IŞIK UNIVERSITY

EE342-MICROPROCESSORS

EXPERIMENT #3

LOOPS AND ARRAY OPERATIONS

Objective:

The goal of this experiment is to learn writing and compiling assembler files externally and to learn how to perform array operations on 68HC11. Remember indexed addressing mode.

Read the lab. Handouts:
1) How to write and compile assembler programs externally.

2) Assembler reference manual.

Example 3.1

a) Searching for an Element in an Array

We are going to search for the element $FE in locations $C150 to $C175. If we find that element, we will save it in location $C180, otherwise this location will contain zero.

START

EQU
$C150

start address of the array

END

EQU
$C176

end address+1 of the array

FOUND

EQU
$C180

ORG
$C100

start address of the program

CLR
FOUND

initialize FOUND=0

LDX
#START-1
IX is used as pointer to array

REPEAT
INX

point to next location

CPX
#END

end of array yet

BEQ
EXIT

yes, stop

LDAA
0,X

no, get the contents of this location

CMPA
#$FE

contents match FE?

BNE
REPEAT
no, search again

STAA
FOUND

yes, save element, otherwise 0

EXIT

SWI

return to monitor program

b) Searching for an Element in an Array Using a Counter

We are going to write the previous example using a different technique. Now, we know the start address and the size (number of elements) of the array (but not the end address).

START

EQU
$C150

start address of the array

SIZE

EQU
$26

number of elements $26 = 38

FOUND

EQU
$C180

ORG
$C100

start address of the program

CLR
FOUND

initialize FOUND=0

LDX
#START
IX is used as pointer to array

LDAB
#SIZE

ACCB is a counter

REPEAT
DECB

Decrement counter

BMI
EXIT

If negative exit

LDAA
0,X

no, get the contents of the location

INX

point to next location

CMPA
#$FE

contents match FE?

BNE
REPEAT
no, search again

STAA
FOUND

yes, save element, otherwise 0

EXIT

SWI

return to monitor program

Example 3.2:

Writing positive and negative elements of an array into two different arrays

The source array ($C100 to $C110) contains positive and negative signed numbers. This program tests each element of the source array and saves positive elements in array POS, and negative elements in array NEG. The program code starts at address $C000.

Algorithm Description: The 68HC11 has two index registers (IX and IY), but in this example there are three arrays (source, NEG, POS) to point to. IY will point always to POS and IX will sometimes point to source and sometimes to NEG. We will use two temporary memory locations (TEMPNEG and TEMPSRC) to save pointer (IX) values.

ORG
$C100

start address of source array

SOURCE
FCB
5,0,-3,-34,2,67,120,48,-1,-2,6,18,-4,7,10,3

POS

RMB
16

Allocate memory for array POS

NEG

RMB
16

Allocate memory for array NEG

SIZE

EQU
16

number of elements of source 16

TEMPNEG
RMB
2

Allocate 2 bytes (address is 16 bit)

TEMPSRC
RMB
2

Allocate 2 bytes (address is 16 bit)

ORG
$C000

start address of the program

LDX
#NEG

STX
TEMPNEG
save NEG start. address(pointer of NEG)

LDX
#SOURCE
IX points to source

LDY
#POS

IY points to POS

LDAB
#SIZE

ACCB is a counter

REPEAT
DECB

Decrement counter

BMI
EXIT

If negative exit

LDAA
0,X

Read next element of source

INX

point to next location

TSTA

Test this element

BPL
POSITIVE
Element is positive

STX
TEMPSRC
save the pointer of the source

LDX
TEMPNEG
Now IX points to NEG

STAA
0,X

Save negative element in NEG

INX

Increment pointer of NEG

STX
TEMPNEG
Update pointer of NEG

LDX
TEMPSRC
Now IX points to SOURCE

BRA
REPEAT
repeat

POSITIVE
STAA
0,Y

Save positive element in POS

INY

increment pointer of POS

BRA
REPEAT
repeat

EXIT

SWI

return to monitor program

Exercise 3.1: Running the Program in Example 3.2

Assemble the program given in Example 3.2 and load the executable file into EVB. Run it and check memory locations SOURCE, POS and NEG. Change values in source array using MM command of BUFFALO and run the program again.

Exercise 3.2:

Write a program comparing two equal-size arrays (ARRAY1 and ARRAY2) to see if the elements are identical. If they are identical, indicate that by writing $FF to a memory location wit the symbolic name RESULT. If they are not identical clear this memory location.

Homework 3: An array has 10 elements (16 bit unsigned numbers each). Write an assembler program to find out how many elements of this array are divisible by three without reminder.

