Pattern Oriented Programming with C++/Pearce

6. Presentation

Presentation

Overview

User interfaces are assemblies built out of presentation components. Presentation components not only include visible components such as consoles, windows, menus, and toolbars, but also hidden components such as command processors and view handlers. These components depend on lower level components such as graphical contexts, event notification mechanisms, and I/O streams:

[image: image1.wmf]

Communication

Business

Medical

Manufacturing

Frameworks

Reflection

Persistence

Presentation

Graphics

Transactions

Concurrency

Synchronization

Notification

Containers

Services

Virtual Platform (

VP++)

Virtual Machine

Input/Output

Kernel

Workflow

Application

Client/Server

Most desktop applications have user interfaces, and although one application can be very different from another, the structure and operation of their user interfaces will often be quite similar. For example, word processors and spread sheets are very different, yet both have movable, resizable windows; File, Edit, and Help menus; and toolbars with buttons that duplicate menu selections.

Recall from Chapter 3 that a framework is a partially completed application that captures the common features of a family of applications. A vertical framework captures the many common features of a family of closely related applications. A horizontal framework captures the few common features of a family of diverse applications. An application framework is a horizontal framework used for developing desktop applications. Among other things, an application framework provides a generic, customizable user interface.

In this chapter we will develop several versions of an application framework that introduce and use a variety of important design patterns.

User Interfaces

Not all programs need user interfaces. Batch systems quietly read data from input files and write data to output files; embedded systems read data from sensors and write data to controllers; and servers read and write data through network connections to remote clients. By contrast, an interactive system perpetually responds to user inputs, and therefore must provide some type of user interface. The two most common types of user interfaces are console user interfaces (CUIs) and graphical user interfaces (GUIs).

Console User Interfaces

A CUI, also called an interpreter or a command shell, perpetually prompts the user for a command, reads the command, executes the command, then displays the result:

while (more)
{

cin.sync(); // flush cin's buffer

cout << prompt;

cin >> command;

if (command == quit)

more = false;

else

{

result = execute(command, context);

cout << result << endl;

}
}

A command may be a simple list of tokens or it may have a complex grammatical structure, in which case it will need to be parsed after it is read. The context is a state-preserving structure such as an environment, store, or file system, and execute() is a virtual function that will be defined in a framework customization.

For example, a simple calculator could be implemented as an interpreter that evaluates arithmetic commands such as "add pi 42". A calculator's context is a symbol table containing bindings of names to numbers. The calculator's execute() function might be table-driven or might use a multi-way conditional to determine which specialized execute function should be called:

if (command == "add") result = execAdd(symbolTable);
else if (command == "mul") result = execMul(symbolTable);
else if (command == "sub") result = execSub(symbolTable);
else if (command == "div") result = execDiv(symbolTable);
// etc.

DOS command consoles, UNIX C, Korn, and Bourne shells, and LISP interpreters are all examples of console user interfaces.

Graphical User Interfaces

GUIs were pioneered at Xerox PARC and were first made popular by the Macintosh operating system. A typical GUI consists of a window containing a number of GUI components or widgets. Examples of GUI components include controls such as buttons, scroll bars, list boxes, and text boxes, but also include sub-windows such as a menus, dialog boxes, tool bars, and views.

An application with a GUI is event- or message-driven. The operating system places low-level mouse and keyboard messages into a message queue that is perpetually monitored by the application's message broker. When a mouse click occurs, a "mouse clicked" message is placed in the message queue, where the broker forwards it to the GUI component currently under the mouse cursor. When a key is pressed, a "key pressed" message is placed in the message queue, where the broker forwards it to the GUI component that currently has keyboard focus:

while (more)
{

message = msgQueue.dequeue(); // idles if queue is empty

if (message == quit)

more = false;

else // dispatch message to its target:

message->getTarget()->handleMessage(message);
}

A message might encapsulate its source, target, type (e.g., mouse click, key press, etc.), and its content (e.g., 'q' key pressed, left button double clicked, etc.):

class Message
{

int type;

GUIComponent *target, *source;

string content;

// etc.
};

Each GUI component has a message handler that is automatically called when a message is received. The message handler determines the type of the message, then calls a more specialized handler that can be redefined in a derived classes. Message handlers may be table-driven or control-driven (i.e., implemented using multi-way conditionals):

void GUIComponent::handleMessage(Message* msg)
{

switch (msg->getType())

{

case MouseClick: handleMouseClick(msg); break;

case MouseMove: handleMouseMove(msg); break;

case KeyPress: handleKeyPress(msg); break;

// etc.

default: defaultHandler(msg);

}
}

The specialized handler may create a new, high-level message such as "Cancel Button Clicked", then send this message through the broker to another GUI component such as a dialog box that contains the Cancel button.

User Interface Design Principles

Recall that in Chapter 1 we made a distinction between the usefulness and usability of an application, our first two design goals. A useful system solves the right problems, while a usable system is easy to learn and use. By our definition usefulness and usability can be independent. There are many examples of useless systems that received a lot of short-term attention because they had appealing user interfaces. There are just as many examples of useful systems that were ignored or despised because of a poorly designed user interfaces.

Studies show that while some people become more productive when they use a computer, others actually become less productive [LAN]. Not surprisingly, aside from people under the age of twelve, the people who become more productive tend to be people with good analytic reasoning skills, good short-term memories, good typing skills, and previous experience using computers. In short, people who either are or could be programmers.

This is partly because programmers who design user interfaces often don't have much experience with psychology, culture gaps, ergonomics, graphic design, marketing, and other important user interface design factors. A programmer's model of human-computer interaction is often based on his own experiences, experiences that suggest nothing could be more natural than typing Ctrl-Alt-Del to log on to a computer!

User interface design is discussed at length in [SHN] and [LAN], while [SOM] contains an entire chapter on the topic. We will be content to summarize a few principles from these sources:

Familiarity

The user interface should reflect the application domain. Graphical user interfaces should employ metaphors and icons that relate to the application domain. For example, an on-screen control panel should resemble the physical control panel it will replace. Messages, prompts, and commands should use simple, natural language and application domain terminology. Follow look-and-feel standards such as OSF/Motif or OPEN LOOK if possible.

Consistency

Similar sequences of actions should produce similar results, and similar situations should require similar sequences of actions. Input formats should be the same as output formats. Messages, prompts, and commands should employ identical terminology, syntax, and style.

Recoverability

Allow users to undo and redo operations whenever possible. Allow users to abort operation sequences. Always restore the application to its original state.

Robustness

Design systems to be tolerant of user errors. If possible, prevent users from making errors. For example, deactivate menu selections when they don't make sense in the application's current state. Validate all user inputs. If the input doesn't make sense, clearly explain the problem, give the user some suggestions, then start over. Error messages should be positive and constructive in tone. Avoid error messages like "Error of Type 6", "invalid input", and "NO, YOU IDIOT!". If recovery from an error is impossible, give the user a chance to save his data before the application terminates.

Customizability

The look and feel of a user interface should depend on an explicitly represented user profile, which is easy to change. A user profile contains information about the user's preferences, job, skill level, authorization level, and locale. A locale is an ethno-linguistic region, such as French-speaking Quebec. Locales not only determine the user interface's language, but can also determine character sets, calendars, monetary units, and formats of dates, addresses, and phone numbers.

Implementing User Interfaces

There are several problems associated with developing graphical user interfaces:

1. GUIs are large and complicated. It's not uncommon for a GUI to represent between 30% and 60% of an application's source code and programming effort [SHN].

2. GUIs are usually platform dependent, hence must be rewritten each time the application is ported to a new platform or window library. Probably the main feature behind Java's popularity is that Java GUIs are platform independent.

3. User interfaces tend to be the most volatile part of an application. Changes to the user interface are far more frequent than changes to the application logic. Also, the same application layer might need several different user interfaces.

4. User interface design is a specialty. Not only do user interface developers need to know about ergonomics and psychology, they also need to know about window and stream libraries.

With these problems in mind, probably the most important principle in user interface design is that the module encapsulating application data and logic should be independent of the user interface module. If the two modules are tightly coupled, then changes to the user interface might propagate to the application module. Porting such an application to another platform or window library might require rewriting the entire program! Of course this principle also applies to applications with console user interfaces.

Independence of presentation logic and application logic is even important at the level of individual functions. For example, consider the following definition:

double cube(double num)
{

double result = num * num * num;

cout << "cube = " << result << endl; // bad idea!

return result;
}

While the "cube = ..." message might be considered user-friendly when cube() is called by a human, it becomes annoying screen clutter when it is called by another function, which is by far the more common case. This severely limits the reusability of this function. For example, we would never want to use this function in an application with a GUI. To put it another way, cube() tries to do too much. It not only computes the cube of num (application logic), it also communicates with the user (presentation logic). It would be more reusable if it left presentation decisions to its callers.

The Model-View-Controller Architecture

The Model-View-Controller design pattern formalizes the presentation-application independence principle:

Model-View-Controller [POSE]

Other Names

MVC, Model-View-Controller architecture, Model-View architecture, Model-View Separation pattern, Document-View architecture.

Problem

The user interface is the component most susceptible to change. These changes shouldn't propagate to application logic and data.

Solution

Encapsulate application logic and data in a model component. View components are responsible for displaying application data, while controller components are responsible for updating application data. There are no direct links from the model to the view-controllers.

Static Structure

Note that navigation from views and controllers to their associated model is allowed, but not the reverse. A model is independent of its views and controllers, because it doesn't know about them:

[image: image2.wmf]

View

draw()

Model

state

setState()

getState()

Controller

handleMsg()

1

1

*

*

Clearly models are application modules, while views and controllers belong to the user interface module. Typically, a view is a special kind of window that displays application data, while a controller is a menu item, tool bar button, text box, scroll bar, or other component that accepts user inputs. Decoupling views and controllers is a bit anachronistic, because there are usually a small number of views but a large number of controllers, so we often speak of view-controllers as a single component. Although the Model-View-Controller pattern is typically applied to GUIs, we will see that it can also be applied to CUIs.

For example, a model for a spread sheet might be a two dimensional array of cells containing data and equations for a family's budget:

[image: image3.wmf]April

May

June

Total

Rent

$1,200.00

$1,200.00

$1,200.00

$3,600.00

Food

$850.00

$795.00

$810.00

$2,455.00

Utilities

$560.00

$510.00

$490.00

$1,560.00

Total

$2,610.00

$2,505.00

$2,500.00

$7,615.00

Budget

The user can choose to view this data in many ways: bar charts, pie graphs, work sheets, etc. In addition, sub windows such as menus and tool bars contain controllers that allow the user to modify the budget's data. Here's a possible object diagram:

[image: image4.wmf]

:

Budget

:

PieChart

:

MenuBar

:

ToolBar

:

BarGraph

To take another example, a model component for a word processor might be a document containing a chapter of a book. The user can view the document as an outline (outline view), as separate pages (page layout view), or as a continuous page (normal view):

[image: image5.wmf]

:

Chapter

:Outline

:

MenuBar

:

ToolBar

:Layout

The Redraw Problem

The Model-View-Controller pattern presents us with another design problem: How will views know when it's time to redraw themselves? (A view's draw() function must be called when the application data changes.) For example, if the user changes the spread sheet budget data by pushing a button on a tool bar, then how will the views be notified that the budget data has changed and that they should redraw themselves? How will the bar graph and pie chart windows in our object diagram know to call their draw() functions? Clearly the model can't tell its views to redraw themselves because it doesn't know about them.

This is a classical event notification problem. Any of the event notification patterns described in Chapter Two can be used to solve it. For example, we can make models publishers and views subscribers:

[image: image6.wmf]

View

draw()

update()

Model

state

setState()

getState()

Controller

handleMsg()

1

1

*

*

Subscriber

update()

Publisher

subscribe()

unsubscribe()

notify()

*

1

When a new view is created, it subscribes to the model that is currently open for editing. If a controller subsequently changes the model's data, the inherited notify() function is called. This calls the update() function of each registered subscriber. In the pull variant, the update() function calls the draw() function, which fetches the model's modified data, then uses this information to redraw itself:

[image: image7.wmf]

state

draw()

subscribe()

subscribe()

setState()

update()

getState()

draw()

getState()

state

update()

:Controller

:Model

:View

:View

MFC's Document-View Architeture

Microsoft Foundation Classes (MFC) is an application framework for building desktop applications for the MS Windows platforms (Windows NT, Windows 9x, Windows CE, Windows 2000). All MFC applications are based on a variant of the Model-View-Controller architecture called the Document-View architecture. (The document is the model.)

Suppose we want to use MFC to develop a primitive word processor. The skeleton of an MFC application is created by a code generator called the App Wizard. App Wizard asks the user a few questions about the application to be built, such as "what is the name of the application?", then generates several header and source files. We could begin by using the App Wizard to create an application called "WP" (for "Word Processor").

If we accept all default settings proposed by the App Wizard, then a number of class declarations will be generated for us, including CWPDoc and CWPView:

class CWPDoc : public CDocument { ... }; // in WPDoc.h
class CWPView : public CView { ... }; // in WPView.h

We can see the principle relationships and members of these four classes in a class diagram:

[image: image8.wmf]

m_viewList

m_pDocument

CDocument

m_bModified

UpdateAllViews()

AddView()

RemoveView()

SetModifiedFlag()

CView

OnUpdate()

OnDraw()

CWPView

OnUpdate()

GetDocument()

OnDraw()

CWPDoc

m_text

Serialize()

Erase()

Insert()

Append()

*

1

CDocument and CView are predefined MFC framework classes analogous to our Publisher and Subscriber classes, respectively. CWPDoc and CWPView are newly generated customization classes analogous to our Model and View classes, respectively. Of course the key member functions in the derived classes are stubs that must be filled in by the programmer. (Code entered by the programmer will be shown in boldface type.)

Word processor documents will be represented by instances of the CWPDoc class. We might edit the CWPDoc class declaration by adding a member variable representing the text of the document, and member functions for inserting, appending, and erasing text:

class CWPDoc : public CDocument
{
private:

CString m_text;
public:

CString GetText() { return m_text; }

void Erase(int start, int end);

void Insert(int pos, CString text);

void Append(CString text);

// etc.
};
,

A document can notify each view in its view list (m_viewList) of data member changes by calling UpdateAllViews(0). This is typically called after a call to SetModifiedFlag(true), which sets the inherited m_bModified flag. If this flag is set to true when the user attempts to quit the application before saving the application data, a "Save changes?" dialog box will automatically appear. For example, here's how we might implement the CWPDoc's Append() member function:

void CWPDoc::Append(CString text)
{

m_text += text;

SetModifiedFlag(true);

UpdateAllViews(0);
}

Serializing and deserializing application data is the job of the Serialize() member function in the CWPDoc class. This function is automatically called when "Open" or "Save" is selected from the application's File menu. MFC's CArchive class is similar to our ObjectStream class. Here's the code we would add to this stub:

void CWPDoc::Serialize(CArchive& ar)
{

if (ar.IsStoring())

{

ar << m_text;

}

else

{

ar >> m_text;

}
}

CView is an abstract class containing virtual member functions called OnUpdate() and OnDraw(). These functions are analogous to our update() and draw() functions, respectively. Implementations for these functions must be provided in the CWPView class.

The OnDraw() function receives a pointer to a graphical context, which is called a device context in MFC and is represented by instances of the CDC class (see Programming Note 6.4). The view finds its document (hence the data to be displayed) by following the inherited m_pDocument pointer returned by CWPView::GetDocument().

Here's our implementation of OnDraw(), which simply draws the document's text within the rectangular region (an MFC CRect object) of the device context's canvas that is currently being displayed through the view's window (this region is called the client rectangle in MFC):

void CWPView::OnDraw(CDC* pDC)
{

CWPDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc);

CRect region; // = some rectangular region

GetClientRect(®ion); // region = client rectangle

CString text = pDoc->GetText(); // = text to draw

pDC->DrawText(text, ®ion, DT_WORDBREAK);
}

The document notifies all open views of changes to its text by calling UpdateAllViews(). This function traverses the document's view list, calling each view's OnUpdate() function. The CView class implements OnUpdate() as a virtual function with an empty body, but we can redefine OnUpdate() in the CWPView class. Obviously, OnUpdate() should call OnDraw(), but how can we make a valid device context argument to pass to OnDraw()? All of this is done automatically by CView::Invalidate():

void CWPView::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint)
{

Invalidate(); // calls OnDraw(new CDC())
}

Finally, we can add a keyboard handler that will be automatically called each time the user presses a key. The handler simply appends the character typed to the document's text:

void CWPView::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{

CWPDoc* pDoc = GetDocument();

pDoc->Append(nChar);
}

Objects that can receive messages (such as "Q key pressed") are instances of MFC classes with associated message maps. A message map is simply a table that lists each message an instance might be interested in, and which member function (i.e., handler) to call if and when the message is received (message maps will be discussed at length in Chapter 8.)

MFC programmers rarely make manual entries in message maps. Instead, they use a powerful Visual C++ tool called the Class Wizard, which allows a programmer to select a message, then automatically generates a stub for the corresponding handler and makes an entry in the message map:

[image: image9.png]MFC ClassWizard

Wossageaps | MenborVarables | Autonon | Actve Evets | Cissiio |

Project

Class pame:

[P

Object Ds:

ID_APP_ABOUIT 3
I T

ID_EDIT_COPY
ID_EDIT_CLT
ID_EDIT_PASTE
ID_EDIT_UNDO

Member functons:

CurPiew

CAPesice\POPACHRENWPWRYiew h, G, \POF\ChpBWPAWFVien cpp

Messages:

Add Class... ~

AFireien)

Delete Function

[WirHela
|WM_CANCELMODE

W CAPTURECHANGED
WM CHAR
[WH_CONTEXTMENL
[WM_COPYDATA

WM _CREATE

V_OrBegiPirting

V. OrDraw
¥/ OrEndPrining
V. OnPreparePrining

Descipton

Flsses keyboard events t focus window

Code

0

II;I_I_I;LIL

Cancel

We can now build an run our word processor. Note that we can edit several documents simultaneously by repeatedly selecting "New" or "Open ..." from the File menu. We can also open multiple views of any given document by repeatedly selecting "New Window" from the Window menu:

[image: image10.png](Fle Edt Vew Widow Hep |

squid eating dough in a polyethylene bag
is fast and bulbous. Got me?

An Application Framework (AFW version 1.0)

MFC and other application frameworks use the Model-View-Controller architecture refined by the Publisher-Subscriber pattern. We can build our own application framework. Version 1.0 of AFW (Application FrameWork) is described in this section. Several improved versions will be described later. Unfortunately, the standard C++ library doesn't include support for GUI components such as views and controllers, so our views must use cout as a graphical context, and we can only have a single console controller that perpetually reads messages from cin. This means that while our framework will have an architecture capable of supporting a graphical user interface, functionally it will be an interpreter.

Our initial design refines the Model-View-Controller architecture with the Publisher-Subscriber pattern:

[image: image11.wmf]

Model

modified

Controller

handleMsg()

handleExpt()

View

draw()

Subscriber

Publisher

Persistent

framework

customization

1

1

*

*

views

controllers

model

*

1

What responsibilities can the framework assign to the model? After all, the main responsibility of a model is the encapsulation of application data and logic that is specified in various customizations of the framework. Our Model class serves as a target for the View and Controller model references. It also brings together the Publisher and Persistent class defined earlier through multiple inheritance. Normally, it is the responsibility of the model to serialize and deserialize itself. Later we will see other useful features we can add to the framework's Model class. For now, we add a Boolean flag, modified, which is set to true when the application's data has changed since its last serialization.

The entire framework is declared in a single header file:

// afw.h (Application Framework, version 1.0)
#ifndef AFW_H
#define AFW_H
#include <iostream>
#include <string>
#include "d:\pop\util\utils.h" // getResponse()
#include "d:\pop\util\pubsub.h" // Publiser & Subscriber
#include "d:\pop\util\obstream.h" // Persistent & ObjectStream
using namespace std;
typedef ostream GraphicalContext; // simulation

class Model: public Publisher, public Persistent { ... };
class Controller { ... };
class View: public Subscriber { ... };

#endif

Models

Our model class extends the Publisher and Persistent classes. Recall that the Persistent class contains several pure virtual functions:

Persistent* Persistent::clone();
void Persistent::serialize(ObjectStream& os);
void Persistent::deserialize(ObjectStream& os);

We can't implement these in our Model class, because at this point we don't know what data needs to be serialized and deserialized, therefore, like the Persistent class, our Model class is abstract.

Our Model class could keep track of its version, author, title, date, and source file as well as provide support for "help" and "about" commands. We will add these features in the final version of the application framework. For now, we add a protected flag called modified. Member functions of derived classes that alter data that can't be recomputed must set this flag to true, while the serialize() and deserialize() implementations must set this flag to false. Thus, the flag is true whenever there are unsaved changes.

class Model: public Publisher, public Persistent
{
public:

Model() { modified = false; }

bool getModified() const { return modified; }
protected:

bool modified; // = unsaved changes?
};

Controllers

Buttons, scroll bars, menu selections, list controls, and edit controls are common examples of controllers. The behavior of a controller— what a specific button does when it is clicked, for example— is determined by a message handler function implemented in controller-derived classes. This function is called by the application's message broker, which perpetually forwards messages such as "Left mouse button clicked" from the operating system to their controller targets.

We are simulating a graphical user interface using a console user interface. Therefore, we will only have a single controller, the console. Like GUI controllers, the behavior of our console controller will be determined by its handleMsg() member function, which must be implemented in all derived classes. As a convenience to the derived classes, the Controller base class also maintains a pointer to the model.

class Controller
{
public:

Controller(Model *m = 0) { myModel = m; }

void messageLoop(const string& prompt = "-> ");
protected:

virtual void handleMsg(const string& msg) = 0;

virtual void handleExpt(runtime_error e); // exception handler

Model *myModel;
};

Implementation (from afw.cpp)

Most GUIs have a message broker that maintains a pointer to the active model. The message loop is a broker member function. Adding a broker to our framework is a bit excessive, because we only have a single controller. Instead, we add a message loop member function to the Controller class that can be implemented in the framework. The implementation is too complicated to be inline, so it is placed in the framework source file, afw.cpp:

// afw.cpp
#include "afw.h"

void Controller::messageLoop(const string& prompt)
{

bool more = true;

string msg; // the message

while(more)

{

cin.sync(); // flush cin's buffer

cout << prompt;

cin >> msg;

if (msg == "quit")

if (myModel->getModified())

more = !getResponse("Unsaved changes, quit anyway?");

else

more = false;

else

try { handleMsg(msg); }

catch(runtime_error e) { handleExpt(e); }

} // while

cout << "bye\n";
}

A meta command is a message that can be handled by the framework, hence requires no application-specific knowledge. For now we only have a single meta command, "quit", which uses the model's modified flag to warn the user if there are unsaved changes, then terminates the message loop. All other messages are passed to the controller's pure virtual handleMsg() function. Of course the message may or may not make sense. We can't determine this in the framework, so the handleMsg() function is called inside a try-catch block. If, at some point, the customization determines that the message doesn't make sense, it can throw a runtime error exception, which will be caught and handled in the framework. The framework's virtual exception handling function can be redefined by derived classes. For now, it simply prints the gripe encapsulated by the exception to the standard error stream:

void Controller::handleExpt(runtime_error e);
{

cerr << "Error, " << e.what() << endl;
}

Views

In a GUI a view is a window that displays application data. The actual display is created by a member function called draw(), which arranges graphics and text on a graphical context that interfaces with drivers that control monitors or printers. Of course draw() must be implemented in derived classes, because the framework doesn't know what data is to be displayed. In our simulation, the graphical context is simply cout.

Recall that Subscriber is an abstract base class. All derived classes must implement an update() function that requires two pointer parameters, who and what. The who parameter points to the publisher, in this case the model, that has changed state, while the what parameter can point to information about the state change. A view is only associated with one model. Our View class maintains a member variable that points to this model, so update() can ignore its who parameter and use this pointer instead. When a view is created, it is subscribed by its constructor. When a view is destroyed, it is unsubscribed by its destructor. We provide a default implementation of update, which simply passes cout, a "graphical context", to draw():

class View: public Subscriber
{
public:

View(Model* m = 0)

{

myModel = m;

if (myModel) myModel->subscribe(this);

}

virtual ~View() { if (myModel) myModel->unsubscribe(this); }

virtual void draw(GraphicalContext& gc) = 0;

virtual void update(Publisher* who, void* what) { draw(cout); }
protected:

Model* myModel;
};

Brick CAD (version 1.0)

CAD/CAM stands for "Computer Aided Design/Computer Aided Manufacturing". CAD/CAM systems are used by engineers to design everything from spark plugs to skyscrapers. In this case the model is the object being designed. The engineer can create different types of views, such as two dimensional cross sections, three dimensional wire frame and solid surface views, schematics, blueprints, or component views:

[image: image12.wmf]:Jumbo Jet

(Model)

:Engine View

:Interior View

:Wiring Diagram

Let's build a CAD/CAM system by customizing our application framework, AFW 1.0. Our application will be called Brick CAD, version 1.0, because it will be used to design bricks. Yes, this is a joke, no one would really use a CAD/CAM system to design bricks, but our goal is simply to demonstrate how the application framework is customized; we don't want to be distracted by the details of a complicated application domain such as designing jumbo jets. On the other hand, a CAD/CAM system for designing jumbo jets could and probably would be developed by customizing a framework that employed a design similar to AFW.

Bricks are pretty simple, their main attributes are height, width, and length. Later on we will add other attributes such as weight, volume, and cost. For now, we provide three types of views: a top view that shows the length and width of a brick, a side view that shows the width and height, and a front view that shows the height and length:

[image: image13.wmf]

a brick

top view

side view

front view

A special console controller will handle messages that allow users to alter the brick's height, width, and length. The following class diagram shows how Brick CAD customizes AFW:

[image: image14.wmf]

Model

modified

Controller

handleMsg()

handleExpt()

View

draw()

Subscriber

Publisher

Persistent

framework

customization

1

1

*

*

Brick

height

width

length

serialize()

deseri

alize()

Console

Controller

Top

View

Front

View

Side

View

1

Brick CAD declarations are contained in a single header file, brick.h, which includes the application framework, afw.h:

// brick.h (version 1.0)
#ifndef BRICK_H
#define BRICK_H
#include "afw.h" // the application framework

class Brick: public Model { ... };
class TopView: public View { ... };
class SideView: public View { ... };
class FrontView: public View { ... };
class ConsoleController: public Controller { ... };

#endif

Bricks

The Brick class is derived from the Model class, which is derived from the abstract Persistent class. This means we must provide implementations of the pure virtual serialize(), deserialize() and clone() functions. We must also provide a static variable that points to a brick prototype object, which will be cloned in the ::deserialize(Persistent* x) global function to create new bricks. Fortunately, the implementation of the clone() function is completely routine:

class Brick: public Model
{
public:

Brick(double h = 20, double w = 30, double l = 40)

{

height = h; width = w; length = l;

}

double getLength() const { return length; }

double getWidth() const { return width; }

double getHeight() const { return height; }

void setHeight(double h);

void setWidth(double w);

void setLength(double l);

void serialize(ObjectStream& os);

void deserialize(ObjectStream& os);

Persistent* clone() { return new Brick(*this); }

static char *hcMsg, *wcMsg, *lcMsg; // change descriptors
private:

double height, width, length;

static Persistent *myPrototype;
};

Implementation (from brick.cpp)

Brick CAD is implemented in brick.cpp, which begins by defining and initializing the static prototype variable. Recall that this is really just an excuse for creating a prototype brick and installing it in the static prototype table maintained by the Persistent class:

// brick.cpp
#include "brick.h"

// create and install a prototype brick
Persistent* Brick::myPrototype =

Persistent::addPrototype(new Brick());

Normally, implementations of update() ignore their what parameters, and simply query the publisher directly about the state change through the who parameter (this was called the pull-variant of Publisher-Subscriber pattern in Chapter Two). Not all model state changes are important to all views. For example, the top view only displays the width and length of a brick, not its height. Therefore, top views don't need to repaint themselves when the brick's height is changed. But how can a view know what aspect of the model's state has changed? This can be accomplished by passing a "description" of the state change to the view's update function through its what parameter. We pre-define three standard descriptions as static Brick variables:

// state change descriptions:
char *Brick::hcMsg = "Height Changed",
 *Brick::wcMsg = "Width Changed",
 *Brick::lcMsg = "Length Changed";

The setWidth(), setLength(), and setHeight() member functions are similar, so we will only show one of them. First the new width is validated. If it is negative, an exception is thrown. This exception will be caught and handled in the framework. Otherwise, the width is changed, the protected, inherited modified flag is set to true indicating that at least one change has occurred since the last time the brick model was saved, and the notify() function inherited from the Publisher base class is called with the wcMsg parameter:

void Brick::setWidth(double w)
{

if (w <= 0)

throw runtime_error("width must be positive");

width = w;

modified = true;

notify(wcMsg);
}

The serialize() and deserialize() functions are fairly routine. They call the global ::serialize(double x) and ::deserialize(double x) functions declared in obstream.h to respectively serialize and deserialze the brick's dimensions. In both cases the modified flag is set to false indicating that all recent changes have been saved:

void Brick::serialize(ObjectStream& os)
{

::serialize(os, height);

::serialize(os, width);

::serialize(os, length);

modified = false;
}

void Brick::deserialize(ObjectStream& os)
{

::deserialize(os, height);

::deserialize(os, width);

::deserialize(os, length);

modified = false;
}

Top Views

Top, Side, and Front view classes are similar, so we will only show one of them:

class TopView: public View
{
public:

TopView(Brick* b): View(b) {}

void draw(GraphicalContext& gc);

void update(Publisher* who, void* what);
};

Note that the constructor passes its brick pointer parameter to the View constructor called in its initializer list. Recall that the view constructor uses this parameter to initialize its protected myModel member variable.

Implementation (from brick.cpp)

Our draw() function simply sends the length and width of its associated brick to the output stream, gc. Given a proper graphical context, we would have attempted to draw a red rectangle of width myBrick->getWidth() and length myBrick->getLength():

void TopView::draw(GraphicalContext& gc)
{

Brick *myBrick = (Brick*)myModel;

double x = myBrick->getLength();

double y = myBrick->getWidth();

gc << "Top View (length = " << x;

gc << ", width = " << y << ")\n";
}

Unlike the inherited update() function, which simply calls draw(cout), our update() function first compares its what parameter with the standard change descriptions to see if it should even bother calling draw(). Recall that changes to the brick's height do not affect the top view. Although this doesn't save much time here, it would save lots of time if the model was large or the view complicated:

void TopView::update(Publisher* who, void* what)
{
// only paint if length or width changes

if (!strcmp((char*) what, Brick::wcMsg) ||

 !strcmp((char*) what, Brick::lcMsg))

draw(cout);
}

Console Controller

Brick CAD's console controller must implement the pure virtual handleMsg() function inherited from the Controller base class.

class ConsoleController: public Controller
{
public:

ConsoleController(Brick* b = 0): Controller(b) {}
protected:

void handleMsg(const string& msg);
};

Note that the constructor passes its brick pointer to the base class constructor, which uses it to initialize its protected myModel member variable.

Implementation (from brick.cpp)

The console controller's message handler interprets three types of user input messages:

"length DIMENSION"
"height DIMENSION"
"width DIMENSION"

where DIMENSION is any positive real number argument. These messages are interpreted as commands to change the brick's length, height, and width, respectively, to DIMENSION.

In each case, only the message operator, "height", "width", or "length" is passed to handleMsg() by the message loop. This happens because the message loop reads the message using the string extraction operator:

cin >> msg; // msg is of type string

The string extraction operator reads until it encounters the white space between the operator and DIMENSION, so our message handler may assume that DIMENSION is still sitting in cin's buffer. The dimension is extracted, and the brick is modified. If the message is unrecognized, a standard exception is thrown back to the framework's message loop:

void ConsoleController::handleMsg(const string& msg)
{

Brick *myBrick = (Brick*) myModel;

double dim; // a brick dimension

if (msg == "height")

{

cin >> dim;

myBrick->setHeight(dim);

}

else if (msg == "width")

{

cin >> dim;

myBrick->setWidth(dim);

}

else if (msg == "length")

{

cin >> dim;

myBrick->setLength(dim);

}

else

throw runtime_error(what + msg);
}

The message loop of a more reusable framework would read the entire message using the global getline() function from the standard library:

getline(cout, msg);

This would give message handlers the opportunity to employ fancy parsing algorithms to determine what action to perform.

Test Driver

Our test driver creates a brick, a console controller, and a couple of top views, reminding us that users can create multiple views of a particular type:

// test.cpp
#include "brick.h"

int main()
{

Brick b;

TopView tv1(&b), tv2(&b);

//SideView sv1(&b);

//FrontView fv1(&b), fv2(&b);

ConsoleController c(&b);

c.messageLoop();

return 0;
}

Program Output

The program output shows two top views painting themselves when the length and width are changed, but not when the height is changed (why?). We can also see various error messages printed by the framework's exception handler:

-> length 21
Top View (length = 21, width = 30)
Top View (length = 21, width = 30)
-> width 19
Top View (length = 21, width = 19)
Top View (length = 21, width = 19)
-> height 10
-> weight 99
Error, unrecognized message: weight
-> width –19
Error, width must be positive
-> quit
Unsaved changes, quit anyway? (y/n) -> y
bye

Resource Managers

Programs normally have complete control over the objects they create. This is fine provided these objects are not shared or sensitive resources such as threads, windows, and databases. Giving a program complete control over such a resource could be risky. What would happen, for example, if a program created a fake desktop, modified a database while another program was querying it, or created a run away thread that couldn't be interrupted?

One way to prevent such problems is to associate a resource manager to each resource class (resource objects are instances of resource classes). The resource manager alone is responsible for creating, manipulating, and destroying instances of that class. Resource managers provide a layer of indirection between programs and the resources they use:

Resource Manager [ROG]

Other Names

Object manager, lifecycle manager

Problem

In some situations we may need to hide from clients the details how certain resources are allocated, deallocated, manipulated, serialized, and deserialized. In general, we may need to control client access to these objects.

Solution

A resource manager is responsible for allocating, deallocating, manipulating, tracking, serializing, and deserializing certain types of resource objects. A resource manager adds a layer of indirection between clients and resources. This layer may be used to detect illegal or risky client requests. In addition, the resource manager may provide operations that can be applied to all instances of the resource such as "save all", statistical information such as "get count", or meta-level information such as "get properties".

Static Structure

[image: image15.wmf]

Manager

save()

load()

open()

close()

serviceA()

serviceB()

etc.

Resource

serviceA()

serviceB()

etc.

Storage

Client

1

*

*

1

open

A resource manager is a singleton that maintains a table of all instances of the resource that are currently open for use:

class Manager
{
public:

int open(); // resource factory method

bool close(int i);

bool serviceA(int i);

bool serviceB(int i);

// etc.
private:

map<int, Resource*> open;

bool authorized(...); // various parameters
};

If the caller is authorized, the open() function creates a new resource object, places it in the table, then returns the index to the caller:

int Manager::open()
{

if (!authorized(...)) return -1; // fail

int key = open.size();

open[key] = new Resource();

return key;
}

Clients must use this index number when subsequently referring to the resource. For example, here's how an authorized client deallocates a previously allocated resource:

bool Manager::close(int i)
{

if (!authroized(...)) return false; // fail

delete open[i];

open.erase(i);

return true; // success
}

Here's how an authorized client invokes the serviceA() method of a previously allocated resource:

bool Manager::serviceA(int i)
{

if (!authorized(...)) return false; // fail

open[i]->serviceA();

return true; // success
}

Authorization can have a variety of meanings:

bool Manager::authorized(...)
{ /*

does the requested resource exist?

does the client have access rights to it?

is it currently available?

is the proposed operation legal?

*/
}

An operating system provides resource managers for most classes of system resources:

[image: image16.wmf]

Window

Manager

Kernel

Driver

Driver

Driver

Hardware

File

Manager

Thread

Manager

Memory

Manager

Platform API

Application

Application

Application

Window Managers

Although applications may have objects representing windows and other GUI components, these are usually just handles that wrap references to bodies that directly represent GUI components (recall the handle-body idioms discussed in Chapter 4). Like files, threads, and memory, GUI components are resources that are owned and managed by the operating system. A handle representing a window in an application program merely delegates requests such as move, minimize, close, etc. through the operating system's window manager to its associated body:

[image: image17.wmf]

AppWindow

(Handle)

SysWindow

(Body)

1

1

Operating System

Application

For example, a window in an MFC application is an instance of the CWnd class:

class CWnd
{
public:

HWND m_hWnd; // "points" to a system window

// etc.
};

m_hWnd is an index into a table of open windows. Most CWnd member functions simply pass this index to the operating system along with the requested operation.

A window manager is a resource manager that manages the lifecycle, appearance, size, position, and state of all windows on the desktop. For example, when the mouse button is clicked, the operating system might consult the window manager to determine which window was under the mouse cursor at the time of the click. Creating, destroying, hiding, moving, selecting, resizing, and repainting windows can also be window manager jobs. The window manager gives a GUI its "look and feel". There are many well known window managers that are commonly used by the X Windows system: Motif window manager (mwm), OPEN LOOK window manager (olwm), and Tom's window manager (twm). X Windows programmers can even create their own window managers. The Macintosh window manager manages all open Macintosh windows. The NT object manager manages NT windows, as well as other resources such as files, processes, and threads.

View Handler

A view handler is an application-level window manager that implements window commands. Window commands are meta commands that are applied to one or more of an application's open windows. For example, all MFC applications provide a Window menu containing the window commands: "New Window", "Cascade", "Tile", and "Arrange Icons". Operations such as tiling and cascading must be done by a view handler rather than views, because they require knowledge of the size and position of all open views. There is even a view handler design pattern:

View Handler [POSA]

Other Names

Window Manager, View Manager

Problem

Applications that allow multiple views often need to impose some uniformity on the appearance, attributes, and behavior of these views.

Certain meta operations such as tiling and cascading require the ability to query and manipulate all open views.

In some situations it may not make sense to have model-view-controller models be publishers.

Solution

Uniformity can be imposed by requiring all views to be derived from an abstract view base class.

Introduce a component called a view handler that maintains a list of all open views. The view handler implements all view meta operations. The view handler can also notify views when they need to repaint themselves, thus models don't need to be publishers if they maintain a link to the view handler.

AFW (version 2.0)

Version 2.0 of our application framework replaces the Publisher-Subscriber pattern with the View Handler pattern. Models don't need to be publishers anymore. Instead, each model maintains a reference to the view handler. When the model changes state, it calls the view handler's notifyAllViews() function, which calls the draw() function of each open (i.e., registered) view window.

The View Handler pattern also gives us an opportunity to simulate attributes and functions commonly provided by view windows such as move() and resize().

[image: image18.wmf]

Model

modified

Controller

handleMsg()

handleExpt()

View

size

position

state

move()

resize()

open()

close()

draw()

etc.

Persistent

framework

customization

ViewHandler

tile()

cascade()

notifyAllViews()

etc.

1

*

1

1

*

*

creates

views

model

controllers

*

1

Views

Typical attributes of a view, or any type of window for that matter, include its position on the desktop—this might be specified by the x- and y-coordinates of its upper left corner in the coordinate space of the desktop –its size (e.g., its height and width), and its state. The state of a view might be closed (invisible), maximized (occupying the entire desktop), minimized (reduced to an icon), or resizable (small enough to be resized and moved):

enum ViewState { CLOSED, MINIMIZED, MAXIMIZED, RESIZABLE };

In our framework only the view handler will be authorized to create and destroy views. We will use the prototype pattern discussed in Chapter 5 to provide the view handler with a smart factory method for creating views. To discourage unauthorized creation of views, we make the constructors protected:

class View
{
public:

virtual ~View() {}

void move(int x, int y);

void resize(int x, int y);

ViewState getViewState() const { return state; }

string getType() const;

void open(); // state = RESIZABLE

void close(); // state = CLOSED

void maximize(); // state = MAXIMIZED

void minimize(); // state = MINIMIZED

virtual void draw(GraphicalContext& gc) = 0;

virtual View* clone() const = 0;

void setModel(Model* m) { myModel = m; }
protected:

ViewState state;

int xc, yc; // position (of upper left corner)

int height, width; // size

View(Model* m = 0);

Model* myModel;
};

The View Handler

The main jobs of a view handler are:

1. Maintain a list of all open views. One of these views is designated as the selected view. This is the view that currently has input (i.e., keyboard and mouse) focus.

2. Provide member functions for creating and destroying views.

3. Notify all open views when their associated model changes state.

Because we hold open views in an STL list, it is easier if we refer to the members of this list using iterators instead of pointers. For example, the selected view is simply an iterator that "points" to the selected view:

list<View*> views; // list of open views
list<View*>::iterator selectedView; // has input focus

View creation uses the Prototype Pattern (see Chapter 5) to implement a smart factory method, openView(), that uses type information to decide what type of view to create. Of course this means that we need a static prototype table and a static addPrototype() function that allows users to add prototypes to the table:

View* openView(string type, Model* m); // factory method
typedef map<string, View*> ProtoTable;
static View* addPrototype(View* p); // add to protoTable
static ProtoTable protoTable;

It would probably be a mistake to allow programs to have multiple view handlers. How would tiling and cascading operations be implemented if views were managed by different view handlers? Would a model be associated with just one of the view handlers? The ViewHandler class employs the Singleton Pattern (see Chapter 3) to avoid answering these questions. Recall that a singleton class provides a static factory method as the only possible way to create instances, however the factory method always returns pointers to the same object.

Here is the complete declaration of the ViewHandler class:

class ViewHandler
{
public:

static ViewHandler* openViewHandler() // singleton factory method

{

if (!theViewHandler)

theViewHandler = new ViewHandler();

return theViewHandler;

}

void notifyAllViews(); // to repaint themselves

View* openView(string type, Model* m = 0); // view factory method

void closeView(View* v); // remove and destroy

void selectView(View* v);

void tileViews() {}

void cascadeViews() {}

void closeAllViews();

typedef map<string, View*> ProtoTable;

static View* addPrototype(View* p); // i.e., to protoTable
private:

list<View*> views; // all open views

list<View*>::iterator p, selectedView; // has input focus

static ViewHandler* theViewHandler; // the singleton

ViewHandler()

{

p = selectedView = views.end();

noView = "View not registered";

}

ViewHandler(const ViewHandler& vh) {}

~ViewHandler() {}

static ProtoTable protoTable;

string noView; // a standard error message
};

Implementation of the ViewHandler member functions is left as an exercise.

Models

The important changes to the Model class involve replacing the Publisher base class with a view handler pointer:

class Model: public Persistent
{
public:

Model(ViewHandler *vh = 0)

{

myViewHandler = vh;

modified = false;

}

bool getModified() const { return modified; }

void tileViews();

void cascadeViews();

void openView(const string& type);

// other view handler delegations
protected:

bool modified;

ViewHandler* myViewHandler;
};

We can also add member functions that delegate view meta commands to the view handler:

// from afw.cpp
void Model::tileViews() { myViewHandler->tileViews(); }
void Model::cascadeViews() { myViewHandler->cascadeViews(); }
void Model::openView(const string& type)
{

myViewHandler->openView(type, this);
}
// etc.

The Controllers

To test the view handler we add handlers for view meta commands to our message loop:

// afw.cpp
#include "afw.h"

void Controller::messageLoop(const string& prompt)
{

bool more = true;

string arg, msg; // the message

while(more)

{

cin.sync(); // flush cin's buffer

cout << prompt;

cin >> msg;

if (msg == "quit")

if (myModel->getModified())

more = !getResponse("Unsaved changes, quit anyway?");

else

more = false;

else if (msg == "tile") myModel->tileViews();

else if (msg == "cascade") myModel->cascadeViews();

else if (msg == "view")

{

cin >> arg; // read view type

myModel->openView(arg);

cout << "done\n";

}

// other view meta commands

else

try { handleMsg(msg); }

catch(runtime_error e) { handleExpt(e); }

} // while

cout << "bye\n";
}

Transaction Processors

A resource manager invokes resource methods in response to the commands of its clients. But often a client isn't interested in executing a single command. A transaction is a sequence of commands, perhaps directed at different resource managers, that must be executed atomically. This means that if an error occurs in the middle of executing the sequence, the effects of executing the earlier commands must be undone or rolled back. For example, moving money from one bank account to another is a transaction that consists of two commands:

bank1.withdraw(fromAccount, amount);
bank2.deposit(toAccount, amount);

If an error occurs while executing the deposit() command, the withdraw() command must be undone.

A transaction processor is a software component that executes transactions from multiple clients directed at multiple resource managers:

Transaction Processor
Other Names

TP, transaction monitor, transaction server

Problem

A transaction is a sequence of resource manager commands that must be executed atomically. This can be tricky if access to the resource managers must be synchronized.

Solution

A transaction processor (TP) co-ordinates client requests that involve the services of several resource managers. The TP provides a start() function that indicates that a transaction is about to be executed. If an exception occurs during the execution of the transaction, the TP's abort() function can be called. This will undo all effects of the transaction. The effects of a transaction aren't realized until the TP's commit() function is called. The effects of a committed transaction are durable, and can only be undone by a compensating transaction.

Static Structure

[image: image19.wmf]

TP

start()

commit()

abort()

Resource

Manager

Client

*

1

*

transaction

1

Command Processors

A command processor is something like an application-level transaction processor. Instead of directly modifying the model in response to user inputs, controllers create commands and forward them to a centralized command processor. It is the job of the command processor to execute the commands.

One advantage of this arrangement is that it makes it easy to provide several types of controllers that do the same thing. For example, most menu selections have corresponding tool bar buttons and hot key combinations that perform the same action. More advanced users prefer the tool bar or keyboard because they are faster to use, while beginners can make the GUI simpler by hiding the tool bar. We can avoid coding redundancy by having multiple controllers create the same type of command. Thus a menu selection and its corresponding toll bar button can create the same type of command object:

[image: image20.wmf]PrintMenu

PrintButton

creates

PrintCommand

Model

prints

PrintKey

Controllers send the commands they create to a centralized command processor object. It is the job of the command processor to execute the commands it receives, but it can do a lot more. For example, by keeping track of all commands, the command processor can implement meta commands such as undo and redo. All of this is summarized in the command processor pattern:

Command Processor [POSA] [Go4]

Other Names

Commands are also called actions and transactions.

Problem

A framework wishes to provide an undo/redo mechanism, and perhaps other features such as scheduling, concurrency, roll back, or history mechanisms, or the ability to associate the same action to different types of controllers (e.g. for novice and advanced user).

Solution

Create an abstract base class for all commands in the framework. This base class specifies the interface all concrete command types must implement.

Commands are created by controllers such as menu selections, buttons, text boxes, and consoles. The commands are forwarded to a command processor, which can store, execute, undo, redo, and schedule them.

In the smart command variant of the pattern, commands know how to execute themselves. In the dumb command variant commands are simply tokens, and the command processor must know how to execute them.

Scenarios

When a user clicks a button, selects a menu item, or activates some other type of controller, the controller creates an appropriate command object, then asks the command processor to execute it. If we are using dumb commands, then either the command processor must know how to execute the command, which implies some knowledge of the application, or the command processor must ask some other component, such as the model, to execute the command. In the smart command variant, the commands are objects that know how to execute and undo themselves:

[image: image21.wmf]

setState()

execute()

command

makeCommand()

activates

execute()

undo()

undo()

setState()

:CommandProcessor

:Command

:Model

:Controller

:User

AFW (version 3.0)

Version 3.0 of our application framework extends version 2.0 by adding commands and a command processor:

[image: image22.wmf]

undo

stack

redo

stack

Model

modified

Controller

handleMsg()

handleXpt()

makeCommand()

View

size

position

state

move()

resize()

open()

close()

draw(

)

etc.

Pers

istent

framework

views

ViewManager

tile()

cascade()

notifyAllViews()

etc.

1

*

1

1

*

*

creates &

stores

CommandProcessor

execute()

undo()

redo()

Command

execute()

undo()

creates

1

1

1

1

*

*

customization

commands

controllers

model

*

1

The command processor maintains two command stacks. After the command processor executes a command, it pushes it onto its undo stack. The command processor responds to the "undo" meta command by removing the top command from the undo, calling its undo() function, then pushing it onto its redo stack. The command processor responds to the "redo" meta command by removing the top command on the redo stack, executing it, then pushing onto the undo stack. In version 2.0 the model was responsible for delegating view meta commands such as "tile" and "cascade" to the view handler. In version 3.0 we move these responsibilities to the command processor. In this way the command processor will be responsible for executing all meta commands. Also note that a command factory method has been added to the controller class.

Command

A command maintains a pointer to a model and has virtual execute() and undo() member functions. Because execute() is a pure virtual function, it must be defined in derived classes. Presumably, the implementation would modify the model through its inherited model pointer.

class Command
{
public:

Command(const string& nm = "???", Model* m = 0)

{

myModel = m;

name = nm;

undoable = true;

}

string getName() { return name; }

bool getUndoable() { return undoable; }

virtual void execute() = 0;

virtual void undo() {}; // override if undoable
protected:

Model* myModel;

string name;

bool undoable; // can clear in derived classes
};

Not all commands are undoable. For example "print", "send", and "quit" can't be undone. The protected undoable flag can be set to false in derived classes representing such commands. These classes can simply accept the default implementation of undo().

Command Processor

The main job of the command processor is to execute meta commands. View meta commands are executed by delegating them to the view handler. (This means we can now remove these functions from our Model class.) Two stacks are used to implement the undo and redo meta commands.

As with view handlers, it would probably be a mistake for an application to have more than one command processor. Would each command processor have different undo and redo stacks? Which one would execute the undo and redo meta commands? To avoid answering these questions, we use the Singleton Pattern (from Chapter 3).

class CommandProcessor
{
public:

static CommandProcessor*

makeCommandProcessor(ViewHandler* vh = 0)

{

if (!theCommandProcessor)

theCommandProcessor = new CommandProcessor(vh);

return theCommandProcessor;

}

void execute(Command* cmmd);

string undo();

string redo();

void cascade() { myViewHandler->cascadeViews(); }

void tile() { myViewHandler->tileViews(); }

void openView(const string& type, Model* m)

{

myViewHandler->openView(type, m);

}

// and other view handler delegations ...
private:

static CommandProcessor* theCommandProcessor;

CommandProcessor(ViewHandler* vh = 0) { myViewHandler = vh; }

CommandProcessor(const CommandProcessor& cp) {}

~CommandProcessor() {}

stack<Command*> undoStack, redoStack;

ViewHandler* myViewHandler;
};

Implementation of CommandProcessor member functions is left as an exercise.

Controller

We must add a virtual factory method, makeCommand(), to the Controller class. We also add a pointer to the command processor:

class Controller
{
public:

Controller(Model *m = 0, CommandProcessor* cp = 0)

{

myModel = m;

what = "Unrecognized message: ";

myCP = cp;

}

void messageLoop(const string& prompt = "-> ");
protected:

void handleMsg(const string& msg)

{

Command *cmmd = makeCommand(msg);

myCP->execute(cmmd);

}

virtual Command* makeCommand(const string& msg) = 0;

virtual void handleExpt(runtime_error e);

Model *myModel;

string what; // a standard error message

CommandProcessor* myCP;
};

Momentos

Programmers must implement execute() and undo() for each type of command. This can be a lot of work if there are many types of commands. If models are small, or if the amount of data encapsulated by the model that can't be calculated is small, then it may make sense to simply push the model's data onto the undo stack before each command is executed. Then the undo operation simply restores the data into the model. Much of this work can be done in the framework. But there is a problem: how does the framework know what type of data is encapsulated by the model? The momento pattern solves this problem:

Momento [Go4]

Other Names

Token

Problem

The command processor pattern assumes commands know how to undo themselves. Using this pattern in a framework can mean a lot of work for customizers who must provide implementations of undo() in each of their concrete command classes. Alternatively, the framework's command processor or command base class could simply save the internal state of the model before each command is executed. If the command is undone, then the former state of the model can easily be restored. Unfortunately, the internal state of a model is usually private. Allowing the framework to access this data would violate encapsulation.

Solution

A momento is an object created by a model that encapsulates some or all of its internal state at a given moment in time. The momento can be stored inside of a command or command processor without allowing access to its encapsulated data. The object that stores the momento is called a caretaker. The undo() function simply passes the momento back to the model, where the encapsulated data is extracted and used to restore the model's state to what it was at the time the momento was created.

Static Structure

When a command is executed, it first asks its model to make a momento encapsulating its state information. Although the command has no idea what's inside the momento, it keeps the momento until the command is undone:

[image: image23.wmf]Model

state

makeMomento()

restoreState()

Momento

formerState

Command

undo()

execute()

creates

1

1

1

*

AFW (version 3.1)

Version 3.1 of our framework extends version 3.0 by adding momentos to afw.h:

class Momento
{
public:

virtual ~Momento() {}
};

Momentos don't do much in the framework. It's the derived class in the customization that will provide functionality.

The new Model class provides a virtual factory method for creating momentos, and a function that extract's the state information encapsulated by a momento:

class Model: public Persistent
{
public:

Model() { modified = false; }

bool getModified() const { return modified; }

virtual void restoreState(Momento* m) {};

virtual Momento* makeMomento() { return 0; };
protected:

bool modified;
};

The undo() function no longer needs to be virtual in the framework's Command class. Each command is also the caretaker of a momento:

class Command
{
public:

Command(const string& nm = "???", Model* m = 0)

{

myModel = m;

myMomento = 0;

name = nm;

undoable = true;

}

void undo();

virtual void execute() = 0;

// etc.
private:

Momento* myMomento;
};

Programming Notes

Programming Note 6.1: Graphical Contexts

At the lowest level a GUI component is simply a rectangular region of the screen that contains a graphical image— a picture of a button or a graph, for example. It is the responsibility of each GUI component to provide a draw() member function that displays its image on the screen. But different monitors have different sizes, resolutions, and command interfaces. How can draw() be implemented so that it is monitor-independent?

One technique is to provide a virtual graphics device called a graphical context:

class GraphicalContext
{
public:

GraphicalContext(...); // allocate tools

~GraphicalContext(); // deallocate tools

void drawText(...);

void drawPoint(...);

void drawLine(...);

void drawPolygon(...);

void drawEllipse(...);

// etc.

Pen* setPen(Pen* newPen);

Color* setColor(Color* newColor);

// etc.
private: // drawing tools

Canvas* canvas;

Pen* pen;

Brush* brush;

Font* font;

Color* color;

// etc.
};

A graphical context encapsulates a set of drawing tools (pen, brush, font, etc.), which are used by its drawing methods (drawEllipse(), drawPolygon(), etc.) to create images on its initially blank canvas. The member functions send commands to a driver that translates them into monitor-specific commands to turn various pixels on and off.

Programmers can change the behavior of the drawing methods by changing the tools they use. For example, programmers can vary the thickness, color, and style (solid, dashed, etc.) of lines by using the setPen() function to switch pens:

Pen* GraphicalContext::setPen(Pen* newPen)
{

Pen* oldPen = pen;

pen = newPen;

return oldPen; // to be restored later?
}

All GUI components are instances of classes derived from an abstract Component base class containing a pure virtual draw() function:

class Component
{
public:

virtual void draw(GraphicalContext* gc) = 0;

void redraw();

// etc.
};

The base class usually provides a parameterless redraw() function that creates a graphical context (or asks an operating system resource manager to create one), passes it to the draw() function, then, after the graphics are drawn, destroys it (or asks a resource manager to destroy it):

void Component::redraw()
{

GraphicalContext* gc = GCManager->create(...);

draw(gc);

GCManager->destroy(gc);
}

The redraw() function of each GUI component will be called automatically each time the operating system decides that the GUI needs to be redrawn— when the application window is resized or uncovered, for example. Programmers can also call redraw() when application data changes.

Of course it will be the job of the derived classes to implement draw(). For most of the standard components— buttons, menus, text boxes, etc. —the draw() function is predefined. However, for view components— i.e., components that display application data —it is the programmers job to implement draw().

In MFC, the draw() function is called CWnd::OnDraw() and graphical contexts are called device contexts, which are wrapped by instances of the CDC class:

void CDemoView::OnDraw(CDC* pDC) { ... }

In Java the draw() function is called Component.paint() and graphical contexts are instances of the Graphics class:

void Component.paint(Graphics g) { ... }

CWnd::Invalidate() would be the MFC equivalent of redraw(), while Component.repaint() would be the Java equivalent.

Programming Note 6.2: The Composite Pattern

Hierarchies, composite structures, file systems (i.e., systems of directories and files), parse trees, and GUIs are all examples of tree-like structures. In general, a tree is a collection of two types of nodes: parents and leafs. A parent node is associated with one or more nodes called its children, while a leaf node is childless and usually bears information (in other formulations all nodes bear information). Line segments connect parents to their children. Every node in a tree is the child of a parent except the root node. The concept of parent and child can be extended to ancestor and descendant.

Parser Example

A parser translates an expression represented as a sequence of tokens:

x * 12 + y / 19 = z

into a parse tree or syntax tree:

[image: image24.wmf]

=

z

+

*

x

12

/

y

19

In a parse tree like this one, parent nodes are labeled by operator tokens, while leaf nodes are labeled by literals and identifiers. Unlike the corresponding token sequence, the parse tree makes operator precedence explicit.

GUI Example

As another example, consider the following simple GUI:

[image: image25.png]. Untitled - Demo [_[CIx]
Fie Edt Help

s my view window

R

We can regard this GUI as a composite structure: a frame containing a view window, a toolbar window containing buttons, and a menu bar window containing menus that contain menu items. As such, we can represent it as a tree:

[image: image26.wmf]

Frame

View

Menu Bar

File Menu

Edit Menu

Copy

Item

Cut

Item

Paste

Item

Help Menu

Toolbar

Save

Button

Print

Button

In this tree the GUI's frame is the root node, which, along with Toolbar, Menu Bar, and Edit Menu, are parent nodes. All of the others are leafs. We can say that the Menu Bar is an ancestor of the Cut Item, or, equivalently, that the Cut Item is a descendant of the Menu Bar.

The Composite Design Pattern

The composite design pattern is normally used to describe the relationship between a composite structure (i.e., an assembly, aggregate, or whole) and its components or parts:

Composite [Go4], [POSA]

Other Names

Whole-Part

Problem

Sometimes a composite structure must be viewed as a single object that encapsulates its components. Other times we need to change or analyze the individual components, which may also be composite structures.

Solution

If we call components without parts atoms, then we can view Atom and Composite as specializations of an abstract Component class. We define aggregation as the relationship between Composite and Component.

Static Structure

In some formulations each component maintains a reference to its parent:

[image: image27.wmf]

Component

(

Node

)

Atom

(Leaf)

data

Composite

(Parent)

1

*

parent

Problems

Problem: AFW (version 2.0)

Implementing View Member Functions

The view constructor initializes the myModel member variable and sets an arbitrary default position, size, and state. The move() and resize() functions only work if the view is in the resizable state. Both functions force the view to repaint itself. (Of course what's missing from our implementation is calling the move and resize functions of the associated view object controlled by the operating system.) The maximize(), minimize(), close() and open() functions are similar.

Implementing ViewHandler Member Functions

View notification uses our pre-declared list iterator, p, to traverse the list of open views calling the draw() function of each.

The selected view has input focus. Most keyboard and mouse click messages are sent to this view's handler.

The closeView() function locates the view to be closed. The view is erased from the list, then deleted from memory:

The openView() function is a factory method that creates new views by searching the prototype table (using the search() function defined in our stl.h file, see Appendix 2) for a prototype. The prototype is then cloned. The clone is given a model pointer, added to the open view list, and made the selected view.

Problem: Brick CAD (version 2.0)

Version 2.0 of Brick CAD, our unlikely CAD/CAM system for designing bricks, utilizes version 2.0 of our application framework. Only a few changes to version 1.0 need to be made.

To start, Brick constructors must accept an additional view handler pointer as input. This is passed to Model(), the base class constructor, in the initializer list. Recall that Model() uses this pointer to initialize its myViewHandler member variable:

Brick::Brick(ViewHandler* vh = 0,

double h = 20, double w = 30, double l = 40)
:Model(vh)
{

height = h; width = w; length = l;
}

The "setter" functions call the ViewHandler::notifyAllViews() function instead of Publisher::notify():

void Brick::setWidth(double w)
{

if (w <= 0)

throw runtime_error("width must be positive");

width = w;

modified = true;

myViewHandler->notifyAllViews();
}

We are using the prototype pattern to provide the view handler with a factory method for creating views. This means each view must provide a cloning function and a static pointer to a prototype:

class TopView: public View
{
public:

void draw(GraphicalContext& gc); // as in version 1.0

View* clone() const { return new TopView(*this); }
private:

static View* myPrototype;
};

brick.cpp

We must remember to create a prototype for each view class and add it to the view handler's prototype table. Recall that we need to do the same thing for the Brick class, which still derives from the Persistent class, which also uses the prototype pattern. This is done implementation file, brick.cpp:

// brick.cpp
#include "brick.h"

View* TopView::myPrototype =

ViewHandler::addPrototype(new TopView());

View* SideView::myPrototype =

ViewHandler::addPrototype(new SideView());

View* FrontView::myPrototype =

ViewHandler::addPrototype(new FrontView());

Persistent* Brick::myPrototype =

Persistent::addPrototype(new Brick());

Test Driver

The test driver uses the static factory method openViewHandler() to create a view handler. The view handler is then asked to create a couple of top views:

// test.cpp
#include "brick.h"

int main()
{

ViewHandler* vh = ViewHandler::openViewHandler();

Brick* b = new Brick(vh);

ConsoleController c(b);

c.messageLoop();

return 0;
}

Program Output

Here's the output produced by the test driver:

-> view TopView
done
-> view SideView
done
-> view FrontView
done
-> length 66
Top View (length = 66, width = 30)
Side View (height = 20, width = 30)
Front View (length = 66, height = 20)
-> width 55
Top View (length = 66, width = 55)
Side View (height = 20, width = 55)
Front View (length = 66, height = 20)
-> quit
Unsaved changes, quit anyway? (y/n) -> y
bye
Problem: AFW (version 3.0)

Implementation (from afw.cpp)

Remember to add the definition and initialization of the pointer to the unique command processor to the implementation file:

// afw.cpp
#include "afw.h"
CommandProcessor* CommandProcessor::theCommandProcessor = 0;
// etc.

The command processor's execute() function simply calls the command's execute() function. If the command is undoable, it is pushed onto the undo stack. This must happen after the call to execute(), because if execute() throws an exception, i.e., if the command isn't successfully executed, then we don't want to push it onto the undo stack even if it is undoable:

void CommandProcessor::execute(Command* cmmd)
{

cmmd->execute();

if (cmmd->getUndoable()) undoStack.push(cmmd);
}

After checking that the undo stack isn't empty, redo() removes the top command from the undo stack, calls its undo() function, then pushes it onto the redo stack. Users can forget which commands they have executed and when they were executed, so the undo() function returns the name of the command it has just undone.

string CommandProcessor::undo()
{

if (undoStack.empty())

throw runtime_error("Nothing left to undo.");

Command* cmmd = undoStack.top();

undoStack.pop();

cmmd->undo();

redoStack.push(cmmd);

return cmmd->getName();
}

The implementation of redo() is similar:

string CommandProcessor::redo()
{

if (redoStack.empty())

throw runtime_error("Nothing left to redo.");

Command* cmmd = redoStack.top();

redoStack.pop();

cmmd->execute();

undoStack.push(cmmd);

return cmmd->getName();
}

Implementation (from afw.cpp)

We add undo and redo clauses to the message loop. Except for quit, all meta commands—undo, redo, cascade, tile, view, etc. –are delegated to the command processor:

void Controller::messageLoop(const string& prompt)
{

bool more = true;

string msg; // a message

while(more)

try

{

cin.sync(); // flush cin's buffer

cout << prompt;

cin >> msg;

if (msg == "quit")

if (myModel->getModified())

more = !getResponse("Unsaved changes, quit anyway?");

else

more = false;

else if (msg == "undo") cout << myCP->undo() << " undone\n";

else if (msg == "redo") cout << myCP->redo() << " redone\n";

else if (msg == "tile") myCP->tileViews();

else if (msg == "cascade") myCP->cascadeViews();

else if (msg == "view")

{

string type;

cin >> type;

myCP->openView(type, myModel);

cout << "done\n";

}

// and other meta commands ...

else handleMsg(msg); // an external command

}

catch(runtime_error e) { handleExpt(e); }

cout << "bye\n";
}

Problem: Brick CAD (version 3.0)

Predictably, version 3.0 of Brick CAD adapts version 2.0 to AFW 3.0. The main work to be done is creating derived classes for each type of command. Luckily, we only have three commands for changing the brick's height, width, and length, respectively:

// brick.h
#ifndef BRICK_H
#define BRICK_H
#include "afw.h" // the framework

// etc.

class LengthCommand: public Command { ... };
class WidthCommand: public Command { ... };
class HeightCommand: public Command { ... };

#endif

Length Command

The width and height commands are similar to the length command. The length command must keep track of the old and new lengths of the brick.

class LengthCommand: public Command
{
public:

LengthCommand(double dim, Model* m): Command("length", m)

{

newLength = dim;

oldLength = 0;

}

void execute();

void undo();
private:

double oldLength, newLength;
};

Implementation (from brick.cpp)

After checking that the new length is positive, the execute() member function saves the old length, then replaces it in its brick model by the new length:

void LengthCommand::execute()
{

if (newLength <= 0)

throw runtime_error("length must be positive");

Brick* b = (Brick*)myModel;

oldLength = b->getLength();

b->setLength(newLength);
}

The undo() function simply sets the length of its brick model using its stored old length:

void LengthCommand::undo()
{

Brick* b = (Brick*)myModel;

b->setLength(oldLength);
}

Console Controller

Again we are reminded that we are only simulating a GUI by the fact that we have a single console controller. In a real GUI we might have a dialog box with three edit controls, each with an accompanying "Change" button that creates a different type of command:

[image: image28.png]Length % Change.

Width E3 Change.

(O Ca—
== =

Because we only have a single controller, it must provide an implementation of the virtual factory method inherited from the Controller base class that creates all three types of commands:

class ConsoleController: public Controller
{
public:

ConsoleController(Brick* b = 0, CommandProcessor* cp = 0)

: Controller(b, cp) {}
protected:

Command* makeCommand(const string& msg);
};

Implementation (from brick.cpp)

The command factory method decides which type of command to create based on the message it receives from the control loop. (Thus, we are mixing virtual and smart factory methods!) It reads the dimension of the brick from cin, then calls the appropriate constructor:

Command* ConsoleController::makeCommand(const string& msg)
{

Command* cmmd = 0;

double dim; // a brick dimension

if (msg == "height")

{

cin >> dim;

cmmd = new HeightCommand(dim, myModel);

}

else if (msg == "width")

{

cin >> dim;

cmmd = new WidthCommand(dim, myModel);

}

else if (msg == "length")

{

cin >> dim;

cmmd = new LengthCommand(dim, myModel);

}

else

throw runtime_error(what + msg);

return cmmd;
}

Test Driver

Our test driver uses the static makeCommandProcessor() factory method to create a command processor, which is passed to the console controller, along with a pointer to the brick:

// test.cpp
#include "brick.h"

int main()
{

ViewHandler* vh = ViewHandler::makeViewHandler();

Brick* b = new Brick(vh);

CommandProcessor *cp =

CommandProcessor::makeCommandProcessor(vh);

ConsoleController c(b, cp);

c.messageLoop();

return 0;
}

Program Output

Here's a sample output produced by our test driver:

-> view TopView
done
-> view SideView
done
-> view FrontView
done
-> length 21
Top View (length = 21, width = 30)
Side View (height = 20, width = 30)
Front View (length = 21, height = 20)
-> length 32
Top View (length = 32, width = 30)
Side View (height = 20, width = 30)
Front View (length = 32, height = 20)
-> undo
Top View (length = 21, width = 30)
Side View (height = 20, width = 30)
Front View (length = 21, height = 20)
length undone
-> redo
Top View (length = 32, width = 30)
Side View (height = 20, width = 30)
Front View (length = 32, height = 20)
length redone
-> redo
Error, Nothing left to redo.
-> quit
Changes unsaved, quit anyway? (y/n) -> y
bye

Problem: AFW (version 3.1)

Implementation (from afw.cpp)

Even though execute() is a pure virtual function, it can still be called upon to remove the old momento and create a new one:

void Command::execute()
{

if (myMomento) delete myMomento;

myMomento = myModel->makeMomento();
}

The undo() function will replace its current momento with a momento representing the state of the model just before it is undone. The old momento is passed to the model's restoreState() member function:

void Command::undo()
{

if (myMomento && undoable)

{

Momento* m = myModel->makeMomento();

myModel->restoreState(myMomento);

delete myMomento;

myMomento = m;

}
}

Problem: Brick CAD (version 3.1)

Version 3.1 of Brick CAD, based on AFW 3.1. To make things a little more interesting, let's add three new attributes to our Brick class: volume, weight, and cost. Assume weight is proportional to volume, and cost is proportional to weight. Of course volume is simply the product of length, width, and height:

class Brick: public Model
{
public:

Brick(ViewHandler* vh = 0,

double h = 20, double w = 30, double l = 40)

:Model(vh)

{

height = h; width = w; length = l;

volume = width * height * length;

weight = 100 * volume;

cost = weight/2.5;

}

void restoreState(Momento* m);

Momento* makeMomento()

{

return new BrickMomento(height, width, length);

}

// etc.
private:

double height, width, length;

double volume, weight, cost;
};

Because volume, weight, and cost can be computed from height, width, and length, our brick momentos only need to store three of the six member variables:

class BrickMomento: public Momento
{

friend class Brick;

BrickMomento(double h = 0, double w = 0, double l = 0)

{

oldHeight = h;

oldWidth = w;

oldLength = l;

}

double oldHeight, oldWidth, oldLength;
};

Only the Brick class members can and should access the information encapsulated by a brick momento. This is achieved by making all members of brick momento class private (the default visibility of members) and declaring the Brick class to be a friend.

Implementations (from brick.cpp)

Restoring the state of a brick, i.e. its member variables, is done by extracting the former height, width, and length from the momento, then recomputing volume, weight, and cost:

void Brick::restoreState(Momento* m)
{

BrickMomento* bm = (BrickMomento*)m;

height = bm->oldHeight;

width = bm->oldWidth;

length = bm->oldLength;

volume = width * height * length;

weight = 100 * volume;

cost = weight/2.5;

modified = true;

myViewHandler->notifyAllViews();
}

Of course concrete commands no longer need to implement undo(), hence it no longer needs to remember the old length of its brick model:

class LengthCommand: public Command
{
public:

LengthCommand(double dim, Model* m): Command("length", m)

{

newLength = dim;

}

void execute();
private:

double newLength;
};

The execute() function must remember to call the inherited execute() function in order to create a momento:

void LengthCommand::execute()
{

if (newLength <= 0)

throw runtime_error("length must be positive");

Command::execute(); //

Brick* b = (Brick*)myModel;

b->setLength(newLength);
}

Problem: AFW 4.0

Problem

Create a generic resource manager. A resource manager should be a singleton. The system class should have all

class Resource
{

int oid;

friend class Manager;

Resource() {}

Resource(const Resource& r) {}

~Resource() {}

void serviceA();

void serviceB();

// etc.
};

class Manager
{

list<Resource*> open;
public:

void serviceA(int oid)

{

if (check(oid))

open[oid]->serviceA();

}
};

Problem: Composites

A GUI component usually maintains a reference to its parent:

class Component
{
public:

Component(...) { parent = 0; /* etc. */ }

Component* getParent() { return parent; }

void setParent(Component* p) { parent = p; }

virtual int draw() = 0;

// etc.
protected:

Component* parent;
};

(Note that we have slightly changed the declaration of draw(): it is now parameterless and it returns an int.)

Control is simply an abstract base class for all controls:

class Control: public Component { ... };

A concrete component, like a button, must provide a concrete implementation of the draw() function:

class Button: public Control
{
public:

int draw()

{

GraphicalContext* gc = makeGC();

// use gc to draw a picture of this button

destroyGC(gc);

return 0; // needed to fix a VC++ bug

}

// etc.
};

A window aggregates components:

class Window: public Component
{
public:

void addChild(Component* n)

{

children.push_back(n);

n->setParent(this);

}

void remChild(Component* n)

{

children.remove(n);

n->setParent(0);

// delete n;

}

list<Component*>::iterator begin() { return children.begin(); }

list<Component*>::iterator end() { return children.end(); }

int draw();
private:

list<Component*> children;
};

Our Window::draw() function first draws its own frame and graphics, then calls the draw() function for each child:

int Window::draw()
{

// draw frame, then draw children:

for_each(begin(), end(), mem_fun(&Component::draw));

return 0; // needed to fix a VC++ bug
}

Our Window::draw() function uses the STL for_each() function, which is declared in <algorithm>:

void for_each(BEGIN, END, FUNCTOR);

where BEGIN is an iterator that "points" at the beginning of a sequence (list, vector, map, stream, etc.), END is an iterator that points at the end of the sequence, and FUNCTOR is a function object (i.e., an instance of a class that overloads operator(), the function call operator). The for_each() function will apply FUNCTOR to each member of the sequence.

In our case, we want to apply the Component::draw() function to each member of the sequence. STL provides several adapters that convert functions into functors. In our example, we use STL's mem_fun() adapter to convert draw() into a functor.

� We are following Microsoft's "Hungarian notation" for naming member variables, parameters, classes, etc.

� CString is MFC's pre-STL string class.

� The Grid class developed in Chapter 4 can be regarded as a very primitive graphical context. A grid's canvas is the two dimensional character array it encapsulates.

6-10

6-11

_1013777648.doc

:Chapter

:Outline

:MenuBar

:ToolBar

:Layout

_1014983646.doc

Model

modified

Controller

handleMsg()�handleExpt()

View

draw()

Subscriber

Publisher

Persistent

framework

customization

1

1

*

*

views

controllers

model

*

1

_1014986352.doc

draw()

subscribe()

subscribe()

setState()

update()

getState()

state

draw()

getState()

state

update()

:Controller

:Model

:View

:View

_1014987032.doc

:Budget

:PieChart

:MenuBar

:ToolBar

:BarGraph

_1014987222.doc

*

1

CDocument

m_bModified

UpdateAllViews()�AddView()�RemoveView()�SetModifiedFlag()

�

CView

OnUpdate()�OnDraw()

�

CWPView

OnUpdate()�GetDocument()�OnDraw()

�

CWPDoc

m_text

Serialize()�Erase()�Insert()�Append()

�

m_viewList

m_pDocument

_1014985079.doc

Model

modified

Controller

handleMsg()�handleExpt()

View

size�position�state

move()�resize()�open()�close()�draw()�etc.

ViewHandler

tile()�cascade()�notifyAllViews()�etc.

1

Persistent

framework

customization

*

1

1

*

*

creates

views

model

controllers

*

1

_1014985508.doc

activates

makeCommand()

command

execute()

setState()

execute()

:CommandProcessor

undo()

undo()

setState()

:Command

:Model

:Controller

:User

_1014985597.doc

Model

modified

Controller

handleMsg()�handleXpt()�makeCommand()

View

size�position�state

move()�resize()�open()�close()�draw()�etc.

ViewManager

tile()�cascade()�notifyAllViews()�etc.

1

Persistent

framework

views

*

1

1

*

*

creates &�stores

CommandProcessor

execute()�undo()�redo()

Command

execute()�undo()

creates

undo�stack

redo�stack

1

1

1

1

*

*

customization

commands

controllers

model

*

1

_1014983990.doc

Model

modified

Controller

handleMsg()�handleExpt()

View

draw()

Subscriber

Publisher

Persistent

framework

customization

1

1

*

*

Top�View

Front�View

Side�View

Brick

height�width�length

serialize()�deserialize()�

Console�Controller

1

_1013777656.doc

:Jumbo Jet�(Model)

:Engine View

:Wiring Diagram

:Interior View

_1013934806.doc

Window�Manager

File�Manager

Memory�Manager

Thread�Manager

Kernel

Driver

Driver

Driver

Application

Application

Hardware

Application

Platform API

_1013949409.doc

Manager

save()�load()�open()�close()�serviceA()�serviceB()�etc.

Resource

serviceA()�serviceB()�etc.

Storage

Client

1

*

*

1

open

_1013952064.doc

TP

start()�commit()�abort()

Resource�Manager

Client

*

1

*

transaction

1

_1013935718.doc

AppWindow�(Handle)

SysWindow�(Body)

1

1

Operating System

Application

_1013777672.doc

Model

state

makeMomento()�restoreState()

Momento

formerState

Command

undo()�execute()

creates

1

1

1

*

_1013779452.doc

a brick

top view

side view

front view

_1013777666.doc

PrintMenu

PrintButton

PrintCommand

Model

creates

prints

PrintKey

_1013777650.doc

View

draw()�update()

Model

state

setState()�getState()

Controller

handleMsg()

1

1

*

*

Subscriber

update()

Publisher

subscribe()�unsubscribe()�notify()

*

1

_1013777643.doc

View

draw()

Model

state

setState()�getState()

Controller

handleMsg()

1

1

*

*

_1013777645.xls
Sheet1

				April		May		June		Total

		Rent		$1,200.00		$1,200.00		$1,200.00		$3,600.00

		Food		$850.00		$795.00		$810.00		$2,455.00

		Utilities		$560.00		$510.00		$490.00		$1,560.00

		Total		$2,610.00		$2,505.00		$2,500.00		$7,615.00

_999590273.doc

Frame

Menu Bar

File Menu

View

Print�Button

Edit Menu

Save�Button

Copy�Item

Cut�Item

Paste�Item

Toolbar

Help Menu

_1013777639.doc

Notification

Synchronization

Medical

Concurrency

Manufacturing

Frameworks

Business

Communication

Virtual Machine

Services

Containers

Reflection

Persistence

Presentation

Graphics

Transactions

Virtual Platform (VP++)

Input/Output

Kernel

Client/Server

Application

Workflow

_1000188364.doc

Component�(Node)

Atom�(Leaf)

data

Composite�(Parent)

1

*

parent

_998641192.doc

=

z

+

/

*

x

y

12

19

