Group 1: WAITer (Waiter Assistant Information Technology)

<http://ratbert.bmrc.berkeley.edu/courseware/cs160/fall01/Projects/Group1/>
Andrei Boutyline (role: PDA Programming)

Neetin Gulati (role: Testing & Documentation)

Ha Nguyen (role: Testing & Programming)

Randy Shoopman (role: PDA Programming and Website Designer)
Final Report
1. Problem Overview
It is quite evident that the American lifestyle has drastically changed within the last few decades. As our lives increasingly become dominated by longer work hours, extracurricular activities, and late night social gatherings, restaurant dining is quickly replacing the tradition of home-cooked meals. With more Americans dining out, many restaurant owners are faced with either having to reduce the level of customer service to balance the higher volume of customers with their existing staff, increase staff size, or lose potential patrons who refuse to wait longer for service. Furthermore, the dramatic increase in restaurant patrons has only made the inefficiencies and problems of the standard order-taking process more apparent and damaging to business. First of all, our group believes the paper and pen order-taking process to be greatly inefficient. Restaurant servers must quickly scribble food orders on a notepad, noting customizations when necessary, keep track of which orders go with which customer, walk the written order to the kitchen, and then make subsequent trips to the kitchen to check when orders have been prepared. When multiple courses are ordered (e.g. appetizer, entrée, and dessert), the server submit each course independently. That is, an entrée must be ordered and delivered after the appetizer is consumed and so on. This entire process is duplicated for each table the server is currently servicing. Naturally, this process can become quite confusing and stressful for a restaurant server. To make matters worse, servers must memorize daily specials and be aware of which entrees become unavailable. Another inefficiency that exists in many restaurants, especially large ones, is the oral communication among restaurant staffs. It may be difficult to relay a message to a manager, a bus boy, another server, and other restaurant personnel while servicing a high volume of customers. The current billing process is also very problematic. The server must walk to a register to obtain a bill, walk to a table to obtain a credit card or cash, return the register to process the payment, and finally return to the table with the receipt and either a credit card or change. In addition, many credit-paying customers become uncomfortable when their credit cards are taken out of sight. Clearly, there is much room for improvement with the traditional restaurant processes, and there has never been a greater need for this efficiency than now.

2. Solution Overview

In order to solve many of the problems and improve on the inefficiencies of the current restaurant setting, a set of new processes must be implemented. To begin with, the traditional paper and pencil order-taking process must be abandoned and replaced by an electronic ordering system that wirelessly submits orders to the kitchen. In addition, this ordering system must also provide servers with real-time updates on the status of food orders, food items that become unavailable, and daily specials. Furthermore, this system must assist servers in organizing the data involved with each table, including table status (waiting to order, waiting for food, waiting for bill, etc) and items ordered. The traditional means of processing a bill must also be replaced with one in which bills may be processed portably and preferably in front of the customer. In addition, restaurant staff must be provided with a wireless messaging utility to facilitate communication.

Our group has designed a system called WAITer to provide restaurants with these essential capabilities. The entire system consists of hand-held personal digital assistants (PDAs) running a graphical application, a back-end server with management features such as menu editing and statistics collections, and one or many consoles used to receive orders from the PDAs and to send order-status information to the PDAs. The PDAs are designed to be used by restaurant servers, the server is to be used by the management staff, while the consoles are to be used by the kitchen staff. While all three components are essential to the WAITer system, our group focused on developing the GUI application for the PDAs. By taking advantage of the portability and wireless capabilities of a PDA device, this application is designed to provide all of the utilities desperately needed to alleviate many of the problems plaguing restaurant efficiency.

3. Representative Tasks

We designed three tasks that were performed by test users in order to evaluate the design of WAITer’s graphical user interface. Although some minor changes were made, these three tasks have been consistently used throughout the different iterations of the design process. All three tasks were designed to specifically direct users to the representative functions of the WAITer system. The tasks and the reasoning behind choosing them are listed below.

1. Easy - A customer has a complaint and wishes to speak with a manager. Contact Bob and ask him to go to table 5.

· This task was chosen as the easy task because it is quite simple. The user simply has to click on the messaging icon, highlight Bob from the list of names that appear, and use the PDA’s built in keyboard to send a short message. Despite the task’s simplicity, it demonstrates an important feature in our system. In addition, by successfully completing this task, users develop the confidence to attempt the remaining two tasks.

2. Moderate - Four customers have been seated at table1. They already ordered 2 Cokes and an Evian. Please add a turkey burger with no mayonnaise to the order, send all the orders off to the kitchen immediately and process a $5 cash payment.
· This task is more difficult than the first. It asks the user to step through the entire order process, which involves taking the order, adding customizations to the order, wirelessly submitting it to the kitchen, and finally processing the bill. This task was chosen because we believe the wireless ordering and billing utilities provide the greatest improvements to the traditional restaurant setting of all the features provided by WAITer.

3. Difficult - Cindy, a customer at table 1 complains that her steak was overcooked. She doesn't want another steak so you need to subtract it from her bill. In addition, in order to comply with the restaurant policies, the customer is entitled to a free dessert. Cindy wishes to have the apple pie so place the order, but do not add the charge to her bill.

· This task was chosen as the most difficult task because it builds upon the previous task of manipulating the menu and sending items to the kitchen and then asks the user to use the more advanced feature of modifying the price of an item on the customer’s bill.

4. Design Evolution
By continuously gathering user feed-back through the techniques of user testing and heuristic evaluation, our group was able to evolve the design of WAITer’s graphical user interface after each design iteration. More specifically, our group made design improvements after conducting low-fidelity testing on our paper prototype, after analyzing the results of a series of heuristic evaluations on a high-fidelity prototype (implemented with Microsoft Embedded Visual Basic), and finally after conducting usability testing on the improved high-fidelity prototype. While numerous changes were made throughout the evolution of our design, only the major changes and the reasoning behind the changes will be discussed below.

Design Changes Resulting from Lo-Fidelity User Testing

[image: image1.png][image: image42.wmf]

We revised certain aspects of our interface based on the results of our low-fidelity user testing and based on the features and limitations of Embedded Visual Basic. First, user testing revealed much confusion caused by the “order” and “menu” buttons. While we intended the “order” button to be used to view food items that have been ordered and the “menu” button to be used when the user wished to view the restaurant’s menu, the difference between these two buttons was not immediately apparent to our users. Since efficient order-taking is a fundamental feature of our system, our group recognized that changing our design to alleviate the confusion was imperative to the design’s evolution. Consequently, we renamed these labels to “view order” and “menu”. Additionally we replaced the buttons with tabs because buttons are associated with actions while tabs are usually used to view different screens within an application. Figure 1 shows how the buttons were replaced with tabs in our low-fidelity paper prototype. However, it does not show the wording changes that we made. Figure 2 shows how both changes were incorporated in our first high-fidelity prototype.

A second change made to our interface involves the merging of the vertical and horizontal toolbars shown in figure 3. This change was made based on user recommendations. A couple of our users indicated that having both a vertical and horizontal toolbar made the interface more confusing. For example, it was not apparent whether the icons were grouped based on some unknown criteria. This change was quite welcomed by our group because in addition to improving the GUI design, this made the software implementation much easier due to the difficulty of creating vertical toolbars with Embedded Visual Basic. In merging the two toolbars, we placed the table numbers listed in the vertical toolbar (see figure 3) in a drop-down menu entitled “Tbl” (see figure 4). With this new design, users would select an active table by clicking on the “Tbl” menu and then selecting the desired table number. Additionally, we removed the time displayed at the top of the vertical toolbar after realizing that a clock is provided by PDA’s interface. Finally, we added tool-tips to each of our toolbar icons to explicitly state its functionality. The resulting toolbar (figure 4) consisted of the eight following icons (listed from left to right): backwards navigation, forwards navigation, the restaurant homepage, the waiter/waitress homepage, messenger , table homepage, help, and logout. (The keyboard icon on the far right belongs to the PDA’s interface and is used to activate its keyboard feature.)

[image: image43.wmf][image: image44.png]The third major change made to our interface design was the presentation of the restaurant menu. In our initial design, the menu was implemented using multiple screens (see figures 5 – 7). For example, to order a Coke, one had to first view the main menu screen and then select the link to the beverage page. From the beverage screen, one would then select "Coke" from the listed items, which brought the user to a different screen where the Coke could be ordered. In the new design, we implemented the menu using a tree structure (see figure 8), making access to orderable items much quicker. Although test users did not complain about the initial implementation of the menu, our group believed that users would much prefer the new design over the old, “flat” menu presentation.

The final major change made in this design iteration involved the messenger feature, which now accepts input through both handwriting recognition and the onscreen keyboard (see figure 9). In our initial design, the system took a picture of a hand-written message and sent the image to the intended recipient(s). We added the ability to use the PDA’s built-in keyboard feature because we believed it would be more visibly pleasing for some users than messaging via scrawl images.

Design Changes Resulting from Heuristic Evaluations

Analyzing the results of the heuristic evaluations provided by our classmates resulted in further evolution of WAITer’s graphical user interface. Many heuristic violations were identified by our peers. Naturally, our group agreed with some of the observations and disagreed with others. The heuristic violations that our group agreed upon and implemented in the user interface are described below.

1. [image: image45.png]H2-4 (consistency and standards) was violated when we labeled the button to customize an orderable item in one screen to be “Custom” and “Edit” in another screen despite both buttons having identical functionality. To correct this problem, we renamed both buttons to be “Customize.” We implemented this change because we believe that conforming with the consistency and standards rule would make our interface much more intuitive and user friendly. It was also a change that we could easily implement within our time constraints. Figure 10 and figure 12 show our interface with the old button and figure 11 and figure 13 show the renamed buttons.
2. H2-2 (match system and real world) was violated when we used “Checkout” to label the button that processes a bill. As our classmates pointed out, the word “checkout” usually describes shopping and paying for things that are placed in a shopping cart. Thus, we decided to rename the button to “Process Payment” to match the terminology used in the real world. We felt this change was important because by using the word “Checkout,” we were utilizing a shopping metaphor that we did not intend. Figure 14 shows the old button while figure 15 reflects the change.
[image: image46.png]

[image: image81.png]

 Figure 14

 Figure 15
 Figure 16

3. [image: image47.png]H2-5 (error prevention) was violated when we allowed users to delete ordered items at the click of a button. Our interface did absolutely nothing to verify whether the deletion was intended or accidentally invoked. Since accidentally deleting an item (especially one that was customized) would significantly slow down the order-taking process, our group felt it was important to add a confirmation dialog box when an item is deleted. Figure 16 shows the added dialog box.

4. H2-6 (recognition rather than recall) was violated on the log-in screen when we asked the user to type in the user name rather than provide a drop-down list of known users. We have corrected this violation by adding the drop-down list. We implemented this change because it makes the log-in process quicker, prevents misspellings, and it seems logical since the names of restaurant servers is something that is known ahead of time. Figure 17 shows the drop-down list.
Figure 17 (
5. H2-8 (aesthetic and minimalist design) is a heuristic that some of our peers felt should be further applied in our design. Specifically, buttons throughout the interface were said to be too small. We agreed and increased the size of our buttons. As simple as this change may be, its significance should not be overlooked. Since servers will be using our interface as they move about the restaurant, larger buttons decrease the precision needed when using the PDA’s pointing device.
Another complaint that was made involved the tabs of a table’s homepage. In our application, these tabs are inactive when the state of a table is “open”; thus, selecting a tab in this state yields no result. One of our classmates suggested that the tabs’ inactivity be somehow conveyed to the user. Consequently, we modified the interface so that the tab labels are displayed using a strike-through font to convey inactivity. This change was implemented because it increases the user’s awareness of the application’s current state using an elegant and minimalist design.

Figure 18 shows our interface prior to the two changes just described. Figure 19 shows our interface after the changes were implemented.

[image: image3.png]
[image: image4.png]

 Figure 18

 Figure 19

6. H2-10 (help and documentation) is another heuristic that our peers felt needed greater attention. In our old design, a help button located on the toolbar is readily available once a user is logged into the WAITer system. However, no help utility was available on the log-in screen. We felt adding an additional help button in this screen was worthwhile since it would be an ideal way of providing the user with a tutorial. It made sense that the tutorial should be accessible prior to logging in. Figure 20a shows the new log-in screen with the help button located in the far left corner of the toolbar. A help system also been incorporated throughout the program utilizing pop-up windows, as shown in Figure 20b
[image: image48.png]
[image: image5.png]

 Figure 20a

Figure 20b

Design Changes Resulting from Hi-Fi Usability Testing

[image: image49.png]The results of the high-fidelity usability testing provided our team with the data used to make the final set of changes in the evolution of WAITer’s graphical user interface. A major change made in this design iteration involves the price editing feature used to modify prices on a customer’s bill. In our old interface, prices were changed by using the PDA’s pointing device to select and hold the text representing the price. After a few seconds, the text field became editable, making it possible to make the price change. Users complained that this method was not intuitive and a “cheap hack” since we were using the PDA’s built-in editing feature. Recognizing that this was a major design flaw that may prevent users from editing prices, our team changed the design to include a separate screen to make price changes. We even added a “free” button that automatically makes the ordered item complimentary. This button will be useful for restaurants that give free birthday meals, desserts, or drinks. In addition, it may be necessary to remove charges on items that were unsatisfactory to the customer. Figure 21 shows this new price-editing screen.

 Figure 21

Another major design change that resulted from high-fidelity usability testing was adding the ability to send an item to the kitchen with special instructions to prepare the item immediately. Our test users pointed out that certain situations will arise when an order needs to be given top priority. Overcooking a steak and having to prepare a new one is an example of such a situation. We implemented this change by adding a “Send Urgent” button to the order summary screen (see figure 22). This change was made because the success of our system depends on its flexibility and ability to handle any event that could arise in the order-taking process.

[image: image50.png]
Most Valuable Evaluation Technique
While each evaluation technique provided our group with crucial feedback on the interface design, the heuristic evaluations proved to be the most valuable. Feedback from this evaluation technique provided us with the most insight to problems that existed in our interface. In addition, much of the feedback was supplemented with suggestions. We believe this feedback was much more informative than the feedback received in other design techniques due to the fact that the evaluators were our peers, who are also taking cs160 and are aware of good design practices. In addition, heuristic evaluation explicitly asks the evaluators to look for design flaws; thus, the evaluators are much more willing and eager to criticize the presented interface. In contrast, participants of the user testing may feel more obliged to be polite and more eager to give praise. By giving praise, testers may believe that they are making the design team happy. A happy design team must imply that the tester did a good job as a participant.

5. Task Scenarios

Below, we have provided storyboards to demonstrate how our final graphical user interface can be used to accomplish the three representative tasks that were discussed in section 3 (“Representative Tasks”) of this report.

Task 1:

EASY: A customer has a complaint and wishes to speak with a manager. Contact Bob and ask him to go to Table 5.
[image: image51.png][image: image52.png][image: image53.png]1 [image: image6.png] 2 [image: image7.png] 3 [image: image8.png]
1. Click on the envelope icon on the toolbar.

2. Click on "Bob". Bob becomes highlighted.
3. Click on "Compose Msg"

[image: image54.wmf]

[image: image55.wmf]

[image: image56.png]4
[image: image9.png] 5
[image: image10.png] 6
[image: image11.png]

4. Click on the keyboard icon to activate the keyboard simulator.

5. Using the pointing device to type in characters, enter "Mngr call table 5" or text to that extent, and click "Send"

6. Click "OK" on the message sent dialog. You are finished with task 1.

Task 2:

MODERATE: Four customers have been seated at Table 1. They already ordered 2 Cokes and an Evian. Please add a turkey burger with no mayonnaise to the order, send all the orders off to the kitchen immediately and process a $5 cash payment.
[image: image57.png][image: image58.png][image: image59.bmp]1 [image: image12.png] 2 [image: image13.png] 3 [image: image14.png]
1. Click on Table 1 on the Restaurant Home screen.

2. Click on "Menu" on the tab strip.

3. Click on "Entrees" and then "Burgers" to expand those dropdown menus.

[image: image60.bmp][image: image61.bmp][image: image62.png]4 [image: image15.png]5 [image: image16.png] 6 [image: image17.png]
4. Click on "Turkey Burger"

5. Click on "Customize"

6. Uncheck "Mayo"

[image: image63.bmp][image: image64.bmp][image: image65.png]7 [image: image18.png] 8 [image: image19.png] 9 [image: image20.png]
7. Click "OK"

8. Click "Confirm" on the “Ordering: Turkey Burger” screen.

9. Click "View Order" on the tab strip

[image: image66.png][image: image67.png][image: image68.png][image: image69.png]10[image: image21.png]11[image: image22.png] 12[image: image23.png]
10. Select "Turkey Burger"

11. Click "Send", then click "Bill" on the tab strip

12. Click "Process Payment"

[image: image70.png][image: image71.png][image: image72.png]13 [image: image24.png] 14. [image: image25.png]
13. Click "Cash" and then “Next”

14. Enter the amount of cash received, then “Make Change”, and then “Finish”

Task 3:
DIFFICULT: Cindy, a customer at Table 3 complains that her steak was overcooked. She doesn't want another steak so you need to subtract it from her bill. In addition, in order to comply with the restaurant policies, the customer is entitled to a free dessert. Cindy wishes to have the apple pie. Place the dessert order, but do not add the charge to her bill.

[image: image73.png][image: image74.png][image: image75.png]1 [image: image26.png] 2 [image: image27.png] 3 [image: image28.png]
1. Click on Table 3.

2. Click on "Bill" on the tab strip.

3. Select "Steak Deluxe"

[image: image76.png][image: image77.png][image: image78.png]4 [image: image29.png] 5 [image: image30.png] 6 [image: image31.png]
4. Click on "Edit"

5. Click on "Free"

6. Enter the reason it is free (i.e. "comp" for complementary) and click OK.

[image: image79.png][image: image80.png]7 [image: image32.png] 8 [image: image33.png] 9 [image: image34.png]
7. Click "Menu” on the tab strip

8. Expand the "Desserts" menu

9. Select "Apple Pie"
10
[image: image35.wmf]

11[image: image36.png]12
[image: image37.wmf]

10. Click "Confirm" on the apple pie order

11. Click "Bill" on the tab strip.

12. Select "Apple Pie" and click "Edit"

13[image: image38.png]14[image: image39.png]15[image: image40.png]
13. Click "Free"

14. The reason is already entered from the last time you were at this screen, so click "OK"

15. Finished!
6. Final Interface

The Final Design - Functionality

Our application assists a restaurant’s wait staff through the entire process of taking a restaurant order. This process begins with a server taking an order and ends when a customer pays for a bill. In additional, it helps waiters and waitresses manage tasks and responsibilities that are not particular to any specific table. Therefore, the functionality of our application is divided into two groups: global functions and table-specific functions.

The global functions include the wireless messenger and the waiter homepage. The messenger utility allows a waiter or waitress to send a message to a manager, host or hostess, bartender or to the kitchen. Since managers and restaurant staff are constantly on the move, this messenger utility eliminates time wasted looking for a particular person. A message can be sent one or more people at one time, and messages can be entered using handwriting recognition or through an on-screen keyboard, as shown in Figures 23 and 24. Possible messages include requesting a manager to a table or asking a bus boy to clear a spill. The waiter homepage allows the user to view information about themselves, including the reminders, work schedule, as well as their check-in time and quitting time. The waiter homepage is shown in Figure 25 and the waiter’s work schedule is shown in Figure 26.

The table-specific functions include the ability to input orders directly into the PDA and wirelessly send them to the kitchen and process bills directly at the patron’s table. Orders and bills are divided by tables and are labeled according to the restaurant’s desired labeling scheme. The restaurant homepage shows the layout of these tables and their labels. Each table has a state to represent where it is in the serving process. These states include “Open”, “Waiting to Order”, “Orders Pending”, and “Payment.” The state is also mentioned on the table homepage, along with party size and arrival time. The table homepage is shown in Figure 38. The restaurant menu is built into the device and is organized by categories, such as appetizers, soups, salads, entrees, and desserts, as shown in Figure 27. This is similar to the menu layout of current restaurants. Since the menu is in digital format, daily specials can be added to the menu while out-of-stock items can be removed. An item is ordered by double-clicking. With minimal effort, multiple numbers of the same item can be ordered and items can be customized to the customer’s liking.

While items can be ordered from the menu at any time, various courses (appetizers, entrees, dessert, etc.) can also be ordered at one time and sent to the kitchen by the waiter or waitress. This enables the server to monitor the customer’s speed and send items to the kitchen accordingly to ensure a specific course is ready for the customer at the same time the customer is ready for that specific course. The time an item is sent is logged and items can also be sent with an urgent flag if circumstances require it using the buttons shown in Figure 12. Ordered items can be deleted or customized up to the point where they are sent to the kitchen.

When viewing the bill, wait staff have the option of editing prices or processing payment. Prices can be adjusted higher or lower and a reason can be given for the price change. Cash or credit cards payments are accepted, and credit cards can be swiped or entered manually. For cash payments, a change calculator is included (see Figure 28). Authorization is done immediately by connecting through the restaurant’s high-speed LAN with the existing authorization methods for credit cards.

Each table has a separate record of its current state, current orders, and billing information. This is an important feature because it frees the wait staff from relying on notes and memory to separate tables and keeps a digital record, which could be data-mined for business purposes.

Help is always accessible through the question-mark icon on the toolbar (see Figure 35).

The Final Design – The User Interface
The main way to transition between features of our system is through the toolbar on the bottom of the screen. This toolbar allows for transitions between the global functions of our application. As previously mentioned, the global functions are those which are not in regard to a specific table. Our toolbar has buttons for accessing the restaurant homepage (table layout page/map), employee homepage, the messaging utility, the help utility, and a logout button. Between the messenger button and the help button is a drop-down menu for switching between tables labeled “Active Table.” Since users will be frequently switching between tables, by Fitt’s Law, the most appropriate location for this menu would be the middle of the toolbar. When a table is selected, the user is taken to the last active screen for that table. If the table is empty, it can be set to occupied (or specifically the “Waiting to order” state). Additionally, the right corner has a drop-down menu for toggling between the keyboard and Microsoft’s handwriting recognizer. The toolbar is shown in Figure 29 while the drop-down menu is shown in Figure 30.

[image: image41.png] (Figure 29

The second way of transitioning to table-specific mode is through the restaurant homepage. Here, the layout of the restaurant takes up the main screen and each table is labeled as well as color-coded in regards to its state. For example, a table that is green is empty, while a table that is orange is waiting to order and table that is blue is waiting for the bill, as shown in Figure 30. By clicking a table, the user is taken to the table homepage for that table. From there, the user can access the table-specific commands through the tabs on the bottom. The restaurant homepage is accessed through the first button on the toolbar, which is shown in Figure 31.

The second button on the toolbar is for the waiter homepage. The button is shown in Figure 32. From the waiter homepage, a user can access his or her work schedule, as well as see any announcements from the management, as shown in Figures 25 and 26. The third button is for the messenger utility, shown in Figure 33. By clicking on names, recipients can be selected. Selected recipients are designated by a yellow highlight as shown in Figure 23. To get to the composer, the user either clicks the “Compose Msg” button or “Msg All,” which sends a message to everyone. To enter the text for the message, the user can bring up the keyboard or handwriting recognizer through the drop-down menu in the left corner. The messenger with keyboard entry is shown in Figure 9, while the Transcribe handwriting recognizer is shown in Figure 24. The user can toggle between the keyboard and handwriting recognizer using the drop-down menu shown in Figure 34. The third and fourth buttons on the toolbar are for the help utility (Figure 35) and logout command (Figure 36), respectively. To prevent an accidental logout, a confirmation pop-up box comes up when the logout button is clicked, which is shown in Figure 37.

In table-specific mode, tabs allow the user to transition between the table-specific commands. Just above the toolbar lie 5 tabs for “Table Home”, “Menu”, “View Order”, “Bill” and “Notes.” These tabs are shown in Figure 38. As previously mentioned, the table-specific functions include ability to input orders directly into the PDA and wirelessly send them to the kitchen and process bills directly at the patron’s table. The restaurant menu is built into the device and is organized by categories, such as appetizers, soups, salads, entrees, and desserts. We used a tree format for the menu, with each category expandable by clicking the [+] button and minimizable by clicking the [–] button, as shown in Figure 27. Each category may contain subcategories if necessary. An item is ordered by double-clicking. This takes the user to an order screen, which is shown in Figure 11. Here multiples of the same item can be ordered and customized if necessary. To order, the user must click confirm. In the event the item is not confirmed, and the user goes to the messenger or another feature via the toolbar, that specific item order is canceled. To customize orders, a text box is the default method. For items with common customizations, radio buttons and checkboxes may be used, as shown in Figure 39.

While items can be ordered from the menu at any time, various courses (appetizers, entrees, dessert, etc.) can also be ordered at one time and sent to the kitchen by the waiter or waitress. At the view order screen, users must click the “Send” or “Send Urgent” buttons to send the order to the kitchen, as shown in Figure 12. Before they are sent to the kitchen, orders can be customized or deleted by clicking the appropriate button. When viewing the bill, wait staff have the option of editing prices or processing payment by clicking the appropriate button, as shown in Figure 40. Prices can be adjusted higher or lower by entering a price, as shown in Figure 21. For the purposes of error-free data, only numerical input is accepted and prices are rounded to the nearest cent. Cash or credit cards payments are accepted (see Figure 41), and payment method selection is done through radio buttons. For the manual entry of credit card numbers, drop-down menus are used to ensure error-free data (see Figure 42). For cash payments, a change calculator is included. (see Figure 28)

For a couple of screens, such as the messenger, notepad, change calculator, and price-editing screen, text input is required. For those features, we limited our usage of the screen so that the keyboard would not block any buttons or boxes, as shown in Figures 21, 24, and 28.

Help comes in the form of pop-up boxes, as shown in Figure 20b that are accessed when the user clicks the question mark icon on the toolbar (see Figure 35).

Features left out
Due to time limitations, we did not implement every feature of our application. Most importantly, we did not implement a recommendation system. We would like to give wait staff the ability to find side dishes and drinks that go well with specific main entries so they can provide better customer service. Second, the ability to split checks has not been incorporated into the billing aspect of the application. Third, we would like to incorporate the ability to archive transactions and user actions for record-keeping purposes. Fourth, we would have liked to be able to send and receive tables between users. While most patrons usually keep the same waiter or waitress for the entire length of their visit, circumstances could arise where a transition would be required. We believe this would be similar to the feature in MSN Messenger where files can be sent attached to messages. Furthermore, since this program is designed for frequent users, we feel it should include a tutorial or training program.

We have two bugs in our program. First, the keyboard icon and drop-down menu sometimes disappears from the toolbar. We do not know why this occurs. This bug is visible by comparing Figures 39-41 with storyboards 7, 11, and 13 in task 2. This is an issue because of our second bug: when running the application on an HP Jornada, the keyboard does not always disappear when the user moves from a screen where the keyboard is used to one where it is not used. The keyboard blocks the tabs used in the table-specific mode. To make the keyboard disappear, the user must click the keyboard icon. However, this is impossible when the keyboard button has disappeared. We believe this is a bug with the PocketPC operating system and have heard that it is fixed in the latest release. Also it is important to note that we have never encountered this bug when using the emulator

Wizard of Oz Techniques
Since there are limitations in our ability to design a quick high-fidelity prototype, we had to apply some “Wizard-of-Oz” techniques in our interface. First, messages are not really sent to other users and orders are not really sent to the kitchen staff consol. Second, orders are hard coded due to our inability to create data structures at this time. Third, we do not actually authenticate users that log into the system or keep separate files and records for individual users.

This application would require customized hardware if actually released, including the integration of a credit card reader and a belt-mounted printer with the PDA to provide the billing abilities we envision. Additionally, the restaurant would need to be equipped with a wireless network and a back-end server with management features, such as menu editing and statistics collection. Through this server, we would like our application to be able to interact with the accounting and personal scheduling software already in use. Lastly, one of our high-fidelity user testing subjects recommended we outfit the PDAs with replaceable plastic sleeves to prevent damage from spills and accidents. We believe this is a good idea since sticky buttons could slow down users in front of customers.

Tools Used

We designed our application for Pocket PC devices, such as HP Jornadas, using Microsoft Embedded Visual Basic. We found the Embedded Visual Basic tools to be very easy to use and felt syncing our laptops with the Jornadas was quite simple. Additionally, the use of different forms made it easy to split up the coding of the interface among group members without concern for variable and method naming conflicts. However, Embedded Visual Basic is not as powerful as Visual Basic 6.0 and has its own unique bugs and limitations. First, the program would periodically crash or cause Windows 2000 to freeze. Second, Embedded Visual Basic only accepts 8-bit image bitmaps, while Microsoft PhotoDraw and Image Composer save images as 24-bit image bitmaps. Third, we found we could not declare our own classes to use as data structures. We were limited to arrays of primitive data types, such as Strings and Integers. Fourth, not being able to reference objects and dynamically instantiate objects forced us to hard code many aspects of our interface. Yet, despite these limitations, our program is simple enough where we were able to overcome these issues and incorporate

Other resources we used included Adobe Photoshop and Microsoft Image Composer for graphical editing. Specifically, we used Image Composer for drawing images, and Photoshop for converting images into 8-bit image bitmaps. Additionally, we used resources, online and offline to learn Visual Basic. Our online tools included an online tutorial on Visual Basic 6.0 (http://cuinl.tripod.com/tutorials.htm) and Embedded Visual Basic (www.deVBuzz.com). We also used Pocket PC, Handheld PC Developer's Guide With Microsoft Embedded Visual Basic by Nick Grattan (ISBN: 0130650773, www.nickgrattan.net). Additionally, we would like to acknowledge our use of resources provided by Berkeley’s Group for User Interface Research (GUIR), including Amit Bakshi’s guide to storyboarding (www.cs.berkeley.edu/~abaskhi), Jimmy Lin’s guide to embedding images in Microsoft Word (http://guir.berkeley.edu/internal/howto/word_images.shtml), Jason Hong’s guide to running user tests (http://guir.berkeley.edu/internal/howto/user-studies.shtml), and Danyel Fisher’s notes on using human subjects (http://guir.berkeley.edu/internal/howto/human-subjects.shtml). Lastly, we used the course website extensively to apply the concepts from Professor Canny’s lectures to our project (http://www.cs.berkeley.edu/~jfc/cs160/fall01).
�

Figure 3

� Figure 4

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

�

Figure 27

�

Figure 28

� � � �

 	Figure 23	Figure 24	Figure 25	Figure 26

� EMBED PBrush ��� � EMBED PBrush ��� � EMBED PBrush ��� � EMBED PBrush ���

Figure 10		 Figure 11 		 Figure 12		 Figure 13

�

Figure 30

� (Figure 31

� (Figure 32

� (Figure 33

�

Figure 34

� (Figure 35

� (Figure 36

�

Figure 37

�

Figure 38

� EMBED PBrush ��� �

 Figure 1			 Figure 2

� �

Figure 8			Figure 9

� EMBED PBrush ��� � EMBED PBrush ��� � EMBED PBrush ���

 Figure 5			 Figure 6			Figure 7

� EMBED PBrush ���

 Figure 22

� � � �

Figure 39	Figure 40	Figure 41	Figure 42

_1069089462

_1069171623

_1069184117

_1069184156

_1069171709

_1069169298.doc
[image: image1.png]

_1069171491

_1069093967

_1069169253.doc
[image: image1.png]

_1069093142

_1069082734

_1069083028

_1069085909

_1069089322

_1069085081

_1069082918

_1069076425

_1069076535

_1069081781

_1069076482

_1069073005

