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1 Introduction
Algorithm  
Informally, an algorithm is any well-defined computational procedure that takes some value, or set, as input and produces some value, or set of values, as output, an algorithm is thus a sequence of computational steps that transform the input into the output.

We can also view an algorithm as a tool for solving a well-specified computational problem. The statement of the problem specifies in general terms the desired input/output relationship. The algorithm describes a specific computational procedure for achieving that input/output relationship.

Search Algorithm 
The method for doing a search. The term in computer science is used to represent an approach that to find a specific word or phase in a either sorted or unsorted database.

Search Algorithms can generally be broken down into two types: definitive and subjective. Definitive algorithms perform tasks that have a definite answer and a best method for processing. An example is searching for a word in a list. Depending on the size of the list, certain search algorithms are more efficient then others. Definitive algorithms are typically of interest to only computer scientist. 

Subjective algorithms are more interesting for business purposes. In general a subjective algorithm processes information based on an assumptive model where the "right" answer is a matter of opinion. Subjective algorithms are used heavily in social sciences, economics, business and financial forecasting, etc. The best-known examples of subjective algorithms on the Internet are those used by public search engines. Each search engine uses a different method to determine which web page/site best matches your search. The designers of the search engine determine what is "best". 

Search Problems
Sorting is by no means the only computational problem for which algorithms have been developed. Practical applications of algorithms are ubiquitous and include the following examples:

1. The human Genome Project has the goals of identifying all the 100,000 genes in human DNA, determining the sequences of the 3 billion chemical base pairs that make up human DNA, storing this information in databases, and developing tools for data analysis, each of these steps requires sophisticated algorithms. 

2. The internet enables people all around the world to quickly access and retrieve large amount of information. In order to do so, clever algorithms are employed to manage and manipulate this large volume of data. Examples of problems which must be solved include finding good routes on which the data will travel, and using a search engine to quickly find pages on which particular information resides

3. Electronic commerce enables goods and services to be negotiated and exchanged electronically. The ability to keep information such as credit card numbers, passwords, and bank statements private is essential if electronic commerce is to be used widely. Public-key cryptography and digital signatures are among the core technologies used and are based on numerical algorithms and number theory

4. In manufacturing and other commercial settings, it is often important to allocate scarce resources in the most beneficial way. An oil company may wish to know where to place its wells in order to maximize its expected profit. A candidate for the presidency of the United States may want to determine where to spend money buying campaign advertising in order to maximize the chances of winning an election. An airline may wish to assign crews to flights in the least expensive way possible, making sure that each flights is covered and that government regulations regarding crew scheduling are met. An internet service provider may which to determine where to place additional resources in order to server its customers more effectively. 
2 Linear Algebra
Dirac Notation

2.1.1 Vector Spaces


Vector spaces are the basic objects of linear algebra.  The vector space of most interest to us is the complex Hilbert space, [image: image1.wmf]n
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.   This is the space of all n-tuples of complex numbers, [image: image2.wmf](
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.  Vectors are considered to be the members of a vector space and are represented using the column matrix notation
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In quantum mechanics this notation tends to be cumbersome.  The standard notation for linear algebra concepts such as a vector in a vector space is the following.


 
[image: image4.wmf]y
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This abstract notation is called a ket.  Additionally we also have a vector in addition to the ket vector.
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This is known as the bra vector.  The bra vector is the dual state of the ket vector in the reflexive Hilbert Space.  The matrix notation for a dual vector differs from the notation above.  


[image: image6.wmf]1

,...,

n

zz

**

éù

ëû

 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2.4)

The notation in the rest of the paper will be summarized in the following table.

	Notation
	Description
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	The complex conjugate of the number z.
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	Ket vector
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	Bra vector
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	Inner product between vectors [image: image12.wmf]j
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	Outer product between vectors [image: image15.wmf]j
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	Tensor product between vectors [image: image18.wmf]j
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	Abbreviated notation for tensor product between vectors [image: image21.wmf]j

 and [image: image22.wmf]y

.
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	Abbreviated notation for tensor product of V with itself n times.
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	Vectors [image: image25.wmf]j
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 are XORed and stored in target qubit [image: image27.wmf]j

.  Refer to CNOT gate (3.3.5)
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2.1.2 Inner & Outer Product

The inner product is uses to take two input vectors   and    from a vector space and in turn generate a complex number output.  The [image: image37.wmf]gg

 operator performs an inner product if it satisfies these requirements.

1. In the second argument [image: image38.wmf]gg

 is linear.
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2. [image: image40.wmf]jyyj

*

=


3. [image: image41.wmf]0 with equality0

jjj

³Û=


The inner product is defined by the following in [image: image42.wmf]n
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Therefore [image: image48.wmf]n

£

 is also an inner product space because it is equipped with an inner product space.  An inner product space is essential the same thing as a Hilbert space in the finite dimensions.
Another function that uses the inner product is the outer product.  The outer product is just defined as follows.
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The outer product is a very important result for the completeness relation of orthonormal vectors.  Suppose [image: image50.wmf]i

 is an orthonormal basis for vector space V.  Then we can say the following for some set of complex numbers [image: image51.wmf]i
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Therefore this must imply that
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2.1.3 Tensor Product

In order to create larger vector spaces, tensor products are used in order to construct the necessary matrix for multi-particle systems.  Suppose we have two vector spaces U and V with the dimension m and n respectively.  Consequently [image: image54.wmf]UV
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 would be in mn dimensional space, which is quite larger than the original vector space.  The members of [image: image55.wmf]UV
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We can represent this very abstract concept using the matrix notation known as the Kronecker product.  Suppose we have the matrix U with the dimension m by n along with the matrix V with the dimensions p by q.  We can represent the tensor product in the following fashion.
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In this notation the term [image: image58.wmf]11
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 represent p by q submatrices that are proportional to V.
Suppose we have the following matrix:
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The tensor product of itself would be written as follows.
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Eigenvectors & Eigenvalues
2.1.4 Calculating

“An eigenvector of a linear operator A on a vector space is a non-zero vector [image: image61.wmf]v

 such that [image: image62.wmf]Avvv

=

, where v is a complex number known as the eigenvalue of A corresponding to [image: image63.wmf]v

” [1].  Using the fundamental theorem of algebra we know that every operator A at least has one eigenvalue and its corresponding eigenvector.  The eigenvector is obtained through the application of the characteristic function.
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The solution of the characteristic equation when [image: image65.wmf](
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 are the eigenvalues for the operator A.  The set of eigenvectors formed from the eigenvalue v makes up the corresponding eigenspace.  The eigenspace is a vector subset of the vector space of A. 
2.1.5 Diagonalizable

The orthonormal set of eigenvectors for A can be seen in the following diagonal representation.
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The vectors [image: image67.wmf]i

 form the orthonormal set of eigenvectors with their corresponding eigenvalues [image: image68.wmf]i
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.  For example the following matrix can be written with a diagonal representation.
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   [1]

2.1.6 Spectral Decomposition
This theorem is used for representing normal operators.  This theorem states that “any normal operator M on a vector space V is diagonal with respect to some orthonormal basis for V.  Conversely, any diagonalizable operator is normal” [1].  Suppose we have the eigenvalue [image: image70.wmf]l

 for M, P the projector onto the [image: image71.wmf]l

 eigenspace, and Q the projector onto the orthogonal complement.  We can eventually say the following with this theorem.
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What this means is that M can be written in terms of its diagonal and/or its projectors.
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The projectors satisfy the completeness and orthonormality relations.
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3 Quantum Physics & Quantum Computing
History


The concept of quantum-based computational devices was first formed in the 1970’s and early 1980’s by the computer scientists and physicists of the Argonne National Laboratory and California Institute of Technology.  This concept arose from the notion that eventually the size of circuitry that could be etched onto silicon wafers would eventually approach the atomic level and thus a “fundamental limit[sic] of computation” (18).  The inherent problem in this conjecture was that as we delved into the atomic level, we were leaving Newtonian mechanics behind and entering the realm of quantum mechanics.  The same rules and laws that defined behavior and properties before no longer held.  In order to counteract this dilemma a new model of computing—quantum computing—was created in order to better represent how computations would work at a quantum level.  A level of computing that was far different than what we primarily use now.
One of the first known attempts to solve this difficult conundrum was given by Richard P. Feynman.  In 1982, he demonstrated how computations could be performed on a quantum level using an abstract model.  Additionally, these computations would simulate real-life quantum physics—quantum physic experiments could now be administered on a quantum machine.  This assertion was followed by the “crucial theoretical paper showing that any physical process, in principle, could be modeled perfectly by a quantum computer” (18).  This paper, published in 1985 and written by David Deutsch, proved that the capability of classical computers paled in comparison to that of quantum computers.
After this key discovery, many scrambled to find unique applications to this new model of computing.  For a few years, the only problems being “solved” by this new method of computing were a handful of “contrived mathematical problems” (18).  This all turned around when in 1994, Shor released a paper that would put quantum computing on the forefront of national and international interest.  Shor found a way to factor numbers quite easily using a quantum computer.  This created a major shock in the computer industry because most of the security on information transfer was and still is based on the RSA encryption standard.  RSA uses the belief that factoring huge numbers was extremely difficult and that it was considered to be an NP-Hard problem in classical computing.
Quantum Bits (Qubit)
3.1.1 Single Qubit

A qubit is a quantum object.  It is just as a classical bit, which is either 0 or 1.  A qubit also has two states - [image: image75.wmf]0

 and [image: image76.wmf]1

, which also called computational basis states.  Even though two states of a qubit look like a classical bit, we cannot examine a qubit to determine its quantum state.  Instead of that, we can only acquire much more limited information.  Another difference is that a qubit have a state other than [image: image77.wmf]0

 and [image: image78.wmf]1

.  We also can have states that are linear combinations from [image: image79.wmf]0

 and [image: image80.wmf]1

, called superpositions
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where ( and ( are complex number.  [image: image82.wmf]2
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 is the probability when a qubit is equal to 0.  Similarly, [image: image83.wmf]2
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 is the probability for a qubit measured to the result 1.  Because the sum of all probabilities should be equal to 1, we can derive the result
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Additionally, [image: image85.wmf]0

 and [image: image86.wmf]1

 also can also be represented in a vector form:
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We mentioned before, a qubit can have states that are the linear combination of [image: image89.wmf]0

 and [image: image90.wmf]1

.  The linear combination can also explain that a qubit can exist in a continuous state between [image: image91.wmf]0

 and [image: image92.wmf]1

, but can ultimately only give the values 0 or 1 depending on which location they choose.  For example, the state of a qubit is represented
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in which, we have a fifty percent chance to get the result 1, and another fifty percent chance to get the result 0.

We can use an atom model to explain the qubit.  The electron exists in the atom.  It can exist in either a ground or an excited state, which are called [image: image94.wmf]0

 and [image: image95.wmf]1

, respectively.  By shining light on the atom, the electron can move from the [image: image96.wmf]0

 state to the [image: image97.wmf]1

 state, or vice versa.  But if we reduced the energy of light, the electron may move the halfway between the [image: image98.wmf]1

  and  [image: image99.wmf]0

—this is called the [image: image100.wmf]+

 state.
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3.1.2 Multiple Qubits
If we have two qubits, there would be four possible states [image: image102.wmf]00

, [image: image103.wmf]01

,[image: image104.wmf]10

, and [image: image105.wmf]11

.  Similar, there also exist the superpositions of all four states.  It is represented in the following:
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where the complex coefficient is called the amplitude.

Similarly to a single qubit, the sum of all coefficients appeared above should be equal to 1.  It can be expressed by the normalization condition such that
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The multiple qubits are extended from a single qubit.  A multiple qubits [image: image108.wmf]ab

 can be resolved to [image: image109.wmf]b
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.  We use this equation to get a vector form the four computational basis states of a two qubit system.
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Quantum Gates

A quantum computer is built from a quantum circuit containing wires and elementary quantum gates to carry around and manipulate the quantum information.  So quantum gates are a foundation of the quantum computer.  

3.1.3 NOT Gate

NOT gate of the quantum computer takes the state from [image: image114.wmf]0

 to [image: image115.wmf]1

, or vice versa.  For example, take the state described in the following:
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The NOT gate takes it to the corresponding state in which the role of [image: image117.wmf]0

 and [image: image118.wmf]1

 have been interchanged, such that
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Using matrix to represent a NOT gate is very convenient.  The NOT gate can be defined as follows:
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We can use the example mentioned before to identify the general solution.  The state [image: image121.wmf]1
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 is written in a vector notation as
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and by applying the NOT gate to the state such that
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and the result is the same as we expected [image: image124.wmf]0

1

b

a

+

.

3.1.4 Unitarity

The matrix is describing unitarity, if the matrix has properties such [image: image125.wmf]I

U

U

=

*

, where [image: image126.wmf]*

U

 is the transformation of a matrix U and I is the two by two identity matrix.  The identity matrix is the diagonal matrix such that
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By the way, unitarity constraint is the only constraint on quantum gates.  Any unitary matrix specifies a valid quantum gate.

3.1.5 Z Gate
Z gate of the quantum computer leaves the state [image: image129.wmf]0

 unchanged, and flips the sign of [image: image130.wmf]1

 to give -[image: image131.wmf]1

.  For example, the state described in the following:
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The Z gate transforms it to 
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The Z gate can be defined as follows using matrix notation:
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We can use the example mentioned before to identify the general solution.  The state [image: image135.wmf]1
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 is written in a vector notation as
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and using Z gate to the state such that
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and the result is the same as we expected [image: image138.wmf]01
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3.1.6 H Gate (Hadamard gate)
The Hadamard gate is one of the most useful gate for quantum computer.  The gate turns single qubit gates correspond to rotations and reflections of the sphere.  The operation first rotates the sphere about the y-axis by 90 degree, followed by a reflection through x-y plane.  The diagram of Hadamard operation is illustrated in the following diagram:
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Hadamard gates are sometimes described as being like the ‘square-root of NOT’ [1] gate, in that it turns a [image: image140.wmf]0
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The H gate can be defined as follows:
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We can use the example mentioned before to identify.  The state [image: image149.wmf]1
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Applying the H gate to the state gives us
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the result that we expected. 
3.1.7 CNOT Gate (Controlled-NOT Gate)

This gate has two input qubits, the control qubit and the target qubit.  The action of the gate describe in the following.  When the control qubit is equal to 0, the target qubit is not changed.  If the control qubit is equal to 1, the target qubit is flipped such as
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CNOT gate is also represented by matrix like the following matrix:
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The CNOT gate can also be used to generalized the classical XOR gate.  The action of an XOR gate is summarized as follows:
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The [image: image155.wmf]Å

 operator can be defined as the “addition of modulo two, which is exactly what the XOR gate does” [1].  
The CNOT gates also have one very important property—any multiple qubit logic gate may be composed from CNOT gates and single qubit gates.
Quantum Principles
3.1.8 Parallelism

Because of the advantages of quantum parallelism, quantum hardware can be used to more efficiently solve computational problems than their classical counterpart.  Due to the limits of quantum mechanics, we cannot take the general measure of the quantum state and thus “we cannot immediately make use of the power that quantum parallelism provides” [9].   

Now, say we have a function with a “one-bit domain and range” [1].
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Now this mapping can be implemented in the following unitary operation where we considered a two qubit quantum computer.
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Using a Hadamard transform, we creating the following supposition:
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This equation can be easily demonstrated when [image: image159.wmf]1
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Furthermore, let us assume we have state vectors, call them a and b.  The first state vector will be equal to value or the Hadamard transform while the second state vector is initialized to [image: image161.wmf]0

.
We will get the following result if we apply the above operator on both of our state vectors.
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This can also be demonstrated from original example.
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This unitary operator has acted in a linear fashion on every term in superposition.  In one “swoop” the operator evaluated the function [image: image164.wmf](
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.  This operation would have taken linear time in a classical computer.  This time-complexity reduction is the essence of quantum parallelism. 
The dilemma with this, however, is that there is no way to actually determine the final answer because the measure of the computed quantum state would be only be one of the terms of the superposition, [image: image167.wmf](
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.  Re-measuring the quantum state would result in the same answer because the previous state measurement caused the quantum state vector representing all the possible values to collapse into a single value.  Thus we have effectively calculated the value [image: image168.wmf](
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 for a single value of x.  This is definitively no better than classical computations and is, in fact, worse because we have no control over which value of x we want to compute.

This problem presents the notion that quantum parallelism is definitely not enough to design efficient quantum algorithms.  We need to able to obtain additional information from the state vector when we perform a state measurement.  This additional information can be obtained using quantum entanglement.
3.1.9 Entanglement & Teleportation
“Quantum entanglement is a quantum mechanical phenomenon in which the quantum states of two or more objects have to be described with reference to each other, even though the individual objects may be spatially separated” [9].  This correlations between the observable physical properties in a system are even stronger than those in classical correlations.  Thus measurements performed on one system can be influenced or influencing other quantum systems that are ‘entangled’ with it.  The drawback, however, is that transimission of informaiton is not a possiblity.

This “spooky action” phenomena led prominent scientist, such as Albert Einstein, to reject this theory because it went against his principle of locality.  This principle stated that local systems should have no immediate effect on other spatially separated systems.  This contradication was known as the EPR Paradox.  The field of quantum mechanics, however, was very succesfull in generating correct experimental predications, and the “spooky action” phenomena was quite observable.  Some suggested the notion of hidden variables that were not known us yet.  These variables were deterministic and also followed the principle of locality.  This, however, gave rise to the behavior of quantum mechanics on a larger scale.  In 1964, however, John Steward Bell showed that effects of a broad class of local hidden-variables can be indeed experimentally separated from the effects of quantum entanglement.  Future experiments have verified Bell’s quantum mechanical predictions and quantum entanglement was accepted at a true quantum phenomena.

“Entanglement obeys the letter if not the spirit of relativity” [11].  Despite the entanglement of systems or large spatial regions, no useful information can transmitted between two systems, and thus causality is not violated through entanglement.  This occurs for two reasons:

1. Quantum mechanics obtains probabilistic results

2. No cloning theorem forbids the statistical inspection of entangled quantum states. 
Despite the fact that information by itself cannot be transmitted entanglement alone, it is a possiblity to transfer information by using the conjuction of entangled quantum states with a clasical information channel.  This is know as quantum teleportation can only transmit at the speed of light because of the classical channel.  It does not literally transport from one location to another but recreates and destroys the object at new and old locations respectively.
3.1.10 Interference
Quantum interference is one of the most challenging principles of quantum theory. Essentially, the concept states that elementary particles can not only be in more than one place at any given time through superposition, but that an individual particle, such as a photon can cross its own trajectory and interfere with the direction of its path.  Debate over whether light is essentially particles or waves dates back over three hundred years.  In the seventeenth century, Isaac Newton proclaimed that light consisted of a stream of particles; in the early nineteenth century, Thomas Young devised the double-slit experiment to prove that it consisted of waves.  Although the implications of Young's experiment are difficult to accept, it has reliably yielded proof of quantum interference through repeated trials.  The noted physicist Richard Feynman claimed that the essentials of quantum mechanics could be grasped from an exploration of the double slit experiment.  For this variation of Young's experiment, a beam of light is aimed at a barrier with two vertical slits. The light passes through the slits and the resulting pattern is recorded on a photographic plate.  If one slit is covered, the pattern is what would be expected: a single line of light, aligned with whichever slit is open. Intuitively, one would expect that if both slits are open, the pattern of light will reflect that fact: two lines of light, aligned with the slits. In fact, however, what happens is that the photographic plate is entirely separated into multiple lines of lightness and darkness in varying degrees. What is being illustrated by this result is that interference is taking place between the waves/particles going through the slits, in what, seemingly, should be two non-crossing trajectories. 

We would expect that if the beam of photons is slowed enough to ensure that individual photons are hitting the plate, there could be no interference and the pattern of light would be two lines of light, aligned with the slits. In fact, however, the resulting pattern still indicates interference, which means that, somehow, the single particles are interfering with themselves. This seems impossible: we expect that a single photon will go through one slit or the other, and will end up in one of two possible light line areas. But that is not what happens. As Feynman concluded, each photon not only goes through both slits, but simultaneously traverses every possible trajectory en route to the target, not just in theory, but in fact. 

In order to see how this might possibly occur, experiments have focused on tracking the paths of individual photons. What happens in this case is that the measurement in some way disrupts the photons' trajectories (in accordance with quantum theory's uncertainty principle), and somehow, the results of the experiment become what would be predicted by classical physics: two bright lines on the photographic plate, aligned with the slits in the barrier. Cease the attempt to measure, however, and the pattern will again become multiple lines in varying degrees of lightness and darkness. 
3.1.11 Decoherence & Error Correction
Interference and entanglement are quantum-mechanical phenomena that are inherently used in quantum computing devices.  “These phenomena endow a quantum computer with certain capabilities that cannot be matched, even in principle, by any classical computer” [11].  To effects of noise and of imperfections in the machine, the quantum phenomena are exceptionally vulnerable.
Shor’s quantum factoring algorithm, as described later, works by summing coherently an exponentially large number of amplitudes and constructively interfere with each outer.  When the computer, however, interacts with its environment, the quantum state of the environment is now entangled to the quantum state of the computer.  This obviously causes the decay of the coherent quantum information in the state vectors to an incoherent mixed state.  This decaying phenomenon is known as decoherence.  Decoherence destroys the constructive interference, and so drastically compromises the performance of the machine.
Using error-correcting codes, the effects of noise can be dealt with systematically and efficiently in classical computation and/or communication.  With the use of redundant information a signal can be reliably recovered even after the signal has significantly degraded. 
“Shannon's Main Theorem of classical information theory shows that a noisy classical channel has a finite channel capacity, such that information can be sent over the channel with an arbitrarily small probability of error at a rate arbitrarily close to (but below) the channel capacity.” 
[14]
Generalizing the concept of an error-correcting code to quantum information is problematic for several reasons.  First, quantum information cannot be faithfully copied, so it is subtle to encode the information redundantly and to process the information so encoded.  Furthermore, to detect that an error has occurred, we must make a measurement and extract some data about the state of the quantum system.  But this measurement may disturb the system and modify the encoded information. 

Nevertheless, there has been dramatic recent progress in error-correcting quantum coding.  The crucial idea is that information can be encoded in correlations involving many "qubits" (or spins), in such a way that none of the information can be accessed by measuring just a few qubits at a time.  Information encoded in this way is not destroyed if a few of the qubits interact with the environment.  Yet the error caused by the interaction can be detected and corrected by making suitable measurements of the system together with an auxiliary device.

3.1.12 Reversibility

To keep the computation coherent, quantum registers must be kept isolated, to avoid entanglement with the environment.  The entropy of such a system has to remain constant since no heat dissipation is possible, therefore state changes have to be adiabatic, which requires all computations to be reversible. 

Every reversible operation can be described by a unitary operator U that matches the condition[image: image169.wmf]1†
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A general unitary transformation in the two dimensional Hilbert space [image: image173.wmf]2
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can be defined as follows: 
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If this operator can be applied to arbitrary 2-dimensional subspaces of H, then any unitary transformation can be constructed by composition.  If only subspaces corresponding to a subset of qubits are allowed, which is the case for many proposed architectures, among them also the linear ion trap, then an additional 4-dimensional 2-qubit operator is needed to obtain a mixing between separate qubits. 
4 Grover’s Search Algorithm
Introduction

Grover's algorithm is a quantum algorithm for searching an unsorted database with N entries in [image: image175.wmf](
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 space. It was invented by Lov Grover in 1996.


Generally, searching an unsorted database requires a linear search [image: image177.wmf](
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.  Other quantum algorithms which provide exponential speedup over their classical counterparts.  Grover's algorithm provides "only" quadratic speedup.  However, it is the fastest possible quantum algorithm for searching an unsorted database, and if the N is large enough quadratic speedup is considerable. 

Grover's algorithm is probabilistic in the sense that it gives the correct answer with high probability, it as same as other quantum algotithm. Repeating the algorithm can decrease the probability of failure. 


Grover's algorithm can be used for mean and median estimation, and solving the collision problem. It can solve NP-complete problems by performing exhaustive searches over all possible solutions.  Although it speedup, it won't achieve polynomial runtime for NP-complete problems. 

Although Grover's algorithm is often described as searching a database, it would be more accurate to describe it as inverting a function.  If a function [image: image178.wmf](
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 can be computed by an algorithm for a quantum computer, then Grover's algorithm can calculate x, when y is given. Grover's algorithm wouldn't typically be used to search for names in a phone book, it could also be used to search for a key that decrypts an encrypted message. If the function for computing [image: image179.wmf]()
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 is given as a black box, then Grover's algorithm is the fastest possible algorithm for inverting it. 

Below are the basic form of Grover's algorithm, which searches for a single matching entry. The algorithm can be further optimized if there is more than one matching entry and the number of matches is known beforehand. 

Procedure 

Consider an unsorted database with N entries. The algorithm requires an N-dimensional state space H, which can be supplied by log2N qubits. 

Number the database entries 0, 1, ... N-1.  Choose an observable [image: image180.wmf]W

 acting on H with N distinct eigenvalues. By the spectral theorem, we can construct an orthonormal basis of eigenkets [image: image181.wmf]{
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 label distinct database entries. We wish to find the label [image: image183.wmf]w

for the database entry matching our search criterion. 

We are provided with a unitary operator Uω which compares database entries with our search criterion. The algorithm does not specify how this subroutine works, but it must be a quantum subroutine that works with superpositions of states, and it must have the following effects on the label kets: 
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The steps of the Grover algorithm are: 

1. Initialize the system to the state 
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2. Perform the following "Grover iteration" [image: image186.wmf]()
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 times.
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a. Apply the operator Uω 

b. Apply the operator [image: image189.wmf]2

s

UssI

=-

 

3. Perform the measurement [image: image190.wmf]W

. The measurement result will be [image: image191.wmf]w
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 with probability approaching 1 for N>>1. From [image: image192.wmf]w
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 may be obtained. 
Explanation Of The Algorithm 

Our initial state is 
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Consider the plane spanned by [image: image195.wmf]s
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In geometric terms, there is an angle [image: image201.wmf](
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 is a reflection at the hyperplane orthogonal to [image: image207.wmf]w
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 of each Grover iteration step rotates the state vector by an angle of [image: image218.wmf]2

q

 toward [image: image219.wmf]w

. 

We need to stop when the state vector passes close to [image: image220.wmf]w

.   Ater this, subsequent iterations rotate the state vector away from [image: image221.wmf]w

, reducing the probability of obtaining the correct answer.  The number of times to iterate is given by r. In order to align the state vector exactly with [image: image222.wmf]w

, we need: 
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However, r must be an integer, so generally we can only set r to be the integer closest to [image: image224.wmf](
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Furthermore, the probability of obtaining the wrong answer becomes [image: image230.wmf](
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, which approaches zero for as N approahes infinity. 

Improving Grover’s algorithm


The original formulation of the Grover’s Algorithm can still be improved upon by creating an Expectation Value (EV).

Quantum algorithms are conventionally formulated for implementation on a single system of qubits amenable to projective measurements. However, in an expectation value quantum computation, such as nuclear magnetic resonance realizations, the computer consists of an ensemble of identical qubit-systems amenable only to expectation value measurements. The prevalent strategy in such expectation value implementations of quantum algorithms has been to retain the conventional formulation's unitary operations but modify its initialization and measurement steps appropriately. This naive approach is not optimal for Grover's algorithm and a shortened version for expectation value quantum computers is presented (6).


Quantum algorithms [1] are usually be implemented on single quantum system amenable to projective measurements. In contrast, most experimental implementations have used room temperature solution state NMR, which are expectation values of observables [2, 3 & 4].  Quantum algorithms have been adapted for such expectation value quantum computers by modifying the preparation and measurement stages [2, 5].  However, these adaptations have been constructed so that the expectation value quantum computer likes its single quantum system relative as closely as possible.  As such, they do not use the multiple identical quantum computers in the ensemble advantageously. In this article we show how to shorten Grover's search algorithm for expectation value quantum computers.

We consider an expectation value quantum computer, consisting of an ensemble of identical, non-interacting quantum computers. 
(i) Can be prepared in any initial state[2, 5],
(ii) To which any single transformation can be applied
(iii) For which the expectation value (EV) [image: image231.wmf](
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 can be measured for each qubit (labeled by k). This is the case with current NMR realizations.

The standard translation of a quantum algorithm to a form suitable for an expectation value quantum computer can be illustrated via Grover's algorithm for searching a database containing a single marked item in one of N possible locations (for convenience assume that [image: image232.wmf]2
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s denotes the marked item's location. A classical sequential search requires [image: image235.wmf]/2
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 oracle queries on average to locate the marked item correctly.  A quantum algorithm [1, 7] uses an L qubit data register and an oracle unitary operation, defined on the computational basis states as [image: image236.wmf](
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 and extended linearly to superpositions of these. The data register is initialized to [image: image237.wmf]21
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, followed by repeated applications of the Grover iterate [image: image238.wmf]f
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After m applications of G, the data register's state is 8
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 oracle invocations to locate the marked item with near certainty, giving a quadratic speedup over the classical sequential search.

To convert between PM and EV outcomes note that, when
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is the binary representation of s. This reveals the marked item if it is possible to distinguish between [image: image247.wmf](
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 for each qubit. This standard EV version of Grover's algorithm has been used in all NMR realizations to date. What is crucial for the success of the above translation is that the sign of [image: image249.wmf](
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 for each qubit can be determined. This depends only on which PM outcome would be more likely: positive or negative for PM outcomes 0 or 1 respectively. Therefore, for expectation value quantum computers, it is not essential that the state prior to measurement be [image: image250.wmf]s
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where the EV attenuation
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determines the magnitude of the EV. The EV attenuation increases monotonically with respect to m from 0 prior to any applications of G to approximately 1 in the case of the standard EV version. This leads to a truncated EV version of Grover's algorithm in which is identical to the standard EV version except that it terminates after the minimum number of applications of G such that it is still possible to distinguish reliably between [image: image254.wmf](
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for all data register qubits. In an ideal case the truncated EV version succeeds after one application of G.  In practice, noise and statistical limitations effectively establish threshold EV attenuation, [image: image256.wmf]m
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. The threshold will depend on experimental details but, for many practical expectation value quantum computers it will possible to truncate the algorithm compared to the standard EV version. 

Searching a database containing more than one marked item is complicated by the fact that the standard version of Grover's algorithm is not deterministic. Here, after about [image: image258.wmf]4
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 where M is the number of marked items and S denotes the set their locations (1). A PM will yield a location of one of the marked items with certainty. However, the bitwise EV technique described earlier may fail in some cases since averaging over more than one possible database location can produce devastating cancellations (6). One way to avoid this and still incorporate the truncation described above is to use a filtered EV technique based on iterated runs of the algorithm. The iteration step produces the k + 1 bit of a marked item's location if the first k bits have been determined to be [image: image260.wmf]11
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Averaging the EVs obtained from the two runs gives 6
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identical to an EV performed on [image: image264.wmf]'
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 ; giving s1 for a marked item. The entire filtering procedure requires log2 N runs of the algorithm and [image: image268.wmf](
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 operations to compute g for all stages. Note that the amplitude of the EV scales as 1=M and thus for a given experimental realization there will be a threshold (in M) beyond which this scheme fails. We only consider cases where M lies beneath this threshold. The truncated EV version of Grover's algorithm for one marked item is extended to multiple marked items if the filtering scheme described above is used. After m applications of G:
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where S0 includes filtering conditions and the EV attenuation is
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The algorithm can be terminated whenever [image: image271.wmf]mn
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where M stand is the number of applications of G required for the standard EV version 6.

Whenever a quantum computing device only offers expectation value out- comes, then the truncated version of Grover's algorithm is superior to the standard version. Here the ensemble's ability to produce decisive expectation values may be used advantageously and a naive translation from the single quantum system version of an algorithm is not always optimal. The extent to which this is applicable to other algorithms is not clear and would be a worthwhile issue to investigate.

5 Quantum Algorithms 

G-BBHT Search Algorithm

This algorithm is a generalized search algorithm.  It modify from Grover’s algorithm.  All of steps are in the following:

1.
Consider one n-qubit register in the initial state [image: image275.wmf]n
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3.
Make a measurement of the x-register to get an [image: image279.wmf]0
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4.
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In the 1998, Buhrman and de Wolf publish the analysis for searching an unordered list of n elements.  The summary is in the following:

1. ( can be an arbitrarily small constant using [image: image281.wmf])
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3. To achieve no error, n queries are needed.

4. The following is lower bound for (, 
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where b is a fixed constant and T < n.

In G-BBHT algorithm the initial distribution is uniform – all marked and unmarked states have the same amplitude.  The need to deal with the case of arbitrary initial distribution when the search is used as a subroutine of larger quantum computations.  They derived an expression for the optimal measurement time, [image: image286.wmf]n
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, where n is the total number of elements and t is number of marked ones.

Minimum-Finding Algorithm
This algorithm is also modified from Grover’s algorithm.  The processes of this algorithm describe in the below:

1.
Choose as the first threshold a random [image: image287.wmf]}
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2.
Repeat the following three steps until the total running time is more than [image: image288.wmf]2
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b. Apply G-BBHT search algorithm to the first register to find a marked element.

c. Measure the first register.  If [image: image291.wmf]y
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3.
Return y.

The minimum-finding algorithm finds the minimum with probability at least ½ if the measurement is done after a total number of [image: image294.wmf])
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