[image: image1.wmf][image: image25.emf]Page 5 (old)

Page 1

Page 4

Page 2 (old)

Page 3

Page 6

Page 2 (new)

Page 5 (new)

1

2

3

4

5

6

Current Directory

(after updating pages 2, 5)

Shadow Directory

(not updated)

1

2

3

4

5

6

Sanothimi Campus, Sanothimi, Bhaktapur.
Database Management System (DBMS)

[image: image26.emf]

Data base management system
Collection of data and management systematic ways is called database management system. It is a collection of record programs. Inserting, deleting, copying, updating and saving the records are the facilities here.
In database–oriented approach of organizing data, a set of programs is provided to facilitate users in organizing, creating, deleting updating, and manipulating data in a database all these programs together form a Database Management System (DBMS).In another words DBMS is a set of programs or software which provides services for accessing a database, while maintaining all the required features of the data. Hence DBMS is software that creates, manages, protects, and provides access to a database. A DBMS provides a secure and survivable medium for the permanent storage and retrieval of data. It can provide many facilities like transaction processing, programming interface, security management, recovery management, concurrency management and storage management, etc. DBMS is very easy to use, access and manipulate the data in the database.
As we know, database is an organized collection of related data. It is an integrated collection of records which contains different fields like name, address and telephone number. The telephone directory could be a simple example to answer this question. The user Mr. A can use this database for finding telephone number of a particular person or Mr. B can use it for finding a person’s name of a particular telephone number and third user Mr. C can use the same diary to find a list of similar names and their telephone numbers within the same city code. Thus a telephone diary (a database) could be used in three ways or more. Therefore the database is created to fulfill user’s need for different purpose.

Similarly from a database of a library file, the user can find the list of books like edition wise, publisher wise, subject wise, or writer wise etc. But to find these four lists, the user must needs to process the database four times. Therefore, to run a database there must be software and a system to arrange the records within the database. Such system software is called database management system (DBMS). Without this software, if somebody creates the database, there will be many problems during the database preparation. The problems may be as follows until a final database is prepared.

Hierarchy of data:-

[image: image27.jpg]

Database

 project database

File
personal

ssc

lname

fname

hire date

File

92-40-1001
Fiske

Steven

01/29/2001

98-40-1002
rice

beat

02/28/2004

98-40-1001
children

Hilary

02/28/2004

Record

98-40-1001
Fiske

Steven

06/28/2001

Field

Steven (first name filed)

Character

100010000(latter 5 in ASCII)
Character:- Basic unit of data that can be digit on alphabet or symbolic

Field:- A group of related character represents an attribute or characteristics of entity. It corresponds to a column in physical database.

Record:- A collection of field for one or more entity corresponds to row in a physical database.

File:- a file is a collection of records.

Database:- is a collection of organized form of data typically describe the activities of one or more related organization for example:- a university database might contain information about following:-
· Entities such as students faculties, courses, and classroom.

· Relationship between entities such as students enrollment in class faculties teaching courses, and the use of classroom for courses.

Types of database:_
I. Operational database:- these database store detailed needed for operation of entire organization also called transactional or production database e.g. Customer database, personal database, employee database.

II. Analytical database:-Also called management database used by manager. These database store data and information extracted from operational.
III. Hypermedia database:-Web based database such as text, graphic, audio/visual.
IV. Spatial database:-Consist at data such as geographic data i.e. maps and associated information.
· [image: image28.wmf]Page 5 (old)

Page 1

Page 4

Page 2 (old)

Page 3

Page 6

Page 2 (new)

Page 5 (new)

1

2

3

4

5

6

Current Directory

(after updating pages 2, 5)

Shadow Directory

(not updated)

1

2

3

4

5

6

Other more types of database management system:-

There are five types of the database management system like (i) Hierarchical (ii) Network (iii) Relational (iv) Object oriented and (v) Deductive. These are the five DBMS models, which are running in the world markets at present.

i) Hierarchical

Hierarchical Model is running since 1950 AD. It is an oldest DBMS Model. It assumes that a tree structure is the most frequently occurring relationship. This assumption is recognized today a misleading.

For example, hierarchical model is similar to company’s organizational structure. At the top we have GM. Under him there are 2, 3 deputy general managers (DGM). Just below DGM there are 6,7 department heads and so-on. Here the row position implies the relationship to each other from top to bottom. It looks like a tree structure.

ii) Network

[image: image29.png]Figure 18.1 Typical steps when processing a high-level query.

Query in a high-level language

'

SCANNING,
PARSING, AND
VALIDATING

:

Intermediate form of query

:

QUERY OPTIMIZER

'

Execution plan

:

QUERY CODE
GENERATOR
i Code can be:
° Executed directly (inferpreted mode)
Code to execute the query ° Stored and executed later whenever
l needed (compiled mode)
RUNTIME DATABASE
PROCESSOR
Result of query

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

To-day, the hierarchical model is replaced by Network model. The Network model can be used in a book distributor as an example. A book can have many attributes like Title, Author, Publisher, Year of publication, distributor, cost etc. Similarly on the other hand, a distributor can have attributes like Name, Contact address, Discount and others. We can use these both examples in the network model.

iii) Relational Model

A relational database organizes data in a table format consisting or related rows and columns. Each location in a table contains a single piece of data, known as data item. Each column of a table represents a field, which consists of data items. A full set of data in any given row is called a record. The whole related records makeup a file. In a relational database a file is also called a relation. The relational model uses the rows and columns of tables to organize the data elements. The relational model is currently the most popular database mode.

I) Object oriented
b) Deductive
Application Architectures

Two Tier architecture

· [image: image30.png](@)

(b)

track

arm

actuator

read/wite head spindle disk rotation

cylinder
of tracks

(imaginary)

actuator
movement

Tend to push a lot of processing onto the client (fat client)
· This can cause several problems
· clients may require a lot of resources(memory,disc etc)
· user interface and business processing tend to get mixed together.
· with much similar processing on many client machines extending existing applications and implementing new ones becomes more complex.
Three-Tiered Applications

The key to using Remote Data Service technology lies in understanding the three-tiered client/server model. This approach separates the various components of a client/server system into three "tiers":

· Client Tier
· Middle Tier
· Data source Tier

Client tier

A local computer on which either a Web browser displays a Web page that can display and manipulate data from a remote data source, or (in non-Web-based applications) a stand-alone compiled front-end application.

[image: image31.png]sector (arc of a track)
(@) track

(®)

three sectors
two sectors
one sector

Middle tier

A Server computer that hosts components which encapsulate an organization's business rules. Middle-tier components can either be Active Server Page scripts executed on Internet Information Server, or (in non-Web-based applications) compiled executables.

Tiers can be on Same machine

These tiers don't necessarily correspond to physical locations on the network.

For example, all three tiers may exist on only two machines. One machine could be a Windows 95 computer running Internet Explorer 4.0 as its browser. The second machine could be a Windows NT Server computer running both Internet Information Server and Microsoft SQL Server.

Designing applications this way gives you greater flexibility when deploying processes and data on the network for maximum performance and ease of maintenance.

Three - Tier Network

[image: image42.png]naive users

sophisticated

database
administrator

application

(tellers, agents, users
programmers

‘web-users) (analysts)

use write

applicatio application™ " query dministration
_interfaces rogram: tools tols

ompiler and DDL interprete

application
program
object code

query processor

authorization
and integrity
manager

storage manager

disk storage
data dictionary

statistical data

Advantages of Three-tier architecture

· removes a huge processing burden from client machines.
· can be used to consolidate enterprise-wide business rules as application servers process business rules in a single place for use by multiple applications. When rules change, only a change to the application server is required.
· any knowledge of the database server may be hidden from the client. database queries may be presented to client in alternative forms.
Using an Internet Server.
[image: image2.wmf]
Middle Tier

[image: image3.wmf]
DBMS

Database management system is abbreviated as DBMS. A DBMS is a set of computer program that control the certain maintenance and its end users. The need of such system is growing rapidly.
In summary

· A DBMS is a software to create and maintain the database.
· Enables business organization to extract data.
· Independent of specific computer program
Some example of DBMS
dBASE, faxpax,(is based on CUI (character user interface)) Sybase, Informix, Ms.Access, file maker program, oracle.

Application of DBMS:-

University:- for student information, course registration and grade
Airline:- for reservation and flight scheduling.

Finance:- for storing information data porches, sales, inventory stock and bonds.

Sales:- for customer products and porches information.

Telecommunication:- for keeping records of call made, generating bills, maintaining balance in prepaid calling cards.

HR:- maintaining information about employed payroll, tax etc..

Banking:- for customer information balance, loans and transaction.
Traditional data file environment:-

· Traditional data file are known as flat file application such as database requires one application to perform each database activities.
· The traditional system uses the file processing system.

· The system stores permanent records in various files and it needs different application program to extract records and add records to the appropriate files.

Data

file

application

user

Payroll

payroll

report

Employed information
PIS

report

DRAWBACK OF TRADITIONAL DATABASE SYSTEM:-
a) Data redundancy and inconsistency:- in a file system approach the same information may be duplicated in several places(files). For example the address and telephone no of a particular person may be appear in the file that consist of exam file records and account section records. This redundancy leads to higher storage and access cost. And data updated in a one file may not be update in a next file. This leads inconsistency.
b) Data isolation:-data are scattered in various file and indifferent file format. Writing new application program to retrieve is difficult.

c) Security problem:-not every user of database system should able access data and for this some privilege setting to users has to be provided which is not provide in file system.

d) Length of development time:-every database file requires its own application program therefore the developer takes more time to maintain the database.

	e) e.g. account A
B

500 500

-100 +100

[image: image32.png]communication
via network

[image: image33.png]Database

Xand Y: Shadow copies of data items
X and Y': Current copies of data items

400 600

f) Atomicity problem:- as we know that a pc is subject to failure like other device. If failure occurs the data must be restore to consistence state that existed prior to failure, otherwise it leaves data inconsistency state with partial update therefore the transaction should be atomic.
In summary:-the transaction should be either committed or aborted.

Integrity problem:-

[image: image34.png]| i R

lock-X(X)

wiite) lock-X(Y)
write (Y)
lock-X(X)

lock-X(Y)

e.g. balance>10,000 in bank account will be a part of program code. Therefore it is difficult or hard to extend or changes.

MODERN DBMS:-
Database scheme and instance:-

Scheme:- the overall physical/logical database structure is known as scheme eg. Roll_no, name_of_student. Scheme is analogues to data name/ variable or data type in a programming language.
Instance:- the actual contents of database at a particular point in a time.eg. 101, ram,….. instance is analogous to value of variable the content of database may change quite frequently. Therefore the data in a database at particular moment in time is called database state.

	Roll_no
	Name_of_stdent

	101
	Ram

	102
	Sita

[image: image35.png]T. Ts
T e T * read(X)
™ read(Y)
read write
ket read(2)
read(X)
read(>9 rite(2)
Wabort write(Y)

write(Z)

History of database
I. EDP (electronic data processing) 1950-1960

II. Integrated data stores, first general purpose DBMS-1960 by Charles Buchman, general Electronic.

III. MIS 1960-1970

IV. Related database model, purposed in 1970, Edgar code IBM's San Jose laboratory .

V. SQL standardize in the late 1980's.
VI. Complex analysis of data, support new data type (ie. images) in 1980's-1990's.
VII. Database related to E-commerce (1990-2000)

[image: image36.png].

T1 T8 T2

1) Physical level:- physical level describe haw a record is stored in a storage device. Internal level is closest to physical level.
2) Logical level:- it is a level of indirection between level logical level describe what data are stored not how the data are stored. Eg. Create table employees
{

Emp_no char(60) not null

// emp=employees
Dept_id char(10)

// dept= department
Salary number (7,2)

};

3) View level:- external level, chooses to user. Ie. It is concerned with how a user access and see the data. This is also known as level of abstraction. All the users do not need all the database, but only access the data that are required of the users. This level requires to interact with system.
Data model:-
Collection of tools for describing :

I. Data

II. Relationship

III. Data semantic

IV. Data constrains

Type of data model:-

I. Network model

II. Hierarchical model

III. Relational model

IV. ER-model

V. Object oriented model

Purpose of designing:- models helps us to communicate with peoples mind. They can be used to do following

a. Communication
b. Categorize

c. Describe

d. Specify

Explanation of different types of data models
Different Data models are explain below
Hierarchical models :-
information are organized in the form of the like structure using parents/child relationship such as that it can but have two many relationship.
· Data are represented by collection of records and data in a records have set of values attached to it.
· Relationship among the records are represented by links like a pointer
· Collection of all instances of specifies records together from a record type. These records are equivalent to table in a relational database and with the individuals records being equivalent to row.
[image: image37.png]

RECORD

Advantages of Hierarchical models:_-
A. Easiest data models.
B. Database is more secured because nobody can see and modify child database without consulting it's parents.
C. Searching faster and easy, if parents are known.
D. Efficient in handling the relationship of one to many.
Disadvantages of Hierarchical models:-

A. Traditional method.
B. Works only on one to many models .
Network models:-
[image: image38.jpg]SUPPLIER_CITY CITY_STATUS

= oy oty | status
S| Londem London | 20
E Paris |10
R s |30
s | Londen ome | 50
s | s

· A flexible way to represent objects and their relationship.
· It allows many to many relationship among records.

· this model is similar to hierarchical database mode on sense that data and their relationship, represented by records and links.
Advantages of network model.

· Popular of mainframe and large volume of application.

Disadvantages of network model.

· Very complex database model.
· Needs complex program to handle database.
· Pointer in the database model to increase the overhead of storage.
· Less secured due to many to many relationship.
Relational database model:-

· Modern database model.
· Allows to organized the data in the form of rows and column.
· Supports only types of relationship such as 1 to many and many to many.
e.g.
	s.n.
	Name
	Address
	[image: image39.jpg]SECOND PARTS
s [s [o st ot atu
El 20 | Lonten El Pl 300
2 0| e Bl 2 200
K 1w | e Bl # 400
s 20 | Londen Bl P 200
E] 30 | atens Bl s 100

Bl v 100
2 o 00
2 5 400
= 2 200
= 52 200
= o 00
= 4] an0

Phone

	1
	Harry
	Kathmandu
	9804568236

	[image: image40.jpg]FIRST

s [s [o I a
El 20 | Londn | ot 00
Bl 20 | Lnan | g2 200
Bl 20 | Lndn | 52 00
Bl 20 | Lndn | pe 200
Bl 20 | Lnan | gs o0
Bl 20 | Lnn | g 100
2 o | e | b 00
2 1o | e |2 400
= 0 | e |2 200
= 20 | Lnan | 52 200
P 20 | Lndon | pa 00
= 20 | Lonn | s an0

2
	Ram
	Pokhara
	9845896543

column
here, a relationship means table

row

ER- model (entity relationship)
· ER model is a higher level model.
· It based on the perception of real world that consist of a collection of basic object called entities and relationship among these entities.
· It consist of entities, attributes of entities and relationship among these entities.
· Helps to communicate with non-technical personnel's.
Entities:-

An entity represents an object i.e. (place, event, person) of the real world that has an independent existence. It is represented by rectangle graphically.

E.g. peter, maya, ktm, us are entities that exist physically

University, course, account, are entities that exist conceptually.

Relationship :-
Association between two or more than two entities.

e.g. customer, borrows loans.

Peter marry maya.
[image: image41.png]Client Tier Middle Tier Data Source Tier

e eebpagecom | Object

Business
Object

Business
Object

o

Business
Object

Attributes :-it is the property of an entity i.e. characteristics of the entity. It also describe about the entity. It is represented by oval entity is characterized by their attributes such as university has established data and university building has a color.

Attributes type:-

a. Simple vs composite:- simple attributes are these, which are divided into subpart e.g. emp.ID. composite attributes are these which are divided into sub-part for name and person (first name middle name, last name) address –streets district, world, 6f]n.
b. Single value vs multiple attributes:- single value is described by one value eg. Roll no. A multi value attributes is described by many values (phone no of a person, color combination in graphic design, qualification of person).
c. Store vs derived attributes:- An attributes where value can be extracted from a value of another attributer is called derived attributes for example, age can be derived from, date of birth and current date. If this case isn't applicable then that is stored attributes.
d. Null value:- Attributes that don't have applicable values are said to be null values. It is differ from zero (ie. Unknown or missing values).
E-R Diagram:-

:- Entity

:- attributes
 :- alternate PK
:-weak entity set

:- primary key :- relationship set :- weak entity relationship set
 :-multi value attributes

:-derived attributes 1
M :- cardinalities
 :- composite attributes
Extended ER features:-

a) Specialization (top to bottom):- It is a process of defining a set of sub classes of an entity set (ie the super class) that share some distinguishing characteristics.
· Establish additional specific attributes with each sub classes, in terms of ER diagram, specialization is depicted by triangle components labeled 'ISA' the labeled ISA stand for 'is a '. ISA relationship is referred to a super class relationship.

b) Generalization :- It is the reverse process of abstraction in which we suppress the differences among several entities identities their common features and generalized them into a single super class of which the original entities are special sub-classes.

Therefore designing top to bottom is (specialization) and designing bottom to top is a generalization (general feature).

Draw the ER diagram for following situation
A university register's office maintains data about following entities.

i) Course including course no, credit, and syllabus.

ii) Course offering includes course no, year, semester, instructor, timing.

iii) Student including student-id, name, address, and program.

iv) Instructor including ID, name, dept, and address.

Further the enrollment to student in the course they are enrolled and must be appropriately modeled construct an ER diagram for the register's offices. Document all assumption.

Database users and Administrator :-

A primary goal of DB system is to retrieve info from and store new info in the database. People who work with database system can be categorized on database user and administrator.

Database users:-

There are four different types of database users differentiate by the way they expects to interact with the system.

a) Naive users:- unsophisticated users who interact with the system by invoking are of the application program that have been written previously e.g. A bank teller to transfer Rs.500 from client A to B, an end user withdraw a money and read reports.
b) Application programmer:- application programmer are computer professional write application program. They can choose differ. Application tools like RAD, JDP, 4GL.
c) Sophisticated users:- these users form their request in a database query language.

· Analyst

· Data mining workers / tools.

Data administrator:-

Database administrator is an expert who has central overall the system is called database administrator (DBA)

Main roles of DBA:-
a) Schema definition
b) Storage structure and access definition

c) Granting of authorized for data access.

d) Routine maintenance.
DDL and DML (data definition language and data management language)
Database system provides DDL to specify the database schema and DML to express database queries and updates.

SQL (structure query language):-

SQL contains DDL, DML, and TCL (table control language)

DDL:- DDL specify notation for defining or creating a database which updates the data dictionary and the meta data.

Data dictionary:- It contains physical, logical, and view level schema. It contains integrity contains.
DML:- it enable upper to access and manipulate data using select, update, insert commands to SQL.

TCL:- it is used to manage change made by DML.

Relational model:-
A. Relational DBMS:- a relation database allows the definition of data structure storage and retrieval operation and integrity constrains. In such database, the data and relation between them are organized in table is a collection of records and each records in the table contains same fields.
Properties of relational table:-

each rows is unique.
Each column has unique name.
The sequences of column Is insignificant.
The sequences of row is insignificant.
Relational model:- the relation database model user collection of table to represent both data and the relationship among those data each table has multiple column and each column has an unique name.
	Customer_ID
	Name
	Address

	NS_0001
	Raj
	Patan

	NS_0002
	Sujan
	Ktm

	NS_0003
	Pujan
	Patan

	NS_0004
	Tom
	UK

	Order_no
	Item name
	Quantity

	NOD1
	Staff drink
	50

	NOD2
	Cereals
	100

	NOD3
	Grains
	800

Fig. table_order
Column field attributes
fig. table_customer
Record row tuple
Over-view of RDBMS (relational database management system).

· RDBMS was development in 1970 by E.dolt .
· Data and records are stored in the form of table.
· Table is called relation.

· Attributes are called column name.

In above table "table_customer" . there are three column heading and four records for each attributes there is a set of permitted value called the domain of attributes. For example: the attributes address control the value like patan, Ktm, Pokhara etc.
domain name:- is a set of permitted value in the attributes the domain of customer_id is NS_0001.

Advantages of RDBMS:-

1. A table can linked with another table using field names.
2. Rules, implemented in the table can be easily implemented in order.
3. Less redundancy.
4. Integrity constrains can be implemented.
5. Primary database model for commercial data processing application.
Relational Algebra
· Relational algebra is a procedural query language.
· It consist if set of operations that takes one or two relations as input and produce a new relations as their result.
Note: Procedural DML specify what data are needed and how to get those data.

Fundamental operation of Relational Algebra:-

1. Unary operator : select, project

2. Binary operator : union, set difference, Cartesian, product.

3. 0Additional operator : set intersection, natural join, assignment.

Details description is given below:-

1. Unary operator

i. Selection operator:

Select operation is used to select a sub-set of the tuple from a selection condition which is a Boolean condition. It has Notation Operator (…….) (i.e. sigma).

Syntax:

⌐p(r):- means selects tuples satisfying condition P from relation R. Where R is a relation or an expression which result in a relations i.e. ⌐<selection condition> (r). P:- predicate appears to subscript of ⌐.
Relation loan Sheet is :-
	Loan no
	Branch name
	Amount

	L-11
	Round Hill
	900

	L-14
	Down Town
	1000

	L-15
	Perryidge
	1400

	L-17
	Down Town
	2000

	L-29
	Mianus
	500

write a relational algebraic expression to find all tuples from a relation “Loan” where branch name is “Down Town”.
⌐branch name= “Down Town”(loan)

This output
	L-14
	Down Town
	1000

	L-17
	Down Town
	2000

#write a relational algebraic expression to find all tuples from a relation “loan” where amount more than “1100”.

⌐amount >”1100”(loan)
This is output

	L-15
	Parrydige
	1000

	L-17
	Down Town
	2000

write a relational algebraic expression to find all tuples from a relation amount is more than “1100” and where branch name is “Parryidge”.

⌐amount > 1100^branch name=”Parryidge”(loan)

This is output

	L-15
	Parryidge
	1400

Note:- expression may contain some comparision and operation in selection predicate.
Comparison: =,≠,<,>,≤,≥.

Logical : AND
(^), OR(V), NOT(┐).
ii. Project operator:
It has notation sign “π” or (pie). The main purpose of it is display attributes 1, attributes 2, attributes 3 ………………..attributes n from a relation (r). it’s syntax is :- πa1,a2,………..an(r).
Relation project sheet is :-

	Loan_no
	Branch name
	Amount

	L-11
	Round Hill
	900

	L-14
	Down Town
	1000

	L-15
	Perryidge
	1400

	L-17
	Down Town
	2000

	L-29
	Mianus
	500

#. list all loan number and amount from a relation loan.

πloan_no, amount (r).
this is output:-

	L-11
	900

	L-14
	1000

	L-15
	1400

	L-17
	2000

	L-29
	500

#. List all loan number and Amount of loan relation where branch name is Down Town.
πloan_no, amount (⌐branch_name=”Down Town”(loan)).

	L-14
	1000

	L-17
	2000

2. Binary Operator on Relational Algebra:-
It has four types which are standard operation of binary operator relational algebra. Those are listed below:-

	S_id
	S_name
	Rating
	Cost

	22
	Dustine
	7
	45

	31
	Lubber
	8
	55

	58
	Rusty
	10
	35

	S_id
	S_name
	Rating
	Cost

	28
	Yuppy
	9
	35

	31
	Lubber
	8
	55

	38
	Guppy
	5
	35

	58
	Rusty
	10
	35

a. Union (U)

b. Intersection (∩)

c. Set Difference (-)

d. Cross Product (×)

a. Union (U):-
R U S returns a relation instances containing all tuples that occurs either in relation instance R or relation instance S or both. R and S must be union. Compatible and the scheme of the result is defined to be identical to the schema of relation (r) the two relation instance are said to be union compatible, if following condition holds:

· They have same kinds of field and
· Corresponding fields takes in order from left to right have the same dimension.

This is the output of s1 U s2 is :-

	S_id
	S_name
	Rating
	Cost

	22
	Dustin
	7
	45

	31
	Lubber
	8
	55

	58
	Rusty
	10
	35

	23
	Yuppy
	9
	35

	38
	Guppy
	5
	35

b. Intersection operation (∩):-
R∩S returns relation instance containing all tuples that occurs in both relation R and S. The relation R and S must be union compatible and the schema of the result is defined to he schema of R.
This is the output of s1∩s2 is:-

	S_id
	S_name
	Rating
	Cost

	31
	Lubber
	8
	55

	58
	Rusty
	10
	35

c. Set difference(-):-

R-S returns a relation instance containing all the tuples that occurs in R but not is S. The two relation must be union compatible.

This is the output of s1-s2 is :-

	S_id
	S_name
	Rating
	Cost

	22
	Dustin
	7
	45

d. Cross product(×):-

R×S returns a relation instance where schema contains all the fields of R (in the same order as they appear in R) following by all the fields of S (in the same order as they appear in S).The cross production is also called Cartesian product.
	S_id
	S_name
	Rating
	Cost

	22
	Dustine
	7
	45

	31
	Lubber
	8
	55

	58
	Rusty
	10
	35

	S_id
	Bid
	Day

	22
	101
	01/10/2010

	58
	109
	11/22/2011

	S_id
	S_name
	Rating
	Cost

	22
	Dustine
	7
	45

	22
	Dustin
	7
	45

	31
	Lubber
	8
	55

	31
	Lubber
	8
	55

	85
	Rusty
	10
	35

	85
	Rusty
	10
	35

This is the output of s1×s3 is :-
	S_id
	Bid
	Day

	22
	101
	01/10/96

	58
	109
	11/22/96

	22
	101
	01/10/96

	58
	109
	11/22/96

	22
	101
	01/10/96

	58
	109
	11/22/96

3. Additional operation:-
i. Join operation:-
It is one of the most powerful operation in relational algebra and most commonly way to combine information from two or more relation. Although a join can be defined as a cross-product followed by selection and projection. The result of cross-product is larger than join operator.
Types of join:-

a. Natural join:- notation
 , the natural join of two relation R and S is given by r
 . therefore, in general to complete r
 s
Taken the cartesion product of r and s select the tuple that agree an attribute with same name and have same value for similar attribute.

Syntax:- πRUS(⌐r.A1=s.A1 ̂r.A2=s.A2 ……………….r.An=s.An(r*s))
e.g. πcustomer_name, Amount(⌐borrower.loan_no=loan.loan_no(borrow*loan))

	Loan_no
	Branch_name
	Amount

	L -11
	Round hill
	900

	L -14
	Down Town
	1500

	L -15
	Parriyridge
	1500

	L -16
	Parriyridge
	1300

	L -98
	Mianun
	500

	Customer_name
	Loan_no

	Adam’s
	L -16

	Curry
	L -93

	Hays
	L -14

	Smith
	L -11

	William
	L -20

Borrower relation

 loan relation
Output

	Adam’s
	1300

	Curry
	500

	Hays
	1500

	Smith
	9200

b. Outer join: - it is a extension of join to deal with mission information. We can use outer join operation avoid such lose of information.
Employee relation

full time work relation

	Employee_name
	Street
	City

	Coyate
	Toon put
	Halywood

	Robbit
	Tunnel
	Canavalley

	Smith
	Redmand
	Deathvalley

	William
	Seaview
	Scattle

	Employee_name
	Branch_name
	Salary

	Coyate
	Mosh
	1500

	Robbit
	Mosh
	1800

	Gate
	Redmand
	5300

	William
	Redmand
	1000

The result of
(employee and full time work)

	Employee_name
	Street
	City
	Branch_name
	Salary

	Coyate
	Toon put
	Halywood
	Mosh
	1500

	Robbit
	Tunnel
	Canavalley
	Mosh
	1800

	William
	Seaview
	Scattle
	Redmand
	1000

Type of outer join:-
	Employee_name
	Street
	City
	Branch_name
	Salary

	Coyate
	Toon put
	Halywood
	Mosh
	1500

	Robbit
	Tunnel
	Canavalley
	Mosh
	1800

	William
	Seaview
	Scattle
	Redmand
	1000

	Smith
	Redmand
	Deathvalley
	Null
	Null

a. left outer join denoted by
The result of employee full time work
b. right outer join denoted by
	Employee_name
	Street
	City
	Branch_name
	Salary

	Coyate
	Toon put
	Halywood
	Mosh
	1500

	Robbit
	Tunnel
	Canavalley
	Mosh
	1800

	William
	Seaview
	Scattle
	Redmand
	1000

	Gate
	Null
	Null
	Redmand
	5300

the result of employee

full time work

c. Full outer join denoted by
	Employee_name
	Street
	City
	Branch_name
	Salary

	Coyate
	Toon put
	Halywood
	Mosh
	1500

	Robbit
	Tunnel
	Canavalley
	Mosh
	1800

	William
	Seaview
	Scattle
	Redmand
	1000

	Smith
	Redmand
	Deathvalley
	Null
	Null

	Gate
	Null
	Null
	Redmand
	5300

Result of employee
 full time work.
Generalized project

The generalized project extends the projection operation by allowing arithmetic function to be used in the projection list.

πf1,f2,f3………fn (E), where E= a relational algebraic expression f1,f2,f3……..fn is an arithmetic expression in the schema of E

in special cases, the arithmetic example can be an attributes or contents.

e.g. πemployee_naem,salary+salary*0.1 (employee)
Aggregate function
It take a collection of values and returns a single values as a result for example the aggregate function sum take a collection of values and returns the sum of value.

Notation: G f1(A1),F2(A2)……………..Fn(An)(E)
Where G is in a calligraphic font represent an aggregate is to be applied.

E.g. G sum(salary),max(salary)(Employee)
1. Updating

r(πf1,f2,……fn

Q.no. increase the balance of Ac holder by 5%

Account(balance+balance*0.05

2. Inserting
r(r U e
e.g. account(account U {(‘a10’,”perridge”,1200)}

deposit(deposit U{(“smith”,”a10”)}

3. Deletion
r(r-e, for instant instance to delete all information smith’s account.

e.g. depositor(depositor-⌐customer=name=”smith”(depositor)

delete all loan with amount in the range 100 & 400

loan(loan-⌐amount>=100 ̂amount<=400(loan)

Tuple relational calculus
This is a non-procedure query language. It describe the desired information without giving a specific procedure for a obtaining information. A query in tuple relational calculus is expressed as:
{t/p(t)} that is it is the set of all tuples t such that p is true for t. we use t E r to denote tuple in t in relational r. p is an expression similar to predicate knowing TRc by example. Loan(loan_no,amount,brance_name)
Q.no find the loan_nuber, branch_name& amount for loan over $1200

{t/t E loan ̂t [amount]>1200}
SQL (STURCTURE QUERY LANGUAGE)
· Stands for Structure Query Language.

· SQL was developed by IBM research for system R.

· SQL includes the feature of relational algebra & tuple relational calculus.

· The standard language for relational algrbra.

· DBMS independent.

· Consist of both DDL & DML.

· However, commercial database system needs a query language that is more user friendly.
Scopes of SQL

· SQL does more than just query a database
· Define the structure of data

· Create schema, tuple, index, view, alter table.

· Modify data in database.

· Select, update, delete, insert.

· Security and transaction control

· Commit, rollback, grant, revoke.

SQL background

· IBM developed the original version of SQL at san jose research lab.

· Originally known as SEQUEL and implement as part of system R in 1970’s.

· SEQUEL renamed in SQL, ANSI (American National Standard Institute) and ISO published first standard in SQL 86.

SQL standard

· IBM publish its own cooperate standard in 1987 called system application database interface (SAA-SQL)

· An extended SQL-89 (SQL1) was published in 1989’s and next version was SQL 92(SQL2) and most recent version SQL-89 (SQL 83) published in 1999.

· SQL is divided into core and packages.

· Core SQL is implemented by all DBMS venders as package is application specific e.g. data mining, spatial data & OLAP (Online Analytical Process) and OLTP (Online Transaction Processing).

SQL data-type

1. Numeric

2. Bit

3. Null value

4. Character

5. Temporal data

6. Valid for all

SQL numeric data-type

· Integer
· Integer (int)
· Small int
Note:- the range of integer or numeric data type is implementation dependent.

Real(float, double

Can be decimal or scientific notation.

Note:- decimal number format can be decimal (I, j) dec (I, j) or numeric (I, j)

I= precession (the table # of digit excluding decimal point)

J= scale (the # of digit. The default is zero.

SQL characterizing:-

· A characterizing is sequence printable character. It is inserted with in single quote. E.g. ‘hello sql’.

Type of character string
Fixed length n= char (n) or character (n) varying length of maximum n: varchar (n) or char varying (n)

SQL bit string

Bit are sequence of binary digit. Bit string types:-
I. Fixed length n: BIT(n).

Varying length of maximum n: VARBIT (n) or BITVARYING (n)

Temporal data type

· Date Data type (yyyy-mon-da)

· Time & time stamp data type (hh:mm:ss)

Basic Structure of SQL

· The basic structure of SQL expression consist three clauses: select, from & where
Select:- this clauses corresponds to the projection operation of relational algebra. It used to list the attributes desired in the result of a query.

From:- it corresponds to Cartesian product operation of relational algebra. It list the relations to be scanned in the evaluation of the expression.

Where:- it corresponds to selection predicate of the relational algebra it consists of predicate involving attributes of the relational that appears in the from clauses
The typical SQL query has the form

Select A1,A2,A3………………An from r1,r2,r3……………..rn where P.

As such each, Ai represents attributes & each ri a relation , p is predicate. The query is equivalent to the relation algebra expression
Πa1,a2,a3……………..an(⌐p(r1*r2*r3……………….rn))

The select clause
e.g. select fname, lname, address from emp

Q.NO. find all loan number from loan made at perryridge brach.

Select loan_number form loan where brach_name=”perryride”

Q.NO. find all loan number from loan made at perryridge brach and amount greater than $1200

Select loan_number form loan where brach_name=”perryride”and amount>1200
Q.NO. find all loan number of these loans with loan amount between 90000 to 100000
Select loan_number form loan where amount>90000 and amount<100000.
Q.NO. find all loan number from loan whose branch name is downtown or loan amount less than 500000.

Select loan_number form loan where brach_name=”downtown” or amount<500000.
Creating a table in SQL

Create table r(a1,d1,

a2,d2,

a3, d3, ………………………an, dn

<integrity constrains>

<integrity constrains>);

e.g. creating table account

(account_number char (14),

branch_name char (15),

balance integer,

primary key (account_number),

check(balance>=0)

“where r is a relation name A is a attribute name D is a data type”.

integrity constrains (validity checking

primary key:- a key or field name in database which make a record differ from another record.

Adv of primary key:- pk makes records unique and avoid duplication data entry

Aggregate function in SQL.

This functions are those readymade formula that taken a collection (a set or multiset) of value as a input & returns a single value as a output. SQL offer five built in functions.
a) Avg:- returns average of argument list.

b) Max:- returns the maximum value of argument list.

c) Min:- returns the minimum value of argument list.

d) Sum:- returns the total value of an argument list.

e) Count:- returns the number of records.

How to use SQL commands

· Select cont(*) [* display the whole data it is known as wild card] from emp.
· Select count (“manager”) from emp.

Give total number of manager.

· Select sum (salary) form emp.
· Select max (tax) form emp. [highest tax value].
Q.NO. write SQL statement for following queries.
· Course (crscode, crsname, description)
· Student(id, name, status, gpa)
· Faculty (fid, faculty_name, dept_id, age, semester)
Find the average age of professor department wise.

Select avg(age) from faculty group be dept_id.

Find the no of professor of each department.

Select count (fid) from faculty grouped by dept_id.

Fine the students whose gpa is higher than that of all students whose status is ‘junior’.

Select name from students where gpa>(select max (gpa)from student where status= ‘junior’.

Modification of data (data manipulation language)

Focus on how to add, rename, or change information with SQL.

a) Deletions:- deletes whole tuple, we can’t deletes only particular attributes.
Syntax:- delete form r where p { r= relation and p= predicates}

Note:- SQL delete command is used in one relation only.

e.g. delete form emp where salary >=800 and salary<=1000

this commands delete all tuples whose salary is between 800 to 1000.

b) Insertions:- allows to add records/ values into a relation.

Syntax:- insert into r values (a1,a2,a3……………..an)

e.g. insert into emp value (‘1024’,’ranjit’,’ktm’)

e.g. insert into emp (emp_n0, emp_name, salary) value (‘1024’, ‘suresh’,’50000’).

Updating of records

Updating of records in a database is achieved by update command.

Syntax:- update r set p

e.g. update emp set salary= salary+salary*1.05

e.g. update emp set salary= salary+salary*1.05 where doj(data of join)>15
	Loan_no
	Brance_name
	Amount

	L -170
	Downtown
	3000

	L-230
	Redwood
	4000

	L -260
	Perryridge
	2500

	Customer_name
	Loan_no

	Jones
	L -170

	Smith
	L-230

	hays
	L -155

loan relation

borrower relation

Join relation
a) Inner join operation
Loan inner join borrower on loan.loan_no=borrower.loan_no

e.g.
	L-170
	Downtown
	3000
	Jones
	L -170

	L-230
	Redwood
	4000
	Smith
	L-230

b) Left outer join operation
loan left outer join borrower an loan.loan_no=borrower.loan_no.
e.g.
	L-170
	Downtown
	3000
	Jones
	L -170

	L-230
	Redwood
	4000
	Smith
	L-230

	L -260
	Perryridge
	2500
	Null
	Null

c) right outer join operation

loan right outer join borrower an loan.loan_no=borrower.loan_no.
e.g.
	L-170
	Downtown
	3000
	Jones
	L -170

	L-230
	Redwood
	4000
	Smith
	L-230

	Null
	Null
	Null
	hays
	L -155

d) full outer join operation

loan full outer join borrower an loan.loan_no=borrower.loan_no.
e.g.
	L-170
	Downtown
	3000
	Jones
	L -170

	L-230
	Redwood
	4000
	Smith
	L-230

	L -260
	Perryridge
	2500
	Null
	Null

	Null
	Null
	Null
	hays
	L -155

Integrity constrains
Integrity constrains is that make changes to the database by authorized user that don’t result in a loss of data consistency. Thus, integrity constrains guards against accidental damage to the database.

The data value stored in database must satisfy certain types of consistency constrains. E.g. the balance should be less than thousands (<1000). Database developer enforce these constrains by adding appropriate codes in the various application programs.

Create table r(a1,d1,

a2,d2,

a3, d3, ………………………an, dn

<integrity constrains>

<integrity constrains>);

e.g. creating table account

(account_number char (14),
branch_name char (15),
balance integer,
primary key (account_number),
check(balance>=0)

Domain constrains

1. check

2. not null
3. null

4. primary key

5. unique

e.g. create domain dollar number (10,2)

e.g. create domain pound number (10,2)

we can use this domain constrains In the table as:

create table employee
(salary dollar, allowance pound);

Note:- we can change one domain constrains to next using keyword cast. Cast employee_allowance as dollar (to change pound to dollar)
Relational integrity constrains (foreign key constrains)

Employee

department

	Emp_no
	Emp_name
	Dept_number

	
	
	10

	
	
	10

	
	
	20

	
	
	10

	
	
	30

	Dept_number
	Dept_name

	10
	

	20
	

	30
	

Parent table [referential relation]

Check table [referencing relation]
Referential Integrity
Student

course

enroll
	Cr_no
	Name
	Address

	060/42
	X
	Ktm

	060/43
	M
	Patan

	060/44
	O
	Ktm

	060/45
	n
	Ktm

	Course_id
	C_name
	Fee

	C10
	DSA
	1000

	C11
	Network
	2000

	C12
	MIS
	3000

	En_roll
	Cr_no
	Cours_id
	Enroll_data

	E10
	060/42
	C10
	12-dec-2009

	E11
	060/43
	C10
	15-dec-2009

	E15
	060/44
	C12
	15-dec-2009

	E15
	060/45
	C15
	17-dec-2009

The referential integrity contains is specified bet’n two relation & is used to maintain the consistency among the tuple of 2 relation therefore referential integrity constrains state that a tuple in one relation that refers to another relation must refer to an existing tuple in that relation for example, the attributes Cr_no & course_id of table enroll given the student ID & the course they have been taken. Hence, it’s value in every enroll tuple must match the Cr_no & course_id value of same tuple in the student relation & course relation the condition of a foreign key special to referential integrity constrains between the two relation schema R1 and R2.
A set of attributes foreign key in relations schema R1 is a foreign key of R1 that reference relation R2, if it satisfied the following rules.

I. The attributes in R1 have the same domain as the R1 attributes of R2 the attributes of R1 should be the reference to relation R2.

II. The value of R1 tuple T1 of the current state V1 (R1) either occurs as a value of R1 for some source tuple T2 in the current state r2 (R2) or is null. In the formal case, we have T2(R1)=T2[PK] & we can say that the tuple. T1 reference to tuple T2 & R1 is called as referencing relation & R2 is called referential relation.

Creating a foreign key for referential integrity

Foreign key can be create using SQL create table command by using foreign key clause. By default a foreign key reference the primary key attributes of reference table.
e.g.

Create table branch

(branch_name char(15),

Branch_city char (20)

Assets integer,

Primary key(branch_name)

Check (assests>=0));

Create table account

(account_number char(15),

Branch_name char (20)

Balance integer,

Primary key (account_number)

Foreign key (branch_name)
reference branch

Check (balance>=0),

Foreign key (branch_name)
reference branch on delete cascade

Foreign key (branch_name)
reference branch on update cascade.
Advantages of referential integrity

· Improve data quality genuine & infact.
· Fewer bugs (minimize error)

· Consistency across the application : referential integrity ensures the quality of data across the multiple application that may access the database.
Syntax for defining referential integrity in a table:

Create table:

Table 1

A1
D1

A2
D2

..
..

Foreign key (column list)

Reference tabler [<column list>] [on delete acton] [on update actions]);

Normalizations
It is the process of splitting & assigning attributes to entities such that data are represented in tables from where each row and columns position contains a single data element. It reduce data redundancies & consistency.

It eliminate anomalies [update, delete & insert problem] that results from there redundancies.

This theory is based on the concept of normal forms. A relational table is to be a particular normal form if it satisfied a certain set of constrains.
The list of normal forms are given below:

a. First normal form (INF)

b. Second normal form (SNF)

c. Third normal form (TNF)

d. Fourth normal form (FNF)

Normalization is a design technique that is widely used as a guide in designing relational databases. Normalization is essentially a two step process that puts data into tabular form by removing repeating groups and then removes duplicated data from the relational tables.

Normalization theory is based on the concepts of normal forms. A relational table is said to be a particular normal form if it satisfied a certain set of constraints. There are currently five normal forms that have been defined. In this section, we will cover the first three normal forms that were defined by E. F. Codd.

Basic Concepts

The goal of normalization is to create a set of relational tables that are free of redundant data and that can be consistently and correctly modified. This means that all tables in a relational database should be in the third normal form (3NF). A relational table is in 3NF if and only if all non-key columns are (a) mutually independent and (b) fully dependent upon the primary key. Mutual independence means that no non-key column is dependent upon any combination of the other columns. The first two normal forms are intermediate steps to achieve the goal of having all tables in 3NF. In order to better understand the 2NF and higher forms, it is necessary to understand the concepts of functional dependencies and lossless decomposition.

Functional Dependencies

The concept of functional dependencies is the basis for the first three normal forms. A column, Y, of the relational table R is said to be functionally dependent upon column X of R if and only if each value of X in R is associated with precisely one value of Y at any given time. X and Y may be composite. Saying that column Y is functionally dependent upon X is the same as saying the values of column X identify the values of column Y. If column X is a primary key, then all columns in the relational table R must be functionally dependent upon X.

A short-hand notation for describing a functional dependency is:

R.x —>; R.y

which can be read as in the relational table named R, column x functionally determines (identifies) column y.

Full functional dependence applies to tables with composite keys. Column Y in relational table R is fully functional on X of R if it is functionally dependent on X and not functionally dependent upon any subset of X. Full functional dependence means that when a primary key is composite, made of two or more columns, then the other columns must be identified by the entire key and not just some of the columns that make up the key.

Overview

Simply stated, normalization is the process of removing redundant data from relational tables by decomposing (splitting) a relational table into smaller tables by projection. The goal is to have only primary keys on the left hand side of a functional dependency. In order to be correct, decomposition must be lossless. That is, the new tables can be recombined by a natural join to recreate the original table without creating any spurious or redundant data.

Sample Data

Data taken from Date [Date90] is used to illustrate the process of normalization. A company obtains parts from a number of suppliers. Each supplier is located in one city. A city can have more than one supplier located there and each city has a status code associated with it. Each supplier may provide many parts. The company creates a simple relational table to store this information that can be expressed in relational notation as:

FIRST (s#, status, city, p#, qty)

where

	s#
	supplier identifcation number (this is the primary key)

	status
	status code assigned to city

	city
	name of city where supplier is located

	p#
	part number of part supplied

	qty>
	quantity of parts supplied to date

In order to uniquely associate quantity supplied (qty) with part (p#) and supplier (s#), a composite primary key composed of s# and p# is used.

A simple records on a table without 1st normal form

	S#
	Status
	City
	P#
	Qty

	S1
	20
	London
	P1,P2,P3,P4,P5,P6
	3,2,4,2,4,1

	S2
	10
	Paris
	P1,P2
	3,2

	S3
	10
	Paris
	P2
	4

	S4
	20
	London
	P2,P4
	3,2

First Normal Form

A relational table, by definition, is in first normal form. All values of the columns are atomic. That is, they contain no repeating values. Figure1 shows the table FIRST in 1NF.

Figure 1: Table in 1NF

Although the table FIRST is in 1NF it contains redundant data. For example, information about the supplier's location and the location's status have to be repeated for every part supplied. Redundancy causes what are called update anomalies. Update anomalies are problems that arise when information is inserted, deleted, or updated. For example, the following anomalies could occur in FIRST:

· INSERT. The fact that a certain supplier (s5) is located in a particular city (Athens) cannot be added until they supplied a part.

· DELETE. If a row is deleted, then not only is the information about quantity and part lost but also information about the supplier.

· UPDATE. If supplier s1 moved from London to New York, then six rows would have to be updated with this new information.

Second Normal Form

The definition of second normal form states that only tables with composite primary keys can be in 1NF but not in 2NF.

A relational table is in second normal form 2NF if it is in 1NF and every non-key column is fully dependent upon the primary key.

That is, every non-key column must be dependent upon the entire primary key. FIRST is in 1NF but not in 2NF because status and city are functionally dependent upon only on the column s# of the composite key (s#, p#). This can be illustrated by listing the functional dependencies in the table:

	s#
	—> city, status

	city
	—> status

	(s#,p#)
	—>qty

The process for transforming a 1NF table to 2NF is:

1. Identify any determinants other than the composite key, and the columns they determine.

2. Create and name a new table for each determinant and the unique columns it determines.

3. Move the determined columns from the original table to the new table. The determinate becomes the primary key of the new table.

4. Delete the columns you just moved from the original table except for the determinate which will serve as a foreign key.

5. The original table may be renamed to maintain semantic meaning.

To transform FIRST into 2NF we move the columns s#, status, and city to a new table called SECOND. The column s# becomes the primary key of this new table. The results are shown below in Figure 2.

Figure 2: Tables in 2NF

Tables in 2NF but not in 3NF still contain modification anomalies. In the example of SECOND, they are:

INSERT. The fact that a particular city has a certain status (Rome has a status of 50) cannot be inserted until there is a supplier in the city.

DELETE. Deleting any row in SUPPLIER destroys the status information about the city as well as the association between supplier and city.

Third Normal Form

The third normal form requires that all columns in a relational table are dependent only upon the primary key. A more formal definition is:

A relational table is in third normal form (3NF) if it is already in 2NF and every non-key column is non transitively dependent upon its primary key. In other words, all nonkey attributes are functionally dependent only upon the primary key.

Table PARTS is already in 3NF. The non-key column, qty, is fully dependent upon the primary key (s#, p#). SUPPLIER is in 2NF but not in 3NF because it contains a transitive dependency. A transitive dependency is occurs when a non-key column that is a determinant of the primary key is the determinate of other columns. The concept of a transitive dependency can be illustrated by showing the functional dependencies in SUPPLIER:

	SUPPLIER.s#
	—> SUPPLIER.status

	SUPPLIER.s#
	—> SUPPLIER.city

	SUPPLIER.city
	—> SUPPLIER.status

Note that SUPPLIER.status is determined both by the primary key s# and the non-key column city. The process of transforming a table into 3NF is:

Identify any determinants, other the primary key, and the columns they determine.

Create and name a new table for each determinant and the unique columns it determines.

Move the determined columns from the original table to the new table. The determinate becomes the primary key of the new table.

Delete the columns you just moved from the original table except for the determinate which will serve as a foreign key.

The original table may be renamed to maintain semantic meaning.

To transform SUPPLIER into 3NF, we create a new table called CITY_STATUS and move the columns city and status into it. Status is deleted from the original table, city is left behind to serve as a foreign key to CITY_STATUS, and the original table is renamed to SUPPLIER_CITY to reflect its semantic meaning. The results are shown in Figure 3 below.

Figure 3: Tables in 3NF

The results of putting the original table into 3NF has created three tables. These can be represented in "psuedo-SQL" as:

PARTS (#s, p#, qty)
Primary Key (s#,#p)
Foreign Key (s#) references SUPPLIER_CITY.s#

SUPPLIER_CITY(s#, city)
Primary Key (s#)
Foreign Key (city) references CITY_STATUS.city

CITY_STATUS (city, status)
Primary Key (city)

Advantages of Third Normal Form

The advantage of having relational tables in 3NF is that it eliminates redundant data which in turn saves space and reduces manipulation anomalies. For example, the improvements to our sample database are:

INSERT. Facts about the status of a city, Rome has a status of 50, can be added even though there is not supplier in that city. Likewise, facts about new suppliers can be added even though they have not yet supplied parts.

DELETE. Information about parts supplied can be deleted without destroying information about a supplier or a city. UPDATE. Changing the location of a supplier or the status of a city requires modifying only one row.

Another example
· The purpose of normailization
· Data redundancy and Update Anomalies
· Functional Dependencies
· The Process of Normalization
· First Normal Form (1NF)
· Second Normal Form (2NF)
· Third Normal Form (3NF)
· General Definition of Second and Third Normal Form
· Boyce-Codd Normal Form (BCNF)
· Fourth Normal Form (4NF)
· Fifth Normal Form (5NF)
The Purpose of Normalization

Normalization is a technique for producing a set of relations with desirable properties, given the data requirements of an enterprise.
The process of normalization is a formal method that identifies relations based on their primary or candidate keys and the functional dependencies among their attributes.

Update Anomalies

Relations that have redundant data may have problems called update anomalies, which are classified as ,
Insertion anomalies
Deletion anomalies
Modification anomalies

Example of Update Anomalies

To insert a new staff with branchNo B007 into the StaffBranch relation;
To delete a tuple that represents the last member of staff located at a branch B007;
To change the address of branch B003.

StaffBranch
	staffNo
	sName
	position
	salary
	branchNo
	bAddress

	SL21
	John White
	Manager
	30000
	B005
	22 Deer Rd, London

	SG37
	Ann Beech
	Assistant
	12000
	B003
	163 Main St,Glasgow

	SG14
	David Ford
	Supervisor
	18000
	B003
	163 Main St,Glasgow

	SA9
	Mary Howe
	Assistant
	9000
	B007
	16 Argyll St, Aberdeen

	SG5
	Susan Brand
	Manager
	24000
	B003
	163 Main St,Glasgow

	SL41
	Julie Lee
	Assistant
	9000
	B005
	22 Deer Rd, London

Figure 1 StraffBranch relation
Example of Update Anomalies (2)

Staff
	staffNo
	sName
	position
	salary
	branceNo

	SL21
	John White
	Manager
	30000
	B005

	SG37
	Ann Beech
	Assistant
	12000
	B003

	SG14
	David Ford
	Supervisor
	18000
	B003

	SA9
	Mary Howe
	Assistant
	9000
	B007

	SG5
	Susan Brand
	Manager
	24000
	B003

	SL41
	Julie Lee
	Assistant
	9000
	B005

Branch
	branceNo
	bAddress

	B005
	22 Deer Rd, London

	B007
	16 Argyll St, Aberdeen

	B003
	163 Main St,Glasgow

Figure 2 Straff and Branch relations
Functional Dependencies

Functional dependency describes the relationship between attributes in a relation. For example, if A and B are attributes of relation R, and B is functionally dependent on A (denoted A B), if each value of A is associated with exactly one value of B. (A and B may each consist of one or more attributes.)

[image: image4.png]° B 1s functionally o
H
/ dependent on A

Determinant

Functional Dependencies (2)

Trival functional dependency means that the right-hand side is a subset (not necessarily a proper subset) of the left-
hand side.
For example: (See Figure 1)
staffNo, sName (sName
staffNo, sName (staffNo
They do not provide any additional information about possible integrity constraints on the values held by these attributes.
We are normally more interested in nontrivial dependencies because they represent integrity constraints for the relation.
Functional Dependencies (3)

Main characteristics of functional dependencies in normalization
· Have a one-to-one relationship between attribute(s) on the left- and right- hand side of a dependency;
· hold for all time;
· are nontrivial.
Functional Dependencies (4)

Identifying the primary key
Functional dependency is a property of the meaning or semantics of the attributes in a relation. When a functional
dependency is present, the dependency is specified as a constraint between the attributes.
An important integrity constraint to consider first is the identification of candidate keys, one of which is selected to
be the primary key for the relation using functional dependency.

Functional Dependencies (5)

Inference Rules
A set of all functional dependencies that are implied by a given set of functional dependencies X is called closure of X, written
X+. A set of inference rule is needed to compute X+ from X.
Armstrong’s axioms
1. Relfexivity:
If B is a subset of A, them A (B
2. Augmentation:
If A (B, then A, C (B
3. Transitivity:
If A (B and B (C, then A(C
4. Self-determination:
 A (A
5. Decomposition:
If A (B,C then A (B and A(C
6. Union:

If A (B and A (C, then A(B,C
7. Composition:
If A (B and C (D, then A,C(B,
Functional Dependencies (6)

Minial Sets of Functional Dependencies
A set of functional dependencies X is minimal if it satisfies the following condition:
· Every dependency in X has a single attribute on its
right-hand side
· We cannot replace any dependency A (B in X with
dependency C (B, where C is a proper subset of A, and
still have a set of dependencies that is equivalent to X.
· We cannot remove any dependency from X and still have a set of dependencies that is equivalent to X.
Functional Dependencies (7)
Example of A Minial Sets of Functional Dependencies
A set of functional dependencies for the StaffBranch relation satisfies the three conditions for producing a minimal set.
staffNo (sName
staffNo (position
staffNo (salary
staffNo (branchNo
staffNo (bAddress
branchNo (bAddress
branchNo, position (salary
bAddress, position (salary
The Process of Normalization
· Normalization is often executed as a series of steps. Each step corresponds to a specific normal form that has known properties.
· As normalization proceeds, the relations become progressively more restricted in format, and also less vulnerable to update anomalies.
· For the relational data model, it is important to recognize that it is only first normal form (1NF) that is critical in creating relations. All the subsequent normal forms are optional.
First Normal Form (1NF)

Unnormalized form (UNF)
A table that contains one or more repeating groups.
	ClientNo
	cName
	propertyNo
	pAddress
	rentStart
	rentFinish
	rent
	ownerNo
	oName

	CR76
	John
kay
	PG4
PG16
	6 lawrence
St,Glasgow
5 Novar Dr,
Glasgow
	1-Jul-00
1-Sep-02
	31-Aug-01
1-Sep-02
	350
450
	CO40
CO93
	Tina Murphy
Tony Shaw

	CR56
	Aline
Stewart
	PG4
PG36
PG16
	6 lawrence
St,Glasgow
2 Manor Rd,
Glasgow
5 Novar Dr,
Glasgow
	1-Sep-99
10-Oct-00
1-Nov-02
	10-Jun-00
1-Dec-01
1-Aug-03
	350
370
450
	CO40
CO93
CO93
	Tina Murphy
Tony Shaw
Tony Shaw

Figure 3 ClientRental unnormalized table
Definition of 1NF

First Normal Form is a relation in which the intersection of each row and column contains one and only one value.
There are two approaches to removing repeating groups from
unnormalized tables:
1. Removes the repeating groups by entering appropriate data in the empty columns of rows containing the repeating data.

2.
Removes the repeating group by placing the repeating data, along with a copy of the original key attribute(s), in a separate relation. A primary key is identified for the new relation.

1NF ClientRental relation with the first approach

With the first approach, we remove the repeating group (property rented details) by entering the appropriate client
data into each row.
The ClientRental relation is defined as follows,
ClientRental (clientNo, propertyNo, cName, pAddress, rentStart, rentFinish, rent,
ownerNo, oName)
	ClientNo
	propertyNo
	cName
	pAddress
	rentStart
	rentFinish
	rent
	ownerNo
	oName

	CR76
	PG4
	John
Kay
	6 lawrence
St,Glasgow
	1-Jul-00
	31-Aug-01
	350
	CO40
	Tina Murphy

	CR76
	PG16
	John
Kay
	5 Novar Dr,
Glasgow
	1-Sep-02
	1-Sep-02
	450
	CO93
	Tony Shaw

	CR56
	PG4
	Aline
Stewart
	6 lawrence
St,Glasgow
	1-Sep-99
	10-Jun-00
	350
	CO40
	Tina Murphy

	CR56
	PG36
	Aline
Stewart
	2 Manor Rd,
Glasgow
	10-Oct-00
	1-Dec-01
	370
	CO93
	Tony Shaw

	CR56
	PG16
	Aline
Stewart
	5 Novar Dr,
Glasgow
	1-Nov-02
	1-Aug-03
	450
	CO93
	Tony Shaw

Figure 4 1NF ClientRental relation with the first approach
Full functional dependency

Full functional dependency indicates that if A and B are attributes of a relation, B is fully functionally dependent on A if B is functionally dependent on A, but not on any proper subset of A.
A functional dependency A(B is partially dependent if there is some attributes that can be removed from A and the dependency still holds.
Second Normal Form (2NF)

Second normal form (2NF) is a relation that is in first normal form and every non-primary-key attribute is fully functionally dependent on the primary key.
The normalization of 1NF relations to 2NF involves the removal of partial dependencies. If a partial dependency exists, we remove the function dependent attributes from the relation by placing them in a new relation along with a copy of their determinant.
2NF ClientRental relation

The ClientRental relation has the following functional
dependencies:
fd1
clientNo, propertyNo (rentStart, rentFinish

(Primary Key)
fd2
clientNo (cName

(Partial dependency)
fd3
propertyNo (pAddress, rent, ownerNo, oName

(Partial dependency)
fd4
ownerNo (oName

(Transitive Dependency)
fd5
clientNo, rentStart (propertyNo, pAddress,
rentFinish, rent, ownerNo, oName

(Candidate key)
fd6
propertyNo, rentStart (clientNo, cName, rentFinish
(Candidate key)
2NF ClientRental relation

After removing the partial dependencies, the creation of the three
new relations called Client, Rental, and PropertyOwner

Client

 (clientNo, cName)
Rental

 (clientNo, propertyNo, rentStart, rentFinish)
PropertyOwner (propertyNo, pAddress, rent, ownerNo, oName)
[image: image5.png]Client

CR76 John Kay
CRS56 Aline Stewart
Property Owner

Rental

| ClientNo | propertyNo rentStart | rentFinish |
CR76 PG4 1-Jul-00 31-Aug-01
CR76 PG16 1-Sep-02 1-Sep-02
CRS56 PG4 1-Sep-99 10-Jun-00
CR56 PG36 10-Oct-00 1-Dec-01
CR56 PG16 1-Nov-02 1-Aug-03

PG4 6 lawrence St,Glasgow 350 CO40 Tina Murphy
PG16 5 Novar Dr, Glasgow 450 C093 Tony Shaw
PG36 2 Manor Rd, Glasgow 370 C093 Tony Shaw

Figure 6 2NF ClientRental relation

Third Normal Form (3NF)

Transitive dependency
A condition where A, B, and C are attributes of a relation such that if A (B and B (C, then C is transitively dependent on A via B (provided that A is not functionally dependent on B or C).
Third normal form (3NF)
A relation that is in first and second normal form, and in which no non-primary-key attribute is transitively dependent on the
primary key.
The normalization of 2NF relations to 3NF involves the removal of transitive dependencies by placing the attribute(s) in a new relation along with a copy of the determinant.
3NF ClientRental relation
The functional dependencies for the Client, Rental and PropertyOwner relations are as follows:

Client
fd2
clientNo (cName

(Primary Key)
Rental
fd1
clientNo, propertyNo (rentStart, rentFinish

(Primary Key)
fd5
clientNo, rentStart (propertyNo, rentFinish

(Candidate key)
fd6
propertyNo, rentStart (clientNo, rentFinish

(Candidate key)
PropertyOwner
fd3
propertyNo (pAddress, rent, ownerNo, oName

(Primary Key)
fd4
ownerNo (oName

(Transitive Dependency)
The resulting 3NF relations have the forms:
Client

 (clientNo, cName)
Rental

 (clientNo, propertyNo, rentStart, rentFinish)
PropertyOwner (propertyNo, pAddress, rent, ownerNo)
Owner

 (ownerNo, oName)
[image: image6.png]Client
CR76 John Kay
CRS56 Aline Stewart
Property Owner

Rental

CR76 PG4 1-Jul-00 31-Aug-01

CR76 PG16 1-Sep-02__ | 1-Sep-02

CR56 PG4 1-Sep-99 | 10-Jun-00

CR56 PG36 10-Oct-00 | 1-Dec-01

CR56 PG16 1-Nov-02 | 1-Aug-03
Owner

Figure 7 2NF ClientRental relation

PG4 6 lawrence St,Glasgow | 350 C040 C040 Tina Murphy
PG16 5 Novar Dr, Glasgow 450 | CO93 Co93 Tony Shaw
PG36 2 Manor Rd, Glasgow 370 C093

Boyce-Codd Normal Form (BCNF)

Boyce-Codd normal form (BCNF)
A relation is in BCNF, if and only if, every determinant is a candidate key.
The difference between 3NF and BCNF is that for a functional dependency A (B, 3NF allows this dependency in a relation
if B is a primary-key attribute and A is not a candidate key, whereas BCNF insists that for this dependency to remain in a
relation, A must be a candidate key.
Example of BCNF

fd1 clientNo, interviewDate (interviewTime, staffNo, roomNo
(Primary Key)
fd2 staffNo, interviewDate, interviewTime(clientNo

(Candidate key)
fd3 roomNo, interviewDate, interviewTime (clientNo, staffNo
(Candidate key)
fd4 staffNo, interviewDate (roomNo

(not a candidate key)
As a consequece the ClientInterview relation may suffer from update anmalies.

For example, two tuples have to be updated if the roomNo need be changed for staffNo SG5 on the 13-May-02.

[image: image7.png]ClientInterview

CR76 13-May-02 10.30 SG5 G101
CR76 13-May-02 12.00 SG5 G101
CR74 13-May-02 12.00 SG37 G102
CRS56 1-Jul-02 10.30 SG5 G102

Figure 8 ClientInterview relation

Example of BCNF(2)

To transform the ClientInterview relation to BCNF, we must remove the violating functional dependency by creating two new relations called Interview and SatffRoom as shown below,
Interview (clientNo, interviewDate, interviewTime, staffNo)
StaffRoom(staffNo, interviewDate, roomNo)
[image: image8.png]Interview

CR76 13-May-02 10.30 SG5
CR76 13-May-02 12.00 SG5
CR74 13-May-02 12.00 SG37
CR56 1-Jul-02 10.30 SG5
StaffRoom
SG5 13-May-02 G101
SG37 13-May-02 G102
SG5 1-Jul-02 G102

Figure 9 BCNF Interview and StaffRoom relations

Fourth Normal Form (4NF)

Multi-valued dependency (MVD)
represents a dependency between attributes (for example, A, B and C) in a relation, such that for each value of A there is a
set of values for B and a set of value for C. However, the set of values for B and C are independent of each other. A multi-valued dependency can be further defined as being trivial or nontrivial. A MVD A (> B in relation R is defined
as being trivial if
· B is a subset of A
or

· A U B = R
A MVD is defined as being nontrivial if neither of the above two conditions is satisfied.

Fourth normal form (4NF) : A relation that is in Boyce-Codd normal form and contains no nontrivial multi-valued dependencies.
Fifth Normal Form (5NF)
Lossless-join dependency
A property of decomposition, which ensures that no spurious tuples are generated when relations are reunited through a
natural join operation.
Join dependency
Describes a type of dependency. For example, for a relation R with subsets of the attributes of R denoted as A, B, …, Z, a
relation R satisfies a join dependency if, and only if, every legal value of R is equal to the join of its projections on A, B, …, Z.
Fifth normal form (5NF)
A relation that has no join dependency
Transaction in DBMS
A transaction is a unit of program execution that access and possibly updates various data items.

· A transaction must see consistent database

· During transaction execution the database may be in consistent.

· When the transaction is committed the database must be consistent.

ACID properties of transaction:-

To ensure integrity of data the database must maintain:

a. Atomicity:- either all operation of transaction are properly reflected in all database or non.

b. Consistency:- execution of a transaction in isolation preserve the consistency of database.

c. Isolation:- although multiple transaction may execute concurrently each transaction must be unaware of other concurrently executing transaction. i.e. for every pair of transaction Ti and Tj, it appeared to Ti that either Tj obtashed execution before Ti started oEaTj suppled executiÿÿ after Ti finished.

d. Durability:- after transaction complete successfully the change it had mode to database persist even there are system failures.

Example of transfer:-

Transaction to transfer $100 from account A to account B.

1. Read (A)

2. A:=A-100

3. Write (A)

4. Read (B)

5. B:=B+100

6. Write (B)

Consistency requirement: the sum of A and B is unchanged by the execution of transaction.

Atomicity requirement:- if the transaction fails after step 3 and before 6 the system should ensure that its updates are not reflected in the database else an inconsistency will result.

Durability requirement:- once the user has been notified that the transaction has completed the update to database by the transaction must persist despite failure.

Isolation requirement:- if between step 3 and 6 another transaction is called to access the partially update database it will see an inconsistent database.

Transaction state:-

· Active the initial state the transaction stay in this state while it is executing

· Partially committed after the final statement has been executed

· Failed after the discovery that normal execution can go longer proceed.

· Aborted after the transaction has been rolled back and the database restored to its state prior to the start of transaction.

I. Restart the transaction only if no internal logical error.

II. Kill the transaction.

· Committed after the successful completion.

Fig:- stat diagram of transaction

Implementation of atomicity and durability:-

· The shadow database scheme:- assume that only transaction is active of a time. A pointer called db_pointer always points to the current consistence copy of the database.

All updates are made on shadow copy of database and db_pointer is made to point to the update shadow copy only after the transaction reaches partial commit and all update pages has been flushed to disk.

In case of transaction fails, old consistent copy pointed to by db_pointer can be used and the shadow can be deleted.

[image: image9.png]db_pointer

db_pointer

old copy of
database

old copy of
database
(to be deleted)

new copy of
database

(a) Before update

(b) After update

Concurrent Executions
Transaction processing systems usually allow multiple transactions to run concurrently. Advantages are:
· Improved throughput and resource utilization: Leading to better transaction throughput: one transaction can be using the CPU while another is reading from or writing to the disk.
· Reduced waiting time: Short transactions need not wait behind long ones. Moreover it also reduces the average response time: the average time for a transaction to be completed after it has been submitted.
Concurrency control schemes – mechanisms to achieve isolation, i.e., to control the interaction among the concurrent transactions in order to prevent them from destroying the consistency of the database.

· When several transactions run concurrently, database consistency can be destroyed despite the correctness of each individual transaction.
· We use the concept of schedules to identify the executions of concurrent transactions.
· Schedules represent the chronological order in which instructions of concurrent transactions are executed
· A schedule for a set of transactions must consist of all instructions of those transactions
· A schedule must preserve the order in which the instructions appear in each individual transaction.
Examples of concurrent execution:
Schedules:- are the sequence that indicates the chronological order in which instruction of concurrent transaction are executed. Must preserve the order in which the instruction appear in each individual transaction.

Example of schedules:-

Let T1 transfer $50 from A to B and T2 transfer 10% balance from A to B the following is the serial schedules in which t1 is followed by t2.

	T1
	T2

	Read (A)
	

	A:=A-50
	

	Write (A)
	

	Read (B)
	

	B:=B+50
	

	Write (B)
	

	
	Read (A)

	
	Temp:=A*0.1

	
	A:=A-temp

	
	Write (A)

	
	Read (B)

	
	B:=B+temp

	
	Write (B)

Example 2

Let T1 and T2 be the transaction defined previously the following schedule is not a serial schedule but it is equivalent schedule 1.

	T1
	T2

	Read (A)

A:=A-50

Write (A)

Read (B)

B:=B+50

Write (B)
	Read (A)

Temp:=A*0.1

A:=A-temp

Read (B)

B:=B+temp

Write (B)

The following example of current schedule doesn’t preserve the value of the sum A+B

	T1
	T2

	Read (A)

A:=A-50

Write (A)

Read (B)

B:=B+50

Write (B)
	Read (A)

Temp:=A*0.1

A:=A-temp

Write (A)

Read (B)

B:=B+temp

Write (B)

Serializability:-

· Basic assumption:-each transaction preserves database consistency.

· Thus serial execution of set of transaction preserves database consistency.

· A (possibility concurrent) schedule serixlizable if it is equivalent to serial schedule. Different forms of schedule equivalence give rise to the notation of:

· Conflict serializability.

· View serialzability.

Conflict serializability

Instruction Li & Lj of transitions T2 and T2 respectively conflict, if and only if there exists some item Q access by both Li and Lj and at least one of these instructions wrote (Q)

1. Li = read (Q) , Li = read(Q), LI and Li don’t conflict

2. Li = read (Q) , Lj = unite (Q); they conflict

3. Li = unite (Q), Lj = read (Q) ; they conflict

4. Li = unite (Q), Lj = unite (Q); they conflict

· If a schedule S can be transformed into a schedule S’ by series of non-conflicting instruction we say that S and S’ are conflict equivalent.

· We say that schedule S is conflict serializable if it is conflict equivalent to serial schedule.

· Example of a schedule that is not conflict serializable.

	T3
	T4

	Read (Q)

Write (Q)

	Write (Q)

We can unable to swap instruction in the above schedule to obtain either serial schedule <T3.T4> or the schedule <T4,T3>.

View Serializability
· Let S and S´ be two schedules with the same set of transactions. S and S´ are view equivalent if the following three conditions are met:

1.
For each data item Q, if transaction Ti reads the initial value of Q in schedule S, then transaction Ti must, in schedule S´, also read the initial value of Q.
2.
For each data item Q if transaction Ti executes read(Q) in schedule S, and that value was produced by transaction Tj (if any), then transaction Ti must in schedule S´ also read the value of Q that was produced by transaction Tj .

3.
For each data item Q, the transaction (if any) that performs the final write(Q) operation in schedule S must perform the final write(Q) operation in schedule S´.

As can be seen, view equivalence is also based purely on reads
and writes alone.

· A schedule S is view serializable it is view equivalent to a serial schedule.

· Every conflict serializable schedule is also view serializable.

· Schedule 9 (from text) — a schedule which is view-serializable but not conflict serializable.
Every view serializable schedule that is not conflict
 serializable has blind writes.
[image: image10.png]

Concurrent control
· When several transactions execute concurrently in the database, the database system must control the interaction among the concurrent transactions.
· This control is achieved through one of a variety of mechanisms called concurrency-control schemes. In this chapter, we only discuss the schemes based on the serializability property, that is all schemes presented ensure that the schedules are serializable.
Lock-Based Protocols

· A lock is a mechanism to control concurrent access to a data item. A transaction is allowed to access a data item only if it is currently holding a lock on that item.
· There are various modes in which a data item may be locked. In this section, we only discuss two modes :
1. Shared: If a transaction Ti has obtained a shared mode lock (Denoted by S) on item Q, then Ti can read, but can not write Q. S-lock is requested using lock-S(Q) instruction.

2. Exclusive: If a transaction Ti has obtained an exclusive mode lock (Denoted by X) on item Q, then Ti can both read and write Q. X-lock is requested using lock-X(Q) instruction.

· A transaction must hold a lock on a data item as long as it accesses that item. A transaction can unlock a data item Q by the unlock(Q) instruction that it had locked at some earlier point.
· Lock requests are made to the concurrency-control manager in an appropriate mode depending on the types of operations. Transaction can proceed only after request is granted.
· A transaction may be granted a lock on an item if the requested lock is compatible with locks already held on the item by other transactions.
· A lock mode A is compatible with the lock mode B if a transaction Ti requests a lock mode A on item Q on which transaction Tj (Ti (Tj) currently holds a lock mode of B and Ti can be granted lock mode A on Q immediately without removing the lock mode B.
Lock-compatibility matrix:

[image: image11.png]

· Any number of transactions can hold shared locks on an item, but if any transaction holds an exclusive on the item no other transaction may hold any lock on the item.
· If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks held by other transactions have been released. The lock is then granted.
· Example of a transaction performing locking:
T2: lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)
· For a transaction to unlock a data item immediately after its final access of that item is not always desirable, since serializability may not be ensured. For example locking as above is not sufficient to guarantee serializability — if A and B get updated in-between the read of A and B, the displayed sum would be wrong.
· Also, locking can lead to an undesirable situation. For example, consider the following partial schedule:
[image: image12.png]

Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to wait for T3 to release its lock on B, while executing lock-X(A) causes T3 to wait for T4 to release its lock on A.

· The above situation is called a deadlock.
· To handle a deadlock one of the transactions (T3 or T4) must be rolled back and its locks released.
· If we do not use locking, or if we unlock data items as soon as possible after reading or writing them, we may get inconsistent states. Furthermore, if we do not unlock a data item before requesting a lock on another data item, deadlocks may occur.
· So, we shall require that each transaction in the system follow a set of rules called a locking protocol, indicating when a transaction may lock and unlock each of the data items. Locking protocols restrict the number of possible schedules.
Granting of Locks
· When a transaction requests a lock on a data item in a particular mode, and no other transaction has a lock on the same data item in conflicting mode, the lock can be granted.
· Still a transaction may be starved and may never make progress. For example, a transaction may be waiting for an X-lock on an item, while a sequence of other transactions request and are granted an S-lock on the same item.
· If a transaction T1 is waiting for an X-lock on a data item and there is a sequence of transactions that requests a shared-mode lock on the data item and each transaction releases a lock a short while after it is granted then T1 never gets the exclusive lock on the data item. The transaction T1 never makes progress and is said to be in starvation.
· We can avoid starvation of transactions by granting locks in the sequential order.
The Two-Phase Locking Protocol

· This protocol ensures serializability. This protocol requires that each transaction issues lock and unlock requests in two phases.
1. Growing Phase: A transaction may obtain locks, but may not release any lock.
2. Shrinking Phase: A transaction may release locks, but may not obtain any new locks.
· The protocol assures conflict serializability. It can be proved that the transactions can be serialized in the order of their lock points (i.e. the point where a transaction acquired its final lock).
· Two-phase locking does not ensure freedom from deadlocks.
· Cascading roll-back is possible under two-phase locking. To avoid this, follow a modified protocol called strict two-phase locking. Here a transaction must hold all its exclusive locks till it commits/aborts.
· Another variant of the two phase locking is the Rigorous two-phase locking. Here all locks are held till commit/abort. In this protocol transactions can be serialized in the order in which they commit.
· Most database systems implement either strict or rigorous two-phase locking.
· We can also refine the basic two-phase locking protocol in which lock conversions are allowed. We shall provide a mechanism for upgrading a shared lock to an exclusive lock , and downgrading an exclusive lock to a shared lock to get more concurrency.
[image: image13.png]Tg To
lock-S (a1)

lock-S(aq)
lock-S (a5)
lock-S(a»)

lock-S (a3)
lock-S (a4)

unlock(a)
unlock(a»)
lock-S (a,,)

upgrade (a1)

· Lock conversion cannot be allowed arbitrarily. Upgrading can take place in only the growing phase, whereas downgrading can take place in only the shrinking phase.
· A transaction attempting to upgrade a lock on an item Q may be forced to wait if Q is currently locked by another transaction in shared mode.
· Just like the basic two-phase locking protocol, two phase locking with lock conversions generates only conflict-serializable schedules, and transactions can be serialized by their lock points. Further, if exclusive locks are held until the end of the transaction, the schedules are cascadeless.
· Hence, a simple but widely used scheme for two phase locking protocol automatically generates the appropriate lock on the basis of read and write requests as follows:
· When a transaction Ti issues a read(Q) operation, the system issues a lock-S(Q) instruction followed by the read(Q) instruction.
· When Ti issues a write(Q) operation, the system checks to see whether Ti already holds a shared lock on Q. if it does, then the system issues an upgrade(Q) instruction followed by the write(Q) instruction. Otherwise the system issues a lock-X(Q) instruction, followed by the write(Q) instruction
· All locks obtained by a transaction are unlocked after the transaction commits or aborts.
Implementation of Locking
· A Lock manager can be implemented as a separate process to which transactions send lock and unlock requests.
· The lock manager replies to a lock request by sending a lock grant messages (or a message asking the transaction to roll back in case of a deadlock)
· The requesting transaction waits until its request is answered
· The lock manager maintains a data structure called a lock table to record granted locks and pending requests
· The lock table is usually implemented as an in-memory hash table indexed on the name of the data item being locked
Lock Table

· Black rectangles indicate granted locks, white ones indicate waiting requests
· Lock table also records the type of lock granted or requested
· New request is added to the end of the queue of requests for the data item, and granted if it is compatible with all earlier locks
· Unlock requests result in the request being deleted, and later requests are checked to see if they can now be granted
· If transaction aborts, all waiting or granted requests of the transaction are deleted
Timestamp-Based Protocol
· Each transaction is issued a timestamp when it enters the system. If an old transaction Ti has time-stamp TS(Ti), a new transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti) < TS(Tj).
· The protocol manages concurrent execution such that the time-stamps determine the serializability order.
· In order to assure such behavior, the protocol maintains for each data Q two timestamp values:
· W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q) successfully.
· R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q) successfully.
· The Timestamp Ordering Protocol: The timestamp ordering protocol ensures that any conflicting read and write operations are executed in timestamp order.
· Suppose a transaction Ti issues a read(Q)
· If TS(Ti) (W-timestamp(Q), then Ti needs to read a value of Q that was already overwritten. Hence, the read operation is rejected, and Ti is rolled back.
· If TS(Ti) (W-timestamp(Q), then the read operation is executed, and R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).
· Suppose that transaction Ti issues write(Q).
· If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed previously, and the system assumed that that value would never be produced. Hence, the write operation is rejected, and Ti is rolled back.
· If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. Hence, this write operation is rejected, and Ti is rolled back.
· Otherwise, the write operation is executed, and W-timestamp(Q) is set to TS(Ti).
Example: A partial schedule for several data items for transactions with timestamps 1, 2, 3, 4, 5

· Timestamp protocol ensures freedom from deadlock as no transaction ever waits.
· But the schedule may not be cascade-free, and may not even be recoverable.
· Problem with timestamp-ordering protocol:
· Suppose Ti aborts, but Tj has read a data item written by Ti
· Then Tj must abort; if Tj had been allowed to commit earlier, the schedule is not recoverable.
· Further, any transaction that has read a data item written by Tj must abort
· This can lead to cascading rollback ---- that is, a chain of rollbacks
· Solution:
· A transaction is structured such that its writes are all performed at the end of its processing
· All writes of a transaction form an atomic action; no transaction may execute while a transaction is being written
· A transaction that aborts is restarted with a new timestamp
· Thomas’ Write Rule: Modified version of the timestamp-ordering protocol in which obsolete write operations may be ignored under certain circumstances.
· When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of {Q}. Hence, rather than rolling back Ti as the timestamp ordering protocol would have done, this {write} operation can be ignored.
· Otherwise this protocol is the same as the timestamp ordering protocol.
· Thomas' Write Rule allows greater potential concurrency.It allows some view-serializable schedules that are not conflict-serializable.
Deadlock Handling
· Consider the following two transactions:
T1: write (X) T2: write(Y)

write(Y) write(X)

· Schedule with deadlock

· System is deadlocked if there is a set of transactions such that every transaction in the set is waiting for another transaction in the set.
· There are two principal methods for dealing with the deadlock problem:
· Deadlock prevention protocol: We use this protocol to ensure that the system will never enter into a deadlock state.
· Deadlock detection and deadlock recovery scheme: Alternatively, we can allow the system to enter a deadlock state, and then try to recover by using a deadlock detection and deadlock recovery scheme.
There are two approaches to deadlock prevention.
· No cyclic waits can occur by ordering the requests for locks, or requiring all locks to be acquired together.
· Performs transaction rollback instead of waiting for a lock.
Schemes under the first approach:
· Each transaction locks all its data items before it begins execution (predeclaration).
· Impose partial ordering of all data items and require that a transaction can lock data items only in the order specified by the partial order (graph-based protocol).
Schemes under the second approach: use preemption and transaction rollbacks. In preemption, when a transaction T2 requests a lock that transaction T1 holds, the lock granted to T1 may be preempted by rolling back of T1 and granting of the lock to T2. To control the preemption, we assign a unique timestamp to each transaction.
· Wait-die scheme: This is nonpreemptive scheme. older transaction may wait for younger one to release data item. Younger transactions never wait for older ones; they are rolled back instead. A transaction may die several times before acquiring needed data item.
· Wound-wait scheme: This is preemptive scheme. Older transaction wounds (forces rollback) of younger transaction instead of waiting for it. Younger transactions may wait for older ones. May be fewer rollbacks than wait-die scheme.
Both in wait-die and in wound-wait schemes, a rolled back transactions is restarted with its original timestamp. Older transactions thus have precedence over newer ones, and starvation is hence avoided.
Timeout-Based Schemes :
· A transaction waits for a lock only for a specified amount of time. After that, the wait times out and the transaction is rolled back.
· Thus deadlocks are not possible
· Simple to implement; but starvation is possible. Also difficult to determine good value of the timeout interval.
Deadlock Detection and Recovery

Deadlocks can be described as a wait-for graph, which consists of a pair G = (V,E),
· V is a set of vertices (all the transactions in the system)
· E is a set of edges; each element is an ordered pair Ti (Tj.
If Ti (Tj is in E, then there is a directed edge from Ti to Tj, implying that Ti is waiting for Tj to release a data item.
When Ti requests a data item currently being held by Tj, then the edge Ti Tj is inserted in the wait-for graph. This edge is removed only when Tj is no longer holding a data item needed by Ti.
The system is in a deadlock state if and only if the wait-for graph has a cycle. Must invoke a deadlock-detection algorithm periodically to look for cycles.
[image: image14.png]Wait-for graph without a cycle Wait-for graph with a cycle

· When deadlock is detected three actions need to be taken to recover from the deadlock:
· Selection of a victim: Some transaction will have to rolled back to break deadlock. Select that transaction as victim that will incur minimum cost.
· Rollback: determine how far to roll back transaction
· Total rollback: Abort the transaction and then restart it.
· More effective to roll back transaction only as far as necessary to break deadlock.
· Starvation: Starvation happens if same transaction is always chosen as victim. Include the number of rollbacks in the cost factor to avoid starvation.
Database Recovery

Introduction

· The purpose of database recovery is to bring the database into the last consistent state, which existed prior to the failure.
· Database recovery also preserves transaction properties (atomicity, consistency, isolation and durability).
· For example, if the system crashes before a fund transfer transaction completes its execution, then either one or both accounts may have incorrect value. Thus, the database must be restored to the state before the transaction modified any of the accounts.
Types of Failures

· Transaction failure :
· Logical errors: transaction cannot complete due to some internal error condition such as bad input, data not found.
· System errors: the database system must terminate an active transaction due to an error condition (e.g., deadlock).
· System crash: a hardware malfunction, a bug in the database software or operating system, or a power failure causes the system to crash. The content of nonvolatile storage remains intact, and is not corrupted.
· Disk failure: a head crash or similar disk failure destroys all or part of disk storage. Copies of data on other disks and tapes are used to recover from failure.
Transaction Log

· For recovery from any type of failure data values prior to modification (BFIM - BeFore Image) and the new value after modification (AFIM – AFter Image) are required.
· These values and other information is stored in a sequential file called Transaction log.
Database Recovery Concepts
Recovery Outline and Categorization of Recovery Algorithms: A typical strategy for recovery may be summarized informally as follows:
Manual Reprocessing:
If there is extensive damage to a wide portion of the database due to catastrophic failure, such as a disk crash, the recovery method restores a past copy of the database that was backed up to archival storage (typically tape) and reconstructs a more current state by reapplying or redoing the operations of committed transactions from the backed up log, up to the time of failure.
Limitations of Manual Reprocessing:
· Time required to reapply transactions
· Transactions might have other (physical) potential failures
· Reapplying concurrent transactions is not straight forward
Automated Recovery:
· When the database is not physically damaged but has become inconsistent due to noncatastrophic failure, the strategy is to reverse any changes that caused the inconsistency by undoing some operations.
· It may also be necessary to redo some operations in order to restore a consistent state of the database.
· In this case we do not need a complete archival copy of the database. Rather, the entries kept in the online system log are consulted during recovery.
· Under this strategy, we can distinguish two main techniques deferred update and immediate update.
Deferred Update
· This technique do not physically update the database on disk until after a transaction reaches its commit point; then the updates are recorded in the database.
· Before reaching commit, all transaction updates are recorded in the local transaction workspace (or buffers).
· During commit, the updates are first recorded persistently in the log and then written to the database.
· If a transaction fails before reaching its commit point, it will not have changed the database in any way, so UNDO is not needed.
· It may be necessary to REDO the effect of the operations of a committed transactions from the log, because their effect may not yet have been recorded in the database.
· Hence, deferred update is also known as the NO-UNDO/REDO algorithm.
Immediate Update
The database may be updated by some operations of a transaction before the transaction reaches its commit point.
· However, these operations are typically recorded in the log on disk by force writing before they are applied to the database, making recovery still possible.
· If a transaction fails after recording some changes in the database but before reaching its commit point, the effects of its operations on the database must be undone; that is, the transaction must be rolled back.
· In general case of immediate update, both undo and redo may be required during recovery and also called UNDO/REDO algorithm.
· A variation of this algorithm where all updates are recorded in the database before a transaction commits requires undo only is called UNDO/NO-REDO algorithm.
Caching (Buffering) of Disk Blocks:
· Here, one or more disk pages that include the data items to be updated are cached into main memory buffers and then updated in memory before being written back to disk.
· The caching of disk pages is traditionally an operating system function, but because of its importance to the efficient recovery procedures, it is handled by the DBMS by calling low-level operating system routines.
· A directory for cache is used to keep track of which database items are in the buffers.
· When the DBMS requests action on some item, it first checks the cache directory to determine whatever the disk page containing the item is in the cache.
· It may be necessary to replace (or flush) some of the cache buffers to make space available for the new item.
· Data items to be modified are first stored into database cache by the Cache Manager (CM) and after modification they are flushed (written) to the disk.
· The flushing is controlled by using dirty bit and pin-unpin bits.
· Associated with each buffer in the cache is a dirty bit, which can be included in the directory entry to indicate whether or not buffer has been modified.
· When a page is first read from the database disk into a cache buffer, the cache directory is updated with the new disk page address, and the dirty bit is set to 0 (zero).
· As soon as the buffer is modified, the dirty bit for the corresponding directory entry is set to 1 (one). When the buffer contents are replaced (flushed) from the cache, the contents must first be written back to the corresponding disk page only if its dirty bit is 1.
· Another bit, called the pin-unpin bit is also needed – a page in the cache is pinned (bit value 1) if it cannot be written back to disk yet.
· Two main strategies can be employed when flushing a modified buffer back to disk: shadow update and in place update.
Shadow Update:
The modified version of a data item does not overwrite its disk copy but is written at a separate disk location. So, multiple versions of data items can be maintained. In shadowing, both AFIM and BFIM can be kept on disk.
In-place Update:
The disk version of the data item is overwritten by cache version after modification. This technique writes the buffer back to same original disk location, thus overwriting the old value of any changed data items on disk. Hence, a single copy of each database block is maintained.
Write-Ahead Logging
When in-place update is used, it is necessary to use a log for recovery.
In this case, the recovery mechanism must ensure that the BFIM of the data item is recorded in the appropriate log entry and that the log entry is flushed to the disk before the BFIM is overwritten with the AFIM in the database on disk.
This process is generally know as write-ahead logging (WAL).
This process requires two types of log entry information: UDO-type log entry and REDO-type log entry.
The UNDO-type log entries include the old value (BFIM) of the item since this is needed to undo the effect of the operation form the log.
The REDO-type log entries include the new value (AFIM) of the item written by the operation since this is needed to redo the effect of the operation from the log.
Steal/No-Steal and Force/No-Force
· Possible ways for flushing database cache to database disk.
· No-Steal – A page updated by a transaction cannot be written to disk before the transaction commits.
· Steal – If the protocol allows writing an updated buffer before the transaction commits, it is called steal. Steal is used when the DBMS cache (buffer) manager needs a buffer frame for another transaction and the buffer manager replaces an existing page that has been updated but whose transaction has not committed.
· Force – All pages updated by a transaction are immediately written to disk when the transaction commits.
· No-Force – The updated pages are not immediately flushed when the transaction commits.
· The deferred update approach follows a no-steal approach. However, most database systems employ a steal/no-force approach.
Checkpoint
Another type of entry in the log is called checkpoint. A checkpoint record is written into the log periodically at the point when the system writes out to the database on disk all DBMS buffers that have been modified.
Time to time (randomly or under some criteria) the database flushes its buffer to database disk to minimize the task of recovery. The following steps define a checkpoint operation:
· Suspend execution of transactions temporarily
· Force-write all main memory buffers that have been modified to disk
· Write a checkpoint record to the log, and force-write the log to disk
· Resume executing transactions
· In many environments, it is possible to take checkpoints each 15 minutes or half hour, etc. Recovery must then only be done from the time of the last checkpoint.
Transaction Rollback
· If a transaction fails for whatever reason after updating the database, it may be necessary to roll back the transaction.
· If any data values have been changed by the transaction and written to the database, they must be restored to their previous values (BFIMs).
· The undo type log entries are used to restore the old version of data items that must be rolled back.
· Cascading rollback can occur when the recovery protocol ensures recoverable schedule but does not ensure cascadeless schedules.
· Since cascading rollback is time-consuming, almost all recovery mechanisms are designed such that cascading rollback is never required.
Recovery Techniques Based on Deferred Update
· The idea behind deferred update techniques is to defer or postpone any actual updates to the database until the transaction completes its execution successfully and reaches its commit point.
· During transaction execution, the updates are recorded only in the log and in the cache buffers.
· After the transaction reaches its commit point and the log is force written to disk, the updates are recorded in the database.
· If a transaction fails before reaching its commit point, there is no need to undo any operations, because the transaction has not affected the database on disk any way.
· We can state typical deferred update protocol as follows:
· A transaction cannot change the database on disk until it reaches its commit point.
· A transaction does not reach its commit point until all its update operations are recorded in the log and the log is force-written to disk.
· Since, the database is never updated on disk until after the transaction commits, there is never a need to UNDO any operations. Hence, this is known as the NO-UNDO/REDO recovery algorithm.
· REDO is needed in case the system fails after a transaction commits but before all its changes are recorded in the database on disk.
· This technique cannot be used in practice for long transactions because there is the potential for running out of buffer space since transaction changes must be held in the cache buffers until the commit point.
Recovery using deferred update in a single user environment
· Since, there is no concurrent data sharing in a single user system, the recovery algorithm is simple.
· A set of transactions records their updates in the log.
· At commit point, these updates are saved on database disk.
· After reboot from a failure the log is used to redo all the transactions affected by this failure.
· Since, the database is never updated on disk until after the transaction commits, there is never a need to UNDO any operations.
Recovery using deferred update with concurrent execution in a multi user environment
· This environment requires some concurrency control mechanism to guarantee isolation property of transactions.
· Here, transactions which were recorded in the log after the last checkpoint were redone or ignored.
· Two tables are required for implementing this protocol: active table and commit table.
· All active transactions are entered in active table.
· All transactions to be committed are entered in commit table.
· During recovery, all transactions of the commit table are redone in the order in which they were written into the log and all transactions of active tables are ignored.
· It is possible that a commit table transaction may be redone twice but this does not create any inconsistency because of a redone is “idempotent”, that is, one redone for an AFIM is equivalent to multiple redone for the same AFIM.
Recovery Techniques Based on Immediate Update
· Here, when a transaction issues an update command, the database can be updated immediately without any need to wait for the transaction to reach its commit point.
· However, an update operation must still be recorded in the log before it is applied to the database using write-ahead logging protocol so that we can recover in case of failure.
· If the recovery technique ensures that all updates of a transaction are recorded in the database on disk before the transaction commits, there is never need to REDO any operations of committed transactions. This is called the UNDO/NO-REDO recovery algorithm.
· On the other hand, if the transaction is allowed to commit before all its changes are written to the database, we have the most general case, known as the UNDO/REDO recovery algorithm.
UNDO/REDO recovery based on immediate update in a single-user environment
· In a single-user environment no concurrency control is required.
· In a single user system, if a failure occurs, the executing (active) transaction at the time of failure may have recorded some changes in the database.
· So the effect of all such operations must be undone and redone.
· In this algorithm, two lists are maintained by the system: the committed transactions since the last checkpoint and the active transactions.
· Undo all the write operations of the active transaction.
· Redo the write operations of committed transactions from the log
UNDO/REDO recovery based on immediate update with concurrent execution
· In concurrent execution, the recovery process depends on the protocols used for concurrency control.
· Recovery schemes of this category applies undo and also redo to recover the database from failure.
· In this algorithm, two lists are maintained by the system: the committed transactions since the last checkpoint and the active transactions.
· Undo all the write operations of the active transaction. The operations should be undone in the reverse of the order in which they were written into the log.
· Redo the write operations of committed transactions from the log in the order in which they were written into the log.
Shadow Paging

· In this technique, the AFIM (After Image) of a data item does not overwrite its BFIM (Before Image) but recorded at another place on the disk.
· Thus, at any time a data item has AFIM and BFIM (Shadow copy of the data item) at two different places on the disk.
· To manage access of data items by concurrent transactions two directories (current and shadow) are used. The directory arrangement is illustrated below. Here a page is a data item.

· To recover, it is sufficient to free the modified pages and discard the current directory. The state of the database before transaction execution is available through the shadow directory. Database can be returned to its previous state.
· Committing a transaction corresponds to discarding the previous shadow directory.
· Can be categorized as a NO-UNDO/NO-REDO technique for recovery.
· Logs and checkpoints must be incorporated into the shadow paging technique with multiuser environment.
· Disadvantages: complex storage management strategies, the overhead of writing shadow directories to disk, garbage collection overhead (old pages referenced by the shadow directory).
Information security

· Every decision are based on information. Therefore information must be secured computer became a tool to store such document with password and termal as computer security.

· Security in broad sense to protect the system from all threats including natural disasters.

· Security in narrow sense, prevention of unauthorized access information leakages.

Need of security:-

What

· Customer information
· Financial data
· Proprietary company information
Where

· In transit
· Outside the organization
· Inside the organization
· server
Why?

· Value of data
· Reputation of the company
· Government regulation
· Cost reduction through elimination of leased line.
Why is it important now ?
· Internet
· B2B
· E-mail
· Online shopping
· data an personal PC and palm device
· data or servers
Goal of security:-

1. confidentiality :- the protection of data from unauthorized discloser.

2. Integrity:- the data integrity refers to the assurance that the data received are exactly as sent by an authorized entity (i.e. contains no modification, insertion, deletion etc).

3. Authentication:- the assurance data the communicating entity is the one that it claims to be an authentication that is associated with logical connection to provide confidence in the identity connection is pear entity authentication.

4. Non-repudiation:- it provide the protection against denial by one of the entities involved in a communication of having participates in all or part of the communication.

Database Security and the DBA
The database administrator (DBA) is the central authority for managing a database system. The DBA’s responsibilities include granting privileges to users who need to use the system and classifying users and data in accordance with the policy of the organization. The DBA has a DBA account in the DBMS, sometimes called a system or superuser account, which provides powerful capabilities :

1. Account creation
2. Privilege granting
3. Privilege revocation
4. Security level assignment
The DBA is responsible for the overall security of the database system.

Action 1 is access control, whereas 2 and 3 are discretionary and 4 is used to control mandatory authorization.

Access Protection, User Accounts, and Database Audits
Whenever a person or group of person s need to access a database system, the individual or group must first apply for a user account. The DBA will then create a new account number and password for the user if there is a legitimate need to access the database.

The user must log in to the DBMS by entering account number and password whenever database access is needed.

The database system must also keep track of all operations on the database that are applied by a certain user throughout each login session.

To keep a record of all updates applied to the database and of the particular user who applied each update, we can modify system log, which includes an entry for each operation applied to the database that may be required for recovery from a transaction failure or system crash.

If any tampering with the database is suspected, a database audit is performed, which consists of reviewing the log to examine all accesses and operations applied to the database during a certain time period.

A database log that is used mainly for security purposes is sometimes called an audit trail.

Introduction of cryptography
Data that can be read and understand without any special measures Is called plain text the method of disguising plain text in such a way as to hide its substance or information is called encryption. After encryption the plain text turns into an unreadable gibberish is called cipher text. The process of reversing cipher text back to plain text is called decryption. Cryptography is the branch of science to use mathematical tools and techniques to encrypt and decrypt the data. A cryptographic algorithm is a mathematical function used in encryption and decryption process.

Specially the encryption algorithm is used during the encryption process and decryption algorithm used during the decryption process. Let M denotes the plain text C denotes the cipher text D denotes the decryption algorithm E denotes the encryption algorithm then the mathematical notation for encryption can be written as E(M)=C and decryption can be written as D(C)=M since whole point of encryption and decryption can be used to receive the original text following relationship must be true in all cases D(E(M)=M. visually above process can be related by seeing the next figure

Method of cryptography

There are two approaches to secure communication occurs between the two different partners. These two approaches are:

1. Private key cryptography

2. Public key cryptography

Private key cryptography:- is known conventional key cryptography this private key cryptography is further divided into further two types:

I. Restricted algorithm

II. Symmetric key algorithm

Restricted algorithm:- achieves its desired objectives of data security by hiding process steps of the cryptographic algorithm used the popular example of restricted algorithm is “CAESAR’S” cipher. In these techniques the set of character used for communication is subsisted 3 places up the order. For example ‘WAR’ will be ‘ZDW’. Though restricted algorithm cryptography is very simple to understand and it is very insecure to a large or changing group can’t use them.

Symmetric algorithm:- it is modern cryptography technique that doesn’t rely on secrecy of algorithm used for encryption and decryption but rather relies on secrecy of the key. A key is a secret piece of information that cryptographic algorithm used to encrypt and decrypt message. A symmetric key cryptographic shares the same key by sender and receiver the key is used by the sender during encryption process to turn plain text to cipher text. It is called the encryption key. When cipher text reaches to receiver then the receiver uses the same key to decrypt the cipher text to original text. The process of symmetric key cryptography can be visualized as in the figure below:-

[image: image15.emf]
Fig:- encryption and decryption in symmetric key cryptography

A symmetric key cryptography can be implemented by using XOR operation. XOR operation can be defined by the following truth table.

	1

0

1

0
	*

*

*

*
	1

0

0

1
	=

=

=

=
	0

0

1

1

XOR operation has an interesting property that when the two value are XORed the XOR of the resulting value and one of the original values produces the third value i.e. A and B are XORed to produce C. C and A can produce B. C and B can produce A. using this scheme a plain text is XOR with shared key to produces a cipher text. Then the plain text can be recovered from cipher text by XORing the cipher text with the secret key. For example if the shared key is “MAD” then the resulting cipher text of plain text “WAR” using their ASCII representation would be as follows:-

Plain text(WAR):-
101011

1000001
1010010

Secret key (MAD)
1001101
1000001
1000100

Cipher text (----)

0011010
0000000
0010110

The plain text can be recovered from cipher text by again XORing the cipher text with secret text key.

The plain text can be recovered from the cipher text by again XORing with secret key.

Secret key (MAD)
1001101
1000001
1000100

Cipher text (----)

0011010
0000000
0010110

Plain text(WAR):-
101011

1000001
1010010

Advantages:-

· Easy to understand

· Quite secure than restricted algorithm

Disadvantages:-

· to shared the secret key the sender or receiver should meet anyway.

· Either they have to communicate on telephone or any other communication media.

More techniques on symmetric key algorithm

· Data encryption standard (DES)

· 3DES

Public key cryptography:-

Whitefield diffie and martin Hellman introduced the concept of public key cryptography in 1976 in order to solve the management problem. In this techniques each person gets a pair of keys, one is called public key and another is called private key. The key are related to each other mathematically but in such a way that is computationally infeasible to deduce the private key from public key. Each person public key is published for everyone to see while the private key is kept secret. Data that is encrypted with a key can only be decrypted using the corresponding private key.

How public key cryptography solve the key management problem one of the main benefit of public key cryptography is that it allows people who have no per-existing security arrangement to exchange message securely.

[image: image16.emf]
The most commonly used public key cryptography algorithm is RSA cryptography named after its developer Rivest, Shaimir and Oldman.

Adv. Database

Distributed Systems

Data spread over multiple machines (also referred to as sites or nodes.

· Network interconnects the machines

· Data shared by users on multiple machines

Homogeneous distributed databases

· Same software/schema on all sites, data may be partitioned among sites

· Goal: provide a view of a single database, hiding details of distribution

Heterogeneous distributed databases

· Different software/schema on different sites

· Goal: integrate existing databases to provide useful functionality

Differentiate between local and global transactions

· A local transaction accesses data in the single site at which the transaction was initiated.

· A global transaction either accesses data in a site different from the one at which the transaction was initiated or accesses data in several different sites.

Trade-offs in Distributed Systems

· Sharing data – users at one site able to access the data residing at some other sites.

· Autonomy – each site is able to retain a degree of control over data stored locally.

· Higher system availability through redundancy — data can be replicated at remote sites, and system can function even if a site fails.

· Disadvantage: added complexity required to ensure proper coordination among sites.

· Software development cost.

· Greater potential for bugs.

· Increased processing overhead.

Implementation Issues for Distributed Databases

· Atomicity needed even for transactions that update data at multiple site

· Transaction cannot be committed at one site and aborted at another

· The two-phase commit protocol (2PC) used to ensure atomicity

· Basic idea: each site executes transaction till just before commit, and the leaves final decision to a coordinator

· Each site must follow decision of coordinator: even if there is a failure while waiting for coordinators decision

· To do so, updates of transaction are logged to stable storage and transaction is recorded as “waiting”

· More details in Sectin 19.4.1

· 2PC is not always appropriate: other transaction models based on persistent messaging, and workflows, are also used

· Distributed concurrency control (and deadlock detection) required

· Replication of data items required for improving data availability

Query Optimization
· Query optimization: the process of choosing a suitable execution strategy for processing a query.

· Two internal representations of a query

· Query Tree
· Query Graph
. Translating SQL Queries into Relational Algebra (1)

· Query block: the basic unit that can be translated into the algebraic operators and optimized.
· A query block contains a single SELECT-FROM-WHERE expression, as well as GROUP BY and HAVING clause if these are part of the block.
· Nested queries within a query are identified as separate query blocks.
· Aggregate operators in SQL must be included in the extended algebra.
Translating SQL Queries into Relational Algebra (2)

[image: image17.png]SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE SALARY > (SELECT MAX (SALARY)
FROM EMPLOYEE
WHERE DNO =35);
1
SELECT LNAME, FNAME | | SELECT MAX (SALARY)
FROM EMPLOYEE FROM EMPLOYEE
WHERE SALARY > C WHERE DNO=5

[[]

Trxare Fxave(Osarary-c(EMPLOYEE)) | | Fuaxsarary (Ooxo-s(EMPLOYEE))

File structure
Disk Storage Devices

· Preferred secondary storage device for high storage capacity and low cost.

· Data stored as magnetized areas on magnetic disk surfaces.

· A disk pack contains several magnetic disks connected to a rotating spindle.

· Disks are divided into concentric circular tracks on each disk surface. Track capacities vary typically from 4 to 50 Kbytes.

· Because a track usually contains a large amount of information, it is divided into smaller blocks or sectors.

· The division of a track into sectors is hard-coded on the disk surface and cannot be changed. One type of sector organization calls a portion of a track that subtends a fixed angle at the center as a sector.

· A track is divided into blocks. The block size B is fixed for each system. Typical block sizes range from B=512 bytes to B=4096 bytes. Whole blocks are transferred between disk and main memory for processing.

· A read-write head moves to the track that contains the block to be transferred. Disk rotation moves the block under the read-write head for reading or writing.

· A physical disk block (hardware) address consists of a cylinder number (imaginery collection of tracks of same radius from all recoreded surfaces), the track number or surface number (within the cylinder), and block number (within track).

· Reading or writing a disk block is time consuming because of the seek time s and rotational delay (latency) rd.

· Double buffering can be used to speed up the transfer of contiguous disk blocks.

[image: image18.png]TABLE 13.1 SPECIFICATIONS OF TYPICAL HIGH-END CHEETAH DISKS FROM SEAGATE

Description

Model Number
Form Factor (width)
Height

Width

Weight

Capacity/Interface
Formatted Capacity
Interface Type

Configuration

Number of disks (physical)
Number of heads (physical)
Number of Cylinders

Bytes per Sector

Areal Density

Track Density

Recording Density

Performance

Transfer Rates

Internal Transfer Rate (min)
Internal Transfer Rate (max)
Formatted Int. Transfer Rate (min)
Formatted Int. Transfer Rate (max)
External I/O Transfer Rate (max)

Seek Times

Avg. Seek Time (Read)
Avg. Seek Time (Write)
Track-to-track Seek, Read
Track-to-track Seek, Write
Average Latency

Other
Default Buffer (cache) size
Spindle Speed

Cheetah X15 36LP

ST336732LC
3.5 inch

25.4 mm
101.6 mm
0.68 Kg

36.7 Gbytes
80-pin

18,479
512
N/A
N/A
N/A

522 Mbits/sec
709 Mbits/sec
51 MBytes/sec
69 MBytes/sec
320 MBytes/sec

3.6 msec (typical)
4.2 msec (typical)
0.5 msec (typical)
0.8 msec (typical)
2 msec

8,192 Kbytes
15K rpm

Cheetah 10K.6

ST3146807LC
3.5 inch

25.4 mm
101.6 mm
0.73 Kg

146.8 Gbytes
80-pin

4

8

49,854

512

36,000 Mbits/sq.inch
64,000 Tracks/inch
570,000 bits/inch

475 Mbits/sec
840 Mbits/sec
43 MBytes/sec
78 MBytes/sec
320 MBytes/sec

4.7 msec (typical)
5.2 msec (typical)
0.3 msec (typical)
0.5 msec (typical)
2.99 msec

8,000 Kbytes
10K rpm

Records

· Fixed and variable length records

· Records contain fields which have values of a particular type (e.g., amount, date, time, age)

· Fields themselves may be fixed length or variable length

· Variable length fields can be mixed into one record: separator characters or length fields are needed so that the record can be “parsed”.

Blocks

· Blocking: refers to storing a number of records in one blo ck on the disk.

· Blocking factor (bfr) refers to the number of records per block.

· There may be empty space in a block if an integral number of records do not fit in one block.

· Spanned Records: refer to records that exceed the size of one or more blocks and hence span a number of blocks.

Files of Records

· A file is a sequence of records, where each record is a collection of data values (or data items).

· A file descriptor (or file header) includes information that describes the file, such as the field names and their data types, and the addresses of the file blocks on disk.

· Records are stored on disk blocks. The blocking factor bfr for a file is the (average) number of file records stored in a disk block.

· A file can have fixed-length records or variable-length records.

· File records can be unspanned (no record can span two blocks) or spanned (a record can be stored in more than one block).

· The physical disk blocks that are allocated to hold the records of a file can be contiguous, linked, or indexed.

· In a file of fixed-length records, all records have the same format. Usually, unspanned blocking is used with such files.

· Files of variable-length records require additional information to be stored in each record, such as separator characters and field types. Usually spanned blocking is used with such files.

Operation on Files

Typical file operations include:
· OPEN: Readies the file for access, and associates a pointer that will refer to a current file record at each point in time.

· FIND: Searches for the first file record that satisfies a certain condition, and makes it the current file record.

· FINDNEXT: Searches for the next file record (from the current record) that satisfies a certain condition, and makes it the current file record.

· READ: Reads the current file record into a program variable.

· INSERT: Inserts a new record into the file, and makes it the current file record.

· DELETE: Removes the current file record from the file, usually by marking the record to indicate that it is no longer valid.

· MODIFY: Changes the values of some fields of the current file record.

· CLOSE: Terminates access to the file.

· REORGANIZE: Reorganizes the file records. For example, the records marked deleted are physically removed from the file or a new organization of the file records is created.

· READ_ORDERED: Read the file blocks in order of a specific field of the file.

Unordered Files

· Also called a heap or a pile file.

· New records are inserted at the end of the file.

· To search for a record, a linear search through the file records is necessary. This requires reading and searching half the file blocks on the average, and is hence quite expensive.

· Record insertion is quite efficient.

· Reading the records in order of a particular field requires sorting the file records.

Ordered Files

· Also called a sequential file.

· File records are kept sorted by the values of an ordering field.

· Insertion is expensive: records must be inserted in the correct order. It is common to keep a separate unordered overflow (or transaction) file for new records to improve insertion efficiency; this is periodically merged with the main ordered file.

· A binary search can be used to search for a record on its ordering field value. This requires reading and searching log2 of the file blocks on the average, an improvement over linear search.

· Reading the records in order of the ordering field is quite efficient.

Average Access Times

The following table shows the average access time to access a specific record for a given type of file

[image: image19.png]TABLE 13.2 AVERAGE ACCESS TIMES FOR BASIC FILE ORGANIZATIONS

TYPE OF ORGANIZATION ACCESS/SEARCH METHOD AVERAGE TIME TO ACCESS
A SPECIFIC RECORD

Heap (Unordered) Sequential scan (Linear b/2
Search)
Ordered Sequential scan b/2

Ordered Binary Search log; b

Hashed Files

· Hashing for disk files is called External Hashing
· The file blocks are divided into M equal-sized buckets, numbered bucket0, bucket1, ..., bucket M-1. Typically, a bucket corresponds to one (or a fixed number of) disk block.

· One of the file fields is designated to be the hash key of the file.

· The record with hash key value K is stored in bucket i, where i=h(K), and h is the hashing function.

· Search is very efficient on the hash key.

· Collisions occur when a new record hashes to a bucket that is already full. An overflow file is kept for storing such records. Overflow records that hash to each bucket can be linked together.

[image: image20.png]

Also see the Hashing notes of DSA

· To reduce overflow records, a hash file is typically kept 70-80% full.

· The hash function h should distribute the records uniformly among the buckets; otherwise, search time will be increased because many overflow records will exist.

· Main disadvantages of static external hashing:

Fixed number of buckets M is a problem if the number of records in the file grows or shrinks.

-Ordered access on the hash key is quite inefficient (requires sorting the records).

Hashed Files - Overflow handling

[image: image21.png]main
buckets

bucket 0

overflow
buckets

I I
I R
R

bucket 1 = null

et N
I R
T o

(pointers are to records
within the overflow blocks)

bucket 9

Parallelizing Disk Access using RAID Technology

· Secondary storage technology must take steps to keep up in performance and reliability with processor technology.
· A major advance in secondary storage technology is represented by the development of RAID, which originally stood for Redundant Arrays of Inexpensive Disks.
· The main goal of RAID is to even out the widely different rates of performance improvement of disks against those in memory and microprocessors.
· A natural solution is a large array of small independent disks acting as a single higher-performance logical disk. A concept called data striping is used, which utilizes parallelism to improve disk performance.
· Data striping distributes data transparently over multiple disks to make them appear as a single large, fast disk.
[image: image22.png]disk 0 disk 1 disk 2 disk 3

:J>

Different raid organizations were defined based on different combinations of the two factors of granularity of data interleaving (striping) and pattern used to compute redundant information.

· Raid level 0 has no redundant data and hence has the best write performance.
· Raid level 1 uses mirrored disks.
· Raid level 2 uses memory-style redundancy by using Hamming codes, which contain parity bits for distinct overlapping subsets of components. Level 2 includes both error detection and correction.
· Raid level 3 uses a single parity disk relying on the disk controller to figure out which disk has failed.
· Raid Levels 4 and 5 use block-level data striping, with level 5 distributing data and parity information across all disks.
· Raid level 6 applies the so-called P + Q redundancy scheme using Reed-Soloman codes to protect against up to two disk failures by using just two redundant disks.
Use of RAID Technology
Different raid organizations are being used under different situations

· Raid level 1 (mirrored disks)is the easiest for rebuild of a disk from other disks
· It is used for critical applications like logs
· Raid level 2 uses memory-style redundancy by using Hamming codes, which contain parity bits for distinct overlapping subsets of components. Level 2 includes both error detection and correction.
· Raid level 3 (single parity disks relying on the disk controller to figure out which disk has failed) and level 5 (block-level data striping) are preferred for Large volume storage, with level 3 giving higher transfer rates.
· Most popular uses of the RAID technology currently are: Level 0 (with striping), Level 1 (with mirroring) and Level 5 with an extra drive for parity.
· Design Decisions for RAID include – level of RAID, number of disks, choice of parity schemes, and grouping of disks for block-level striping.
[image: image23.png]==

Non-Redundant (RAID Level 0)

==

Mirrored (RAID Level 1)

Memory-Style ECC (RAID Level 2)

— .

Bit-Interleaved Parity (RAID Level 3)

===

P+Q Redundancy (RAID Level 6)

MS_SQL Practicals

Create Tables

1. Student Information Table

	Column Name
	Data Type
	Length
	Constraint Type

	Student_ID
	Varchar2
	20
	

	Last_Name
	Varchar2
	25
	

	First_name
	Varchar2
	20
	

	DOB
	Varchar2
	20
	

	Address
	Varchar2
	300
	

	City
	Varchar2
	20
	

	Telephone
	Varchar2
	8
	

	Email
	Varchar2
	25
	

2. Department Information Table

	Column Name
	Data Type
	Length
	Constraint Type

	Dept_Id
	Varchar2
	20
	Primary Key

	Dept_Name
	Varchar2
	25
	

3. Instructor’s Information Table

	Column Name
	Data Type
	Length
	Constraint Type

	Inst_ID
	Varchar2
	20
	

	Dept_Name
	Varchar2
	20
	

	Last_name
	Varchar2
	25
	

	First_name
	Varchar2
	20
	

	Telephone
	Varchar2
	20
	

	Email
	Varchar2
	200
	

4. Course Information

	Column Name
	Data Type
	Length
	Constraint Type

	Course_ID
	Varchar2
	5
	Primary Key

	Dept_ID
	Varchar2
	20
	

	Title
	Char
	25
	

	Description
	Varchar2
	20
	

	Fees
	Varchar2
	20
	

	Duration
	Varchar2
	20
	

5. Class Table

	Column Name
	Data Type
	Length
	Constraint Type

	Class_ID
	Varchar2
	20
	

	Class_Room
	Varchar2
	20
	

	Course_ID
	Varchar2
	5
	

	Dept_ID
	Varchar2
	20
	

	Ins_ID
	Varchar2
	20
	

	Start_Time
	Date
	
	

Alter The Table

1. Student Table

a) Add a new column sex, which is of char datatype.

b) Alter the column size of first_name and last_name to 10.

c) Alter the datatype of DOB to date.

d) Add a primary key constraint for the student_id.

e) Alter datatype of the column telephone to number.

2. Instructor Table

a) Add new column sex, which is of char datatype.

b) Add a new column position which is of datatype varchar2 and size 25.

c) Alter the new column position with a check constraint which checks for ‘ASSISTANT PROFESSOR’,’ASSOCIATE PROFESSOR’,’ PROFESSOR’.

3. Class Table

a) Add a foreign key for the column dept_id which refers Department(Dept_Id).

b) Add a foreign key to course_id.

c) Add composite primary key to columns (course_id,dept_id);

Insert Records (15 Valid Data)

1. Student Table

2. Department Table

3. Instructor Table

4. Course Table

5. Class Table

Display the rows from the tables with the following criteria.

1. Display all information from the student table whose last_name is null.

2. Display the student Id and the First Name from the student table who doesn’t have a telephone and email.

3. Display Student’s First Name whose city is Kathmandu.

4. Display Student’s Last Name whose state starts with the letter ‘T’

5. Display Student’s ID, Last Name whose state ends with the letter ‘A’.

6. Display Student’s First Name and Last Name Concatenated.

7. Display Student’s First Name and Last name Concatenated.

8. Display all information from the Student Table where the Student’s First name is only of five characters.

9. Display Student’s First Name, Id and their age.

10. Display Students Id whose age is greater than 20.

11. Display Student First Name, DOB whose birthday falls today.

12. Display the Students First Name, Address whose birthday fall in the month of January.

13. Display the eldest male student’s First Name from the Student table.

14. Display all information of the youngest female student from the Student Table.

15. Display the student id whose age is greater than 23 as on current date.

16. Display the student’s id whose age is greater than 25 as on the current date.

17. Display the Instructors First Name, last name concatenated together and the first character in capitals.

18. Display the Student’ First Name all in capitals.

19. Display the last day of the current month.

20. Display the first day of a given year.

21. Display the last day of a given year.

22. Display the number of months of the students since their birth.

23. Display the next date of that immediately follows the systdate.

24. Display the greater of two given dates.

25. Display the student’s date of birth rounded to the nearest month.

26. Display the average age of the students.

27. Display the number of unique cities from the student table.

28. Display the student id from the student table whose last name is unique.

29. Display the Student’s First Name, DOB in the format of DD-MONTH-YYYY.

30. Display the Student Id, First Name from the student table whose Telephone contains two zeros.

[image: image24.png]

Personal file

Department file

Pay roll file

Fig:Overall Database structure

Pay roll

Inventory

Management system

 DBMS

Pay roll

Invento

Management system

Report

Report

Report

scheme

Instance

View1

View2

View3

Logical level

physical level

XYZ

RAM 1010 BUTWAL

SANU 2020 DANG

HARRY 3030 PALPA

 SEMLAR

 TINAU

P1

P2

Dept 1

Dept 2

Dept 3

Ā

A

 Employee

Emp ID

name

qualification

ISA

Hourly emp

Contract emp

Hour work

Hourly ways

Contract ID

instructor

address

name

dept

ID

student

name

Student_no

address

program

Course offering

offers

Course_no

timing

instructor

year

semester

Is taught by

Is take by

course

syllabus

Course_no

credit

Relation s2 of sailor

Relation s1 of sailor

Relation s3 of sailor

Relation s1 of sailor

Active

Partially committed

Committed

Failed

Aborted

� EMBED Unknown ���

Information security

Wilfulact

Tapping

Illegal intrusion virus

Error

Input and operation

Disasters

fire

earth quake

Failure

HW

SW bug

Plain text

Decryption

Encryption

Cipher text

� EMBED PBrush ���

Prepare by: Reg Bhandari
Mr. Ganesh Chand

Page 6

_1383285408.vsd

_1383285409

