SHEBAB®

®

OCR and Speech Synthesis System

Final Design Report
BY:
Ulan Bayaliev 1224302

Mustafa Bal 1249978
Mehmet Bicak 1202803

 Ridvan Celebi 1176379
Table of Contents
41.0 Introduction

41.1 Goals and Objectives

41.2 Project Scope

4General requirements:

51.3 Progress

62.0 Data Design

62.1 Class Diagrams (UML)

62.1.1 OCR Classes

92.1.2 TTS Classes

102.2 Database Overview

102.3 Database

102.3.1 Database for image files

123.0 Architectural Design

123.1 Review of Data Flow, Control Flow and State Chart

133.1.2 DFD for TTS

13Level 0 DFD for TTS

14Level 2 for Text Analysis

153.1.3 State Chart (UML)

153.1.4 Scenario

163.2 Program Structure (Modules)

163.2.1 Program Structure for OCR

16Figure 1.a

16Figure 1.b

16Figure 1.c

16Figure 1.a

17Figure 1.b

17Figure 1.c

173.2.2 Program Structure for TTS

193 Tools and Multithreading

193.1 Why Multithreading?

193.1.1 User – interface threads

203.1.2 Worker threads

204.0 Interface

204.1 User – Interface Overview

204.1.1 Screen – Reader

214.1.2 Browser - reader

214.1.3 Mouse interface

224.1.3.1 Links

224.1.3.2 Button

234.1.4 Keyboard Interface

234.1.4.1 Key Functions

244.2 The player

245.0 Delivery and Installation

255.1 Error Handling and Log Information

256.0 Testing Guidelines

256.1 Classes of Test

256.1.1 Interface Testing

266.1.2 White Box Testing

266.1.3 Black Box testing

266.2 Identification of Critical Components

266.2.1 Festival Speech Synthesis Sysem

266.2.2 Stress Adding Module

276.2.3 Duration Adder Module

276.2.4 EarVision Player Module

277.0 References

1.0 Introduction

1.1 Goals and Objectives

Our aim is to construct a program that will help blind people to read hardcopies and softcopies of a text. That is to make a full system that takes a paper or takes the text that is on the screen and reads it. For this purpose we talked with visually impaired ‘Mehmet’ to determine the needs of a blind person more accurately. With our program they would take part in the internet world and easily use a computer and read any book. There many programs in the market for this purpose so we need to add some more features to our program to make it more generic and user - friendly. We will introduce the features of our program in later sections.

1.2 Project Scope

General requirements:

. Complete program that takes the hardcopy of the text and reads the page completely.

.
.Takes the image input from the scanner and recognizes all the text parts in that page

.
. .Corrections of the letters or words or sentences

.
. .Addition of the needed punctuation to make the sentence more readable.

.
.Reading the text fluently

.
. . Reading the words with the intonations of the Turkish language’s characteristics.

.
. . .implementation of word stress

.
. . .implementation of sentence stress

.
. . .implementation of punctuation (comma, dot, exclamation mark etc.)

.
. .Reads the abbreviations

.
. .Reads the numbers

.
. .Reads the scientific notations.

.
. .Reads the words with the most comprehensible time gaps in the sentences.

. Full program that reads the word or the sentence under the mouse cursor.

.
.A way to select and read the sentence or the word easily.

.
.Help keys to read the sentences sequentially in the forward or reverse direction

.
.Dubbing the keys of the keyboard and the mouse.

. User-friendly player to play sound files for blind people

1.3 Progress

 Up to now we had analyzed the project and made initial design. What we saw is that our main problem is not implementing the OCR or TTS from scratch but to implement a user – friendly user – interface for our program. So we must not forget that our users are visually impaired and consider it in our final design. You can find detailed information about user – interface in our report.

Another problem of implementation is interprocess communication and multiple flows; it means we must consider more than one flow of execution at the same time. For example user must not wait until the reading ends and must be able to interrupt it. These issues will be covered in ‘Multithreading’ part of the report.

We must also include some implementation details of different features of the program in this report. For example how we would implement screen and browser reader.

Other issues such as installation, delivery and debugging will be explained in the corresponding sections. Installation is about how we would distribute the system and how will it work on a PC. Debugging is important because there cannot be any program without bugs, but important issue is not having bugs but being able to fix them and configure the system.

Our TTS (Festival) has only English library so we must adapt the TTS to Turkish. We have two alternatives: first we can map other language libraries to Turkish, second we can use MBROLA Turkish database, but drawback for it is that it is not complete library.

2.0 Data Design

2.1 Class Diagrams (UML)

2.1.1 OCR Classes

[image: image1]

[image: image2]

In Rectangle class the boundaries of the characters are stored. The top, bottom, left, right are the attributes of the rectangle. Horizontally_include and Vertically_include functions are used to determine if the characters are contained within a rectangle.

Bitmap class reads and analyzes the image read. Height and width are the image attributes and data is array of bits for storing the image bits consequently.

Block is the classes for storing the blocks in the image. Block map is used for storing the properties of the blocks. Block inherits from Rectangle class and depends on blockmap.

Features class is class for storing the features of the character; this class is used for recognizing the special characters by applying the various tests.

Guess class is the final step in the recognition and recognizes the character by making guess depending on the physical properties of the character, for example by checking the concavity or convexity of the character.

Character class inherits from both guess and rectangle class and used for storing all the guessed characters to produce plain text.

2.1.2 TTS Classes

[image: image3]
2.2 Database Overview

 In the Initial Design report we considered two databases, first for the scanned images, second for the sound files. We talked about the priority queue in the previous report, but arrived at a conclusion that having priorities for the files in unnecessary. So we only plan to store the recently scanned and recently read files only. For example we will keep the three recent images and sound files and replace the oldest (least recently used) file if a new file is read or scanned.

[image: image4]

We will not directly use the ‘Festival’ for reading some text, instead we will create a sound file and read it by our own reader, because we can interrupt our reader but cannot interrupt ‘Festival’.

2.3 Database

2.3.1 Database for image files

It is an object of List_of_Files class described above.

Database for plain text files

It is an object of FileQueue class described above.

Database for TTS (Festival)

Festival uses a database to build utterance structures for each utterance in the database. Utterance structures contain relations of items. Such structures for each utterance in a database allow us to read in the utterance representation. Dumping information in a normalized way allows easy building and testing of models(1).

Festival databases use Entropic's Xlabel format, though it is fairly easy to convert any reasonable format.

Segment

These give phoneme labels for files. These labels are the members of the phoneset that we will be using for our database. Phone label files contain extra labels (e.g. beginning and end silence) which are not really part of the phoneset.

Word

Again these will need to be provided. The end of the word should come at the last phone in the word (or just after). Pauses/silences should not be part of the word.

Syllable

These can be automatically generated from Word and Segment files given a lexicon. Ideally these should include lexical stress.

IntEvent

These should ideally mark accent/boundary tone type for each syllable, but this almost definitely requires hand-labeling. Also given that hand-labeling of accent type is harder and not as accurate.

Phrase

This could just mark the last non-silence phone in each utterance, or before any silence phones in the whole utterance.

Target

This can be automatically derived from an F0 file and the Segment files. A marking of the mean F0 in each voiced phone seem to give adequate results.

Once these files are created an utterance file can be automatically created from the above data. Note it is easy to get the streams right but getting the relations between the streams is much harder. Firstly labeling is rarely accurate and small windows of error must be allowed to ensure things line up properly. The second problem is that some label files identify point type information (IntEvent and Target) while others identify segments (e.g. Segment, Words etc.). Relations have to know this in order to get it right. For example it is not right for all syllables between two IntEvents to be linked to the IntEvent, only to the Syllable the IntEvent is within.(1)

2.4 Data Dictionary

OCR: Optical Character Recognition

TTS: Text to Speech

DB: Database

POS: Part of speech [1]
Diphone: Sound for syllable

UML: Unified Modeling Language

CFD: Control Flow Diagram

DFD: Data Flow Diagram

The Data Dictionary for the TTS

POS : Part of Speech ; the smallest part that can be read.

Sound Device: The speakers of the hardware system

Token: The unprocessed words separated by white spaces including numbers and abbreviations.

3.0 Architectural Design

3.1 Review of Data Flow, Control Flow and State Chart

[image: image5]

[image: image6]
We had analyzed our system in detail and understood that we need a CFD. The reason for the need for CFD is that flow in our system is not completely linear and some control should be introduced. For example we must handle the case when the user interrupts some process, or wants to make a pause in the reading process or wants to save the picture.

3.1.2 DFD for TTS

Level 0 DFD for TTS

[image: image7]
Here is the general overview of the TTS that we will contain the program Festival. The Festival is in the Utterance Machine. We will implement subprograms to interface with Festival. Here we give the full text to the utterance machine and get the sound file that will be used in the player. In the player we are dealing with the last stage of the sound before it is out of the speakers. Here we achieve the functions for back and forwarding 5 seconds or one word or one sentence. At last we let it to be heard by the speakers.

Level 1 DFD for Utterance Machine

[image: image8]
In the above figure we examined the utterance machine in more detail. Here the full text is given to the text analysis module and this module determines the full text’s subparts up to its part of speeches (POS). That is the smallest part of the word to be uttered. These Poses are word stress added POSes according to the words they are included in. In the second module of the Utterance machine we have the lexicon part in which matching the smallest speech parts with the sounds in the database will be held that will be provided by the program Festival. And then in the last part combining these sounds into the words is achieved. And at last the program combines these words into the sentences by adding some duration between them. Also we apply the f-zero tunes to get a more fluent reading.(2) After all we give the sound file to the player.

Level 2 for Text Analysis

[image: image9]

In the above figure the text analysis part is examined in detail. The tokenizer module divides the sentence into tokens by looking at the white spaces in the text. The token-to-word module eliminates the abbreviations and the numbers. It converts them into words of alphabetic characters. The prePOS module divides these words into the smallest parts of speech to be uttered. At last the prosodic phrasing part the in-word stresses are added.

Level 2 DFD for Fluenter

[image: image10]
This figure shows the fluenter part of the Utterance machine. The durations are some data that connects the before and after words while adding some blank spaces between them. After that we have the full sentence read but by the f-zero function we get a more fluent and clear voice. After all the waveform renderer module converts this data to the sound file to be given to our player.

3.1.3 State Chart (UML)

[image: image11]
3.1.4 Scenario
We have 3 main scenarios in for our system:
User reads from image.

In this case firstly the image is scanned and saved in the Database of scanned files, then the image is given to the OCR that produces the plain text and finally the plain text is fed to TTS module that produces speech. We also handled the case when the user scans multiple files and feeds them to the system to make consequent reading of the multiple images.

User reads from text

We have a plain text Database that stores plain text files, if user wants to read a file which is already scanned and processed by the OCR, we do not need to perform the same processes (scan, OCR) again. For example, a student has studied for the exam, before exam he may want to review the topics of the exam. In such situation, the user wants to re-listen. This is why we keep the file processed by the OCR.

When the user gives the text file source to TTS module to produce speech, (s)he
may make manipulations while listening to the file, that is he can forward the file
a constant amount of time or rewind to the previous word or sentence. This player
interface will be described in the Interface part.

3.2 Program Structure (Modules)

3.2.1 Program Structure for OCR

Figure 1.a
 Figure 1.b
Figure 1.c
The program structure of the OCR is shown in the Figures 1.X, here is the short description for these figures.
Figure 1.a

Our OCR consists of two main parts, first PBM converter; second Image Recognizer PBM converter converts all scanned images to PBM format because our OCR supports PBM formats.
Figure 1.b

Image Recognizer consists of two parts that is Image Analyzer and Character

Recognizer. Image Analyzer inspects image and finds needed detail in the image. Character Recognizer recognizes the characters according to their properties and data given by Image Anayzer.

Figure 1.c

Image Analyzer is divided into two parts, Block and Hole recognizer and Character

Naming. Block and Hole recognizer decides whether the consequent pixels construct block or hole. Character Naming is for giving the names of the character.

3.2.2 Program Structure for TTS

[image: image12]
Utterance Machine: Full program that takes the full text and gives the sound file to the player.

Earvision Player: An interface that processes the sound file and make rewind and forward on that file while reading.

[image: image13]
Text Analysis: The module that makes the analysis of the text and divides the text up to its POSes.

Lexical Lookup: The module that matches the whole Turkish POSes to the sounds

Fluenter module: The program that combines the words and provides a clearer reading.

[image: image14]
Prosodic Phrasing: The module that adds the in-word stresses to the syllables.

Tokenizer: The modules that takes the full text as the input and divides it into tokens[1]

Token to word: The module that divides the tokens into the alphabetic character form[1]

[image: image15]
Duration: The module that adds the durations between the words and combines them.

F-Zero Tune: The module that provides a clearer reading.[2]

Waveform Renderer: The module that converts the file to such a form that our player can do the needed actions.

3.0 Tools and Multithreading

3.1 Why Multithreading?

We considered the implementation of the project and understood that it is not possible to consider the program in a single flow. For example user must be able to interrupt reading of the program, implementation without threads is impossible because user must wait until the end of the reading process. This means that we must use some kind of multithreading techniques that is we must divide the main process into small processes and must be able to kill the reading or other processes whenever the user wants to.

We decided to implement our system using Microsoft Foundation Classes (MFC) because MFC both provides environment for creating user interface and Multithreading using CWinThread class.

There are two kinds of threads in MFC:

3.1.1 User – interface threads

A user-interface thread is commonly used to handle user input and respond to user events independently of threads executing other portions of the application. For example the shortcuts will be handled by these threads while the reading process is executing.

User – interface thread is created by

CWinThread* AfxBeginThread (CRuntimeClass *pThread , *, *, *)

where the first parameter is a pointer to the derived from CWinThread and used for user – interface handling.

3.1.2 Worker threads

A worker thread is commonly used to handle background tasks that the user shouldn't have to wait for to continue using our application. For our case the worker threads are the functions for reading something. User must not wait until the end of the ‘read’ procedure and must be able to interrupt reading procedure by pressing some key. The key pressed will be taken by the user – interface thread and call the kill method of the worker thread and then interrupt reading. Kill method is in turn defined in the CWinThread class.

To sum up, the implementation will be done by creating user – interface threads and worker thread to allow user the interruption of reading process.

4.0 Interface

Interface Description

4.1 User – Interface Overview

We must keep in mind that our users are visually – impaired, so interface must provide good communication between user and program. For these purposes we must implement the screen – reader and browser – reader.

4.1.1 Screen – Reader

This part of the program will allow users to interact with computer effectively, that is understand what is computer doing right now and making sure what the user does. For example the screen reader will inform the user about the current state of the computer, that is it will tell the name of the current window, menu, button, link or file.

We do not know the details of the window handling in windows but know how to retrieve the information about a window. By using the

HANDLE GetProp(HWND wbd, LPCTSTR str)

function, we can retrieve information about the window and pass the information to the TTS module to tell the user the name and other properties of the current window. When the user changes the window the new name will be pronounced also.

To do this we must also retrieve the current window that is window that is enabled. This is achieved by

HWND GetForegroundWindow(VOID);

function which return the current window.

We can get the name of the current window by calling

int GetWindowText(HWND wnd, LPCTSTR name, int maxlen);

and pass it to TTS.

4.1.2 Browser - reader

This part is for connecting the users to the Internet, it will parse the HTML code and read only text and necessary portions of the HTML page. The links, buttons and menu names will be read too. This will be achieved by handling the messages of the mouse and window. The browser will also use some utilities of the Screen – reader, for example getting button, link and filenames of the screen – reader will be used by the browser – reader.

4.1.3 Mouse interface

When the user is in the reading browser or screen mode we must convert to sound the places under the mouse cursor. But we will only dub important places for the user such as links, buttons and highlighted text.

First of all we have to define a class for handling the browser events, classes GetButton and GetLink will inherit form the Browser Class.

[image: image16]
Struct Point

Int x,y;

Class Browser

Script: Text

Pictures: Image

Positions, Mouse_pos: Point

public:

GetScript(): Boolean

GetMousePos(): Point

4.1.3.1 Links

We will use mouse messages to find the link name under the mouse cursor.

We have a class

Class GetLink: public Browser

String: Link_name

// Methods

public:

getLink():String

getMousePos() is provided by windows mouse handling functions and

getLink() returns the name of the link and assigns it to the Link_name.

getLink() uses the HTML script to find the name of the link and we know that

browser sends the name of the link when the mouse is above it.

4.1.3.2 Button
We will use mouse messages to find the button name under the mouse cursor.

We have a class named GetButton

Class GetButton: public Browser

String: Button_name

// Methods

public:

getButtonPos():Point

getButtonName():String

getMousePos() is provided by windows mouse handling functions and

getButtonPos() returns the width and the height of the button

getButtonName() compares the values of the mouse position and button

 position which is provided in the HTML script and returns the name of the

button or NULL if there I no button under cursor.

4.1.4 Keyboard Interface

4.1.4.1 Key Functions

Keyboard interface will be provided by the ‘Keyboard’ class, this class will use the shortcut library that is written by us and contains the functions of the keyboards;

Class Keyboard

Button: Char

C_button : Char[]

No_of_Buttons: Integer

//Methods

public:

getButtons();

MatchFunction();

PerformFunction();

The attributes are as follows

Button: the current button pressed

C_button: is the array of buttons pressed if multiple buttons are pressed

No_of_buttons: the number of buttons currently pressed

getButtons() Returns the current button pressed

MatchFunction() Looks in the library and returns the function of the key

PerformFunction() Performs the function returned by the MatchFunction()

The functions of the keyboard class will include all functions that our system performs, for example it skips to the next word when ‘n’ is pressed or it extract filename and loads it to the TTS module or when ‘Esc’ is pressed the program terminates.

4.2 The player

We have stated that we will make an ‘EarVision’ player to make the system more

user-friendly, so we introduce a class named ‘Player’.

Class Player

Current: Integer // Current word number

 Data: Waveform

TextData: Text

Length: Integer

WordLengths: Integer[No_of_words]

SentenceLengths: Integer[No_of_sentences]

No_of_words: Integer

No_of_sentences: Integer

//Methods

 Play()

 Stop()

 Pause()

 NextWord()

 PreviousWord()

 NextSentence()

 PreviousSentence()

 FiveSecondsFF()

 FiveSecondsRW()

The attribute names speak for themselves

 Data is the waveform data of the sound to be played by the object
 TextData is the text version of the data

 Length is the time length for data

 WordLengths is the array for storing the dubbing lengths of the words so that we

 could play next or previous words. SentenceLengths[] is same.

Methods will play, pause, stop or choose next word or sentence to play.

5.0 Delivery and Installation
Our program will be stored in the form of disk. The licensee will deliver the software to the installation site. The program will be in the executable form. By double clicking on the SETUP.EXE file the installation will begin. The installer will locate the files to the targets one by one. Also if there occurs an error it will produce a sound to warn the person (blind person) telling what to do. After following the installer program instructions to install the program, the user should register by typing the register key. There will be a manual for the user. The user could get the required information by typing ‘Ctrl-m’ or by clicking on the Help menu.

The user is responsible for installation of the program. The user should install our program in one of the operating systems Windows 98 or NT.

5.1 Error Handling and Log Information
We will have a file for keeping trace of the instructions in the program. There will be another log file which will keep trace of the errors occurred during the execution of the program. So when the program falls in an error it will produce to warn the user. It will produce a sound telling about the error and what to do.

When there is a run-time error, an error message like below, will be send to the user. The message will also be read for the users.

[image: image17.png]Clck on OK ta terminate the pragram
Cick on CANCEL to debug the program

&=

If user clicks on the ‘OK’ button the program will terminate. If the user clicks on the ‘cancel’ button the debugger will run. Because our users are blind people, we will have short-cuts for these buttons.

6.0 Testing Guidelines

To validate the software we need to test the software. During the testing we will be concerned about the inputs and their expected outputs. We emphasize on the testing where we will input the data and will compare the output with the expected results.

6.1 Classes of Test

The software has many different additions and new interfaces/functions added to it. We will go through each of the new interface and other software function to describe different types of test performed on them.

6.1.1 Interface Testing

Interface testing will be done before we will finish the project, so we can assure that our interface is error-free and user-friendly.

6.1.2 White Box Testing
For the white box testing on this product we will run the programs through debuggers and watch the values that are coming in and going out.

We will have product run through and we will be looking for and at the break points.

We will also be watching the variable values and changes in them as scripts run through sub-routines variable values.

6.1.3 Black Box testing

We are concern about inputs of data into the software and their expected outputs. So we will carry out black box testing where several different steps will be taken to test the software so that when we use the software with specific data all the given out puts will match our expected results. We will compare the output with our expected output list and will find out credibility of the software.
 6.2 Identification of Critical Components

6.2.1 Festival Speech Synthesis Sysem

We want to make sure that Festival works perfectly. If any of the Festival components don’t work the entire section of the software that is focused on giving meaningful speech as output will fail. This will be losing of big chunk of the time. We want to make sure that Festival Unit is fully functional and it removes the need of repeated work at once. We will add some modules to the Festival such as, a module to give stress to the required parts of the speech and one to add durations to the speech.

6.2.2 Stress Adding Module

We want to make sure that we can add stress to the sentences. To test the correctness of this module we will prepare a file that contains many sentences which contains the specific characteristics of the Turkish stress. We will run the Festival with these sentences and see if there is any error and if so, understand why these errors occur.

6.2.3 Duration Adder Module

We want to add duration to the sentences according to the word position in the sentence. To test the correctness of this module we will again prepare a file that contains many sentences which contains variable duration length. We will run the Festival with these sentences and see if there is any error and if so, understand why these errors occur.

6.2.4 EarVision Player Module

To test this module, we send a text file to be read and press the buttons for reviewing or forwarding 5 seconds. And also we will try for forwarding and reviewing one word or one sentence, and see there is any mismatch with our results.

7.0 References

www.festival.com\festival\festdoc-1.4.2\festdoc-1.4.2\festival\html
http://www.cclub.metu.edu.tr/~fagelgi/TTS/Paper.htm
Official web-site of GNU www.gnu.org
Microsoft Development Library www.msdn.com
Win32 Programming, Newcomer, Rector

www.experts-exchange.com
 Character

block_list:Block[]

guess:Guess[]

blockmap:Blockmap[]

add_block()

add_guess()

insert_guess()

delete_guess()

swap_guess()

guess():Guess

join()

 Guess

Ch:Char

Value:Integer

Guess()

 Rectangle

 Blockmap

Bitmap

Width:integer

Height:integer

Data: Boolean[][]

Rec_vector:Rectangle[]

Get_bit(): Boolean

Rect_vector():Rectangle[]

Analalyze_layout()

Block

Block_list:Block[]

Blockmap:Blockmap

Id:integer

Compare_id():Boolean

Escape_left():Boolean

Follow_top():Integer

Seek_around():Integer

BlockMap

Width:integer

Height:integer

Data: Boolean[][]

Block_list:Block[]

Create_block():Block[]

Delete_block()

Join_blocks():Block[]

Add_point_to_block():Block[]

Block_list():Block[]

Rectangle

Left:Integer

Right:Integer

Top:Integer

Bottom:Integer

Add_point()

Add_rectangle()

Horizontal_include():Boolean

Vertically_include():Boolean

Features

block: Block[]

blockmap:Blockmap[]

horizontal_bar:Rectangle[]

vertical_bar:Rectangle[]

test_CEFI JT():Character

test_HKMNUuvwxy():Char

test_comma():Boolean

test_easy():Character

test_line():Character

test_solid:Character

test_others():Character

 TEXT

 TOKENS

Consists of

Consists of

 WORDS

Consists of

 POS

 Consist of

 Diphones

Word Sound

Sentence -sound

 Consist of

 Consist of

In this graph we examined the relationships of the main entities program. We get the input as the text and pass the input through the program parts as it takes its last phase; sound of the sentence.

For example; let’s look at the example below

“Dr. Ali 30 yasindadir” As the input; text.

Then we get the independent tokens seperated by the whitespaces, those are;

‘Dr.’ , ‘Ali’ , ‘30’ , ‘yaşındadır’ .

Then we eliminate the abbriwiations and the numbers and get the words of alphabetic characters. Then we have ;

‘Doktor’ , ‘ali’, ‘otuz’ , ‘yaşındadır’ .

Then we get the the smallest parts of the speech (POS es) . They are still strings of characters not voices. They still have the word forms. Also in this part we are going to put some non- alphabetic characters that determines how that pos will be pronounced. This is “the word stressing” which is a characteristic property of the turkish language. It is almost regular. So now we have the POSes including the special character (!)representing the word stresses. Those are ;

“ ’Dok’ , ‘tor!’ ” , “ ‘a’ , ‘li!’ ” ,

“ ’o’ , ’!tuz’ ” , “”ya’,’şın’ , ‘da’,’dır!’ ”.

So now we are going to look it up in the lexicon of diphones and combine them. After this part we have the sounds of words seperately. And also we didn’t add the sentence stresses which is again a characteristic property of the Turkish language.

At the last phase; the sounds of the words will be connected by putting needed durations between them. This is about sentence stressing. Also it will be passed from the f-zero tune to get a fluent voice.

text

text

text

function

 TTS

 Read

 from

Database

 Extract

 Func

Scanner

Control

3.1.1 CFD

Correct text

Raw text

Stop Scan

Save Image

Save flag

filename

image

activate

cancel

image

Save

Control

 User

 Scan

Corrector

 OCR

Put in

Database

 Image DB

 Text DB

 Find

 File

Utterance Machine

EarvisionPlayer

Full Text

Sound File

 Electrical

 Signal

Sound Wave

Sound

Device

Lexical

Lookup

L

Fluenter

Text Analysis

Text

 Part of

 Speech

Separate sounds

 Sound

 File

Tokenizer

Full Text

Token

To

Word

Pre -POS

Module

Prosodic Phrasing

Tokens

Words

 POSes

Unstressed POSes

Duration

Module

The separate

sounds

F-zero

Tuning

Waveform

Renderer

Full read

Sentence

More clear

Reading

Sound

 File

Naming char in image

Block, Hole

Recognizer

 Image

 Analyzer

Character Recognizer

Image Analyzer

Image recognizer

 Image

Recognizer

 Pbm converter

 OCR

 TTS

 Ear Vision

 Player

Utterance

Machine

 Sound

 Device

 Utterance

 Machine

 Lexical

 Lookup

Text Analysis

 Fluenter

 Text

 Analysis

 Token to Word

0

Tokenizer

 POS tagger

 Prosodic

 Phrasing

 Fluenter

 F-zero

 Tuner

Duration

Adder

 Wave

 Renderer

Finished

Source is

Text file

Source is Browser

Source is Image

 Read form

 Text

Read from

 Image

 Read from

 Browser

Key press

 Choosing

 Source

 Idle

Figure 2.a

Figure 2.b

Figure 2.c

Figure 2.d

Browser

GetButton

GetLink

Recent Files

No_of_files: Integer

Files : String[]

Insert (filename: String)

Remove (filename: String)

Increment_History()

PAGE
27

