PAGE
5-1

Chapter 5 An introduction to speech data analysis in R: a study of an EMA database

In the third Chapter, a relationship was established in R using some of the principal functions of the Emu-R library between segment lists, trackdata objects and their values extracted at the temporal midpoint in the formant analysis of vowels. The task in this Chapter is to deepen the understanding of the relationship between these objects, but in this case using a small database of some movement data obtained with the electromagnetic midsagittal articulograph AG100 manufactured by Carstens Medizinelektronik. (These are the same data that were presented in question 4 of the preceding Chapter). These data were collected by Lasse Bombien and Phil Hoole of the IPS, Munich and their aim was to explore the differences in synchronization of the /k/ with the following /l/ or /n/ in German /kl/ (in e.g, Claudia) and /kn/ (e.g, Kneipe) word-onset clusters. More specifically, one of the hypotheses that Bombien and Hoole wanted to test was whether the interval between the tongue-dorsum closure for the /k/ and the tongue tip closure for the following alveolar was greater in /kn/ than in /kl/. A fragment of 20 utterances, 10 containing /kn/ and 10 containing /kl/ clusters of their much larger database was made available by them for the illustrating some techniques in speech analysis using R in this Chapter.

After a brief overview of the articulatory technique and some details of how the data were collected (5.1), the annotations of movement signals from the tongue tip and tongue dorsum will be discussed in relation to segment lists and trackdata objects than can be derived from them (5.2). The focus of section 5.3 is an acoustic analysis of voice-onset-time in these clusters which will be used to introduce some simple forms of analysis in R using segment duration. In section 5.4, some techniques for makibg ensemble plots are introduced to shed some light on the inter-gestural coordination, i.e. the co-ordination between the tongue-body and following tongue-tip raising. In section 5.5, the main aim is to explore some intragestural parameters in further detail and in particular the differences between /kn/ and /kl/ in the characteristics of the tongue-dorsum raising gesture in forming the /k/ closure. This section will incorporate a discussion of how trackdata objects can be manipulated numerically and the way in which functions can be applied to them. This will provide a necessary background to the analysis of various other kinds of signals in later parts of this book: in this section, the aim will be to show how the movement data can be manipulated in R to derive velocity data and various time points on these derived trajectories. This section will also present a very brief overview of how these temporal and articulatory landmarks are related to some of the main parameters that are presumed to determine the shape of movement trajectories in time in the model of articulatory phonology (Browman & Goldstein, 1990a, b, c) and task-dynamic modeling (Saltzman & Munhall, 1989) which it incorporates.

5.1 EMA recordings and the ema5 database

In electromagnetic articulometry (EMA), sensors are attached with a dental cement or Cyano-Veneer adhesive to the midline of the articulators, and most commonly to the jaw, lips, and various points on the tongue (Fig. 5.1). As discussed in further detail in Hoole & Ngugen (1999), when an alternating magnetic field that is generated by a transmitter coil, it induces a signal in the receiver coil contained in the sensor that is approximately inversely proportional to the cube of the distance between the transmitter and the receiver and it is this which allows the position of the sensor to be specified. In the so-called 5D-system that has been developed at the IPS Munich (Hoole et al, 2003; Hoole & Zierdt, 2006; Zierdt, 2008) and which was used for the collection of the present data, the position of the sensor is obtained in a three-dimensional Cartesian space that can then be mapped onto estimates of the coronal, sagittal, and transverse planes (Fig. 5.3). For the data presented here, the mapping was done by rotating the data relative the occlusal plane which is the line extending from the upper incisors to the second molars at the back and which is parallel to the transverse plane (Fig. 5.3). The occlusal plane was determined by having the subject bite onto a bite-plate with sensors attached to it. In recording the data, the subject stands inside a so-called EMA cube (Fig. 5.2) so there is no need for a helmet as in earlier EMA systems. In the system that was used here, corrections for head movements were automatic.
[image: image1.wmf]
[image: image3.png]

Differences in the coronal plane correspond most closely to stricture differences in consonants and phonetic height differences in vowels. So, once the rotation has been done, then there should be noticeable differences in the position of the jaw sensor in moving from a bilabial closure to the open vowel in [pa]. Measurable differences in the sagittal plane are related to movement of the articulators in the direction from the lips to the uvula. In this plane, the tongue-mid and tongue-back sensors should register a clear difference in producing a transition from a phonetically front to a back articulation in produced e.g. [ju]. Finally, the transverse plane should register lateral movements, as in moving the jaw or the tongue from side to side
.

[image: image4.png]

[image: image5.png]

[image: image6.png]Word

'

Segment (S)

TT (S)

'

TB (S)

For the data in the downloadable EMA database, movement data were recorded from sensors fixed to three points on the tongue (Fig. 5.1), as the well as to the lower lip, upper lip, and jaw (Fig. 5.4). The sensors were all fixed in the mid-sagittal plane. The tongue tip (TT) sensor was attached approximately 1 cm behind the tip of the tongue; the tongue back or tongue body (TB) sensor was positioned as far back as the subject could tolerate; the tongue mid (TM) sensor was equidistant between the two with the tongue protruded. The jaw sensor was positioned in front of the lower incisors on the tissue just below the teeth. The upper lip (UL) and lower lip (LL) sensors were positioned on the skin just above and below the lips respectively (so as not to damage the lips' thick skin). In addition, there were four reference sensors of which at least one was used to correct for head movements: one each on the left and right mastoid process, one high up on the bridge of the nose, and one in front of the upper incisors on the tissue just above the teeth.

The articulatory data were sampled at a frequency of 200 Hz in a raw file format. All signals were band-pass filtered with a FIR filter (Kaiser window design, 60 dB at 40-50 Hz for the tongue tip, at 20-30 Hz for all other articulators, at 5-15 Hz for the reference sensors. Horizontal, vertical, and tangential velocities were calculated and smoothed with a further Kaiser-window filter (60 dB at 20-30Hz). All these steps were done in Matlab and the output was stored in self-documented Matlab files. The data was then converted using a script written by Lasse Bombien into an Emu compatible SSFF format.

[image: image7.png]Speech database

Signals Annotations
| |

}

emu.query()

Trackdata emu.track() Segment list
or
l—dclum dur() dur() label() Cmu.lcqucr\‘/()
|
cither / l cither
v \ v
Values (vector Duration Annotations
or matrix) at (vector) (vector)

one time point

The database that will be analysed in this Chapter, ema5, is automatically installed with the downloadable database ema (see Question 4.3 of Chapter 4.11). Both accesses exactly the same 20 utterances produced by a single female speaker of Standard German. The 20 utterances are made up of five repetitions of four sentences that contain a target word in a prosodically phrase-medial, accented position containing either a /kl/ or /kn/ cluster in onset position. The four words for which, then, there are five repetitions each (thus 10 /kl/ and 10 /kn/ clusters in total) are Klausur (examination), Claudia (a person's name), Kneipe (a bar) and Kneipier (bar attendant).

When any utterance of this database is opened, the changing positions of the moving jaw, lips, and three points of the tongue are shown in relation to each other in the sagittal and transverse planes (see Fig. 4.24 of the preceding Chapter). In addition, the template file has been set up so that the two movement signals, the vertical movement of the tongue tip and tongue-body are displayed. These are the two signals that will be analysed in this Chapter.

As is evident in opening any utterance of ema5, the database has been annotated at three tiers: Segment, TT, and TB. The Segment tier contains acoustic phonetic annotations that were derived semi-automatically with the MAUS automatic segmentation system (Schiel, 2004) using a combination of orthographic text and Hidden-Markov-models trained on phonetic-sized units. The segmentations have been manually changed to sub-segment the /k/ of the target words into an acoustic closure and following release/frication stage. As far as the movement signals are concerned, there are two tiers, TT and TB, for tongue-tip and tongue-body annotations. At the TT tier, the right and left boundaries of the abutting raise and lower annotations are at the point of maximum tongue-tip raising for either the /n/ or /l/. The left boundary of raise is positioned at the preceding tongue-tip minimum or trough in the preceding vowel; and the right boundary of lower is at the following tongue tip trough in the following vowel. There is a similar association between the annotations at the TB tier and /k/. Thus, the right boundary of raise (left boundary of lower) is at the point of highest tongue-body raising in the /k/ closure; the left boundary of raise (right boundary of lower) is in the tongue-body minimum in the preceding (following) vowel (Fig. 4.24, Chapter 4).

The annotation structure for ema5, which is shown in Fig. 5.5, has a double path annotation structure in which Segment is a parent of both the TT and the TB tiers, and in which TT is a parent of TB. The annotations raise and lower at the TT tier are linked to raise and lower respectively at the TB tier and both of these annotations are linked to the word-initial /k/ of the target words at the Segment tier. The purpose of structuring the annotations is, as always, to facilitate queries from the database. Thus it is possible with this type of annotation structure to make a segment list of word-initial acoustic closures of /k/ and then to obtain a segment list of the associated sequence of raise lower annotations at either the TT or TB tier. In addition, if a segment list is made of e.g. raise at the TT tier, then this can be re-queried not only to obtain a segment list of the following lower annotations but also, since TT and TB are linked, of the raise annotation at the TB tier. Some examples of segment lists that will be used in this Chapter are given in the next section.

5.2 Handling segment lists and vectors in Emu-R

In almost all cases, whether analyzing formants in Chapter 3 or movement data in this Chapter, or indeed electropalatographic and spectral data in the later parts of this book, the association between signals and annotations that is needed for addressing hypotheses almost always follows the structure which was first presented in Fig. 3.8 of Chapter 3 and

which is further elaborated in Fig. 5.6. The first step involves making one or more segment lists using the emu.query() or emu.requery() functions. Then emu.track() is used to retrieve trackdata i.e., signal data from the database with respect to the start and end times of any segment list that has been made. The functions start() , end() , and dur() can be used to obtain basic durational properties from either the segment list or trackdata object; label() and utt() retrieve from segment lists the annotations and utterance identifiers respectively of the segments. Finally, the purpose of dcut() is to slice out values from a trackdata object either over an interval or at a specific point in time (as was done in analyzing vowel formants at the temporal midpoint in Chapter 3). These functions are at the core of all subsequent operations for analyzing and plotting data in R (and then for using the very wide range of statistical techniques available in R, as described in e.g. Baayen, in press and Johnson, in press).

[image: image8.png]T T T T T T
08 0. 09 05 OF OF

(sw) LOA

In this section, the task will be to obtain most of the necessary segment lists that will be needed for the comparison of /kn/ and /kl/ clusters in the remainder of this Chapter and then to discuss some of the ways that segment lists and vectors can be manipulated in R: these types of manipulations will be needed for the acoustic VOT analysis in the next section and are fundamental to most preliminary analyses of speech data in Emu-R.

Using the techniques discussed in Chapter 4, the following segment lists can be obtained from the ema5 database:

Segment list of word-initial /k/

k.s = emu.query("ema5", "*", "Segment=k & Start(Word, Segment)=1")

Segment list of following h (containing acoustic VOT information)

h.s = emu.requery(k.s, "Segment", "Segment", seq=1)

Segment list of the sequence of raise lower at the TT tier

tip.s = emu.requery(k.s, "Segment", "TT")

Segment list of the sequence raise lower at the TB tier

body.s = emu.requery(k.s, "Segment", "TB")

In addition, two character vectors of annotations will be obtained using the label() function, the first containing either n or l (in order to identify the cluster as /kn/ or /kl/) and the second of the word annotations. Finally, a numeric vector is obtained with the dur() function of the duration of the h segments, i.e. of voice onset time.

Vector consisting of n or l (the segments are two positions to the right of word-initial /k/)

son.lab = emu.requery(k.s, "Segment", "Segment", seq=2, j=T)

Word annotations

word.lab = emu.requery(k.s, "Segment", "Word", j=T)

Acoustic VOT

h.dur = dur(h.s)

It is useful at this point to note that segment lists on the one hand and vectors on the other are of different types and need to be handled slightly differently. As far as R is concerned, a segment list is a type of object known as a data frame. As far as the analysis of speech data in this book is concerned, the more important point is that segment lists share many properties with matrices: that is, many operations that can be applied to matrices can also be applied to segment lists. For example, nrow() and ncol() can be used to find out how many rows and columns there are in a matrix. Thus, the matrix bridge in the Emu-R library has 13 rows and 3 columns and this information can be established with nrow(bridge), ncol(bridge), and dim(bridge), the latter returning both the number of rows and columns (and therefore 13 3 in this case). The same functions can be applied to segment lists. Thus dim(h.s) returns 20 4 because, as will be evident by entering h.s on its own, there are 20 segments and 4 columns containing information about each segment's annotation, start time, end time, and utterance from which it was extracted. As mentioned in Chapter 3, an even more useful function that can be applied to segment lists is summary():

summary(k.s)

segment list from database: ema5

query was: Segment=k & Start(Word, Segment)=1

 with 20 segments

Segment distribution:

 k

20

which apart from listing the number segments and their annotations (all k in this case), also gives information about the database from which they were derived and the query that was used to derive them.

In contrast to segment lists and matrices, vectors have no dimensions i.e. no rows or columns which is why dim(word.lab), nrow(son.lab), or ncol(word.lab) all return NULL. Moreover, these three vectors can be divided into two types: character vectors like word.lab and son.lab whose elements all contain characters in "" quotes or numeric vectors to which various arithmetic, statistical, and mathematical operations can be applied whose elements are not in quotes. You can use various functions beginning with "is." as well as the class() function to test the type/class of an object thus:

Is k.s a segment list?

is.seglist(k.s)

TRUE

What type of object is h.s?
class(h.s)
Both a segment list and a data frame

"emusegs" "data.frame"

Is son.lab a vector?

is.vector(son.lab)

TRUE

Is h.dur of mode character?

is.character(h.dur)

FALSE

Is h.dur of mode numeric?

is.numeric(h.dur)

TRUE

Is word.lab both of mode character and a vector (i.e. a character vector)?

is.character(word.lab) & is.vector(word.lab)

TRUE

A very important idea in all of the analyses of speech data with Emu-R in this book is that objects used for solving the same problem usually need to be parallel to each other. This means that if you extract n segments from a database, then the nth row of a segment list, matrix and, as will be shown later, of a trackdata object, and the nth element of a vector all provide information about the same segment. Data for the nth segment can be extracted or indexed using the square bracket notation. A very important difference between segment lists/matrices on the one hand and vectors on the other is that for the former the subscript, i.e. the integer(s) placed inside the square brackets, must be followed by a comma, thus:

The 15th segment in the segment list

h.s[15,]

The corresponding duration of this segment (h.dur is a vector)

h.dur[15]

The corresponding word label (word.lab is a vector)

word.lab[15]

The reason for the comma in the case of a matrix or segment list is because the entries before and after the comma index rows and columns respectively (so since a vector has no rows or columns, there is no comma). More specifically, h.s[15,] means all columns of row 15 which is why h.s[15,] returns four elements (because h.s has four columns). If you just wanted to pick out row 15 of column 2, then this would be h.s[15,2] (and only one element is returned). Analogously, putting nothing before the comma indexes all rows and so h.s[,2] returns 20 elements i.e. all elements of column 2 (i.e. the segments' start, or left boundary, times). Since 1:10 in R returns the integers 1 through 10, then the first 10 rows of h.s is given by h.s[1:10,] while the same notation is used for the first 10 elements of a vector, but again without the comma, thus word.lab[1:10], h.dur[1:10] etc. If you want to pull out non-sequential segment numbers, then first make a vector of these numbers with c() thus:

Make a numeric vector of three elements

n = c(2, 5, 12)

Rows 2, 5, 12 of h.s
h.s[n,]

or in a single line

h.s[c(2,5,12),]

The corresponding word labels

word.lab[n]

A negative number inside the square bracket notation denotes all except. So h.s[-2,] means all rows of h.s except the 2nd row, h.s[-(1:10),] all rows except the first ten, word.lab[-c(2, 5, 12)] all elements of word.lab except the 2nd, 5th, and 12th and so on.

When analyses of speech fail in R (i.e. an error message is returned), then it is often because the various objects that are used for solving a particular problem may have become out of step with each other so that the condition of being parallel is no longer met. There is no test for whether objects are parallel to each other as far as I know, but when an analysis fails, and in any case before embarking on an analysis, it is a good idea to check that all the segment lists have the same number of rows and that there is the same number of elements in the vectors that have been derived from them. This can be done with the logical operator == which amounts to asking a question about equality, thus:

Is the number of rows in k.s the same as the number of rows in h.s?

nrow(k.s) == nrow(h.s)

TRUE

Is the number of rows in k.s the same as the number of elements in word.lab?

nrow(k.s) == length(word.lab)

TRUE

Do word.lab and h.dur have the same number of elements?

length(word.lab) == length(h.dur)

TRUE

5.3 An analysis of voice onset time

There are very many in-built functions in R for applying descriptive statistics whose function names usually speak for themselves e.g. mean(), median(), max(), min(), range() and they can be applied to numeric vectors. It is therefore a straightforward matter to apply any of these functions to durations extracted from a segment list. Thus mean(h.dur) gives the mean VOT duration calculated across all segments, max(dur(k.s)) gives the maximum /k/-closure duration, range(dur(k.s)) the range (minimum and maximum value) of closure durations etc. However, a way has to be found of calculating these kinds of quantities separately for the /kn/ and /kl/ categories. It might also be interesting to do the same for the four different word types. You can remind yourself which these are by applying the table() function to the character vector containing them:

table(word.lab)

Claudia Klausur Kneipe Kneipier

 5 5 5 5

The same function can be used for cross-tabulations when more than one argument is included, for example:

Tabulate the words according to the categories /n/ or /l/

table(son.lab,word.lab)

son.lab Claudia Klausur Kneipe Kneipier

 l 5 5 0 0

 n 0 0 5 5

One clumsy way to get e.g. the mean VOT separately for /kn/ or /kl/ or separately for the four different kinds of words is with a for-loop. A better way is with another type of object in R called logical vectors. A logical vector consists entirely of True (T) and False (F) elements that are returned in response to applying a comparison operator. One of these, ==, has already been encountered above in asking whether the number of rows in two segment lists were the same. The other comparison operators are as follows:

!=
is not equal to

<
is less than

>
is greater than

<=
is less than or equal to

>=
is greater than or equal to

As already described, making use of a comparison operator implies asking a question. So h.dur > 45 is to ask: which segment has a duration greater than 45 ms? The output is a logical vector, with one True or False per segment thus:

h.dur > 45

TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE

TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE

The first two elements that are returned are True and False because the first two segments do and do not have durations greater than 45 ms respectively, as shown by the following:

h.dur[1:2]

63.973 43.907

Since all the objects that are being used for comparing /kn/ with /kl/ are all parallel to each other in the sense discussed earlier, then the position number of the T and F elements can be used to find the corresponding segments or other labels for which VOT is, or is not, greater than 45 ms. For example, since there is, among others, a T element in the 1st, 4th, 6th and 7th positions, then these words must have segments with VOTs greater than 45ms:

word.lab[c(1, 4, 6, 7)]

"Kneipe" "Kneipier" "Kneipe" "Kneipier"

and it is equally easy to find in which utterances these words occur by indexing the corresponding segment lists(and inspecting the fourth column):

k.s[c(1, 4, 6, 7),]

segment list from database: ema5

query was: Segment=k & Start(Word, Segment)=1

 labels start end utts

1 k 1161.944 1206.447 dfgspp_mo1_prosody_0020

4 k 1145.785 1188.875 dfgspp_mo1_prosody_0063

6 k 1320.000 1354.054 dfgspp_mo1_prosody_0140

7 k 1306.292 1337.196 dfgspp_mo1_prosody_0160

But the corresponding rows or elements can be more easily retrieved by putting the logical vector within square brackets. Thus:

Logical vector when h.dur is greater than 45 ms

temp = h.dur > 45

The corresponding durations

h.dur[temp]

The corresponding word-labels

word.lab[temp]

"Kneipe" "Kneipier" "Kneipe" "Kneipier" "Claudia" "Kneipier" "Kneipe" "Kneipier" "Claudia" "Kneipe" "Claudia" "Klausur" "Kneipe" "Kneipier"

An important point to remember is that when you combine a logical vector with a matrix or segment list, then it has to be followed by a comma, if you want to pull out the corresponding rows. Thus h.s[temp,] identifies the rows in h.s for which VOT is greater than 45 ms. A logical vector could be used in a similar way to extract columns. For example, h.s[,c(F, T, F, T)] extracts columns 2 and 4 (the start time and utterance identifier). Also, changing temp to !temp gets at the rows or elements for which the duration is not greater than (i.e. less than or equal to) 45 ms, i.e. those rows/elements for which the logical vector is False: e.g., h.dur[!temp], word.lab[!temp], k.s[!temp,]. Finally, three useful functions when applied to logical vectors are sum(), any(), all() which find out respectively how many, whether there are any, or whether all elements of a logical vector are True. For example:

lvec = c(T, F, F)

sum(lvec)

1

any(lvec)

TRUE

all(lvec)

FALSE

The same can be applied to False elements by preceding the logical vector with an exclamation mark. Thus any(!lvec) returns True because there is at least one F element in lvec. With regard to the earlier example, these functions could be used to work out how many segments have VOT greater than 45 ms (sum(h.dur > 45)) whether any segments have a duration greater than 45 ms (any(h.dur > 45)) and whether all segments have a duration greater than 45 ms (all(h.dur > 45)).

There is now easily sufficient computational machinery in place to find out something about the distributional VOT differences between /kn/ and /kl/. The first step might be to make a logical vector to identify which elements correspond to /kn/: this could then be applied to h.dur to get the corresponding VOT values. Since there are only two label categories, then the F elements of the logical vector could be used to find the VOT values for /kl/, thus:

Logical vector which is True for the n elements in son.lab
temp = son.lab == "n"

Mean VOT (ms) for /kn/

mean(h.dur[temp])

74.971
Mean VOT (ms) for /kl/

mean(h.dur[!temp])

44.9015
The mean VOT is then about 30 ms greater on average in /kn/ than in /kl/. What if you wanted to work out the mean duration of the preceding velar closure? This can be done by applying the logical vector to the durations of the segment list k.s. In this case, you have to remember to include the comma because k.s is a segment list requiring rows to be identified:

Mean duration (ms) of /k/ closure in /kn/

mean(dur(k.s[temp,]))

38.0994
Mean duration (ms) of /k/ closure in /kl/

mean(dur(k.s[!temp,]))

53.7411
In fact this is result is not without interest because it shows that the closure duration of /kn/ is somewhat less than that of /kl/. Thus the difference between /kn/ and /kl/, at least as far as voicing onset is concerned seems to be one of timing.

What if you now wanted to compare the ratio of closure duration to VOT? Consider first the two main ways in which arithmetic operations can be applied to vectors:

Make a vector of three elements

x = c(10, 0, 5)

Subtract 4 from each element

x - 4

Make another vector of three elements

y = c(8, 2, 11)

Subtract the two vectors element by element

x - y

In this first case, the effect of x - 4 is to subtract 4 from every element of x. In the second case, the subtraction between x and y is done element by element. These are the two main ways of doing arithmetic in R and in the second case it is important to check that the vectors are of the same length (length(x) == length(y)) because if they are not, a warning message is given and the values of the shorter vector are recycled in a way that is usually not at all helpful for the problem that is to be solved. Logical vectors can be applied in the same two ways. In the earlier example of h.dur > 45, each element of h.dur was compared with 45. But two vectors can also be compared element by element if they are of the same length. In x > y (assuming you have entered x and y as above), the first element of x is compared with the first element of y to see if it is bigger, then the same is done for the second elements, then for the third. The output is therefore T F F because x is greater than y only in its first element.

The ratio of the closure duration to VOT can now be worked out by dividing one vector by the other, thus:

h.dur/dur(k.s)

1.4374986 0.9140436 0.6911628 ...

The first value returned is 1.4 because the VOT of the first segment, given by h.dur[1] (63.9 ms) is about 1.4 times the size of its preceding closure duration given by dur(k.s[1,]) (44.5 ms) or more generally what is returned by the above command is h.dur[n]/dur(k.s[n,]) where n is the nth segment. You could also work out the proportion of VOT taken up by the total closure duration plus VOT duration. This is:

h.dur/(h.dur + dur(k.s))

0.5897434 0.4775459 0.4086909...

So for the second segment, for example, VOT takes up about 48% of the duration between the onset of the closure and the onset of periodicity. In order to compare /kn/ with /kl/ on any of these measures, a logical vector needs to be applied as before. Thus to compare /kn/ with /kl/ on this proportional measure, apply either the logical vector to each object or to the result of the proportional calculation. Here are the two possibilities:

Logical vector to identify /kn/

temp = son.lab== "n"

Mean proportional VOT duration for /kn/. Either:

mean(h.dur[temp]/(h.dur[temp] + dur(k.s[temp,])))

0.6639655
Or

mean((h.dur/(h.dur + dur(k.s)))[temp])

0.6639655
The second of these is perhaps easier to follow if the proportional calculation on each segment is initially stored in its own vector:

prop = h.dur/(h.dur + dur(k.s))

Proportional VOT for /kn/

mean(prop[temp])

0.6639655
#Proportional VOT for /kl/

mean(prop[!temp])

0.4525008
So the proportion of VOT taken up by the interval between the closure onset and onset of periodicity is some 20% less for /kl/ compared with /kn/.

What if you wanted to compare the four separate words with each other on any of these measures? Recall that the annotations for these words are stored in word.lab:

table(word.lab)

Claudia Klausur Kneipe Kneipier

 5 5 5 5

One possibility would be to proceed as above, make a logical vector that was True for each of the categories. However, a much simpler way is to use tapply(x, lab, fun), which applies a function (the third argument) to the elements of a vector (the first argument) separately per category (the second argument). Thus the mean VOT separately for /kn/ and /kl/ is also given by:

tapply(h.dur, son.lab, mean)

l n

44.9015 74.9710

The third argument can be any function that can be sensibly applied to the numeric vector (first argument). So you could calculate the standard deviation separately for the closure durations of /kn/ and /kl/ as follows:

tapply(dur(k.s), son.lab, sd)

l n

5.721609 8.557875

Thus the mean VOT duration (ms) for each separate word category is:

tapply(h.dur, word.lab, mean)

Claudia Klausur Kneipe Kneipier

 49.5272 40.2758 66.9952 82.9468

So the generalization that the mean VOT of /kn/ is greater than that of /kl/ seems to hold across the separate word categories. Similarly, tapply() can be used to work out the mean proportion of the interval between closure and periodic onset taken up by VOT per word category:

prop = h.dur/(h.dur + dur(k.s))

tapply(prop, word.lab, mean)

Claudia Klausur Kneipe Kneipier

0.4807916 0.4242100 0.6610947 0.6668363

[image: image9.png]<]
a
o
3
>
e
£
v
8
£
]
>

5

-10

I B
1400 1450 1500 1550 1600

Time (ms)

The results showing differences between the categories on means need to be followed up with analyses of the distribution of the tokens about each category. One of the most useful overviews for this, of which extensive use will be made in the rest of this book, is a boxplot which can be used per category to produce a display of the median, the interquartile range, and the range. The median is the 50% quantile and the pth quantile (0 < p < 100) is in the index position 1+p*(n-1)/100 after the data has been sorted in rank order. For example, here are 11 values randomly sampled between -50 and 50

g = sample(-50:50, 11)
-46 41 23 4 -33 46 -30 18 -19 -38 -32

They can be rank-order sorted with the sort() function:

g.s = sort(g)

g.s

-46 -38 -33 -32 -30 -19 4 18 23 41 46

The median is the 6th element from the left in this rank-order sorted data, because 6 is what is returned with 1+50*(11-1)/10: thus the median of these random numbers is g.s[6] which is -19. The same is returned by median(g) or quantile(g, .5). The interquartile range is the difference between the 75% and 25% quantiles, i.e. quantile(g, .75) - quantile(g, .25) or equivalently IQR(g). In the corresponding boxplot, the median appears as the thick horizontal line and the upper (75%) and lower (25%) quartiles as the upper and lower limits of the rectangle. A boxplot for the present VOT data can be produced with:

Fig. 5.7

boxplot(h.dur ~ son.lab, ylab = "VOT (ms)")

The operation ~ means 'given that' and often forms part of a formula that is used in very many statistical tests in R. The boxplot shows fairly conclusively that VOT is greater in /kn/ than in /kl/ clusters.

5.4 Inter-gestural coordination and ensemble plots

The task in this section is to produce synchronized plots of tongue-dorsum and tongue-tip movement in order to ascertain visually whether these are differently coordinated for /kn/ and /kl/. The discussion will begin with some general remarks about trackdata objects (5.4.1), then overlaid plots from these two movement signals will be derived (5.4.2); finally, so-called ensemble plots will be discussed in which the same movement data from several segments are overlaid and averaged separately for the two categories. All of the movement data are in millimetres and the values are relative to the origin [0, 0, 0] which is a point on the occlusal plane just in front of the teeth.

5.4.1 Extracting trackdata objects

As shown in the flow diagram in Fig. 5.6, signal or trackdata is extracted from a database relative to the start and end times of a segment list using the emu.track() function. The first argument to emu.track() is the segment list itself and the second argument is any track that has been declared to be available in the template file. You can check this either by inspecting the Tracks pane of the template file, or with trackinfo() in R using the name of the database as an argument:

trackinfo("ema5")

"samples" "tm_posy" "tm_posz" "ll_posz" "tb_posz" "jw_posy"
 "jw_posz" "tt_posz" "ul_posz"

The movement data is accessed from any track name containing posz for vertical movement (i.e., height changes in the coronal plane) or posy for anterior-posterior (i.e., for front-back changes in the sagittal plane to mark e.g. the extent of tongue-front/backing between the palatal and uvular regions). The initial ll, tb, tm, jw, tt, and ul are codes for lower-lip, tongue body, tongue-mid, jaw, tongue tip, and upper lip respectively. Here the concern will be almost exclusively with the analysis of tt_posz (vertical tongue movement in the coronal plane) and tb_posz (vertical tongue body movement in the coronal plane). Thus, trackdata of the vertical tongue-tip movement over the durational extent of the raise lower annotations at the TT tier is obtained as follows:

tip.s is a segment list between the start time of raise and

end time of lower at the TT tier

tip.tt = emu.track(tip.s, "tt_posz")

tip.tt is a trackdata object as can be verified with is.trackdata(tip.tt) or class(tip.tt).

Trackdata objects are lists but because of an implementation using object-oriented programming, they behave like matrices and therefore just like segment lists as far as both indexing and the application of logical vectors are concerned. Therefore, the same operations that are used to identify one or more segment numbers can also be used to identify their corresponding signal data in the trackdata objects. For example, since tip.s[10,] denotes the 10th segment, then tip.tt[10,] contains the tongue tip movement data for the 10th segment. Similarly, tip.s[c(10, 15, 18),] are segment numbers 10, 15, 18 in the segment list and tip.tt[c(10, 15, 18),] access the tongue tip movement data for the same segments. Logical vectors can be used in the same way. So in the previous section, the /kn/ segments in the segment list could be identified with a logical vector:

Logical vector: True for /kn/, False for /kl/

temp = son.lab == "n"

/k/ closures in /kn/

k.s[temp,]

A segment list of raise lower associated with /kn/

tip.s[temp,]

The corresponding tongue tip movement data for the above segments is analogously given by tip.tt[temp,].

As already foreshadowed in Chapter 3, emu.track() retrieves signal data within the start and end time of the segment list. For this reason, the duration measured from a trackdata object is always fractionally less than the durations obtained from the corresponding segment list. In both cases, the duration can be measured with dur() (Fig. 5.6). Here this function is used to confirm that the trackdata durations are less than the segment durations for all 20 segments:

Are there any segments for which the trackdata duration is greater than

or equal to the duration from a segment list?

any(dur(tip.tt) >= dur(tip.s))

[1] FALSE
5.4.2 Movement plots from single segments

Each segment in a trackdata object is made up of a certain number of frames of data or speech frames that occur at equal intervals of time depending on the rate at which they were sampled or frame rate. For example, if formants are calculated at intervals of 5 ms and if a segment is 64 ms in duration, then that segment should have at least 12 speech frames of formant frequencies between its start time and end time at intervals of 5 ms (the term speech frame will be used henceforth for these data to distinguish it from a data frame that is a type of object in R). The function frames() and tracktimes() applied to a trackdata object retrieve the speech frames and the times at which they occur, as already shown in Chapter 3. The generic plot() function when applied to any single segment of trackdata plots the frames as a function of time. For example, the speech frames of the 5th segment, corresponding to tip.s[5,], are given by:

frames(tip.tt[5,])

T1

1405 -12.673020

1410 -12.631612

1415 -12.499837

1420 -12.224785

.... etc.

and the times at which these occur by:

tracktimes(tip.tt[5,])

1405 1410 1415 1420 1425 1430...etc.

These data could be inspected in Emu by looking at the corresponding segment in the segment list:

tip.s[5,]

5 raise->lower 1404.208 1623.48 dfgspp_mo1_prosody_0132

i.e., the speech frames occur between times 1404 ms and 1623 ms in the utterance dfgspp_mo1_prosody_0132. The data returned by frames() looks as if it has two columns, but it is in fact one as ncol(frames(tip.tt[5,])) shows: the numbers on the left are row names and they are the track times returned by tracktimes(tip.tt[5,]). From the above, it can be seen that the frames occur at 5 ms intervals and so the frame rate is 1000/5 = 200 Hz.

The commands start(tip.tt[5,]) and end(tip.tt[5,]) return the times of the first and last speech frame of the 5th segment. A plot of the speech frames as a function of the times at which they occur is given by plot(tip.tt[5,]). You can additionally set a number of plotting parameters (see help(par) for which ones): here a line-type plotting both lines and points (type="b") is used and labels are given for the y- and x-axes:

plot(tip.tt[5,], type="b", ylab ="Tongue tip vertical position (mm)", xlab="Time (ms)")

In order to investigate tongue-body and tongue-tip synchronization, the movement data from both tracks need to be plotted in a single display. One way to do this is retrieve the tongue-body data for the same segment list and then use the cbind() (column bind) function to make a new trackdata object consisting of the tongue tip and tongue body movement data. This works as follows:

Get the tongue-body data for the same segment list i.e. this is

tongue body data extending in time over the raise lower annotation sequence at the

TT tier

tip.tb = emu.track(tip.s, "tb_posz")

Column bind the two trackdata objects: N.B. both trackdata objects

must be from the same segment list for this work.

both = cbind(tip.tt, tip.tb)

Plot the 5th segment

plot(both[5,], type="l")

If you are familiar with R, then you will recognize cbind() as the function for concatenating vectors by column, thus:

a = c(0, 4, 5)

b = c(10, 20, 2)

w = cbind(a, b)

w

a b

0 10

4 20

5 2

As already mentioned, trackdata objects are not matrices but lists. Nevertheless, many of the functions for matrices can be applied to them. Thus the functions intended for matrices, dim(w), nrow(w), ncol(w) also work on trackdata objects. For example, dim(both) returns 20 2 and this has the meaning, not that there are 20 rows and 2 columns (as it would if applied to a matrix), but firstly that there are 20 segments' worth of data (also given by nrow(both)) and secondly that there are two tracks (also given by ncol(both)). Moreover a new trackdata object consisting of just the second track (tongue body data) could now be made with new = both[,2] ; or a new trackdata object of the first 10 segments and first track with both[1:10,1], etc.

In the previous example, the movement data from both tongue tracks extended over the interval raise lower annotated at the tongue tip (TT) tier. If you wanted to superimpose the tongue-body movement extracted over a corresponding interval from the tongue body (TB) tier, then the data needs to be extracted from this segment list made earlier at the TB tier:

(created earlier) body.s = emu.requery(k.s, "Segment", "TB")

body.tb = emu.track(body.s, "tb_posz")

It is not possible to apply cbind() to join together tip.tt[5,] and body.tb[5,] in the manner used before because cbind() presupposes that the segments in the trackdata objects are of the same duration, and this will only be so if they have been extracted from the same segment list. The plots must therefore be made separately for the tongue-tip and tongue-body data and superimposed using par(new=T), after setting the ranges for the x- and y-axes to be the same:

Find the y-range for the vertical axis in mm

ylim = range(frames(tip.tt[5,]), frames(body.tb[5,]))

Find the x-range for times in ms

xlim = range(tracktimes(tip.tt[5,]), tracktimes(body.tb[5,]))

plot(tip.tt[5,], xlim=xlim, ylim=ylim, xlab="", ylab="", type="l")

par(new=T)

plot(body.tb[5,], xlim=xlim, ylim=ylim, xlab="Time (ms)", ylab="Vertical tongue position", type="l", lty=2)

The first of these commands for finding the y-range concatenates the speech frames from the tongue-tip and tongue-body into a single vector and then finds the range. The second command does the same but after concatenating the times at which the frames occur. The plot() function is then called twice with the same x- and y-ranges. In the first, xlab and ylab are set to "" which means print nothing on the axis labels. The command par(new=T) means that the next plot will be drawn on top of the first one. Finally, the argument lty=2 is used to create the dotted line in the second plot. The result is the plot of synchronized tongue-tip and tongue-body data, extending from the onset of tongue-body raising for the /k/ closure to the offset of tongue-tip lowering for the /l/, as shown in Fig. 5.8.

[image: image10.png]Vertical tongue tip po:

10 5

-15

50

Time (ms)

100

)

150 200

50 100

Time (ms)

150 200

5.4.3 Ensemble plots

A visual comparison between /kn/ and /kl/ on the relative timing of tongue body and tongue tip movement can best be made not by looking at single segments but multiple segments from each category in what are sometimes called ensemble plots. The function for creating these is dplot() in the Emu-R library. This function has trackdata as an obligatory argument; two other important optional arguments are a parallel set of annotations and the temporal alignment point. For one of the existing trackdata objects created in the preceding section, dplot(tip.tt) plots all the tongue tip data superimposed on each other time and time-aligned by default at their onset (t = 0 ms). The command dplot(tip.tt, son.lab), which includes a parallel vector of labels, further differentiates the plotted tracks according to segment type. The argument offset can be used for the alignment point. This is by default 0 and without modifying other default values it can be set to a proportional value which varies between 0 and 1, denoting that the trackdata are to be synchronized at their onsets and offsets respectively. Thus dplot(tip.tt, son.lab, offset=0.5) synchronises the tracks at their temporal midpoint which is then defined to have a time of 0 ms. You can also synchronise each segment according to a millisecond time by including the argument prop = F (proportional time is False). Therefore, dplot(tip.tt, son.lab, prop=F, offset=end(tip.tt)-20) synchronises the tongue tip movement data at a time point 20 ms before the segment offset. The way in which the synchronization point is evaluated per segment is as follows. For the first segment, the times of the frames are, of course, tracktimes(tip.tt[1,]) and these are reset to:

tracktimes(tip.tt[1,]) - (end(tip.tt[1,]) - 20)

-150 -145 -140 -135 -130 -125 -120 -115 -110 -105 -100 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20

as a result of this the synchronization point at t = 0 ms is four frames earlier than the offset (which is also apparent if you enter e.g. dplot(tip.tt[1,], offset=end(tip.tt[1,])-20, prop=F, type="b").

[image: image11.png]_| — body — kn
tip — Kl

-100 -50 0 50 100

Time (ms)

In order to compare /kl/ and /kn/ on the relative timing of tongue-body and tongue-tip movement, an ensemble plot could be made of the tongue tip data but synchronized at time at which the tongue-body displacement for the /k/ is a maximum. Recall that in labeling the movement trajectories, the tongue-body was segmented into a sequence of raise and lower annotations such that the time of maximum tongue-body raising is at the boundary between them. It is not possible to use the segment list body.s to obtain these times of maximum tongue-dorsum raising for /k/, because this segment list extends over both raise and lower without marking the boundary between. Instead therefore, a new segment list needs to be made just of the raise annotations at the TB tier and then the offset time extracted from these with end(). Since there is only one raise annotation per segment, the segment list could be made with:

tbraise.s = emu.query("ema5", "*", "TB=raise")

But a safer way is to query the raise annotation at the TB tier subject to it also being ib word-initial position. This is because all of the other segment lists (and trackdata objects derived from these) have been obtained in this way and so there is then absolutely no doubt that the desired segment list of raise annotations is parallel to all of these:

tbraise.s = emu.query("ema5", "*", "[TB=raise ^ Start(Word, Segment)=1]")

An ensemble plot
 of the tongue-tip movement synchronized at the point of maximum tongue-dorsum raising (Fig. 5.9, left panel) can be produced with:

dplot(tip.tt, son.lab, prop=F, offset=end(tbraise.s))

The same function can be used to produce ensemble-averaged plots in which all of the speech frames at equal time points are averaged separately per annotation category. It should be remembered that the data in an ensemble-averaged plot are entirely accurate at the synchronization point but are less representative of the mean for points progressively further away in time from the synchronization point (because fewer data are averaged at points further away in time from t = 0 ms). The ensemble averaged plot is produced in exactly the same way as the preceding command but by adding the argument average=T (Fig. 5.9, right panel).

[image: image12.png]Position (mm)

-5

50

100 150 200 250

Time (ms)

Velocity (mm/5 ms)

0.0 0.5 1.0

-0.5

0

50

100 150 200 250

Time (ms)

In order to produce ensemble plots of both tongue tip and tongue body data together in the manner of Fig. 5.8, the same method can be used of overlaying one (ensemble) plot on the other. For the x-axis range, specify the desired duration as a vector consisting of two elements, a negative and a positive value on either side of the synchronization point. The y-range is determined, as before, across both sets of data (Fig. 5.10):

Fig. 5.10

Set the x- and y-ranges

xlim = c(-100, 100); ylim = range(frames(tip.tt), frames(body.tb))

Tongue-tip data coded for /n/ or /l/ with no surrounding box, black and slategray colors,

double line thickness, dashed, and no legend

dplot(tip.tt, son.lab, prop=F, offset=end(tbraise.s), average=T, xlim=xlim, ylim=ylim, ylab="Position (mm)", xlab="Time (ms)", bty="n", col=c(1, "slategray"), lwd=2, lty=2, legend=F)

Put appropriate legends at the top left and top right of the display

legend("topleft", c("body", "tip"), lty=c(1,2), lwd=2)

legend("topright", paste("k", unique(son.lab), sep=""), col=c(1,"slategray"), lty=1, lwd=2)

par(new=T)

The tongue body data

dplot(body.tb, son.lab, prop=F, offset=end(tbraise.s), average=T, xlim=xlim, ylim=ylim, legend=F, col=c(1, "slategray"), lwd=2, bty="n")

5.5 Intragestural analysis

The task for the rest of this Chapter will be to compare /kn/ with /kl/ on the movement and velocity of tongue-dorsum raising in /k/. To do so requires a bit more discussion both of the numerical and logical manipulation of trackdata objects as well as the way in which functions can be applied to them. This is covered in 5.5.1. Then in 5.5.2 some of these operations from 5.5.1 are applied to movement data in order derive their velocity as a function of time
. Finally, in 5.5.3, the various movement and velocity parameters are interpreted in terms of the output of a critically damped system that forms parts of the model of articulatory phonology (Browman & Goldstein, 1990a, b, c) in order to try to specify more precisely the ways in which these clusters may or may not differ in tongue-body raising. It is emphasized here that although the analyses are conducted from the perspective of movement data, the types of procedures are just as relevant for many of the subsequent investigations of formants, electropalatography, and spectra in the remaining Chapters of the book.

5.5.1 Manipulation of trackdata objects

Arithmetic

Earlier in this Chapter two methods for carrying out simple arithmetic were presented. The first involved applying an arithmetic operation to a single element to a vector and in the second the operation was applied to two vectors of the same length. Here are the two methods again.

Make a vector of 4 values

x = c(-5, 8.5, 12, 3)

Subtract 4 from each value

x - 4

-9.0 4.5 8.0 -1.0

Make another vector of the same length

y = c(9, -1, 12.3, 5)

Multiply the vectors element by element

x * y

-45.0 -8.5 147.6 15.0

Trackdata objects can be handled more or less in an analogous way. Consider the operation tip.tt - 20. In this case, 20 is subtracted from every speech frame. Therefore if you save the results:

new = tip.tt - 20

and then compare new and tip.tt, you will find that they are the same except that in new the y-axis scale has been shifted down by 20 (i.e. 20 has been subtracted from every speech frame). This is evident if you compare new and tip.tt on any segment e.g.

par(mfrow=c(1,2))

plot(new[10,])

plot(tip.tt[10,])

If you enter tip.tt[10,] on its own you will see that it consists of three components (which is why it is a list): index, ftime, and data. The last of these contains the speech frames which is why those of the 10th segment are accessible with either tip.tt[10,]$data or (more conveniently) with frames(tip.tt[10,]). The important point, then, of the arithmetic operation just carried out is that, because of the way that trackdata objects have been structured in R, it affects only the speech frames, i.e. only the values in $data. Consider then as another example the trackdata object vowlax.fdat of the first four formant frequencies of a number of vowels produced by two speakers. The fact that this object contains 4 tracks in contrast to tip.tt which contains just one is evident if you ask how many columns there are (ncol(vowlax.fdat)) or how many segments and columns (dim(vowlax.fdat)). If you wanted to add 100 Hz to all four formants, then this is vowlax.fdat + 100. If you want to make a new trackdata object in which 150 Hz was added only to F1, then:

Trackdata object of F1 with 150 Hz added to it

newf1 = vowlax.fdat[,1]+150

New trackdata object of F1 with 150 Hz added to it and the original F2, F3, F4

newform = cbind(newf1, vowlax.fdat[,2:4])

Can the arithmetic operation on two vectors be carried over to trackdata objects? The answer is that it can, but only if the two trackdata objects are from the same segment list. So tip.tt + tip.tt, which is the same as tip.tt * 2 causes the speech frames to be added to themselves. Analogously, d = vowlax.fdat[,2]/vowlax.fdat[,1] creates another trackdata object, d, whose frames contain F2 divided by F1 only. As before, it is only the speech frames that are subject to these operations. Suppose then you wanted to subtract out the jaw height from the tongue-tip height in order to estimate the extent of tongue tip movement independently of the jaw. The trackdata object tip.tt for tongue movement was derived from the segment list tip.s. Therefore, the vertical movement of the jaw must be first be derived from the same segment list:

jaw = emu.track(tip.s, "jw_posz")

The difference between the two is then:

tipminusjaw = tip.tt - jaw

The derived trackdata object can now be plotted in all the ways described earlier, thus:

par(mfrow=c(1,3))

Tongue-tip movement (for the 15th segment)

plot(tip.tt[15,])

Jaw movement for the same segment

plot(jaw[15,])

Tongue-tip movement with jaw height subtracted out for the same segment

plot(tipminusjaw[15,])

The fact that it is the speech frames to which this operation is applied is evident from asking the following question: are all speech frames of the 15th segment in tipminusjaw equal to the difference between the tongue-tip and jaw speech frames?

all(frames(tipminusjaw[15,]) == frames(tip.tt[15,]) - frames(jaw[15,]))

TRUE

The types of arithmetic functions that show this parallelism between vectors on the one hand and trackdata on the other is given in help(Ops) of the method package under Arith (and the function that brings this about is Ops.trackdata). So you will see from help(Ops) that the functions listed under Arith include ^ for raising. This means that there must be parallelism between vectors and trackdata objects for this operation as well:

x = c(-5, 8.5, 12, 3)

Square the elements in x
x^2

Square all speech frames of the tongue tip trackdata object

tipsquared = tip.tt^2

Comparison operators

There is also to a certain extent a similar parallelism between vectors and trackdata objects in using comparison operators. Recall from the analysis of acoustic VOT in 5.3 that logical vectors return True of False. Thus:

x = c(-5, 8.5, 12, 3)

x < 9

TRUE TRUE FALSE TRUE

When logical vectors are applied to trackdata objects, then they operate once again on speech frames. For example, vowlax.fdat[10,1] > 600 returns a logical vector for any F1 speech frames in the 10th segment greater than 600 Hz: exactly the same result is produced by entering frames(vowlax.fdat[10,1]) > 600. Similarly, the command sum(tip.tt[4,] >= 0) returns the number of frames in the 4th segment that are greater than zero. To find out how many frames are greater than zero in the entire trackdata object, use the sum() function and leave out the index to the fourth segment, i.e. sum(tip.tt > 0); the same quantity expressed as a proportion of the total number of frames is sum(tip.tt > 0) / length(tip.tt > 0) or sum(tip.tt > 0)/length(frames(tip.tt)).

The analogy to vectors also holds when two trackdata objects are compared with each other. For example for vectors:

Vectors

x = c(-5, 8.5, 12, 3)

y = c(10, 0, 13, 2)

x > y

FALSE TRUE FALSE TRUE

For trackdata objects, the following instruction:

temp = tip.tt > tip.tb

compares every frame of tongue tip data with every frame of tongue body data that occurs at the same time and returns True if the first is greater than the second. Therefore, sum(temp)/length(temp) can be subsequently used to find out the proportion of frames (as a fraction of the total) for which the tongue tip position is greater (higher) than the position of the back of the tongue.

All logical vectors show this kind of parallelism between vectors and trackdata objects and they are listed under 'Compare' in help(Ops). However, there is one important sense in which this parallelism does not work. In the previous example with vectors, x[x > 9] returns those elements in x for which x is greater than 9. Although (as shown above) tip.tt > 0 is meaningful, tip.tt[tip.tt > 0] is not. This is because tip.tt indexes segments whereas tip.tt > 0 indexes speech frames. So if you wanted to extract the speech frames for which the tongue-tip has a value greater than zero, this would be frames(tip.tt)[tip.tt > 0]. You can get the times at which these occur with tracktimes(tip.tt)[tip.tt > 0]. To get the utterances in which they occur is a little more involved, because the utterance identifiers are not contained in the trackdata object. For this reason, the utterance labels of the corresponding segment list have to be expanded to the same length as the number of speech frames and this can be done with expand_labels() in the Emu-R library that needs the index list of the trackdata object and the utterances from the according segment list:

uexpand = expand_labels(tip.tt$index, utt(tip.s))

A table listing per utterance the number of speech frames for which the position of the tongue tip is greater than 0 mm is then given by table(uexpand[tip.tt > 0]).

Math and summary functions

There are many math functions in R that can be applied to vectors including those that are listed under Math and Math2 in help(Ops). The same ones can be applied directly to trackdata objects and once again they operate on speech frames. So round(x, 1) rounds the elements in a numeric vector x to one decimal place and round(tip.tt, 1) does the same to all speech frames in the trackdata object tip.tt. Since log10(x) returns the common logarithm of a vector x, then plot(log10(vowlax.fdat[10,1:2])) plots the common logarithm of F1 and F2 as a function of time for the 10th segment of the corresponding trackdata object. There are a couple of so-called summary functions including max(), min(), range() for finding the maximum, minimum, and range that can be applied in the same way to a vector or trackdata object. Therefore max(tip.tt[10,]) returns the speech frame with the highest tongue-tip position for the 10th segment and range(tip.tt[son.lab == "n",]) returns the range of tongue tip positions across all /kn/ segments (assuming you created son.lab earlier).

Finally, if a function is not listed under help(Ops), then it does not show a parallelism with vectors and must therefore be applied to speech frames directly. So while mean(x) and sd(x) return the mean and standard deviation respectively of the numeric elements in a vector x, since neither mean() nor sd() are functions listed under help(Ops), then this syntax this does not carry over to trackdata objects. Thus mean(frames(tip.tt[1,])) and not mean(tip.tt[1,]) returns the mean of the frames of the first segment; and sd(frames(tip.tt[1:10,])) and not sd(tip.tt[1:10,]) returns the standard deviation across all the frames of the first 10 segments and so on.

Applying a function segment by segment to trackdata objects

With the exception of mean(), max() and min() all of the functions in the preceding sections for carrying out arithmetic and math operations have two things in common when they are applied to trackdata objects:

1. The resulting trackdata object has the same number of frames as the trackdata object to which the function was applied.

2. The result is unaffected by the fact that trackdata contains values from multiple segments.

Thus according to the first point above, the number of speech frames in e.g. tip.tt - 20 or tip.tt^2 is the same as in tip.tt; or the number of frames in log(vowlax.fdat[,2]/vowlax.fdat[,1]) is the same as in vowlax.fdat. According to the second point, the result is the same whether the operation is applied to all segments in one go or, say, one segment at a time: the segment divisions are therefore transparent as far as the operation is concerned. So the result of applying the cosine function to three segments:

res = cos(tip.tt[1:3,])

is exactly the same as if you were to apply the cosine function separately to each segment:

res1 = cos(tip.tt[1,])

res2 = cos(tip.tt[2,])

res3 = cos(tip.tt[3,])

resall = rbind(res1, res2, res3)
Are all speech frames in res and resall the same?

all(res == resall)

TRUE

Now clearly there are a number of operations in which the division of data into segments does matter. For example, if you want to find the mean tongue tip position separately for each segment, then evidently mean(frames(tip.tt)) will not work because this will find the mean across all 20 segments i.e, the mean value calculated across all speech frames in the trackdata object tip.tt. It would instead be necessary to obtain the mean separately for each segment:

m1 = mean(frames(tip.tt[1,]))

m2 = mean(frames(tip.tt[2,]))

...

m20 = mean(frames(tip.tt[20,]))

Even for 20 segments, entering these commands separately becomes tiresome but in programming this problem can be more manageably solved using iteration in which the same function, mean() in this case, is applied repeatedly to each segment. As the words of the penultimate sentence suggest ('obtain the mean separately for each segment') one way to do this is with a for-loop applied to the speech frames per segment, thus:

vec = NULL

for(j in 1:nrow(tip.tt)){

m = mean(frames(tip.tt[j,]))

vec = c(vec, m)

}

vec

-3.818434 -4.357997 -4.845907...

A much easier way, however, is to use trapply() in the Emu-R library that applies a function (in fact using just such a for-loop) separately to the trackdata for each segment. The single line command will accomplish this and produce the same result:

trapply(tip.tt, mean, simplify=T)

-3.818434 -4.357997 -4.845907...

So to be clear: the first value returned above is the mean of the speech frames of the first segment, i.e. it is mean(frames(tip.tt[1,])) or the value shown by the horizontal line in:

plot(tip.tt[1,], type="b")

abline(h= mean(frames(tip.tt[1,])))

The second value -4.357997 has the same relationship to the tongue tip movement for the second segment and so on.

The first argument to trapply() is, then, a trackdata object and the second argument is a function like mean(). What kinds of functions can occur as the second argument? The answer is any function, as long as it can be sensibly applied to a segment's speech frames. So the reason why mean() is valid is because it produces a sensible result when applied to e.g. the speech frames for the first segment:

mean(frames(tip.tt[1,]))

-3.818434

Similarly range() can be used in the trapply() function because it too gives meaningful results when applied to a segment's speech frames, returning the minimum and maximum:

range(frames(tip.tt[1,]))

-10.124228 1.601175

Moreover, you could write your own function and pass it as the second argument to trapply() as long as your function gives a meaningful output when applied to any segment's speech frames. For example, supposing you wanted to find out the average values of just the first three speech frames for each segment. The mean of the first three frames in the data of, say, the 10th segment is:

fr = frames(tip.tt[10,])

mean(fr[1:3])

-14.22139

Here is a function to do the same thing:

mfun <- function(frdat, k=3)

{

 # frdat are speech frames, k the number of frames to be averaged (default is 3)

 mean(frdat[1:k])

}

mfun(frames(tip.tt[10,]))

-14.22139

Can mfun() be applied to a segment's speech frames? Evidently it can, as the preceding command has just shown. So this must mean that the function can be used as the second argument to trapply() to calculate the mean of the first three elements for each segments separately:

res = trapply(tip.tt, mfun, simplify=T)

get the mean of the first three elements of the 10th segment

res[10]

-14.22139

The purpose of the third argument, simplify=T, is to simplify the result as a vector or a matrix (otherwise for reasons explained below the output is a list). This third argument can, and should be, used if you are sure that the function will return the same number of numeric elements per segment. It was therefore appropriate to use simplify=T in all of the above examples, because in each case the number of values returned is the same for each segment: both mean() and mfun() always return one numeric value per segment and range() always returns two values per segment. Whenever one value is returned per segment, then simplify=T causes the output to be converted to a vector, otherwise, as when using range(), the output is a matrix.

Using simplify=T would not appropriate if the function returns neither a vector nor a matrix. Consider for example ar() for calculating autocorrelation coefficients. Since this function produces meaningful output when applied to speech frames for any segment:

auto = ar(frames(tip.tt[9,]))

auto

Call:

ar(x = frames(tip.tt[9,]))

Coefficients:

 1

0.9306

Order selected 1 sigma^2 estimated as 3.583

it could be applied iteratively to each segment using trapply(). But as both the above output and class(auto) show, the output is neither a vector nor a matrix. Consequently, simplify=T should not be included as the third argument. When simplify=T is not included (equivalent to simplify = F), the output for each segment is collected as a list and the data corresponding to any segment number is accessible using the double bracket notation, thus:

a = trapply(tip.tt, ar)

summary(a[[9]])

Length Class Mode

order 1 -none- numeric

ar 1 -none- numeric

var.pred 1 -none- numeric

x.mean 1 -none- numeric

aic 17 -none- numeric

n.used 1 -none- numeric

order.max 1 -none- numeric

partialacf 16 -none- numeric

resid 40 -none- numeric

method 1 -none- character

series 1 -none- character

frequency 1 -none- numeric

call 2 -none- call

asy.var.coef 1 -none- numeric

5.5.2 Differencing and velocity

Another perhaps more common case in which simplify=T is not appropriate is if the function does not return the same number of elements per segment. This is going to happen in, for example, differencing speech frames because the number of frames per segment is not the same for each segment (because segments are not of the same duration). Differencing is often a useful operation in many kinds of speech research and when speech movement data is differenced, the result is a signal containing an estimate for any point in time of the articulator's velocity. In differencing, element n-1 in a signal is subtracted from n. For example:

x = c(10, 0, -2 , 4, 12, 5)

diff(x)

-10 -2 6 8 -7

This is an example of first order differencing and the output always has one value less than the number of elements in the signal to which differencing is applied. diff(x, 2) is second order differencing in which x[n-2] is subtracted from x[n] and the output has two values less than the input. Consider now the effect of differencing on a cosine wave which can be produced with cr() in the Emu-R library. In the figure on the left, a single cycle sinusoid (a phase shifted cosine wave) consisting of 50 points was produced and plotted and follows:

par(mfrow=c(1,2))

coswav = cr(N=50, p=pi/2, values=T)

For reasons that will be clear in a moment, vertical lines are marked at both the trough, or minimum, and the following peak, or maximum, which occur at times 12.5 and 37.5 ms:

abline(v=c(12.5, 37.5))

Then first differencing is applied to this sinusoid and the result is plotted:

coswav.d = diff(coswav)

plot(coswav.d)
[image: image13.png]Velocity (mm/5 ms)

1.0

0.5

0.0

-0.5

-50

0

50 100 150 200

Time (ms)

50 100

Time (ms)

150 200

Finally, the values for which the first differenced signal is zero can be seen by plotting a horizontal line with abline(h=0); and abline(v=25.5) marks the time at which the differenced signal has a maximum value (Fig. 5.11). For comparison abline(v=c(12.5, 37.5)) marks the minimum and maximum of the sinussoid.

Now it is evident from Fig. 5.11 that whenever there is a peak (maximum) or trough (minimum) in the sinusoid, then the first differenced signal is zero valued. This is at it should be because the sinusoid is stationary at these times, i.e. the rate at which the sinusoid changes at these times is zero. In addition, the time at which the differenced signal has a peak is when the sinusoid has the greatest range of change, i.e. when the amplitude interval between two points of the sinusoid is greatest.

One of the remarkable discoveries in speech research in the last 20-30 years, which is brought out so well by EMA analyses, is that the movement of the supralaryngeal articulators - the jaw, lips, different points on the tongue - as a function of time often bears quite a close resemblance to the sinusoidal movement shown on the left in Fig. 5.11. For example, there is a quasi-sinusoidal shape to the movement of the tongue body over the interval of the tongue-body raising and lowering for the /k/ in the 5th segment in Fig. 5.12. These data can be plotted with plot(body.tb[5,]), assuming that the tongue body trackdata has been derived from the corresponding segment list:

body.s = emu.query("ema5", "*", "[TB=raise -> TB = lower]")

body.tb = emu.track(body.s, "tb_posz")

plot(body.tb[5,])

The question to be considered now is how to derive the corresponding trajectory of the velocity of tongue-body movement shown in the right panel of the same figure. The first step is to confirm that the diff() function used earlier on vectors can also be used on speech frames:

diff(frames(body.tb[5,]))

T1

1400 0.142388

1405 0.279015

1410 0.401651

1415 0.499889

1420 0.563275

1425 0.584329

1430 0.561470

...

Since this is evidently the case, then diff() can also be used inside trapply(). For all the reasons discussed in the preceding section, simplify=T must not be included because the number of differenced values is not the same from one segment to the next, given that the durations of segments vary. However, if the function outputs values as a function of time - as is necessarily the case in differencing a time signal - then the argument returntrack=T can be included which has the effect of trying to build a trackdata object, if possible. The advantage of doing this is that all of the functionality for manipulating trackdata objects is then available for these differenced data. The command then is:

body.tbd = trapply(body.tb, diff, returntrack=T)
A plot of the velocity of tongue movement
 as a function of time is then given by plot(body.tbd[5,]). Ensemble plots (Fig. 5.12) for the movement and velocity data separately per category, synchronized at the beginning of the raising movement for all segments can be produced with:

par(mfrow=c(1,2))

dplot(body.tb, son.lab)

dplot(body.tbd, son.lab)

The scale of the velocity data is mm/T where T is the duration between speech frames. In this case, this is 5 ms which means that the scale is mm/5 ms. If you want to convert this to e.g. cm/s then the numeric operations described earlier can be used to do this (divide by 5 to get to ms, multiply by 1000 to get to seconds, divide by 10 to get to cm, i.e. multiply the trackdata object by 20, i.e. body.tbd = body.tbd * 20).

As Fig. 5.12 shows, there is a peak in the velocity data around 50 ms which is when the change in tongue body raising in producing the /k/ closure is the greatest, and a trough at around 125 ms which is when the rate of change of tongue body lowering in releasing the /k/ into the following vowel is the greatest. The difference in sign, i.e., the fact that there is a peak and a trough in the velocity data is usually ignored because it is simply a predictable consequence of the fact that the quasi-sinusoid has an upward movement in the first case and a downward movement in the second. More generally, it is the velocity of movement rather than whether the movement is upwards or downwards that is of interest. Finally and for the reasons outlined in discussing the sinusoid earlier, Fig. 5.12 also shows that the velocity has a zero at around 75 ms which the time of maximum tongue-body raising for the /k/ closure and when the movement signal is startionary i.e has least change.

[image: image14.png]Jaw position (mm)

-25

-26

-27

-28

Klausur

Klausur

Klausur
Klausur Klausur
Kneipier B
Claudia helper
Kneipier Kneipi
Claudia netpier
Claudia Kneipe
Cla%igudia Kneipe
Kneipe
Kneipe
Kneipe
[I I | I I |
500 600 700 800 900 1000

400

F1 (Hz)

Fig. 5.12 suggests that the peak velocity of the raising movement might be greater for /kn/ than for /kl/. In order to bring out such differences between the clusters more clearly, it would be helpful to align the trajectories at the time of the peak velocity itself. This in turn means that these times have to be found which will require writing a function to do so. For the data in question, the speech frames of any segment number n are given by frames(body.tb[n,]) and the times at which they occur by tracktimes(body.tb[n,]). The required function needs to find the time at which the speech frames for any segment attain a maximum. The maximum can be found using max() which returns the maximum value. A comparison of the values with the max() value returns a logical vector. Finally, the logical vector can be applied to the tracktimes to get the corresponding time at which the maximum occurs. For example for the 5th segment:

Make a logical vector. All elements are F except the one corresponding to the maximum

temp = frames(body.tbd[5,]) == max(frames(body.tbd[5,]))

Get the tracktimes of the fifth segment

times = tracktimes(body.tbd[5,])

The time at which the maximum occurs

times[temp]

1425

These lines can now be packed into a function that can be applied to speech frames. The function has been written so that it defaults to finding the maximum, but if you include min as the second argument then the same function can be used to find a minimum (as shown below):

peakfun <- function(fr, fun=max)

{

 temp = fr == fun(fr)

 times = tracktimes(fr)

 times[temp]
}

Now verify that you get the same result as before:

peakfun(frames(body.tbd[5,]))

1425

The time of the peak-velocity minimum is incidentally:

peakfun(frames(body.tbd[5,]), min)

1530

Since this function can evidently be applied to speech frames, then it can also be used inside trapply() to get the peak-velocity maximum for each segment. In this case, simplify=T can be set because there should only be one peak-velocity time per segment
:

pkraisetimes = trapply(body.tbd, peakfun, simplify=T)

If you wanted to get the times of the peak-velocity minima for each segment corresponding to the peak velocity of tongue body lowering, then just append the argument min after the function name in trapply(), thus:

pklowertimes = trapply(body.tbd, peakfun, min, simplify=T)

The movement or velocity trackdata objects can now be displayed in an ensemble plot synchronized at the peak-velocity maximum (Fig. 5.13):

par(mfrow=c(1,2))

dplot(body.tbd, son.lab, offset=pkraisetimes, prop=F)

dplot(body.tbd, son.lab, offset=pkraisetimes, prop=F, average=T)

These data are quite interesting because they show that the peak-velocity of the tongue-body movement is not the same in /kn/ and /kl/ clusters and noticeably greater in /kn/, a finding that could never be established from a spectrogram or an acoustic analysis alone.

[image: image15.png]T
§00'0- 0L0°0- SLOO-

Aiojon

1 T 1T 1
0L 80 90 v0 20

uonisod

40 60 80 100

20

40 60 80 100

20

Time (points)

Time (points)

5.5.3 Critically damped movement, magnitude, and peak velocity

The purpose in this final section is to explore in some further detail the origin of the evidently faster movement in closing the /k/ in /kn/ than in /kl/. To do so, a bit more needs to be said about the way in which movements are modeled in articulatory phonology (e.g., Browman & Goldstein, 1990a, 1990b, 1990c, 1992; Saltzman & Munhall, 1989). In the preceding section, it was noted that the movement of an articulator such as the tongue tip or jaw often follows a quasi-sinusoidal pattern as a function of time. In articulatory phonology, this type of pattern is presumed to come about because the movement of an articulator is controlled by the same kind of dynamics that control the movement of a mass in a mass-spring system (e.g., Byrd et al, 2000). In such a system, imagine that there is a mass attached to the end of a spring. You pull down on the mass and let it go and then measure its position as a function of time as it approaches rest position. The way that the mass approaches the rest, or equilibrium position, depends on a number of parameters some of which are factored out by making the simplification firstly that the mass is of unit size and secondly that the mass-spring system is what is called critically damped. In a critically damped system, the spring does not overshoot its rest position or oscillate before coming to rest but approaches it exponentially and in the shortest amount of time possible. The equation defining the position of the mass as a function of time is given by a second-order differential equation or equivalently, under the further assumption that the starting velocity is zero, by (1):

 (1)
[image: image25.jpg]Sagittal Plane
ra Coronal Plane

Body Planes

In this equation, x(t) is the position of the mass i.e, articulator at time t. There are then two variables or parameters that can be set and these are:

· xo is the target: it is the extent to which the mass or articulator is extended from rest position.

· w, which is proportional to the (square root of) the stiffness of the spring or articulator. (It is in fact the spring's natural frequency).

The equation of motion in (1) defines all possible trajectories for critically damped movement (and by analogy articulatory movement) and it can be converted into a function in R as follows:

critdamp <- function(xo=1, w=0.05, n=0:99)

{
 # xo is the target, w is the stiffness (natural frequency), n is time

 xo * (1 + w * n) * exp(-w * n)

}

[image: image16.png]Position (mm)

0

4

-6

-8

1100

1150

T
1200
Time (ms)

T
1250

1
1300

The position of the mass (articulator) as a function of time
 for the defaults is shown in the left panel of Fig. 5.14 and produced with:

position = critdamp()

plot(0:99, position)

The velocity, shown in the right panel of Fig. 5.14, can be calculated from the movement as before by differencing (remember to remove one time point from the x-axis):

plot(0:98, diff(position))

In some implementations of the model of articulatory phonology (e.g. Byrd et al, 2000), there is presumed to be a two-parameter specification of just this kind for each so-called gesture. In the present data, raising the tongue-body to close the /k/ is one gesture and lowering the tongue body is another separate gesture (Fig. 5.15) and each of these is controlled by its own two-parameter specification that is input to an equation such as (1). There then has to be a further parameter defining how these two gestures are timed or phased relative to each other. This phasing is not the concern of the analysis presented here - but see e.g. Beckman et al (1992), Harrington et al (1995), and Saltzman & Fowler (1993) for further details.

Although varying the parameters xo and w can result in a potentially infinite number of gestural shapes, they all confirm to the following four generalizations (Beckman et al, 1992; Byrd et al, 2000):

i. The magnitude of a gesture is affected by xo: the greater xo, the greater the magnitude. In Fig. 5.14, the magnitude is 1 because this is the absolute difference between the highest and lowest positions. In tongue-body raising for producing the /k/ closure, the magnitude is the extent of movement from the tongue-body minimum in the preceding vowel to the maximum in closing the /k/ (a or d in Fig. 5.15).

ii. The peak-velocity of a gesture is influenced by both xo and by w
iii. The time at which the peak-velocity occurs relative to the onset of the gesture (c or f in Fig. 5.15) is influenced only by wi.e. only by the articulatory stiffness.

iv. The gesture duration (b or e in Fig. 5.15) i.e. the time taken between the tongue-body minimum and following maximum in closing the /k/: this is not explicitly specified in the model but arises intrinsically as a consequence of specifying xo and w
Both ii. and iii. can be derived from algebraic manipulation of (1) and demonstrated graphically. As far as the algebra is concerned, it can be shown that the time at which the peak velocity occurs (iii), tpkvel, is the reciprocal of the natural frequency, i.e.

(2) tpkvel = 1/w
Therefore, the higher the value of w (i.e., the stiffer the spring/articulator), the smaller 1/w and the earlier the time of the peak velocity. Also, since (2) makes no reference to xo, then changing xo can have no influence on tpkvel. Secondly, the peak velocity (ii), pkvel, is given by:

(3) pkvel = - xow/e

[image: image17.png]oooooo
uonisod

Consequently, an increase in either xo or in w (or both) causes the absolute value (modulus) of pkvel to increase because in either case the right hand side of (3) increases (in absolute terms).

An illustration of the consequences of (2) and (3) is shown in Fig. 5.16. In column 1, critdamp() was used to increase xo in equal steps with the stiffness parameter held constant: in this case, there is a progressive increase in both the magnitude (between 0.75 and 1.5) and in the peak velocity, but the time of the peak velocity is unchanged at 1/w. In column 2, xo was held constant and w was varied in equal steps. In this case, the magnitude is the same, the peak velocity increases, and the time of the peak velocity relative to movement onset decreases.

[image: image18.png]an
1.0 1.2

0.8

43 oL 8 9 14

(ww) spnyubepy

o vy\\ of ¢«

T T T T T T T T
GG 05 S¥ OF g€ 0€ ST 0C

(sw) uopeing

Peak velocity (mm/5 ms)

The issue to be considered now is which parameter changes can best account for the observed faster tongue-body raising movement shown in Fig 5.13 for /kn/ compared with /kl/. This is at first sight not self-evident, since, as shown in Fig. 5.16, the greater peak velocity could have been brought about by a change either to xo or to w or to both. However, based on the above considerations the following two predictions can be made:

i. If the faster tongue-body movement in /kn/ is due to a change in stiffness and not in the target, then the time at which the peak velocity occurs should be earlier in /kn/ than in /kl/.

ii. If the faster tongue-body movement in /kn/ is due to a change in the target and not in the stiffness, then the ratio of the magnitude to the peak-velocity should be about the same for /kn/ and /kl/. The evidence for this can be seen in column 1 of Fig. 5.16 which shows a progressive increase in the peak velocity, as the magnitude increases. It is also evident from algebraic considerations. Since by (3) pkvel = -xow/e, then the ratio of the magnitude to the peak velocity is -xo/(xow/e) = -e/w. Consequently, if w is the same in /kn/ and /kl/, then this ratio for both /kn/ and /kl/ is the same constant which also means that the tokens of /kn/ and /kl/ should fall on a line with approximately the same slope of -e/w when they are plotted in the plane of the magnitude as a function of the peak velocity.

In order to adjudicate between these hypotheses - whether the faster tongue movement is brought about by a change to the target or to stiffness or quite possibly both - then the parameters for the raising gesture shown in Fig.5.15 need to be extracted from the trackdata object. Recall that a segment list over the interval defined by tongue body raising was made earlier:

tbraise.s = emu.query("ema5", "*", "TB=raise")

A trackdata object of tongue-body raising over this raising interval is given by:

tbraise.tb = emu.track(tbraise.s, "tb_posz")

The function dur() could now be used to retrieve the duration of the raising gesture (b in Fig. 5.15) from this trackdata object:

Raising gesture duration

raise.dur = dur(tbraise.tb)

For the raising gesture magnitude (a in Fig. 5.15), the positions at the onset and offset of the raising gesture need to be retrieved from the trackdata object and subtracted from each other. The retrieval of values at a single time point in a trackdata object can be done with dcut() in the Emu-R library. For example, the start time of the raising gesture for the first segment is given by start(tbraise.tb[1,]) which is 1105 ms so the position at that time is dcut(tbraise.tb[1,], 1105). The corresponding positions for all segments can be extracted by passing the entire vector of start times to dcut() as the second argument, thus:

pos.onset = dcut(tbraise.tb, start(tbraise.tb))

The positions at the offset of the raising gesture can be analogously retrieved with:

pos.offset = dcut(tbraise.tb, end(tbraise.tb))

The magnitude is the absolute difference between the two:

magnitude = abs(pos.onset - pos.offset)
The function dcut() could also be used to extract the peak velocity values at the peak velocity times from the objects already obtained in section in section 5.5.2. The peak velocity is:

peak velocity

pkvel = dcut(body.tbd, pkraisetimes)

Finally, the fourth parameter that is needed is the duration between the movement onset and the time of the peak velocity. Using the objects created so far, this is:

Time to peak velocity

timetopkvel = pkraisetimes - start(body.tbd)

If the faster tongue-body movement in /kn/ is due to a change in articulatory stiffness, then the time to the peak velocity should be earlier than for /kl/. The boxplot in Fig. 5.17 which can be created with:

boxplot(timetopkvel ~ son.lab)

shows no evidence for this although it must be said that it is difficult to conclude very much from these results, given the small number of tokens and somewhat skewed distribution for /kn/ (in which the median and upper quartile have nearly the same value).

The same figure shows /kn/ and /kl/ in the plane of the magnitude as a function of the peak velocity. The figure was plotted with:

plot(pkvel, magnitude, pch=son.lab)

[image: image19.png]10

010 000 010

A0l

0L G0 00 G0 O

apnydwy

30 40 50

20

30 40 50

20

10

Time (number of points)

Time (number of points)

The resulting display suggests that the tokens of /kn/ and /kl/ may well fall on the same line. Thus although there are insufficient data to be conclusive, the pattern of results in the right panel of Fig. 5.17 is consistent with the view that the ratio of the displacement to the peak velocity is quite similar for both /kn/ and /kl/.

These data support the view, then, that the faster tongue movement is not the result of changes to articulatory stiffness but instead to the target: informally, the data point to the conclusion that the raising gesture for the velar stop in /kn/ is bigger and faster than in /kl/.

5.6 Summary

The main purpose of this Chapter has to be make use of movement data in order to illustrate some of the principal ways that speech can be analysed in Emu-R. The salient points of this Chapter are as follows.

Segment lists and trackdata objects

A segment list is derived from an annotated database with emu.query() and it includes for each segment information about its annotation, its start time, its end time, and the utterance from which it was extracted respectively. The functions label() and utt() operate on a segment list to retrieve respectively the annotation and utterance name in which the segment occurs.

The function trackinfo() gives information about which signals are available for a database i.e., which trackdata objects can be made. The summary() function provides an overview of the contents either of a segment list or of a trackdata object.

A trackdata object contains speech frames and is always derived from a segment list. For each segment, the times of the first and last speech frame are also within the boundary times of the segment list. Successive speech frames are stored in rows and can be retrieved with the function frames() and their times with tracktimes().The functions start(), end(), dur() can be applied to segment lists or trackdata objects to obtain the segment's start times, end times and durations. There may be several columns of speech frames if several signal files are read into the same trackdata object (as in the case of formants for example).

Indexing and logical vectors

Emu-R has been set up so that vectors, matrices, segment lists, and trackdata objects can be indexed in broadly the same way. The annotation or duration of the nth segment is indexed with x[n], where x is a vector containing the segments' annotations or durations. Data for the nth segment from matrices, segment lists and trackdata objects is indexed with x[n,].

Logical vectors are the output of comparison operators and can be used to index segments in an analogous way: if temp is logical, x[temp] retrieves information about the annotations and durations of segments from vectors; and x[temp,] retrieves segment information from segment lists and trackdata objects.

Plotting speech data from trackdata objects

The function plot() (in reality plot.trackdata() when applied to a trackdata object) can be used to produce a plot of the speech frames as a function of time for any individual segment. The function dplot() is used for ensemble plots of speech frames as a function of time for several segments.

Numerical, mathematical and logical operations on trackdata objects

Trackdata objects can be handled arithmetically, logically and mathematically in very similar way to vectors for the functions listed under Arith, Compare, Ops, Math, Math2, and Summary in help(Ops). In all cases, these operations are applied to speech frames.

Applying functions to trackdata objects

trapply() can be used to apply a function to a trackdata object. tapply() is for applying a function to a vector separately for each category; and apply() can be used for applying a function separately to the rows and columns of a matrix.

Extracting data from trackdata objects at particular points in time

Speech frames are extracted with dcut() either at a single point in time or over an interval from a trackdata object.

Analysis of movement data

 In many cases, the movement of the supralaryngeal articulators in speech production exhibits characteristics of a damped sinusoid with a minimum and maximum displacement at articulatory landmarks. In the task-dynamic model, the movement between these extreme points of articulatory movement is the result of producing an articulatory gesture according to the characteristic output of a critically-damped mass spring system. The time interval between these points of minimum and maximum displacement corresponds to the gesture's duration. The absolute difference in position between the minimum and maximum displacement is the gesture's magnitude. Since the movement ideally follows a sinusoidal trajectory, there is one point at which the velocity is a maximum, known as the peak velocity. The peak velocity can be found by finding the time at which the first differenced movement signal has a peak. The time of the maximum or minimum displacement are the same as the times at which the velocity is zero.

In the equation of a critically damped mass-spring system that defines the gesture's trajectory, time not explicitly specified but is a consequence of specifying two parameters: the stiffness (or the spring/the articulator) and the target (change from equilibrium position). Changing the stiffness increases peak velocity but does not affect the magnitude. When the target is changed, then the peak velocity and magnitude change proportionally.

/kn/ vs. /kl/ clusters

The interval between the tongue dorsum and tongue tip closures is greater for /kn/ than for /kl/. In addition, /kn/ was shown to have a greater acoustic voice onset time as well as a bigger (and proportionately faster) tongue-dorsum closing gesture compared with /kl/.

5.7 Questions

1. This question is about exploring whether the data shows a relationship between the extent of jaw lowering and the first formant frequency in the first [a] component of [aɪ] of Kneipe, Kneipier or of [aʊ] of Claudia and Klausur. In general (see e.g., Lindblom & Sundberg, 1971), a more open vocal tract is accompanied both by F1-raising and by a lower jaw position.

1(a) Calculate the first two formants of this database (ema5) and store these in a directory of your choice. Modify the template file in the manner described in Chapter 2 so that they are visible to the database ema5. Since this is a female speaker, use a nominal F1 of 600 Hz.

1(b) Assuming the existence of the segment list k.s of word-initial /k/ segments as defined at the beginning of this Chapter and repeated below:

k.s = emu.query("ema5", "*", "Segment=k & Start(Word, Segment)=1")

how could you use emu.requery() to make a segment list, vow, containing the diphthongs in the same words, given that these are positioned three segments to the right in relation to these word-initial /k/ segments? One you have made vow, make a trackdata object vow.fm, for this segment list containing the formants.

1(c) Make a vector of word labels, word.l, either from k.s or from the segment list vow you created in 1(b). A table of the words should look like this:

table(word.l)

word.l

 Claudia Klausur Kneipe Kneipier

 5 5 5 5

1(d) Make a trackdata object, vow.jaw, containing vertical jaw movement data (in track jw_posz) for the segment list you made in 1(b).

1(e) The jaw height should show a trough in these diphthongs somewhere in the first component as the jaw lowers and the mouth opens. Use trapply() and peakfun() given below (repeated from section 5.5.2) to find the time at which the jaw height is at its lowest point in these diphthongs.

peakfun <- function(fr, fun=max)

{

 temp = fr == fun(fr)

 times = tracktimes(fr)

 times[temp]
}

1(f) Verify that the times you have found in (e) are appropriate by making an ensemble plot of vow.jaw color-coded for the diphthong type and synchronized at time of maximum jaw lowering found in 1(e).

1(g) Using dcut() or otherwise, extract (i) the first formant frequency and (ii) the jaw height at these times. Store the first of these as f1 and the second as jaw
1(h) Now plot F1 as a function of the jaw height minimum showing the word labels at the corresponding points. This can be done either with:

plot(f1, jaw, type="n", xlab="F1 (Hz)", ylab="Jaw position (mm)")

text(f1, jaw, word.l)

or with:

eplot(cbind(f1, jaw), word.l, dopoints=T, doellipse=F, xlab="F1 (Hz)", ylab="Jaw position (mm)")

where word.l is the vector of word labels you make in 1(c). To what extent would you say that there is a relationship between F1 and jaw height?

2. This question is about lip-aperture and tongue-movement in the closure of [p] of Kneipe and Kneipier.

2(a). Make a segment list, p.s, of the acoustic [p] closure (p at the Segment tier) of Kneipe or Kneipier.

2(b) Make a vector of word labels pword.l, parallel to the segment list in 2(a).

2(c) Make two trackdata objects from p.s: (i) p.ll, of the vertical position of the lower lip (track ll_posz) and (ii) p.ul, of the vertical position of the upper lip (track ul_posz).

2(d) One way to approximate the lip aperture using EMA data is by subtracting the vertical lower lip from the vertical upper lip position. Create a new trackdata object p.ap consisting of this difference between upper and lower lip position.

2(e) Use peakfun() from 1(e) above to create a vector, p.mintime, of the time at which the lip aperture in p.ap is a minimum.

2(f) Make an ensemble plot of the position of the lip-aperture as a function of time from p.ap color-coded for Kneipe vs. Kneipier and synchronized at the time of minimum lip aperture.

2(g) How could you work out the mean proportional time in the acoustic closure at which the lip-aperture minimum occurs separately for Kneipe and Kneipier? For example, if the acoustic [p] closure extends from 10 to 20 ms and the time of the minimum lip-aperture is 12 ms, then the proportional time is (12-10)/(20-10) = 0.2. The task is to find two mean proportional times, one for Kneipe and the other for Kneipier.

2(h) How would you expect the vertical (coronal) and horizontal (sagittal) position of the tongue mid (Fig. 5.4) sensor to differ between the words in the closure of [p], given that the segment following the closure is [ɐ] in Kneipe and [j] or [ɪ] in Kneipier? Check your predictions by producing two ensemble plots over the interval of the acoustic [p] closure and color-coded for these words (i) of the vertical tongue-mid position and (ii) of the horizontal tongue-mid position synchronized at the time of the lip-aperture minimum obtained in 2(g). (NB: the horizontal movement of the tongue mid sensor is in tm_posy; and lower values obtained from the horizontal movement of sensors denote more forward, anterior positions towards the lips).

3. The following question is concerned with the production differences between the diphthongs [aʊ] and [aɪ] in the first syllables respectively of Klausur/Claudia and Kneipe/Kneipier.

3(a) Make a boxplot of F2 (second formant frequency) at the time of the jaw height minimum (see 1(e)) separately for each diphthong (i.e., there should be one boxplot for [aʊ] and one for [aɪ]).

3(b) Why might either tongue backing or a decreased lip-aperture contribute to the tendency for F2 to be lower in [aʊ] at the time point in 3(a)? Make ellipse plots separately for the two diphthong categories with the horizontal position of the tongue-mid sensor on the x-axis and the lip-aperture (as defined in 2(d)) on the y-axis and with both of these parameters extracted at the time of the jaw height minimum identified in 3(a). To what extent might these data explain the lower F2 in [aʊ]?

4. This question is about the relationship between jaw height and duration in the first syllable of the words Kneipe and Kneipier.

4(a) Kneipe has primary lexical stress on the first syllable, but Kneipier on the second. It is possible that these lexical stress differences are associated with a greater duration in the first syllable of Kneipe than that of Kneipier. Make a segment list of these words between the time of maximum tongue-tip raising in /n/ and the time of minimum lip-aperture in /p/. (The way to do this is to make use of the segment list of the lower annotations for these words at the TT tier, and then to replace its third column, i.e. the end times, with p.mintime obtained in 2(e)). Before you make this change, use emu.requery() to obtain a parallel vector of word labels (so that each segment can be identified as Kneipe or Kneipier).

4(b) Calculate the mean duration of the interval defined by the segment list in 4(a) separately for Kneipe and Kneipier.

4(c) If there is less time available for a phonetic segment or syllable to be produced, then one possibility according to Lindblom (1963) is that that the target is undershot i.e., not attained. If this production strategy is characteristic of the shorter first syllable in Kneipier, then how would you expect the jaw position as a function of time over this interval to differ between these two words? Check your predictions by making an ensemble plot of the position of the jaw height color-coded according to these two words.

4(d) Derive from 4(c) a trackdata object vy of the velocity of jaw height over this interval.

4(e) Use emu.track() to make a trackdata object of the horizontal position of the jaw (jw_posy) over this interval and derive the velocity of horizontal jaw movement, vx, from this trackdata object.

4(f) The tangential velocity in some analyses of EMA data is the rate of change of the Euclidean distance in the plane of vertical and horizontal movement which can be in defined by:

[image: image2.wmf]
in which vy is the velocity of vertical movement (i.e. the trackdata object in (4d) for this example) and vx the velocity of horizontal movement (the trackdata object in (4e)). Derive the tangential velocity for these jaw movement data and make an ensemble plot of the tangential velocity averaged and color-coded for the two word categories (i.e., one tangential velocity trajectory as a function of time averaged across all tokens of Kneipe and another superimposed tangential velocity trajectory averaged across all tokens of Kneipier).

5.8 Answers

1(b)

vow = emu.requery(k.s, "Segment", "Segment", seq=3)

vow.fm = emu.track(vow, "fm")

1(c)

word.l = emu.requery(vow, "Segment", "Word", j=T)

1(d)

vow.jaw = emu.track(vow, "jw_posz")

1(e)

jawmin = trapply(vow.jaw, peakfun, min, simplify=T)

1(f)

dplot(vow.jaw, label(vow), offset=jawmin, prop=F)

1(g)

f1 = dcut(vow.fm[,1], jawmin)

jaw = dcut(vow.jaw, jawmin)

1(h)

[image: image20.png]e

€e [45 e 0g

(wur) uonssod [ejuozio

Kneipe

Kneipier

o~

20 30 40 50

10

-10

20 30 40 50

10

-10

Time (ms)

Time (ms)

Fig. 5.18 shows that the variables are not unrelated: thus in very general terms, lower jaw positions are associated with higher F1 values. The (negative) correlation is of course far from perfect (in fact, -0.596 and significant, as given by cor.test(f1, jaw)).

2. (a)

p.s = emu.query("ema5", "*", "[Segment = p ^ Word=Kneipe | Kneipier]")

2 (b)

pword.l = emu.requery(p.s, "Segment", "Word", j=T)

2(c)

p.ll = emu.track(p.s, "ll_posz")

p.ul = emu.track(p.s, "ul_posz")

2(d)

p.ap = p.ul - p.ll

2(e)

p.mintime = trapply(p.ap, peakfun, min, simplify=T)

2(f)

dplot(p.ap, pword.l, offset=p.mintime, prop=F)

2(g)

prop = (p.mintime-start(p.s))/dur(p.s)

tapply(prop, pword.l, mean)

[image: image21.png]T T T T
000z 008l 009F OOVl

(zH) 24

T
00z

T
0004

au

al

2(h)

You would expect the tongue mid position to the higher and fronter in Kneipier due to the influence of the preceding and following palatal segments and this is supported by the evidence in Fig. 5.19.

par(mfrow=c(1,2))

p.tmvertical = emu.track(p.s, "tm_posz")

p.tmhorz = emu.track(p.s, "tm_posy")
par(mfrow=c(1,2))

dplot(p.tmvertical, pword.l, offset=p.mintime, prop=F, ylab="Vertical position (mm)", xlab="Time (ms)", legend="bottomleft")

dplot(p.tmhorz, pword.l, offset=p.mintime, prop=F, ylab="Horizontal position (mm)", xlab="Time (ms)", legend=F)

3(a)

f2jaw = dcut(vow.fm[,2], jawmin)
Fig. 5.20

boxplot(f2jaw ~ label(vow))

[image: image22.png]Lip aperture (mm)

30

28

26

24

22

32

T
34

T T T T
36 38 40 42

Horizontal tongue position (mm)

44

3 (b)

vow.tmhor = emu.track(vow, "tm_posy")

vow.ul = emu.track(vow, "ul_posz")

vow.ll = emu.track(vow, "ll_posz")

vow.ap = vow.ul - vow.ll

tongue = dcut(vow.tmhor, jawmin)

ap = dcut(vow.ap, jawmin)

d = cbind(tongue, ap)

eplot(d, label(vow), dopoints=T, xlab="Horizontal tongue position (mm)", ylab="Lip aperture (mm)")

Overall, there is evidence from Fig. 5.21 of a more retracted tongue position or decreased lip-aperture at the jaw height minimum in [aʊ] which could be due to the phonetically back and rounded second component of this diphthong. Either of these factors is likely to be associated with the observed lower F2 in Fig. 5.20. In addition, Fig. 5.21 shows that [aʊ] seems to cluster into two groups and these are probably tokens from the two words Claudia and Klausur. Thus, the data show either that the lip aperture in [aʊ] is less than in [aɪ] (for the cluster of points around 24 mm on the y-axis) or that the tongue is retracted (for the points around 27-28 mm on the y-axis) relative to [aɪ] (but not both).

4 (a)

syll.s = emu.query("ema5", "*", "[TT = lower ^ Word = Kneipe | Kneipier]")

word.l = emu.requery(syll.s, "TT", "Word", j=T)

syll.s[,3] = p.mintime

[image: image23.png]Position (mm)

24

-25

-26

-27

-28

— Kneipe
Kneipier

50

100

Time (ms)

150

T
200

4(b)

tapply(dur(syll.s), word.l, mean)

Kneipe Kneipier

201.6592 161.0630

Yes: the first syllable of Kneipier, where syllable is defined as the interval between tongue-tip raising in /n/ and the point of minimum lip-aperture in /p/, is some 40 ms less than that of Kneipe.

4(c)
syll.jaw = emu.track(syll.s, "jw_posz")

dplot(syll.jaw, word.l, ylab="Position (mm)")

[image: image24.png]Tangential velocity (mm /5 ms)

0.3

0.2

0.1

0.0

—— Kneipe
— = Kneipier

50 100 150 200

Time (ms)

There does seem to be evidence for target undershoot of vertical jaw movement, as Fig. 5.22 suggests.

4(d)

vy = trapply(syll.jaw, diff, returntrack=T)

4(e)

syll.jawx = emu.track(syll.s, "jw_posy")

vx = trapply(syll.jawx, diff, returntrack=T)

4(f)

tang = sqrt(vy^2 + vx^2)
Fig. 5.23

dplot(tang, word.l, average=T, ylab="Tangential velocity (mm / 5 ms)", xlab="Time (ms)")

Fig. 5.1 The tongue tip (TT), tongue mid (TM), and tongue-back (TB) sensors glued with dental cement to the surface of the tongue.

Fig. 5.2. The Carstens Medizinelektronik EMA 'cube' used for recording speech movement data.

Fig. 5.3. The sagittal, coronal, and transverse body planes. From �HYPERLINK "http://training.seer.cancer.gov/module_anatomy/unit1_3_terminology2_planes.html"�http://training.seer.cancer.gov/module_anatomy/unit1_3_terminology2_planes.html�

Fig. 5.4 The position of the sensors in the sagittal plane for the upper lip (UL), lower lip (LL), jaw (J), tongue tip (TT), tongue mid (TM), and tongue back (TB). The reference sensors are not shown.

Fig. 5.5 The annotation structure for the ema5 database in which word-initial /k/ at the Segment tier is linked to a sequence of raise lower annotations at both the TT and TB tiers, and in which raise at the TT tier is linked to raise at the TB tier, and lower at the TT tier to lower at the TB tier.

Fig. 5.6 Relationship between various key functions in Emu-R and their output.

Fig. 5.7. Boxplots showing the median (thick horizontal line), interquartile range (extent of the rectangle) and range (the extent of the whiskers) for VOT in /kl/ (left) and /kn/ (right).

Fig. 5.8. Positions of the tongue body (dashed) and tongue tip (solid) between the onset of tongue-dorsum raising and the offset of tongue tip lowering in a /kl/ token.

Fig. 5.9. Vertical position of the tongue tip in /kn/ and /kl/ clusters synchronized at the point of maximum tongue body raising in /k/ (t = 0 ms) and extending between the tongue tip raising and lowering movements for /n/ (solid) or /l/ (dashed).

Fig. 5.10. Tongue body (solid) and tongue tip (dashed) trajectories averaged separately for /kn/ (black) and /kl/ (gray) after synchronization at t = 0 ms, the time of maximum tongue-body raising for /k/.

Fig.5.11 A sinusoid (left) and its first derivative (right) obtained by differencing. The vertical lines in the sinusoid on the left correspond to the times at which the first derivative is zero valued. The time at which the first derivative has a maximum value (dotted line on the right) is the time at which the greatest rate of change in the sinusoid.

Fig. 5.12. Tongue-body position (left) and velocity (right) as a function of time over an interval of the raising and lowering tongue body movement in the /k/ of /kn/ (solid) and /kl/ (dashed, gray) clusters.

Fig. 5.13. The same data as in the right panel of Fig. 5.12, but additionally synchronized at the time of the peak-velocity maximum in the tongue-back raising gesture of individual segments (left) and averaged after synchronization by category (right).

Fig. 5.14. The position (left) and velocity (right) of a mass in a critically damped mass-spring system with parameters xo = 1, w = 0.05.

Fig. 5.15. Tongue-body raising and lowering in producing /k/. a: magnitude of the raising gesture. b: Duration of the raising gesture. c: Time to peak velocity in the raising gesture. d: magnitude of the lowering gesture. e: Duration of the lowering gesture. f: Time to peak velocity in the lowering gesture.

Fig. 5.16. Position (row 1) and velocity (row 2) as a function of time in varying the parameters xo and w of equation (1). In column 1, xo was varied in 20 equal steps between 0.75 and 1.5 with constant w = 0.05. In column 2, w was varied in 20 equal steps between 0.025 and 0.075 while keeping xo constant at 1. The peak velocity is marked by a point on each velocity trajectory.

Fig. 5.17. Data from the raising gesture of /kl/ and /kn/. Left: boxplot of the duration between the movement onset and the time to peak velocity. Right: the magnitude of the raising gesture as a function of its peak velocity.

Fig. 5.18. Jaw position as a function of the first formant frequency at the time of the lowest jaw position in two diphthongs showing the corresponding word label at the points.

Fig. 5.19. Vertical (left) and horizontal (right) position of the tongue mid sensor over the interval of the acoustic closure of [p] synchronized at the time of the lip-aperture minimum in Kneipe (black) and Kneipier (dashed, gray).

Fig. 5.20. Boxplot of F2 in [aɪ] and [aʊ] at the time of the lowest position of the jaw in these diphthongs.

Fig. 5.21. 95% confidence ellipses for two diphthongs in the plane of the horizontal position of the tongue-mid sensor and lip-aperture with both parameters extracted at the time of the lowest vertical jaw position in the diphthongs. Lower values on the x-axis correspond to positions nearer to the lips. The lip-aperture is defined as the difference in position between the upper and lower lip sensors.

Fig. 5.22. Jaw height trajectories over the interval between the maximum point of tongue tip raising in /n/ and the minimum jaw aperture in /p/ for Kneipe (solid) and Kneipier (gray, dashed)� NOTEREF _Ref97349212 \h ��8�.

Fig. 5.23. Tangential velocity of jaw movement between the time of maximum tongue tip raising in /n/ and the lip-aperture minimum in /p/ averaged separately in Kneipe (solid) and Kneipier (dashed, gray)� NOTEREF _Ref97349212 \h ��8�.

� See �HYPERLINK "http://www.phonetik.uni-muenchen.de/~hoole/5d_examples.html"�http://www.phonetik.uni-muenchen.de/~hoole/5d_examples.html� for some examples.

� The script is mat2ssff.m and is available in the top directory of the downloadable ema5 database.

� For the sake of brevity, I will not always include the various options (see help(par)) that can be included in the plotting function and that were needed for camera ready b/w images in this book. Thus Fig. 5.9 was actually produced as follows:

par(mfrow=c(1,2)); lwd=lty=c(1,2); col=c(1, "slategray")

xlab = "Time (ms)"; ylab="Vertical tongue tip position (mm)"

dplot(tip.tt, son.lab, prop=F, offset=end(tbraise.s), bty="n", ylab=ylab, xlab=xlab, col=col, lwd=lwd, lty=lty)

dplot(tip.tt, son.lab, prop=F, offset=end(tbraise.s), average=T, bty="n", xlab=xlab, col=col, lwd=lwd, lty=lty, legend=F)

� The velocity signals are also available in the same directory to which the ema5 database was downloaded although they have not been incorporated into the template file and these can be used to find peaks and troughs in the movement signals, as described in section 5.5.2.

� As discussed earlier, the output of differencing is one element less than the number of elements to which differencing was applied. As a result, the times of the differenced values are delayed by a duration equal to the interval between speech frames. So if the time of the speech frames to which differencing is applied is 0, 5, 10, 15... ms, then the times of the frames in the differenced signal are 5, 10, 15... ms. If you wanted to adjust the latter such that they are between those of the speech frames to which differencing was applied, i.e. 2.5, 7.5, 12.5... ms, then this could be done for this example as follows:

body.tbd$ftime = body.tbd$ftime - 2.5

rownames(body.tbd$data) = as.numeric(rownames(body.tbd$data))-2.5

� It is possible, although not very likely, that there is more than one peak-velocity value. In order to be sure that the function only returns one of these, the last line of peakfun() could be modified to times[temp][1] which will have the effect that only the first maximum is returned.�

� The units are not important for this example but in fact, if the sampling frequency, fs is defined, then the natural frequency is w * fs/(2 * pi) Hz (see e.g. Harrington & Cassidy, 1999, p. 160). Thus, if the default of 100 points in the critdamp() function is assumed to take up 1 second (i.e, fs = 100 Hz), then the default w = 0.05 has a frequency in Hz of 0.05 * 100/(2 * pi) i.e just under 0.8 Hz.

� The following additional plotting parameters were used: col=c(1, "slategray"), lwd=c(1,2), lty=c(1,2), bty="n"

