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A Survey of Data Mining Techniques for Social Network Analysis

Mohammed zuber
Abstract— Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors.
Index Terms— Minimum Social Network, Social Network Analysis, Data Mining Techniques
                                                                  ——————————   (   ——————————


Introduction                                                                     

Social network is a term used to describe web-based services that allow individuals to create a public/semi-public profile within a domain such that they can communicatively connect with other users within the network [22]. Social network has improved on the concept and technology of Web 2.0, by enabling the formation and exchange of User-Generated Content [46]. Simply put, social network is a graph consisting of nodes and links used to represent social relations on social network sites [17]. The nodes include entities and the relationships between them forms the links (as presented in Fig. 1).      
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Fig. 1. Social Network showing nodes and links 
Social networks are important sources of online interactions and contents sharing [81], [21], subjectivity [6], assessments [52], approaches [54], evaluation [48], influences [8], observations [24], feelings [46], opinions and sentiments expressions [66] borne out in text, reviews, blogs, discussions, news, remarks, reactions, or some other documents [57]. Before the advent of social network, the homepages was popularly used in the late 1990s which made it possible for average internet users to share information. However, the activities on social network in recent times seem to have transformed the World Wide Web (www) into its intended original creation. Social network platforms enable rapid information exchange between users regardless of the location. Many organisations, individuals and even government of countries now follow the activities on social network. The network enables big organisations, celebrities, government official and government bodies to obtain knowledge on how their audience reacts to postings that concerns them out of the enormous data generated on social network (as shown in Fig. 2). The network permits the effective collection of large-scale data which gives rise to major computational challenges. However, the application of efficient data mining techniques has made it possible for users to discover valuable, accurate and useful knowledge from social network data.  Data mining techniques have been found to be capable of handling the three dominant disputes with social network data namely; size, noise and dynamism. The voluminous nature of social network datasets require automated information processing for analysing it within a reasonable time. Interestingly, data mining techniques also require huge data sets to mine remarkable patterns from data; social network sites appear to be perfect sites to mine with data mining tools [27]. This forms an enabling factor for advanced search results in search engines and also helps in better understanding of social data for research and organizational functions [4]. Data mining tools surveyed in this paper ranges from unsupervised, semi- supervised to supervised learning. A table itemizing the techniques covered in this paper is presented in section 7.  The rest of the survey is organised as follows. Section 2 examines the social network background. Section 3 listed research issues on social network analysis. Section 4 discusses some of the Graph Theoretic tools used for social network analysis. Section 5 gives an overview of tools used to analyse opinions conveyed on social network while Section 6 presents some of the sentiment analysis techniques used on social network. Section 7 describes some unsupervised classification techniques employed in social network analysis . Section 8 presents topic detection and tracking tools used for social network analysis. The survey is concluded in Section 9 by stating the direction for future work.  
Social Network Background  

During the last decade social network have become not only popular but also affordable and universally-acclaimed communication means that has thrived in making the world a global village. Social network sites are commonly known for information dissemination, personal activities posting, product reviews, online pictures sharing, professional profiling, advertisements and opinion/sentiment expression. News alerts, breaking news, political debates and government policy are also posted and analysed on social network sites.  It is observed that more people are becoming interested in and relying on the social network for information in real time. Users sometimes make decisions based on information posted by unfamiliar individuals on social network [66] increasing the degree of reliance on the credibility of these sites. Social network has succeeded in transforming the way different entities source and retrieve valuable information irrespective of their location. Social network has also given users the privilege to give opinions with very little or no restriction. 
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Fig.2. Estimated Data Generated on Social Network Sites Every Minute  Thumbnail image courtesy of iStockphoto, loops7 http://mashable.com/2012/06/22/data-created-every-minute/  

Social Network – Power to the Users  

Social sites have undoubtedly bestowed unimaginable privilege on their users to access readily available never-ending uncensored information. Twitter, for example, permits its users to post events in real time way ahead the broadcast of such events on traditional news media. Also, social network allow users to express their views, be it positive or negative [4]. Organizations are now conscious of the significance of consumers’ opinions posted on social network sites to the patronage of their products or services and the overall success of their organisations. On the other hand, important personalities such as celebrities and government officials are being conscious of how they are perceived on social network. These entities follow the activities on social network to keep abreast with how their audience reacts to issues that concerns them [20], [23], [40]. Considering the enormous volume of data being generated on social network, it is imperative to find a computational means of filtering, categorising, classifying and analysing the social network contents.   

Research Issues on Social Network Analysis   

A number of research issues and challenges facing the realisation of utilising data mining techniques in social network analysis could be identified as follows: 

· Linkage-based and Structural Analysis – This is an analysis of the linkage behaviour of the social network so as to ascertain relevant nodes, links, communities and imminent areas of the network  - Aggarwal, 2011.
· Dynamic Analysis and Static Analysis – Static analysis such as in bibliographic networks is presumed to be easier to carry out than those in streaming networks. In static analysis, it is presumed that social network changes gradually over time and analysis on the entire network can be done in batch mode. Conversely, dynamic analysis of streaming networks like Facebook and YouTube are very difficult to carry out. Data on these networks are generated at high speed and capacity. Dynamic analysis of these networks are often in the area of interactions between entities - Papadopoulos et 

· Having presented some of the research issues and challenges in social network analysis, the following sections and sub-sections present the overview of different data mining approaches used in analysing social network data.   

Graph Theoretic  

Graph theory is probably the main method in social network analysis in the early history of the social network concept. The approach is applied to social network analysis in order to determine important features of the network such as the nodes and links (for example influencers and the followers ). Influencers on social network have been identified as users that have impact on the activities or opinion of other users by way of followership or influence on decision made by other users on the network (as presented in Fig.3). Graph theory has proved to be very effective on large-scale datasets (such as social network data). This is because it is capable of bye-passing the building of an actual visual representation of the data to run directly on data matrices [76]. In [19] centrality measure was used to inspect the representation of power and influence that forms clusters and cohesiveness [16] on social network. The authors of [34] employed parameterized centrality metric approach to study the network structure and to rank nodes connectivity. Their work formed an extension of a-centrality approach which measures the number of alleviated paths that exist among nodes.     
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                   Fig 3. Graph Theoretic on Social Network
Community Detection Using Hierarchical Clustering  

A community is a smaller compressed group within a larger network (as shown in Fig.4). Community formation is known to be one of the important characteristics of social network sites. Users with similar interest form communities on social network thereby displaying strong sectional structure. Communities on social networks, like any other communities in the real world, are very complex in nature and difficult to detect. Applying the appropriate tools in detecting and understanding the behaviour of network communities is crucial as this can be used to model the dynamism of the domain they belong [4]. Different authors have applied diverse clustering techniques to detect communities on social network [35]; [32]; 68], with hierarchical clustering being mostly used [62]. This technique is a combination of many techniques used to group nodes in the network to reveal strength of individual groups which is then used to distribute the network into communities. 
 Two people on social network with several mutual friends are more likely to be closer than two people with fewer mutual friends on the network.  Users in the same social network community often recommend items and services to one another based on the experience on the items or services involved. This is known as recommender system as explains next in section 4.2.

Recommender System in Social Network Community   

Based on the mutuality between nodes in social network groups, collaborative filtering (CF) technique, which forms one of the three classes of the recommender system (RS) , can be used to exploit the association among users [56]. Items can be recommended to a user based on the rating of his mutual connection. Where CF’s main downside is that of data sparsity, content-based (another RS method) explore the structures of the data to produce recommendations. However, the hybrid approaches usually suggest recommendations by combining CF and content-based recommendations. The experiment in [18] proposed a hybrid approach named EntreeC , a system that pools knowledge-based RS and CF to recommend restaurants. The work in [69] improved on CF algorithm by using a greedy implementation of hierarchical agglomerative clustering to suggest forthcoming conferences or journals in which researchers (especially in computer science) can submit their work.  
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Fig. 4 Social Network Community Structure   
Semantic Web of Social Network  

 The Semantic Web platform makes knowledge sharing and re-use possible over different applications and community edges. Discovering the evolvement of Semantic Web (SW ) enhances the knowledge of the prominence of Semantic Web Community and envisages the synthesis of the Semantic Web. The work in [92] employed Friend of a Friend (FOAF) to explore how local and global community level groups develop and evolve in large-scale social networks on the Semantic Web. The study revealed the evolution outlines of social structures and forecasts future drift.  Likewise [74] application model of Semantic Web-based Social Network Analysis Model creates the ontological field library of social network analysis combined with the conventional outline of the semantic web to attain 

intelligent retrieval of the Web services. Furthermore, VoyeurServer [61] improved on the open-source Web-Harvest framework for the collection of online social network data in order to study structures of trust enhancement and of online scientific association. Semantic Web is a relatively new area in social network analysis and research in the field is still evolving.

Opinion Analysis on Social Network  

According to Technorati, about 75,000 new blogs and 1.2 million new posts giving opinion on products and services are generated every day [50]. Also massive data generated every minute on common social network sites (as presented in Fig. 2) are laden with opinion of users as regards diverse subject ranging from personal to global issues [80]. These opinions are often convincing and their indicators can be used as motivation when making choices and decisions on patronage of certain products and services or even endorsement of political candidate during elections [47], [67]. Even though online opinions can be discovered using traditional methods, this form is conversely inadequate considering the large volume of information generated on social network sites. Various methods have been developed to analyse the opinion arising from products, services, events or personality review on social network [36]. Data mining tools already used for opinion and sentiment analysis include collections of simple counting methods to machine learning. Categorizing opinion-based text using binary distinction of positive against negative [39], [29], [64], [85], is found to be insufficient when ranking items in terms of recommendation or comparison of several reviewers’ opinions [65] (e.g., using actors starred in two different films to decide which of them to see at the cinema). Determining players from documents on social network has also become valuable as influential actors are considered as variables in the documents [91] when applying data mining techniques on social network. The idea of co-occurrence can also be seen as viable information [34]. Data mining techniques used for opinion mining on social network are discussed in the next section of this survey. 

Aspect-Based/Feature-Based Opinion Mining   

Aspect-based also known as feature-based analysis is the process of mining the area of entity customers has reviewed [41]. This is because not all aspects/features of an entity are often reviewed by customers. It is then necessary to summarise the aspects reviewed to determine the polarity of the overall review whether they are positive or negative. Sentiments expressed on some entities are easier to analyse than others, one of the reason being that some reviews are ambiguous.  According to [57] aspect-based opinion problem lies more in blogs and forum discussions than in product or service reviews. The aspect/entity (which may be a computer device) reviewed is either ‘thumb up’ or ‘thumb down’, thumb up being positive review while thumb down means negative review. Conversely, in blogs and forum discussions both aspects and entity are not recognized and there are high levels of insignificant data which constitute noise. It is therefore necessary to identify opinion sentences in each review to determine if indeed each opinion sentence is positive or negative [41]. Opinion sentences can be used to summarize aspect-based opinion which enhances the overall mining of product or service review.    An opinion holder expresses either positive or negative opinion [13], [51], [89] on an entity or a portion of it when giving a regular opinion and 

Nothing else [41].  However, [53] put necessity on differentiating the two assignments of finding out neutral from non-neutral sentiment, and also positive and negative sentiment. This is believed to greatly increase the correctness of computerised structures.   

Homophily Clustering in Opinion Formation  

Opinion of influencers on social network is based largely on their personal views and cannot be hold as absolute fact. However, their opinions are capable of affecting the decisions of other users on diverse subject matters. Opinions of influential users on Social network often count, resulting in opinion formation evolvement. Clustering technique of data mining can be utilised to model opinion formation by way of assessing the affected nodes and unaffected nodes. Users that depict the same opinion are linked under the same nodes and those with opposing opinion are linked in other nodes (as shown in Fig.5). This concept is referred to as homophily in social network [59]. Homophily can also be demonstrated using other criteria such as race and gender [42].    
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Fig. 5.  Homophily Showing Influencer and Followers’ Opinion in Social Network  
Sentiment Analysis on Social Network   

Sentiment analysis research has its roots in papers published by [28] and [83] where they analysed market sentiment. The concept later gained more ground the year after where authors like [64] and [85] have reported their findings. Sentiment analysis can be referred to as discovery and recognition of positive or negative expression of opinion by people on diverse subject matters of interest. Opinions expressed by social network users are often convincing and these indicators can be used to form the basis of choices and decisions made by people on patronage of certain products and services or endorsement of political candidate during elections [47], [67].  It is worthy of note that the enormous opinions of several millions of social network users are overwhelming, ranging from very important ones to mere assertions (e.g. “The phone does not come in my favourite colour, therefore it is a waste of money” ). Consequentially it has become necessary to analyse sentiment expressed on social network with data mining techniques in order to generate a meaningful frameworks that can be used as decision support tools. Diverse algorithms are employed to ascertain sentiment that matters to a topic, text, document or personality under review.  The purpose of sentiment analysis on social network is to recognize potential drift in the society as it concerns the attitudes, observations, and the expectations of stakeholder or the populace. This recognition enables the entities concern to take prompt actions by making necessary decisions. It is important to translate sentiment expressed to useful knowledge by way of mining and analysis.  Having given an overview of sentiment analysis on social network, an overview of some of the data mining tools used for sentiment analysis on social network are discussed in subsequent sections of the survey.  

Unsupervised Classification of Social Network Data  

A straightforward unsupervised learning algorithm can be used to rate a review as ‘thumbs up’ or ‘thumbs down’ [85]. This can be by way of digging out phrases that include adjective or adverbs (part of speech tagging) [75]. The semantic orientation of every phrase can be approximated using PMI-IR [120] and then classify the review using the average semantic orientation of the phrase. Cogency of title, body and comments generated from blog post has also been used in clustering similar blogs into significant groups.  In this case keywords played very important role which may be multifaceted and bare [3]. EM-based and constrained-LDA were 

utilized to cluster aspect phrases into aspect categories [90].  In [12] two unsupervised frameworks based on link structure of the Web pages, and Agglomerative/Conglomerative Double Clustering (A/CDC) was used to find group of individuals on the web. The result proves to be more accurate than those obtained by traditional agglomerative clustering by more than 20% while achieving over 80% F-measure. Other unsupervised learning used in sentiment analysis in products rating and reviews include POS (Part of Speech) tagging . In POS adjectives are tagged to display positive and negatives ones. Sentiment polarity is the binary classification of an opinionated document into a largely positive and negative opinion [67]. In review this is commonly termed with the ‘ thumps up’ and ‘thumps down’ expressions as mentions earlier. The polarity of positive against negative is weighed to give an overall analysis of sentiment expressed on issue under review.  Bootstrapping also forms part of the unsupervised approaches. It utilizes obtainable primary classifier to make labelled data which a supervised process can build upon [45], [73], [89]. Semantic orientation is also an unsupervised approaches currently used for sentiment analysis on social network. It attaches different meaning to a single word – synonym. This could either be positive or negative (for example ‘the party is bad’ may in actual fact mean the party is fun). Direction and intensity of words used can determine the semantic orientation of the opinion expressed [14]

Topic Detection and Tracking on Social Network  

Topic Detection and Tracking (TDT) on social network employs different techniques for discovering the emergent of new topics (or events) and for tracking their subsequent evolvements over a period of time. TDT is receiving high level of attention recently. Many researchers and authors are conducting experiments on TDT on social network sites, especially on Twitter [1]; [37]; [9]; [10]; [63]; [70]; [58 ]. In [25] support vector machine (SVM) was found to be efficient in training Twitter hashtags metadata when predicting the political alignment of twitter users. Authors of [9] used an incremental online clustering algorithm to cluster a stream of Twitter messages in real time. They trained a Naïve Bayes-Text classifier to distinguish between fastest-growing real-world events contents and non- events contents on Twitter. The performance of the training set shows the precision of all classifier computed in 10-fold cross-validation. The experiments in [11] used a range of query-building approaches to automatically enhance user-contributed information for planned events with robustly generated Twitter contents. Their approach used browser plug-in script and a customizable web interface to identify relevant Twitter content for planned events.  The experiments in [5] proposed a combination of six techniques namely; LDA (Latent Dirichlet Allocation ), Doc-p (Document-Pivot Topic Detection, GFeat-p (Graph-based Feature-Pivot Topic Detection), FPM (Frequent Pattern Mining), SFPM (Soft Frequent Pattern Mining) and BNgram for real-world event detection on Twitter network. The techniques were verified on tweets relating to three major events ( English FA Cup Finals, US Super Tuesday Primaries and US Elections 2012 ) with variations in time scale and topic mix level. The algorithms revealed that dataset pre- processing and sampling process affects the quality of topic retrieved. Conversely, the algorithms performed optimally on the three datasets considered. Similarly, [70] proposed an algorithm for detecting and tracking breaking news in Twitter. The application named “Hotstream” was built to afford its users the opportunity of detecting and tracking breaking news from Twitter timeline. Authors of [63 proposed a state-of-the-art First Story Detection (FSD) technique to detect predictable and unpredictable events using real-time indication from Wikipedia and Twitter data streams. The result of the experiments recorded about 2-hour delay for Wikipedia in real-

world events. Authors in [88] used EDCoW (Event Detection with Clustering of Wavelet-based Signals ) to cluster words to form events with a modularity-based graph partitioning method. On the other hand [26] employed lightweight event detection using wavelet signal analysis of hashtags occurrences in Twitter public stream. The experiments used Latent Dirichlet Allocation topic inference model based on Gibbs Sampling. The outcome of the experiments shows that peak detection using Continuous Wavelet Transformation realized impressive outcomes in the ascertaining abrupt increases on the mention of specific hashtags.  

Conclusion and Future Work  

Different data mining techniques have been used in social network analysis as covered in this survey. The techniques range from unsupervised to semi-supervised and supervised learning methods. So far different levels of successes have being achieved either with solitary or combined techniques. The outcome of the experiments conducted on social network analysis is believed to have shed more light on the structure and activities of social network. The diverse experimental results have also confirmed the relevance of data mining techniques in retrieving valuable information and contents from huge data generated on social network. Future survey will tend to investigate novel state-of-the-art data mining techniques for social network analysis. The survey will compare similar data mining tools and recommend the most suitable tool(s) for the dataset to be analysed. Different data mining techniques covered in this survey are listed in Table.1. The table also contains the approaches employed, the experimental results and the dates and authors of the approaches.

Table.1 List of Data mining Techniques currently in Used in Social Network Analysis.

	Approach
	Tools
	Experiments
	Authors/dates

	
	
	
	

	Graph
	Centrality measure
	Inspects
	Burts (2005)

	Theoretic
	
	representation of
	

	
	
	power and influence
	Borgatti & Everett

	
	
	that forms clusters
	(2006)

	
	
	and cohesiveness.
	

	
	
	
	

	
	Parameterized
	Studies the network
	Ghosh & Leman

	
	centrality metric
	structure and to rank
	(2011)

	
	
	nodes connectivity.
	

	
	
	
	

	
	a-centrality
	Measures the
	Bonacich & Lloyd

	
	
	number of alleviated
	(2001)

	
	
	paths that exist
	

	
	
	among nodes.
	

	
	
	
	

	Community
	Vertex clustering
	Measures pairwise
	Papadopoulos et al

	Detection
	
	length between
	(2012)

	(hierarchical
	
	vertices.
	

	clustering)
	
	
	

	
	
	
	

	
	Structural
	Detects friendship
	Fletcher et al

	
	equivalence
	structure on social
	(2011)

	
	measures
	network based on
	

	
	
	shared behaviour.
	

	
	
	
	

	
	Random-walk-
	Detects a
	Pons and Latapy,

	
	based similarity
	hierarchical structure
	(2005)

	
	
	of small
	

	
	-walktrap
	communities
	

	
	
	
	

	Recommender
	CF (Collaborative
	Exploits association
	Liu & HJ Lee

	System
	filtering)
	among users by way
	(2010)

	
	
	of item
	

	
	
	recommendation.
	

	
	
	
	

	
	Content-based
	Explores the
	Adomavicius &

	
	
	structures of the data
	Tuzhilin, (2005)

	
	
	to produce
	

	
	
	recommendations.
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