Database Concept
 5/2006

Introduction to Databases

Data vs. Information

Numbers, text, images or any recording in a form that is accessible to human beings are classified as data. Data themselves have no meaning. It is only when data is interpreted then the data content will become meaningful. Interpreted data are referred to as information. For example, the number 33.5 tells us almost nothing. However when readers are told that the number stands for the temperature in centigrade, the number makes sense to us. In this example, 33.5 is a piece of data whereas 33.5 as a temperature in centigrade is a piece of information. Information is stored in computers such that both its data value and interpretation will be recorded. In most cases, interpretation of computer data is typically given by the corresponding data name.

In the context of databases (which will be elaborated in the next section) as well as in daily use, the terms “information” and “data” are often used interchangeably although such a kind of confusion is not desirable. In most cases, the interpretation of the term “data” should be clear from the context of discussion. In the context of databases, “data” usually means “information”.

The Data Hierarchy

Each information system has a hierarchy of data organization, and each succeeding level in the hierarchy is the result of combining the elements of the preceding level. The six levels are bits, characters (bytes), fields (data elements), records, files, and data base (see Figure 1). A bit is a binary digital which has a value of either 0 or 1. A byte is a composed of 8 ordered bits.
[image: image22.jpg]Merld | Description | Units On Hand | Cost | Selling Price | Supplier Code [+
3663 Baseball Cap 25 §11.17 §1950 LG
3683 Coasters (4) 12 §7.45 900 BH
4563 Coffee Mug 0 §185 §475 BH
4593 Glasses (1) 6 820 1075 BH
5923 Jacket 12 $4923 5770 LG =
5953 Shorts 10 $1495 §1995 AC
6189 Sports Towel 24§35 §7.09 LG
6343 Sweatshit 9 52745 3495 AC
7610 T-Shint 2% §950 §1495 AC
¥[7930 Coffee Travel Mug 115290 5325 BH|

Record: 14| [10 b [M k] of 10

Figure 1. Hierarchy of data organization.
Data Field/Element

A (data) field or data element is the lowest level “logical unit” in the data hierarchy that can be interpreted in a meaningful way, e.g., “David” for a name, “23469345” for a phone number. The maximum number of characters (not bytes) that a field can have is called field length. A field may consist of a single character only, e.g., M(ale) and F(emale) for representing sex. How fine is the granularity of a field is a user’s decision, e.g., we can treat an address as a single field or as an aggregate of several fields such as flat-and-floor-number, street-number-and-street-name, district, city and country, etc. The key concern is the application needs. If certain processing is required to handle an address at city level, we of course need to divide the address field into its components.
Record

A record is a logical group of related data fields describing an event or an item, e.g., a student enrollment record consists of fields such as student-ID, student-name, programme-code, module-code, date-of-enrollment, etc. A record is the lowest level logical unit that can be accessed from a file. In other words, if one would like to access a data field within a record, the whole record has to be retrieved first before the required data field is identified.
File

A logical file is composed of occurrences of records. A physical file is used to refer to a named area on a secondary storage device that contains a program, a textual material, or even an image. One logical file is not necessary mapped to one physical file and vice versa. For example, a logical file may consist of an index area and a record area such that each of the areas is associated with a separate physical file. End-users are usually concerned with logical files instead of physical files.

Database

A database is a collection of files that are logically related and integrated to one another so that data redundancy is minimized or reduced. Data redundancy exists when a data field is stored in more than one logical file. Data redundancy often cannot be eliminated entirely for various reasons but it should be kept under control. Database management System is devised to control the data redundancy problem by ideally storing every data item once and/or by propagating data changes to all related record occurrences probably among a number of files so that data integrity (which concerns the validity, accuracy and correctness of data) can be maintained. Database management system is often referred to as DBMS, database or database system.

Database Management System (DBMS) – is used to access and manage data in a set of files called database. This database is shared among different users for different functions which is called an integrated database environment.
e.g. Student Record System in Schools, Personnel Record System in Companies

Aims of Database Systems

1. Reduce data redundancy – means to make data not redundant (不重覆)

The traditional file processing method wastes a lot of space in storing duplicate data. For example, the personnel file and payroll file of a company have some items in common, like the name of employee. When the integrated database approach is used, duplication of data can be kept to a minimum.

2. Increase data consistency – means to make data more consistent (一致性)

In traditional file processing, any amendment to the data item requires more than one updating of records, as the same data item is stored in different files that are kept in different departments. In the integrated database approach, any amendment can be done once only.

3. Improved data integrity – means to make data more accurate (準確性)
As the only access to the database is through the DBMS, constraints can be defined to preserve the integrity of the data. Any data that violates these constraints cannot be entered into the database, thus improving data integrity.
4. Better data security, backup and recovery (資料保安,備份及復原)

As data are all centrally stored and managed, better security measures can be taken. The DBMS uses passwords and user IDs to restrict users to access data that is not supposed to be known by them. In the integrated database environment, a dedicated person is responsible to do the backup regularly for the company.

[image: image2.png]writes and enforces ‘
«—
Procedirres

and standards

Analysts
End users Programmers

use write

Applications
programs

access

2

Database
designer

designs

L

Database
administrator

manages

DBMS utilities

2

System
administrator

Hardware

Figure 2. Interactions between various parties in a database environment.
Applications of Databases in Society

Almost all computer applications need to use database to store persistent data. In a library system, at least the following data need to be kept.

· Library user ID number

· Library user name

· Library user contact address

· Maximum number of books that a library user can borrow

· Library user ID number, book’s call number and due date of the loan period for each book which is on loan

· Author name(s), publisher, year of publication, and status (e.g, on-loan, on-hold, on-request, and missing, etc.) of each book.

The above information must be kept in order to support basic library operations like book search, borrowing and return, etc.

In a supermarket, inventory information needs to be stored so as to facilitate the inventory, purchasing, marketing and other business functions of the company. Some of the information to be kept is given below.

· Item ID number

· Item name (e.g., ABC dental cream)

· Item category (e.g., oral hygienic)

· Unit price

· Stock level

· Reorder level (below which an order needs to be placed for replacement)

· Reorder amount (i.e., the number of items to be ordered)

In a credit card system, the following information should be recorded.

· Card number

· Card owner’s name, contact address and phone number

· Credit limit

· Credit amount used

· Card’s expiry date

· Card’s date of issue

· First issued date

· Number of times that the card was reported missing

· Number of times of late payment

Types of Databases

There are many ways to classify databases and two of them are listed below.

Number of Users

Many databases designed to run on personal computers are expected to be used by one user at a time. We usually referred them as single-user databases. Earlier versions of Microsoft FoxPro and Access belong to such a type.

More sophisticated databases like MySQL, Microsoft SQL Server, IBM DB2 and Oracle are called multi-user databases as they have built-in facilities for secured and concurrent data access.

Location

A database may be either centralized or distributed. In a centralized database, all database functions run entirely on a single computer. A distributed database is composed of a set of partially independent databases running on a group of networked computers that share a common schema (i.e., an overall design of data base), and coordinate processing of transactions that access non-local data.
Another form of distributed implementation of databases, more commonly known as client-server databases, focuses on the distribution of various database functions over multiple computers. In particular, the database front-end functionality such as input validation is typically done by the client machines (which are usually personal computers) whereas the back-end functionality like transaction handling and data base update is provided by server systems, which are typically either data servers or transaction servers.

Data Models

A data model is a collection of logical constructs used to represent data structure, data semantics and data relationships found within the database. Database models can be conceptual or implementation oriented. Conceptual data models are used to describe data at the logical and (user) view levels. It offers no description about the implementation issues. Conceptual models are often used as a communication tool between database designers and end-users so as to help the designers understand the data requirements of the end-users correctly. The entity-relationship model is an instance of conceptual data model.
Another type of data model provides a high-level description of the implementation. Three popular implementation models are hierarchical, network and relational models. Note that the problem of structural dependence in both hierarchical and network models is resolved in the relational model.

Relational Database – is a collection of data files (called tables) that are logically linked together like in a big file. A DBMS is necessary to control access and provide interfaces so that information can be retrieved, edit and store using simple user friendly environment.

The key advantages of relational model are as follows:

· Structural independence

· Improved conceptual simplicity as data are structured in simple-to-understand tables

· Easier database design, implementation, management, and use

· Ad hoc query capability with the use of the structured query language
· Powerful database management system can be built with the system’s complexity being hidden from the user view

Terms in Relational Database

· A table contains records.

· A record is a row in a table that contains information about a given person or product etc.

· A field is a column in a table that contains a specific piece of information within a record.

· Primary Key is a field(s) which can uniquely identify a record. (e.g. Student ID, Item ID..)

[image: image3]
Relational Database Concepts

Introduction

In this section, basic relational database terminology and concepts will be introduced. The definitions and characteristics of entity, relation, attribute, domain and key, etc., are detailed. In particular, the difference between keys and indexes, and three concepts about data integrity, namely entity integrity, referential integrity and domain integrity, are explained. In order to help explain the above terminology and concepts, a problem scenario about a school library is introduced as below:

The library of XYZ School has decided to computerize its services so as to make them more efficient and effective. Since computerization is relatively new to the school, the library aims to provide only basic library functions to the users initially through the implementation of a simple computerized library system. The system is expected to offer a computerized catalogue of all library items, e.g., books and past examination papers, and basic circulation functions such as item borrowing, returning and reserving. Obviously the system needs to keep library user information such as the number of library items that s/he is allowed to borrow, dates and call numbers of those library items that s/he has borrowed, or requested, etc. Library item details such as its call number, author(s), ISBN, year of publication and status (e.g., available, on loan, requested and damaged), etc., are also kept.

As a teacher librarian of the school, you are asked to design a suitable database schema to support the mentioned library operations.

Whenever applicable, examples will be provided in relation to the above problem scenario so as to provide a clear context for illustrating the database terminology and concepts.

Entity and Entity Set/Type
An entity is a distinguishable object to be described. It can be any object such as a person, a place, an event or a thing, etc. Entities that share the same properties or attributes are collectively referred to as an entity set (or entity type). Example entity sets that can be found in a school environment are students (person), classrooms (place), examinations (event), and subjects (thing), etc.

Entity sets in the XYZ School library example:

· Suppose Linus and Jeff are students, they are entities (library users) because they share properties of a student and are distinguishable objects in a school library system.

· Library users who may be teachers or students (person), library items (things), circulation transactions such as a book request (event), and user privilege (things) etc.

In relational database, an entity set is typically represented in terms of one or more relations (a mathematical term for tables), with each of which being composed of rows and columns. Each tuple (a mathematical term for rows in a table) in a relation represents an entity of the associated entity set. Each column, which is uniquely named within the table that it is associated with, represents a category of information that corresponds to an attribute. A relational database is typically composed of a number of related tables. Note that the order of the rows and columns within a table is immaterial to the database.

As shown in the table below, the “user privilege” entity set of XYZ School library example is composed of 6 rows with each row defining the privilege of a user type for a given material type.

[image: image1.png]Data Base
Files

Records

Fields

Characters

Bits

[image: image4.png]Tser Descriphion Typeof Loan Tolalrumberofilems
e material __ Period __that can be borrawed
IS Junior swdent Book T4 days 3
(FI-F3)
TS Junior swdent Exampaper 2 hours Z
(FI-F3)
§5 Senor student Book T days 5
(F4-F.5)
§5 Senor Student Exampaper 4 hours 3
(F4-F.5)
T Teacher Book T days m
T Teacher Exampaper 1 day 5

Table 1. The “user privilege” table of XYZ School library.

Attributes
Attribute and Domain

Each entity has certain descriptive properties known as attributes (or fields). Some potential attributes for the student entity are student-name, student-number, and sex, etc.
Attributes in the XYZ School library example:

· student ID, class name (in the “library usesr” entity set)

· call number, material type (e.g., CD-ROM, book), item name (e.g., book title)

The set of all possible values for an attribute is called its domain. For the student entity set, the domain of the attribute sex should be {female, male} whereas the domain of the attribute age should be any positive integer (although it may make more sense by setting an upper bound for the domain).

Attribute domains in XYZ School library example:

· Domain of “class name”: all valid class names found in XYZ school.

· Domain of “maximum number of library items that a user can borrow”: any non-zero integer not greater than 10.
The relational database theory does not restrict what data type that an attribute can associate with. However, some commonly supported data types in relational database are:

· Number (integer or real number)

· Text/Character (fixed length or variable length)

· Date and time

Simple vs. Composite Attributes

Attributes that cannot be divided into subparts are known as simple attributes (e.g., age); otherwise they are composite attributes (e.g., address). Whether there is a need to re-structure an attribute to finer attributes depends on the application needs. In the XYZ School library example, the library user name is represented as a composite attribute as it is not further divided into simpler attributes such as first-name and surname. Such a representation does not cause any problem as the library does not have any need of processing library information in accordance with its user’s first-name or surname. To facilitate detailed queries (for the future), many database designers prefer to change a composite attribute into a series of simple attributes.
Null Attributes

It is possible to use a null as the value of an attribute of an entity. For example, the value of the ISBN field will be set to null for past examination papers but a valid ISBN is needed for most books.

Keys

· A key is a value of one or more selected attributes used to identify an entity in an entity set. The concerned attribute(s) is/are known as the key field(s). A potential key field of the “library user” entity set of the XYZ School library example is the “library user ID” which is unique for each library user.
· A Primary Key is a field or combination of fields that uniquely identify a particular record in a table. No part of a primary key can be null. Unlike the candidate key, a table can only have one primary key.
· Any attribute which is not a part of any candidate key is known as a non-key attribute. In the XYZ School library example, the loan-period is a non-key attribute.
· A Foreign Key is a field in one table that matches a primary key value in another table.
· A Candidate Key is any field that could serve as a primary key.

EMPLOYEE (Employee_ID, Name, Address, Phone_Num, Dept_ID, HK_ID)
DEPARTMENT (Dept_ID, Department_Name)
________ Primary Key _ _ _ _ Foreign Key ……….. Candidate Key

Logical Data Modeling

In order to identify the data need of an organization, logical data modeling is usually applied. Logical data modeling explores the domain concepts, and their relationships, of a problem domain. In databases, logical data modeling typically exhibits in the form of entity relationship modeling. The basic idea is to identify data objects called (logical) entity sets, which are described by their (data) attributes, and their relationships that meet all data requirements of the concerned organization, typically expressed in a type of diagram called Entity Relationship diagrams (ERD). Logical data modeling, so does entity relationship modeling, may be performed for the scope of a single project or for the entire enterprise.

Terminology and Notation of Entity Relationship Modeling

Some of the terminology, e.g., such as entity and attributes, of entity relationship modeling that readers need to be familiar with have already been covered in the section entitled “Basic Terminology”. The description below offers some additional information about those mentioned terms as well as details of those terms that have not given previously. Corresponding ERD notion used in this package is also shown.

Entity

· An entity is a representation of any composite information of a real object (e.g., a bank customer) or an abstract object (e.g., a money withdrawal transaction of a bank).
· Entities encapsulate data only, i.e., an entity is described only by its associated attributes. How its attributes will be manipulated is out of the scope of the entity. For example, an entity about a money withdrawal transaction of a bank is concerned with what amount of money being taken out from which account on a particular date. How those recorded data may be used for various purposes are immaterial from the logical data modeling perspective.

· Entities may be related to one another, e.g., a bank customer may perform a number of money withdrawal transactions over a given period.
· The ERD notation for entities is a rectangle. A STUDENT entity is represented below.

[image: image5.png]Student

Figure 2. Notation for entities (rectangle).
Attribute

· Attributes define the properties of an entity so as to
· name an instance of an entity

· describe the instance

· make reference to another instance
Example: A school subject is an entity which is characterized by the subject code or name; a subject also has other attributes such as subject description; a subject may not be taken unless a student has completed its prerequisite subjects which are objects themselves

· The ERD notation for attributes is an oval. An attribute is linked to the associated entity by a line or two lines depending whether or not the attribute is a multi-valued attribute. Suppose the previously mentioned STUDENT entity has two attributes only – name and address. The corresponding ERD representation is given below.

[image: image6.png]Student

address.

Figure 3. Notation for attributes (oval connected to a rectangle with a line).
The above example assumes that every student has exactly one name and one address. For a student that has more than one address, the corresponding ERD representation is as follows:

[image: image7.png]ame

Student

address.

Figure 4. Notation for multi-value attributes (oval connected

to a rectangle with double lines).
If an attribute is the (primary) key or a component of the primary key of an entity, the attribute name may be underlined. Assuming each student has a unique name, the corresponding ERD representation is changed as below.

[image: image8.png]Student

address.

Figure 5. Notation for multi-valued attributes (oval connected

to a rectangle with double lines).
Relationship
Relationships are links connecting to entities that define the relationships of the entities. There may be more than one relationship between two (or more) entities, e.g., customers open accounts, customers close accounts in which open and close are relationships between the customer and account entity sets. Note that an entity may have a reflexive relationship with itself, e.g., the work supervisor of an employee of a company is also an employee of the company.
Although a relationship can be classified by its degree, cardinality, connectivity, direction, type, and existence, etc., not all modeling methodologies use all these classifications. This package will only focus the discussion in degree, cardinality, and existence.

The ERD notation for relationship is a diamond with the name of the relationship as the label of the shape. The following ERD says a teacher would mark assignment.

[image: image9.png]Teacher

nark

Assignment

Figure 6. Notation for relationships (diamond shape connected

to associated entities).
Another occasionally used notation for relationship is to get rid of the diamond and simply put the relationship name as a label of the line that represents the relationship. The previous example is now depicted as follows:

[image: image10.png]Teacher

nark

Assignment

Figure 7. An alternative notation for relationships (line directly

connected to associated entities).
The following examples are devised to illustrate the above concepts.

Example 1 - Man is-married-to Woman

The minimum cardinality and maximum cardinality of the relationship are 0 and 1 respectively as a man (or woman) may be married to no woman (or man) and the maximum number of women (or men) that a man (or woman) can be married to is one.

Obviously, both entities (Man and Woman) optionally participate in the marry relationship. Thus the existence of both entities in the relationship is optional. In ERD, a small circle is added on the line that joins an entity and a related relationship if the existence of the entity in the relationship is optional. An ERD that represents the connectivity and existence information of the marry relationship is given below.

[image: image11.png]Awarnan can be married to
at most ane man

Man

'

1

A warnan may not be.
arried to ary man

A nan can be married to
at most ane worman

'

1

Warnan

A mman may not be

nartied to any woman

Figure 8. The “Man is-married-to Woman” scenario.
Example 2 - Mother give-birth-to Child

As a mother may give birth to at least one child, the corresponding ERD representation is as follows:

[image: image12.png]A child has at most
are mather

Mather

'

1

A child must have at
least ane mather

give-birth-to

A mother has at mast
7 (>1}children

Child

A mother has at
least aone child

Figure 9. The “Mother give-birth-to Child” scenario.
The minimum cardinality and maximum cardinality of the relationship are 1 and n (where n is a positive number) respectively as a mother must have one or more children. Regarding the existence of the entities in the relationship, both Mother and Child must involve in the relationship as every mother must have at least a child whereas every child must have a mother.

Example 3 - Teacher teach Student

Assuming a normal school setting in which all teachers and students are involved in the teach relationship, the relationship is of the many-to-many (m:n) type as many teachers would teach a student whereas a teacher would teach many students. According to the assumption, the minimum cardinality of the relationship is one. The maximum cardinality of the relationship is many. The corresponding ERD representation is as follows:

[image: image13.png]A student may be taught
by many teachers.

Teacher

'

m

A student is taught by
at least one teacher

A teacher may teach
many students

'

n

Student

A teacher teaches at
least ane student

Figure 10. A “Teacher teach Student” scenario.
If there exists some teacher who is taking a study leave and thus does not teach any student, the above ERD will become:

[image: image14.png]A student may be taught
by many teachers.

Teacher

'

m

A student is taught by
at least one teacher

A teacher may teach
many students

'

n

Student

A teacher may teach
o student

Figure 11. An alternative “Teacher teach Student” scenario.
Logical Linkages (Relationship) among Tables
There are 3 types of table linkages:
(i) One to One (1->1) i.e. One record in one table match one record of the other table

(ii) One to Many (1 ->M)

Each staff can work only in one department while one department can consist of many staff.

(iii) Many to Many (M->M)

Each sales order can contain more that one product and each kind of product can appear in different sales order.

Developing Entity Relationship Model

Steps in Developing Data Model

There is no standard way as to how a data model should be built. Typically, entities and relationships are modeled first, followed by key attributes, then non-key attributes. As an example, the steps described by the Information Technology Services of the University of Texas in its online practical guide to data modeling are listed below.

1. Identification of data objects and relationships

2. Drafting the initial ER diagram with entities and relationships

3. Refining the ER diagram

4. Adding key attributes to the diagram

5. Adding non-key attributes

6. Diagramming generalization hierarchies

7. Validating the model through normalization

8. Adding business and integrity rules to the model

Although the steps are presented in a linear manner, the process of database design is usually iterative, i.e., some steps may need to be repeated before a final design results. This note will only cover the first three steps. Steps 4-5 are straightforward to follow whereas Steps 6-8 requires a more elaborated discussion which is definitely out of the scope of the current curricula of the A/AS level computer subjects. In order to explain how a data model can be developed in accordance with the suggested steps, a problem scenario about a bookstore is given below and illustrations in light of the example will be given as far as possible.

ABC Bookstore is planning to automate its inventory, enquiry, sales and purchasing functions by introducing a database management system. The inventory system will keep track of the stock level of each book title. The sales system will keep track of the details of each sales order (which is supposed to be of cash sales type only). A sales order may involve multiple titles of any given quantities. When the inventory of a title drops below a re-order level, a pre-determined re-order quantity for that title must be ordered from the supplier of that book title. Each book title is assumed to be supplied by one publisher only and a publisher may supply multiple book titles.
At the end of each day, the purchasing system will be run to compile a number of purchase orders detailing the book titles, quantities needed from each publisher. Note that all book titles to be re-ordered from the same publisher must be grouped into a single order. Sales details will be removed from the sales system 6 months after the sale. Details of purchase orders will be removed from the purchasing system 6 months after the purchase orders are fulfilled. A purchase order is fulfilled when all the items in the orders are delivered. For simplicity, we assume no partially fulfilled orders. Concerning the enquiry function, the database should support enquiries based on author name and book titles.

Identification of data objects (entities) and relationships
Developing an ERD typically begins with a general description of the organization’s operations and procedures obtained during the requirements analysis. The purpose is

· to classify data objects as entities or attributes

· to identify relationships between entities

· to name and define identified entities, attributes, and relationships

While it is easy to define the basic construct of the ER model, it is not easy to distinguish their roles in building the data model. Should a data object be modeled as an entity or attribute? In the ABC Bookstore example, apparently a book title has attributes like author(s), ISBN, publisher, and year of publication, etc. It is also possible to model author as a separate entity. The correct answer usually depends upon the requirements of the data base. Generally, the following guidelines are adopted.

· Entities contain descriptive information and they represent many things which share properties. It is unlikely that an entity set/type would associate with no description information or have one instance only.

· Attributes identify (i.e., an identifier), describe entities, or make reference to other entity instances.

· Relationships are associations between entities.

In order to identify all potential entities and attributes, all nouns (or noun phrase) in the problem description are singled out. Both entities and attributes tend to be associated with those descriptive noun phrases. If there is no descriptive information associated with a noun phrase, it is unlikely to be an entity.

Nouns/noun phrases (in the ABC Bookshop example)

ABC Bookstore
inventory
enquiry
sales

purchasing functions
database management system
inventory system

stock level
book title
sales system
details

sales order
cash sales type
re-order level
re-order quantity

supplier
publisher
day
purchasing system

purchase orders
quantities
fulfilled orders
enquiry function

author name
6 months
As we will be able to see soon, some of the above nouns/noun phrases are in fact irrelevant whereas some additional data not appeared in the problem description are needed to be added to the data model.

Several guidelines can help learners identify candidates of entities and attributes.

· It is unlikely that an entity set/type would associate with no description information or have one instance only. For example, there is only one instance of ABC Bookstore. It is thus unlikely to be an entity set/type. It is not an attribute too. In fact the bookshop offers a context for the problem scenario and all entities and relationships are under its umbrella. Another example is “database management system”.

· Some general terms like “system” can usually be safely removed while some other general terms like “details” may need to be elaborated.
· A problem description may not be complete. Some data that need to be modeled may be omitted. It is important for the learners to detect such a kind of omission and put the omitted data objects back to the data model. For example, the dates of the sales and purchase orders have never been mentioned explicitly in the problem description but it is clear that they must be kept in the database. Another omission is publisher’s details like contact information.

· Some descriptions may be related to the processing aspect instead of the data aspect of the application and they can be safely skipped when developing a data model. For example, the second paragraph of the problem description gives details of the processing requirements, i.e., how data should be processed to give results that users want. Basically what it says is that programs need to be run (1) to support the enquiry function; (2) to produce purchase orders; and (3) to remove old purchase and sales orders details from the database. The three mentioned functions rely mostly on data already stored in the database and require only a few new data to support those functions, e.g., purchase order fulfillment date.

In reality, end-users are often approached by database designers to clarify data requirements when developing a database.

The entities identified from the problem description are

· Book

· Publisher

· Sales order

· Purchase order

Their attributes are

· Book – ISBN (unique for each book), book title, author(s), unit price, stock level, re-order level, re-order quantity

· Publisher – Publisher name (unique for each publisher), address, phone.

· Sales order – sales order number, sales order date, sales order amount, (for each book sold) ISBN, unit price, quantity.

· Purchase order – purchase order number, purchase order date, purchase order amount, order fulfillment date, (for each book sold) ISBN, quantity.

It is possible that different people may come up with a slightly different set of entities and attributes even they all work on the same problem. In the ABC Bookstore example, one may decide to store stock level, re-order level, and re-order quantity of each book title as a separate entity. Such a proposal is also acceptable and will result in a slightly different ERD at the end. However the data schema derived from both ERDs will be the same as we will demonstrate later.

Verbs/verb phrases (in the ABC Bookshop example)

Many printed and online resources would suggest identify potential relationships by identifying verb (phrases) from the problem description. However such a method does not work well in many cases. For example, some verbs or verb phrases that we have identified from the problem description are as follows:

… planning to automate its …

… introducing a database management system …

… keep track of the details of …

… is supposed to be …

… may involve multiple titles …

… drops below a re-order level …

… must be ordered …

… is assumed to be …

… supply multiple book titles …

… run to compile …

… grouped into …

… will be removed from …

… are fulfilled …

… are delivered …

It is not easy to see how they can hint at the identification of valid relationships. We propose the following steps to identify relationships and they are found to be particularly useful in dealing with small problems.

1. Identify all potential entities first.

2. Exploit any possible relationship between each pairs of the entities by cross-referencing them with the problem description. (Only binary relationships are considered.)

3. Read the problem description and see whether the identified entities and relationships can capture all the users requirements described in the problem description. If not, go back to Steps 1.

Earlier on, we have identified four entities: Book, Publisher, Sales order, and Purchase order. The potential relationships among them are as follows.
· is-included-in – Book is-included-in Sales order

· is-published-by – Book is-published-by Publisher
· is-referred-in – Publisher is-referred-in Purchase order
· is-specified-in – Book is-specified-in Purchase order
No obvious relationship can be identified between Sales order and Purchase order, and Publisher and Sales order.

Drafting the initial ERD with entities and relationships

The initial ERD aims to provide a pictorial representation of the major entities, and the relationships between them. Cardinality of each relationship is required to be shown. The initial ERD for the ABC Bookstore example could be as follows:

[image: image15.png]is-included-in

is-published-by

is-specified-in

Publisher

isreferred-in

Sales arder

Purchase arder

Figure 12. An initial ERD for ABC Bookstore.

Figure 13 gives the initial ERD if the inventory information of book title is modeled as a separate entity.

[image: image16.png]Is-associated-with >———— Invertory

1

is-included-in

is-published-by

is-specified-in

Publisher

isreferred-in

Sales arder

Purchase arder

Figure 13. An alternative initial ERD for ABC Bookstore.

No attributes are shown in the ERD above for simplicity. In practice, details of entities are shown in a separate document called data object description. The document typically contains the name of each entity and purpose, name and data type of each attribute for every entity, as well as the attribute characteristics such as whether its value is unique and/or mandatory, etc.
Refining the ER diagram

Check whether the initial ERD meets any users requirements specified in the problem description. If not, identify the inadequacy and propose new entity, attributes and/or relationships and redraw the ERD. For example, one may leave the order fulfillment date in the Purchase order entity in the initial ERD but such as omission can be identified when checking whether the initial ERD be able to meet the users requirements specified in the problem description. The ERD given in Figure 12 (or the one in Figure 13) appears to be able to meet all users requirements and thus will not be refined further.

Converting ERD to Database Tables

ERD is a result of data analysis and it must be used in the data design process to help generate data schema. A basic 3-rule conversion process can be applied to translate an ERD into a data schema that meets the criteria of the third normal form (which will be detailed later). We refer the conversion process to as the basic conversion process.

Basic Conversion Process

The three rules in the process are as follows:

1. For a 1:1 cardinality relationship, all the attributes of the related entities are grouped into a single table.

2. For a 1:n cardinality relationship, model each of the related entities in a separate table and post the primary key of the “one” side entity as an (foreign key) attribute to the table that represents the “many” side entity.

3. For an m:n cardinality relationship, model each of the related entities in a separate table and create a new table (which is referred to as the intersection table) and post the primary key of each entity set/type as an attribute in the new table. If the relationship has its own attributes, those attributes are to be stored in the intersection table too. The primary key of the intersection table is a composite key which includes the primary key of each concerned entity type.
Example 1 – 1:1 Relationship

In the ABC Bookstore example, if an Inventory entity is introduced for representing the inventory information of book title (Book), we will have the following relationship.
[image: image17.png]Boak.

is-associated-with

Invertary

Figure 14. The Book is-associated-with Inventory relationship.

The relationship indicates that each book title is associated with exactly one piece of inventory information and vice versa. Since the relationship is of 1:1 type, all attributes of the entities will be stored in the same table according to the first rule of the basic conversion process. As a result, the attributes to be stored in the resultant table will be exactly the same as the table corresponding to the Book entity in the original ERD. They are ISBN (unique for each book), book title, author(s), unit price, stock level, re-order level, and re-order quantity. This explains why various ERDs may lead to the same data schema.

For ease of reference, the attributes of a table are shown in the following notation.

TableName(key-attribute1, …, key-attributeN, other-attribute1, other-attribute2, ….)

The attributes of the Book table are given below.

Book (ISBN, book_title, author, unit_price, stock_level, re-order_level, re-order_quantity)
Note that all author names of a book title are assumed to be stored in the author field. Besides, more attribute(s) will be added to the above Book table as we deal the relationship between the Book and Publisher entities.
Example 2 – 1:n Relationship

In the ABC Bookstore example, we have the following relationship that links the Publisher and Purchase order entities.
[image: image18.png]Publisher

isreferred-in

Purchase arder

Figure 15. The Publisher is-referred-in Purchase order relationship.

The relationship indicates that a publisher may be associated with any number of purchase orders (zero to many) whereas each purchase order is associated with exactly one publisher (as each purchase order will only be placed to one publisher). According to the second rule of the basic conversion process, the primary key (or identifier) of the Publisher entity must be posed to the table that represents the Purchase order entity. The resultants tables for representing the relationship will be as follows:

1. Publisher(publisher_name, address, phone)
2. Purchase_order(purchase_order_number, purchase_order_date, purchase_order_amount, order_fulfillment_date, publisher_name)

Note that the ISBN and quantity of each book title being specified in a purchase order are excluded from the Purchase_order table as there exists an m:n relationship between the purchase order and book title entities. Such attributes need to be housed in a separate table as illustrated in the next example.
Example 3 – m:n Relationship

In the ABC Bookstore example, we have the following relationship that links the Book and Purchase order entities.
[image: image19.png]Back is-specified-in Purchase arder

Figure 16. The Book is-specified-in Purchase order relationship.

The relationship indicates that a book title may be associated with any number of purchase orders (zero to many) whereas each purchase order is associated with at least one book title. According to the third rule of the basic conversion process, the primary keys of both the Book and Purchase order entities must be posed to a new table, i.e. the intersection table, to link to the tables that represent the concerned entities. The resultants tables for representing the relationship will be as follows:

1. Book (ISBN, book_title, author, unit_price, stock_level, re-order_level, re-order_quantity, publisher_name)
2. Purchase_order (purchase_order_number, purchase_order_date, purchase_order_amount, order_fulfillment_date)
3. Book_in_Purchase_order (purchase_order_number, ISBN, ordered_quantity)

Example 4 – Data schema for the ABC Bookstore Example
After applying the 3 rules specified in the basic conversion process, we can obtain the data schema for the ABC Bookstore example as follows:

Book(ISBN, book_title, author, unit_price, stock_level, re-order_level, re-order_quantity, publisher_name)
Publisher(publisher_name, address, phone)

Purchase_order(purchase_order_number, purchase_order_date, purchase_order_amount, order_fulfillment_date, publisher_name)

Book_in_purchase_order(purchase_order_number, ISBN, ordered_quantity)

Sales_order(sales_order_number, sales_order_date, sales_order_amount)

Book_in_sales_order(sales_order_number, ISBN, quantity_sold, unit_price)

Note that the Book table has been added with a new field, publisher_name, after considering the relationship between the Book and Publisher entities. This illustrates that the definition of a table will not be finalized until all relationships connected to the entity concerned are considered.

Introduction to Normalization

Normalization is a database design technique based on analyzing relations among key and non-key attributes of database tables. This technique includes a series of rules or steps to normalize the database into a number of tables depending on the degree of normalization that one wants to achieve. The database design compliant to those rules correspond to a specific normal form such as first normal form (1NF), second normal form (2NF) and third normal form (3NF), …, etc. Despite the existence of higher normal forms, only the 1NF, 2NF and 3NF will be covered. Higher normal forms imply a data schema with more tables and querying such a database would involve more efforts in “joining” tables together. In practice, most database designers generate data schemata normalized to 3NF in order to strike for a balance between maintainability and efficiency. Readers who are interested to have an overview of various normal forms (from 1NF to 6NF) may visit Wikipedia’s page on database normalization.

Why Normalization
The main purpose of normalization is to minimize data redundancy and anomalies. In the following section, we will show the problem of data redundancy and update anomalies through a problem scenario.

Data Anomaly

Data anomaly refers to the unexpected phenomena that occur when updating a database that exhibits data redundancy. There are several types of data anomaly – insertion, deletion and modification (or update) anomalies.
Insertion Anomaly

Could we record insertion of some data object of interest in a table? If no, the table suffers from addition anomaly.
Deletion Anomaly

Could we record deletion of some data object of interest in a table without losing any information? If no, the table suffers from deletion anomaly.
Modification Anomaly

Would an update in one attribute’s value be recorded in a table more than once? If yes, the table suffers from modification anomaly.

Functional Dependencies
In order to understand why data anomalies exist, we need to understand the concept about functional dependencies. Functional dependencies are used to describe the dependency between the attributes within a table.
Given A and B are attributes of the same table, the attribute B is functionally dependent on the attribute A if each value of A is associated with one and only one value of B. The notation to represent the above notion is A(B. It may be read as A determines B.

Suppose A is a composite attribute. Attribute B is said to be full functionally dependent on attribute A if B is functionally dependent on A and not functionally dependent on any proper subset of A. If B is functionally dependent on some proper subset of A, B is said to be partially dependent on A.

Teaching remarks

· Some textbooks and online resources on database may define full functionally dependency as follows: Attribute B is said to be full functionally dependent on attribute A if B is functionally dependent on A and not functionally dependent on any subset of A. Such a definition is incorrect as the authors fail to distinguish the difference between proper subset and subset. Any set is a subset of itself. A proper subset of a set is any subset of that set excluding the set itself.

· An A/AS level textbook defines partial dependency as follows: one or more non-key attributes depend on part of the primary key. This is not entirely correct as the notion of functional dependencies does not restrict the independent attribute (attribute A) to be a primary key as described in the book.
Suppose there is a Student_in_Society table storing information about student roles in various societies and clubs in a school. The table also contains information of the teacher supervisor of each society. The table has the following attributes (field name in parentheses): student_ID (StdID), student_name (StdName), society_ID (SocietyID), society_name (SocName), student_role_in_society (Position), society_teacher_ID (SupID), and society_teacher_name (Supervisor). Given the fact that each society has exactly one society teacher to give the society advice, the primary key of the table is a composite key composed by student_ID and society_ID. Figure 19 shows the full functionally dependency among the attributes in the table.
[image: image20.png]SR P—

Figure 19. Full functionally dependency among attributes

in the Student_in_Society table.
First Normal Form

If every attribute of the relation is atomic, then the relation is said to be in first normal form (1NF). An attribute is atomic if it is not multi-valued, i.e. without repeating groups. A table which is not in 1NF is in unnormalized form (UNF).

The Student_in_Society table below is in UNF as SocietyID is a multi-valued attribute.

	StdID
	StdName
	SocietyID
	SocName
	SupID
	Supervisor
	Position

	042123
	May Wong
	001

003
	Chinese

Maths
	1
2
	Mr. Wong
Ms. Chan
	Chairman
Member

	042132
	Katie Lee
	001
	Chinese
	1
	Mr. Wong
	Member

	042142
	June Chan
	002

005

008
	English

Physics

Biology
	1

3

4
	Mr. Wong
Mr. Lee

Miss Yu
	Member

Chairman

Member

Figure 20. The Student_in_Society table in UNF.
The usual way to modify a table in UNF to 1NF is to store the details of the repeating groups in a separate table. This will result in the following table structures.

1. Student(StdID,StdName)

2.Student_in_Society(StdID, SocietyID, SocietyName, SupID, Superviser,

 Position)
The tables with data are shown in Figure 21.

Student table

	StdID
	StdName

	042123
	May Wong

	042132
	Katie Lee

	042142
	June Chan

Student_in_Society table
	StdID
	SocietyID
	SocName
	SupID
	Supervisor
	Position

	042123
	001
	Chinese
	1
	Mr. Wong
	Chairman

	042123
	003
	Maths
	2
	Ms. Chan
	Member

	042132
	001
	Chinese
	1
	Mr. Wong
	Member

	042142
	002
	English
	1
	Mr. Wong
	Member

	042142
	005
	Physics
	3
	Mr. Lee
	Chairman

	042142
	008
	Biology
	4
	Miss Yu
	Member

Figure 21. The Student and Student_in_Society tables in 1NF.
It is a bad idea to store the multi-valued data in the following table structure.
Student_in_Societies(StdID, StdName, SocietyID1, SocietyName1, SupID1, Superviser1, Position1, SocietyID2, SocietyName2, SupID2, Superviser2, Position2, SocietyID3, SocietyName3, SupID3, Superviser3, Position3)
The table above cannot accurately represent the relationship in the real world because a student should not be restricted to join three societies only. Allowing a student to join the fourth society implies a modification of the table structure, which can be troublesome once data have been entered in the table. Anyway the table is not in the 1NF.

Note that many data anomalies cannot be removed by normalizing tables to 1NF. For example, if Mr. Kwan replaces Mr. Wong to become the society teacher of the Chinese Society, two rows in the Student_in_Society table in Figure 21 need to be updated (i.e., modification anomaly). It also suffers from insertion anomaly as we cannot store information about a new society as no students have joined it. Deletion anomaly exists when the last member of a society quits. The society information will then be permanently removed from the database.

Second Normal Form
A table is in the second normal form (2NF) if
· it is in 1NF, and

· it exhibits no partial dependencies, i.e., every non-key attribute in the table is full functionally dependent on the primary key of the table.
If a table is in 1NF but not in 2NF, it must have a composite primary key according to the second property of the 2NF. To “promote” a table from 1NF to 2NF, we need to remove the partial dependencies in the table.
Let us further work on the Student_in_Society table in Figure 21 to illustrate the notion of 2NF.
We illustrate that the functional dependencies for the student table are as follows:
	StdID, SocietyID (Position
	(Full functionally dependency)

	SocietyID (SocName
	(Partial dependency as SocietyID is a part of the primary key only)

	SocietyID (SupID
	(Partial dependency as SocietyID is a part of the primary key only)

We can reconstruct a table in 1NF to 2NF by extracting those fields that exhibit partial dependency in the table to one or more separate tables. In our example, the Student_in_Society table can be made conform to 2NF by extracting SocietyName, SupID, Superviser to a separate table, say the Society table. The attribute that the three extracted fields full functionally dependent on, i.e., SocietyID, will be copied to the Society table to serve as the table’s primary key. The new table structures are:

Student(StdID,StdName)

Society(SocietyID, SocietyName, SupID, Superviser)
Student_in_Society(StdID, SocietyID, Position)
The tables in 2NF with their data are shown in Figure 22.

Student table

	StdID
	StdName

	042123
	May Wong

	042132
	Katie Lee

	042142
	June Chan

Society table

	SocietyID
	SocName
	SupID
	Supervisor

	001
	Chinese
	1
	Mr. Wong

	002
	English
	1
	Mr. Wong

	003
	Mathematics
	2
	Ms. Chan

	005
	Physics
	3
	Mr. Lee

	008
	Biology
	4
	Miss Yu

Student_in_Society table (revised)
	StdID
	SocietyID
	Position

	042123
	001
	Chairman

	042123
	003
	Member

	042132
	001
	Member

	042142
	002
	Member

	042142
	005
	Chairman

	042142
	008
	Member

Figure 22. The Student, Society and Student_in_Society (revised) tables in 2NF.
Tables in 2NF are not able to solve all data anomalies either. Although the insertion and deletion anomalies associated with the Student_in_Society table (in 1NF) have gone, the modification anomaly still exists in the Society table in Figure 22. Suppose Mr. Wong resigns and a new teacher, Mr. Kwan, will replace Mr. Wong to become the society teacher of all societies that Mr. Wong used to be responsible for. Note that Mr. Kwan will use the same SupID as Mr. Wong does. To reflect such a change in the Society table, two rows (instead of one) need to be updated.

Third Normal Form

A table is in 3NF if:

· it is in 2NF, and

· it exhibits no transitive dependencies

Transitive dependency exists if one or more attributes are functionally dependent on some non-key attribute(s). If there are three attributes in a table called A, B and C such that A (B and B (C. Obviously A (C and the attribute C is transitively dependent on A. In the Society table of our example, SocietyID (SupID and SupID (Supervisor and thus SocietyID (Supervisor which is a kind of transitive dependency. To convert a table in 2NF to 3NF, attributes that contribute to transitive dependencies are extracted to separate table(s). The Society table can be made conform to 3NF by extracting Supervisor to a new table, says the Society_Teacher table. The attribute that the Supervisor field full functionally dependent on, i.e., SupID, is copied to the Society_Teacher table to serve as the table’s primary key. This will result in the following table structures.

Student(StdID,StdName)

Society(SocietyID, SocietyName, SupID)
Student_in_Society(StdID, SocietyID, Position)
Society_Teacher(SupID, Superviser)
The tables in 3NF with their data are shown in Figure 23.

Student table

	StdID
	StdName

	042123
	May Wong

	042132
	Katie Lee

	042142
	June Chan

Society table (revised)

	SocietyID
	SocName
	SupID

	001
	Chinese
	1

	002
	English
	1

	003
	Mathematics
	2

	005
	Physics
	3

	008
	Biology
	4

Student_in_Society table
	StdID
	SocietyID
	Position

	042123
	001
	Chairman

	042123
	003
	Member

	042132
	001
	Member

	042142
	002
	Member

	042142
	005
	Chairman

	042142
	008
	Member

Society_Teacher table

	SupID
	Supervisor

	1
	Mr. Wong

	2
	Ms. Chan

	3
	Mr. Lee

	4
	Miss Yu

Figure 23. The Student, Society (revised), Student_in_Society and

Society_Teacher tables in 3NF.
Figure 24 shows the full series of changes introduced to transform the original data schema (in UNF) to the final design (in 3NF).

[image: image21.png]Student_in_Society

Unnormalized Form

Student Student_in_Society
T First Normal Form
v
I
|
|
Student Student_in_Society Society
Second Normal Form
1 1
| |
| |
+ +
Student_in_Societ; it it
Student udent_in_Society Society_Teacher Society_Info Third Normal Form

Figure 24. How the original design evolved from UNF to 3NF.

row (tuple)

column (attribute)

Women

Primary Key

fields

records

Table

SalesOrder

Product

M M

Department

Staff

1 M

English Club

Student

1 M

Men

1 1

PAGE
25

