, eok_static_cast]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	true

	Pin
	argument

	Type
	Float


The conversion results in a potential loss of precision due to the rounding of any fractional portion of the floating point value to the nearest integer value.

2.19.1.2.18 CastPointerToReference

	Metaclass
	CastPointerToReference

	Extends
	CastExpression

	Description
	Cast a pointer to a corresponding reference

	Refs
	mkrefany [27, p. 264] [28, p. 108]

[44, p. 31, chapter 4, Standard Conversions], [44, p. 67, section 5.4, Explicit Type Conversion]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false

	Pin
	argument

	Type
	Pointer


The argument must represent a pointer to an instance of a reference type.  The result is a reference to the same instance.

2.19.1.2.19 CastElementPointerToReference

	Metaclass
	CastElementPointerToReference

	Extends
	CastPointerToReference

	Description
	Cast an element pointer to a corresponding reference

	Pin
	argument

	Type
	ElementPointer


The argument must represent a pointer to an instance of a reference type that appears in a collection.  The result is a reference to the same instance.

2.19.1.2.20 CastArrayElementPointerToReference

	Metaclass
	CastArrayElementPointerToReference

	Extends
	CastPointerToReference

	Description
	Cast a pointer to an array element to a corresponding reference

	Pin
	argument

	Type
	ArrayElementPointer


2.19.1.2.21 CastVectorElementPointerToReference

	Metaclass
	CastVectorElementPointerToReference

	Extends
	CastPointerToReference

	Description
	Cast a pointer to a vector element to a corresponding reference

	Pin
	argument

	Type
	VectorElementPointer


2.19.1.2.22 CastElementPointerToSimplePointer

	Metaclass
	CastElementPointerToSimplePointer

	Extends
	CastExpression

	Description
	Cast an element pointer to a corresponding simple pointer

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false


The argument must represent a pointer to an instance of a reference type that appears in a collection.  The result is a simple pointer to the same instance. 

2.19.1.2.23 CastArrayElementPointerToSimplePointer

	Metaclass
	CastArrayElementPointerToSimplePointer

	Extends
	CastElementPointerToSimplePointer

	Description
	Cast a pointer to an array element to a corresponding simple pointer


2.19.1.2.24 CastVectorElementPointerToSimplePointer

	Metaclass
	CastVectorElementPointerToSimplePointer

	Extends
	CastElementPointerToSimplePointer

	Description
	Cast a pointer to a vector element to a corresponding simple pointer


2.19.1.2.25 CastReferenceToPointer

	Metaclass
	CastReferenceToPointer

	Extends
	CastExpression

	Description
	Cast a pointer to a corresponding reference

	Refs
	refanyval [27, p. 264] [28, p. 112]

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false

	Pin
	argument

	Type
	AddressableEntity


The result is a pointer to the referenced entity.

2.19.1.2.26 AccessConversion

	Metaclass
	AccessConversion

	Extends
	CastExpression

	Description
	Change the read/write access to a variable in the context of a given expression

	Refs
	[41, eok_const_cast], 

[45, p. 285, section 13.3], [45, p. 332, section 14.3.4], [46, pp. 131, 232], [47, p. 10], [47, p.. 91, Item21], [48, p. 12, Item 2]

	Attribute
	changeability

	Description
	What changes to the variable are permitted within the expression?

	Type
	ChangeableKind

	Attribute
	lossOfSemantics

	Value
	false

	Attribute
	lossOfData

	Value
	false

	Attribute
	lossOfPrecision

	Value
	false


An AccessConversion is used to represent a const_cast in C++. 

2.19.1.3 Language mappings

…

2.20 Logical Computations

The following definitions are based on the operations on Boolean values defined by UML, MS-IL, and the JVM.

2.20.1 Comparison

	Metaclass
	Comparison

	Extends
	BinaryExpression, BooleanExpression

	Description
	A comparison of two type compatible values as part of the test associated with a conditional action


Comparisons inherit the associations representing their left and right arguments from BinaryExpression.

They are constrained to produce a Boolean result by BooleanExpression.

2.20.1.1 Semantics

The semantics of Comparison are those common to the MS-IL and JVM instructions referenced the subtype definitions that follow.  

The left and right arguments of a Comparison must be of the same DataType and size. 

2.20.1.2 Subtypes

2.20.1.2.1 Equals

	Metaclass
	Equals

	Extends
	Comparison

	Description
	Test whether two type compatible values are equal, as part of a conditional action 

	Refs
	bne.un.<length> [27, p. 241] [28, p. 31], 

ceq [28, p. 38] + brtrue [28, p. 35], 

if_icmpne [35, p. 267], ifne [35, p. 269], fcmp<op> [35, pp. 232], dcmp<op> [35, p. 202], if_acmpne [35, p. 266], ifnonnull [35, p. 271], lcmp [35, p. 313],

[41, eok_eq, eok_ieq, eok_feq, eok_xeq, eok_ceq, eok_peq, eok_pmeq]


Forward branches (if, for, while) transfer control when the condition is false (when the values are not equal); while backward branches (do-while) transfer control when the condition is true.

Subtypes of Equals include IntegerEquals, FloatEquals, CharacterEquals, and PointerEquals. 

2.20.1.2.2 NotEquals

	Metaclass
	NotEquals

	Extends
	Comparison

	Description
	Test whether two type compatible values are not equal, as part of a conditional action

	Refs
	beq.<length> [27, p. 241] [28, p. 22], 

ceq [28, p. 38] + brtrue [28, p. 35],

if_icmpeq [35, p. 267], fcmp<op>, ifeq [35, pp. 232, 269], dcmp<op>, ifeq [35, pp. 202, 269], if_acmpeq [35, pp. 266, 269], ifnull [35, p. 272], lcmp [35, p. 313],

[41, eok_ne, eok_ine, eok_fne, eok_xne, eok_cne, eok_pne, eok_pmne]


Forward branches (if, for, while) transfer control when the condition is false (when the values are equal); while backward branches (do-while) transfer control when the condition is true. 

Subtypes of NotEquals include IntegerNotEquals, FloatNotEquals, CharacterNotEquals, and PointerNotEquals.

2.20.1.2.3 GreaterThanOrEqual

	Metaclass
	GreaterThanOrEqual

	Extends
	Comparison

	Description
	Test whether one value is greater than or equal to another compatible value, as part of a conditional action

	Refs
	blt.<length>, blt.un.<length>  [27, p. 241] [28, pp. 29, 30],

clt [28, p. 42] + brtrue [28, p. 35], clt.un [28, p. 43] + brtrue [28, p. 35],

if_icmpeq [35, p. 267], fcmp<op>, ifeq [35, pp. 232, 269], dcmp<op>, ifeq [35, pp. 202, 269], if_acmpeq [35, pp. 266, 269], lcmp [35, p. 313],

[41, eok_ne, eok_ine, eok_fne, eok_xne, eok_cne, eok_pne, eok_pmne]


Forward branches (if, for, while) transfer control when the condition is false (when the left value is less than the right); while backward branches (do-while) transfer control when the condition is true. 

Subtypes of GreaterThanOrEqual include IntegerGreaterThanOrEqual, FloatGreaterThanOrEqual, CharacterGreaterThanOrEqual, and ElementPointerGreaterThanOrEqual.  

Note also that pointer comparisons that imply order apply only to element pointers (i.e., there is no PointerGreaterThanOrEqual subtype).

2.20.1.2.4 LessThanOrEqual

	Metaclass
	LessThanOrEqual

	Extends
	Comparison

	Description
	Test whether one value is less than or equal to another compatible value, as part of a conditional action

	Refs
	bgt.<length>, bgt.un.<length> [27, p. 241] [28, pp. 25, 26],

cgt [28, p. 39] + brtrue [28, p. 35], cgt.un [28, p. 40] + brtrue [28, p. 35],

if_icmpgt [35, p. 267], fcmp<op>, ifgt [35, pp. 232, 269], dcmp<op>, ifgt [35, pp. 202, 269], if_acmpgt [35, pp. 266, 269], lcmp [35, p. 313],

[41, eok_le, eok_ile, eok_fle, eok_cle,, eok_ple]


Forward branches (if, for, while) transfer control when the condition is false (when the left value is greater than the right); while backward branches (do-while) transfer control when the condition is true. 

Subtypes of LessThanOrEqual include IntegerLessThanOrEqual, FloatLessThanOrEqual, CharacterLessThanOrEqual, and ElementPointerLessThanOrEqual. 

Note also that pointer comparisons that imply order apply only to element pointers (i.e., there is no PointerLessThanOrEqual subtype).

2.20.1.2.5 GreaterThan

	Metaclass
	GreaterThan

	Extends
	Comparison

	Description
	Test whether one value is greater than another compatible value, as part of a conditional action

	Refs
	ble.<length>, ble.un.<length> [27, p. 241] [28, pp.27, 28],

cgt [28, p. 39] + brfalse [28, p. 34],cgt.un [28, p. 40] + brfalse [28, p. 34],

if_icmple [35, p. 267], fcmp<op>, ifle [35, pp. 232, 269], dcmp<op>, ifle [35, pp. 202, 269] [35, p. 374, example], if_acmple [35, pp. 266, 269], lcmp [35, p. 313],

[41, eok_gt, eok_igt, eok_fgt, eok_cgt, eok_pgt]


Forward branches (if, for, while) transfer control when the condition is false (when the left value is greater than the right); while backward branches (do-while) transfer control when the condition is true. 

Subtypes of GreaterThan include IntegerGreaterThan, FloatGreaterThan, CharacterGreaterThan, and ElementPointerGreaterThan. 

Note also that pointer comparisons that imply order apply only to element pointers (i.e., there is no PointerGreaterThan subtype).

2.20.1.2.6 LessThan

	Metaclass
	LessThan

	Extends
	Comparison

	Description
	Test whether one value is less than another compatible value, as part of a conditional action

	Refs
	bge.<length>, bge.un.<length> [27, p. 241] [28, p. 22],

clt [28, p. 42] + brfalse [28, p. 34], clt.un [28, p. 43] + brfalse [28, p. 34],

if_icmpge [35, p. 267], fcmp<op>, ifge [35, pp. 232, 269], dcmp<op>, ifge [35, pp. 202, 269] [35, p. 374, example], if_acmpge [35, pp. 266, 269], lcmp [35, p. 313],

[41, eok_lt, eok_ilt, eok_flt, eok_clt, eok_plt]


Forward branches (if, for, while) transfer control when the condition is false (when the left value is less than the right); while backward branches (do-while) transfer control when the condition is true.

Subtypes of LessThan include IntegerLessThan, FloatLessThan, CharacterLessThan, and ElementPointerLessThan. 

Note also that pointer comparisons that imply order apply only to element pointers (i.e., there is no PointerLessThan subtype).

2.20.1.3 Language mappings

All of these tests are direct counterparts in C++, Java and other target languages as suggested by the EDG AST references.

In C++, “pointer values can be used as booleans, with the interpretation that the value is considered false if it is null, and true otherwise” [50, p. 14].

2.20.2 LogicalAnd

	Metaclass
	LogicalAnd

	Extends
	BinaryExpression, BooleanExpression

	Description
	Compute the ‘and’ of two logical values

	Refs
	and [5, p. 6-37],

and [27, p. 249] [28, p. 20],

Tand [35, p. 82, table 3.2] [35, p. 83, 3.11.2],

[41, eok_land]

	Pin
	left

	Kind
	in

	Type
	Boolean

	Pin
	right

	Kind
	in

	Type
	Boolean


2.20.2.1 Semantics

The semantics of LogicalAnd are those common to UML, MS-IL and the JVM.  The arguments left and right must be Boolean values.  The result is also a Boolean value. 

2.20.2.2 Subtypes

2.20.2.2.1 ShortCircuitAnd

	Metaclass
	ShortCircuitAnd

	Extends
	LogicalAnd

	Description
	A short circuit version of LogicalAnd that is not strict with regard to the evaluation of its arguments

	Attribute
	strict

	Value
	false


2.20.2.3 Language mappings

ShortCircuitAnd maps to && in C++ and Java.

There are both strict and short circuit versions of and in Ada and in Eiffel.

2.20.3 LogicalNotXor

	Metaclass
	LogicalNotXor

	Extends
	BinaryExpression, BooleanExpression

	Description
	Compute the ‘not exclusive or’ of two logical values

	Refs
	[41, eok_eqv]

	Pin
	left

	Kind
	in

	Type
	Boolean

	Pin
	right

	Kind
	in

	Type
	Boolean


2.20.3.1 Semantics

The arguments left and right must be Boolean values.  The result is also a Boolean value.

2.20.3.2 Language mappings

LogicalNotXor maps to the equivalent operation in Fortran.

2.20.4 LogicalXor

	Metaclass
	LogicalXor

	Extends
	BinaryExpression, BooleanExpression

	Description
	Compute the ‘exclusive or’ of two logical values

	Refs
	xor [27, p. 250] [28, p. 89],

Txor [35, p. 82, table 3.2] [35, p. 83, 3.11.2], ixor [35, p. 303], lxor [35, p. 334]

[41, eok_neqv]

	Pin
	left

	Kind
	in

	Type
	Boolean

	Pin
	right

	Kind
	in

	Type
	Boolean


2.20.4.1 Semantics

The semantics of LogicalXor are those common to MS-IL and the JVM. The arguments left and right must be Boolean values.  The result is also a Boolean value.

2.20.4.2 Language mappings

…

2.20.5 LogicalOr

	Metaclass
	LogicalOr

	Extends
	BinaryExpression, BooleanExpression

	Description
	Compute the ‘or’ of two logical values

	Refs
	or [5, p. 6-37],

or [27, p. 249] [28, p. 72],

Tor [35, p. 82, table 3.2] [35, p. 83, 3.11.2],

[41, eok_lor]

	Pin
	left

	Kind
	in

	Type
	Boolean

	Pin
	right

	Kind
	in

	Type
	Boolean


2.20.5.1 Semantics

The semantics of LogicalOr are those common to UML, MS-IL and the JVM. The arguments left and right must be Boolean values.  The result is also a Boolean value.

2.20.5.2 Subtypes

2.20.5.2.1 ShortCircuitOr

	Metaclass
	ShortCircuitOr

	Extends
	LogicalOr

	Description
	A short circuit version of LogicalOr that is not strict with regard to the evaluation of its arguments

	Attribute
	strict

	Value
	false


2.20.5.3 Language mappings

ShortCircuitOr maps to || in C++ and Java.

There are both strict and short circuit versions of or in Ada and in Eiffel.

2.20.6 Not

	Metaclass
	Not

	Extends
	UnaryExpression, BooleanExpression

	Description
	Complement a logical value

	Refs
	not [27, p. 250] [28, p. 71],

[41, eok_not]

	Pin
	argument

	Kind
	in

	Type
	Boolean


2.20.6.1 Semantics

The semantics of Not are those common to MS-IL and the JVM. The argument and result are Boolean values.

2.20.6.2 Language mappings

…

2.21 Messaging Actions

The following definitions correspond to the Messging Actions defined by UML, and the operations for method invocation and return provided by MS-IL and the JVM.

2.21.1 CallOperation

	Metaclass
	CallOperation

	Extends
	Expression

	Description
	Make a synchronous call to an instance or class method

	Pre
	-- The precondition for the call is the precondition of the called operation
-- which must be stronger than or the same as the precondition of the called method

	Post
	-- The called method must be one of those that implement the specified operation
-- The postcondition for the call is the postcondition of the called method

-- which must be stronger than or the same as the postcondition of the called operation

	Refs
	CallOperationAction [5, p. 2-330],

[26, CodeMethodInvokeExpression],

[41, eok_generic_call]

	AssociationEnd
	operation

	Description
	The operation to be called

	Type
	Operation

	Pin
	argument

	Description
	The arguments associated with the call

	Kind
	inout

	Type
	Sequence (Classifier)

	Multiplicity
	0..*


CallOperation abstractly defines a call to a method, e.g. ‘target.operation(arguments)’.

Method resolution is assumed to have been accounted for when parsing the target language into this representation.

As a result, calls to operations have either been statically resolved to a particular method, or require dynamic (run-time) dispatch.  Using single dispatch, the method is selected based on the run time class of the target object. Using multiple dispatch, the run time classes of all the arguments are taken into account.

2.21.1.1 Semantics

The call may be considered an Expression only if it the operation it references returns a value.

The arguments must be type compatible with the parameters of the method to which the call is resolved.
The precondition for the call is that of the operation, irrespective of which implementing method is called.
The postcondition, on the other hand, is that of the method called, which must be either stronger than or the same as that of the operation.
The ownerScope of the operation must match that of the called method.

The rules for method resolution using single dispatch are formally given by [TBD].

The rules for method resolution using multiple dispatch are formally given by [TBD].

Single dispatch is the norm.  Multiple dispatch may be specified by appropriately stereotyping the Classifier that defines the type of the target object (section 3.2.6.1).

2.21.1.2 Subtypes

2.21.1.2.1 InstanceMethodCall

	Metaclass
	InstanceMethodCall

	Extends
	CallOperation

	Description
	Make a synchronous call to an instance method

	RaisedSignal
	{NullReferenceException}

	Refs
	CallOperationAction [5, p. 2-330], where isSynchronous = true, and the ownerScope of the operation is instance)

	Pin
	target

	Description
	The target Instance

	Kind
	inout

	Type
	Classifier

	Attribute
	targetSpecifiedAsSelf

	Description
	Is the target of the call explicitly specified to be the current instance (e.g., self or this)?

	Type
	Boolean

	DefaultValue
	false


The target of the call may be either a data value or an object.
The property targetSpecifiedAsSelf indicates whether the target of the call is explicitly specified to be the current object (e.g., self or this).

If the target of the call is null, a NullReferenceException is thrown.
2.21.1.2.2 DispatchingCall

	Metaclass
	DispatchingCall

	Extends
	InstanceMethodCall

	Description
	Make a synchronous call to the instance method associated with the runtime class of an object

	Post
	-- The called method is that defined by the run-time class of the target
-- Or that unambiguously inherited from one of its parents

	RaisedSignal
	{MethodResolutionError}

	Refs
	CallOperationAction [5, p. 2-330], where isSynchronous = true, the ownerScope of the operation is instance, and the call cannot be statically resolved),
ann.call [28, p. 121], callvirt [27, p. 259] [28, p. 91], tail (prefix) [28, p. 86], 

invokevirtual [35, p. 89, 3.11.8] [35, p. 291] [35, p. 376, section 7.7 Invoking methods],

invokeinterface [35, p. 89, 3.11.8] [35, p. 280],

[41, eok_virtual_call]

	Pin
	target

	Description
	The target object

	Kind
	inout

	Type
	Object


The target of a dispatching call must be an object.  A Dispatching call is a call to an operation with one or more implementing methods.  The method called is that defined or inherited by the run time class associated with the target object.
A SecurityException or MethodResolutionError may be thrown when the called method is resolved at run-time.  If all methods that implement the operation are resolved at link time or compile time, neither of these exceptions is thrown.
2.21.1.2.3 NondispatchingCall

	Metaclass
	NondispatchingCall

	Extends
	InstanceMethodCall

	Description
	Make a synchronous call to an instance method whose identity can be statically resolved

	Refs
	CallOperationAction [5, p. 2-330], where isSynchronous = true, the ownerScope of the operation is instance, and the call can be statically resolved),
ann.call [28, p. 121], call [27, p. 259]  [28, p. 36], tail (prefix) [28, p. 86], 

invokespecial [35, p. 89, 3.11.8] [35, p. 284],

[41, eok_call]

	AssociationEnd
	method

	Description
	The method to which the call is resolved

	Type
	Method


A NondispatchingCall must be to an operation with exactly one implementing method. 

A SecurityException or MethodResolutionError may be thrown when the MethodReference is resolved at run-time.
2.21.1.2.4 ClassMethodCall

	Metaclass
	ClassMethodCall

	Extends
	CallOperation

	Description
	Make a synchronous call to a class method

	Refs
	CallOperationAction [5, p. 2-330], where isSynchronous = true, the ownerScope of the operation is classifier, and the call can be statically resolved),

ann.call [28, p. 121], call [27, p. 259]  [28, p. 36], tail (prefix) [28, p. 86], 
invokestatic [35, p. 89, 3.11.8] [35, p.288],

[41, eok_call]

	AssociationEnd
	method

	Description
	The method to which the call is resolved

	Type
	Method


A SecurityException or MethodResolutionError may be thrown when the MethodReference is resolved at run-time, prior to execution of the call.  If the method that implements the operation is resolved at link time or compile time, neither of these exceptions is thrown.
2.21.1.2.5 GlobalMethodCall

	Metaclass
	GlobalMethodCall

	Extends
	CallOperation

	Description
	Make a synchronous call to a global method associated with a given package

	Refs
	[27, pp. 239-240, Global Methods]

	AssociationEnd
	method

	Description
	The method to which the call is resolved

	Type
	Method


A SecurityException or MethodResolutionError may be thrown when the MethodReference is resolved at run-time, prior to execution of the call.  If the method that implements the operation is resolved at link time or compile time, neither of these exceptions is thrown.
2.21.1.2.6 IndirectCall

	Metaclass
	IndirectCall

	Extends
	CallOperation

	Description
	Make a call to a method with a given address

	RaisedSignal
	{MethodResolutionError}

	Refs
	ann.call [28, p. 121], calli [27, p. 260] [28, p. 37], tail (prefix) [28, p. 86], 

[41, eok_pm_call]

	Pin
	method

	Description
	The method to be called

	Type
	MethodPointer


A SecurityException or MethodResolutionError may be thrown when the MethodReference associated with the pointer is resolved.
2.21.1.3 Language mappings

The mapping of target language calls to the above definitions is implied by the references given with each definition to EDG AST node types.

In C++, the keyword virtual is used to indicate that a method may be overridden (and that calls to it may require dynamic dispatch).  The keyword static is used to identify class level methods. Calls to class methods take the form ‘class::operation(arguments)’, rather than ‘target.operation (arguments).
2.21.2 GetArgumentList

	Metaclass
	GetArgumentList

	Extends
	Expression

	Description
	Return a reference to the argument list of the current method

	Refs
	arglist [28, p. 21]

	Pin
	result

	Type
	Vector


2.21.2.1 Semantics

The semantics of GetArgumentList are those defined by MS-IL [28, p. 21].

2.21.2.2 Language mappings

GetArgumentList is used to implement variable parameter lists in C++.

2.21.3 MethodActivation

	Metaclass
	MethodActivation

	Extends
	ModelElement

	Description
	An activation record (stack frame) associated with a given execution of a method

	Refs
	[5, p. 2-317, section 2.22 Messaging Actions]


2.21.3.1 Semantics

A method activation represents an activation record (stack frame) associated with a given execution of a method.  It extends the concept of an UML request to include the local variables of the invoked method.

2.21.3.2 Language mappings

A method activation maps to the stack frame associated with a method invocation in most languages.

2.21.4 MethodReturn

	Metaclass
	MethodReturn

	Extends
	Statement

	Description
	Return from a method, passing back a return value (if necessary)

	Refs
	[26, CodeMethodIReturnStatement],

ret [27, p. 244],

return [35, p. 353],

Treturn [35, p. 82, table 3.2] [35, p. 89, 3.11.8], areturn [35, p. 182], dreturn [35, p. 214], freturn [35, p. 244], ireturn [35, p. 297], lreturn [35, p. 327]

	Pin
	result

	Description
	The return value (if any)

	Kind
	out

	Type
	Classifier

	Multiplicity
	0..1


2.21.4.1 Semantics

If the enclosing method declares a return type, then the MethodReturn must specify a result of a compatible type.

If the enclosing method does not declare a return type, then the MethodReturn must not specify a result.

To avoid dangling pointers [33, p. 6, BIL Pointer Confinement Policy], no method may return a reference to a local variable or parameter allocated in the method’s stack frame.

2.21.4.2 Language mappings

MethodReturn maps directly to a ‘return’ statement in target languages such as C++ and Java.

2.22 Synchronization Actions

The following actions apply when multiple threads may access the content of a shared object. The current definitions are based on JVM instructions related to synchronization and mutual exclusion.  Corresponding operations are provided in the .NET Threading.Monitor namespace.  Other forms of synchronization are also possible that do not involve monitors, or provide semantics that take into account the characteristics of various real-time threading models (e.g., including run to completion).

2.22.1 MonitorEnter

	Metaclass
	MonitorEnter

	Extends
	Action

	Description
	Enter the monitor associated with a shared object

	Refs
	Microsoft .NET System.Threading.Monitor,

monitorenter [35, p. 90, 3.11.11] [35, p. 335]

	Pin
	shared

	Description
	The shared object

	Kind
	inout

	Type
	Object


2.22.1.1 Semantics

The semantics of MonitorEnter are those common to the JVM and the .NET threading models.

2.22.1.2 Language mappings

In Java the keyword synchronized is associated with methods that may access objects shared by multiple threads.  Appropriate MonitorEntry and MonitorExit are then generated by the compiler.

2.22.2 MonitorExit

	Metaclass
	MonitorExit

	Extends
	Action

	Description
	Exit the monitor associated with a shared object

	Refs
	Microsoft .NET System.Threading.Monitor,

monitorexit [35, p. 90, 3.11.11] [35, p. 337]

	Pin
	shared

	Description
	The shared object

	Kind
	inout

	Type
	Object


2.22.2.1 Semantics

The semantics of MonitorEnter are those common to the JVM and the .NET threading models.

2.22.2.2 Language mappings

In Java the keyword synchronized is associated with methods that may access objects shared by multiple threads.  Appropriate MonitorEntry and MonitorExit are then generated by the compiler.

2.23 Jump Actions

The following definitions are based on the Jump Actions provided by UML, and the exception handling facilities defined by MS-IL and the JVM.

2.23.1 Jump

	Metaclass
	Jump

	Extends
	Statement

	Description
	Transfer control to an action out of the normal execution sequence, e.g. in response to a fault or to break out of a loop

	Refs
	[5, p. 2-344, Figure 2-62], [5, p. 2-345], [5, p. 2-346, section 2.33.6]


Jump is an abstraction of actions such as Break, Continue, Goto, and Throw that result in a transfer of control out of the normal execution sequence (i.e., a jump).

2.23.1.1 Semantics

The semantics of Jump are defined separately, in each associated subtype.  

2.23.1.2 Language mappings

Language mappings are defined for each associated subtype.

2.23.2 JumpHandler

	Metaclass
	JumpHandler

	Extends
	Statement

	Description
	A handler associated with an action that executes in response to a jump (of some kind) during its execution

	Refs
	Jump handler [5, p. 2-334, Figure 2-62], [5, p. 2-339, Jump Actions], [5, p. 2-344, Figure 2-62], [5, p. 2-346]

	CompositeEnd
	parameter

	Description
	The thrown instance caught by the handler

	Type
	Parameter

	Refs
	parameter represents both occurrence and jumpType in [5, p. 2-334, Figure 2-62], i.e. an occurrence of type jumpType associated with the HandlerAction

	CompositeEnd
	body

	Description
	The actions associated with the handler

	Type
	Block


2.23.2.1 Semantics

The semantics of JumpHandler are those common to UML, MS-IL exception handling, and JVM exception handling.

2.23.2.2 Language mappings

…

2.23.3 Break

	Metaclass
	Break

	Extends
	Goto

	Description
	A jump that results in a transfer of control to the action following an enclosing loop

	Refs
	[5, p. 2-348]


2.23.3.1 Semantics

… 

2.23.3.2 Language mappings

…

2.23.4 CatchClause

	Metaclass
	CatchClause

	Extends
	JumpHandler

	Description
	A jump handler that catches exceptions thrown during the execution of its associated action

	Refs
	[27, pp. 271-288, chapter 11] [27, p. 33, 243-244],

ann.catch [28, p. 122], [28, endfilter], [28, endfinally],

[35, pp. 41, 45, 78, 90, 123, 143, 186] [36, p. 124, section 5.6, .catch]


2.23.4.1 Semantics

The semantics of CatchClause are those common to MS-IL and the JVM.    

2.23.4.2 Language mappings

…

2.23.5 Continue

	Metaclass
	Continue

	Extends
	Goto

	Description
	A jump that results in a transfer of control to the test associated with an enclosing loop

	Refs
	[5, p. 2-348]


2.23.5.1 Semantics

…  

2.23.5.2 Language mappings

…

2.23.6 Finally

	Metaclass
	Finally

	Extends
	JumpHandler

	Description
	A jump handler that executes when its associated action completes

	Refs
	[27, p. 275],

[35, pp. 42, 90, 148, 149, 151], 

jsr [35, p. 304], jsr_w [35, p. 305], ret [35, p. 352]


2.23.6.1 Semantics

The semantics of Finally are those common to MS-IL and the JVM.

2.23.6.2 Language mappings

…

2.23.7 HandlerReturn

	Metaclass
	HandlerReturn

	Extends
	Statement

	Description
	Return, after completing the execution of a jump handler

	Refs
	leave.<length> [27, p. 243] [28, p. 65],

return [35, p. 387, section 7.12] [35, p. 387, section 7.12 Throwing and Handling Exceptions]


2.23.7.1 Semantics

The semantics of HandlerReturn are those common to UML, MS-IL and the JVM.

2.23.7.2 Language mappings

…

2.23.8 Goto

	Metaclass
	Goto

	Extends
	Jump

	Description
	Transfer control to a given action

	Refs
	br [27, p. 240], br.s [27, p. 240],

goto_w, goto [35, p. 88, 3.11.7] [35, pp. 252, 253]

	AssociationEnd
	action

	Description
	The target action to which to transfer control

	Type
	Action

	AssociationEnd
	label

	Description
	The label associated with the target action

	Type
	Label


The action and label are referred to in XML by their ids.

2.23.8.1 Semantics

The semantics of Goto are those common to UML, MS-IL and the JVM.

2.23.8.2 Language mappings

…

2.23.9 Label

	Metaclass
	Label

	Extends
	Statement

	Description
	A label associated with the target action of a Goto statement


2.23.10 Throw

	Metaclass
	Throw

	Extends
	Jump

	Description
	Transfer control to an exception handler, passing it an instance of an exception of a given type

	Refs
	Send an exception( as a kind of signal) [5, pp. 2-117, 2-118]

Return an exception (as a Reply) [5, p. 2-320, section 2.22.5]

throw, rethrow [27, p. 265] [28, p. 113] [28, p. 119],

athrow [35, p. 90, 3.11.9] [35, p. 387, section 7.12 Throwing and Handling Exceptions]

[36, p. 131-132, 441, .throws]

	Pin
	exception

	Description
	The exception thrown

	Kind
	in

	Type
	Classifier


2.23.10.1 Semantics

The semantics of Throw are those common to UML, MS-IL and the JVM.

2.23.10.2 Language mappings

…

2.24 Extension Mechanisms

The following definitions are based on those in the UML Extension Mechanisms package. 

2.24.1 Stereotype

	Metaclass
	StereotypeDefinition

	Extends
	GeneralizableElement

	Description
	A qualifier that marks an instance of a given model element (e.g., a classifier) as having certain user specified constraints and tagged values

	Refs
	[5, p. 2-81, Figure 2-10], [5, pp. 2-83, 2-86]

	Attribute
	baseClass

	Description
	The names of the UML model elements to which the stereotype applies, e.g. Class, Association, etc.

	Type
	Sequence(Name)

	CompositeEnd
	definedTag

	Description
	A set of tagged values that apply to the stereotyped elements

	Type
	Set (TagDefinition)

	Multiplicity
	*

	CompositeEnd
	stereotypeConstraint

	Description
	A set of constraints that apply to the stereotyped elements

	Type
	Set (Constraint)

	Multiplicity
	*


2.24.1.1 Semantics

… 

2.24.1.2 Language mappings

…

2.24.2 TagDefinition

	Metaclass
	TagDefinition

	Extends
	ModelElement

	Description
	The specification of one or more tagged values that can be associated with model elements

	Refs
	[5, p. 2-81, Figure 2-10], [5, p. 2-84]

	Attribute
	tagType

	Description
	The range associated with tag values

	Type
	Name

	Attribute
	multiplicity

	Description
	The number of values that can be associated with the tag

	Type
	Multiplicity


2.24.2.1 Semantics

… 

2.24.2.2 Language mappings

…

2.24.3 TaggedValue

	Metaclass
	TaggedValue

	Extends
	ModelElement

	Description
	A name-value pair that associates an additional property with an element

	Refs
	[5, p. 2-81, Figure 2-10], [5, p. 2-84]

	Attribute
	dataValue

	Description
	The values associated with the tag

	Type
	Sequence(StringValue)


2.24.3.1 Semantics

… 

2.24.3.2 Language mappings

…

Formal semantics

A number of formal specifications (of UML, MS-IL, the JVM, C++, and Java) are cited in the definitions appearing in section 0.  In this section we provide a brief overview of each of these specifications and summarize its relationship to the previous definitions.

2.25 Gordon and Syme [33]

Andrew Gordon and Don Syme (University of Cambridge, UK) provide a formal definition of a subset of the Microsoft Intermediate Language (MS-IL) they refer to as “Baby IL” (BIL).  They began their effort by focusing on the specification of properties needed for type-checking method bodies.  Their specifications served as the basis for the development of Microsoft’s IL verifier, the counterpart to Java’s byte code verifier.  The specification has also been used as the basis for the automated generation of test cases for the .NET runtime.

Scope. The paper focuses on the formal specification of reference, value, and pointer types.  The subset Gordon and Syme address represents a class-based object-oriented language with field update and simple imperative control structures.  The subset does not address concurrency, error/exception handling. null objects, global fields and methods, static fields and methods, non-virtual methods, arrays, and interfaces.  Instructions that operate on local variables, arithmetic instructions, and jumps and branches (other than those used in the context of conditionals and loops) are not addressed.

Types. “An item of a reference type is a pointer to a heap-allocated object.  

An item of a value type is a sequence of machine words representing the fields of the type (which is comparable to a C struct).  Value types may be stack-allocated and passed by value.   A box instruction turns a value type into a heap-allocated object by copying, and an unbox instruction performs the inverse coercion.  

An item of pointer type is a machine address referring either to a heap-allocated object or to a variable in the call stack or to an interior field of one of these.  The main purpose of pointer types is to allow methods to receive arguments or return results by reference.”

The approach taken by Gordon and Syme is particularly apt for defining the semantics of XCIL since they “assume each method body has been parsed into a tree-structured applicative expression.”

“Each expression consists of an IL instruction applied to the subexpressions that need to be evaluated to compute the instruction’s arguments.  This technique allows us to concentrate on specifying the typing conditions for each instruction, and to suppress algorithmic details of how a type-checker would compute the types of the arguments to each instruction.”

Like the XCIL definitions, these applicative expressions are based on the standard IL assembler syntax.

Section 2.1 specifies a type structure and class hierarchy for Baby IL.  The following correspondence exists between the types they define and the definitions of XCIL.

	Baby IL
	XCIL

	Class
	Classifier

	ValueClass
	DataType

	Field
	Attribute

	Method
	Method

	int32
	Integer, with size = 32

	Pointer
	Pointer


Although the XCIL model does not assume the existence of a single rooted class hierarchy (System.Object in [33]), this assumption can be made if necessary.

Dangling pointers. Gordon and Syme define a BIL Pointer Confinement Policy [33, p. 6] [33, pp. 23-25, section 3] to avoid the possibility of dangling pointers.  These rules can either be included in the core semantics of XCIL (similarly forbidding dangling pointers), or can be used the basis for an analysis to detect such problems.  Some of the rules, however, seem overly restrictive.  In particular, it appears important to distinguish between pointers into the heap and pointers into the stack in stating these rules, e.g. “no field may hold a pointer into the stack” rather than “no field may hold a pointer”.

Subtyping rules. Subtyping (inheritance) relationships are assumed to imply subsumption (if A <: B an item of type A may be used in a context expecting an item of type B).  Formal rules are given for the inheritance of fields and methods [33, p. 7].

Specification of the BIL instruction set.  Gordon and Syme use a simple postfix notation in their specification of the BIL instruction set.  This involves the specification of a sequence of arguments followed by the instruction to be formally specified.

The terminology they use for instructions maps to the terminology of XCIL as follows:

	Baby IL
	XCIL

	Instruction
	Action

	Method reference
	Method signature

	Body
	Body

	Constructor
	InitializeObject

	Conditional
	ConditionalStatement

	While-loop
	WhileLoop

	Create new object (newobj)
	CreateObject

	Call on boxed object (callvirt)
	DispatchingCall

	Call on unboxed object (call instance)
	NondispatchingCall


Gordon and Syme also address the MS-IL load and store instructions: ldind, stind, ldarga, starg, ldflda, stfld [33, p. 10].  

	Baby IL
	XCIL

	Load indirect (ldind)
	ReadIndirect

	Store indirect (stind)
	AssignIndirect

	Load argument address (ldarga)
	GetArgumentAddress

	Store into argument (starg)
	AssignArgument

	Load field address (ldflda)
	GetInstanceFieldAddress

	Store into field (stfld)
	AssignInstanceField


The box and unbox instructions of Baby IL currently have no counterparts in XCIL, although these could easily be added.

Control structures. Gordon and Syme take the same approach as XCIL with respect to the definition of conditionals and loops.  Both are defined directly, with an associated mapping to underlying branch and test instructions.  And in both cases, the WhileLoop is defined first, with for loops and do while loops defined in terms of it.

Memory model.  Gordon and Syme provide a formal memory model [33, p. 11], defined in terms of a heap, stack, and associated stack frames.  Typing rules for this memory model are given in section 2.5 which address conformance of the reference, pointers and other types.  Conformance rules are also given for objects, heaps, frames, and stores.

With some additional definitions, this model could be adopted for XCIL, although it would need to be extended to allow a stack per thread, and multiple memory pools (heaps).  Issues of access to shared objects by multiple threads also need to be addressed.

In addition to formal definitions of heap, stack, frame, and store [33, p. 11], auxiliary functions are defined for lookup and update.

Evaluation rules. Section 2.3 presents evaluation rules for control flow (for conditionals and loops), pointer types, arguments, reference types, and value types.  These rules help form an operational semantics specified in a pre/post style. Additional rules for typing method bodies are given in section 2.4.  These address stack frames, subsumption (subtyping), control flow (for conditionals and loops), pointer types, arguments, reference types, and value types.

TBD: References to these rules should be added to the semantics sections of the corresponding XCIL definitions.  Portions of the informal explanations that appear with them may be included directly in the text.
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Target language and UML mappings

The table notation used by the definitions in this paper is less graphical than the usual UML representation, but contains the same information.   As a result, the table content can be mapped to XMI Schema definitions using the transformation rules defined for UML metamodels [7] [8].  A summary of these rules is given in [2], which describes the mapping of the metaclass table notation to XML.

2.35 Automated target language/modeling language translation

The Language mappings sections associated with the definitions provide a general notion of how XCIL features correspond to certain target language features.  They, however, fail to address all languages, and fail to provide the detail necessary to automate the translation process.

To develop a precise mapping between a given target language and XCIL, it recommended that we begin with the EDG parser, or a compiler for the language that targets either the .NET or JVM environment.  The EDG parser output, the MS-IL generated by the .NET compiler, or the JVM byte code representation can then be mapped to corresponding XCIL definitions as described below.

For languages that compile to MS-IL or the JVM instruction set, we are assured that a mapping from the language to XCIL exists because we know XCIL provides definitions for all MS-IL and JVM instructions and types.

For languages such as C and C++, which cannot be compiled in their entirety to either MS-IL or to JVM byte codes, we rely instead on a mapping of elements from the language grammar to XCIL definitions to provide a similar assurance.  Such a mapping is provided for C++ by [3, section 2], although it is not yet complete.

2.35.1 MS-IL to XCIL

Consider the following C# source code from [34, p. 264]:

public class CompoundAssPropAdd

{

public static void Main(string[] args)

{

SomeClass sc = new SomeClass(42);

Console.WriteLine(“{0}”, sc.Num);

sc.Num = sc.Num + 5;

Console.WriteLine(“{0}”, sc.Num);

}

}

Where the definition of SomeClass is given by:

public class SomeClass

{

private int[] nums;

public SomeClass(int I)

{

nums = new int[10];

nums[0] = i;

}

public int[] Nums

{

get { return nums;

set { nums = value; }

}

}

Given these definitions, the code for the class CompoundAssPropAdd compiles to the following MS-IL:

.class public CompoundAssPropAdd

{

.method public hidebysig static void Main(string[] args) cil managed

{

.entrypoint

.custom instance void [mscorlib]System.STAThreadAttribute::.ctor()

.maxstack 3

.locals init ([0] class CompoundAssProp.SomeClass sc)

ldc.i4.s 42

newobj instance void CompoundAssProp.SomeClass::.ctor(int32)

stloc.0

ldstr “{0}”

ldloc.0

callvirt instance int32 CompoundAssProp.SomeClass::get_Num()

box [mscorlib]System.Int32

call void [mscorlib]System.Console::WriteLine(string.object)

ldloc.0

ldloc.0

callvirt instance int32 CompoundAssProp.SomeClass::get_Num()

ldc.i4.5

add

callvirt instance void CompoundAssProp.SomeClass::set_Num(int32)

ldstr “{0}”

ldloc.0

callvirt instance int32 CompoundAssProp.SomeClass::get_Num()

box [mscorlib]System.Int32

call void [mscorlib]System.Console::WriteLine(string.object)

ret

}

}

Hidden semantics. Comparing the MS-IL to the source code raises a number of interesting points.  TBD: Note that there is an implicit allocation of a Thread for the execution of Main. Discuss implied calls to get and set.  Discuss implicit nature of dynamic dispatch. Discuss the boxing of arguments to WriteLine (which involves dynamic allocation).  Point = although important, this behavior is not obvious from the source code, or from an AST that directly represents the source code.  It is only apparent at a more explicit and fundamental level, that of MS-IL and the JVM. 

Mapping to XML. The mapping from MS-IL to XML is based on the Refs entries of the XCIL definitions.  For the most part there is a direct correspondence between MS-IL instructions/types and the XCIL definitions. If statements and loops, however, are represented directly in XCIL (rather than in terms of conditional branches and labels).

In the example we have the following mapping from MS-IL to XCIL.  The entries in the XCIL column are ‘clickable’ Word cross references.  The Refs entry associated with each XCIL definition should specify the MS-IL instruction appearing in the left column.

	MS-IL
	XCIL

	.class
	Class

	.method
	Operation + Method

	.locals
	LocalVariable

	ldc
	LiteralValue

	newobj
	CreateObject

	stloc.<n>
	AssignLocalVariable

	ldstr
	StringLiteral

	ldloc.<n>
	ReadLocalVariable

	callvirt
	DispatchingCall

	box
	Box

	call
	NondispatchingCall

	add
	Box

	ret
	MethodReturn


Although there is a close correspondence between concepts (above), the ordering of arguments and operations in the MS-IL and XML representations is affected by the fact that MS-IL is stack oriented, while the XML is an Abstract Syntax Tree (AST).  As a result, in MS-IL, we push arguments first, then apply an operation to them; while in the XML representation, we write the operation first, followed by its arguments.

Using the mapping given in the table, and changing the order of arguments and operations, we have the following XML.  Comments are interleaved with the output to show the correspondence between XML elements and individual MS-IL instructions and declarations.

<!-- .class public CompoundAssPropApp -->
<Classifier xsi:type=”Class” name=”CompoundAssPropAdd” visibility=”public” id=”135000000”>

<!-- .method public hidebysig static void Main(string[] args) cil managed -->
<Operation name=”Main” visibility=”public” ownerScope=”classifier” id=135000010>

<parameter>

<Parameter name=”args” kind=”in” id=”135000020”>

<type>

<Array numberOfElements=”1” id=”135000030”><elementType><string/></elementType></Array>

</type>

</Parameter>

</parameter>

</Operation>

<Method specification=”135000010” name=”Main” visibility=”public” ownerScope=”classifier” id=135000040>

<parameter>

<Parameter name=”args” kind=”in” id=”135000050”>

<type>

<Array numberOfElements=”1” id=”135000060”><elementType><string/></elementType></Array>

</type>

</Parameter>

</parameter>

<body>
<!-- .custom instance void [mscorlib]System.STAThreadAttribute::.ctor() -->
<!-- .maxstack 3 -->
…

<!-- .locals init ([0] class CompoundAssProp.SomeClass sc) -->
<LocalVariable name=”sc” id=”135000070”>

<type><SomeClass/></type>

<initialValue>
<!-- ldc.i4.s 42 -->

<!-- newobj instance void CompoundAssProp.SomeClass::.ctor(int32) -->

<!-- stloc.0 -->
<Expression xsi:type=”NondispatchingCall” operation=”13400020” method=”13400030” id=”135000080”>

<target>

<Expression xsi:type=”CreateObject” class=”134000000” id=”135000090”/>

</target>

<argument>

<Expression xsi:type=”IntegerLiteral” value=”42”/ id=”135000100”>

</argument>

</Expression>

</initialValue>

</LocalVariable>

<Statement xsi:type=“ExpressionStatement” id=”135000110”>

<expression>

<!-- call void [mscorlib]System.Console::WriteLine(string.object) -->
<Expression xsi:type=”NondispatchingCall” operation=”1110” method=”1120” id=”135000120”>

<argument>

<!-- ldstr “{0}” -->
<ConstantExpression xsi:type=”StringLiteral” value=”{0}” id=”135000130”/>
<!-- box [mscorlib]System.Int32 -->
<Expression xsi:type=”Box” id=”135000140”>

<dataType><Integer32/></dataType>

<argument>
<!-- callvirt instance int32 CompoundAssProp.SomeClass::get_Num() -->
<Expression xsi:type=DispatchingCall” operation=”13400050” id=”135000150”>

<target>
<!-- ldloc.0 -->
<Expression xsi:type=”ReadLocalVariable” variable=”135000070” id=”135000160”/>

</target>

</Expression>

</argument>

</Expression>

</argument>

</Expression>

</expression>

</Statement>

<Statement xsi:type=”ExpressionStatement” id=”135000170”>

<expression>
<!-- callvirt instance void CompoundAssProp.SomeClass::set_Num(int32) -->
<Expression xsi:type=“DispatchingCall” operation=”13400070” id=”135000180”>

 <target>

<VariableReference xsi:type=”LocalVariableReference” variable=”135000070” id =”135000190”>

</target>

<argument>
<!—add -->
<Expression xsi:type=”Add” id=”135000200”>

<left>
<!-- callvirt instance int32 CompoundAssProp.SomeClass::get_Num() -->
<Expression xsi:type=”DispatchingCall” operation=”13400050” id=”135000210”>

<target>

<Expression xsi:type=”ReadLocalVariable” variable=”135000070” id=”135000220”/>

</target>

</Expression>

</left>

<right>

<!-- ldc.i4.5 -->
<ConstantExpression xsi:type=”IntegerLiteral” value=”5” id=”135000230”/>

</right>

</Expression>

</argument >

</Expression>

</expression>

</Statement>

<!-- Second call to Console.WriteLine -->
…

<!—ret -->
<Statement xsi:type=MethodReturn” id=”135000240”/>

</body>

</Method>

</Classifier>

In the XML, we assume separate definitions of the class SomeClass (with id=”134000000”), its constructor (an operation with id=”13400020” + a method with id=”13400030”), its get_Num operation (with id=”13400050”), its set_Num operation (with id=”13400070”), the class Console (with id=”1000”), and the static method Console.WriteLine (an operation with id=”1040” + a method with id=”1050”). 

Issue: Would it be better to use names rather than numbers for ids, especially for classes and methods in the system library?  Issue: Should we assume the XML definitions of library classes are in separate files (and use an href or other cross document link to reference them)?

The allocation and starting of the thread associated with Main is not shown (but will be added in a later version). A Thread is just an object of a particular type, with associated memory pools and a stack (allocated using CreateObject, and initialized by means of a call to a constructor).

The second call to Console.WriteLine has been ommitted since it is identical to the first.

2.35.2 JVM to XCIL

Consider the following Java source code:

void cantBeZero(int i) throws TestExc {

if (i == 0) {

throw new TestExc();

}

}

void catchOne() {

try {

tryItOut();

} catch (TestExc e) {

handleExc(e);

}

}

This code compiles to the JVM representation:

Method void cantBeZero(int)

0
iload_1


//Push argument 1 (i)

1
ifne 12


//If I==0, allocate instance and throw

4
new #1


//Create instance of TestExc

7
dup



//One reference goes to the constructor

8
invokespecial #7
//Method TestExc.<init>()V

11
athrow


//Second reference is thrown

12
return


//Never get here if we threw testExc

Method void catchOne()

0
aload_0


//Beginning of try block

1
invokevirtual #6
//Method Example.tryItOut()V

4
return


//End of try block; normal return

5
astore_1


//Store thrown value in local variable 1

6
aload_0


//Push this

7
aload_1


//Push thrown value

8
invokevirtual #5
//Invoke handler method: Example.handleExc(LtestExc;)V

11
return 


//Return after handling TestExc

Exception table:

From
To
Target
Type
0

4
5

Class TestExc

Mapping to XML. The mapping from JVM byte codes to XCIL is based on the Refs entries of the XCIL definitions.  For the most part there is a direct correspondence between JVM instructions/types and the XCIL definitions. If statements and loops, however, are represented directly in XCIL (rather than in terms of conditional branches and labels).

In the example we have the following mapping from JVM byte codes to XCIL. The entries in the XCIL column are ‘clickable’ Word cross references.  The Refs entry associated with each XCIL definition should specify the MS-IL instruction appearing in the left column.

	JVM
	XCIL

	class
	Class

	method
	Operation + Method

	iload
	ReadArgument, ReadLocalVariable

	ifne
	IfStatement

	new
	CreateObject

	invokespecial
	NondispatchingCall

	athrow
	Throw

	return
	MethodReturn, HandlerReturn

	aload
	ReadArgument, ReadLocalVariable

	invokevirtual
	DispatchingCall

	astore
	AssignLocalVariable

	Exception table entry
	Association of CatchClause with action


Although there is a close correspondence between concepts (above), the ordering of arguments and operations in the JVM and XML representations is affected by the fact that the JVM is stack oriented, while the XML is an Abstract Syntax Tree (AST).  As a result, in the JVM byte code representation, we push arguments first, then apply an operation to them; while in the XML representation, we write the operation first, followed by its arguments.

Using the mapping given in the table, and changing the order of arguments and operations, we have the following XML. Comments are interleaved with the output to show the correspondence between XML elements and individual MS-IL instructions and declarations.

<Classifier xsi:type=”Class” name=”A” visibility=”package” id=”137000000”>

<feature>

…

<!--Method void cantBeZero(int) -->

<Operation name=”cantBeZero” visibility=”package” ownerScope=”instance” id=”137000010”>

<target>

<Parameter kind=”inout” id=”137000015”>

<type><A/></type>

</Parameter>

</target>

<parameter>

<Parameter name=”i” kind=”in” id=”137000020”>

<type><Integer32/><type>

</Parameter>

</parameer>

<raisedSignal>

<Exception xsi:type=”TestExc”/>

</raisedSignal>

</Operation>

<Method specification=”136000010” name=” cantBeZero” visibility=”package” ownerScope=”instance” id=”137000030”>

<target>

<Parameter kind=”inout” id=”137000015”>

<type><A/></type>

</Parameter>

</target>

<parameter>

<Parameter name=”i” kind=”in” id=”137000040”>

<type><Integer32/><type>

</Parameter>

</parameer>

<raisedSignal>

<Exception xsi:type=”TestExc”/>

</raisedSignal>

<body>
<!—1  ifne 12 -->

<IfStatement id=”137000050”>

<ifClause>

<test>

<Expression xsi:type=”Equals” id=”137000060”>

<!—0   iload_1 -->

<left><Expression xsi:type=”ReadArgument” parameter=”” id=”137000070”/></left>

<right><ConstantExpression xsi:type=”IntegerLiteral” value=”0” id=”137000080”/></right>

</Expression>

</test>

<body>

<!—11   athrow -->

<Statement xsi:type=”Throw” id=”137000090”>

<exception>

<!—8   invokespecial #7 -->

<Expression xsi:type=”NondispatchingCall” operation=”135000010” method=”135000020” id=”137000100”>

<target>

<!—4   new #1-->

<Expression xsi:type=”CreateObject” class=”” id=”137000110”/>

</target>

</Expression>

</exception>

</Statement>

</body>

</IfStatement>

<!—12   return -->

<Statement xsi:type=”MethodReturn” id=”137000120”/>

</body>

</Method>

</feature>

</Classifier>

<Classifier xsi:type=”Class” name=”Example” visibility=”package” id=”138000000”>

<feature>

…

<!-- Method void catchOne() -->

<Operation name=”catchOne” visibility=”package” ownerScope=”instance”  id=”138000010”>

<target>

<Parameter kind=”inout” id=”137000015”>

<type><Example/></type>

</Parameter>

</target>

</Operation>

<Method specification=”138000010” name=”catchOne” visibility=”package” ownerScope=”instance” id=”138000020”>

<target>

<Parameter kind=”inout” id=”138000030”>

<type><B/></type>

</Parameter>

</target>

<blody>

<Block>
<Statement xsi:type=ExpressionStatement” id=”138000040”>

<expression>

<!-- 1
invokevirtual #6 -->
<Expression xsi:type=”DispatchingCall” operation=”” id=”138000050”>

<target>

<Expression xsi:type=”ReadArgument” parameter=”” id=”138000060”/>

</target>

</Expression>

</expression>

</Statement>

<!—4   return -->

<Statement xsi:type=”MethodReturn” id=”138000070”/>

<jumpHandler>

<CatchClause id=”138000080”>

<parameter>

<Parameter name=”e” id=”138000090”>

<type><TestExc/></type>

</Parameter>

</parameter>

<Statement xsi:type=ExpressionStatement” id=”138000100”>

<expression>

<!-- 8
invokevirtual #5 -->
<Expression xsi:type=”DispatchingCall” operation=”138000150” id=”138000110”>

<target>

<Expression xsi:type=”ReadArgument” parameter=”” id=”138000120”/>

</target>

<argument>

<Expression xsi:type=”ArgumentReference” parameter=”138000090” id=”138000125”/>

</argument>

</Expression>

</expression>

</Statement>

<!—11   return -->

<Statement xsi:type=”HandlerReturn” id=”138000130”/>

</CatchClause>

</jumpHandler>

</Block>

</body>

</Method>

<Operation name=”tryItOut” … id=”138000140”/>

<Operation name=”handleExc” … id=”138000150”>

<parameter>

<Parameter name=”e” kind=”inout” id=”138000160”>

<type><TestExc/></type>

</Parameter>

</parameter>

</Operation>

</feature>

</Classifer>

…

2.35.3 EDG to XCIL

The mapping from EDG parser output to XCIL is more tenuous since we lack a complete and precise definition of the EDG AST representation.  It, however, is possible to use the correspondence between XCIL definitions and EDG node types given by this paper as a starting point.  A number of the examples in [3] were developed in this manner.

2.35.4 UML to XCIL

The mapping from XMI to XCIL is straight forward for everything except the Action Semantics.  In particular XCIL and XMI definitions of classes, operations, methods and other core concepts are virtually identical to one another.

There is also a direct mapping of XCIL action definitions to UML Action Semantics definitions and their content.  The XML representation of these definitions, however, is significantly different.  In particular, we have abandoned the the use of pins and connections in favor of a more conventional (and more compact) AST representation.

Tools such as Rational Rose and Argo/UML can be used to automatically generate XMI representations of UML models, which can then be mapped (with very little change) to XCIL.  Argo/UML is particularly attractive in this regard since it is open-source (and free), and since it stores its models in XMI.

Interoperability with tools that support the UML Action Semantics (such as [16][17]) requires a transformation from a pin/connection representation to an AST representation.  The content and semantics of the two representations, however, should be the same.

2.36 Target language examples

To help developers understand the mapping of various target language features to XCIL, we have translated a number of target language examples to XCIL using the approach described in section 5.1.  To date, we have focused primarily on C++ [3], although examples will later be provided in other languages (e.g. Java, Ada95, and C).

2.37 The XCIL metaclass hierarchy

To allow applications to perform simple queries on the metaclass hierarcy, we can directy represent the supertype/subtype relationships between metaclasses in XML. As a result, we can easily determine whether one metaclass is a supertype or subtype of another, obtain all the supertypes of a given metaclass, obtain all the subtypes of a given metaclass, etc.

<metaclass id=”” name=”ModelElement”>

<metaclass id=”” name=”GeneralizableElement”>

<metaclass id=”” name=”Package”>

</metaclass>

<metaclass id=”” name=”Classifier”>

</metaclass>

</metaclass>

<metaclass id=”” name=”Namespace”>

<metaclass id=”” name=”Package”>

</metaclass>

<metaclass id=”” name=”Classifier”>

<metaclass id=”” name=”Component”>

</metaclass>

</metaclass>

</metaclass>

<metaclass id=”” name=”Feature”>

<metaclass id=”” name=”Field”>

<metaclass id=”” name=”Attribute”/>

<metaclass id=”” name=”AssociationEnd”/>

</metaclass>

<metaclass id=”” name=”BehavioralFeature”>

<metaclass id=”” name=”Operation”/>

<metaclass id=”” name=”Method”/>

</metaclass>

</metaclass>

<metaclass id=”” name=”Relationship”>

<metaclass id=”” name=”Generalization”/>

</metaclass>

<metaclass id=”” name=”Action”>

<metaclass id=”” name=”Expression”>

<metaclass id=”” name=”LiteralValue”>

<metaclass id=”” name=”IntegerLiteral”>

</metaclass>

<metaclass id=”” name=”FloatLiteral”>

</metaclass>

<metaclass id=”” name=”CharacterLiteral”>

</metaclass>

<metaclass id=”” name=””StringLiteral>

</metaclass>

<metaclass id=”” name=”null”>

</metaclass>

<metaclass id=”” name=”EnumerationLiteral”>

</metaclass>

</metaclass>

</metaclass>

<metaclass id=”” name=”Statement”>

<metaclass id=”” name=””>

</metaclass>

</metaclass>

</metaclass>

<metaclass id=”” name=”AddressableEntity”>

<metaclass id=”” name=”Variable”>

</metaclass>

</metaclass>

</metaclass>

In this representation, the child elements of a given element recursively represent its subtypes.  Where multiple inheritance requires that a particular metaclass appear more than once in the hierarchy, these elements are linked (as above). 

The metaclass elements do not contain any metainformation, although they could.  Alternately each could be linked to its corresponding XML Schema complexType definition.

Note: Much of this same information appears in the XML Schema complexType definitions, just in a less convenient form.  In fact, the metaclass hierarchy (above) could be constructed from these definitions if XML Schema were capable of representing multiple inheritance, or if we introduced an element into the complexType definitions that identified all its supertypes.

2.38 Other XML representations

TBD: Discuss the definition of XSLT rules to transform the XML base representation to XML representations needed by specific analysis and adaptation tools.
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To do

1. We should introduce a MetaAssociationEnd to represent associations between modeling time relationships between model elements.  The intent is to distinguish between an AssociationEnd (which describes a runtime relationship between instances of the metaclasses) and a MetaAssociationEnd (which describes a modeling time relationship between the model elements themselves.  The baseType of a TypeParameter, for instance, should be a MetaAssociationEnd.

Note: UML defines the metaclass Relationship that covers both cases.  In UML, Generalization relationships are meta (between GeneralizableElement’s), while compositions and associations are between instances of metaclasses (exist at run time).  So there is no problem with having both, it is only a matter of keeping them straight.

Note: I am not sure UML is careful in distinguishing parameters that represent types (e.g. the element type of a Set) vs. ordinary parameters whose type specifies the type of value that can be passed at run time.  For template parameters, the distinction seems to be that parameters that represent types have no specified type (are like C++ template parameters representing types).  This, however, falls short when the type to be specified must be a subtype of some other type (and not just any type).  Eiffel refers to this as constrained genericity. We should look into this further before making any changes.  See, for instance, UML 1.4, p. 2-18, Figure 2-9 and Meyers [Eiffel].

2. Add an overview section explaining the organization of the document as a whole. Add overview sections on selected topics: 1) Addressable entities, pointers and references, 2) Concurrency and threads, and so on. 

3. Make a pass over MS-IL, adding any missing definitions to the XCIL Reference, e.g. ckfinite [28, p. 41], initblk [28, p. 54], jmp [28, p. 55], localloc [28, p. 55], ldtoken [28, p. 106], refanytype [28, p. 111].  

4. Add a definition for DataValueReference, in support of Unbox, representing its result type.

5. Make a pass over the JVM instruction set, adding any missing definitions to the XCIL Reference, e.g. d2f  [35, p. 195], f2d [35, p. 225], i2b [35, p. 225], i2l [35, p. 258], i2s [35, p. 259], l2i [35, p. 308]. Note: the conversions between primitive types based on bit size (above) are covered  by CastExpression, although not by specific subclasses.

6. Check all the definitions to ensure expressions are always used as the type of computed values, and that CompositeEnd is used whenever the nesting of XML elements is appropriate.

7. Complete the metaclass hierarchy.

8. Map XCIL definitions to the formal specifications in [33] and [40].

9. Tighten all the definitions with respect to the use of invariants (add them) and the types of attributes and associations (make them as narrow as possible). 

10. Specify the semantics of every action in a case-wise pre/post/exceptions/frame-condition style with examples based on MS-IL and the JVM. 

11. Make a pass over the semantics of the definitions, accounting for differences between MS-IL and the JVM. 

12. Make a pass over the semantics of C++ and Java, accounting for any differences in the language mappings (based on [50]).

13. Add support for reflection and meta-data.
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� After taking into account any renaming and abstraction of of the exceptions in XCIL to eliminate arbitrary differences and unnecessary detail.


� All of the constraints appearing in the UML specification are written in OCL.  


� UML permits a class to contain some others types of elements that are not a part of XCIL.


� ‘Object references’ in Java, which does support the explicit use of pointers.


� It is possible to make a call where the target represents the current instance, even though the target is not explicitly specified as self or this. For example, the target of the call may be given as the value of a variable (other than self or this) or the call may be indirect.  In such cases, targetSpecifiedAsSelf is false.
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