DRAFT, 7/12/2001
DRAFT, 7/12/2001

8

EJB 2.0 CMP: EJB-QL

Find methods have been a part of EJB since EJB 1.0. These methods are defined on the entity bean’s local and remote home interfaces and are used for locating one or more entity beans. All entity beans must have a findByPrimaryKey() find method, which takes the primary key of the entity bean as an argument and returns a reference to an entity bean. For example, the Cruise EJB defines the standard primary key find method in its home interface:

public CruiseLocalHome extends javax.ejb.EJBLocalHome

{

 public Integer create(String name,ShipLocal ship);

 public CruiseLocal findByPrimaryKey(Integer key);

}

In addition to the mandatory findByPrimaryKey() methods, entity bean developers may also define as many custom find methods as they like. For example, the Cruise EJB might define a method (e.g., findByName()) for locating a Cruise with a specific name.

public CruiseLocalHome extends javax.ejb.EJBLocalHome

{

 public Integer create(String name,ShipLocal ship)

 throws CreateException;

 public CruiseLocal findByPrimaryKey(Integer key)

 throws FindException;

 public CruiseLocal findByName(String cruiseName)

 throws FindException;

}

The option of defining custom find methods is nothing new, but until EJB 2.0 there was no standard way of defining how the find methods should work. The behavior of the findByPrimaryKey() method is obvious: Find the entity bean with the same primary key. However, the behavior of the custom find methods is not obvious, so addition information is needed to tell the container how these custom find methods should behave. EJB 1.1 didn’t provide any standard mechanism for declaring how custom find methods should behave, so vendors came up with their own query languages and methods. This resulted in non-portability and basically guesswork on the part of the deployer in determining how to execute queries of find methods. EJB 2.0 introduces EJB QL, which provides a standard query language for declaring the behavior of custom find methods, and adds new select methods. Select methods are similar to find methods, but they are more flexible and are visible to the bean class only—like private find methods. Find and select methods are collectively referred to as query methods in EJB 2.0.

EJB QL is a declarative query language that is similar to the Structured Query Language (SQL) used in relational databases, but it is tailored to work with the abstract persistence schema of entity beans in EJB 2.0.

EJB QL queries are defined in terms of the abstract persistence schema of entity beans and not the underlying data store, so they are portable across databases and data schemas. When an entity bean’s abstract bean class is deployed by the container, the EJB QL statements are typically examined and translated into data access code optimized for that container’s data store. At run time, query methods defined in EJB QL typically execute in the native language of the underlying data store. For example, a container that uses a relational database for persistence might translate EJB QL statements into standard SQL 92, while an object-database container might translate the same EJB QL statements into an object query language.

EJB QL makes it possible for bean developers to describe the behavior of query methods in an abstract fashion, making queries portable across databases and EJB vendors. The EJB QL language is easy for developers to learn, yet precise enough to be interpreted into native database code. It is a fairly rich and flexible query language that empowers developers at development time, while executing in fast native code at run time. However, EJB QL is not a silver bullet and its not without its problems, as we’ll see later in this chapter.

Declaring EJB QL

EJB QL statements are declared in <query> elements of entity bean’s deployment descriptor. In the following listing, you see that the findByName() method defined in the Customer bean local home interface has its own query element and EJB QL statement.

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>CruiseEJB</ejb-name>

 …

 <reentrant>False</reentrant>

 <abstract-schema-name>Cruise</abstract-schema-name>

 <cmp-version>2.x</cmp-version>

 <cmp-field>

 <field-name>name</field-name>

 </cmp-field>

 <primkey-field>id</primkey-field>

 <query>

 <query-method>

 <method-name>findByName</method-name>

 <method-params>java.lang.String</method-params>
 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Cruise c WHERE c.name = ?1

 </ejb-ql>

 </query>

 </entity>

 </enterprise-beans>

The <query> element contains two primary elements. The <query-method> element identifies the find method of the remote and/or local home interface, and the <ejb-ql> element declares the EJB QL statement. The <query> element binds the EJB QL statement to the proper find method. Don’t worry too much about the EJB QL statement just yet; we’ll cover that in detail starting in the next section.

Every entity bean that will be referenced in an EJB QL statement must have a special designator called the abstract schema name, which is declared by the <abstract-schema-name> element. The <abstract-schema-name> elements must have unique names; no two entity beans may have the same abstract schema name. In the entity element that describes the Cruise EJB, the abstract schema name is declared as Cruise. The <ejb-ql> element contains an EJB QL statement that uses this identifier in its FROM clause.

In Chapter 7 you learned that the abstract persistence schema of an entity bean is defined by its <cmp-fields> and <cmr-field> elements. The abstract schema name is also an important part of the abstract persistence schema. EJB QL statements are always expressed in terms of the abstract persistence schema of entity beans. It uses the abstract schema names to identify entity bean types, and the container-managed persistence (CMP) fields to identify specific entity bean data and container-managed relationship (CMR) fields to create paths for navigating from one entity bean to another.

The Query Methods

Find Methods

Find methods are invoked by EJB clients (applications or beans) in order to locate and obtain remote or local EJB object reference of a specific entity bean. For example, you might call the findByPrimaryKey() method on the Customer EJB’s home interface to obtain a reference to a specific Customer bean.

Find methods are always declared in the local and remote home interfaces of an entity bean. As you have already learned, every home interface must define a findByPrimaryKey() method; this is a type of single-entity find method. Specifying a single remote or local return type for a find method indicates that the method only locates one bean. findByPrimaryKey() obviously returns one remote reference because there is a one-to-one relationship between a primary key’s value and an entity. Other single-entity find methods can also be declared. For example, the Customer EJB could declare several single-entity find methods, each of which supports a different query.

public interface CustomerHome extends javax.ejb.EJBHome {

 public Customer findByPrimaryKey(Integer primaryKey)

 throws javax.ejb.FindException;

 public Customer findByName(String lastName, String firstName)

 throws javax.ejb.FindException;

 public Customer findBySSN(String socialSecurityNumber)

 throws javax.ejb.FindException;

}

Bean developers can also define multi-entity find methods, which return a collection of EJB objects. The following listing shows a couple of multi-find methods:

public interface CustomerLocalHome extends javax.ejb.EJBLocalHome {

 public CustomerLocal findByPrimaryKey(Integer primaryKey)

 throws javax.ejb.FindException;

 public Collection findByCity(String city,String state)

 throws javax.ejb.FindException;

 public Set findByGoodCredit()

 throws javax.ejb.FindException;

}

To return several references from a find method, you must use the java.util.Collection or java.util.Set collection types
. A find method that uses a java.util.Set return type will not have duplicate values, while a java.util.Collection return type may have duplicates. Multi-entity finds return an empty Collection or Set if no matching beans can be found.

Enterprise JavaBeans specifies that all query methods (find or select) must be declared as throwing the XE "FinderException" javax.ejb. XE "FinderException" FindException. Find methods that return a single remote reference throw a FindException if an XE "application exceptions:FinderException" application error occurs and a XE "ObjectNotFoundException" javax.ejb.ObjectNotFoundException if a matching bean cannot be found. The XE "ObjectNotFoundException" ObjectNotFoundException is a subtype of FindException and is only thrown by single-entity find methods.

Every find method declared in the local or remote home interface of a CMP 2.0 entity bean must have a matching query declaration in the bean’s deployment descriptor. The following snippet from the Customer EJB’s deployment descriptor shows declarations two of find methods, findByName() and findByGoodCredit(), from the examples above.

<query>

 <query-method>

 <method-name>findByName</method-name>

 <method-intf>Home</method-intf>

 <method-params>

 <method-params>java.lang.String</method-params>

 <method-params>java.lang.String</method-params>

 </method-params>
 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Customer c

 WHERE c.lastName = ?1 AND c.firstName = ?1

 </ejb-ql>

</query>

<query>

 <query-method>

 <method-name>findByGoodCredit</method-name>

 <method-intf>LocalHome</method-intf>

 <method-params></method-params>
 </query-method>

 <ejb-ql>

 SELECT OBJECT(c) FROM Customer c

 WHERE c.hasGoodCredit = TRUE

 </ejb-ql>

</query>

The query elements in the deployment descriptor allow the bean developer to associate EJB QL query statements with specific find methods. When the bean is deployed, the container attempts to match the find method declared in each of the query elements with find methods in entity bean’s local and home interfaces. This is done by matching the values of the <method-name> and <method-params> elements with method names and parameter types (ordering is important) in the home interfaces.

The <method-intf> element specifies which home interface (local or remote) the method is defined in. If the find method is declared in the local home interface, then the value LocalHome is used. If the find method is declared in the remote home interface, then the value Home is used. This element is only needed when two find methods collide, i.e., two find methods in the local and remote home interfaces have the same method name and parameters. Using the method-intf element allows the bean developer to specify different EJB QL statements for each method. If <method-intf> not specified, and there is a collision, the query declaration will apply to both of the colliding methods. The container will take care of returning the proper type for each colliding query method. The remote home will return a one or more remote EJB objects, and the local home will return one or more local EJB objects. This allows you to define the behavior of colliding local and remote home find methods using a single query element, which is convenient if you want local clients to have access to the same find methods as remote clients.

The <ejb-ql> element specifies the EJB QL statement for a specific find method. You may have noticed that the EJB QL statement can use input parameters (?1,?2,…?n), which are mapped to the <method-params> of the find method, as well as literals (e.g. TRUE). The use of input parameters and literals will be discussed in more detail through out this chapter.

All single-entity and multi-entity find methods must be declared in <query> elements in the deployment descriptor, except for findByPrimaryKey() methods. Query declarations for findByPrimaryKey() methods are not necessary, and in fact, are forbidden. It’s obvious what this method should do, and you may not try to change its behavior.

Select Methods

Select methods are very similar to find methods, but they are more versatile and can only be used internally by the bean class. In other words, select methods are private query methods; they are not exposed to entity bean’s clients through the home interfaces.

Select methods are declared as abstract methods using the naming convention ejbSelect<METHOD-NAME>. The following code shows four select methods declared in the AddressBean class.

public class AddressBean implements javax.ejb.EntityBean {

 …

 public abstract String ejbSelectMostPopularCity()

 throws FindException;

 public abstract Set ejbSelectZipCodes(String state)

 throws FindException;

 public abstract Collection ejbSelectAll()

 throws FindException;

 public abstract CustomerLocal ejbSelectCustomer(AddressLocal addr)

 throws FindException;

 …

Select methods can return the value of CMP fields. The ejbSelectMostPopularCity() select, for example, returns a single String value, the name of the city referenced by the most Address EJBs. The ejbSelectZipCodes() method returns a java.util.Set of String values, which is a unique collection of all the zip codes declared for Address EJB’s for a specific state.

Select methods can also return EJB objects, just like find methods. The ejbSelectAll() method, for example, returns a java.util.Collection of EJB objects representing all the Address EJBs in the system. However, unlike find methods, select methods can return any type of EJB object, and are not limited to the type of bean they are declared in. The ejbSelectCustomer() method, for example, returns the remote EJB object representing the Customer bean assigned to the specified Address EJB. Notice that the bean type returned is CustomerLocal, not AddressLocal.

Like find methods, select methods can declare zero or more arguments, which are used to limit the scope of the query. The ejbSelectZipCodes() and the ejbSelectCustomer() methods both declare arguments used to limit the scope of the results. These arguments will be used as input parameters in the EJB QL statements assigned to the select methods.

Select methods can return local or remote EJB objects. For single-entity select methods, the type is determined by the return type of the ejbSelect method. The ejbSelectCustomer() method, for example, returns a local EJB object, the CustomerLocal. This method could have easily been defined to return a remote EJB object by changing the return type to the Customer bean’s remote interface (CustomerRemote). Multi-entity select methods, which return a collection of EJB objects, return a collection of local EJB objects by default. However, the bean provider can override this default behavior using a special element, the <result-type-mapping> element, in select method’s <query> element.

The following portion of an XML deployment descriptor declares two of the select methods from the above example. Notice that they are exactly the same as the find method declarations. Find and select methods are declared in the same part of the deployment descriptor, within an <entity> bean element, within the same <query> element.

<query>

 <query-method>

 <method-name>ejbSelectZipCodes</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>

 <ejb-ql>

 SELECT a.homeAddress.zip FROM Address AS a

 WHERE a.homeAddress.state = ?1

 </ejb-ql>

</query>

<query>

 <query-method>

 <method-name>ejbSelectAll</method-name>

 <method-params></method-params>
 </query-method>

 <result-type-mapping>Remote</result-type-mapping>

 <ejb-ql>

 SELECT OBJECT(a) FROM Address AS a

 </ejb-ql>

</query>

The name given in each <method-name> element must match one of the ejbSelect<METHOD-NAME>() methods defined in the bean class. This is different from find methods of CMP 2.0 beans, which do not have a corresponding ejbFind method in the bean class. For find methods we use the method name in the local or remote home interface. Select methods, on the other hand, are not declared in the local or remote home interface so we use the ejbSelect method name in the bean class.

If a select method returns a collection of EJB objects, then the <result-type-mapping> can be used to declare if it should return local or remote EJB objects. The value Local indicates that a method should return local EJB objects; Remote indicates remote EJB objects. If the <result-type-mapping> element is not declared, the default is Local. In the query element for the ejbSelectAll method, the <result-type-mapping> is declared as Remote, which means the query should return remote EJB object types; remote references to the Address EJB.

Select methods are not limited to the context of any specific entity bean. They can be used to query across all the entity beans declared in the same deployment descriptor. Select methods may be used by the bean class from its ejbHome methods or any business methods or the ejbLoad and ejbStore methods. The ejbHome, ejbLoad and ejbStore methods are covered in more detail in Chapter 11.

The most important thing to remember about select methods is that they can do anything find methods can and more, but they can only be used by the entity bean class that declares them, not by the entity bean’s clients.

EJB QL Examples

EJB QL is expressed in terms of the abstract persistence schema of an entity bean; its abstract schema name, container-managed persistence fields, and container-managed relationship fields. EJB QL uses the abstract schema names to identify beans, the container-managed persistence fields to specify values and container-managed relationship field names to navigate across relationships.

To discuss EJB QL, we will make use of the relationships among the Customer, Address, CreditCard, Cruise, Ship, Reservation, and Cabin defined in Chapter 7. Figure 8-1 is a class diagram that shows the direction and cardinality (multiplicity) of the relationships among these beans.

[Figure 8-1(note this is the same figure as figure 7-23)]

Figure 8-1: Titan Cruises Class Diagram

Simple Queries

The simplest EJB QL statement has no WHERE clause and only one abstract schema type. For example, a query method might be defined to select all Customer beans.

SELECT OBJECT(c) FROM Customer AS c

The FROM clause determines which entity bean types will be included in the select statement. It provides the scope of the select. In this case the FROM clause declares the type to be Customer, which is the abstract schema name of the Customer EJB. The “AS c” part of the clause assigns c as the identifier of the Customer EJB. This is similar to SQL, which allows an identifier to be associated with a table. Identifiers can be any length and follow the same rules that are applied to field names in the Java programming language. The following is also perfectly legal.

SELECT OBJECT(customer) FROM Customer AS customer

The AS operator is optional, but its used in this book to help make the EJB QL statements more clear. The following statement is equivalent:

SELECT OBJECT(customer) FROM Customer customer

The SELECT clause determines the type of values returned. In this case, it’s the Customer entity bean as indicated by the customer identifier.

The OBJECT() operator is required when the SELECT type is an abstract schema identifier (entity bean identifier). The reason for this requirement is pretty vague (and in the author’s opinion, the specification would have been better off without it), but it’s required whenever the SELECT type is an entity bean identifier.

Simple Queries with Paths

EJB QL allows SELECT clauses to return any container-managed persistence (CMP) or single container-managed relationship (CMR) field. For example, a simple select statement can be defined to return all the last names of all the customers as follows.

SELECT c.lastName FROM Customer AS c

The SELECT clause uses a simple path to select the Customer bean’s lastName CMP field as the return type. EJB QL uses the CMP and CMR field names declared in <cmp-field> and <cmr-field> elements of the deployment descriptor. This navigation leverages the same syntax as the Java programming language, specifically the dot (“.”) navigation operator. For example, compare the above EJB QL statement with the following snippet from the Customer EJB’s deployment descriptor:

<ejb-jar>

 <enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 <home> CustomerHomeRemote</ejb-home>

 <remote>CustomerRemote</ejb-remote>

 <ejb-class>CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>False</reentrant>

 <abstract-schema-name>Customer</abstract-schema-name>

 <cmp-version>2.x</cmp-version>

 <cmp-field><field-name>id</field-name></cmp-field>

 <cmp-field><field-name>lastName</field-name></cmp-field>

 <cmp-field><field-name>firstName</field-name></cmp-field>

CMR field types may also be used in simple select statements. For example, the following EJB QL statement selects all the CreditCard EJBs from all the Customer EJBs.

SELECT c.creditCard FROM Customer c

In this case, the EJB QL statement uses a path to navigate from the Customer EJBs to their creditCard relationship fields. The creditCard identifier is obtained from the <cmr-field> name used in the relationship element that describes the Customer-CreditCard relationship.

<enterprise-beans>

 <entity>

 <ejb-name>CustomerEJB</ejb-name>

 …

 <abstract-schema-name>Customer</abstract-schema-name>

 </entity>

</enterprise-beans>

…

<relationships>

 <ejb-relation>

 <ejb-relation-name>Customer-CreditCard

 </ejb-relation-name>

 <ejb-relationship-role>

 <ejb-relationship-role-name>

 Customer-has-a-CreditCard

 </ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>CustomerEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>creditCard</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role>

 ...

Paths can be as long as required. It’s common to use paths that navigate over one or more CMR fields to end at either a CMR or CMP field. For example, the following EJB QL statement selects all the city CMP fields of all the Address EJBs of every Customer EJB.

SELECT c.homeAddress.city FROM Customer c

In this case, the path uses the abstract schema name of the Customer EJB, the Customer EJB’s homeAddress CMR field and finally the Address EJB’s city CMP field. Using paths in EJB QL is similar to navigating through object references in the Java language.

To illustrate more complex paths, we’ll need to expand the class diagram. Figure 8-2 shows that CreditCard EJB is related to a CreditCompany EJB that has its own Address EJB.

Figureholder

Figure 8-2: Expanded Class Diagram for CreditCard

Using these relationships, a more complex path could be specified that navigates from the Customer EJB to the CreditCompany EJB’s Address EJB. The following EJB QL selects all the addresses of all the credit companies.

SELECT c.creditCard.creditCompany.address FROM Customer AS c

The EJB QL statement could also navigate all the way to the Address bean’s CMP fields. For example, the following EJB QL selects all the cities for all the credit card companies for those credit cards used by Titan’s customers.

SELECT c.creditCard.creditCompany.address.city FROM Customer AS c

It’s interesting to note that these EJB QL statements would only return address CMR fields or Address city CMP fields for credit companies of cards owned by Titan’s customers. If there are any credit companies whose cards are not currently used by Titan’s customers, their address information won’t be included in the result.

Paths cannot navigate beyond CMP fields. For example, imagine that the Address EJB uses a ZipCode class as its zip CMP field.

public class ZipCode implements java.io.Serializable{

 public int mainCode;

 public int codeSuffix;

 …

}

It would be illegal to attempt to navigate to one of the ZipCode class’ instance fields.

// this is illegal

SELECT c.homeAddress.zip.mainCode FROM Customer AS c

CMP fields cannot be further decomposed and navigated by paths. All CMP fields are considered opaque.

The paths used in a SELECT clause of an EJB QL must always end with a single type. They may not end in a collection-based relationship field. For example, the following is not legal because the CMR field reservations is a collection-based relationship field.

// this is illegal

SELECT c.reservations FROM Customer AS c

In fact, it’s illegal to navigate across a collection-based relationship field. The following EJB QL statement is also illegal, even though the path ends in a single relationships field.

SELECT c.reservations.cruise FROM Customer AS c

If you think about it, this limitation makes sense. You cannot use a navigation operator (“.”) in Java to access elements of a java.util.Collection object either. For example, you can’t do the following (assume getReservations() returns a java.util.Collection type).

// this is illegal in the Java programming language.

customer.getReservations().getCruise()

Referencing the elements of a collection-based relationship field is possible in EJB QL, but it require the use of an IN operator and an identification assignment in the FROM clause, which are discussed next.

Simple Queries the IN operation

Many relationships between entity beans are collection-based relationships; being able to access and select from these relationships is important. We’ve seen that it is illegal to select elements directly from a collection-based relationship. To overcome this limitation, EJB QL introduces the IN operation, which allows an identifier to represent individual elements in a collection-based relationship field.

The following query uses the IN operation to select the elements from a collection-based relationship. It returns all the reservations of all the customers.

SELECT OBJECT(r)

FROM Customer AS c, IN(c.reservations) AS r
The IN operation assigns the individual elements in the reservations CMR field to the identifier r. Once we have an identifier to represent the individual elements of the collection, we can reference them directly and even select them in the EJB QL statement. The element identifier can also be used in path expressions. For example, the following EJB QL statement will select every cruise for which Titan’s customers have made reservations.

SELECT r.cruise

FROM Customer AS c, IN(c.reservations) AS r

The identifiers assigned in the FROM clause of EJB QL are evaluated from left to right. Once an identifier has been declared it can be used is subsequent declarations in the FROM clause. Notice that the identifier c, which was declared first, was subsequently used in the IN operation to define the identifier r.

The OBJECT() operation is used for single identifiers in the select statement and not for path expressions. While this convention makes little sense, it is none-the-less required by the EJB 2.0 specification. A rule of thumb: If the select type is a solitary identifier, then it must be wrapped in an OBJECT() operation. If the select type is a path expression then it is not.

Identification chains, in which subsequent identifications depend on previous identifications, can become very long. The following EJB QL statement uses two IN operations to navigate two collection-based relationships and a single CMR relationship. While not necessarily useful, this statement demonstrates how a query can use IN operations across many relationships.

SELECT cabin.ship

FROM Customer AS c, IN (c.reservations) AS r,

IN(r.cabins) AS cabin

· Exercise 8.1, Simple EJB QL Statements

The WHERE clause and Literals

Literal values can also be used in the EJB QL to narrow the scope of the elements selected. This is accomplished through the WHERE clause, which behaves in much the same way as the WHERE clause in SQL.

For example, an EJB QL statement can be defined to select all the Customer EJBs that use a specific brand of credit card. The literal in this case is a string literal. Literal strings are enclosed by single quotes. Literal values that include a single quote, like the restaurant name “Wendy’s”, use two single quotes to escape the quote: ‘Wendy’’s’. The following statement returns customers that use the American Express credit card:

SELECT OBJECT(c) FROM Customer AS c

WHERE c.creditCard.organization = ‘American Express’
Path expressions are always used in the WHERE clause in the same way that they’re used in the SELECT clause. When making comparisons with a literal, the path expression must evaluate to a CMP field; you can’t compare a CMR field with a literal.

In addition to literal strings, literal can also be exact numeric values (long types) and approximate numerical values (double types). Exact numerical literal values are expressed using the Java integer literal syntax (321, -8932, +22). Approximate literal values are expressed using Java floating point literal syntax in scientific (5E3, -8.932E5) or decimal (5.234, 38282.2) notation.

For example, the following EJB QL statement selects all the ships that weigh 100,000.00 metric tons.

SELECT OBJECT(s)

FROM Ship AS s

WHERE s.tonnage = 100000.00
Boolean literal values use TRUE and FALSE. Here’s an EJB QL statement selects all the customers who have good credit.

SELECT OBJECT(c) FROM Customer AS c

WHERE c.hasGoodCredit = TRUE
The WHERE clause and Input Parameters

Query methods (find and select methods) that use EJB QL statements may specify method arguments. Input parameters allow those method arguments to be mapped to EJB QL statements and are used to narrow the scope of the query. For example, the ejbSelectByCity() method is designed to select all the customers that reside in a particular city and state.

public abstract class CustomerBean

implements javax.ejb.EntityBean {

 …

 public abstract Collection ejbSelectByCity(String city,String state)

 throws FindException;

 …

}

The EJB QL statement for this method would use the city and state arguments as input parameters.

SELECT OBJECT(c) FROM Customer AS c

WHERE c.homeAddress.state = ?2

AND c.homeAddress.city = ?1

Input parameters use a ? prefix followed by the argument’s position, in order of the query method’s parameters. In this case, state is the second argument and city is the first argument listed in the ejbSelectByCity() method. When a query method declares one or more arguments, the associated EJB QL statement may use some or all of the arguments as input parameters.

Input parameters are not limited to simple CMP field types; they can also be EJB object references. For example, the following find method findByShip() is declared in the Cruise bean’s local interface.

public interface CruiseLocal extends javax.ejb.EJBLocalObject {

 public Collection findByShip(ShipLocal customer)

 throws FindException;

}

The EJB QL statement associated with this method would use the ship argument to locate all the cruises scheduled for the specified Ship bean.

SELECT OBJECT(cruise) FROM Cruise AS cruise

WHERE cruise.ship = ?1
When an EJB object is used as an input parameter, the container bases the comparison on the primary key of the EJB object. In this case, it searches through all the Cruise EJBs looking for references to a Ship EJB with same primary key value that the Ship EJB passed to the query method.

The WHERE clause and Operator Precedence

The WHERE clause is composed of conditional expressions that reduce the scope of the query and limit the number of items selected. A number of conditional and logical operators can be used in expressions; they are listed below in the order of precedence. The operators at the top of the list have the highest precedence; they are evaluated first.

· Navigation operator (.)

· Arithmetic operators:

+, - unary

*, / multiplication and division

+, - addition and subtraction

· Comparison operators :

=, >, >=, <, <=, <> (not equal),

LIKE, BETWEEN, IN, IS NULL, IS EMPTY, MEMBER OF
· Logical operators:

NOT, AND, OR
If you’ve been working as a programmer for longer than a month, most of these operators will be familiar to you.

EJB QL statements are declared in XML deployment descriptors. XML uses the greater than (‘>’) and less than (‘<’) characters as delimiters for tags, so using these symbols in the EJB QL statements will cause parsing errors unless CDATA sections are used.
For example, the following EJB QL statement causes a parsing error, because the XML parser cannot distinguish the use of the ‘>’ symbol from a delimiter to a XML tag:
<query>

 <query-method>

 <method-name>findWithPaymentGreaterThan</method-name>

 <method-params>java.lang.Double</method-params>
 </query-method>

 <ejb-ql>

 SELECT OBJECT(r) FROM Reservation r

 WHERE r.amountPaid > ?1

 </ejb-ql>

</query>

To avoid this problem, the EJB QL statement should be placed in a CDATA section:
<query>

 <query-method>

 <method-name>findWithPaymentGreaterThan</method-name>

 <method-params>java.lang.Double</method-params>
 </query-method>

 <ejb-ql>

 <![CDATA[

 SELECT OBJECT(r) FROM Reservation r

 WHERE r.amountPaid > 300.00

]]>

 </ejb-ql>

</query>

The CDATA section takes the form <![CDATA[literal-text]]>. When an XML processor encounters a CDATA section it doesn’t attempt to parse the contents enclosed by the CDATA section, instead the parser treats it as literal text
.

The WHERE clause and Arithmetic Operators

The arithmetic operators allow a query to perform arithmetic in the process of doing a comparison. In EJB QL, arithmetic operators can only be used in the WHERE clause and not in the SELECT clause. The following EJB QL statement returns references to all the Reservation EJBs that will be charged a port tax of more than $300.00.

SELECT OBJECT(r) FROM Reservation r

WHERE (r.amountPaid * .01) > 300.00

The rules applied to arithmetic operations are the same as those used in the Java programming language, where numbers are widened or promoted in the process of performing a calculation. For example, multiplying a double and an int value requires that the int first be promoted to a double value. The result will always be that of the widest type used in the calculation, so multiplying an int and a double results in a double value.

String, boolean, and EJB object types cannot be used in arithmetic operations. For example, using the addition operator with two String values is considered an illegal operation. There is a special function for concatenating String values, which is covered in The WHERE clause and FUNTIONS section.
The WHERE clause and Logical Operators

Logical operators such as AND, OR, and NOT operate the same as their corresponding logical operators in SQL.

Logical operators evaluate only boolean expressions, so each operand (each side of the expression) must evaluate to true or false. This is why the logical operators have the lowest precedence: so that all the expressions can be evaluated before they are applied.

The AND and OR operations may not, however, behave like their Java language counterparts && and ||. Specifically, EJB QL does not specify whether the right-hand operands are evaluated conditionally. For example, the && operator in Java evaluates its right-hand operand only if the left hand operand is true. Similarly, the || logical operator evaluates the right-hand operand only if the left-hand operand is false. We can’t make the same assumption for the AND and OR operators in EJB QL. Whether these operators evaluate right-hand operands depends on the native query language into which it’s translated. It’s best to assume that both operands are evaluated on all logical operators.

NOT simply reverses the boolean result of its operand; expressions that evaluate to the boolean value of true become false, and visa versa.

The WHERE clause and Comparison Symbols

Comparison operators, which use the symbols =, >, >=, <, <=, and <>, should be familiar to you. The following statement selects all the Ship EJBs whose tonnage CMP field is greater than or equal to 80,000 tons but less than or equal to 130,000 tons.

SELECT OBJECT(s) FROM Ship s

WHERE s.tonnage >= 80000.00 AND s.tonnage <= 130000.00

Only the = and <> (not equal) operators may be used on String, boolean, and EJB object references. The greater-than and less-than symbols (>, >=, <, <=) can only be used on numerical values. It would be illegal, for example, to use the greater-than, or less-than symbols to compare two Strings. There is no mechanism to compare Strings in this way in EJB QL.

The WHERE clause and Equality semantics

While it’s legal to compare an exact numerical value (short, int, long) to an approximate numerical value (double, float) all other equality comparisons must compare the exact same types. You cannot, for example, compare a String value of ‘123’ to the integer literal 123.

EJB objects can also be compared for equality, but they too must be of the same exact type. To be more specific, they must both be EJB object references to beans of the same deployment. As an example, the following method finds all the Reservation EJBs made by a specific Customer EJB:

public interface ReservationHomeLocal extends EJBLocalObject{

 public Collection findByCustomer(CustomerLocal customer)

 throws FindException;

...

}

The matching EJB QL statement uses the customer argument as an input parameter.

SELECT OBJECT(r)

FROM Reservation r, IN (r.customers) customer

WHERE customer = ?1

It’s not enough for the EJB object that’s used in the comparison to implement the CustomerLocal interface; it must be the same bean type as the Customer EJB used in the Reservation’s customers CMR Field. In other words, they must be from the same deployment. Once it’s determined that the bean is the correct type, the actual comparison is performed on the bean’s primary keys. If they have the same primary keys, they are considered equal.

java.util.Date objects cannot be used in equality comparisons. In order to compare dates, the long millisecond value of the date must be used, which means that the date must be persisted in a long CMP field and not a java.util.Date CMP. The input value or literal must also be a long value.

The WHERE clause and BETWEEN

The BETWEEN clause is an inclusive operation specifying a range of values. It can be used to select all ships between 80,000 and 130,000 tons.

SELECT OBJECT(s) FROM Ship s

WHERE s.tonnage BETWEEN 80000.00 AND 130000.00

The BETWEEN clause may only be used on numeric primitives (byte, short, int, long, double, float) and their corresponding java.lang.Number types (Byte, Short, Integer, etc.). It may not be used on String, boolean, or EJB object references.

Using the NOT logical operator in conjunction with BETWEEN excludes the range specified. For example, the following EJB QL statement selects all the Ship EJBs that are less than 80,000 tons or greater then 130,000 tons but excludes everything in-between.

SELECT OBJECT(s) FROM Ship s

WHERE s.tonnage NOT BETWEEN 80000.00 AND 130000.00

The net effect of this query is the same as if it had been executed with comparative symbols:

SELECT OBJECT(s) FROM Ship s

WHERE s.tonnage < 80000.00 OR s.tonnage > 130000.00

The WHERE clause and IN

The IN conditional operator used in the WHERE clause is not the same as the IN operator used in the FROM clause. In the WHERE clause, IN tests for membership in a list of literal string values, and can only be used with operands that evaluate to string values. For example, the following EJB QL statement uses the IN operator to select all the customers who reside in a specific set of states:

SELECT OBJECT(c) FROM Customer c

WHERE c.homeAddress.state IN (‘FL’, ‘TX’, ‘MI’, ‘WI’, ‘MN’)

Applying the NOT operator to this expression reverses the selection, excluding all customers who reside in the list of states:

SELECT OBJECT(c) FROM Customer c

WHERE c.homeAddress.city

 NOT IN (‘FL’, ‘TX’, ‘MI’, ‘WI’, ‘MN’)

If the field tested is null, the value of the expression is “unknown”, which means it cannot be predicted.

The WHERE clause and IS NULL

The IS NULL comparison operator allows you to test whether a path expression is null. For example, the following EJB QL statement selects all the customers who do not have a home address.

SELECT OBJECT(c) FROM Customer c

WHERE c.homeAddress IS NULL
Using the NOT logical operator, we can reverse the results of this query, selecting all the customers that do have a home address.

SELECT OBJECT(c) FROM Customer c

WHERE c.homeAddress IS NOT NULL

When null fields appear in comparison operations such as IN and BETWEEN, they can have pretty serious side affects. In most cases, evaluating a null field in a comparison operation (other than IS NULL) produces in an UNKNOWN result. Unknown evaluations throw the entire EJB QL results set into question; since we cannot predict the outcome the EJB QL statement, it is unreliable. One way to avoid this situation is to require that fields used in the expressions have values. This requires careful programming. To ensure an entity bean field is never null, you must initialize the field when the entity is created. For primitive values this not a problem, since they cannot be null; they have default values. For other fields, such as single CMR fields and object based CMP fields, like String, the fields must be initialized in the ejbCreate() and ejbPostCreate() methods.

The WHERE clause and IS EMPTY

The IS EMPTY operator allows the query to test if a collection-based relationship is empty. Remember from Chapter 7 that a collection-based relationship will never be null. If a collection-based relationship field has no elements, it will return an empty Collection or Set.

Testing whether a collection-based relationship is empty has the same purpose as testing whether single CMR field or CMP field is null: it can be used to limit the scope of the query and items selected. For example, the following query selects all the cruises that have not booked any reservations:

SELECT OBJECT(cruise) FROM Cruise cruise

WHERE cruise.reservations IS EMPTY
The NOT operator reverses the result of IS EMPTY. The following query selects all the cruises that have at least one reservation.

SELECT OBJECT(cruise) FROM Cruise c

WHERE cruise.reservations IS NOT EMPTY
Interestingly, it’s illegal to use IS EMPTY against collection-based relationships that have been assigned an identifier in the FROM clause.

// illegal query

SELECT OBJECT(r)

FROM Reservation r, IN(r.customers) c

WHERE

r.customers IS NOT EMPTY AND

c.address.city = ‘Boston’

While this query appears to be good insurance against unknown results, it’s not. In fact, it’s an illegal EJB QL statement, because the IS EMPTY operator cannot be used on a collection-based relationship identified in an IN operation in the FROM clause. Because the relationship is specified in the IN clause, only those Reservation EJBs that have a non-empty customers field will be included in the query; any Reservation EJB that has an empty CMR field will be excluded because its customers elements cannot be assigned the c identifier.

The WHERE clause and MEMBER OF

The MEMBER OF operator is a powerful tool for determining whether an EJB object is a member of a specific collection-based relationship. The following query determines whether a particular Customer (specified by the input parameter) is a member of any of the Reservation-Customer relationships.

SELECT OBJECT(cruise)

FROM Cruise cruise, Customer c

WHERE

 c = ?1

 AND

 c MEMBER OF cruise.reservations

Applying the NOT operator to MEMBER OF will have the reverse effect, select all the cruises on which the specified customer doesn’t have a reservation.

SELECT OBJECT(cruise)

FROM Cruise cruise, Customer c

WHERE

c = ?1

 AND

c NOT MEMBER OF cruise.reservations

Checking whether an EJB object is a member of an empty collection always returns false.

The WHERE clause and LIKE

The LIKE comparison operator allows the query to select String type CMP fields that match a specified pattern. For example, the following EJB QL statement selects all the customers with hyphenated names, like “Monson-Haefel” and “Berners-Lee”.

SELECT OBJECT(c) FROM Customer c

WHERE c.lastName LIKE ‘%-%’

Two special characters can be used when establishing a comparison pattern: ‘%’ (percent) stands for any sequence of characters, and ‘_’ (underscore) stands for any single character. % and _ characters can be used at any location within a string pattern. The escape character \ can be used if a % or _ actually occurs in the string. The NOT logical operator reverses the evaluation so that matching patterns are excluded.

The following examples show how the LIKE clause would evaluate String type CMP fields.

· phone.number LIKE ‘617%’

true for ‘617-322-4151’

false for ‘415-222-3523’

· cabin.name LIKE ‘Suite _100’

true for ‘Suite A100’

false for ‘Suite A233’

· phone.number NOT LIKE ‘608%’

true for ‘415-222-3523’

false for ‘608-233-8484’

· someField.underscored LIKE ‘_%’

true for ‘_xyz’

false for ‘abc’

· someField.percentage LIKE ‘\%%’

true for ‘% XYZ’

false for ‘ABC’

The WHERE clause and Functional Expressions

EJB QL has six functional expressions that allow for simple String manipulation and a couple of basic numerical operations. The String functions are listed below:

CONCAT(String1, String2)

returns the String that results from concatenating String1 and String2.
SUBSTRING(String1, start, length)

returns the String consisting of length characters taken from String1, starting at the position given by start.
LOCATE(String1, String2 [, start])

returns an int indicating the position at which String1 is found within String2. If it’s present, start indicates the character position in String2 at which the search should start.
LENGTH(String)

returns an int indicating the length of the string.
The start and length parameters indicate positions in a String as integer values. These expressions can be used in the WHERE clause to help refine the scope of the items selected. Here is an example of how the LOCATE and LENGTH functions might be used:

SELECT OBJECT(c)

FROM Customer c

WHERE

LENGTH(c.lastName) > 6

 AND

LOCATE(c.lastName, ‘Monson’) > -1

This EJB QL statement selects all the customers with ‘Monson’ somewhere in their last name, but the name must be longer than 6 characters. Therefore, ‘Monson-Haefel’ and ‘Monson-Ares’ evaluate to true, but ‘Monson’ returns false because it has only 6 characters.

The arithmetic functions are ABS and SQRT.

ABS(number)

returns the absolute value of a number (int, float, or double)

SQRT(double)

returns the square root of a double

· Exercise 8.2, Complex EJB QL statements

Problems with EJB QL

EJB QL is a powerful new tool that promises to improve performance, flexibility, and portability of the entity beans in container-managed persistence, but it has some design flaws and omissions.

The OBJECT() operation

The use of the OBJECT() operation is unnecessary, cumbersome, and provides little or no value to the bean developer. It’s trivial for EJB vendors to determine when an abstract schema type is the return value, so the OBJECT() operation provides little real value during query translation. In addition, the OBJECT() operation is applied haphazardly. It’s required when the return type is an abstract schema identifier, but not when a path expression of the SELECT clause ends in a CMR field. Both return an EJB object reference, so the use of OBJECT() in one scenario and not the other is illogical and confusing.

When questioned about this, Sun replied that several vendors had requested the use of the OBJECT() operations because it will be included in the next major release of the SQL programming language. EJB QL was designed to be similar to SQL because it’s the query language that is most familiar to developers, but this doesn’t mean it should include functions and operations that have no real meaning in Enterprise JavaBeans.

The missing ORDER BY clause

Soon after you begin using EJB QL you will quickly realize that it’s missing a major component, the ORDER BY clause. Requesting ordered lists is extremely important in any query language; most major query languages including SQL and object query languages support this concept.

The ORDER BY clause has a couple of big advantages: it clearly communicates the bean developer’s intentions; and it gives the application server vendors the option of delegating ordering to the database:

· The ORDER BY clause would provide a very clear mechanism for the bean developer to communicate his intentions to the EJB QL interpreter. The ORDER BY clause is unambiguous; it states exactly how a collection should be ordered (the attributes to order by, ascending, decending, etc.). Given that it’s the purpose of EJB QL to clearly describe the behavior of the find and select operations in a portable fashion, ORDER BY is clearly a significant omission.

· With an ORDER BY clause, EJB QL interpreters used by EJB vendors could, in most cases, choose an ordering mechanism that is optimized for a particular database. Allowing the resource to perform the ordering is more efficient than having the container do it after the data is retrieved. It was suggested that EJB vendors could provide ordering mechanically, by having the collection sorted after it’s obtained. This is a rather ridiculous expectation, since it would require collections to be fully manifested after the query completes, eliminating the advantages of lazy loading.

However, even if the application server vendor chooses to have the container do the ordering, the ORDER BY clause still provides the EJB vendor with a clear indication of how to order the collection. It’s up to the vendor to choose how to support the ORDER BY clause. For databases and other resources that support it, ordering could be delegated to the resource. For those resources that don't support ordering, it can be performed by container. Without an ORDER BY clause, the deployer will have to manipulate collections manually or force the container’s collection implementations to do the ordering. These two options are untenable in real world applications where performance is critical.

When pressed, Sun explained that the ORDER BY clause was not included in this version of the specification because of problems dealing with the mismatch in ordering behavior between the Java language and databases. The example give was string values. The semantics of ordering strings in a database may be different than that of the Java language. For example, Java orders String types according to character sequence and case (upper case vs. lower case). Different databases may or may not consider case while ordering or discount leading or trailing white space. In light of these possible differences, it seams like Sun has a reasonable argument, but only for limiting the portability of ORDER BY, not for eliminating its use all together. EJB developers can live with less than prefect portability of the ORDER BY clause, but they cannot live without the ORDER BY clause.

Finally, contrary to popular belief, the ORDER BY clause would not necessitate the use of the java.util.List as a return type. Although the List type is supposed to be used for ordered lists, it also allows developers to place items in a specific location of the list, which in EJB would mean a specific location of the database. This is nearly impossible to support, and so appears to be a reasonable argument against using the ORDER BY clause. However, this reasoning is flawed, because there is nothing preventing EJB from using the simple Collection type for ordered queries. The understanding would be that the items are ordered, but only as long as the collection is not modified after it is obtained. In other words, elements are not added or removed. Another option is to require that EJB QL statements that use the ORDER BY clause return a java.util.Enumeration type. This seems perfectly reasonable, since the Collection received by a select or find operation shouldn’t be manipulated anyway.

Lack of support for Date

EJB QL doesn’t provide native support for the java.util.Date class. This is not acceptable. The java.util.Date class should be supported as a natural type in EJB QL. It should be possible, for example, to do comparisons with Date CMP fields and literal and input parameters. It should be possible to use comparison symbols (=, >, >=, <, <=, <>) with Date CMP fields. It should also be possible to introduce common date functions so that comparisons can be done at different levels, like comparing the day of the week DOW() or month (MONTH()), etc. Of course, including the Date as a supported type in EJB QL is not trivial and problems with interpretation of dates and locals would need to be considered, but the failure to address Date as a supported type is a significant omission.

Limited Functional Expressions

While the functional expressions provided by EJB QL will be valuable to developers there are many other functions that should have been included. For example, COUNT() is used a lot in real world applications. Other functions that would be useful include (but are not limited to): CAST() useful for comparing different types; MAX() and MIN(); SUM(); UPPER() and perhaps others. In addition, if support for java.util.Date was included in EJB QL, other date functions could be added, like DOW(), MONTH(), etc.

� As of EJB 2.0, these are the only collection types supported for multi-entity query methods. Others, like java.util.List and java.util.Map, may be added in future versions.

� To learn more about XML and the use of CDATA Sections, see read the book XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means published by O’Reilly & Associates 2001.

�PAGE \# "'Page: '#'�'" �� Technical Reviewers: How can I explain this better?

PAGE
17
Copyright (c) 2001 O'Reilly & Associates

