DS420

Elliott

CGI progrmaming - an introduction

(Common Gateway Interface)

Along with my own comments this discussion is also partially based on: http://www.zeus.co.uk/products/zeus1/docs/guide/ and

http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/fill-out-forms/overview.html
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
General<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
Web servers using CGI to support client/server applications have proliferated because while not particularly robust they are orders of magnitude easier to write and use when compared with traditional systems. A modest PC, and internet connection, and a few simple CGI programs allow a business to do simple online processing of requests.

Normally HTML pages are static files that are prepared by their authors, and retrieving the page always yields the same information. The Web would be quite limited if this were the limit of its functionality. Using CGI programs it is possible to produce pages that are dynamically created under program control. In this way pages which otherwise appear identical to their static cousins may be created on the fly, with content determined by the authoring CGI program based on input from sources such as client data, time of data, vendor status, and so forth.

Such back-end authoring programs are known CGI scripts. These are programs written by the organization producing the web server content, normally in scripting languages such as Perl or sh, or compiled languages such as C. Most languages have had interfaces written for them, although it is notable that Java is not typically used in this capacity.

CGI scripts can be used to process input data submitted from a HTML form and produce an appropriate response in return. Such an example might be an online shopping system whereby customers enter their credit-card details, the items they wish to purchase and their address. The CGI scripts might then validate the data submitted by the client, connect to some back-end database system to check whether such products are in stock, and if so to allocate them to the customer and send a dispatch order to the sales department. Another CGI might then produce an HTML page as a response to the client confirming the success of the order, the amount that was debited off their credit-card and the expected delivery date.

They are not just restricted to form input however. CGI scripts can be used in any part of the page makeup, in fact their use is only limited by your imagination (and time!).

Since a CGI program is executable, it is basically the equivalent of letting the world run a program on your system, which isn't the safest thing to do. Therefore, there are some security precautions that need to be implemented when it comes to using CGI programs. Probably the one that will affect the typical Web user the most is the fact that CGI programs need to reside in a special directory, so that the Web server knows to execute the program rather than just display it to the browser. This directory is usually under direct control of the webmaster, prohibiting the average user from creating CGI programs. There are other ways to allow access to CGI scripts, but it is up to your webmaster to set these up for you. At this point, you may want to contact them about the feasibility of allowing CGI access.

The requirements for a CGI script are pretty simple, and in the following sections we provide from simple examples to help guide you through the process of creating your own.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
HTTP URLs

HTTP stands for HyperText Transport Protocol. HTTP servers are commonly used for serving hypertext documents, as HTTP is an extremely low-overhead protocol that capitalizes on the fact that navigation information can be embedded in such documents directly and thus the protocol itself doesn't have to support full navigation features like the FTP and Gopher protocols do.

A file called "foobar.html" on HTTP server "www.yoyodyne.com" in directory "/pub/files" corresponds to this URL:

 http://www.yoyodyne.com/pub/files/foobar.html

The default HTTP network port is 80; if a HTTP server resides on a different network port (say, port 1234 on www.yoyodyne.com), then the URL becomes:

 http://www.yoyodyne.com:1234/pub/files/foobar.html

Partial URLs - used for relative indexing.

Once you are viewing a document located somewhere on the network (say, the document http://www.yoyodyne.com/pub/afile.html), you can use a partial, or relative, URL to point to another file in the same directory, on the same machine, being served by the same server software. For example, if another file exists in that same directory called "anotherfile.html", then anotherfile.html is a valid partial URL at that point.

This provides an easy way to build sets of hypertext documents. If a set of hypertext documents are sitting in a common directory, they can refer to one another (i.e., be hyperlinked) by just their filenames -- however a reader got to one of the documents, a jump can be made to any other document in the same directory by merely using the other document's filename as the partial URL at that point. The additional information (access method, hostname, port number, directory name, etc.) will be assumed based on the URL used to reach the first document.
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
CGI Examples

Example 1 - telling the time

This is a simple example of a CGI script which when requested produces a HTML page which contains the current time.

sh version

#!/bin/sh

echo "Content-Type: text/html"

echo

echo

echo ""

echo "The date is `date`."

echo "

Perl version

#!/usr/local/bin/perl

$date=`date`;

print "Content-Type: text/html\r\n\r\n";

print "The date is `$date'";

print "

C version

#include <stdio.h

#include <sys/types.h

#include <time.h

#include <errno.h

/* Returns the date */

char *date() {

 time_t tloc;

 if(time(&tloc) == (time_t) -1) perror("time()");

 return ctime(&tloc);

}

int main() {

 printf("Content-Type: text/html\r\n\r\n");

 printf("The date is `%s'",date());

 printf("This page was dynamically generated by a CGI script");

}

CGI-Forms

This is a very simple fill-out form example.

Top of Form 1

A single text entry field goes here: [image: image1.wmf]

Note that it has no default value.

To submit the query, press this button: [image: image2.wmf]S

ubmit Query

.

Bottom of Form 1

That's it.

This is a very simple fill-out form example. <P>

<FORM METHOD="POST" ACTION="http://hoohoo.ncsa.uiuc.edu/cgi-bin/post-query">

A single text entry field goes here: <INPUT NAME="entry"> <P>

Note that it has no default value. <P>

To submit the query, press this button: <INPUT TYPE="submit"

VALUE="Submit Query">. <P>

</FORM>

That's it. <P>

Things you may want to note:

· Characters like "&", "%", and "$" in the text typed into the text entry field are automatically escaped (into hex form: a percent sign followed by a two-digit hex value corresponding to the ASCII value of the character) when the query is constructed. For example, the string "&%$" becomes "%26%25%24".

· By default, an INPUT tag corresponds to a text entry field. The TYPE attribute lets you change this -- the "submit" type indicates a special pushbutton that causes the query to be submitted when it's pushed. Other types are demonstrated in the other examples.

· Because this fill-out form contains only a single text entry field, the query can be submitted by pressing return in the text entry field (as well as by pressing the "Submit Query" button).

The attributes to INPUT are as follows:

· TYPE must be one of:

· "text" (text entry field; this is the default)

· "password" (text entry field; entered characters are represented as asterisks)

· "checkbox" (a single toggle button; on or off)

· "radio" (a single toggle button; on or off; other toggles with the same NAME are grouped into "one of many" behavior)

· "submit" (a pushbutton that causes the current form to be packaged up into a query URL and sent to a remote server)

· "reset" (a pushbutton that causes the various input elements in the form to be reset to their default values)

· NAME is the symbolic name (not a displayed name -- normal HTML within the form is used for that) for this input field. This must be present for all types but "submit" and "reset", as it is used when putting together the query string that gets sent to the remote server when the filled-out form is submitted.

· VALUE, for a text or password entry field, can be used to specify the default contents of the field. For a checkbox or a radio button, VALUE specifies the value of the button when it is checked (unchecked checkboxes are disregarded when submitting queries); the default value for a checkbox or radio button is "on". For types "submit" and "reset", VALUE can be used to specify the label for the pushbutton.

· CHECKED (no value needed) specifies that this checkbox or radio button is checked by default; this is only appropriate for checkboxes and radio buttons.

· SIZE is the physical size of the input field in characters; this is only appropriate for text entry fields and password entry fields. If this is not present, the default is 20. Multiline text entry fields can be specified as SIZE=width,height; e.g. SIZE=60,12. Note: the SIZE attribute should not be used to specify multiline text entry fields now that the TEXTAREA tag is available.

· MAXLENGTH is the maximum number of characters that are accepted as input; this is only appropriate for text entry fields and password entry fields (and only for single-line text entry fields at that). If this is not present, the default will be unlimited. The text entry field is assumed to scroll appropriately if MAXLENGTH is greater than SIZE.

There are other options, such as SELECT, which will not be discussed here.

Hidden data

Although these are not secret they are hidden from view. This is a common mechanism for maintaining program state on the client side. It is important, as a professional, to remember not only that this data is available to anyone by viewing the source of the document, but that the data may also be cached indefinitely in memory, on disk, and in backups, typically without user knowledge.

Top of Form 1

A single text entry field goes here: [image: image3.wmf]

There are two "hidden" form elements which are not displayed located here:

To submit the query, press this button: [image: image4.wmf]

S

ubmit Query

.

Bottom of Form 1

<FORM METHOD="POST" ACTION="http://hoohoo.ncsa.uiuc.edu/cgi-bin/post-query">

A single text entry field goes here: <INPUT NAME="entry"> <P>

There are two "hidden" form elements which are not displayed

located here:

<INPUT TYPE="hidden" NAME="hidden element#1" VALUE="blah">

<INPUT TYPE="hidden" NAME="hidden element#2" VALUE="foobar">

<INPUT TYPE="submit" VALUE="Submit Query">. <p>

Query Strings

Besides "INPUT" values, another mechanism for passing data to CGI programs is to encode it directly into the query itself. Recall that it is completely up to the Web server to parse the path of the executable it is given (i.e., this is simply a string coming in on a socket connection). By convention, servers will parse this as a file path until they reach a valid executable, and then treat the rest as data to be passed as part of the environment variable "QUERY-STRING". Convention also suggests that the string be passed as illustrated by the following real-world example from the Altavista search engine:

<FORM METHOD="POST" ACTION="http://www.altavista.com/cgibin/query?pg=q&kl=XX&q=%22foobar%22">

where…

"query" indicates a query string follows,

attribute "pg" has the value "q"

attribute "kl" has the value "XX"

attribute "q" has the value " "foobar" " (enclosed in quotes)

Environement Variables

By convention, some information is passed from the client and from the server, by placing attribute/value pairs in environment variables. Here are some of the common ones:

 AUTH_TYPE

 CONTENT_LENGTH

 CONTENT_TYPE

 GATEWAY_INTERFACE

 HTTP_*

 PATH_INFO

 PATH_TRANSLATED

 QUERY_STRING

 REMOTE_ADDR

 REMOTE_HOST

 REMOTE_IDENT

 REMOTE_USER

 REQUEST_METHOD

 SCRIPT_NAME

 SERVER_NAME

 SERVER_PORT

 SERVER_PROTOCOL

 SERVER_SOFTWARE

Mime-types

When a client requests a file from a web server, the web server needs to inform the client of the format of the returned data, eg. whether it is a piece of text, some html, a jpeg file, or whatever. This information determines what the client browser will decide to do with the data being downloaded.

The mechanism for handling this is called a mime-typing (from Multimedia Internet Mail Encoding) responses sent to the client. The mime-type contains describes the format of the information being returned. An example mime-type for a jpeg format picture file is image/jpeg, for a html file is would be text/html and a Microsoft avi format movie would be video/x-msvideo.

Zeus Server determines what mime-type to classify each request as by looking at the file extension of the resource being requested. For example, if the client request was for http://www.zeus.co.uk/logo.gif, then gif is the extension that is used. This extension is then looked up in a mime-types file which contains mappings from file extensions to mime-types, in this case image/gif would be found.

Format of a mime-types file

The file is a plain text file, which contains lines of the following form:

[mime-type][wsp][extensions]

where:
[mime-type] is the mime-type describing the resource, eg. video/mpeg
[wsp] is white-space, (one or more tab/space characters)
[extensions] is of the form [null] | ([extension][wsp])*[extension]
[null] means no data (ie. mime-type not used)
[extension] is the file extension which maps to this mime-type, eg jpeg

Some examples

text/plain txt

This will make the server return a mime-type of text/plain for any requests to files ending in `.txt', eg. readme.txt.

video/mpeg mpeg mpg mpe

This will use a mime-type of video/mpeg for any files ending in `.mpeg', `.mpg' and `.mpe'.

A number of free Web servers are available, typically as demo versions of full products. Among these are the O'Reilly WebSite server (MS), the Apache server (MS/UNIX), the NCSA httpd server (Unix), and the highly integrated native MS Windows servers (PC -- add on to MS products). Servers run on every platform.

_963101597.unknown

_963101598.unknown

_963101596.unknown

_963101595.unknown

