Contents

2Chapter 2: HMM Tagger

22.1.
Introduction to Hidden Markov Model (HMM)

32.2.
HMM for POS Tagging

62.3.
Viterbi Algorithm

82.4.
Results

82.5.
Conclusion

9References

10Appendix

10A.1. A brief introduction to some linguistic terminologies

Chapter 2: HMM Tagger

1.1. Introduction to Hidden Markov Model (HMM)

A HMM is a doubly embedded stochastic process where the underlying stochastic process is hidden but can only be observed through another set of stochastic processes that produce the sequence of observations.

E.g.

Consider that a sequence of hidden coin tossing experiments is performed and you are allowed to see only the observation sequence consisting of heads and tails. The actual details of the process (i.e. the number of coins used, in what order they are selected etc.) are hidden from you. By observing this sequence of heads and tails one can build several HMMs to explain this sequence.

One form of HMM for this problem is shown in the figure below [Rabiner, 1989].

 [image: image1.emf]
In this case we assume that there are two states in the HMM and each state corresponds to the selection of a different biased coin. The state transition probabilities are given by the following matrix: -

[image: image2.png]

where,
aij = probability of transition from state i to state j

a11 + a12 = 1 and a21 + a22 = 1

P1 = probability of heads of the first coin i.e. the bias of the first coin.

P2 = probability of heads of the second coin i.e. the bias of the second coin.

The observed sequence of heads and tails can be explained (modeled) by selecting appropriate values for the parameters a11, a12, P1 and P2
Similarly we can create a HMM model assuming that there are 3 coins, in which case we will have to estimate nine parameters viz. a11, a12, a21, a22, a31, a33, P1, P2 and P3)
From the above discussion we observe that a HMM is characterized by the following elements:-

	N(
	the number of states in the model (N=2 in the above example)

	M(
	the number of distinct observations that can appear with each state (M=2 (i.e. H or T) in the above example)

	A(
	the state transition probability distribution.(the matrix A)

	P(
	the probability distribution of the observable symbols in each state (P1 and P2 in the above example)

	I(
	the initial state distribution (i.e. the probability of coin 1 being the initial state or coin2 being the initial state. We generally assume a uniform distribution i.e. Pinitial (coin1) = Pinitial (coin2) = 0.5)

1.2. HMM for POS Tagging

The POS Tagging process can be viewed as the process of finding the sequence of tags which is most likely to have generated a given word sequence. This process can be modeled using a HMM where “tags” are the “hidden states” which produced the “observable output” i.e. “words”.

In POS tagging, we are interested in finding a tag sequence (C) which maximizes

P (C|W)
where,
C = C1, C2, C3,….., CT

W= W1, W2, W3, WT

Unfortunately we need a lot of statistical data to reasonably estimate such sequences. However, we can apply some mathematical transformations and use some assumptions to simplify the problem. We will start by restating the problem using Bayes’ rule which says that the above mentioned conditional probability is equal to

(PROB (C1,..., CT) * PROB (W1,..., WT | C1,..., CT)) / PROB (W1,..., WT)

Since we are interested in finding the sequence C which maximizes the above value, we can ignore the common denominator in all these cases as it will not affect our answer. Thus our problem reduces to finding the sequence C which maximizes

PROB (C1,..., CT) * PROB (W1,..., WT | C1,..., CT) (1)
It is still difficult to estimate the two probabilities in the above expression, as it would require large amount of data. We can overcome this problem by making reasonable independence assumptions about the two probabilities in the above expression.

Assumption 1

The probability of a tag depends on the previous one (bigram model) or previous two (trigram model) or previous n tags (n-gram model)

PROB (C1,..., CT) = ∏i=1..T PROB (Ci|Ci-n+1…Ci-1)
(n-gram model)

PROB (C1,..., CT) = ∏i=1..T PROB (Ci|Ci-1)

(bigram model)

Note: For the sake of simplicity we will consider the bigram model

The beginning of a sentence can be accounted for by assuming an initial probability for each tag (this corresponds to “I” in the above discussion of HMM).

PROB (C1|C0) = PROB initial (C1)
Assumption 2

The second probability in (1) can be approximated by assuming that a word appears in a category independent of the words in the preceding or succeeding categories.
PROB (W1,..., WT | C1,..., CT) = ∏i=1..T PROB (Wi|Ci)
Based on the above two assumptions our goal reduces to finding a sequence C which maximizes

∏i=1...T PROB(Ci|Ci-1) * PROB(Wi|Ci)

Has converting the problem to the above form really helped us? Yes, it has, because if we have a large tagged corpus then the two probabilities in the above formula can be calculated as

PROB (Ci=VERB|Ci-1=NOUN) = (# of instances where Verb follows Noun) /
(# of instances where Noun appears)
(2)
PROB (Wi|Ci) = (# of instances where Wi appears in Ci) /

(# of instances where Ci appears)

(3)
P(Wi|Ci) is also known as the lexical or word generation probability.

With the above estimates we can use a brute force method to generate all possible tag sequences which could have generated the given word sequence, estimate the probability of each sequence and then pick the best one (i.e. the one which gives the maximum value for the above formula). However, the problem is that given N categories and T words there are NT possible different sequences. Even for small values of N and T this computation would be really expensive. So we need to think of other ways of doing this efficiently.

The examples used below are taken from [Allen, 1995]

If we consider that our tag set contains only four tags (ART, N, V, P) then with our independence assumption (the category Ci depends only on the category of the (i-1)th word) we can use a markov chain to capture this bigram probabilities as shown in the figure below.

[image: image3.png]

Figure 1 [Allen, 1995]

With the help of the above diagram the probability of a sequence can be calculated by multiplying the probabilities along the path.

e.g.

P (N, V, ART, N) = 0.29 * 0.43 * 0.65 * 1

Such a network representation is called a Markov model. We can further extend this network representation to include the word generation probabilities i.e. with each of the above tags(states) we can associate a probability table that indicates, for each word (observable output) how likely that word is to be selected if that particular tag(state) is selected. These probabilities are nothing but P (Wi|Ci) which can be calculated as shown in (3).

E.g. the probability that the sequence N V ART N generates the output “Flies like a flower” is computed as follows

P(N, V, ART, N)*P(flies|N) * P(like|V)*P(a|ART)*P(flower|N)

In this way we can calculate all possible tag sequences of length 4 which could have generated the above word sequence of length 4. There will be 256 (44) such sequences and the brute force algorithm will have to list down all of these and then compare their probabilities to find the best sequence. Instead we can use a dynamic programming approach where we sweep forward through the words one at a time to find the most likely sequence ending in each category. In the above example, we would first find the four best sequences for the two words "flies like": the best ending with "like" as a V, the best ending with "like" as an N, the best ending with "like" as a P, and the best ending with "like" as an ART. Using this information we will then find the four best sequences for "flies like a", each one ending in a different category. This process is repeated until all the words in the sentence are considered. This algorithm is called the Viterbi algorithm.

1.3. Viterbi Algorithm

Initialization Step

For i = 1 to N do

SEQSCR (i,1) = P (Wi|Ci) * P (Ci|ø)

Iteration Step

For t = 2 to T do

For i = 1 to N

SEQSCR (i,t) = MAXj=1,N(SEQSCR (j,t-1) * P(Ci|Cj)) *
P(wt| Ci))

Sequence Identification Step

C(T) = i that maximizes SEQSCR(i,T)

Back trace to find the sequence

The array SEQSCR(i,j) stores the probability for the optimal sequence up to word j ending in the category i.

Let us consider that after analyzing the corpus we have estimated the bigram probabilities as shown in Figure 1 and lexical-generation probabilities as shown in the table below:-

	PROB (the | ART)
	.54
	PROB (a | ART)
	.360

	PROB (flies | N)
	.025
	PROB (a | N)
	.001

	PROB (flies | V)
	.076
	PROB (flower | N)
	063

	PROB (like | V)
	.1
	PROB (flower | V)
	.05

	PROB (like | P)
	.068
	PROB (birds | N)
	.076

	PROB (like | N)
	.012
	
	

Now, using Viterbi Algorithm, the first row is set in the initialization phase using the formula:-

SEQSCR (i,1) = P (Flies|Ci) * P (Ci|ø)

The result of the first step of the algorithm is shown as the left-hand side network in the figure below. The second phase of the algorithm extends the sequences one word at a time, keeping track of the best sequence found so far.

[image: image4.png]‘ 76%10% . .ooosx
/ 00725 . . 13%10°
\ 0 @ 00022

@) o (@) o

Initialization [Allen, 1995]
Result after first iteration [Allen, 1995]

E.g. the probability of the state like/V is computed as follows

PROB (like/V) = MAX (PROB (flies/N) * PROB (V | N),
 PROB (flies/V) * PROB (V | V))

* PROB (like/V)

[image: image5.png]

Results after second iteration [Allen, 1995]

The thicker arrows show the best sequence leading to the next node

[image: image6.png]

Results after third iteration [Allen, 1995]
The computation continues in the same manner until each word has been processed. The highest probability sequence ends in state flower/N. It is easy to back trace from here to get the complete sequence N, V, ART, N

1.4. Results

HMM tagger gives an accuracy of about 96% when trained and tested on the Wall Street Journal corpus.
1.5. Conclusion

HMM tagger is a generative probabilistic model for Part of Speech Tagging which does not assign tags to individual words but selects the best tag sequence for the entire sentence. The use of Viterbi algorithm speeds up the tagging process by reducing the number of computations in each iteration.

References

[Rabiner 1989] Rabiner, L.R., A tutorial on Hidden Markov Models and selected applications in speech recognition, In Proceedings of the IEEE 77(2):257-286, 1989.
[Manning and Shutze 2002] C. D. Manning and H. Schutze, Foundations of Statistical Natural Language Processing, MIT Press, 2002.
[Allen 1995], James Allen, Natural Language Understanding, 2nd ed., Addison-Wesley
Appendix

A.1. A brief introduction to some linguistic terminologies

Lexeme: - a set of words that are different forms of "the same word".

E.g.

eat, ate and eating are forms of the same word.

Morpheme: - the smallest lingual unit that carries a semantic interpretation.

E.g.

The word unbreakable has 3 morphemes “un” – a bound morpheme (it has to occur with other morphemes), “break”- free morpheme and “able”. Both “un” and “able” are affixes.

Inflection: - is the process of modifying a word to reflect grammatical information such as gender, tense, number or person.

E.g.

The noun dog is inflected by appending the inflection morpheme “–s” to form dogs (to reflect number)

The verb speak is inflected by appending the inflection morpheme “–s” to form speaks (to reflect third person)

Stem:-
A stem, in linguistics, is the combination of the basic form of a word (called the root) plus any derivational morphemes, but excluding inflectional elements.
Morphosyntax: - The part of grammar that covers the relationship between syntax and morphology is called morphosyntax.

E.g.

Grammatical agreement rules that require the verb in a sentence to appear in an inflectional form that matches the person and number of the subject.

Copula Verb: - A word used to link the subject of a sentence with a predicate.

E.g.

When the area behind the dam fills, it will be a lake
