GLOSARIO DE ABAP 

ADD 
ADD-CORRESPONDING 
ASSIGN 
AT 
AUTHORITY-CHECK 
BACK 
BREAK-POINT 
CASE 
CHECK 
CLEAR 
CLOSE 
CNT 
COLLECT 
COMMIT 
COMMUNICATION 
COMPUTE 
CONCATENATE 
CONDENSE 
CONSTANTS 
CONTINUE 
CONTROLS 
CONVERT 
CREATE 
CURRENCY 
DATA 
DEFINE 
DELETE 
DESCRIBE 
DETAIL 
DIVIDE 
DIVIDE-CORRESPONDING 
DO 
EDITOR-CALL 
ELSE 
ELSEIF 
END-OF-DEFINITION 
END-OF-PAGE 
END-OF-SELECTION 
ENDAT 
ENDCASE 
ENDDO 
ENDEXEC 
ENDFORM 
ENDFUNCTION 
ENDIF 
ENDIFEND 
ENDLOOP 
ENDMODULE 
ENDON 
ENDPROVIDE 
ENDSELECT 
ENDWHILE 
EXEC 
EXIT 
EXIT FROM STEP LOOP 
EXPORT 
EXTRACT 
FETCH 
FIELD-GROUPS 
FIELD-SYMBOLS 
FIELDS 
FORM 
FORMAT 
FREE 
FUNCTION 
FUNCTION-POOL
GENERATE 
GET
HIDE 
IF 
IMPORT 
INCLUDE 
INFOTYPES 
INITIALIZATION 
INPUT 
INSERT
LEAVE 
LOAD 
LOCAL 
LOOP
MESSAGE 
MODIFY 
MODULE 
MOVE 
MOVE-CORRESPONDING 
MULTIPLY 
MULTIPLY-CORRESPONDING
NEW-LINE 
NEW-PAGE 
NEW-SECTION 
ON 
OVERLAY 
PACK 
PARAMETERS 
PERFORM 
POSITION 
PRINT-CONTROL 
PROGRAM 
PROVIDE 
PUT 
RAISE 
RANGES 
READ 
RECEIVE 
REFRESH 
REJECT 
REPLACE 
REPORT 
RESERVE 
RESTORE 
ROLLBACK
SCAN 
SCROLL 
SEARCH 
SELECT 
SELECT-OPTIONS 
SELECTION-SCREEN 
SET 
SHIFT 
SKIP 
SORT 
SPLIT 
START-OF-SELECTION 
STATICS 
STOP 
SUBMIT 
SUBTRACT 
SUBTRACT-CORRESPONDING 
SUM 
SUMMARY 
SUPPRESS 
SYNTAX-CHECK 
SYNTAX-TRACE TABLES 
TOP-OF-PAGE 
TRANSFER 
TRANSLATE 
TYPE-POOL 
TYPE-POOLS 
TYPES 
ULINE 
UNPACK 
UPDATE
WHEN 
WHILE 
WINDOW 
WRITE 
ADD 

Variants

1. ADD n TO m. 
2. ADD n1 THEN n2 UNTIL nz GIVING m. 
3. ADD n1 THEN n2 UNTIL nz TO m. 
4. ADD n1 THEN n2 UNTIL nz 
…ACCORDING TO sel …GIVING m. 
5. ADD n1 FROM m1 TO mz GIVING m. 

Variant 1

ADD n TO m.

Effect

Adds the
contents of n to the contents of M and stores the result in m . 
This is equivalent to: m = m + n. 

Example

 

DATA: NUMBER TYPE I VALUE 3,

      SUM    TYPE I VALUE 5.

ADD NUMBER TO SUM.

The field
SUM now contains 8, whilst the contents of the field NUMBER remains unchanged
at 3. 

Note

The details
about conversions and performance described under COMPUTE are identical for ADD . 

Note

Runtime errors 

· BCD_BADDATA : P field contains
incorrect BCD format. 

· BCD_FIELD_OVERFLOW : Result
field too small (type P ). 

· BCD_OVERFLOW : Overflow with
arithmetic operation (type P . 

· COMPUTE_INT_PLUS_OVERFLOW :
Integer overflow when adding. 


Related COMPUTE , ADD-CORRESPONDING . 

Variant 2

ADD n1 THEN
n2 UNTIL nz GIVING m. 

Effect

Adds the
contents of the fields n1, n2, …, nz together and stores the result in m ,
where n1 is the first, n2 the second and nz the last of a sequence of fields
the same distance apart. They can be either database fields or internal fields,
but they must all have the same type and length. 
This is equivalent to: m = n1 + n2 + … + nz. 

Example

 

DATA: BEGIN OF NUMBERS,

        ONE   TYPE P VALUE 10,

        TWO   TYPE P VALUE 20,

        THREE TYPE P VALUE 30,

        FOUR  TYPE P VALUE 40,

        FIVE  TYPE P VALUE 50,

        SIX   TYPE P VALUE 60,

      END   OF NUMBERS,

      SUM TYPE I VALUE 1000.

ADD NUMBERS-ONE THEN  NUMBERS-TWO

                UNTIL NUMBERS-FIVE GIVING SUM.

The field
SUM now contains 150 but its initial value is unimportant. The fields within
the field string NUMBERS remain unchanged. 

Variant 3

ADD n1 THEN
n2 UNTIL nz TO m. 

Effect

Calculates
the total as in variant 2 but then adds it to the contents of the field m . 
This is equivalent to: m = m + n1 + n2 + … + nz 

Example

 

DATA: BEGIN OF NUMBERS,

        ONE   TYPE P VALUE 10,

        TWO   TYPE P VALUE 20,

        THREE TYPE P VALUE 30,

        FOUR  TYPE P VALUE 40,

        FIVE  TYPE P VALUE 50,

      END   OF NUMBERS,

      SUM TYPE I VALUE 1000.

ADD NUMBERS-ONE THEN  NUMBERS-TWO

                UNTIL NUMBERS-FIVE TO SUM.

The field
SUM now contains 1150. 

Variant 4

ADD n1 THEN
n2 UNTIL nz 
…ACCORDING TO sel …GIVING m. 

Effect

Calculates
the total as in variants 2 and 3.
In this case, however, the operands from a sequence of
fields of the same type are restricted to a partial sequence by the selection
specification sel generated by SELECT-OPTIONS or RANGES . The partial sequence results from the
indexes that satisfy the condition IN sel (see IF ). 

Example

 

DATA: BEGIN OF NUMBERS,

        ONE   TYPE P VALUE 10,

        TWO   TYPE P VALUE 20,

        THREE TYPE P VALUE 30,

        FOUR  TYPE P VALUE 40,

        FIVE  TYPE P VALUE 50,

      END   OF NUMBERS,

      SUM   TYPE I VALUE 1000,

      INDEX TYPE I.

RANGES SELECTION FOR INDEX.

 

SELECTION-SIGN   = ‘I’.

SELECTION-OPTION = ‘BT’.

SELECTION-LOW    = 2.

SELECTION-HIGH   = 4.

APPEND SELECTION.

 

ADD NUMBERS-ONE THEN NUMBERS-TWO

                UNTIL NUMBERS-FIVE

                ACCORDING TO SELECTION

                GIVING SUM.

SUM now
contains 90. Only the component fields TWO to FOUR were selected from the field
string NUMBERS and added together. 

Variant 5

ADD n1 FROM
m1 TO mz GIVING m. 

Effect

The field
n1 must be the first in a sequence of consecutive fields of the same type. m1
and mz should contain the numbers of the first and last fields in this sequence
to be added together (whether fixed or variable). The total is stored in m . 

Example

 

DATA: BEGIN OF NUMBERS,

        ONE   TYPE P VALUE 10,

        TWO   TYPE P VALUE 20,

        THREE TYPE P VALUE 30,

        FOUR  TYPE P VALUE 40,

        FIVE  TYPE P VALUE 50,

      END   OF NUMBERS,

      START TYPE I VALUE 2,

      SUM   TYPE I VALUE 1000.

ADD NUMBERS-ONE FROM START TO 4 GIVING SUM.

The field
SUM now contains 90. 

Note

Performance The details for conversion and
performance specified for COMPUTE are equally valid for ADD . 
The runtime required for adding two numbers of type I or F is about 2
(standardized microseconds), for type P it is roughly 8 msn. 

Note

Runtime
errors 

Besides the runtime errors listed in variant 1, the error ADDF_INT_OVERFLOW can
occur instead of COMPUTE_INT_PLUS_OVERFLOW in other variants. 

Index 
© SAP
AG 1996 

ADD-CONDITIONAL
is not an ABAP/4 key word (in R/3). 

Index 
© SAP
AG 1996 

ADD-CORRESPONDING

Basic form

ADD-CORRESPONDING
rec1 TO rec2. 

Effect

Interprets
rec1 and rec2 as field strings. If, for example, rec1 and rec2 are tables,
executes the statement for their header lines. 
Searches for all sub-fields which occur both in rec1 and rec2 and then, for all
relevant field pairs corresponding to the sub-fields ni , generates statements
of the form 

ADD rec1-ni TO rec2-ni. 
The other fields remain unchanged. 

With complex structures, the complete names of the corresponding field 
pairs must be textually identical. 

Example

 

DATA: BEGIN OF VECTOR,

        X      TYPE I,

        Y      TYPE I,

        LENGTH TYPE I,

      END   OF VECTOR,

      BEGIN OF CIRCLE,

        VOLUME TYPE P

        Y      TYPE P,

        RADIUS TYPE I,

        X      TYPE I,

      END   OF CIRCLE.

…

ADD-CORRESPONDING VECTOR TO CIRCLE.


The sub-fields X and Y occur in both the field strings VECTOR and CIRCLE .
Therefore, the ADD-CORRESPONDING statement is equivalent to both the following
statements: 

 

ADD VECTOR-X TO CIRCLE-X.

ADD VECTOR-Y TO CIRCLE-Y.

 

Note

All fields
with the same name are added, whether numeric or not. The same conversions are
performed as with ADD and
similar runtime errors to those possible with ADD can also occur. 
Related ADD 
MOVE-CORRESPONDING 
SUBTRACT-CORRESPONDING 
MULTIPLY-CORRESPONDING 
DIVIDE-CORRESPONDING 

APPEND 

Variants

1. APPEND [wa TO|INITIAL LINE TO] itab. 
2. APPEND LINES OF itab1 [FROM idx1] [TO idx2] TO itab2. 
3. APPEND [wa TO] itab SORTED BY f. 

Variant 1

APPEND [wa
TO|INITIAL LINE TO] itab. 

Effect

Appends a
new line to the end of the internal table itab . 

If you specify wa TO , the new line is taken from the contents of the
explicitly specified work area wa . 

If you use INITIAL LINE TO , a line filled with the correct value for the type
is added. 

If the specification before itab is omitted, the new line is taken from the
internal tbale itab . 

After the APEND , the system field SY-TABIX contains the index of the newly
added table entry. 

Examples

Generate a
list with customer numbers: 

 

TABLES SCUSTOM.

DATA: CUSTOMER LIKE SCUSTOM-ID OCCURS 0.

 

APPEND SCUSTOM-ID TO CUSTOMER.


Append a blank line or a line with its initial value to the above list: 

 

APPEND INITIAL LINE TO CUSTOMER


Generate a compressed list with plane data 

 

PARAMETERS: SEATS_LO LIKE SAPLANE-SEATSMAX DEFAULT 30,

            SEATS_HI LIKE SAPLANE-SEATSMAX DEFAULT 50.

 

DATA: PLANE        LIKE SAPLANE OCCURS 0,

      PLANE_NEEDED LIKE SAPLANE WITH HEADER LINE.

 

LOOP AT PLANE INTO PLANE_NEEDED

              WHERE SEATSMAX BETWEEN SEATS_LO AND SEATS_HI.

  APPEND PLANE_NEEDED.

ENDLOOP.

 

Notes

Performance 

In contrast to COLLECT ,
APPEND does not check whether an entry with the same default key exists.
Therefore, it is considerably faster than COLLECT . If the COLLECT logic is not
needed or lines with an identical default key cannot occur in a particular
situation, you should always use APPEND instead of COLLECT . 
The runtime required for APPEND increases with the line width of the table and
depends on the number of fields. Appending an entry to an internal table with a
width of 111 bytes takes about 9 msn (standardized microseconds). 
To append an internal table to another internal table, you should use the
variant APPEND LINES OF … which is 3 to 4 times faster than using a LOOP to process the source table and append the entries
line-by-line to the target table. 

Variant 2

APPEND
LINES OF itab1 [FROM idx1] [TO idx2] TO itab2. 

Effect

Appends the
internal table itab1 or an extract from itab1 to the end of the internal table
itab2 . 

By specifying FROM idx1 or TO idx2 you can restrict the line area taken from
the source table itab1 . If there is no FROM specification, it begins with the
first line of itab1 . If there is no TO specification, it ends with the last
line of itab1 . This means that the complete table is appended if neither a
FROM nor a TO is specified. 

After the APPEND , the system field SY-TABIX contains the index of the last
table entry appended, i.e. the total number of entries from both tables. 

Note

By
comparing the values of SY-TABIX before and after the APPEND statement, you can
determine how many lines were appended to the table. 

Example

Merge two
tables with whole numbers: 

 

DATA: ITAB1  TYPE I OCCURS 100,

      ITAB2  TYPE I OCCURS 100.

 

APPEND 2 TO ITAB1.

APPEND 3 TO ITAB1.

APPEND 5 TO ITAB1.

APPEND 7 TO ITAB1.

 

APPEND 3 TO ITAB2.

APPEND INITIAL LINE TO ITAB2.

 

APPEND LINES OF ITAB1 FROM 2 TO 20 TO ITAB2.


The table ITAB2 now contains five lines with the values 3, 0, 3, 5 and 7. 

Note

Performance 

This variant is 3 to 4 times faster than using a LOOP to process the source
table and append the entries line-by-line to the target table. 

Variant 3

APPEND [wa
TO] itab SORTED BY f. 

Effect

Inserts the
new entry into table and re-sorts the table by the sub-field f in descending
order. This only makes sense if the table was sorted beforehand. When the
number of table entries reaches the OCCURS parameter value, the last entry is
deleted if the value f of a new entry is greater (particularly suitable for
ranked lists). You can only sort by one sub-field. 

If you specify wa TO , the new line is taken from the contents of the
explicitly specified work area wa . Otherwise, it comes from the header line of
the internal table itab . 

Example

 

DATA: BEGIN OF COMPANIES OCCURS 3,

        NAME(10), SALES TYPE I,

      END   OF COMPANIES.

 

COMPANIES-NAME = ‘big’.

COMPANIES-SALES = 90.

APPEND COMPANIES.

 

COMPANIES-NAME = ’small’.

COMPANIES-SALES = 10.

APPEND COMPANIES.

 

COMPANIES-NAME = ‘too small’.

COMPANIES-SALES =  5.

APPEND COMPANIES.

 

COMPANIES-NAME = ‘middle’.

COMPANIES-SALES = 50.

APPEND COMPANIES SORTED BY SALES.


The table now has three (-> OCCURS 3 ) entries. The line with the contents
‘too small’ in the sub-field NAME is deleted from the table because the entry
for ‘middle’ has a greater value in the sub-field SALES . This entry now
appears in the second table line (after ‘big’ and before ’small’ ). 

Notes

Whenever an
internal table is processed with APPEND SORTED BY , it should always be filled
in this way. 
If you specify APPEND with the parameter SORTED BY , the system always searches
the entire table. Therefore, it is sometimes better to create the table with a
simple APPEND and then use SORT to sort in descending ot ascending order
afterwards. 
You can also sort in ascending order by first determining the insert position
with READ TABLE itab WITH KEY f = itab-f BINARY SEARCH and then by inserting
the new entry into the table (perhaps read SY-SUBRC beforehand) with INSERT
itab INDEX SY-TABIX . 
However, you should be aware that, in such cases, the table may contain more
entries than specified in the OCCURS parameter . 
If several lines with an identical value f are added, lines added later are
treated as smaller, i.e. they are inserted after existing lines with the same
value f . 
If you use APPEND … SORTED BY f with an explicitly specified work area, this
must be compatible with the line type of the internal table. 
If the sort criterion f is not known until runtime, you can use SORTED BY
(name) to specify it dynamically as the contents of the field name . If name is
blank at runtime or contains an invalid component name, a runtime error occurs.

Regardless of whether you specify it statically or dynamically, you can
restrict the sort criterion f further by defining an offset and/or length. 
Related COLLECT itab
, INSERT
itab , SELECT /
FETCH NEXT CURSOR … INTO/APPENDING TABLE itab , MODIFY itab , WRITE f TO itab INDEX idx , SORT itab , READ TABLE itab , LOOP AT itab , DELETE itab 

Index 
© SAP
AG 1996 

ASSIGN 

 

Variants

1. ASSIGN f TO <fs>. 
2. ASSIGN (f) TO <fs>. 
3. ASSIGN TABLE FIELD (f) TO <fs>. 
4. ASSIGN LOCAL COPY OF MAIN TABLE FIELD (f) TO <fs>. 
5. ASSIGN COMPONENT idx OF STRUCTURE rec TO <fs>. 
6. ASSIGN COMPONENT name OF STRUCTURE rec TO <fs>. 

Variant 1

ASSIGN f TO
<fs>. 

Additions

1. … TYPE typ 
2. … DECIMALS dec 
3. … LOCAL COPY OF … 

Effect

Assigns the
field f to the field symbol <fs>. The field symbol <fs>
"points to" the contents of the field f at runtime, i.e. every change
to the contents of f is reflected in <fs> and vice versa. If the field
symbol <fs> is not typed (see FIELD-SYMBOLS ), the field symbol adopts the type
and atrributes of the field f at runtime, particularly the conversion exit.
Otherwise, when the assignment is made, the system checks whether the type of
the field f matches the type of the field symbol <fs>. 

Note

With the
ASSIGN statement, the offset and length specifications in field f (i.e. f+off ,
f+len or f+off(len) ) have a special meaning: 

· They may be variable and thus
not evaluated until runtime. 

· The system does not check
whether the selected area still lies within the field f . 

· If an offset is specified, but
no length, for the field f , the field symbol <fs> adopts the length
of the field f . Caution: <fs> also points to an area behind the
field f . If you do not want this, the offset and length specifications
can be in the form ASSIGN f+off(*) TO <fs>. . This means that the
field symbol <fs> is set so that the field limits of f are not
exceeded. 

· In the ASSIGN statement, you
can also use offset and length specifications to access field symbols,
FORM and function parameters. 

· Warning: If the effect of the
ASSIGN statement is to assign parts of other fields beyond the limits of
the field f , the changing of the contents via the field symbol <fs>
may mean that the data written to these fields does not match the data
type of these fields and thus later results in a runtime error. 

 

Note

Since the
ASSIGN statement does not set any return code value in the system field
SY-SUBRC , subsequent program code should not read this field. 

Example

 

DATA NAME(4) VALUE ‘JOHN’.

FIELD-SYMBOLS <F>.

ASSIGN NAME TO <F>.

WRITE <F>.


Output: JOHN 

Example

 

DATA: NAME(12) VALUE ‘JACKJOHNCARL’,

      X(10)    VALUE ‘XXXXXXXXXX’.

FIELD-SYMBOLS <F>.

ASSIGN NAME+4 TO <F>.

WRITE <F>.

ASSIGN NAME+4(*) TO <F>.

WRITE <F>.


Output: JOHNCARLXXXX JOHNCARL 

Example

 

DATA: NAME(12) VALUE ‘JACKJOHNCARL’,

      X(10)    VALUE ‘XXXXXXXXXX’.

FIELD-SYMBOLS <F>.

ASSIGN NAME+4 TO <F>.

WRITE <F>.

ASSIGN NAME+4(*) TO <F>.

WRITE <F>.


Output: JOHNCARLXXXX JOHNCARL 

Addition 1

… TYPE
typ 

Effect

With
untyped field symbols, allows you to change the current type of the field
symbol to the type typ. The output length of the field symbol is corrected
according to its type. 
With typed field symbols, this addition should only be used if the type of the
field f does not match the type of the field symbol <fs> . The specified
type type must be compatible with the type of the field symbol. Since no
conversion can be performed (as with MOVE , the system must be able to interpret f as a
field with this type type . 
The type specification is in the form of a literal or a field. At present, only
system types ( C, D, T, P, X, N, F, I or W ) are allowed; you can also specify
type ’s’ for 2-byte integer fields with a sign and type ‘b’ for 1-byte integer
fields without a sign (see also DESCRIBE FIELD ). 

Note

This
statement results in a runtime error if the specified type is unknown or does
not match the field to be assigned (due to a missing alignment or an
inappropriate length). 

Example

 

DATA LETTER TYPE C.

FIELD-SYMBOLS <F>.

ASSIGN LETTER TO <F>.


The field symbol has the type C and the output length 1. 

 

ASSIGN LETTER TO <F> TYPE ‘X’.


The field symbol has the type X and the output length 2. 

Addition 2

…
DECIMALS dec 

Effect

This
addition only makes sense when used with type P. The field symbol contains dec
decimal places. 

Example

Output
sales in thousands: 

 

DATA SALES_DEC2(10) TYPE P DECIMALS 2 VALUE 1234567.

FIELD-SYMBOLS <SALES_DEC5>.

 

ASSIGN SALES_DEC2 TO <SALES_DEC5> DECIMALS 5.

WRITE: / SALES_DEC2,

       / <SALES_DEC5>.


Output: 
1,234,567.00 
1,234.56700 

Note

This
statement results in a runtime error if the field symbol has a type other than
P at runtime or the specified number of decimal places is not in the range 0 to
14. 

Addition 3

… LOCAL
COPY OF … 

Effect

With LOCAL
COPY OF , the ASSIGN statement can only be used in subroutines. This creates a
copy of f which points to the field symbol. 

Note

The field
symbol <fs> must also be defined locally in the subroutine. 

Example

 

DATA X(4) VALUE ‘Carl’.

PERFORM U.

FORM U.

  FIELD-SYMBOLS <F>.

  ASSIGN LOCAL COPY OF X TO <F>.

  WRITE <F>.

  MOVE ‘John’ TO <F>.

  WRITE <F>.

  WRITE X.

ENDFORM.


Output: Carl John Carl 

Variant 2

ASSIGN (f)
TO <fs>. 

Additions

1. … TYPE typ 
2. … DECIMALS dec 
3. … LOCAL COPY OF … 

Effect

Assigns the
field whose name is stored in the field f to the field symbol. 
The statement " ASSIGN (f)+off(len) TO <fs> " is not allowed. 

Notes

· The search for the field to be
assigned is performed as follows: 


If the statement is in a subroutine or function module, the system first
searches in this modularization unit. If the statement lies outside any such
modularization units or if the field is not found there, the system searches
for the field in the global data of the program. If the field is not found
there, the system searches in the table work areas of the main program of the
current program group declared with TABLES 

· The name of the field to be
assigned can also be the name of a field symbol or formal parameter (or
even a component of one of these, if the field symbol or the parameter has
a structure). 

· If the name of the field to be
assigned is of the form "(program name)field name", the system
searches in the global fields of the program with the name "Program
name" for the field with the name "Field name". However,it
is only found if the program has already been loaded. 
Warning: This option is for internal use by specialists only. Incompatible
changes or developments may occur at any time without warning or prior
notice. 


The return code value is set as follows: 

SY-SUBRC = 0 The assignment was successful. 
SY_SUBRC = 4 The field could not be assigned to the field symbol. 

Example

 

DATA: NAME(4) VALUE ‘XYZ’,       XYZ VALUE ‘5′.

FIELD-SYMBOLS <F>.

ASSIGN (NAME) TO <F>.

WRITE <F>.


Output: 5 

Addition 1

… TYPE
typ 

Addition 2

…
DECIMALS dec 

Addition 3

… LOCAL
COPY OF … 

Effect

See similar
additions of variant 1. 

Variant 3

ASSIGN
TABLE FIELD (f) TO <fs>. 

Effect

Identical
to variant 2, except that the system searches for the field f only in the data
in the current program group declared with TABLES . 

The return code value is set as follows: 

SY-SUBRC = 0 The assignment was successful. 
SY_SUBRC = 4 The field could not be assigned to the field symbol. 

Example

 

TABLES TRDIR.

DATA NAME(10) VALUE ‘TRDIR-NAME’.

FIELD-SYMBOLS <F>.

MOVE ‘XYZ_PROG’ TO TRDIR-NAME.

ASSIGN TABLE FIELD (NAME) TO <F>.

WRITE <F>.


Output: XYZ_PROG 

Example

 

TABLES T100.

T100-TEXT = ‘Global’.

PERFORM EXAMPLE.

FORM EXAMPLE.

  DATA: BEGIN OF T100, TEXT(20) VALUE ‘LOCAL’, END OF T100,

        NAME(30) VALUE ‘T100-TEXT’.

  FIELD-SYMBOLS <F>.

  ASSIGN (NAME) TO <F>.

  WRITE <F>.

ENDFORM.


Output: Local - although the global table field T100-TEXT has "global"
contents. (This kind of name assignment of work fields is, of course, not
recommended.) 

Example

 

TABLES TRDIR.

DATA: F(8) VALUE ‘F_global’,

      G(8) VALUE ‘G_global’.

MOVE ‘XYZ_PROG’ TO TRDIR-NAME.

PERFORM U.

FORM U.

  DATA: F(8)     VALUE ‘F_local’,

        NAME(30) VALUE ‘F’.

  FIELD-SYMBOLS <F>.

  ASSIGN (NAME) TO <F>.

  WRITE <F>.

  MOVE ‘G’ TO NAME.

  ASSIGN (NAME) TO <F>.

  WRITE <F>.

  MOVE ‘TRDIR-NAME’ TO NAME.

  ASSIGN (NAME) TO <F>.

  WRITE <F>.

ENDFORM.


Output: F_local G_global XYZ_PROG 

Example

 

PROGRAM P1MAIN.

  TABLES TRDIR.

  DATA NAME(30) VALUE ‘TFDIR-PNAME’.

  FIELD-SYMBOLS <F>.

  MOVE ‘XYZ_PROG’ TO TRDIR-NAME.

  PERFORM U(P1SUB).

  ASSIGN (NAME) TO <F>.

  WRITE <F>.

  CALL FUNCTION ‘EXAMPLE’.

 

 

PROGRAM P1SUB.

  TABLES TFDIR.

  …

  FORM U.

    FIELD-SYMBOLS <F>.

    DATA NAME(30) VALUE ‘TRDIR-NAME’.

    ASSIGN TABLE FIELD (NAME) TO <F>.

    WRITE <F>.

    MOVE ‘FCT_PROG’ TO TFDIR-PNAME.

  ENDFORM.

 

 

FUNCTION-POOL FUN1.

  FUNCTION EXAMPLE.

    DATA NAME(30) VALUE ‘TRDIR-NAME’.

    FIELD-SYMBOLS <F>.

    ASSIGN (NAME) TO <F>.

    IF SY-SUBRC = 0.

      WRITE <F>.

    ELSE.

      WRITE / ‘TRDIR-NAME cannot be accessed’.

    ENDIF.

  ENDFUNCTION.


Output: XYZ_PROG FCT_PROG 
TRDIR-NAME cannot be accessed 

Example

 

TABLES TRDIR.

MOVE ‘XYZ_PROG’ to TRDIR-NAME.

PERFORM U USING TRDIR.

FORM U USING X STRUCTURE TRDIR.

  FIELD-SYMBOLS <F>.

  DATA NAME(30) VALUE ‘X-NAME’.

  ASSIGN (NAME) TO <F>.

  WRITE <F>.

ENDFORM.


Output: XYZ_PROG 

Variant 4

ASSIGN
LOCAL COPY OF MAIN TABLE FIELD (f) TO <f>. 

Additions

1. … TYPE typ 
2. … DECIMALS dec 

Effect

Identical
to variant 3, except that the system searches for the field whose name is in f
steht only in the data in the program group of the main program declared with
TABLES . However, the field symbol then points not directly to the found field,
but to a copy of this field on theq value stack. 
This variant therefore ensures that any access to Dictionary fields of an
external program group is read only and no changes are made. 

Example

 

 

PROGRAM P1MAIN.

  TABLES TRDIR.

  DATA NAME(30) VALUE ‘TFDIR-PNAME’.

  FIELD-SYMBOLS <F>.

  MOVE ‘XYZ_PROG’ TO TRDIR-NAME.

  CALL FUNCTION ‘EXAMPLE’.

 

 

FUNCTION-POOL FUN1.

  FUNCTION EXAMPLE.

    DATA NAME(30) VALUE ‘TRDIR-NAME’.

    FIELD-SYMBOLS <F>.

    ASSIGN LOCAL COPY OF MAIN

      TABLE FIELD (NAME) TO <F>.

    IF SY-SUBRC = 0.

      WRITE <F>.

    ELSE.

      WRITE / ‘TRDIR-NAME cannot be accessed’.

    ENDIF.

  ENDFUNCTION.


Output: XYZ_PROG 

Addition 1

… TYPE
typ 

Addition 2

…
DECIMALS dec 

Effect

See similar
additions to variant 1. 

Variant 5

ASSIGN
COMPONENT idx OF STRUCTURE rec TO <fs>. 

Variant 6

ASSIGN
COMPONENT name OF STRUCTURE rec TO <fs>. 

Additions

1. … TYPE typ 
2. … DECIMALS dec 

Effect

If the
field name or idx has the type C or if it is a field string with no internal
table, it is treated as a component name. Otherwise, it is considered as a
component number. The corresponding component of the field string rec is
assigned to the field symbol <fs>. 

The return code value is set as follows: 

SY-SUBRC = 0 The assignment was successful. 
SY_SUBRC = 4 The field could not be assigned to the field symbol. 

Note

If idx has
the value 0, the entire field string is assigned to the field symbol. 

Example

 

PROGRAM P1MAIN.

  DATA: BEGIN OF REC,

          A VALUE ‘a’,

          B VALUE ‘b’,

          C VALUE ‘c’,

          D VALUE ‘d’,

        END OF REC,

        CN(5) VALUE ‘D’.

  FIELD-SYMBOLS <FS>.

  DO 3 TIMES.

    ASSIGN COMPONENT SY-INDEX OF

           STRUCTURE REC TO <FS>.

    IF SY-SUBRC <> 0. EXIT. ENDIF.

    WRITE <FS>.

  ENDDO.

  ASSIGN COMPONENT CN OF STRUCTURE REC TO <FS>.

  WRITE <FS>.


Output: a b c d 

Addition 1

… TYPE
typ 

Addition 2

…
DECIMALS dec 

Effect

See similar
additions to variant 1. 

Note

Runtime
errors 

Depending on the operands, the ASSIGN statement can cause runtime errors . 

Note

Performance 

For performance reasons, you are recommended to use typed field symbols. The
runtime for a typed ASSIGN statement amounts to approx. 9 msn (standardized
microseconds) against approx. 13 msn for an untyped ASSIGN statement. 

Index 
© SAP
AG 1996 

ASS-RPERF
is not an ABAP/4 key word (in R/3). 

Index 
© SAP
AG 1996 

AT 


Events
in lists 
- AT LINE-SELECTION. 
- AT USER-COMMAND. 
- AT PFn. 
Events
on selection screens

- AT SELECTION-SCREEN. 
Control
break with extracts

- AT NEW f. 
- AT END OF f. 
- AT FIRST. 
- AT LAST. 
- AT fg. 
Control
break with internal tables 
- AT NEW f. 
- AT END OF f. 
- AT FIRST. 
- AT LAST. 

Index 
© SAP
AG 1996 

AT - control
break 

 

Variants

1. AT NEW f. 
2. AT END OF f. 
3. AT FIRST. 
4. AT LAST. 

Variant 1

AT NEW f. 

Variant 2

AT END OF
f. 

Effect

f is a
sub-field of an internal table or extract dataset (EXTRACT ) which is being processed with LOOP , i.e.
the variants 1 and 2 only make sense within a LOOP . 
Both " AT NEW f. " and " AT END OF f. " introduce
processing blocks which are concluded by "ENDAT. ". 
These processing blocks are processed whenever the contents of a field f or a
sub-field defined before f change as a result of processing with LOOP . "
AT NEW f. " begins a new group of (table) lines with the same contents as
the field f while " AT END OF f. " concludes such a group. 

Within the AT … ENDAT processing of internal tables, all argument fields
following f are filled with "*". 

Examples

1. AT for
sub-fields of an internal table 

 

DATA: BEGIN OF COMPANIES OCCURS 20,

        NAME(30),

        PRODUCT(20),

        SALES TYPE I,

      END   OF COMPANIES.

…

LOOP AT COMPANIES.

  AT NEW NAME.

    NEW-PAGE.

    WRITE / COMPANIES-NAME.

  ENDAT.

  WRITE: / COMPANIES-PRODUCT, COMPANIES-SALES.

  AT END OF NAME.

    SUM.

    WRITE: / COMPANIES-NAME, COMPANIES-SALES.

  ENDAT.

ENDLOOP.


The AT statements refer to the field COMPANIES-NAME . 

Examples

2. AT for
the field of an extract dataset 

 

DATA: NAME(30),

      SALES TYPE I.

FIELD-GROUPS: HEADER, INFOS.

INSERT: NAME  INTO HEADER,

        SALES INTO INFOS.

…

LOOP.

  AT NEW NAME.

    NEW-PAGE.

  ENDAT.

  …

  AT END OF NAME.

    WRITE: / NAME, SUM(SALES).

  ENDAT.

ENDLOOP.

 

Notes

If the
processing you want to perform on an internal table is fairly restricted (i.e.
a WHERE addition with the LOOP statement), do not use the AT statements
specified in variants 1 to 5, since the interaction of the WHERE addition and
the AT statement is currently not defined. 
When you use LOOP with an extract dataset, fields on hex zero are ignored
during control level checking with AT NEW or AT END OF . This procedure is the
same as the SORT
statement. When sorting extracted datasets, this statement always sorts blank
fields (i.e. fields on hex zero) regardless of the sequence (ascending or
descending) before all fields that contain values. 
Since fields addressed with AT are not set to an initial value when you enter a
LOOP , the first new group of (table) lines in AT NEW f may not be processed,
if f happens to be set to this value. 

Variant 3

AT FIRST. 

Variant 4

AT LAST. 

Effect

The
variants 3 and 4 only make sense within a LOOP . 
The processing block between AT FIRST and ENDAT is executed before the
individual lines are processed; the processing block between AT LAST and ENDAT
is executed after all the individual lines have been processed. 

In AT FIRST or AT LAST … ENDAT processing, all argument fields are filled
with "*" (internal tables). 
When you are processing extract datasets, a control total SUM(n) can only be
processed with AT END OF or AT LAST . 

Example

 

DATA: BEGIN OF COMPANIES OCCURS 20,

        NAME(30),

        PRODUCT(20),

        SALES TYPE I,

      END   OF COMPANIES.

…

LOOP AT COMPANIES.

  AT FIRST.

    SUM.

    WRITE:    ‘Sum of all SALES:’,

           55 COMPANIES-SALES.

  ENDAT.

  WRITE: / COMPANIES-NAME, COMPANIES-PRODUCT,

        55 COMPANIES-SALES.

ENDLOOP.

Index 
© SAP
AG 1996 

AT - Control
break with extracts 

 

Variants

1. AT NEW f. 
2. AT END OF f. 
3. AT FIRST. 
4. AT LAST. 
5. AT fg. 

Effect

In a LOOP which processes a dataset created
with EXTRACT ,
you can use special control structures for control break processing. All these
structures begin with AT and end with ENDAT . The sequence of statements which lies
between them is then executed if a control break occurs. 

You can use these key words for control break processing with extract datasets
only if the active LOOP statement is proceesing an extract dataset. 

The control level structure with extract datasets is dynamic. It corresponds
exactly to the sort key of the extract dataset, i.e. to the order of fields in
the field group HEADER by which the extract dataset was sorted . 

At the end of a control group ( AT END OF , AT LAST ), there are two types of
control level information between AT and ENDAT : 

· If the sort key of the extract
dataset contains a non-numeric field h (particularly in the field group
HEADER ), the field CNT(h) contains the number of control breaks in
the (subordinate) control level h . 

· For extracted number fields g
(see also ABAP/4 number types ), the fields SUM(g) contain the relevant control
totals. 

 

Notes

The fields
CNT(h) and SUM(g) can only be addressed after they have been sorted. Otherwise,
a runtime error may occur. 
The fields CNT(h) and SUM(g) are filled with the relevant values for a control
level at the end of each control group ( AT END OF , AT LAST ), not at the
beginning ( AT FIRST , AT NEW ). 
When calculating totals with SUM(g) , the system automatically chooses the
maximum field sizes so that an overflow occurs only if the absolute value area
limits are exceeded. 
You can also use special control break control structures with LOOP s on internal tables. 

Variant 1

AT NEW f. 

Variant 2

AT END OF
f. 

Effect

f is a
field from the field group HEADER . The enclosed sequence of statements is
executed if 

· the field f occurs in the sort
key of the extract dataset (and thus also in the field group HEADER ) and 

 

· the field f or a superior sort
criterion has a different value in the current LOOP line than in the
prceding ( AT NEW ) or subsequent ( AT END OF ) record of the extract
dataset. 

 

Example

 

DATA: NAME(30),

      SALES TYPE I.

FIELD-GROUPS: HEADER, INFOS.

INSERT: NAME  INTO HEADER,

        SALES INTO INFOS.

…

LOOP.

  AT NEW NAME.

    NEW-PAGE.

  ENDAT.

  …

  AT END OF NAME.

    WRITE: / NAME, SUM(SALES).

  ENDAT.

ENDLOOP.

 

Notes

If the
extract dataset is not sorted before processing with LOOP , no control level
structure is defined and the statements following AT NEW or AT END OF are not
executed. 
Fields which stand at hex zero are ignored by the control break check with AT
NEW or AT END OF . This corresponds to the behavior of the SORT statement, which always places
unoccupied fields (i.e. fields which stand at hex zero) before all occupied
fields when sorting extract datasets, regardless of whether the sort sequence
is in ascending or descending order. 

Variant 3

AT FIRST. 

Variant 4

AT LAST. 

Effect

Executes
the relevant series of statements just once - either on the first loop pass
(with AT FIRST ) or on the last loop pass (with AT LAST ). 

Variant 5

AT fg. 

Addition

… WITH fg1 

Effect

This
statement makes single record processing dependent on the type of extracted
record. 

The sequence of statements following AT fg are executed whenever the current
LOOP record is created with EXTRACT fg (in other words: when the current record
is a fg record). 

Addition

… WITH
fg1 

Effect

Executes
the sequence of statements belonging to AT fg WITH fg1 only if the record of
the field group fg in the dataset is immediately followed by a record of the
field group fg1 . 

Index 
© SAP
AG 1996 

AT - field
group definition 

 

Basic form

AT fg. 

Addition

… WITH fg1 

Effect

When you
are processing an extract dataset (EXTRACT ) in a LOOP , this statement makes single record
processing dependent on the type of extracted record. 
The processing block specified within AT fg … ENDAT is executed if the record just read was
generated with EXTRACT fg (i.e. if the record just read is an fg record). 

Addition

… WITH
fg1 

Effect

The
processing block under AT fg WITH fg1. is executed only if the record from the
field group fg in the dataset is immediately followed by a record from the
field group fg1 . 

Index 
© SAP
AG 1996 

AT - Control
break with internal tables 

 

Variants

1. AT NEW f. 
2. AT END OF f. 
3. AT FIRST. 
4. AT LAST. 

Effect

In a LOOP which processes a dataset created
with EXTRACT ,
you can use special control structures for control break processing. All these
structures begin with AT and end with ENDAT . The sequence of statements which lies
between them is then executed if a control break occurs. 

You can use these key words for control break processing with extract datasets
only if the active LOOP statement is proceesing an extract dataset. 

The control level structure with extract datasets is dynamic. It corresponds
exactly to the sort key of the extract dataset, i.e. to the order of fields in
the field group HEADER by which the extract dataset was sorted . 

At the start of a new control level (i.e. immediately after AT ), the following
occurs in the output area of the current LOOP statement: 

· All default key fields (on the
right) are filled with "*" after the current control level key. 

 

· All other fields (on the right)
are set to their initial values after the current control level key. 


Between AT and ENDAT , you can use SUM to insert the appropriate control totals in
the number fields (see also ABAP/4 number types ) of the LOOP output area (on
the right) after the current control level key. Summing is supported both at
the beginning of a control level ( AT FIRST , AT NEW f ) and also the end of a
control level ( AT END OF f , AT LAST ). 

At the end of the control level processing (i.e. after ENDAT ), the old
contents of the LOOP output area are restored. 

Notes

When
calculating totals, you must ensure that the totals are inserted into the same
sub-fields of the LOOP output area as those where the single values otherwise
occur. If there is an overflow, processing terminates with a runtime error. 
If an internal table is processed only in a restricted form (using the additions
FROM , TO and/or WHERE with the LOOP statement), you should not use the control
structures for control level processing because the interaction of a restricted
LOOP with the AT statement is currenly not properly defined. 
With LOOP s on extracts, there are also
special control break control structures you can use. 

Note

Runtime errors 

· SUM_OVERFLOW : Overflow when
calculating totals with SUM . 

 

Variant 1

AT NEW f. 

Variant 2

AT END OF
f. 

Effect

f is a
sub-field of an internal table processed with LOOP . The sequence of statements
which follow it is executed if the sub-field f or a sub-field in the current
LOOP line defined (on the left) before f has a differnt value than in the
preceding ( AT NEW ) or subsequent ( AT END OF ) table line. 

Example

 

DATA: BEGIN OF COMPANIES OCCURS 20,

        NAME(30),

        PRODUCT(20),

        SALES TYPE I,

      END   OF COMPANIES.

…

LOOP AT COMPANIES.

  AT NEW NAME.

    NEW-PAGE.

    WRITE / COMPANIES-NAME.

  ENDAT.

  WRITE: / COMPANIES-PRODUCT, COMPANIES-SALES.

  AT END OF NAME.

    SUM.

    WRITE: / COMPANIES-NAME, COMPANIES-SALES.

  ENDAT.

ENDLOOP.


The AT statements refer to the field COMPANIES-NAME . 

Notes

If a
control break criterion is not known until runtime, you can use AT NEW (name)
or AT END OF (name) to specify it dynamically as the contents of the field name
. If name is blank at runtime, the control break criterion is ignored and the
sequence of statements is not executed. If name contains an invalid component
name, a runtime error occurs. 
By defining an offset and/or length, you can further restrict control break
criteria - regardless of whether they are specified statically or dynamically. 
A field symbol pointing to the LOOP output area can also be used as a dynamic
control break criterion. If the field symbol does not point to the LOOP output
area, a runtime error occurs. 

Note

Runtime errors 

· AT_BAD_PARTIAL_FIELD_ACCESS :
Invalid sub-field access when dynamically specifying the control break
criterion. 

 

· AT_ITAB_FIELD_INVALID : When
dynamically specifying the control break criterion via a field symbol, the
field symbol does not point to the LOOP output area. 

 

· ITAB_ILLEGAL_COMPONENT : When
dynamically specifying the control break criterion via (name) the field
name does not contain a valid sub-field name. 

 

Variant 3

AT FIRST. 

Variant 4

AT LAST. 

Effect

Executes
the appropriate sequence of statements once during the first ( AT FIRST ) or
last ( AT LAST ) loop pass. 

Example

 

DATA: BEGIN OF COMPANIES OCCURS 20,

        NAME(30),

        PRODUCT(20),

        SALES TYPE I,

      END   OF COMPANIES.

…

LOOP AT COMPANIES.

  AT FIRST.

    SUM.

    WRITE:    ‘Sum of all SALES:’,

           55 COMPANIES-SALES.

  ENDAT.

  WRITE: / COMPANIES-NAME, COMPANIES-PRODUCT,

        55 COMPANIES-SALES.

ENDLOOP.

Index 
© SAP
AG 1996 

AT - Events
in lists 

 

Variants

1. AT LINE-SELECTION. 
2. AT USER-COMMAND. 
3. AT PFn. 

Variant 1

AT LINE-SELECTION.

Effect

Event in
interactive reporting 

This event is processed whenever the user chooses a valid line in the list
(i.e. a line generated by statements such as WRITE , ULINE or SKIP ) with the cursor and presses the function key
which has the function PICK in the interface definition. This should normally
be the function key F2 , because it has the same effect as double-clicking the
mouse, or single-clicking in the case of a hotspot . 
The processing for the event AT LINE-SELECTION usually generates further list
output (the details list) which completely covers the current list display. If
the latter is still visible (to aid user orientation), this may be due to the
key word WINDOW . 
In most cases, the information is from the selected line is used to retrieve
more comprehensive information by direct reading. When displaying the original
list, you store the key terms needed for this in the HIDE area of the output line. 

Note

You can
choose a line and start new processing even in the details lists. 
The following system fields are useful for orientation purposes, since their
values change with each interactive event executed. 
SY-LSIND Index of list created by current event (basic list = 0, 1st details
list = 1, …) SY-PFKEY Status of displayed list (SET PF-STATUS ) SY-LISEL Contents of selected
line SY-LILLI Absolute number of this line in the displayed list SY-LISTI Index
of this list - usually SY-LSIND - 1 (READ LINE ) SY-CUROW Last cursor position:
Line in window SY-CUCOL Last cursor position: Column in window (GET CURSOR ) SY-CPAGE 1st displayed page of
displayed list SY-STARO 1st displayed line of this page of displayed list
SY-STACO 1st displayed column of displayed list (SCROLL LIST ) 
The system field SY-LSIND defines the line selection level (basic list:
SY-LSIND = 0). 

Example

 

DATA TEXT(20).

 

START-OF-SELECTION.

  PERFORM WRITE_AND_HIDE USING SPACE SPACE.

 

AT LINE-SELECTION.

  CASE TEXT.

    WHEN ‘List index’.

      PERFORM WRITE_AND_HIDE USING ‘X’ SPACE.

    WHEN ‘User command’.

      PERFORM WRITE_AND_HIDE USING SPACE ‘X’.

    WHEN OTHERS.

      SUBTRACT 2 FROM SY-LSIND.

      PERFORM WRITE_AND_HIDE USING SPACE SPACE.

  ENDCASE.

  CLEAR TEXT.

 

FORM WRITE_AND_HIDE USING P_FLAG_LSIND P_FLAG_UCOMM.

  WRITE / ‘SY-LSIND:’.

  PERFORM WRITE_WITH_COLOR USING SY-LSIND P_FLAG_LSIND.

  TEXT = ‘List index’.

  HIDE TEXT.

  WRITE / ‘SY-UCOMM:’.

  PERFORM WRITE_WITH_COLOR USING SY-UCOMM P_FLAG_UCOMM.

  TEXT = ‘User command’.

  HIDE TEXT.

  IF SY-LSIND > 0.

    WRITE / ‘PICK here to go back one list level’.

  ENDIF.

ENDFORM.

 

FORM WRITE_WITH_COLOR USING P_VALUE

                            P_FLAG_POSITIVE.

  IF P_FLAG_POSITIVE = SPACE.

    WRITE P_VALUE COLOR COL_NORMAL.

  ELSE.

    WRITE P_VALUE COLOR COL_POSITIVE.

  ENDIF.

ENDFORM.


Depending on whether you choose the line at SY-LSIND or SY-UCOMM , the next
details list contains the corresponding value with the color
"positive". If the line is chosen without HIDE information, the list level is reduced. 

Variant 2

AT
USER-COMMAND. 

Effect

Event in
interactive reporting 

This event is executed whenever the user presses a function key in the list or
makes an entry in the command field . 

Some functions are executed directly by the system and thus cannot be processed
by programs. These include: 
PICK See variant AT LINE-SELECTION PFn See variant AT PFn /… System command
%… System command PRI Print BACK Back RW Cancel P… Scroll function (e.g.:
P+ , P- , PP+3 , PS– etc.) 
Instead of this functions, you can use the SCROLL statement in programs. 
Since many of these system functions begin with "P", you should avoid
using this letter to start your own function codes. 
Otherwise, the effect is as for AT LINE-SELECTION ; also, the current function
code is stored in the system field SY-UCOMM . 

Example

 

DATA: NUMBER1 TYPE I VALUE 20,

      NUMBER2 TYPE I VALUE  5,

      RESULT  TYPE I.

 

START-OF-SELECTION.

  WRITE: / NUMBER1, ‘?’, NUMBER2.

 

AT USER-COMMAND.

  CASE SY-UCOMM.

    WHEN ‘ADD’.

      RESULT = NUMBER1 + NUMBER2.

    WHEN ‘SUBT’.

      RESULT = NUMBER1 - NUMBER2.

    WHEN ‘MULT’.

      RESULT = NUMBER1 * NUMBER2.

    WHEN ‘DIVI’.

      RESULT = NUMBER1 / NUMBER2.

    WHEN OTHERS.

      WRITE ‘Unknown function code’.

      EXIT.

  ENDCASE.

  WRITE: / ‘Result:’, RESULT.


After entry of a function code, the appropriate processing is performed under
the event AT USER-COMMAND and the result is displayed in the details list. 

Variant 3

AT PFn. 

Effect

Event in
interactive reporting 

Here, n stands for a numeric value between 0 and 99. 
This event is executed whenever the user presses a function key that contains
the function code PFn in the interface definition. The default status for lists
contains some of these functions. 

Otherwise, the effect is as for the variant AT LINE-SELECTION . The cursor can
be on any line. 

Notes

To ensure
that the chosen function is executed only for valid lines, you can check the
current HIDE
information. This variant should be used only for test or prototyping purposes,
since the default status is not normally used. Instead, you should set a
program-specific status with SET PF-STATUS . This should not contain any function codes
beginning with " PF ". 

Example

 

DATA NUMBER LIKE SY-INDEX.

 

START-OF-SELECTION.

  DO 9 TIMES.

    WRITE: / ‘Row’, (2) SY-INDEX.

    NUMBER = SY-INDEX.

    HIDE NUMBER.

  ENDDO.

 

AT PF8.

  CHECK NOT NUMBER IS INITIAL.

  WRITE: / ‘Cursor was in row’, (2) NUMBER.

  CLEAR NUMBER.

Index 
© SAP
AG 1996 

AT - Events
on selection screens 

 

Basic form

AT
SELECTION-SCREEN. 

Additions

1. … ON psel 
2. … ON END OF sel 
3. … ON VALUE-REQUEST FOR psel_low_high . 
4. … ON HELP-REQUEST FOR psel_low_high 
5. … ON RADIOBUTTON GROUP radi 
6. … ON BLOCK block 
7. … OUTPUT 

Effect

This event
only makes sense in reports, i.e. in programs set to type 1 in the attributes. Type 1
programs are started via a logical database and always have a selection screen where
the user can specify the database selections. 
The event is processed when the selection screen has been processed (at the end
of PAI ). 
If an error message ( MESSAGE Emnr ) is sent during the event, all fields on
the selection screen become ready for input. 
After further user input, AT SELECTION-SCREEN is executed again. 

Note

You should
only perform very expensive checks with AT SELECTION-SCREEN if the program is
then started (not every time the user presses ENTER). Here, you can read the
system field SSCRFIELDS-UCOMM (provided a statement TABLES SSCRFIELDS exists). If
the field has one of the values ‘ONLI’ (= Execute) or ‘PRIN’ (= Execute and
Print), the report is then started, i.e. the selection screen is closed and the
processing continues with START-OF-SELECTION . Remember that the selection screen (and thus
also AT SELECTION-SCREE N ) is also processed in variant maintenance and with SUBMIT VIA
JOB . You can
determine which of these applies by calling the function module RS_SUBMIT_INFO
. 

Addition 1

… ON psel

Effect

This event
is assigned to the selection screen fields corresponding to the report
parameter or selection criterion psel . 
If the report starts an error dialog at this point, precisely these fields
become ready for input. 

Addition 2

… ON END
OF sel 

Effect

For each
selection criterion sel on the selection screen, you can call a further screen
by pressing a pushbutton. On this screen, you can enter any number of single
values and ranges for the selection criterion sel . 
When this screen has been processed (i.e. at the end of PAI for this screen),
the event AT SELECTION-SCREEN ON END OF sel is executed. 
At this point, all the values entered are available in the internal table sel .

Addition 3

… ON
VALUE-REQUEST FOR psel_low_high 

Effect

With this
addition, the field psel_low_high is either the name of a report parameter or
of the form sel-LOW or sel-HIGH , where sel is the name of a selection
criterion. The effect of this is twofold: 
The pushbutton for F4 (Possible entries) appears beside the appropriate field. 
When the user selects this pushbutton or presses F4 for the field, the event is
executed. You can thus implement a self-programmed possible entries routine for
the input/output fields of the selection screen. If the program contains such
an event and the user presses F4 , the system processes this rather than
displaying the check table or the fixed values of the Dictionary field - even
if the report parameter or the selection option with LIKE or FOR points to a
Dictionary field. You can, for example, use the CALL SCREEN statement to display a selection
list of possible values. The contents of the field psel_low_high at the end of
this processing block are copied to the appropriate input/output field. 
This addition is only allowed with report-specific parameters (PARAMETERS ) or selection options (SELECT-OPTIONS ). For database-specific parameters
or selection options, you can achieve the same effect by using the addition
VALUE-REQUEST FOR … with the key word PARAMETERS or SELECT-OPTIONS in the
include DBxyzSEL (where xyz = name of logical database). In this case, you must
program the value help in the database program SAPDBxyz . 

Addition 4

… ON
HELP-REQUEST FOR psel_low_high 

Effect

As with the
addition ON VALUE-REQUEST the field psel_low_high is either the name of a
report parameter or of the form sel-LOW or sel-HIGH , where sel is the name of
a selection criterion. When the user presses F1 on the relevant field, the
subsequent processing block is executed. You can thus implement a
self-programmed help for the input/output fields of the selection screen. If
the program contains such an event and the user presses F1 , the system
processes this rather than displaying the documentation of the Dictionary field
- even if the report parameter or the selection option with LIKE or FOR points
to a Dictionary field. 
This addition is only allowed with report-specific parameters (PARAMETERS ) or selection options (SELECT-OPTIONS ). For database-specific parameters
or selection options, you can achieve the same effect by using the addition
HELP-REQUEST FOR … with the key word PARAMETERS or SELECT-OPTIONS in the
include DBxyzSEL (where xyz = name of logical database). In this case, you must
program the help in the database program SAPDBxyz . 

Addition 5

… ON
RADIOBUTTON GROUP radi 

Effect

This event
is assigned to the radio button groups on the selection screen defined by PARAMETERS
par RADIOBUTTON GROUP radi . 
If the report starts an error dialog at this point, precisely these fields of
the radio button group radi become ready for input again. 

Addition 6

… ON
BLOCK block 

Effect

This event
is assigned to the blocks on the selection screen defined by SELECTION-SCREEN
BEGIN/END OF BLOCK block . 
If the report starts an error dialog at this point, precisely these fields of
the block block become ready for input again. 

Note

In which
sequence are the events AT SELECTION-SCREEN ON psel … , AT SELECTION-SCREEN
ON RADIOBUTTON GROUP … , AT SELECTION-SCREEN ON BLOCK … , AT SELECTION-SCREEN
processed? 
The AT SELECTION-SCREEN ON psel … events assigned to the parameters or
selection options are executed in the sequence they are declared in the
program, i.e. in the sequence they appear on the selection screen. 
The events assigned to the radio button groups are executed according to the
first parameter of the radio button group. 
The events assigned to the blocks are executed "from the inside to the
outside". 

Example

 

 

SELECT-OPTIONS SEL0 FOR SY-TVAR0.

 

SELECTION-SCREEN BEGIN OF BLOCK BL0.

  SELECT-OPTIONS SEL1 FOR SY-TVAR1.

 

  SELECTION-SCREEN BEGIN OF BLOCK BL1.

    PARAMETERS P0 RADIOBUTTON GROUP RADI.

    PARAMETERS P1 RADIOBUTTON GROUP RADI.

 

    SELECTION-SCREEN BEGIN OF BLOCK BL2.

      PARAMETERS P3.

    SELECTION-SCREEN END   OF BLOCK BL2.

 

    SELECT-OPTIONS SEL2 FOR SY-TVAR2.

 

  SELECTION-SCREEN END   OF BLOCK BL1.

 

SELECTION-SCREEN END   OF BLOCK BL0.


Sequence: 

AT SELECTION-SCREEN ON… 
SEL0 
SEL1 
RADIOBUTTON GROUP RADI 
P3 
BLOCK BL2 
SEL2 
BLOCK BL1 
BLOCK BL0 

AT SELECTION-SCREEN is executed at the very end. 

Addition 7

… OUTPUT 

Effect

This event
is executed at PBO of the selection screen every time the user presses ENTER -
in contrast to INITIALIZATION
. Therefore, this event is not suitable for setting selection screen default
values. Also, since AT SELECTION-SCREEN OUTPUT is first executed after the
variant is imported (if a variant is used) and after adopting any values
specified under SUBMIT in the
WITH clause, changing the report parameters or the selection options in AT
SELECTION-SCREEN OUTPUT would destroy the specified values. 
Here, however, you can use LOOP AT SCREEN or MODIFY SCREEN to change the input/output
attributes of selection screen fields. 

Example

Output all
fields of the SELECT-OPTION NAME highlighted: 

 

SELECT-OPTIONS NAME FOR SY-REPID MODIF ID XYZ.

…

AT SELECTION-SCREEN OUTPUT.

  LOOP AT SCREEN.

    CHECK SCREEN-GROUP1 = ‘XYZ’.

    SCREEN-INTENSIFIED = ‘1′.

    MODIFY SCREEN.

  ENDLOOP.


The addition MODIF ID XYZ to the key word SELECT-OPTIONS assigns all fields of the selection
option NAME to a group you can read in the field SCREEN-GROUP1 . At PBO of the
selection screen, all these fields are then set to highlighted. 

Index 
© SAP
AG 1996 

AUTHORITY-CHECK

 

Basic form

AUTHORITY-CHECK
OBJECT object 
ID name1 FIELD f1 
ID name2 FIELD f2 
… 
ID name10 FIELD f10. 

Effect

Explanation
of IDs: 
object Field which contains the name of the object for which the authorization
is to be checked. 
name1 … Fields which contain the names of the name10 authorization fields
defined in the object. 
f1 … Fields which contain the values for which the f10 authorization is to be
checked. 
AUTHORITY-CHECK checks for one object whether the user has an authorization
that contains all values of f (see SAP authorization concept). 
You must specify all authorizations for an object and a also a value for each
ID (or DUMMY ). 
The system checks the values for the ID s by AND-ing them together, i.e. all
values must be part of an authorization assigned to the user. 
If a user has several authorizations for an object, the values are OR-ed together.
This means that if the CHECK finds all the specified values in one
authorization, the user can proceed. Only if none of the authorizations for a
user contains all the required values is the user rejected. 
If the return code SY-SUBRC = 0, the user has the required authorization and
may continue. 

The return code is modified to suit the different error scenarios. The return
code values have the following meaning: 
4 User has no authorization in the SAP System for such an action. If necessary,
change the user master record. 
8 Too many parameters (fields, values). Maximum allowed is 10. 
12 Specified object not maintained in the user master record. 
16 No profile entered in the user master record. 
24 The field names of the check call do not match those of an authorization. Either
the authorization or the call is incorrect. 
28 Incorrect structure for user master record. 
32 Incorrect structure for user master record. 
36 Incorrect structure for user master record. 

If the return code value is 8 or possibly 24, inform the person responsible for
the program. If the return code value is 4, 12, 15 or 24, consult your system
administrator if you think you should have the relevant authorization. In the
case of errors 28 to 36, contact SAP, since authorizations have probably been
destroyed. 
Individual authorizations are assigned to users in their respective user
profiles, i.e. they are grouped together in profiles which are stored in the
user master record. 

Note

Instead of
ID name FIELD f , you can also write ID name DUMMY . This means that no check
is performed for the field concerned. 
The check can only be performed on CHAR fields. All other field types result in
‘unauthorized’. 

Example

Check
whether the user is authorized for a particular plant. In this case, the
following authorization object applies: 

Table OBJ : Definition of authorization object 

M_EINF_WRK 
ACTVT 
WERKS 

Here, M_EINF_WRK is the object name, whilst ACTVT and WERKS are authorization
fields. For example, a user with the authorizations 

M_EINF_WRK_BERECH1 
ACTVT 01-03 
WERKS 0001-0003 . 

can display and change plants within the Purchasing and Materials Management
areas. 

Such a user would thus pass the checks 

 

AUTHORITY-CHECK OBJECT ‘M_EINF_WRK’

    ID ‘WERKS’ FIELD ‘0002′

    ID ‘ACTVT’ FIELD ‘02′.

 

AUTHORITY-CHECK OBJECT ‘M_EINF_WRK’

    ID ‘WERKS’ DUMMY

    ID ‘ACTVT’ FIELD ‘01′:


but would fail the check 

 

AUTHORITY-CHECK OBJECT ‘M_EINF_WRK’

    ID ‘WERKS’ FIELD ‘0005′

    ID ‘ACTVT’ FIELD ‘04′.


To suppress unnecessary authorization checks or to carry out checks before the
user has entered all the values, use DUMMY - as in this example. You can
confirm the authorization later with another AUTHORITY-CHECK . 

Index 
© SAP
AG 1996 

BACK 

 

Basic form

BACK. 

Effect

Returns
output position to the first line of the current page after the TOP-OF-PAGE processing. 
When used in connection with RESERVE x LINES , the statement returns the output position to
the first output line after RESERVE . 

Example

 

DATA:  TOWN(10)      VALUE ‘New York’,

       CUSTOMER1(10) VALUE ‘Charly’,

       CUSTOMER2(10) VALUE ‘Sam’,

       SALES1 TYPE I VALUE 1100,

       SALES2 TYPE I VALUE 2200.

RESERVE 2 LINES.

WRITE:  TOWN, CUSTOMER1,

      /       CUSTOMER2 UNDER CUSTOMER1.

BACK.

WRITE: 50 SALES1,

       /  SALES2 UNDER SALES1.


Using the positioning in WRITE in column 50, data not yet output is not
overwritten, but the sales volume is output after the customer names. 

Notes

If you use
a ‘/’ with the first WRITE after the BACK statement, this starts a (usually
unwanted) new line. BACK in the TOP-OF-PAGE processing positions the cursor
after the standard header. Subsequent WRITE statements also overwrite the lines
output under TOP-OF-PAGE . 

Note

Performance 
The runtime required to execute a BACK statement is about 1 msn (standardized
microseconds). 

Index 
© SAP
AG 1996 

BREAK-POINT 

Variants: 

1. BREAK-POINT. 
2. BREAK-POINT f. 

Variant 1

BREAK-POINT.

Effect

The
BREAK-POINT statement interrupts the processing and diverts the system to
debugging mode. You can then display the contents of all the fields at runtime
and also control the subsequent program flow. 
If the system is unable to branch to debugging for some reason (due to a
background job or update), it generates a system log message. 

Note

· After the BREAK-POINT , the
system automatically performs any restart in the database, if no COMMIT
WORK was executed. Since debugging sometimes switches off COMMIT WORK ,
you should not place a BREAK-POINT statement in a SELECT loop. 

· In the editor, you can also set
a breakpoint dynamically without making any changes to the ABAP/4 program.
These dynamic breakpoints are valid only for the current user in the
current session. 

 

Variant 2

BREAK-POINT
f. 

Effect

Behaves
like variation 1, except that the field contents of f remain in the event of
any system log messages. 

Index 
© SAP
AG 1996 

CALL 


Call
a function module 
- CALL FUNCTION func. 
- CALL FUNCTION func STARTING NEW TASK taskname. 
- CALL FUNCTION func IN UPDATE TASK. 
- CALL FUNCTION func DESTINATION dest. 
- CALL FUNCTION func IN BACKGROUND TASK. 
- CALL CUSTOMER-FUNCTION func. 
Call
a screen 
- CALL SCREEN scr. 
Call
a transaction 
- CALL TRANSACTION tcod. 
Call
a dialog module 
- CALL DIALOG dial. 
Call
a method of an external object 
- CALL METHOD OF obj m. 
Call
a system function 
- CALL cfunc. 

Index 
© SAP
AG 1996 

CALL - Call
a system function 

 

Basic form 6

CALL cfunc.

Addition

… ID id1 FIELD f1 … ID idn FIELD fn 

Effect

Calls the
system function cfunc . The relevant function must exist in the file
sapactab.h. If you change or recreate a function, you have to compile and link
the SAP kernel again. For this, you need the C source code files. 
Normally, external programs should be called via RFC with CALL
FUNCTION … DESTINATION . 

Addition

… ID id1
FIELD f1 … ID idn FIELD fn 

Effect

Passes
fields to the called program by reference. With " ID id1 ", you
specify the name of a formal parameter, and with " FIELD f1 " the
relevant field from the ABAP/4 program. If a formal parameter expects an
internal table, the latter is passed in the form " FIELD tab[] ". 

Example

 

DATA RESULT(8).

CALL ‘MULTIPLY’ ID ‘P1′  FIELD ‘9999′

                ID ‘P2′  FIELD ‘9999′

                ID ‘RES’ FIELD RESULT.

 

Note

Runtime
errors 

CALL_C_FUNCTION_NOT_FOUND : Specified system function is unknown. 

Index 
© SAP
AG 1996 

CALL
FUNCTION 

 

Variant 6

CALL CUSTOMER-FUNCTION
func. 

Additions

The same as for CALL FUNCTION func. 

Effect

Calls the
function module func . func must be a 3-character literal (e.g. ‘001′) 
In line with SAP’s enhancement concept, function modules are delivered empty
and must be implemented by the customer (the transactions used for this are
SMOD at SAP and CMOD at the customer’s). 
The interface and call location are both defined by SAP. 

Note

The
customer can use Transaction CMOD to activate the function module. The final
name of the function module is compiled from EXIT_ , the name of the module
pool where the function module is called, and the name func . For example, the
statement " CALL CUSTOMER-FUNCTION ‘001′ " in the module pool
SAPMS38M calls the function module EXIT_SAPMS38M_001. 

Index 
© SAP
AG 1996 

CALL DIALOG
- Call a dialog module 


&ABAP_BASIC_FORM4& CALL DIALOG dial. 

Additions

1. … AND SKIP FIRST SCREEN 
2. … EXPORTING f1 FROM g1 … fn FROM gn 
3. … IMPORTING f1 TO g1 … fn TO gn 
4. … USING itab … MODE mode . 

Effect

Calls the
dialog module dial ; dial can be a literal or a variable. 
To edit dialog modules, select Tools -> ABAP/4 Workbench -> Development
-> Programming environ. -> Dialog modules . 

Addition 1

… AND
SKIP FIRST SCREEN 

Effect

Processes
the first screen of the dialog module in the background, if all required entry
fields have been filled. 

Addition 2

…
EXPORTING f1 FROM g1 … fn FROM gn 

Effect

Specifies
all data objects (fields, field strings, internal tables) to be passed to the
dialog module. If the names in the calling and called programs are identical,
you can omit " FROM g1 ". Otherwise, fi refers to the field in the
dialog module, while gi specifies the field in the calling program. 

Addition 3

…
IMPORTING f1 TO g1 … fn TO gn 

Effect

Specifies
all data objects (fields, field strings, internal tables) to be returned from
the dialog module. If the names in the calling and called programs are
identical, you can omit " TO g1 ". Otherwise, fi refers to the field
in the dialog module, while gi specifies the field in the calling program. 

Examples

 

DATA: BEGIN OF ITAB,

        LINE(72),

      END   OF ITAB,

      TITLE LIKE SY-TITLE.

 

CALL DIALOG ‘RS_EDIT_TABLE’

    EXPORTING SOURCETAB FROM ITAB

              TITLE

    IMPORTING SOURCETAB TO   ITAB.

 

Notes

· The system field SY-SUBRC is
automatically exported and imported. 

· The unknown export/import data
in the dialog module is ignored. 

· The data objects passed should
have the same type or structure in the calling program and the dialog
module. 

 

Addition 4

… USING
itab … MODE mode 

Effect

Calls the
dialog module dial and also passes the internal table itab which contains one
or more screens in batch input format. 
If required, the dialog module may return a message to the system fields
SY-MSGID , SY-MSGTY , SY-MSGNO , SY-MSGV1 , …, SY-MSGV4 . 
The specified processing mode mode mode can accept the following values: 

‘A’ Display screen 
‘E’ Display only if an error occurs 
‘N’ No display 

If the addition MODE is not specified, the processing mode is ‘A’ . 

The return code value is set as follows: 

SY-SUBRC = 0 The processing was successful. 
SY-SUBRC <> 0 The dialog ended with an error. 

Notes

· All lock arguments are automatically
exported and imported. 
In contrast to a transaction, a dialog module does not form its own LUW
(see Transaction processing ). Any update requests which occur there are
not processed until the calling program executes a COMMIT
WORK . 

· To return from the dialog
module, use the key word LEAVE PROGRAM . 

 

Note

Runtime errors 

· CALL_DIALOG_NOT_FOUND : The
called dialog module is unknown. 

· CALL_DIALOG_WRONG_TDCT_MODE :
The called dialopg module contains errors (incorrect entry in table TDCT
). 

· CALL_DIALOG_NAME_TOO_LONG : The
name of a parameter is longer than permitted. 

· CALL_DIALOG_NO_CONTAINER : No
memory for parameter transfer. 


Related CALL TRANSACTION , CALL FUNCTION
Index 
© SAP
AG 1996 

CALL - call
a function module 

 

Variants

Call a function module: 

1. CALL FUNCTION func. 

Call a function module in a different mode (asynchronous Remote Function Call):

2. CALL FUNCTION func STARTING NEW TASK taskname. 

Call a function module in the update task: 

3. CALL FUNCTION func IN UPDATE TASK. 

Call a function module in a remote system (Remote Function Call, RFC ): 

4. CALL FUNCTION func DESTINATION dest. 

Asynchronous call to a function module with transactional processing
(transactional Remote Function Call): 

5. CALL FUNCTION func IN BACKGROUND TASK. 

Call a function module which can be activated in the context of enhancements: 

6. CALL CUSTOMER-FUNCTION func. 

Index 
© SAP
AG 1996 

CALL FUNCTION

 

Variant 1

CALL
FUNCTION func. 

Additions

1. … EXPORTING p1 = f1 … pn = fn 
2. … IMPORTING p1 = f1 … pn = fn 
3. … TABLES p1 = itab1 … pn = itabn 
4. … CHANGING p1 = f1 … pn = fn 
5. … EXCEPTIONS except1 = rc1 … exceptn = rcn 

Effect

Calls the
function module func ; func can be a literal or a variable. 
To edit function modules, select Tools -> ABAP/4 Workbench -> Function
Library . 
The assignment of parameters is by name ( p1 , p2 , etc.), not by sequence. 
To return from the function module, you use the key word EXIT , unless EXIT occurs in a loop or a
subroutine. 

Note

You can use
the editor commands " SHOW FUNCTION func " and " SHOW FUNCTION *
" to get information about the function module func or any other function
module. 

Addition 1

…
EXPORTING p1 = f1 … pn = fn 

Effect

EXPORTING
passes fields, field strings or internal tables to the function module. You
must declare the parameters p1 … pn in the function interface as import
parameters. When you call the function module, you must assign values to all
import parameters which are not flagged in the interface definition as optional
and do not have any default values. 

Addition 2

…
IMPORTING p1 = f1 … pn = fn 

Effect

IMPORTING
passes fields, field strings or internal tables from the function module back
to the calling program. The parameters p1 … pn must be declared as export
parameters in the function interface. 

Addition 3

… TABLES
p1 = itab1 … pn = itabn 

Effect

TABLES
passes references to internal tables. The parameters p1 … pn must be declared
as table parameters in the function interface. When you call the function
module, you must assign values to all table parameters which are not flagged as
optional in the interface definition. 

Addition 4

…
CHANGING p1 = f1 … pn = fn 

Effect

CHANGING
passes fields, field strings or internal tables to the function module and the
changed values are returned. The parameters p1 … pn must be declared as
CHANGING parameters in the function interface. When you call the function
module, you must assign values to all CHANGING parameters of the function
module which are not flagged as optional in the interface definition and have
no default values. 

Addition 5

…
EXCEPTIONS except1 = rc1 … exceptn = rcn 

Effect

EXCEPTIONS
lists the exceptions to be handled by the calling program itself. At the end of
the exception list, you can use OTHERS to refer to all the remaining
exceptions. 
If one of the listed exceptions occurs, SY-SUBRC is set to the appropriate
value rc (a number literal!) and control passes back to the calling program. By
specifying a return code, you can divided the exceptions into classes. With the
second form, without "=rc", SY-SUBRC is set to a value other than 0
if an exception occurs. 
If the function module triggers an exception (with the statements RAISE and MESSAGE … RAISING ) and the exception is not to be
handled by the calling program itself, 

· RAISE terminates the program with
a runtime error; 

· MESSAGE … RAISING outputs the
message. 

 

Note

The
following EXCEPTIONS are predefined by the system and have a special meaning: 

· OTHERS : Covers all
user-defined exceptions in the called function module. 

· ERROR_MESSAGE : This exception
instructs the system to ignore S messages, I messages and W messages until
return from the function module (although they still appear in the log
during background processing). When an E message or an A message occurs,
the called function module terminates, as if the exception ERROR_MESSAGE
has been triggered. 

 

Examples

 

DATA: FIELD(30) VALUE ‘Example: This is a field.’,

      head(30).

CALL FUNCTION   ‘STRING_SPLIT’

     EXPORTING  DELIMITER = ‘:’

                STRING    = FIELD

     IMPORTING  HEAD      = HEAD

                TAIL      = FIELD

     EXCEPTIONS NOT_FOUND = 1

                OTHERS    = 2.

CASE SY-SUBRC.

  WHEN 1. …

  WHEN 2. ….

ENDCASE.

…

 

DATA: BEGIN OF TAB1 OCCURS 10, X, END OF TAB1,

      BEGIN OF TAB2 OCCURS 20, Y, END OF TAB2.

CALL FUNCTION ‘ITAB_COPY’

     TABLES   TAB_IN    = TAB1

              TAB_OUT   = TAB2.

 

Note

Runtime
errors 

· CALL_FUNCTION_NOT_FOUND : The
called function is unknown. 

· CALL_FUNCTION_NO_VB : Only
update function modules can be called in the update task. 

· CALL_FUNCTION_NOT_ACTIVE : The
called function is known, but not active. 

· CALL_FUNCTION_PARM_MISSING :
The function expects a parameter, but none was passed by the calling
program. 

· CALL_FUNCTION_PARM_UNKNOWN :
The calling program passed a parameter which the function does not
recognize. 

· CALL_FUNCTION_CONFLICT_LENG :
The function expected a different actual parameter length. 

· CALL_FUNCTION_CONFLICT_TYPE 

· CALL_FUNCTION_CONFLICT_GEN_TYP
: The actual parameter type does not satisfy the requirements of the
function interface. 

· CALL_FUNCTION_WRONG_ALIGNMENT :
An actual parameter does not satisfy the alignment requirements of the
corresponding formal parameter. 

· CALL_FUNCTION_BASE_LITL : A
literal was supposed to be passed to a structured formal parameter. 

Index 
© SAP
AG 1996 

CALL
FUNCTION 

 

Variants

 

Call a function module

1. CALL FUNCTION func.
 

 

 

Call a function module in new mode (asynchronous Remote Function Call)

2. CALL FUNCTION func STARTING NEW TASK taskname dest.
 

 

 

 

Call a function module in the update task

3. CALL FUNCTION func IN UPDATE TASK.
 

 

 

 

Call a function module in a remote system (Remote Function Call)

4. CALL FUNCTION func DESTINATION dest.
 

 

 

 

Asynchronous call to function module with transaction-like processing

(transaction-like Remote Function Call)

5. CALL FUNCTION func IN BACKGROUND TASK.
 

 

 

 

Call a function module that can be activated within framework of

enhancement concept.

6. CALL CUSTOMER-FUNCTION func.
 

Index 
© SAP
AG 1996 

CALL
FUNCTION 

 

Variant 5

CALL FUNCTION
func IN BACKGROUND TASK. 

Additions

1. …
DESTINATION dest 
2. … EXPORTING p1 = f1 … pn = fn 
3. … TABLES p1 = itab1 … pn = itabn 

Effect

Flags the
function module func to be run asynchronously. It is not executed at once, but
the data passed with EXPORTING bzw. TABLES is placed in a database table and
the next COMMIT WORK
then executes the function module in another work process. 

Note

This
variant applies only from R/3 Release 3.0. Both partner systems (the client and
the server systems) must have a Release 3.0 version of the R/3 System. 

Addition 1

…
DESTINATION dest 

Effect

Executes
the function module externally as a Remote Function Call ( RFC ); dest can be a
literal or a variable. 
Depending on the specified destination, the function module is executed either
in another R/3 System or as a C-implemented function module. Externally
callable function modules must be flagged as such in the function library (of
the target system). 
Since each destination defines its own program context, further calls to the
same or different function modules with the same destination can access the
local memory (global data) of these function modules. 

Addition 2

…
EXPORTING p1 = f1 … pn = fn 

Effect

EXPORTING
passes values of fields and field strings from the calling program to the
function module. In the function module, the formal parameters are defined as
import parameters. Default values must be assigned to all import parameters of
the function module in the interface definition. 

Addition 3

… TABLES
p1 = itab1 … pn = itabn 

Effect

TABLES
passes references to internal tables. All table parameters of the function
module must contain values. 

Notes


If several function module calls with the same destination are specified before
COMMIT WORK , these form an LUW in the target system. 
Type 2 destinations (R/3 - R/2 connections) cannot be specified. 

Index 
© SAP
AG 1996 

CALL
FUNCTION 

 

Variant 6

CALL
CUSTOMER-FUNCTION func. 

Additions

The same as
with CALL FUNCTION func. 

Effect

Calls the
function module func ; this can be activated. func must be a 3-character
literal (e.g. ‘001′). 
The function modules are delivered empty within the framework of the
enhancement concept and must be implemented by the customer. They are
maintained with the Transactions SMOD (at SAP) and CMOD (at the csutomer’s). 
SAP determines both the interface and the place where the call is made. 

Note

By using
the Transaction CMOD, the customer can activate the function module. The final
name of the function module comprises EXIT_ , the name of the module pool where
the function module is called, and the name func . For example, the statement
" CALL CUSTOMER-FUNCTION ‘001′ " in the module pool SAPMS38M calls
the function module EXIT_SAPMS38M_001. 

Index 
© SAP
AG 1996 

CALL
FUNCTION 

 

Variant 4

CALL
FUNCTION func DESTINATION dest. 

Additions

1. The same as with CALL FUNCTION func 
2. … EXCEPTIONS syst_except = rc MESSAGE mess 

Effect

Executes
the function module externally as a Remote Function Call ( RFC ); dest can be a
literal or a variable. 
Depending on the specified destination, the function module is executed in
another R/3 or R/2 System. Externally callable function modules must be flagged
as such in the function library (of the target system). 
Since each destination defines its own program context, further calls to the
same or different function modules with the same destination can access the
local memory (global data) of these function modules. 

You can maintain existing destinations by selecting Tools -> Administration
-> Administration -> Network -> RFC . 

Notes

Special destinations: 

· The destination NONE refers to
the calling system. Function modules called with 

CALL FUNCTION func DESTINATION ‘NONE’ … 

are executed in the system of the calling program, but in their own
program context. 

· You can use the destination
BACK if the current program was already called by RFC . The, BACK refers
back to the calling program: 

CALL FUNCTION func DESTINATION ‘BACK’ … 

If the program is not called from a "remote" source, the
exception COMMUNICATION_FAILURE is triggered. 

· Each R/3 System has a standard
name. This is formed from the host name (e.g. SY-HOST ), the system name (
SY-SYSID ) and the system nummer (two-character number assigned on
installation of the applications server). 
You can use this name as a destination. For example, you can call the
function module func in the system C11 on the host sapxyz with system
number 00 as follows: 

CALL FUNCTION func DESTINATION ’sapxyz_C11_00′ … 

· You can also use saprouter path
names as destinations (see also saprouter documentation). 

 

Note

Parameter
passing. When you pass data to an externally called function module, there are
some differences to the normal function module call: 

· With table parameters, only the
table itself is passed, not the header line. 

· If one of the parameters of the
interface of an externally called function module is not specified when
called, the import parameters are set to their initial value. If no
default value was given in the interface definition, TABLES parameters are
defined as an empty table and unspecified export parameters are lost. 

Note

Passing
structured data objects. Since transport to another system may require data
conversion, the structure of field strings and internal tables must be known to
the runtime system when the call is made. The structure of a field string or
internal table is not known if it was defined with 

… LIKE structure , 

if the structure passed was passed to the subroutine with the explicit addition
STRUCTURE , or if it is a parameter of a function module. 

In these cases, external calls can result in a conversion error. 

Note

C
interface. You can call externally callable function modules from C programs. It
is also possible to store function modules in a C program and call them via
CALL FUNCTION … DESTINATION . For this purpose, SAP provides a C interface . 

Addition 2

…
EXCEPTIONS syst_except = rc MESSAGE mess 

Effect

Function
module calls with the addition DESTINATION can handle two special system
exceptions: 
SYSTEM_FAILURE 

This is triggered if a system crash occurs on the receiving side. 
COMMUNICATION_FAILURE 

This is triggered if there is a connection or communication problem. 
In both cases, you can use the optional addition 

… MESSAGE mess 

to receive a description of the error. 

Note

Runtime errors 

· CALL_FUNCTION_DEST_TYPE
:Destination type not allowed. 

· CALL_FUNCTION_NO_DEST
:Destination does not exist. 

· CALL_FUNCTION_NO_LB_DEST
:Destination (in ‘Load Balancing’ mode) does not exist. 

· CALL_FUNCTION_TABINFO :Data
error (info internal table) during ‘Remote Function Call’. 

Index 
© SAP
AG 1996 

CALL
FUNCTION 

 

Variant 2

CALL
FUNCTION func …STARTING NEW TASK 

Additions

1. …
DESTINATION dest 
2. … PERFORMING form ON END OF TASK 
3. … EXPORTING p1 = f1 … pn = fn 
4. … TABLES p1 = itab1 … pn = itabn 
5. … EXCEPTIONS syst_except = rc MESSAGE mess 

Effect

Starts the
function module func asynchronously in a new mode. In contrast to normal
function module calls, the calling program resumes processing as soon as the
function module is started in the target system. It does not wait until the
function module has finished. Through CALL SCREEN , the called function module can,
for example, display a screen and thus interact with the user. 

Notes

This
variant applies only from R/3 Release 3.0. Both partner systems (the client and
the server systems) must have a Release 3.0 version of the R/3 System. 
With this variant, the called function module must also be flagged in the
Function Library as externally callable, even if it is executed locally
(without the addition DESTINATION). 

Addition 1

…
DESTINATION dest 

Effect

Executes
the function module externally as a Remote Function Call ( RFC ); dest can be a
literal or a variable. The R/3 System where the function module is executed
depends on the specified destination. Externally callable function modules must
be flagged as such in the Function Library (of the target system). 

Addition 2

…
PERFORMING form ON END OF TASK 
Whereas the parameters for receiving results (i.e. IMPORTING and TABLES parameters)
are specified directly as additions in the case of "conventional"
function modules (see variant 2), these are logged in the FORM routine form
when making an asynchronous call (see RECEIVE ). 

Note

If a
function module returns no result, this addition ( … PERFORMING form ON END
OF TASK ) can be omitted. 

Addition 3

…
EXPORTING p1 = f1 … pn = fn 

Effect

EXPORTING
passes values of fields and field strings from the calling program to the
function module. In the function module, the formal parameters are defined as
import parameters. 

Addition 4

… TABLES
p1 = itab1 … pn = itabn 

Effect

TABLES
passes references to internal tables. All table parameters of the function
module must contain values. 

Addition 5

… EXCEPTIONS
syst_except = rc MESSAGE mess 

Effect

While any
exceptions arising in the called function module are handled by the second
addition (in the FORM routine), this addition can handle two special system
exceptions, as with function module calls with the addition DESTINATION : 
SYSTEM_FAILURE 

is triggered, if a system crash occurs on the receiving side. 
COMMUNICATION_FAILURE 

is triggered if there is a connection or communication problem. 
In both cases, you can get a description of the error with the optional
addition 

… MESSAGE mess 

Example

 

DATA: MSG_TEXT(80). "Message text

…

* Asynchronous call to Transaction SM59 –>

* Create a new session

CALL FUNCTION ‘ABAP4_CALL_TRANSACTION’ STARTING NEW TASK ‘TEST’

  DESTINATION ‘NONE’

  EXPORTING

      TCODE = ‘SM59′

  EXCEPTIONS COMMUNICATION_FAILURE MESSAGE MSG_TEXT.

  IF SY-SUBRC NE 0.

    WRITE: MSG_TEXT.

  ELSE.

    WRITE: ‘O.K.’.

  ENDIF.

 

Note

Runtime errors 

· CALL_FUNCTION_TASK_YET_OPEN :
Task already open. 

Index 
© SAP
AG 1996 

CALL
FUNCTION 

 

Variant 3

CALL
FUNCTION func IN UPDATE TASK. 

Additions

1. … EXPORTING p1 = f1 … pn = fn 
2. … TABLES p1 = itab1 … pn = itabn 

Effect

Flags the
function module func for execution in the update task. It is not executed at
once, but the data passed with EXPORTING or TABLES is placed in a database
table and a subsequent COMMIT WORK then causes the function module to be executed
by the update task. Update function modules must be flagged as such in the
function library. 

Addition 1

…
EXPORTING p1 = f1 … pn = fn 

Effect

Values of
fields and field strings specified under EXPORTING are passed from the calling
program to the function module. In the function module, the formal parameters
are defined as import parameters. In the interface definition, default values
must be assigned to all import parameters of the update function module. 

Addition 2

… TABLES
p1 = itab1 … pn = itabn 

Effect

TABLES
passes references to internal tables. All table parameters of the function
module must have values. 

Note

With update
function modules, both import parameters and exceptions are ignored when the
call is made. 
Administration transaction 

Index 
© SAP
AG 1996 

CALL METHOD -
Call a method of an external object 

 

Basic form

CALL METHOD
OF obj m. 

Additions

1. … = f 
2. … EXPORTING p1 = f1 … pn = fn 
3. … NO FLUSH 

Effect

Calls the
method m of the object obj . m can be a literal or a variable. 
CALL METHOD 

Addition 1

… = f 

Effect

Stores the
return value of the method in the variable f . The return value can also be of
type OLE2_OBJECT . This addition must always come before other additions. 

Addition 2

…
EXPORTING p1 = f1 … pn = fn 

Effect

EXPORTING
passes values of fields to the parameters of the method. p1 , p2 , … are
either key word parameters or position parameters. If assignment of parameters
is by sequence, p1 , p2 , … must begin with "#", followed by the
position number of the parameter. At present, only position parameters are
supported. The export parameters always come at the end of the statement. 

Addition 3

… NO FLUSH 

Example

Open an
EXCEL file with the method ‘Open’. 

 

INCLUDE OLE2INCL.

DATA EXCEL    TYPE OLE2_OBJECT.

DATA WORKBOOK TYPE OLE2_OBJECT.

 

CREATE OBJECT   EXCEL    ‘Excel.Application’.

CALL METHOD  OF EXCEL    ‘Workbooks’ = WORKBOOK.

CALL METHOD  OF WORKBOOK ‘Open’    EXPORTING #1 = ‘C:\EX1.XLS’.


Related SET PROPERTY

GET
PROPERTY 
CREATE
OBJECT 
FREE
OBJECT 

Index 
© SAP
AG 1996 

CALL SCREEN
- Call a screen 

 

Basic form

CALL SCREEN
scr. 

Addition

… STARTING AT x1 y1 … ENDING AT x2 y2 

Effect

Calls the
screen scr ; scr is the number of a screen of the main program. You use SET SCREEN
0. or LEAVE
SCREEN. to define
the return from the CALL screen . 

Addition

…
STARTING AT x1 y1 ENDING AT x2 y2 

Effect

The
coordinates x1 , y1 (start column and start line in the window) and x2 , y2
(end column and end line in the window) define the size and position of the
CALL screen ("top left - bottom right"). Besides these coordinates,
you can also see the contents of the primary window, but cannot perform any
action there. 

Note

· If " ENDING AT … "
is not specified, suitable values are substituted for x2 and y2 , taking
into account the size of the called screen . 

 

Note

Runtime
errors 
DYNP_TOO_MANY_CALL_SCREENS : No further screen level (call screen); the maximum
number of nested screen levels is restricted to 50 at present. 

Index 
© SAP
AG 1996 

CALL
TRANSACTION - Call a transaction 

 

Basic form

CALL TRANSACTION
tcod. 

Additions

1. … AND SKIP FIRST SCREEN 
2. … USING itab 
2a. … MODE mode 
2b. … UPDATE upd 
2c. … MESSAGES INTO messtab 

Effect

Calls the
SAP Transaction tcod ; tcod can be a literal or a variable. To return from the
called transaction, you use the key word LEAVE PROGRAM . 

Example

 

CALL TRANSACTION ‘SP01′.

 

Addition 1

… AND
SKIP FIRST SCREEN 

Effect

Skips the
first screen in the transaction (provided all the required fields have been
assigned values by the SPA/GPA process). 

Addition 2

… USING
itab 

Effect

Calls the
Transaction tcod and passes the internal table itab , which contains one or
several screens in batch input format. 
If necessary, one of the messages output by the Transaction is returned to the
fields SY-MSGID , SY-MSGTY SY-MSGNO , SY-MSGV1 , …, SY-MSGV4 . 

The return code value is set as follows: 

SY-SUBRC = 0 Processing was successful. 
SY-SUBRC <> 0 Transaction ended with an error. 

Note

A called
Transaction ends successfully for the following reasons: 
COMMIT
WORK Next screen =
0 LEAVE
TO TRANSACTION ‘ ‘ 

Addition 2a

… MODE
mode 

Effect

The
specified processing mode can accept the following values: 

‘A’ Display screen 
‘E’ Display screen only if an error occurs 
‘N’ No display 

If the addition MODE is not specified, the processing mode is set to ‘A’ . 

Addition 2b

… UPDATE
upd 

Effect

The
specified update mode upd defines the update type. This can have one of the
following values: 

‘A’ Asynchronous update 
‘S’ Synchronous update 

If the addition UPDATE is not specified, the processing mode is set to ‘A’ . 

Addition 2c

…
MESSAGES INTO messtab 

Effect

The
specified internal table contains all system messages that occur during CALL
TRANSACTION USING … . The internal table messtab must have the structure
BDCMSGCOLL . 

Example

 

DATA BEGIN OF BDCDATA OCCURS 100.

       INCLUDE STRUCTURE BDCDATA.

DATA END OF BDCDATA.

 

DATA BEGIN OF MESSTAB OCCURS 10.

       INCLUDE STRUCTURE BDCMSGCOLL.

DATA END OF MESSTAB.

 

DATA REPORT(8).

 

BDCDATA-PROGRAM  = ‘SAPMS38M’.

BDCDATA-DYNPRO   = ‘0100′.

BDCDATA-DYNBEGIN = ‘X’.

APPEND BDCDATA.

CLEAR BDCDATA.

BDCDATA-FNAM     = ‘RS38M-PROGRAMM’.

BDCDATA-FVAL     = REPORT.

APPEND BDCDATA.

…

CALL TRANSACTION ‘SE38′  USING BDCDATA  MODE ‘N’

                         MESSAGES INTO MESSTAB.

 

Notes

Runtime
errors 

· CALL_TRANSACTION_NOT_FOUND :
Transaction is unknown. 

· CALL_TRANSACTION_IS_MENU :
Transaction is a menu. 

· CALL_TRANSACTION_USING_NESTED :
Recursive CALL TRANSACTION USING 


Related SUBMIT 
CALL
DIALOG 

Index 
© SAP
AG 1996 

CASE 

Basic form

CASE f. 
Effect Case distinction. 

Depending on the current contents of a field, this statement executes one of
several alternative processing branches. The field whose contents determine how
the subsequent processing is specified after CASE ; the individual processing
branches are introduced by WHEN , followed by the value to be tested. The
entire block is concluded by ENDCASE . The structure of the CASE statement is
as follows: 

 

CASE f.

  WHEN f1.

    …

  WHEN f2.

    …

  …

ENDCASE.


On reaching such a CASE statement, the processor compares f with f1 . 
If f = f1 , it executes the processing block between " WHEN f1. " and
the next WHEN statement. If there are no further WHEN statements, it executes
the processing block up to the ENDCASE statement and then continues with any
subsequent processing. 
If f <> f1 , the processor compares the field f2 in the next WHEN
statement with f and proceeds as with f1 and so on. 

Although f should be a variable, f1 can be a variable or a literal. For the
comparison " f = f1 ", the rules are the same as for IF . 

There is a second variant of the WHEN statement: 

WHEN OTHERS. 
No more than one such WHEN statement is allowed within a CASE block. The "
WHEN OTHERS " processing block is always concluded by ENDCASE , i.e. no
further WHEN statements can follow. 

The " WHEN OTHERS " processing block is executed only if none of the
preceding WHEN blocks have been executed, i.e. if all previous comparisons
(" f = … ) have returned a negative result. 

Example

 

DATA: ONE   TYPE I VALUE 1,

      THREE TYPE P VALUE 3.

DO 5 TIMES.

  CASE SY-INDEX.

    WHEN ONE.

      WRITE / ‘That is’.

    WHEN 2.

      WRITE   ‘a’.

    WHEN THREE.

      WRITE ‘good’.

      WRITE ‘example’.

    WHEN OTHERS.

      WRITE ‘!’.

  ENDCASE.

ENDDO.


Output: " That is a good example ! ! " 

Notes

You can
nest several CASE statements and even combine them with IF statements. 
The statement " WHEN: f1, f2. " does not make sense. The example
below shows that the block belonging to " WHEN f1 " is empty: 

WHEN f1. 
WHEN f2. 
Related IF , ELSEIF 

Index 
© SAP
AG 1996 

CHECK 


Within
loops and events 
- CHECK logexp. 
Special
for reports with logical databases 
- CHECK sel. 
- CHECK SELECT-OPTIONS. 

Index 
© SAP
AG 1996 

CHECK -
within loops 

 

Basic form

CHECK
logexp. 

Effect

CHECK
evaluates the subsequent logical expression . If it is true, the processing
continues with the next statement. 

In loop structures like 

 

DO … ENDDO

WHILE … ENDWHILE

LOOP … ENDLOOP

SELECT … ENDSELECT


CHECK with a negative outcome terminates the current loop pass and goes back to
the beginning of the loop to start the next pass, if there is one. 

In structures like 

 

FORM … ENDFORM

FUNCTION … ENDFUNCTION

MODULE … ENDMODULE

AT

CHECK with a negative outcome terminates the routine or modularization unit. 

If CHECK is not in a loop or a routine or a modularization unit, a negative
logical expression terminates the current event. In contrast, the statement REJECT terminates the current event, even
from loops or subroutines. 

Note

If a CHECK
produces a negative result in a GET event , the GET events in subordinate tables of the logical
database are not processed either. 
Related CONTINUE , EXIT , REJECT , STOP 

Index 
© SAP
AG 1996 

CHECK -
special for reports with logical databases 

 

Variants

1. CHECK sel. 
2. CHECK SELECT-OPTIONS. 

Variant 1

CHECK sel. 

Effect

Checks the
selection criterion requested by the statement SELECT-OPTIONS sel … . 

This statement is equivalent to f IN sel , if sel was defined by SELECT-OPTIONS
sel FOR f and can
be used anywhere in logical expressions 

If the result of this check is negative, the processing in this event is
terminated and the GET events for any subordinate database tables are not
processed either. 

This variant of the CHECK statement should be used only if the logical database
for the corresponding table does not support dynamic selections (see CHECK
SELECT-OPTIONS ), or SELECT-OPTIONS with the addition NO DATABASE SELECTION . Otherwise,
the relevant record is not read from the database and made available to the
program. 

Variant 2

CHECK
SELECT-OPTIONS. 

Effect

Called only
after a GET event. 
This statement checks all the selections for SELECT-OPTIONS where the reference field after FOR
belongs to the current table dbtab (specified after GET . However, this applies only if the logical
database for dbtab does not support dynamic selections . Otherwise, the
selections are passed directly to the logical database (with the exception:
addition " NO DATABASE SELECTION " to SELECT-OPTIONS ). 

This variant of the CHECK statement only makes sense if the logical database
does not support dynamic selections for the corresponding table or SELECT-OPTIONS are defined with the addition
" NO DATABASE SELECTION ". 

You can determine from the ABAP/4 Development Workbench whether dynamic
selections are defined and, if so, for which logical database tables by
selecting Development -> Programming environ. -> Logical databases
followed by Extras -> Dynamic selections . 

Example

The logical
database F1S of the demo flight reservation system contains the tables SPFLI
with, and the table SFLIGHT without, dynamic selections. 

 

TABLES:

  SPFLI, SFLIGHT.

 

SELECT-OPTIONS:

  SF_PRICE  FOR SFLIGHT-PRICE,

  SP_CARR   FOR SPFLI-CARRID,

  SP_FROM   FOR SPFLI-CITYFROM NO DATABASE SELECTION,

  SP_DEPT   FOR SPFLI-DEPTIME.

 

Since
dynamic selections are defined with the table SPFLI , but not with the table
SFLIGHT , the following procedure applies: 

 

…

GET SFLIGHT.

  CHECK SELECT-OPTIONS.


This CHECK statement is equivalent to the following statement: 

 

  CHECK SF_PRICE.


With 

 

GET SPFLI.

  CHECK SELECT-OPTIONS.


the CHECK statement is equivalent to the following statement: 

 

  CHECK SP_FROM.

 

Note

With CHECK
SELECT-OPTIONS , fields from superior tables in the database hierarchy are not
(!) checked. 

Note

Runtime errors 

· CHECK_SELOPT_ILLEGAL_OPTION :
Wrong " OPTION " in SELECT-OPTIONS or RANGES table 

· CHECK_SELOPT_ILLEGAL_SIGN :
Wrong " SIGN " in SELECT-OPTIONS or RANGES table 


Related CONTINUE , EXIT , REJECT , STOP 

Index 
© SAP
AG 1996 

CLEAR 

 

Basic form

CLEAR f. 

Additions

1. … WITH g 
2. … WITH NULL 

Effect

Resets the
contents of f to its initial value. 

For predefined types (see DATA ), the following initial values are used: 
Type C : ‘ … ‘ (blank character) Type N : ‘00…0′ Type D : ‘00000000′ Type T
: ‘000000′ 
Type I : 0 Type P : 0 Type F : 0.0E+00 Type X : 0 
If f is a field string, each component field is reset to its initial value. If
it is an internal table without a header line, the entire table is deleted
together with all its entries. If, however, f is an internal table with a
header line, only the sub-fields in the table header entry are reset to their
initial values. 

Example

 

DATA: TEXT(10)       VALUE ‘Hello’,

      NUMBER TYPE I  VALUE 12345,

      ROW(10) TYPE N VALUE ‘1234567890′,

      BEGIN OF PLAYER,

        NAME(10)      VALUE ‘John’,

        TEL(8) TYPE N VALUE ‘08154711′,

        MONEY  TYPE P VALUE 30000,

      END   OF PLAYER.

…

CLEAR: TEXT, NUMBER, PLAYER.


The field contents are now as follows: 

ROW = ‘1234567890′ 
TEXT = ‘ ‘ 
NUMBER = 0 
PLAYER-NAME = ‘ ‘ 
PLAYER-TEL = ‘00000000′ 
PLAYER-MONEY = 0 

Notes

When CLEAR
references an internal table itab with a header line, it only resets the
sub-fields in the header entry to their initial values (as mentioned above). The
individual table entries remain unchanged. 
To delete the entire internal table together with all its entries, you can use
CLEAR itab[] or REFRESH itab . Here, a Note is still required to explain
how to manipulate tables with/without header lines. 
Within a logical expression , you can use f IS INITIAL to check that the field
f contains the initial value appropriate for its type. 
Variables are normally initialized according to their type, even if the
specification of an explicit initial value (addition " … VALUE lit
" of the DATA
statement) is missing. For this reason, it is not necessary to initialize
variables again with CLEAR after defining them. 

Addition 1

… WITH g 

Effect

The field f
is filled with the value of the first byte of the field g . 

Addition 2

… WITH
NULL 

Effect

Fills the
field with hexadecimal zeros. 

Note

You should
use this addition with particular care because the fields of most data types
thus receive values which are really invalid. 

Note

Performance 
CLEAR requires about 3 msn (standardized microseconds) of runtime to process a
field of type C with a length of 10 and about 2 msn to process a field of the
type I. To delete an internal table with 15 fields, it needs about 5 msn. 

Index 
© SAP
AG 1996 

CLOSE 

Basic form

1. CLOSE DATASET dsn. 
2. CLOSE CURSOR c. 

Basic form 1

CLOSE
DATASET dsn. 

Effect

Closes the
file dsn , ignoring any errors which may occur. CLOSE is required only if you
want to edit dsn several times. For further details, see the documentation for OPEN
DATASET . 

Basic form 2

CLOSE
CURSOR c. 

Effect

Closes the
database cursor c . CLOSE CURSOR is only required if you want to read sets of
database records several times with c . For further information, refer to the
documentation on OPEN CURSOR and FETCH . 

CLOSE CURSOR belongs to the Open SQL command set. 

Index 
© SAP
AG 1996 

CNT 

 

Basic form

… CNT(h)
… 

Effect

CNT(h) is
not a statement, but a field which is automatically created and filled by the
system if f is a sub-field of an extract dataset . 

CNT(h) can only be addressed from within a LOOP on a sorted extract. 

	 

	Type
	Standard output
length
	Output

	C
	len
	left-justified

	 
	 
	 

	D
	8
	left-justified

	 
	 
	 

	F
	22
	right-justified

	 
	 
	 

	I
	11
	right-justified

	 
	 
	 

	N
	len
	left-justified

	 
	 
	 

	P
	2*len or 2*len+1
	right-justified

	 
	 
	 

	T
	6 
	left-justified

	 
	 
	 

	X
	2*len 
	left-justified

	 
	 
	 


sorted
extract. 

If h is a non-numeric field (see also ABAP/4 number types ) from the field
group HEADER and part of the sort key of the extract dataset, the end of a control
level (AT END OF ,
AT LAST ) is such that CNT(h) contains the number of different values which the
field h has accepted in the group, i.e. the number of records in the group for
which the field f has changed its value. 
Related 
SUM(g) 

Index 
© SAP
AG 1996 

COLLECT 

 

Basic form

COLLECT [wa
INTO] itab. 

Addition

… SORTED BY f 

Effect

COLLECT is
used to create unique or compressed datsets. The key fields are the default key
fields of the internal table itab . 

If you use only COLLECT to fill an internal table, COLLECT makes sure that the
internal table does not contain two entries with the same default key fields. 

If, besides its default key fields, the internal table contains number fields
(see also ABAP/4 number types ), the contents of these number fields are added
together if the internal table already contains an entry with the same key
fields. 

If the default key of an internal table processed with COLLECT is blank, all
the values are added up in the first table line. 

If you specify wa INTO , the entry to be processed is taken from the explicitly
specified work area wa . If not, it comes from the header line of the internal
table itab . 

After COLLECT , the system field SY-TABIX contains the index of the - existing
or new - table entry with default key fields which match those of the entry to
be processed. 

Notes

COLLECT can
create unique or compressed datasets and should be used precisely for this purpose.
If uniqueness or compression are unimportant, or two values with identical
default key field values could not possibly occur in your particular task, you
should use APPEND
instead. However, for a unique or compressed dataset which is also efficient,
COLLECT is the statement to use. 
If you process a table with COLLECT , you should also use COLLECT to fill it. Only
by doing this can you guarantee that 

· the internal table will
actually be unique or compressed, as described above and 

· COLLECT will run very
efficiently. 


If you use COLLECT with an explicitly specified work area, it must be
compatible with the line type of the internal table. 

Example

Compressed
sales figures for each company 

 

DATA: BEGIN OF COMPANIES OCCURS 10,

        NAME(20),

        SALES TYPE I,

      END   OF COMPANIES.

COMPANIES-NAME = ‘Duck’.  COMPANIES-SALES = 10.

COLLECT COMPANIES.

COMPANIES-NAME = ‘Tiger’. COMPANIES-SALES = 20.

COLLECT COMPANIES.

COMPANIES-NAME = ‘Duck’.  COMPANIES-SALES = 30.

COLLECT COMPANIES.


The table COMPANIES now has the following appearance: 

	NAME
	SALES

	 
	 

	Duck
	40

	 
	 

	Tiger
	20

	 
	 


 

Addition

… SORTED BY f 

Effect

COLLECT …
SORTED BY f is obsolete and should no longer be used. Use APPEND …
SORTED BY f which
has the same meaning. 

Note

Performance 

The cost of a COLLECT in terms of performance increases with the width of the
default key needed in the search for table entries and the number of numeric
fields with values which have to be added up, if an entry is found in the
internal table to match the default key fields. 
If no such entry is found, the cost is reduced to that required to append a new
entry to the end of the table. 

A COLLECT statement used on a table which is 100 bytes wide and has a key which
is 60 bytes wide and seven numeric fields is about approx. 50 msn
(standardized microseconds). 

Note

Runtime errors 

· COLLECT_OVERFLOW : Overflow in
integer field when calculating totals. 

 

· COLLECT_OVERFLOW_TYPE_P :
Overflow in type P field when calculating totals. 


Related APPEND , WRITE …
TO , MODIFY , INSERT 

Index 
© SAP
AG 1996 

COMMIT 

Basic form

COMMIT
WORK. 

Addition

… AND WAIT 

Effect

Executes a
database commit and thus closes a logical processing unit or Logical Unit of
Work ( LUW ) (see also Transaction processing ). This means that 

· all database changes are made
irrevocable and cannot be reversed with ROLLBACK WORK and 

· all database locks are
released. 


COMMIT WORK also 

· calls the subroutines specified
by PERFORM … ON COMMIT , 

· executes asynchronously any
update requests (see CALL FUNCTION … IN UPDATE TASK ) specified in these
subroutines or started just before, 

· processes the function modules
specified in CALL FUNCTION … IN BACKGROUND
TASK , 

· cancels all existing locks (see
SAP locking concept ) if no update requests exist, 

· closes all open database
cursors (see OPEN CURSOR ) and 

· resets the time slice counter
to 0. 


COMMIT WORK belongs to the Open SQL command set. 
Return code value 
The SY-SUBRC is set to 0. 

Notes

All
subroutines called with PERFORM … ON COMMIT are processed in the LUW
concluded by the COMMIT WORK command. All V1 update requests specified in CALL
FUNCTION … IN UPDATE TASK are also executed in one LUW . When all V1 update
requests have been successfully concluded, the V2 update requests ("update
with start delayed") are processed, each in one LUW . Parallel to this,
the function modules specified in CALL FUNCTION … IN BACKGROUND TASK are each
executed in one LUW per destination. 
COMMIT WORK commands processed within CALL DIALOG processing 

- execute a database commit (see above), 
- close all open database cursors, 
- reset the time slice counter and 
- call the function modules specified by CALL FUNCTION IN 
BACKGROUND TASK in the CALL DIALOG processing. 

However, subroutines and function modules called with PERFORM … ON COMMIT or
CALL FUNCTION … IN UPDATE TASK in the CALL DIALOG processing are not executed
in the calling transaction until a COMMIT WORK occurs. 
Since COMMIT WORK closes all open database cursors, any attempt to continue a
SELECT loop after a COMMIT WORK results in a runtime error. For the same
reason, a FETCH after
a COMMIT WORK on the now closed cursors also produces a runtime error. You must
therefore ensure that any open cursors are no longer used after the COMMIT WORK
. 
With batch input and CALL TRANSACTION … USING , COMMIT WORK successfully
concludes the processing. 

Addition

… AND
WAIT 

Effect

The
addition … AND WAIT makes the program wait until the type V1 updates have
been completed. 

The return code value is set as follows: 

SY-SUBRC = 0 The update was successfully performed. 
SY-SUBRC <> 0 The update could not be successfully performed. 

Note

Runtime
errors 

· COMMIT_IN_PERFORM_ON_COMMIT :
COMMIT WORK is not allowed in a FORM callled with PERFORM
… ON COMMIT . 

· COMMIT_IN_POSTING : COMMIT WORK
is not allowed in the update task. 

Index 
© SAP
AG 1996 

COMMUNICATION

 

Variants

1. COMMUNICATION INIT DESTINATION dest ID id. 
2. COMMUNICATION ALLOCATE ID id. 
3. COMMUNICATION ACCEPT ID id. 
4. COMMUNICATION SEND ID id BUFFER f. 
5. COMMUNICATION RECEIVE ID id 
…BUFFER f 
…DATAINFO d 
…STATUSINFO s. 
6. COMMUNICATION DEALLOCATE ID id. 

The COMMUNICATION statement allows you to develop applications which perform
direct program-to-program communication. The basis for this is CPI-C (Common
Programming Interface - Coummunication), defined by IBM within the context of
SAA standards as a standardized communications interface. The COMMUNICATION
statement provides the essential parameters for implementing simple
communication. Its starter set covers the following functionality: 
Establishing a connection Accepting a communication Sending data Receiving data
Closing a connection 
The other essential part of such a communication is an ABAP/4 program
containing a FORM routine which is executed when the connection has been
established. This program may be in an R/3 System or an R/2> System. Here,
you should be aware that the application programs themselves declare a
protocol. In particular, logon to the partner SAP System must be performed in
the calling program. The partner programs must also manage different character
sets, e.g. ASCII - EBCDIC themselves. A facility known as the Remote Function
Call ( RFC ) has now been developed to save users from having to deal with
these problems. External programs (e.g. a program written in C on a UNIX
workstation) can also be used as partner programs. For this purpose, SAP
provides a platform-specific development library. For more detailed information
about communication in the SAP System, you can refer to the manual 
SAP Communication: Programming 
Further information about communication can be found in any of the following
literature: 

IBM SAA 
Common Programming Interface 
Communication Reference 
SC 26-4399 

X/Open Developers’ Specification CPI-C 
X/Open Company Ltd. 
ISBN 1 872630 02 2 

Variant 1

COMMUNICATION
INIT DESTINATION dest ID id. 

Addition

…
RETURNCODE rc 

Effect

Initializes
a program-to-program connection. 

The partner system is specified in the dest field. You can use any name you
like, but it must be entered in the connection table TXCOM and can be no more
than 8 characters long. This entry in TXCOM determines to which physical system
a connection is established using the symbolic name of the target system. 

In the field id , the system assigns an eight-character ID number of type C to
the connection. The system field SY-SUBRC contains an appropriate return code
value. 
All return codes can be read using their symbolic names. For this purpose, you
can use the program RSCPICDF which contains these names and can be included, if
required. 

Addition

…
RETURNCODE rc 

Effect

Stores the
return code in the field rc . 

Example

 

TYPES: CONVERSATION_ID(8) TYPE C,

       DESTINATION(8)     TYPE C,

       RETURN_CODE        LIKE SY-SUBRC.

DATA:  CONVID  TYPE CONVERSATION_ID,

       DEST    TYPE DESTINATION VALUE ‘C00′,

       CPIC_RC TYPE RETURN_CODE.

INCLUDE RSCPICDF.

 

COMMUNICATION INIT DESTINATION DEST

                   ID          CONVID

                   RETURNCODE  CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: /’COMMUNICATION INIT, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

 

Variant 2

COMMUNICATION
ALLOCATE ID id. 

Addition

As for
variant 1. 

Effect

Sets up a
program-to-program connection. The call must immediately follow COMMUNICATION
INIT . 

Example

 

TYPES: CONVERSATION_ID(8) TYPE C,

       DESTINATION(8)     TYPE C,

       RETURN_CODE        LIKE SY-SUBRC.

DATA:  CONVID  TYPE CONVERSATION_ID,

       DEST    TYPE DESTINATION VALUE ‘C00′,

       CPIC_RC TYPE RETURN_CODE.

INCLUDE RSCPICDF.

 

COMMUNICATION INIT DESTINATION DEST

                   ID          CONVID

                   RETURNCODE  CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: /’COMMUNICATION INIT, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

COMMUNICATION ALLOCATE ID CONVID RETURNCODE CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: /’COMMUNICATION ALLOCATE, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

 

Variant 3

COMMUNICATION
ACCEPT ID id. 

Addition

As for
variant 1. 

Effect

Accepts a
connection requested by the partner program. id is a field of type C which is 8
characters long and contains the ID of the accepted connection after a
successful call. 

Example

 

FORM CPIC_EXAMPLE.

  TYPES: CONVERSATION_ID(8) TYPE C,

         RETURN_CODE        LIKE SY-SUBRC.

  DATA:  CONVID  TYPE CONVERSATION_ID,

         CPIC_RC TYPE RETURN_CODE.

  INCLUDE RSCPICDF.

  COMMUNICATION ACCEPT ID CONVID

                       RETURNCODE  CPIC_RC.

  IF CPIC_RC NE CM_OK.

     EXIT.

  ENDIF.

ENDFORM.

 

Variant 4

COMMUNICATION
SEND ID id BUFFER f. 

Additions

1. …
RETURNCODE rc 
2. … LENGTH len 

Effect

Sends data
to the partner program. The data is stored in the field f which follows the key
word parameter BUFFER . It is sent in the full length of the field f . If the
partner program is part of a system which has a different character set, you
must perform an appropriate conversion yourself. To do this, use the TRANSLATE statement. 

Addition 1

…
RETURNCODE rc 

Effect

Stores the
return code in the field rc . 

Addition 2

… LENGTH
leng 

Effect

Sends the
contents of the field f to the partner program in the specified length. 

Example

 

TYPES: CONVERSATION_ID(8) TYPE C,

       DESTINATION(8)     TYPE C,

       RETURN_CODE        LIKE SY-SUBRC.

DATA:  CONVID  TYPE CONVERSATION_ID,

       DEST    TYPE DESTINATION VALUE ‘C00′,

       CPIC_RC TYPE RETURN_CODE.

INCLUDE RSCPICDF.

 

COMMUNICATION INIT DESTINATION DEST

                   ID          CONVID

                   RETURNCODE  CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: /’COMMUNICATION INIT, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

COMMUNICATION ALLOCATE ID CONVID                        RETURNCODE

CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: /’COMMUNICATION ALLOCATE, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

RECORD = ‘The quick brown fox jumps over the lazy dog’.

COMMUNICATION SEND ID     CONVID

                   BUFFER RECORD

                   LENGTH LENG

                   RETURNCODE CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: / ‘COMMUNICATION SEND, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.


Since the length is specified explicitly in this example, only the part ‘ The
quick brown fox ‘ is transferred from the contents of the field RECORD . 

Variant 5

COMMUNICATION
RECEIVE ID id …BUFFER f …DATAINFO d …STATUSINFO s. 

Additions

1. …
RETURNCODE rc 
2. … LENGTH leng 
3. … RECEIVED m 
4. … HOLD 

Effect

Receives
data in the field f . If no length is explicitly defined, the amount of data
accepted depends on the length of the field. The fields d and s contain
information about the receive process. You can address the contents of these
using symbolic names in the include program RSCPICDF . The field d indicates
whether the data was received in its entirety. The status field s informs the
RECEIVE user of the status of the program. Here, it is important to know
whether the program is in receive status or send status. It is, for example, not
possible to send data if the program is in receive status. 
For more detailed information about these protocol questions, refer to the
manuals listed above. 

Addition 1

…
RETURNCODE rc 

Effect

Stores the
return code in the field rc . 

Addition 2

… LENGTH
leng 

Effect

Receives
data only in the specified length leng . 

Addition 3

…
RECEIVED m 

Effect

After the
call, m contains the number of bytes received by the partner program. 

Addition 4

… HOLD 

Effect

Normally,
data is received asynchronously, i.e. the system performs a rollout. However,
this may not be desirable if, for example, the data is received in a SELECT loop, the database cursor is lost
due to the rollout and the loop is terminated. To prevent a rollout, you can
use the addition HOLD . Then, the SAP process waits until the data has been
received and is thus available for use by other users. 

Note

The fields
d , s and m which contain information about the outcome of the call must be of
type X with length 4. 

Example

 

FORM CPIC_EXAMPLE.

  TYPES: CONVERSATION_ID(8) TYPE C,

         RETURN_CODE        LIKE SY-SUBRC,

         C_INFO(4)          TYPE X.

  DATA:  CONVID  TYPE CONVERSATION_ID,

         CPIC_RC TYPE RETURN_CODE,

         RECORD(80) TYPE C,

         DINFO      TYPE C_INFO,

         SINFO      TYPE C_INFO.

  INCLUDE RSCPICDF.

 

  COMMUNICATION ACCEPT ID CONVID

                       RETURNCODE  CPIC_RC.

  IF CPIC_RC NE CM_OK.

     EXIT.

  ENDIF.

 

  COMMUNICATION RECEIVE ID         CONVID

                        BUFFER     RECORD

                        STATUSINFO SINFO

                        DATAINFO   DINFO

                        RETURNCODE CPIC_RC.

  IF CPIC_RC NE CM_OK.

     EXIT.

  ENDIF.

ENDFORM.

 

Variant 6

COMMUNICATION
DEALLOCATE ID id. 

Addition

As for variant 1 

Effect

Severs
connection and releases all resources. 

Example

 

TYPES: CONVERSATION_ID(8) TYPE C,

       DESTINATION(8)     TYPE C,

       RETURN_CODE        LIKE SY-SUBRC,

       C_INFO(4)          TYPE X.

DATA:  CONVID  TYPE CONVERSATION_ID,

       CPIC_RC TYPE RETURN_CODE,

       DEST    TYPE DESTINATION VALUE ‘C00′.

 

DATA:  RECORD(80) TYPE C,

       LENG       TYPE I VALUE 20.

 

INCLUDE RSCPICDF.

 

COMMUNICATION INIT DESTINATION DEST

                   ID          CONVID

                   RETURNCODE  CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: / ‘COMMUNICATION INIT, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

COMMUNICATION ALLOCATE ID CONVID

                       RETURNCODE CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: / ‘COMMUNICATION ALLOCATE, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

RECORD = ‘The quick brown fox jumps over the lazy dog’.

COMMUNICATION SEND ID     CONVID

                   BUFFER RECORD

                   LENGTH LENG

                   RETURNCODE CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: / ‘COMMUNICATION SEND, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

COMMUNICATION DEALLOCATE ID CONVID

                         RETURNCODE CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: / ‘COMMUNICATION DEALLOCATE, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

 

Note

The above
examples illustrate the basic functionality of the key words. However, the
example program can only have an external system as partner. If the partner is
an SAP System, the calling program must first logon to the SAP System and
receive an acknowledgement. Only then can you begin to transmit the actual
data. When logging on to an R2 System and an R3 System, the logon data must be
converted to EBCDIC . All user data should be converted according to the
partner system. This is in the concluding example of an R/3 - R/2 connection. 

Example

 

PROGRAM ZCPICTST.

TYPES: CONVERSATION_ID(8) TYPE C,

       DESTINATION(8)     TYPE C,

       RETURN_CODE        LIKE SY-SUBRC,

       C_INFO(4)          TYPE X.

 

DATA:  BEGIN OF CONNECT_STRING,

         REQID(4) VALUE ‘CONN’,

         TYPE(4)  VALUE ‘CPIC’,

         MODE(4)  VALUE ‘1   ‘,

         MANDT(3) VALUE ‘000′,

         NAME(12) VALUE ‘CPICUSER’,

         PASSW(8) VALUE ‘CPIC’,

         LANGU(1) VALUE ‘D’,

         KORRV(1),

         REPORT(8) VALUE ‘ZCPICTST’,

         FORM(30)  VALUE ‘CPIC_EXAMPLE’,

       END OF CONNECT_STRING.

 

DATA:  CONVID   TYPE CONVERSATION_ID,

       DEST     TYPE DESTINATION VALUE ‘R2-SYST’,

       CPIC_RC  TYPE RETURN_CODE,

       DINFO    TYPE C_INFO,

       SINFO    TYPE C_INFO.

 

DATA:  RECORD(80) TYPE C,

       LENG       TYPE I VALUE 20.

INCLUDE RSCPICDF.

 

COMMUNICATION INIT DESTINATION DEST

                   ID          CONVID

                   RETURNCODE  CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: / ‘COMMUNICATION INIT, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

COMMUNICATION ALLOCATE ID CONVID

                       RETURNCODE CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: / ‘COMMUNICATION ALLOCATE, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

 

* Convert logon data to EBCDIC

TRANSLATE CONNECT_STRING TO CODE PAGE ‘0100′.

COMMUNICATION SEND ID CONVID BUFFER CONNECT_STRING.

IF CPIC_RC NE CM_OK.

   WRITE: / ‘COMMUNICATION ALLOCATE, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

* Receive acknowledgement of logon

COMMUNICATION RECEIVE ID      CONVID

                   BUFFER     RECORD

                   DATAINFO   DINFO

                   STATUSINFO SINFO

                   RETURNCODE CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: / ‘COMMUNICATION RECEIVE, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

* Convert acknowledgement to ASCII

TRANSLATE RECORD FROM CODE PAGE ‘0100′.

 

* Now begin user-specific data exchange

RECORD = ‘The quick brown fox jumps over the lazy dog’.

 

* Depending on the partner system, convert to another

* character set

TRANSLATE RECORD TO CODE PAGE ‘0100′.

 

COMMUNICATION SEND ID     CONVID

                   BUFFER RECORD

                   LENGTH LENG

                   RETURNCODE CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: / ‘COMMUNICATION SEND, RC = ‘, CPIC_RC.

   EXIT.

ENDIF.

COMMUNICATION DEALLOCATE ID CONVID

                         RETURNCODE CPIC_RC.

IF CPIC_RC NE CM_OK.

   WRITE: / 'COMMUNICATION DEALLOCATE, RC = ', CPIC_RC.

   EXIT.

ENDIF.

 

PROGRAM ZCPICTST.

INCLUDE RSCPICDF.

* The receiving procedure in the relevant partner program follows

FORM CPIC_EXAMPLE.

  TYPES: CONVERSATION_ID(8) TYPE C,

         RETURN_CODE        LIKE SY-SUBRC,

         C_INFO(4)          TYPE X.

  DATA:  CONVID  TYPE CONVERSATION_ID,

         CPIC_RC TYPE RETURN_CODE,

         RECORD(80) TYPE C,

         DINFO      TYPE C_INFO,

         SINFO      TYPE C_INFO.

 

  COMMUNICATION ACCEPT ID CONVID

                       RETURNCODE  CPIC_RC.

  IF CPIC_RC NE CM_OK.

     EXIT.

  ENDIF.

  COMMUNICATION RECEIVE ID         CONVID

                        BUFFER     RECORD

                        STATUSINFO SINFO

                        DATAINFO   DINFO

                        RETURNCODE CPIC_RC.

  IF CPIC_RC NE CM_OK AND CPIC_RC NE CM_DEALLOCATED_NORMAL.

     EXIT.

  ENDIF.

ENDFORM.

Index 
© SAP AG 1996 

COMPUTE 

Basic form

COMPUTE n = arithexp. 

Effect

Evaluates the arithmetic expression arithexp and places the
result in the field n . 

Allows use of the four basic calculation types + , - , * and / , the whole
number division operators DIV (quotient) and MOD (remainder), the
exponentiation operator ** (exponentiation " X ** Y means X to the power
of Y ) as well as the functions listed below. 

When evaluating mixed expressions, functions have priority. Then comes
exponentiation, followoed by the "point operations" * , / , DIV and
MOD , and finally + and - . Any combination of parentheses is also allowed. 

The fields involved are usually of type I , F or P , but there are exceptions
to this rule (see below). 

You can omit the key word COMPUTE . 
Built-in functions 

· Functions
for all number types 

ABS Amount (absolute value) |x| of x SIGN Sign (preceding
sign) of x; 

 

                            1        x > 0

 

               SIGN( x ) =  0   if   x = 0

 

                           -1        x < 0

CEIL Smallest whole number value not less than x FLOOR
Greatest whole number value not greater than x TRUNC Whole number part of x
FRAC Decimal part of x 

· Floating
point functions 

ACOS Arc cosine(x) in the range [-pi/2, pi/2], x from [-1,
1] ASIN Arc cosine(x) in the range [0, pi], x aus [-1, 1] ATAN Arc tangent(x)
in the range [-pi/2, pi/2] (pi = 3.1415926535897932) COS Cosine of an angle
specified in the arc SIN Sine of an angle specified in the arc TAN Tangent of
an angle specified in the arc COSH Hyperbola cosine SINH Hyperbola sine TANH
Hyperbola tangent EXP Exponential function for base e = 2.7182818284590452 LOG
Natural logarithm (i.e. base e) of a positive number LOG10 Logarithm of x for
base 10, x > 0 SQRT Square root of a non-negative number 

· String
functions 

STRLEN Length of a string up to the last non-blank character
(i.e. the occupied length ) 
Function expressions consist of three parts: 
Function identifier directly followed by an opening parenthesis Argument
Closing parenthesis 
All parts of an expression, particularly any parts of a function expression,
must be separated from each other by at least one blank. 

Example

The following statements, especially the arithmetic
expressions, are syntactically correct: 

 

DATA: I1 TYPE I, I2 TYPE I, I3 TYPE I,

      F1 TYPE F, F2 TYPE F,

      WORD1(10), WORD2(20).

...

F1 = ( I1 + EXP( F2 ) ) * I2 / SIN( 3 - I3 ).

COMPUTE F1 = SQRT( SQRT( ( I1 + I2 ) * I3 ) + F2 ).

I1 = STRLEN( WORD1 ) + STRLEN( WORD2 ).

 

Notes

When used in calculations, the amount of CPU time needed
depends on the data type. In very simple terms, type I is the cheapest, type F
needs longer and type P is the most expensive. 
Normally, packed numbers arithmetic is used to evaluate arithmetic expressions.
If, however, the expression contains a floating point function, or there is at
least one type F operand, or the result field is type F , floating point
arithmetic is used instead for the entire expression. On the other hand, if
only type I fields or date and time fields occur (see below), the calculation
involves integer operations. 
You can also perform calculations on numeric fields other than type I , F or P
. Before executing calculations, the necessary type conversions are performed
(see MOVE ). You can, for instance, subtract one date
field (type D ) from another, in order to calculate the number of days
difference. However, for reasons of efficiency, only operands of the same
number type should be used in one arithmetic expression (apart from the
operands of STRLEN ). This means that no conversion is necessary and special
optimization procedures can be performed. 
Division by 0 results in termination unless the dividend is also 0 ( 0 / 0 ).
In this case, the result is 0. 
As a string processing command, the STRLEN operator treats operands (regardless
of type) as character strings, without triggering internal conversions. On the
other hand, the operands of floating point functions are converted to type F if
they have another type. 

Example

Date and time arithmetic 

 

DATA: DAYS TYPE I,

      DATE_FROM TYPE D VALUE '19911224',

      DATE_TO   TYPE D VALUE '19920101',

DAYS = DATE_TO - DATE_FROM.

DAYS now contains the value 8. 

 

DATA: SECONDS TYPE I,

      TIME_FROM TYPE T VALUE '200000',

      TIME_TO   TYPE T VALUE '020000'.

SECONDS = ( TIME_TO - TIME_FROM ) MOD 86400.

SECONDS now contains the value 21600 (i.e. 6 hours). The operation " MOD 86400 " ensures
that the result is always a positive number, even if the period extends beyond
midnight. 

Note

Packed numbers arithmetic: 

All P fields are treated as whole numbers. Calculations involving decimal
places require additional programming to include multiplication or division by
10, 100, … . The DECIMALS specification with the DATA declaration is
effective only for output with WRITE . 
If, however, fixed point arithmetic is active, the DECIMALS specification is
also taken into account. In this case, intermediate results are calculated with
maximum accuracy (31 decimal places). This applies particularly to division. 
For this reason, you should always set the program attribute "Fixed point
arithmetic". 

Example

 

DATA P TYPE P.

P = 1 / 3 * 3.

Without "fixed point arithmetic", P has the value 0, since " 1 /
3 "
is rounded down to 0. 
With fixed point arithmetic, P has the value 1, since the intermediate result
of " 1 / 3 "
is 0.333333333333333333333333333333. 

Note

Floating point arithmetic 

With floating point arithmetic, you must always expect some loss of accuracy
through rounding errors (ABAP/4 number types ). 

Note

Exponentiation 

The exponential expression "x**y" means x*x*…*x y times, provided
that y is a natural number. For any value of y, x**y is explained by
exp(y*log(x)). 
Operators of the same ranke are evaluated from left to right. Only the
exponential operator, as is usual in mathematics, is evaluated from right to
left . The expression " 4 ** 3 ** 2 " thus corresponds to " 4 ** ( 3 **
2 ) " and not " ( 4 ** 3 ) ** 2 ", so the result is 262144 and not 4096.

The following resrtictions apply for the expression " X ** Y ": If X
is equal to 0, Y must be positive. If X is negative, Y must be a whole number. 

Note

DIV and MOD 

The whole number division operators DIV and MOD are defined as follows: 

· ndiv
= n1 DIV n2 

· nmod
= n1 MOD n2 

so that: 
n1 = ndiv * n2 + nmod ndiv is a whole number 0 <= nmod < |n2| 
A runtime error occurs if n2 is equal to 0 and n1 is not equal to 0. 

Example

 

DATA: D1 TYPE I, D2 TYPE I, D3 TYPE I, D4 TYPE I,

      M1 TYPE P DECIMALS 1, M2 TYPE P DECIMALS 1,

      M3 TYPE P DECIMALS 1, M4 TYPE P DECIMALS 1,

      PF1 TYPE F VALUE '+7.3',

      PF2 TYPE F VALUE '+2.4',

      NF1 TYPE F VALUE '-7.3',

      NF2 TYPE F VALUE '-2.4',

D1 = PF1 DIV PF2.  M1 = PF1 MOD PF2.

D2 = NF1 DIV PF2.  M2 = NF1 MOD PF2.

D3 = PF1 DIV NF2.  M3 = PF1 MOD NF2.

D4 = NF1 DIV NF2.  M4 = NF1 MOD NF2.

The variables now have the following values: 

D1 = 3, M1 = 0.1, 
D2 = - 4, M2
= 2.3, 
D3 = - 3, M3
= 0.1, 
D4 = 4, M4 = 2.3. 

Example

Functions ABS , SIGN , CEIL , FLOOR , TRUNC , FRAC 

 

DATA: I TYPE I,

      P TYPE P DECIMALS 2,

      M TYPE F            VALUE '-3.5',

      D TYPE P DECIMALS 1.

P = ABS( M ).   " 3,5

I = P.          "  4 - commercially rounded

I = M.          " -4

I = CEIL( P ).  "  4 - next largest whole number

I = CEIL( M ).  " -3

I = FLOOR( P ). "  3 - next smallest whole number

I = FLOOR( M ). " -4

I = TRUNC( P ). "  3 - whole number part

I = TRUNC( M ). " -3

D = FRAC( P ).  "  0,5 - decimal part

D = FRAC( M ).  " -0,5

 

Notes

Floating point functions 
Although the functions SIN , COS and TAN are defined for any numbers, the
results are imprecise if the argument is greater than about 1E8 , i.e. 10**8. 
The logarithm for a base other than e or 10 is calculated as follows: 

Logarithm of b for base a = LOG( b ) / LOG( a ) 

Note

Runtime errors 

Depending on the operands, the above operators and functions can cause runtime
errors (e.g. when evaluating the logarithm with a negative argument). 
Related ADD , SUBTRACT
, MULTIPLY , DIVIDE , MOVE 

Index 
© SAP AG 1996 

CONCATENATE 

 

Basic form

CONCATENATE f1 … fn INTO g. 

Addition

… SEPARATED BY h 

Effect

Places the fields f1 to fn after g . 

With the fields fi (1 <= i <= n), trailing blanks are ignored, i.e. these
fields are considered only to have the length STRLEN
( fi ). 

The return code value is set as follows: 

SY-SUBRC = 0 The result fits in g . 
SY_SUBRC = 4 The result was too long for g and was only copied to g in that
length. 

Example

 

DATA: ONE(10)   VALUE 'John',

      TWO(3)    VALUE ' F.',

      THREE(10) VALUE ' Kennedy',

      NAME(20).

CONCATENATE ONE TWO THREE INTO NAME.

Then, NAME contains the value " John F. Kennedy ". 

Addition

… SEPARATED BY h 

Effect

Inserts the separator h between the fields fi . 
Here, h is used in its defined length. 

Examples

 

DATA: ONE(10)   VALUE 'John',

      TWO(3)    VALUE 'F.',

      THREE(10) VALUE 'Kennedy',

      NAME(20).

CONCATENATE ONE TWO THREE INTO NAME SEPARATED BY SPACE.

Then, NAME has the value " John F. Kennedy ". 

 

DATA SEPARATOR(4) VALUE 'USA'.

CONCATENATE SPACE ONE TWO THREE INTO NAME

            SEPARATED BY SEPARATOR.

Then, NAME has the value " USA JohnUSA F.USA Ke ". 
The return value of SY-SUBRC is set to 4. 
Related 
SPLIT, SHIFT, REPLACE, TRANSLATE, CONDENSE 

Note

Performance 

You are recommended to use the key word CONCATENATE rather than your own
constructions because it is safer, more efficient and clearer. The runtime
required to append two 30-byte fields amounts to approx. 14 msn (standardized
microseconds). 

Index 
© SAP AG 1996 

CONDENSE 

 

Basic form

CONDENSE c. 

Addition

… NO-GAPS 

Effect

Shifts the contents of the field c to the left, so that each
word is separated by exactly one blank. 

Example

 

DATA: BEGIN OF NAME,

        TITLE(8),       VALUE 'Dr.',

        FIRST_NAME(10), VALUE 'Michael',

        SURNAME(10),    VALUE 'Hofmann',

      END   OF NAME.

CONDENSE NAME.

WRITE NAME.

produces the output: 

Dr. Michael Hofmann 

Addition

… NO-GAPS 

Effect

Suppresses all blanks from the field c 

Example

 

DATA: BEGIN OF NAME,

        TITLE(8),       VALUE 'Dr.',

        FIRST_NAME(10), VALUE 'Michael',

        SURNAME(10),   VALUE 'Hofmann',

      END   OF NAME.

CONDENSE NAME NO-GAPS.

The contents of NAME is now " Dr.MichaelHofmann ". 

Since the field string NAME is interpreted and handled like a type C field, the
CONDENSE statement treats it as a whole and ignores any sub-fields. The
contents of the component field would therefore now be as follows: 

NAME-TITLE = ‘Dr.Micha’ 
NAME-FIRST_NAME = ‘elHofmann ‘ 
NAME-SURNAME = ‘ ‘ 

Note

Do not use CONDENSE to manipulate field strings that include
fields not of type C. This could result in these component fields containing
characters of a different (i.e. incorrect) type. 
Related SHIFT , CONCATENATE
, REPLACE , SPLIT 

Note

Performance 
The runtime required to condense three fields is about 20 msn (standardized
micooseconds). The variant … NO-GAPS needs about 12 msn. 

Index 
© SAP AG 1996 

CONSTANTS 

 

Variants

1. CONSTANTS c. … VALUE [ val | IS INITIAL ]. 
2. CONSTANTS c(len) … VALUE [ val | IS INITIAL ]. 
3. CONSTANTS: BEGIN OF crec, 
… 
END OF crec. 

Effect

The CONSTANTS statement defines global and local constants.
Constants allow you to read statically declared data objects . They always have
a particular data type. Data types and data objects are essential components of
the ABAP/4 type concept . In contrast to variables defined with the DATA statement, you cannot change the value of a constant
once it has been defined. Apart from the additions … TYPE typ OCCURS n , …
LIKE f1OCCURS n and WITH HEADER LINE , all the additions used with the DATA
statement are allowed. However, in contrast to the DATA statement, the addition
… VALUE val or VALUE IS INITIAL obligatory with variants 1 and 2. See
additions with DATA . 

Example

 

CONSTANTS  CHAR1 VALUE 'X'.

 

CONSTANTS  INT   TYPE I VALUE 99.

 

CONSTANTS: BEGIN OF CONST_REC,

             C(2) TYPE I VALUE 'XX',

             N(2) TYPE N VALUE '12',

             X    TYPE X VALUE 'FF',

             I    TYPE I VALUE 99,

             P    TYPE P VALUE 99,

             F    TYPE F VALUE '9.99E9',

             D    TYPE D VALUE '19950101',

             T    TYPE T VALUE '235959',

           END OF CONST_REC.

Index 
© SAP AG 1996 

CONTINUE 

 

Basic form

CONTINUE. 

Effect

Within loop structures like 

· DO … ENDDO 

· WHILE … ENDWHILE 

· LOOP … ENDLOOP 

· SELECT … ENDSELECT 

CONTINUE terminates the current loop pass, returns the
processing to the beginning of the loop and starts the next loop pass, if there
is one. 

Example

DO loop: Omit an area (10 … 20) 

 

DO 100 TIMES.

  IF SY-INDEX >= 10 AND SY-INDEX <= 20.

    CONTINUE.

  ENDIF.

  ...

ENDDO.

Related CHECK , EXIT 

Index 
© SAP AG 1996 

CONTROLS 

 

Basic form

CONTROLS ctrl TYPE ctrl_type. 

Effect

Defines a control 

A control defines an ABAP/4 runtime object which displays data in a particular
visual format, depending on the type. It offers the user standard processing
options. 

At present, the following types of control are supported: 
Table control 
Related REFRESH CONTROL 

Index 
© SAP AG 1996 

ABAP/4 table control 

 

Basic form

CONTROLS ctrl TYPE TABLEVIEW USING SCREEN scr. 

Effect

Creates a table control ctrl of the type TABLEVIEW . The
reference screen for the initialization is the screen scr . 

Area of use 

The table control (referred to here as TC ) facilitates the display and entry
of one-line, tabular data in dialog transactions. 
The functional scope has been defined so that you can implement many typical
set operations usually handled by an elementary STEP-LOOP with the standard
methods of a TC . 

Functional scope 

· Resizeable
table grid for displaying and editing data. 

· Column
width and column position modifiable by user and by program. 

· Storing
and loading of user-specific column layout. 

· Selection
column for line selection with color selection display. 

· Variable
column headers as pushbuttons for column selection. 

· Simple
selection, multiple selection, Select/deselect all. 

· Scrolling
functions (horizontal and vertical) via scroll bar. 

· Fixing
of any number of key columns. 

· Setting
attributes for each cell at runtime. 

Programming 

The data exchange between the application and the SAPgui is achieved with a
STEP-LOOP , i.e. an ABAP/4 module is called to transfer data for each page. 

Example

Processing without an internal table 

 

PROCESS BEFORE OUTPUT.

LOOP WITH CONTROL ctrl.

  MODULE ctrl_pbo.

ENDLOOP.

 

PROCESS AFTER INPUT.

LOOP WITH CONTROL ctrl.

  MODULE ctrl_pai.

ENDLOOP.

In this case, the module ctrl_pbo OUTPUT is called once for each output line
before the screen is displayed, in order to fill the output fields. 
After the user has entered data on the screen, the module ctrl_pai INPUT is
executed to check the input and copy the new contents. 

Example

Processing with an internal table 

 

PROCESS BEFORE OUTPUT.

LOOP AT itab WITH CONTROL ctrl CURSOR ctrl-CURRENT_LINE.

ENDLOOP.

 

PROCESS AFTER INPUT.

LOOP AT itab WITH CONTROL ctrl.

  MODULE ctrl_pai.

ENDLOOP.

Here, the system fills the output fields before displaying the screen by
reading the internal table itab . 
When the user has entered data, the module ctrl_pai INPUT must be executed to
check the input and to refresh the contents of the internal table. 
Vertical scrolling with the scroll bar is followed by the event PAI for the
displayed page. Then, cntl-TOP_LINE is increased and PBO is processed for the
next page. 
Program-driven scrolling and the most of the functionality described above is
achieved by manipulating the control attributes. 
Attributes 

The CONTROLS statement creates a complex data object of the type CXTAB_CONTROL
with the name of the control. 

You maintain the initial values in the Screen Painter and assign the screen
with the initial values for a control using the addition USING SCREEN . 

Initialization is achieved automatically in the "1st access to the
control" (setting or reading values). 

You can use the customizing button (in the top right corner) to save the
current setting (column widths and column positions) and use it as the initial
value for the next call. 

All the initial values can be overwritten by the program using the MOVE … TO
TC attributes statement. 

Example

ctrl-fixed_cols = 2. "2 columns fixed 
The contents of the SCREEN structure (table Cols ) acts as a default value for
each line of this column, but within LOOP … ENDLOOP (flow logic), it can be
overwritten by LOOP AT SCREEN / MODIFY SCREEN . 

With the attributes listed below, you should be aware of the following: 
LINES This must always be set as the only attribute if you are not using LOOP
AT itab . 
TOP_LINE Also set by the SAPgui through the vertical scroll bar slider. 
CURRENT_LINE Read only, set by the system ( TOP_LINE + SY-STEPL - 1 ) 
LEFT_COL Also set by the SAPgui through the horizontal scroll bar slider. 
COLS-INDEX Also set by the SAPgui after moving columns. 
COLS-SELECTED Also set by the SAPgui after column selection. 
When displaying the control, the system uses the current contents when the
event DCO occurs (i.e. after all PBO modules have run). The modified values
(brought about by the user making changes on the screen) are set immediately
after DCI (i.e. before the first PAI module runs). 

Index 
© SAP AG 1996 

CONVERT 

 

Variants

1. CONVERT DATE f1 INTO INVERTED-DATE f2. 
2. CONVERT INVERTED-DATE f1 INTO DATE f2. 

Effect

Allows conversion between different formats which do not
have their own type (see also MOVE ). 

The field f1 is converted from the source format to the target format and
placed in f2 . 

At present, the following formats are supported: 
DATE ==> INVERTED-DATE INVERTED-DATE ==> DATE 
Both formats form the nine’s complement of internal date representation, e.g.
19950511 ==> 80049488 or 80049488 ==> 19950511. In inverse
date format, the most recent date has the lowest numerical value. This is
useful when sorting date specifications. 

Note

The technique of modifying the sequence of dates by
inverting the internal date format is only used in very rare cases. For
example, you can sort internal tables in ascending or descending date order
much more elegantly with the additons … ASCENDING bzw. … DESCENDING of the SORT statement. 

Example

 

DATA DATE_INV LIKE SY-DATUM.

CONVERT DATE SY-DATUM INTO INVERTED-DATE DATE_INV.

If, for example, the internal representation of 11.05.95 in SY-DATUM is
19950511, the value of DATE_INV after execution of the CONVERT statement is
80049488. 

Note

Runtime errors 

· CONVERT_ILLEGAL_CONVERSION
: Conversion not possible due to incorrect field length. 

Index 
© SAP AG 1996 

CREATE 

Basic form

CREATE OBJECT obj class. 

Addition

… LANGUAGE langu 

Effect

Generates an object of the class class . 

To address an OLE automation server (e.g. EXCEL) from ABAP/4 , the server must
be registered with SAP. The transaction SOLE allows you to assign an automation
server to a class. 
The CREATE statement generates the initial object and this can be processed
further with the relevant key words. 
The return code value of SY-SUBRC indicates the result of the generation: 

The return code value is set as follows: 

SY-SUBRC = 0 Object successfully generated. 
SY-SUBRC = 1 SAPGUI communication error. 
SY-SUBRC = 2 SAPGUI function call error. The OLE function modules are
implemented only under Windows. 
SY-SUBRC = 3 The OLE API call resulted in an error; this is possibly a storage
space problem. 
SY_SUBRC = 4 The object is not registered with SAP. 

Addition

… LANGUAGE langu 

Effect

Determines the language chosen for method and attribute
names of the object class. 
If no specification is made, English is the default. 

CREATE OBJECT 

Example

Generate an EXCEL object. 

 

INCLUDE OLE2INCL.

DATA EXCEL TYPE OLE2_OBJECT.

CREATE OBJECT EXCEL 'Excel.Application'.

 

Related 
SET PROPERTY 
GET PROPERTY 
CALL METHOD 
FREE OBJECT 

Index 
© SAP AG 1996 

This statement is not supported in the R/3 System. Use the
following function modules instead: 

 

CONVERT_TO_FOREIGN_CURRENCY

CONVERT_TO_LOCAL_CURRENCY

Index 
© SAP AG 1996 

DATA 

 

Variants

1. DATA f. 
2. DATA f(len). 
3. DATA: BEGIN OF rec, 
… 
END OF rec. 
4. DATA: BEGIN OF itab OCCURS n, 
… 
END OF itab. 
5. DATA: BEGIN OF COMMON PART c, 
… 
END OF COMMON PART. 

Effect

Defines global and local variables. Variables allow you to
address declared data objects . They always have a particular data type. Data
types and data objects are important components of the ABAP/4 type concept . 

Variant 1

DATA f. 

Additions

1. … TYPE typ 
2. … LIKE f1 
3. … TYPE typ OCCURS n 
4. … LIKE f1 OCCURS n 
5. … TYPE LINE OF itabtyp 
6. … LIKE LINE OF itab 
7. … VALUE lit 
8. … DECIMALS n 
9. … WITH HEADER LINE 

Effect

Creates the internal field f in its standard length. If you
do not specify the type (using the addition TYPE ), a field of type C is
assumed. 

The field f can be up to 30 characters long. You can use any characters you
like except the special characters ‘(’ , ‘)’ , ‘+’ , ‘-’ , ‘,’ and ‘:’ .
Numeric characters are allowed but the field name may not consist of numbers
alone. 

SPACE is a reserved word and therefore cannot be used. Also, the field name
cannot be the same as one of the additional parameters of the introductory key
word (e.g. PERFORM SUB USING CHANGING. ). 

Recommendations for field names: 
Always use a letter as the first character. 
Use the underscore to join together words which are part of the same name (e.g.
NEW_PRODUCT ). The hyphen should not be used here, since it is reserved for the
names of field string components (see below). 

Addition 1

… TYPE typ. 

Effect

Creates a field f of the type typ . You can use either one
of the predefined types listed below or one of your own types which you define
with TYPES . 
The standard length ( SL ) of the field depends on the type. 

	Type
	Description
	SL
	Initial value

	 
	 
	 
	 

	C
	Text (character)
	1
	Blank

	 
	 
	 
	 

	N
	Numeric text 
	1
	‘00…0′

	 
	 
	 
	 

	D
	Date (YYYYMMDD) 
	8
	‘00000000′

	 
	 
	 
	 

	T
	Time (HHMMSS) 
	6
	‘000000′

	 
	 
	 
	 

	X
	Hexadecimal 
	1
	X’00′

	 
	 
	 
	 

	I
	Whole number (integer)
	4
	0

	 
	 
	 
	 

	P
	Packed number 
	8
	0

	 
	 
	 
	 

	F
	Floating point no. 
	8
	‘0.0′

	 
	 
	 
	 


 

Example

 

DATA NUMBER TYPE I.

Creates the field NUMBER as type I . You can also use it in the program,
particularly if you want to assign number values and perform calculations. 

Notes

· The
data type I is the whole number type on which the hardware is based. Its
value range is from -2**31 to 2**31-1 (from -2.147.483.648 to
2.147.483.647). 
You use type P for fields containing monetary amounts, but type I is more
suitable for number fields, index fields, specifying positions and so
forth. 

 

· You
can use type F for positive and negative numbers other than zero in the
range from 1E-307 to 1E+308 with a degree of accuracy up to 15 decimal
places. (The ABAP/4 processor always uses the floating point operations of
the hardware in question rather than standardizing them.) Floating point
literals must be enclosed in quotation marks. The standard output length
is 22. 
Entries in type F fields may be formatted in any of the following ways: 

As a decimal number with or without sign and with or without a decimal
point. 

In the form e, where you specify the mantissa as above and the exponent
with or without a sign. (Examples of floating point literals: ‘1′ ,
‘-12.34567′ , ‘-765E-04′ , ‘1234E5′ , ‘+12E+34′ , ‘+12.3E-4′ . 

Since floating point arithmetic is fast on our hardware platforms, you
should use it when you need a greater value range and you are able to
tolerate rounding errors. Rounding errors may occur when converting the
external (decimal) format to the corresponding internal format (base 2 or
16) or vice-versa (ABAP/4 number types ). 

 

Addition 2

… LIKE f1 

Effect

Creates the field f with the same field attributes as the
field F1 which is already known. Any data objects are valid (fields,
parameters, structures, …) as long as types have been assigned. 

f1 can be any Dictionary reference. 

Example

 

DATA TABLE_INDEX LIKE SY-TABIX.

The field TABLE_INDEX now has the same attributes as SY-TABIX (the index for
internal tables). 

Note

This addition is often useful, since the ABAP/4 runtime
system performs type changes on fields automatically. Any unnecessary and/or
unwanted conversions are thus avoided. 

Addition 3

… TYPE typ OCCURS n 

Effect

Defines an internal table without header line. Such a table
consists of any number of table lines with the type typ . 
To fill and edit this table, you can use statements like APPEND
, READ TABLE , LOOP and SORT . 
The OCCURS parameter n defines how many tables lines are created initially. If
necessary, you can increase the size later. Otherwise, the OCCURS parameter is
of no significance, apart from the exception that applies with APPEND SORTED BY . 

Example

 

TYPES: BEGIN OF LINE_TYPE,

         NAME(20) TYPE C,

         AGE      TYPE I,

       END OF LINE_TYPE.

DATA:  PERSONS    TYPE LINE_TYPE OCCURS 20,

       PERSONS_WA TYPE LINE_TYPE.

PERSONS_WA-NAME = 'Michael'.

PERSONS_WA-AGE  = 25.

APPEND PERSONS_WA TO PERSONS.

PERSONS_WA-NAME = 'Gabriela'

PERSONS_WA-AGE  = 22.

APPEND PERSONS_WA TO PERSONS.

 

The internal table  PERSONS  now consists of two table entries.

 

Note

Access to table entries not in main memory takes much
longer. On the other hand, there is not enough space in main memory to hold
such large tables because the roll area is resticted (see above). 

Addition 4

… LIKE f1 OCCURS n 

Effect

Defines an internal table without header line. Such a table
consists of any number of table lines with the structure as specified by the
data object f1 . Processing is the same as for addition 3. 

Example

 

DATA:  BEGIN OF PERSON,

         NAME(20),

         AGE TYPE I,

       END OF PERSON.

DATA:  PERSONS LIKE PERSON OCCURS 20.

 

PERSON-NAME = 'Michael'.

PERSON-AGE  = 25.

APPEND PERSON TO PERSONS.

PERSON-NAME = 'Gabriela'

PERSON-AGE  = 22.

APPEND PERSON TO PERSONS.

 

The internal table  PERSONS  now consists of two table entries.

 

Addition 5

… TYPE LINE OF itabtype 

Effect

The specified type itabtyp must be an internal table type.
This operation creates a data object with the same line type as the table type
specified. 

Example

 

TYPES TAB_TYP TYPE I OCCURS 10.

DATA TAB_WA TYPE LINE OF TAB_TYP.

 

The data object TAB_WA now has the same attributes as a line
of the table type TAB_TYP and thus the type I . 

Addition 6

… LIKE LINE OF itab 

Effect

The data object tab must be an internal table with or
without a header line. This operation creates a data object with the same line
type as the table specified. 

Example

 

DATA TAB TYP TYPE I OCCURS 10.

DATA TAB_WA TYPE LINE OF TAB.

The data object TAB_WA now has the same attributes as a line of the table TAB
and thus the type I . 

Addition 7

… VALUE lit 

Effect

The initial value of the field f is the literal lit instead
of that defined in the table above. You can also specify a constant or even use
IS INITIAL . In the latter case, the field is preset to the type-specific
initial value. This form is particularly important in connection with the CONSTANTS statement which always requires you to use
the addition VALUES . 

Example

 

DATA NUMBER      TYPE I        VALUE 123,

     FLAG                      VALUE 'X',

     TABLE_INDEX LIKE SY-TABIX VALUE 45.

When created, the field NUMBER of type I contains 123 rather
than the expected initial value of 0. The newly created field FLAG of type C
(length 1) contains ‘X’ , while TABLE_INDEX contains 45, since the system field
SY-TABIX is a numeric field. 

Addition 8

… DECIMALS n 

Effect

Only makes sense with field type P . When you perform
calculations and on output, the field has n decimal decimal places, where n is
a number between 0 and 14. 

In the case of newly generated programs, you normally activate fixed point
arithmetic in the attributes. If it is not set, the DECIMALS specification is
taken into account on output, but not when performing calculations. This means
that the programmer must take care of any decimal point calculations by
multiplying or dividing by powers of ten. (see COMPUTE
) 
Fixed point arithmetic should always be active when you are performing
calculations, since this enables intermediate results (for division) to be
calculated as accurately as possible (in this case, to 31 decimal places). 
To decide whether you should use the fixed point type P or the floating point
type F , see "ABAP/4 number types ". 

Addition 9

… WITH HEADER LINE 

Effect

You can only use this addition with table types. When you
specify WITH HEADER LINE , you create a header line with the same name type as
a table line in addition to the table. With non-table operations (e.g. MOVE ), the name f refers to this header line. With table
operations (e.g. APPEND , 
the name f refers to the table or the table and header line. The notation f[]
always denotes the table. The result of this expression is a table without a
header line and can be used as such. 

Example

 

DATA:  BEGIN OF PERSON_TYPE,

         NAME(20),

         AGE TYPE I,

       END OF PERSON_TYPE.

DATA:  PERSONS LIKE PERSON_TYPE OCCURS 20 WITH HEADER LINE.

 

PERSON-NAME = 'Michael'.

PERSON-AGE  = 25.

APPEND PERSONS.

PERSON-NAME = 'Gabriela'

PERSON-AGE  = 22.

APPEND PERSONS.

* Delete header line

CLEAR PERSONS.

* Delete table

CLEAR PERSONS[].

 

Variant 2

DATA f(len). 

Additions

As for variant 1 

Effect

Creates the field f in the length len . 

You can use this variant only for fields of type C , N , P and X . Any other
field types must have their standard lengths (see table under effect of variant
1). 

The lengths allowed depend on the field type: 

	Type
	Allowed lengths

	 
	 

	C
	1 - 65535

	N
	1 - 65535

	P
	1 - 16

	X
	1 - 65535


Note

Each byte can contain (one character or) two decimal or
hexadecimal digits. Since one place in type P fields is reserved for the sign,
a type P field of length 3 can contain 5 digits, whereas a type X field of
length 3 can hold 6 digits. Both have an output length of 6. 

Variant 3

DATA: BEGIN OF rec, 
… 
END OF rec. 

Effect

Defines the field string rec which groups together all the
fields defined for the field string rec between " BEGIN OF REC " and
" END OF rec ". Each field carries the prefix " rec- ".
Field strings can be nested to any depth. See Data objects . 
When a field string needs the same fields as an already defined field string in
addition to its own fields, you can include these fields in the field string
with INCLUDE STRUCTURE . If no additional fields are
needed, it is better to use LIKE . 

Example

 

DATA: BEGIN OF PERSON,

        NAME(20) VALUE 'May',

        AGE TYPE I,

      END   OF PERSON.

PERSON-AGE  = 35.

 

The field PERSON-NAME now contains the contents
"May". 

 

DATA: BEGIN OF PERSON1,

        FIRSTNAME(20) VALUE 'Michael'.

        INCLUDE STRUCTURE PERSON.

DATA  END   OF PERSON1.

 

Notes

· If
you list a field string as a field, this field (" rec ") is type
C , but you should not use a field string like a field, if the field
string contains number fields (i.e. type I , F or F ). The length of rec
is derived from the sum of the lengths of all components of rec . However,
since some fields (for example, to the limit of a word), they include
padding fields that also contribute to the overall length of rec ; for
this reason, you cannot use the lengths of fields that occur before a
particular field string component to calculate its offset to the start of
the field string. On the other hand, you can guarantee that two fields
with the same structure always have the same structure (even where padding
fields are concerned). This means that you can compare and assign fields
directly below each other (with MOVE , IF , etc.) and do not have to work
field by field (e.g. with MOVE-CORRESPONDING ). 
INCLUDE s are aligned according to maxumum alignment of their components.
This applies both to INCLUDE s in ABAP/4 programs and also INCLUDE s in Dictionary
structures. 

 

· The
TABLES statement automatically defines a field
string (the work area. Even the header line belonging to an internal table
(see below) is a field string. 

 

Variant 4

DATA: BEGIN OF itab OCCURS n, 
… 
END OF itab. 

Additions

… VALID BETWEEN f1 AND f2 

Effect

Defines the internal table itab . 

An internal table includes a header line, which is a field string containing
the fields defined between " BEGIN OF itab OCCURS n " and " END
OF itab " (see variant 3), and any number of table lines with the same
structure as the header line. 

To fill and edit an internal table, you use various statements such as APPEND , 
DEFINE 

 

Basic form

DEFINE macro. 

Effect

Defines a program component (macro) under the name macro .
It must consist only of ABAP/4 statements and is expanded at compilation time. 

A macro should always be concluded with the END-OF-DEFINITION statement. 

In the definition, you can use &n to reference positional parameters (n = 0
.. 9). When the macro is called, &n is replaced by the n-th actual
parameter. 

Example

Define a macro called "++" for use in the program. 

 

DEFINE ++.

ADD 1 TO &1.

END-OF-DEFINITION.

 

DATA: NUMBER TYPE I VALUE 1.

...

++ NUMBER.

 

Notes

· In
general, it is better to use subroutines (FORM , FUNCTION ) rather than macros because subroutines
- unlike macros - are supported by all the ABAP/4 Development Workbench
tools (including debugging, runtime analysis, runtime error handling,
…). 

· You
cannot nest macro definitions. 

Index 
© SAP AG 1996 

DELETE 

Delete from a database table 

- DELETE FROM dbtab WHERE condition. 
- DELETE FROM (dbtabname) WHERE condition. 
- DELETE dbtab. 
- DELETE *dbtab. 
- DELETE (dbtabname) … . 
- DELETE dbtab FROM TABLE itab. 
- DELETE (dbtabname) FROM TABLE itab. 
- DELETE dbtab VERSION vers. 
- DELETE *dbtab VERSION vers. 
Delete from an internal table 

- DELETE itab. 
- DELETE itab INDEX idx. 
- DELETE itab FROM idx1 TO idx2. 
- DELETE itab WHERE condition. 
- DELETE ADJACENT DUPLICATES FROM itab. 
Delete a program 

- DELETE REPORT prog. 
Delete text elements 

- DELETE TEXTPOOL prog LANGUAGE lg. 
Delete a data cluster 

- DELETE FROM DATABASE dbtab(ar) …ID key. 
Delete a file 

- DELETE DATASET dsn. 
Delete a screen 

- DELETE DYNPRO f. 

Index 
© SAP AG 1996 

DELETE - delete a file 

 

Basic form

DELETE DATASET dsn. 

Effect

Deletes the file specified in the field dsn . 

The return code value is set as follows: 

SY-SUBRC = 0 File deleted. 

SY_SUBRC = 4 File does not exist or could not be deleted. 
Possible reasons: 
1) The file does not exist. 2) The file is a directory. 3) The R/3 System has
no search authorization 
for a component of the file name. 4) The R/3 System has no search authorization

for the directory which contains the file. 5) A component of the search path is
not a 
directory. 6) The file is a symbolic link which cannot be 
resolved (endless loop ?). 7) The file is a program which is currently 
running. 
Related OPEN DATASET , READ
DATASET , CLOSE . 

Index 
© SAP AG 1996 

DELETE - Delete from a database table 

 

Variants

1. DELETE FROM dbtab WHERE condition. 
DELETE FROM (dbtabname) WHERE condition. 
2. DELETE dbtab. 
DELETE *dbtab. 
DELETE (dbtabname) … 
3. DELETE dbtab FROM TABLE itab. 
DELETE (dbtabname) FROM TABLE itab. 
4. DELETE dbtab VERSION vers. 
DELETE *dbtab VERSION vers. 

Effect

Deletes lines in a database table . You can specify the name
of the database table either in the program itself with DELETE FROM dbtab …
or at runtime as the contents of the field dbtabname with DELETE FROM
(dbtabname) … . In both cases, the database table must be known in the ABAP/4
Dictionary. If you specify the name in the program, there must also be an
appropriate TABLES statement. Only data from the
current client is usually deleted. You can delete data using a view only if the
view refers to a single table and was created in the ABAP/4 Dictionary with the
maintenance status "No restriction". 

DELETE belongs to the Open SQL command set. 

Note

The DELETE statement does not perform authorization checks :
You must program these yourself. 

Variant 1

DELETE FROM dbtab WHERE condition. 
DELETE FROM (dbtabname) WHERE condition. 

Addition

… CLIENT SPECIFIED 

Effect

Deletes lines in a database table that satisfy the WHERE clause condition . With this variant, specification
of a WHERE condition is obligatory . 

When the statement has been executed, the system field SY-DBCNT contains the
number of deleted lines. 

The return code value is set as follows: 

SY-SUBRC = 0 At least one line was deleted. 
SY_SUBRC = 4 No lines were deleted, since no line was selected. 

Example

Delete all bookings for the Lufthansa flight 0400 on
28.02.1995 (in the current client): 

 

TABLES SBOOK.

 

DELETE FROM SBOOK WHERE CARRID = 'LH'       AND

                        CONNID = '0400'     AND

                        FLDATE = '19950228'.

 

Note

To delete all the lines in a table, you must specify a WHERE
condition that is true for all lines. You can achieve this with 

 

 ... WHERE f IN itab

 

If the internal table itab is empty, such a condition would
select all lines. 

Addition

… CLIENT SPECIFIED 

Effect

Switches off automatic client handling. This allows you to
delete data across all clients in the case of client-specific tables. The
client field is then treated like a normal table field, for which you can
formulate suitable conditions in the WHERE clause. 

You must specify the addition CLIENT SPECIFIED immediately after the name of
the database table. 

Variant 2

DELETE dbtab. 
DELETE *dbtab. 
DELETE (dbtabname) … 

Additions

1. … FROM wa 
2. … CLIENT SPECIFIED 

Effect

These are SAP-specific short forms used to delete a single
line of a database table. If the name of the database table is specified in the
program, the primary key of the line to be deleted is taken from the specified
work area - dbtab or *dbtab . If the name of the database table is not
determined until runtime ( DELETE (dbtabname) … ), the addition … FROM wa
is obligatory . 

When the statement has been executed, the system field SY-DBCNT contains the
number of deleted lines (0 or 1). 

The return code value is set as follows: 

SY-SUBRC = 0 The line was deleted. 
SY_SUBRC = 4 No lines could be deleted, since no line exists with the primary
key specified. 

Example

Delete the booking with the booking number 3 for the
Lufthansa flight 0400 on 28.02.1995 (in the current client): 

 

TABLES SBOOK.

SBOOK-CARRID = 'LH'.

SBOOK-CONNID = '0400'.

SBOOK-FLDATE = '19950228'.

SBOOK-BOOKID = '00000003'.

 

DELETE  SBOOK.

 

Addition 1

… FROM wa 

Effect

Takes the primary key for the line to be deleted not from
the table work area dbtab , but from the explicitly specified work area wa .
Here, the key values from left to right are taken from wa according to the
structure of the primary key in the table work area dbtab (see TABLES ). The structure of wa is not taken into account.
Therefore, the work area wa must be at least as wide (see DATA
) as the primary key in the table work area dbtab and the alignment of the work
area wa must correspond to the alignment of the primary key in the table work
area. Otherwise, you get a runtime error. 

Note

If a work area is not explicitly specified, the values for
the line to be deleted are taken from the table work area dbtab , even if the
statement appears in a subroutine (see FORM ) or
Funktionsbaustein (see FUNCTION ) where the table
work area is stored in a formal parameter or a local variable of the same name. 

Addition 2

… CLIENT SPECIFIED 

Effect

As with variant 1. 

Variant 3

DELETE dbtab FROM TABLE itab. 
DELETE (dbtabname) FROM TABLE itab. 

Addition

… CLIENT SPECIFIED 

Effect

Mass deletion: Deletes all database table lines for which
the internal table itab contains values for the primary key fields. The lines
of the internal table itab must satisfy the same condition as the work area wa
in addition 1 to variant. 

The system field SY-DBCNT contains the number of deleted lines, i.e. the number
of lines of the internal table itab for whose key values there were lines in
the database table dbtab . 

The return code value is set as follows: 

SY-SUBRC = 0 All lines from itab could be used to delete lines from dbtab . 
SY_SUBRC = 4 For at least one line of the internal table in the database table,
there was no line with the same primary key. All found lines are deleted.. 

Note

If the internal table itab is empty, SY-SUBRC and SY-DBCNT
are set to 0. 

Addition

… CLIENT SPECIFIED 

Effect

As with variant 1. 

Variant 4

DELETE dbtab VERSION vers. 
DELETE *dbtab VERSION vers. 

Note

This variant is obsolete, since variants 1 - 3 allow you to
specify the database table name dynamically. 

Effect

Deletes a line in a database table, the name of which is
taken from the field vers at runtime. The database table must be known to the
ABAP/4 Dictionary and its name must conform to the following naming convention:
It must begin with ‘T’ and can consist of four additional characters. The field
vers must contain the table name without a leading ‘T’. Only lines in the
current client are deleted. The line to be deleted is taken from the statically
specified table work area dbtab or *dbtab . 

The return code value is set as follows: 

SY-SUBRC = 0 The line was deleted. 
SY_SUBRC = 4 No lines could be deleted because no line existed with the
specified primary key. 

Index 
© SAP AG 1996 

DELETE DYNPRO - delete a screen 

 

Basic form

DELETE DYNPRO f. 

Effect

Deletes the screen specified in the field f . 

The return code value is set as follows: 
SY-SUBRC = 0 The screen was deleted. 
SY_SUBRC = 4 The screen does not exist. 
The contents of f consist of the 8-character program name and the 4-character
screen number. 

Example

 

DELETE DYNPRO 'SAPTESTX0100'.

Related IMPORT DYNPRO , EXPORT
DYNPRO , GENERATE DYNPRO , SYNTAX-CHECK
FOR DYNPRO . 

Index 
© SAP AG 1996 

DELETE - delete a data cluster 

 

Basic form

DELETE FROM DATABASE dbtab(ar) ID key. 

Addition

… CLIENT f 

Effect

Deletes the data cluster stored in the table dbtab under the
area ar (constant) and the ID key (field or literal) (EXPORT
… TO DATABASE … ). 

Example

 

TABLES INDX.

DATA: BEGIN OF TAB OCCURS 1,

        CONT(30),

      END   OF TAB.

DATA: FLD(30) TYPE C.

...

EXPORT TAB FLD TO DATABASE INDX(AR) ID 'TEST'.

You can delete this data cluster with the following statement: 

 

DELETE FROM DATABASE INDX(AR) ID 'TEST'.

 

Addition 1

… CLIENT f 

Effect

Deletes the data cluster in the client specified in the
table f (only with client-specific import/export databases). 

Example

 

TABLES INDX.

DELETE FROM DATABASE INDX(AR) CLIENT '001' ID 'TEST'.

Index 
© SAP AG 1996 

DELETE - Delete from an internal table 

 

Variants

1. DELETE itab. 
2. DELETE itab INDEX idx. 
3. DELETE itab FROM idx1 TO idx2. 
4. DELETE itab WHERE condition. 
5. DELETE ADJACENT DUPLICATES FROM itab. 

Effect

Deletes one or more lines from an internal table. 

Note

The deletion of lines within a LOOP … ENDLOOP loop is
performed in a sequence of loop passes. 

Variant 1

DELETE itab. 

Effect

The current entry of the internal table itab is 
deleted in a LOOP loop. 
Return code value 
The is set to 0. 

Note

After deleting the current entry in an internal table in a LOOP loop, the effect of further update operations on
the current entry without an INDEX specification is not guaranteed and may
changed in later Releases. 

Variant 2

DELETE itab INDEX idx. 

Effect

Deletes the idx entry from the internal table itab . 

The return code value is set as follows: 

SY-SUBRC = 0 The entry was deleted. 
SY_SUBRC = 4 The entry does not exist. 

Variant 3

DELETE itab FROM idx1 TO idx2. 

Effect

Deletes the line area from index idx1 to idx2 from internal
table itab . At least one of the two parameters FROM idx1 or TO idx2 should be
specified. If parameter FROM is missing, the area from the start of the table
to line idx2 is deleted. If parameter TO is missing, the area from line idx1 to
the end of the table is deleted. Start index idx1 must be greater than 0. 

The return code value is set as follows: 

SY-SUBRC = 0 At least one entry was deleted. 
SY_SUBRC = 4 None of the entries were deleted. 

Variant 4

DELETE itab WHERE condition. 

Additions

1. … FROM idx1 
2. … TO idx2 

Effect

Deletes all entries from internal table itab , which
satisfies the condition condition . 

The return code value is set as follows: 

SY-SUBRC = 0 At least one entry was deleted. 
SY_SUBRC = 4 None of the entries were deleted. 

Addition 1

… FROM idx1 

Effect

The line area to be investigated is restricted to the lines
up to index idx1 . If the addition FROM idx1 is missing, a search is carried
out from the beginning of the table. 
The addition FROM must come before the WHERE condition. 

Addition 2

… TO idx2 

Effect

Restricts the line area to be investigated to the lines up
to index idx2 . If the addition TO idx2 is missing, a search is carried out
until the end of the table. 
The addition TO must come before the WHERE condition. 

Example

Delete all lines in a name table between lines 5 and 36, if
the entry begins with one of the letters ‘A’ to ‘C’ : 

 

DATA: BEGIN OF NAMETAB OCCURS 100,

        NAME(30) TYPE C,       END OF NAMETAB.

...

DELETE NAMETAB FROM 5 TO 36 WHERE NAME CA 'ABC'.

 

Variant 5

DELETE ADJACENT DUPLICATES FROM itab. 

Additions

1. … COMPARING f1 f2 … 
2. … COMPARING ALL FIELDS 

Effect

Deletes neighboring, duplicate entries from the internal
table itab . If there are n duplicate entries, the first entry is retained and
the other n - 1 entries are deleted. 

Two lines are considered to be duplicated if their default keys match. 

The return code value is set as follows: 

SY-SUBRC = 0 At least one duplicate exists, at least one entry deleted. 
SY_SUBRC = 4 No duplicates exist, no entry deleted. 

Addition 1

… COMPARING f1 f2 … 

Effect

Two lines of the internal table itab are considered to be
duplicates if the specified fields f1 , f2 , …. match. 

Addition 2

… COMPARING ALL FIELDS 

Effect

Two lines are considered to be duplicates if all fields of
the table entries match. 

Notes

The DELETE ADJACENT DUPLICATES statement is especially
useful if the internal table itab is sorted by fields
(whether in ascending or descending order) which were compared during duplicate
determination. In this case, the deletion of neighbouring duplicates is the
same as the deletion of all duplicates. 
If a comparison criterion is only known at runtime, it can be specified
dynamically as the content of a field name by using COMPARING … (name) … .
If name is blank at runtime, the comparison criterion is ignored. If name
contains an invalid component name, a runtime error occurs. 
Comparison criteria - statistically or dynamically specified - can be further
restriced by specifying the offset and/or length. 

Note

Performance 
Deleting a line from an internal table incurs index maintenance costs which
depend on the index of the line to be deleted. The runtime depends on the line
width of the table. 

For example, deleting a line in the middle of an internal table with 200
entries requires about 10 msn (standardized microseconds). 

Deleting a range of entries with " DELETE itab FROM idx1 TO idx2. "
deleting a set of entries with " DELETE itab WHERE … " only incur
index maintenance costs once. Compared with a LOOP , which deletes
line-by-line, this is much faster. 
To delete neighboring, duplicate entries from an internal table, use the
variant " DELETE ADJACENT DUPLICATES FROM itab. " instead of LOOP
constructions. 
Related INSERT itab , MODIFY
itab 

Index 
© SAP AG 1996 

DELETE - delete a program 

 

Basic form

DELETE REPORT prog. 

Effect

Deletes some components (source code, attributes, text
elements and generated version) of the program specified in the field prog . 

The return code value is set as follows: 

SY-SUBRC = 0 The program was deleted. 
SY_SUBRC = 4 The program does not exist. 

Note

This statement deletes neither the variants nor the
documentation. 
Normally, you should use the function module RS_DELETE_PROGRAM to delete a
program. 
Related INSERT REPORT , DELETE
TEXTPOOL 

Index 
© SAP AG 1996 

DELETE - delete text elements 

 

Basic form

DELETE TEXTPOOL prog LANGUAGE lg. 

Effect

Deletes all text elements of the program specified in the
field prog for the language specified in the field lg from the library. 

If you use the value ‘*’ for lg , the text elements of all languages are
deleted. 

Example

Delete all text elements of the program PROGNAME in the
language "English": 

 

DATA: PROGRAM(8) VALUE 'PROGNAME'.

 

DELETE TEXTPOOL PROGRAM LANGUAGE 'E'.

Related INSERT TEXTPOOL , READ TEXTPOOL 

Index 
© SAP AG 1996 

DESCRIBE 

Return attributes of a field 
- DESCRIBE FIELD f. 
Return attributes of an internal table 
- DESCRIBE TABLE itab. 
Determine distance between two fields 
- DESCRIBE DISTANCE BETWEEN f1 AND f2 INTO f3. 
Return attributes of a list 
- DESCRIBE LIST NUMBER OF LINES lin. 
- DESCRIBE LIST NUMBER OF PAGES n. 
- DESCRIBE LIST LINE lin PAGE pag. 
- DESCRIBE LIST PAGE pag. 

Index 
© SAP AG 1996 

DESCRIBE DISTANCE BETWEEN f1 AND f2 INTO f3 

Effect

Returns the distance between the fields f1 and f2 in f3. 

Example

 

TABLES LFA1.

DATA DIS TYPE P.

DESCRIBE DISTANCE BETWEEN LFA1-LAND1

                  AND     LFA1-NAME1

                  INTO    DIS.

 

Result: DIS contains the value 14, since exactly two fields
lie between LAND1 and NAME1, namely LNRZA (10 bytes) and LOEVM (1 byte);
additionally, the sub-field LAND1 is 3 bytes long. Therefore, the start of the
sub-field LAND1 is exactly 14 bytes from the start of the sub-field NAME1. 

Index 
© SAP AG 1996 

DESCRIBE - determine distance between two
fields 

 

Basic form

DESCRIBE DISTANCE BETWEEN f1 AND f2 INTO f3. 

Effect

Determines the distance between the fields f1 and f2 and
places the result (in bytes) in f3 . 

Example

Determine the distance between two components of the demo
table SBOOK in the flight reservation system: 

 

TABLES SBOOK.

DATA DIST TYPE I.

DESCRIBE DISTANCE BETWEEN SBOOK-CARRID

                  AND     SBOOK-BOOKID

                  INTO    DIST.

Result: DIST contains the value 15 because exactly two fields, SFLIGHT-CONNID
(4 bytes) and SBOOK-FLDATE (8 bytes), lie between the SBOOK components CARRID
and BOOKID ; also, SBOOK-CARRID is itself 3 bytes long. The sum of these values
gives the distance between the two components in bytes. 

Index 
© SAP AG 1996 

DESCRIBE - Supply attributes of a field 

 

Basic form

DESCRIBE FIELD f. 

Effect

Supplies the attributes of the field f . You must specify at
least one of the additions: 

Additions

1. … LENGTH len 
2. … TYPE typ 
3. … TYPE typ COMPONENTS n 
4. … OUTPUT-LENGTH len 
5. … DECIMALS n 
6. … EDIT MASK mask 

Addition 1

… LENGTH len 

Effect

Returns the length of the field f in the field 
len . 

Example

 

DATA: FLD(8),

      LEN TYPE P.

DESCRIBE FIELD FLD LENGTH LEN.

 

Result: LEN contains the value 8. 

Addition 2

… TYPE typ 

Effect

Returns the data type of f in the field typ 

Example

 

DATA: FLD(8) TYPE N,

      F_TYPE.

DESCRIBE FIELD FLD TYPE F_TYPE.

 

Result:  F_TYPE  contains the value  'N' .

 

Note
 

  Along with the elementary data types you can specify under

 DATA  (C, N, etc.), several other data types are created either

with reference to Dictionary fields or during generation. These data

types, which are also returned by  DESCRIBE , have the following

type IDs:

h Internal table s 2-byte integer with leading sign b 1-byte integer without
leading sign u Structure without internal table v Structure containing at least
one internal table 
For compatibility reasons, … TYPE typ returns C rather than u or v with
structures. 

Addition 3

… TYPE typ COMPONENTS n 

Effect

Similar to … TYPE typ except that, with structures in typ
, u or v are returned and in the number of structure components is set in n .
If f is not a structure, n is set to 0. 

Example

Recursive processing of the pages of an ABAP/4 data
structure: 

 

FORM TEST USING F.

  DATA: TYP(1) TYPE C, N TYPE I.

  FIELD-SYMBOLS: <F>.

  DO.

    ASSIGN COMPONENT SY-INDEX OF STRUCTURE F TO <F>.

    IF SY-SUBRC <> 0. EXIT. ENDIF.

    DESCRIBE FIELD <F> TYPE TYP COMPONENTS N.

    IF N > 0. " Equivalent is TYP = 'u' OR TYP = 'v'

      PERFORM TEST USING <F>.

    ELSE.

      PERFORM DO_SOMETHING USING <F>.

    ENDIF.

  ENDDO.

ENDFORM.

 

Addition 4

… OUTPUT-LENGTH len 

Effect

Enters the output length of the field f in the variable len
. 

Example

 

DATA: FLD(4) TYPE P,

      O_LEN TYPE P.

DESCRIBE FIELD FLD OUTPUT-LENGTH O_LEN.

 

Result: O_LEN contains the value 8. 

Addition 5

… DECIMALS n 

Effect

Enters the number of decimal places for the field f (defined
in addition … DECIMALS of the DATA statement or in the ABAP/4 Dictionary ) in
the variable n . 

Example

 

DATA: FLD(8) TYPE P DECIMALS 2,

      DEC TYPE P.

DESCRIBE FIELD FLD DECIMALS DEC.

Resultat: DEC contains the value 2. 

Addition 6

… EDIT MASK mask 

Effect

If the field f has a conversion routine in the ABAP/4
Dictionary , this is placed in the field mask in the form " ==conv ".
" conv " stands for the name of the conversion routine, e.g. "
==ALPHA " in the conversion routine " ALPHA ". In this form,
mask can then be used in the addition USING EDIT MASK mask of the WRITE statement. 

Example

Check whether there is a conversion routine for the field
"customer number" in the table SBOOK : 

 

TABLES SBOOK.

DATA: CONV_EXIT(10).

DESCRIBE FIELD SBOOK-CUSTOMID EDIT MASK CONV_EXIT.

IF CONV_EXIT <> SPACE. ... ENDIF.

Result: CONV_EXIT contains the value " ==ALPHA ". 

Note

If the required field is only known at runtime, this field
can also be assigned dynamically to a field symbol (see FIELD-SYMBOLS
, ASSIGN ). 

Index 
© SAP AG 1996 

DESCRIBE - supply attributes of a list 

 

Variants

1. DESCRIBE LIST NUMBER OF LINES lin. 
2. DESCRIBE LIST NUMBER OF PAGES n. 
3. DESCRIBE LIST LINE lin PAGE pag. 
4. DESCRIBE LIST PAGE pag. 

Effect

Returns the attributes of a list. All variants have the
addition … INDEX idx allowing you to determine the attributes of a particular
list level ( SY-LSIND = 0,1,2,3,… ). 

Note

You should use this key word only in exceptional cases (e.g.
when editing an ‘anonymous’ list in a program other than that which generated
the list). In all other cases, you should save the relevant values when you
generate the list. 
Take care when attempting to retrieve the list attributes being set up (
…INDEX SY-LSIND ), since some attributes (number of pages, number of lines,
…) may not have been updated yet. 

Variant 1

DESCRIBE LIST NUMBER OF LINES lin. 

Addition

… INDEX idx 

Effect

Returns the number of lines in the list. 

The return code value is set as follows: 

SY-SUBRC = 0 OK 
SY-SUBRC <> 0 List does not exist (only with the addition INDEX ) 

Addition

… INDEX idx 

Effect

Returns the attributes of the list level idx (0, 1,2,3,…). 

Example

After line selection, determine the number of lines in the
displayed list: 

 

DATA: LN LIKE SY-PAGNO. ...

 

AT LINE-SELECTION.

  DESCRIBE LIST NUMBER OF LINES LN.

The variable LN now contains the number of lines in the displayed list. 

Variant 2

DESCRIBE LIST NUMBER OF PAGES n. 

Addition

… INDEX idx 

Effect

Returns the number of pages in the list. 

The return code value is set as follows: 

SY-SUBRC = 0 OK 
SY-SUBRC <> 0 List does not exist (only with the addition INDEX ) 

Addition

… INDEX idx 

Effect

Returns the attributes of the list level idx (0, 1,2,3,…). 

Example

After line selection, determine the number of pages in the
displayed list: 

 

DATA: PN LIKE SY-PAGNO. ...

 

AT LINE-SELECTION.

  DESCRIBE LIST NUMBER OF PAGES PN.

The variable PN now contains the number of pages in the displayed list (i.e.
the contents of the system field SY-PAGNO after the list has been generated!). 

Variant 3

DESCRIBE LIST LINE lin PAGE pag. 

Addition

… INDEX idx 

Effect

Returns the number of the page for the line lin in the list. 

Note

In interactive reporting, line selection causes a value to
be assigned to the system field SY-LILLI (absolute number of selected list
line). The system field SY-CPAGE contains the page number for the first displayed
line in the list. The selected line does not have to belong to this page (in
cases where several pages are displayed at the same time). The page number may
be of interest even with direct reading of lines (see READ
LINE ). 

The return code value is set as follows: 

SY-SUBRC = 0 OK 
SY_SUBRC = 4 Line does not exist 
SY-SUBRC = 8 List does not exist 

Addition

… INDEX idx 

Effect

Returns the attributes of the list level idx (0, 1,2,3,…). 

Example

After line selection, determine the page number for the
selected line (SY-LILLI) : 

 

DATA: PAGENUMBER LIKE SY-PAGNO. ...

 

AT LINE-SELECTION.

  DESCRIBE LIST LINE SY-LILLI PAGE PAGENUMBER.

The variable PAGENUMBER now contains the page number for the line SY-LILLI
(i.e. the contents of the system field SY-PAGNO when outputting the line
SY-LILLI !). 

Variant 4

DESCRIBE LIST PAGE pag 

Additions

1. … INDEX idx 
2. … LINE-SIZE col 
3. … LINE-COUNT lin 
4. … LINES lin 
5. … FIRST-LINE lin 
6. … TOP-LINES lin 
7. … TITLE-LINES lin 
8. … HEAD-LINES lin 
9. … END-LINES lin 

Effect

Returns the attributes of the page pag in the list. 

The return code value is set as follows: 

SY-SUBRC = 0 OK 
SY_SUBRC = 4 Page does not exist 
SY-SUBRC = 8 List does not exist 

Addition 1

… INDEX idx 

Effect

Returns the attributes of the list level idx (0, 1,2,3,…). 

Addition 2

… LINE-SIZE col 

Effect

Returns the line length for the page pag (see NEW-PAGE…LINE-SIZE ). 

Addition 3

… LINE-COUNT lin 

Effect

Returns the permitted number of lines for the page pag (see NEW-PAGE…LINE-COUNT ). 

Addition 4

… LINES lin 

Effect

Returns the number of lines output on the page pag . 

Addition 5

… FIRST-LINE lin 

Effect

Returns the absolute line number of the first line of the
page pag . 

Addition 6

… TOP-LINES lin 

Effect

Returns the number of lines output by page header processing
(i.e. standard title + column headers + TOP-OF-PAGE
). 

Addition 7

… TITLE-LINES lin 

Effect

Returns the number of lines output as standard title lines
by page header processing (see NEW-PAGE…NO-TITLE/WITH-TITLE
). 

Note

The value of TITLE-LINES is contained in TOP-LINES . 

Addition 8

… HEAD-LINES lin 

Effect

Returns the number of lines output as column headers by page
header processing (see NEW-PAGE…NO-HEADING/WITH-HEADING
). 

Note

The value of HEAD-LINES is contained in TOP-LINES . 

Addition 9

… END-LINES lin 

Effect

Returns the number of lines reserved for end-of-page
processing (see END-OF-PAGE ). 

Example

Determine the number of lines output on the third page of
the basic list ( SY-LSIND = 0) in the event TOP-OF-PAGE : 

 

DATA: TOP TYPE I,

      HEAD TYPE I,

      TITLE TYPE I,

      REAL_TOP TYPE I.

 

DESCRIBE LIST INDEX 0 PAGE 3

         TOP-LINES TOP

         HEAD-LINES HEAD

         TITLE-LINES TITLE.

 

REAL_TOP = TOP - TITLE - HEAD.

 

Examples

Determine the absolute number of lines in the displayed
list: 

 

DATA: LN  TYPE I,          "number of lines on a page

      FLN TYPE I,          "number of first line on a page

      PN  TYPE I,          "number of a page

      LIST_LINES TYPE I.   "total number of lines in list

 

Determine number of last page: 

 

DESCRIBE LIST NUMBER OF PAGES PN.

Determine number of first line of last page and number of lines on that page: 

 

DESCRIBE LIST PAGE PN FIRST-LINE FLN LINES LN.

Number of list lines = number of first line of last page + number of lines - 1. 

 

LIST_LINES = FLN + LN - 1.

Or: Count lines of all pages in a loop: 

 

CLEAR LIST_LINES.

DO PN TIMES.

   DESCRIBE LIST PAGE SY-INDEX LINES LN.

   ADD LN TO LIST_LINES.

ENDDO.

or: 

 

DESCRIBE LIST NUMBER OF LINES LIST_LINES.

Index 
© SAP AG 1996 

DESCRIBE - return attributes of an internal
table 

 

Basic form

DESCRIBE TABLE itab. 

Effect

Returns the attributes of the internal table itab . You must
use at least one of the additions listed below. 

Additions

1. … LINES lin 
2. … OCCURS n 

Addition 1

… LINES lin 

Effect

Places the number of filled lines of the table t in the
field lin . 

Example

 

DATA: BEGIN OF TAB OCCURS 10,

        X,

      END OF TAB.

DATA: LIN TYPE P.

...

CLEAR TAB. REFRESH TAB.

MOVE '?' TO TAB-X.

APPEND TAB.

DESCRIBE TABLE TAB LINES LIN.

Result: LIN contains the value 1. 

Addition 2

… OCCURS n 

Effect

Transfers the size of the OCCURS parameter from the table
definition to the variable n . 

Example

 

DATA: BEGIN OF TAB OCCURS 10,

        X,

      END OF TAB.

      OCC TYPE P.

DESCRIBE TABLE TAB OCCURS OCC.

Result: OCC contains the value 10. 

Note

If the table is meant to accept more lines than specified by
the OCCURS parameter, the parameter value is roughly doubled as long as the
table size remains smaller than 8 KB; this table area is held in the roll area.
If the table exceeds the maximum permitted size, the OCCURS parameter is not
increased and the remaining part of the table is rolled out to the paging area
(see DATA ). 
For this reason, the OCCURS value determined by the DESCRIBE statement may
differ from that in the DATA statement. 
The runtime required to execute the DESCRIBE TABLE statement is approx. 4 msn
(standardized microseconds). 

Index 
© SAP AG 1996 

DETAIL 

 

Basic form

DETAIL. 
This key word is the same as the statement 
FORMAT INTENSIFIED OFF . 

The latter is recommended due to better readability. 

Note

When outputting data to a list, you also use the addition
INTENSIFIED OFF of the WRITE statement to change the
output format for single fields. 
Related FORMAT 

Index 
© SAP AG 1996 

DIVIDE 

 

Basic form

DIVIDE n1 BY n2. 

Effect

Divides the contents of n1 by n2 and places the result in n1
. 

This is equivalent to: n1 = n1 / n2. 

Example

 

DATA: SUM TYPE P, NUMBER TYPE P.

DIVIDE SUM BY NUMBER.

 

Note

The details regarding conversions and performance given
under COMPUTE apply equally to DIVIDE . Furthermore:
Division by 0 is not allowed, except where 0 / 0 results in 0. 

Note

Runtime errors 

· BCD_BADDATA
: P field contains no correct BCD format 

· BCD_FIELD_OVERFLOW
: Result field is too small (type P ) 

· BCD_OVERFLOW
: Overflow during arithmetic operation (type P ) 

· BCD_ZERODIVIDE
: Division by 0 (type P ) 

· COMPUTE_FLOAT_ZERODIVIDE
: Division by 0 (type F ) 

· COMPUTE_INT_DIV_OVERFLOW
: Whole number overflow with division 

· COMPUTE_INT_ZERODIVIDE
: Division by 0 (type I ) 

Related COMPUTE , DIVIDE-CORRESPONDING
Index 
© SAP AG 1996 

DIVIDE-CORRESPONDING 

 

Basic form

DIVIDE-CORRESPONDING rec1 BY rec2. 

Effect

Interprets rec1 and rec2 as field strings, i.e. if rec1 and
rec2 are tables with header lines, the statement is executed for their header
lines. 

Searches for all sub-fields that occur both in rec1 and rec2 and then
generates, for all field pairs corresponding to the sub-fields ni , statements
similar in the following form: 

 

DIVIDE rec1-ni BY rec2-ni.

The other fields remain unchanged. 

With more complex structures, the complete names of the field pairs must be
identical. 

Example

 

DATA: BEGIN OF MONEY,

        VALUE_IN(20) VALUE 'German marks'.

        USA TYPE I VALUE 100,

        FRG TYPE I VALUE 200,

        AUT TYPE I VALUE 300,

      END   OF MONEY,

      BEGIN OF CHANGE,

        DESCRIPTION(30)

            VALUE 'DM to national currency'.

        USA TYPE F VALUE '1.5',

        FRG TYPE F VALUE '1.0',

        AUT TYPE F VALUE '0.14286',

      END   OF CHANGE.

DIVIDE-CORRESPONDING MONEY BY CHANGE.

MONEY-VALUE_IN = 'National currency'.

The above DIVIDE-CORRESPONDING statement is equivalent to the following three
statements: 

 

DIVIDE MONEY-USA BY CHANGE-USA.

DIVIDE MONEY-FRG BY CHANGE-FRG.

DIVIDE MONEY-AUT BY CHANGE-AUT.

 

Note

All fields of the same name are divided, whether numeric or
not. The conversions performed are the same as those for DIVIDE
and similar runtime errors can occur. 
Related DIVIDE , MOVE-CORRESPONDING
, ADD-CORRESPONDING , SUBTRACT-CORRESPONDING
, MULTIPLY-CORRESPONDING 

Index 
© SAP AG 1996 

DO 

Variants

1. DO. 
2. DO n TIMES. 

Variant 1

DO. 

Addition

… VARYING f FROM f1 NEXT f2 

Effect

Repeats the processing enclosed by the DO and ENDDO
statements until the loop is terminated by EXIT , STOP or REJECT . 

You can use the CONTINUE statement to end the current
loop pass prematurely and continue with the next loop pass. 

The system field SY-INDEX counts the number of loop passes, starting from 1.
You can nest DO loops. When the processing leaves a DO loop, the value of
SY-INDEX belonging to the outer DO loop is restored. 

Example

 

DO.

  WRITE: / 'SY-INDEX - Begin:', (3) SY-INDEX.

  IF SY-INDEX = 10.

    EXIT.

  ENDIF.

  WRITE: 'End:', (3) SY-INDEX.

ENDDO.

This DO loop outputs 9 lines of the form 

" SY-INDEX - Begin: n End: n ". 

Here, n stands for the numbers 1 to 9. 

The last line displayed is 

" SY-INDEX - Begin: 10
". 

On the 10th pass, the loop is terminated. 

Note

The danger with this statement is programming endless loops.
Therefore, you must ensure that the loop contains at least one EXIT , STOP or
REJECT statement which is executed at least once. 

Addition 1

… VARYING f FROM f1 NEXT f2 

Effect

This addition is useful if you have a series of fields of
the same type and the same distance from each other. 
f is a variable which you define in a DATA statement. On each loop pass, f
contains a new value. The field f1 after " FROM " specifies the first
value of the variable f , while the field f2 after " NEXT " specifies
the value to be assigned to the variable f in the second pass. For each subsequent
pass, the variable f contains the next value in the sequence determined by the
distance between the fields f1 and f2 in memory. 
The fields f1 and f2 should be type-compatible and convertible to f . 
If the value of f changes during the loop pass, the new value is then placed in
the appropriate field fn assigned to f (transfer type: pass by value and
result). If the loop pass terminates because of a dialog message, the new value
is not passed back if f changes. 
The addition … VARYING f FROM f1 NEXT f2 can be used several times in a DO
statement. 

Example

 

DATA: BEGIN OF WORD,

        ONE   VALUE 'E',

        TWO   VALUE 'x',

        THREE VALUE 'a',

        FOUR  VALUE 'm',

        FIVE  VALUE 'p',

        SIX   VALUE 'l',

        SEVEN VALUE 'e',

        EIGHT VALUE '!',

      END   OF WORD,

      LETTER1, LETTER2.

DO VARYING LETTER1 FROM WORD-ONE THEN WORD-THREE

   VARYING LETTER2 FROM WORD-TWO THEN WORD-FOUR.

  WRITE: LETTER1, LETTER2.

  IF LETTER2 = '!'.

    EXIT.

  ENDIF.

ENDDO.

The resulting output is the character string 

"E x a m p l e !". 

Note

When using this addition, ensure that the DO loop terminates
at the "right" time, in order to avoid assigning meaningless values
that happen to be in memory after this sequence of fields. This could result in
a runtime error. 

Variant 2

DO n TIMES. 

Addition

… VARYING f FROM f1 NEXT f2 (similar to variant 1) 

Effect

Repeats the processing enclosed by the DO and ENDDO
statements n times. If n changes within the loop, this has no effect on loop
passes. 

Example

 

DATA COUNT TYPE I.

DO 10 TIMES.

  ADD SY-INDEX TO COUNT.

ENDDO.

The field COUNT now contains 55 (1+2+…+10). 
Related WHILE , LOOP 

Note

Performance 
The runtime required to pass once through an empty DO loop is about 11 msn
(standardized microseconds). For 100 loop passes, about 230 msn would be
needed. 
If possible, use a WHILE loop instead of a DO / EXIT construction because this improves the performance
slightly and is clearer. 

Index 
© SAP AG 1996 

EDITOR-CALL 

Call editor for internal tables 
- EDITOR-CALL FOR itab. 
Call editor for ABAP/4 programs 
- EDITOR-CALL FOR REPORT prog. 

Index 
© SAP AG 1996 

EDITOR-CALL - call editor for internal tables 

 

Basic form

EDITOR-CALL FOR itab. 

Additions

1. … TITLE text 
2. … DISPLAY-MODE 

Effect

Displays the internal table itab in the ABAP/4 Editor. You
can then use normal editor functions (e.g. insert, delete, search, replace) to
make changes. When you save (with F11 ) or leave (with F3 ), any changes are
adopted. 

The return code value is set as follows: 

SY-SUBRC = 0 Changes saved before leaving editor. 
SY_SUBRC = 4 Changes not saved before leaving editor. 

Notes

· The
internal table can contain only type C components. 

· The
lines of the internal table can be up 72 characters long. 

 

Addition 1

… TITLE text 

Effect

Displays the specified text string (up to 30 characters) in
the editor header line. 

Addition 2

… DISPLAY MODE 
&ABAP_EFFETC& Calls the editor in display mode. You can neither make
changes here nor switch to change mode. 

Example

Define and fill the internal table T . Then, use EDITOR-CALL
to present it to the user for modification. Finally, output the table. 

 

DATA: BEGIN OF T OCCURS 200,

        TEXT1(60),TEXT2(12),

      END OF T.

 

T-TEXT1 = 'Text 1'. T-TEXT2 = 'A'. APPEND T.

T-TEXT1 = 'Text 2'. T-TEXT2 = 'B'. APPEND T.

T-TEXT1 = 'Text 3'. T-TEXT2 = 'C'. APPEND T.

T-TEXT1 = 'Text 4'. T-TEXT2 = 'D'. APPEND T.

 

EDITOR-CALL FOR T TITLE 'Editor for internal tables'.

 

LOOP AT T.

  WRITE: / T-TEXT1, T-TEXT2.

ENDLOOP.

Related EDITOR-CALL FOR REPORT 

Index 
© SAP AG 1996 

EDITOR-CALL - call ABAP/4 program editor 

 

Basic form

EDITOR-CALL FOR REPORT prog. 

Addition

… DISPLAY-MODE 

Effect

Reads the program prog from the library and places it in the
ABAP/4 Editor. 
When you save (with F11 ), the program is written back to the library. 

Addition

… DISPLAY-MODE 

Effect

Calls the editor in display mode. Changes are not allowed
here, but you can switch to change mode from within the editor. 

Example

Call the ABAP Editor for the report SAPTEST in display mode: 

 

EDITOR-CALL FOR REPORT 'SAPTEST' DISPLAY-MODE.

Related EDITOR-CALL FOR itab 

Index 
© SAP AG 1996 

ELSE 

 

Basic form

ELSE. 

Effect

Within an " IF … ENDIF " processing block,
precedes the code to be executed if the logical expression specified by IF fails. 

Example

 

DATA: RESULT TYPE I,

      OP1    TYPE I,

      OP2    TYPE I.

...

RESULT = OP1 - OP2.

IF RESULT > 0.

  WRITE / 'Result greater than zero.'.

ELSE.

  WRITE / 'Result less or equal zero.'.

ENDIF.

Depending on the value of RESULT , both different texts are output. 
Related IF , ELSEIF , CASE 

Index 
© SAP AG 1996 

ELSEIF 

 

Basic form

ELSEIF logexp. 

Effect

Within a processing block enclosed by " IF … ENDIF
", this statement indicates the processing to be executed if the logical
expressions specified by IF and the preceding ELSEIF s are
false, but the logical expression in this ELSEIF processing block is true. 
Between the IF and ENDIF statements, there may be any number of ELSEIF s. These
may be followed, optionally, by an ELSE statement, but
this is executed only if none of the logical expressions under IF or ELSEIF is
true. 

Example

 

DATA RESULT TYPE I.

...

IF RESULT < 0.

  WRITE / 'Result less than zero'.

ELSEIF RESULT = 0.

  WRITE / 'Result equal zero'.

ELSE.

  WRITE / 'Result greater than zero'.

ENDIF.

Depending on the value of RESULT , the three different texts are output. 
Related IF , 
ELSE , 
CASE 

Index 
© SAP AG 1996 

ENDAT 

Basic form

ENDAT. 

Effect

The ENDAT statement closes the control structure introduced
by AT . 

Index 
© SAP AG 1996 

ENDCASE 

 

Basic form

ENDCASE. 

Effect

The ENDCASE statement closes a case disinction introduced by
CASE . 

Index 
© SAP AG 1996 

ENDDO 

 

Basic form

ENDDO. 

Effect

Closes a loop introduced by DO . 

Index 
© SAP AG 1996 

ENDEXEC 

 

Basic form

ENDEXEC. 

Effect

Closes a processing block introduced by EXEC
SQL . 

Index 
© SAP AG 1996 

ENDFOR is not an ABAP/4 key word (in R/3). 

Index 
© SAP AG 1996 

ENDFORM 

 

Basic form

ENDFORM. 

Effect

Closes a subroutine definition introduced by FORM . 

Index 
© SAP AG 1996 

ENDFUNCTION 

 

Basic form

ENDFUNCTION. 

Effect

Closes a subroutine definition introduced by FUNCTION . 

Index 
© SAP AG 1996 

ENDIF 

 

Basic form

ENDIF. 

Effect

The ENDIF statement concludes a statement introduced by IF . 

Index 
© SAP AG 1996 

ENDIFEND is not an ABAP/4 key word (in R/3). 

Index 
© SAP AG 1996 

ENDLOOP 

Basic form

ENDLOOP. 

Effect

The ENDLOOP statement closes a loop introduced by LOOP . 

Index 
© SAP AG 1996 

ENDMODULE 

 

Basic form

ENDMODULE. 

Effect

Closes a module definition introduced by MODULE
. 

Index 
© SAP AG 1996 

ENDON 

Basic form

ENDON. 

Effect

The ENDON statement closes a structure introduced by ON (CHANGE OF) . 

Index 
© SAP AG 1996 

ENDPROVIDE 

 

Basic form

ENDPROVIDE. 

Effect

Closes a loop introduced by PROVIDE
. 

Index 
© SAP AG 1996 

ENDSELECT 

 

Basic form

ENDSELECT. 

Effect

Closes a loop introduced by SELECT
. 

Note

SELECT is not concluded by ENDSELECT 

· if
it is a SELECT SINGLE command, 

· if
only aggregate functions appear in the INTO clause or 

· if
the INTO clause INTO TABLE itab or APPENDING TABLE itab does not include
the addition PACKAGE SIZE . 

Index 
© SAP AG 1996 

ENDWHILE 

 

Basic form

ENDWHILE. 

Effect

Closes a loop introduced by WHILE . 

Index 
© SAP AG 1996 

END-OF-DEFINITION 

 

Basic form

END-OF-DEFINITION. 

Effect

DEFINE . 

Index 
© SAP AG 1996 

END-OF-PAGE 

 

Basic form

END-OF-PAGE. 

Effect

List processing event. 

The END-OF-PAGE event is executed whenever processing reaches that area when
formatting a list page or if the RESERVE statement
detects that there is insufficient space remaining on the current page. 

Note

· The
size of the END-OF-PAGE area of list pages is defined in the LINE-COUNT
specification of the REPORT statement (e.g.
EXPORT TEST LINE-COUNT 65(3) ). If no size is defined, the END-OF-PAGE
area contains no lines and the event END-OF-PAGE is never executed. 

· If
the standard setting LINE-COUNT 0 applies (i.e. no restriction on the
number of lines per page), the event END-OF-PAGE is not processed, since
no automatic new page follows. 

· If
you explicitly specify a new page with NEW-PAGE
, END-OF-PAGE is ignored. 

Related TOP-OF-PAGE 

Index 
© SAP AG 1996 

END-OF-SELECTION 

 

Basic form

END-OF-SELECTION. 

Effect

Processing event 

Executes the code after END-OF-SELECTION when all the logical database records
have been read and processed. 
Related START-OF-SELECTION , STOP , GET dbtab 

Index 
© SAP AG 1996 

EXEC 

 

Basic form

EXEC SQL. 

Addition

… PERFORMING form 

Effect

Executes the Native SQL command enclosed by the statements
EXEC SQL and ENDEXEC . In contrast to Open SQL ,
addressed database tables do not have to be known to the ABAP/4 Dictionary and
the ABAP/4 program does not have to contain appropriate TABLES
statements. 

Example

Create the table AVERI_CLNT : 

 

EXEC SQL.

  CREATE TABLE AVERI_CLNT (

         CLIENT   CHAR(3)  NOT NULL,

         ARG1     CHAR(3)  NOT NULL,

         ARG2     CHAR(3)  NOT NULL,

         FUNCTION CHAR(10) NOT NULL,

         PRIMARY KEY (CLIENT, ARG1, ARG2)

                          )

ENDEXEC.

With Native SQL commands, passing data between an ABAP/4 program and the
database is achieved using host variables . A host variable is an ABAP/4
variable prefixed by a "*" in the Native SQL statement. 

Example

Display a section of the table AVERI_CLNT : 

 

DATA: F1(3), F2(3), F3(3).

F3 = ' 1 '

EXEC SQL.

  SELECT CLIENT, ARG1 INTO :F1, :F2 FROM AVERI_CLNT

         WHERE ARG2 = :F3

ENDEXEC.

WRITE: / F1, F2.

To simplify the spelling of INTO lists in the SELECT command, you can specify a
single structure as the target area as in Open SQL . 

Example

Display a section of the table AVERI_CLNT : 

 

DATA: BEGIN OF WA,

        CLIENT(3), ARG1(3), ARG2(3),

      END OF WA.

DATA  F3(3).

F3 = ' 1 '

EXEC SQL.

  SELECT CLIENT, ARG1 INTO :WA FROM AVERI_CLNT

         WHERE ARG2 = :F3

ENDEXEC.

WRITE: / WA-CLIENT, WA-ARG1.

 

Notes

In contrast to Open SQL , a client field in Native SQL is a
field like any other and must be specified explicitly in calls. 
Authorization checks cannot be properly realized in EXEC SQL . You should
perform these in the program. 
When you start the R/3 System, a CONNECT to the current database is executed
automatically. An explicit CONNECT is unnecessary. 
A Native SQL command can (but does not have to) end with a ";". Under
no circumstances should it end with a ".". 
Some database systems allow upper and lower case in table names and field
names. If you want to take advantage of this, you must ensure that the spelling
of names is correct. To enable entry of lower case letters in names in the
ABAP/4 editor, you must set the attribute for upper/lower case in the report. 
Since there are no arrays in ABAP/4 , array operations are not possible in
Native SQL . If the result of a SELECT command is a table, you can read this
table line by line either with the Native SQL command FETCH or with the
addition … PERFORMING form . 
Unlike in ABAP/4 programs, the character " in a Native SQL statement does
not introduce a comment until the end of the editor line. 

Addition

… PERFORMING form 

Effect

If the result of a SELECT command is a table, you can read
this table line by line in a processing loop. The subroutine form is called
once for each line. In this subroutine, you can leave the loop by using EXIT FROM SQL . If the result of the selection is a
single record, the subroutine is called only once. 

Example

Display a section of the table AVERI_CLNT : 

 

DATA: F1(3), F2(3), F3(3).

 

F3 = ' 1 '

EXEC SQL PERFORMING WRITE_AVERI_CLNT.

  SELECT CLIENT, ARG1 INTO :F1, :F2 FROM AVERI_CLNT

         WHERE ARG2 = :F3

ENDEXEC.

 

FORM WRITE_AVERI_CLNT.

  WRITE: / F1, F2.

ENDFORM.

 

Note

This addition is allowed only with a SELECT command. 
Related SELECT , INSERT
, UPDATE , MODIFY , DELETE , OPEN CURSOR , FETCH , CLOSE CURSOR, COMMIT WORK and ROLLBACK WORK
. 

Index 
© SAP AG 1996 

EXIT 

 

Basic forms

1. EXIT. 
2. EXIT FROM STEP-LOOP. 
3. EXIT FROM SQL. 

Index 
© SAP AG 1996 

EXIT in loops and modularization units 

 

Basic form

EXIT. 

Effect

· In
loop structures: 

Leaves the loop processing (DO , WHILE
, LOOP , SELECT ) 

· In
subroutines and other modularization units (but outside loop structures): 

Leaves the subroutine or modularization unit (FORM
, MODULE , FUNCTION , TOP-OF-PAGE , END-OF-PAGE
) 

· Outside
loop structures and modularization units (report processing): 

Cancels the report processing and displays the list 

 

Example

 

TABLES T100.

DATA SAP_COUNT TYPE I.

 

SELECT * FROM T100 WHERE SPRSL = SY-LANGU AND

                         ARBGB = 'DS'.

  WRITE / T100-TEXT.

  IF T100-TEXT CS 'SAP'.

    ADD 1 TO SAP_COUNT.

    IF SAP_COUNT = 3.

      EXIT.

    ENDIF.

  ENDIF.

ENDSELECT.

 

Note

If there are several nested loops, the effect of EXIT is
only to leave the current loop. Processing continues after the next END…
statement in the next loop up. 
Related CONTINUE , CHECK
, REJECT , STOP 

Index 
© SAP AG 1996 

EXIT FROM SQL 

 

Basic form

EXIT FROM SQL. 

Effect

Leaves loop processing of the selected lines introduced by EXEC SQL PERFORMING form . Leaves the function form and
cancels the processing of the block of code introduced by EXEC SQL and
concluded by ENDEXEC . 
Related EXEC SQL 

Index 
© SAP AG 1996 

EXIT FROM STEP-LOOP 

 

Basic form

EXIT FROM STEP-LOOP. 

Effect

Leaves a step loop ( screen ). The current line and all
subsequent lines are either not displayed ( PBO ) or not processed ( PAI ). 

Index 
© SAP AG 1996 

EXPORT 

Export data 
- EXPORT obj1 … objn TO MEMORY. 
- EXPORT obj1 … objn TO DATABASE dbtab(ar) ID key. 
- EXPORT obj1 … objn TO DATASET dsn(ar) ID key. 
Export a screen 
- EXPORT DYNPRO h f e m ID id. 
Export a structure description 
- EXPORT NAMETAB h f ID id. 

Index 
© SAP AG 1996 

EXPORT - Export data 

 

Variants

1. EXPORT obj1 … objn TO MEMORY. 
2. EXPORT obj1 … objn TO DATABASE dbtab(ar) ID key. 
3. EXPORT obj1 … objn TO DATASET dsn(ar) ID key. 

Variant 1

EXPORT obj1 … objn TO MEMORY. 

Additions

1. … FROM g (for each field to be exported) 
2. … ID key 

Effect

Exports the objects obj1 … objn (fields, structures or
tables) as a data cluster to ABAP/4 memory . 
If you call a transaction, report or dialog module (with CALL
TRANSACTION , SUBMIT or CALL
DIALOG ), the contents of ABAP/4 memory are retained, even across several
levels. The called transaction can then retrieve the data from there using IMPORT … FROM MEMORY . Each new EXPORT … TO MEMORY
statement overwrites any old data, so no data is appended. 
If the processing leaves the deepest level of the call chain, the ABAP/4 memory
is released. 

Note

The header lines of internal tables cannot be exported,
because specifying the name of an internal table with a header line always
exports the actual table data. 

Addition 1

… FROM g (for each object to be exported) 

Effect

Exports the contents of the data object g and stores them
under the name specified before FROM . 

Addition 2

… ID key 

Effect

Stores the exported data under the ID key in ABAP/4 memory .
You can then use the ID to read it in again (with IMPORT
). The ID can be up to 32 characters long. 

Note

If you store data both with and without an ID , the data
stored without an ID remains separate and you can re-import it (using IMPORT without
ID ). 

Note

Runtime errors 

· EXPORT_NO_CONTAINER
: SAP paging exhausted 

 

Variant 2

EXPORT obj1 … objn TO DATABASE dbtab(ar) ID key. 

Additions

1. … FROM g (for each field to be exported) 
2. … CLIENT h (after dbtab(ar) ) 
3. … USING form 

Effect

Exports the objects obj1 … objn (fields, structures or
tables) as a data cluster to the database table dbtab . 
The database table dbtab must have a standardized structure . 
The database table dbtab is divided into different logically related areas ( ar
, 2-character name). 
You can export collections of data objects (known as data clusters ) under a
freely definable key (field key ) to an area of this database. 
IMPORT allows you to import individual data objects
from this cluster. 

Notes

· The
table dbtab specified after DATABASE must be declared under TABLES . 

· The
header lines of internal tables cannot be exported because specifying the
name of an internal table with a header line always exports the actual
table data. 

 

Example

Export two fields and an internal table to the database
table INDX : 

 

TABLES INDX.

DATA: INDXKEY LIKE INDX-SRTFD VALUE 'KEYVALUE',

      F1(4), F2 TYPE P,

      BEGIN OF ITAB3 OCCURS 2,

        CONT(4),

      END OF ITAB3.

* Before the export, the data fields in

* front of CLUSTR are filled.

INDX-AEDAT = SY-DATUM.

INDX-USERA = SY-UNAME.

* Export der Daten.

EXPORT F1 F2 ITAB3 TO

       DATABASE INDX(ST) ID INDXKEY.

 

Addition 1

… FROM g (for each object to be exported) 

Effect

Exports the contents of the field g and stores them under
the specified name in the database. 

Addition 2

… CLIENT h (after dbtab(ar) ) 

Effect

Stores the data objects in the client h (if the
import/export database table dbtab is client-specific). 

Addition 3

… USING form 

Effect

Does not export the data to the database table. Instead,
calls the FORM routine form for every record written to the database without
this addition. This routine can take the data from the database table work area
and therefore has no parameters. 

Note

Runtime errors 

Errors in the structure of the EXPORT / IMPORT database can cause runtime
errors . 

Variant 3

EXPORT obj1 … objn TO DATASET dsn(ar) ID key. 

Note

This variant is not to be used at present. 

Note

Runtime errors 

· EXPORT_DATASET_CANNOT_OPEN
: Unable to describe file. 

· EXPORT_DATASET_WRITE_ERROR
: File write error. 

Index 
© SAP AG 1996 

EXPORT - Export a screen 

 

Basic form

EXPORT DYNPRO h f e m ID id. 

Effect

Exports the screen specified in the field id . The screen
information is taken from the structure h ( screen header , structure D020S )
and the internal tables f (field list, structure D021S ), e (flow logic,
structure D022S ) and m (matchcode information, structure D023S ). 
Related IMPORT DYNPRO , GENERATE
DYNPRO , SYNTAX-CHECK FOR DYNPRO , DELETE DYNPRO . 

Index 
© SAP AG 1996 

EXPORT NAMETAB - Export a structure description

 

Basic form

EXPORT NAMETAB h f ID id. 

Effect

Exports a generated structure description. This statement
can only be used by ABAP/4 Repository tools! 

Note

Runtime errors 

· EXPORT_NAMETAB_WRONG_ID
: Table name is too long 

Index 
© SAP AG 1996 

EXTRACT 

 

Basic form

EXTRACT fg. 

Effect

Writes all fields of the field group fg (see FIELD-GROUPS) as one record to a sequential dataset
(paging). If a field group HEADER has been defined, its fields prefix each
record to form a sort key. You can sort this dataset with SORT
and process it with LOOP … ENDLOOP. After this,
EXTRACT cannot be execuuted again. 

Note

As soon as the first dataset for a field group has been
extracted with EXTRACT , the field group cannot be expanded using INSERT . The field group HEADER , in particular, cannot
be expanded after the first EXTRACT (regardless of field group). 

Note

Runtime errors 

· EXTRACT_AFTER_SORT/LOOP
: EXTRACT after SORT or LOOP . 

 

· EXTRACT_FIELD_TOO_LARGE
: Occupied length of a single field is too long. 

 

· EXTRACT_HEADER_NOT_UNIQUE
: Field group HEADER was modified after records had been extracted with EXTRACT
. 

 

· EXTRACT_TOO_LARGE
: Total data length of a record to be extracted (including HEADER fields)
is too long. 

Index 
© SAP AG 1996 

FETCH 

 

Basic form

FETCH NEXT CURSOR c target. 

Effect

Uses the cursor c to read the next line or lines from the
dataset of a database table determined by OPEN CURSOR
. The cursor must be a variable of the type CURSOR and must be explicitly
opened with OPEN CURSOR . To specify the target area
into which you read the selected data, use INTO
clause target . 

FETCH belongs to the Open SQL command set. 

After each execution of the FETCH statement, the system field SY-DBCNT contains
the number of lines read so far. 

The return code value is set as follows: 

SY-SUBRC = 0 At least one line was read. 
SY_SUBRC = 4 No line was read. 

Example

Output the passenger list for the Lufthansa flight 0400 on
28-02.1995: 

 

TABLES SBOOK.

DATA   C TYPE CURSOR,

        WA LIKE SBOOK.

OPEN CURSOR C FOR SELECT * FROM SBOOK

  WHERE

    CARRID   = 'LH '      AND

    CONNID   = '0400'     AND

    FLDATE   = '19950228'

  ORDER BY PRIMARY KEY.

 

DO.

  FETCH NEXT CURSOR C INTO WA.

  IF SY-SUBRC <> 0.

    CLOSE CURSOR C. EXIT.

  ENDIF.

  WRITE: / WA-BOOKID, WA-CUSTOMID,   WA-CUSTTYPE,

           WA-SMOKER, WA-LUGGWEIGHT, WA-WUNIT,

           WA-INVOICE.

ENDDO.

Related SELECT 

Index 
© SAP AG 1996 

FIELDS 

 

Basic form

FIELDS f. 

Effect

Addresses a field. The statement is used mainly to address
fields statically which are otherwise accessed dynamically. By doing this, you
explicitly specify to check programs such as the extended program check that
the field in question is used. 

Index 
© SAP AG 1996 

FIELD-GROUPS 

 

Basic form

FIELD-GROUPS fg. 

Effect

Defines a field group. 

A field group combines several existing fields together under one name. You use
the INSERT statement to determine which fields
belong to a field group at runtime. 

Example

 

FIELD-GROUPS: HEADER, ORDER, PRODUCT.

 

Note

Neither defining a field group (statically) using
FIELD-GROUPS nor filling a field group (dynamically) with INSERT generates more
memory. Rather, there exists for each field group element a pointer to an
(existing) field. 

Index 
© SAP AG 1996 

FIELD-SYMBOLS 

 

Basic form

FIELD-SYMBOLS <fs>. 

Additions

1. … STRUCTURE s DEFAULT wa 
2. … TYPE t 
3. … TYPE LINE OF t 
4. … LIKE s 
5. … LIKE LINE OF s 

Effect

This statement declares a symbolic field called <fs>.
At runtime, you can assign a concrete field to the field symbol using ASSIGN . All operations performed with the field symbol
then directly affect the field assigned to it. 

You can only use one of the additions. 

Example

Output aircraft type from the table SFLIGHT using a field
symbol: 

 

FIELD-SYMBOLS <PT>.

TABLES SFLIGHT.

...

ASSIGN SFLIGHT-PLANETYPE TO <PT>.

WRITE <PT>.

 

Addition 1

… STRUCTURE s DEFAULT wa 

Effect

Assigns any (internal) field string or structure to the
field symbol from the ABAP/4 Dictionary ( s ). All fields of the structure can
be addressed by name: <fs>-fieldname . The structured field symbol points
initially to the work area wa specified after DEFAULT . 
The work area wa must be at least as long as the structure s . If s contains
fields of the type I or F, wa should have the structure s or at least begin in
that way, since otherwise alignment problems may occur. 

Example

Address components of the flight bookings table SBOOK using
a field symbol: 

 

DATA SBOOK_WA LIKE SBOOK.

FIELD-SYMBOLS <SB> STRUCTURE SBOOK

                   DEFAULT   SBOOK_WA.

...

WRITE: <SB>-BOOKID, <SB>-FLDATE.

 

Addition 2

… TYPE t 

Addition 3

… TYPE LINE OF t 

Addition 4

… LIKE s 

Addition 5

… LIKE LINE OF s 

Effect

You can use additions 2 to 5 to type field symbols in the
same way as FORM parameters (see also Type assignment of
subroutine parameters). ASSIGN performs the same type
checks as with USING parameters of FORM s. 
Related ASSIGN , DATA 

Index 
© SAP AG 1996 

FORM 

Basic form

FORM form. 

Additions

1. … TABLES itab1 … itabn 
2. … USING p1 … pn 
3. … CHANGING p1 … pn 

Effect

Defines a subroutine called by PERFORM 

Example

 

PERFORM WELCOME.

 

FORM WELCOME.

  WRITE / 'Hello world'.

ENDFORM.

The subroutine WELCOME called by the PERFORM statement outputs ‘Hello world’ 

Notes

Subroutines defined by FORM can have parameters and local
fields. These parameters and local fields shadow global fields. Any local
fields you declare with DATA after a FORM statement are recreated and
initialized for each PERFORM call. When the call has finished, the memory for
local fields is released again. FORM statements are not allowed within FORM …
ENDFORM structures (i.e. no nested definitions). Nested and recursive calls are
possible. The optional parameters must always be specified in the order TABLES
, USING and CHANGING . 

Addition 1

… TABLES itab1 … itabn 

Effect

TABLES allows you to pass internal tables with or without
header lines to subroutines. For information about assigning types TABLES
parameters, see Type assignment . TABLES parameters are passed by reference. 

Example

 

DATA: BEGIN OF X.

        INCLUDE STRUCTURE SFLIGHT.

DATA:   ADDITION(8) TYPE C,

      END OF X.

...

PERFORM U USING X.

...

FORM U USING X STRUCTURE SFLIGHT.

  WRITE: X-FLDATE.

ENDFORM.

 

Example

 

TYPES: BEGIN OF FLIGHT_STRUC,

         FLCARRID LIKE SFLIGHT-CARRID,

         PRICE    LIKE  SFLIGHT-FLDATE,

       END   OF FLIGHT_STRUC.

 

DATA: MY_FLIGHT TYPE FLIGHT_STRUC OCCURS 0 WITH HEADER LINE,

      IBOOK1    LIKE SBOOK        OCCURS 0 WITH HEADER LINE,

      IBOOK2    LIKE IBOOK1       OCCURS 0,

      STRUC     LIKE SBOOK.

 

PERFORM DISPLAY TABLES MY_FLIGHT IBOOK1 IBOOK2 USING STRUC.

 

FORM DISPLAY TABLES P_ITAB  LIKE      MY_FLIGHT[]

                    P_BOOK1 LIKE      IBOOK1[]

                    P_BOOK2 LIKE      IBOOK2[]

             USING  P_STRU  LIKE      STRUC.

  DATA L_CARRID  LIKE P_ITAB-FLCARRID.

  ...

  WRITE: / P_STRU-CARRID, P_STRU-CONNID.

  ...

  LOOP AT P_ITAB WHERE FLCARRID = L_CARRID.

    ...

  ENDLOOP.

  ...

ENDFORM.

 

Addition 2

… USING p1 … pn 

Effect

Defines the formal parameters p1 ,… pn which are replaced
by actual parameters when you call the subroutine. 
The formal parameters p1 ,… pn can have a particular type (see Type
assignment ). You can also specify the transfer type (i.e. how you want to pass
them). 

Note

Transfer types: USING … p … 
Transfer is by reference. This means you can change the transferred field
continually in the subroutine. 
USING … VALUE(p) … 

When you specify VALUE(…) , transfer is by value, i.e. the field contents are
passed to the relevant local field. VALUES parameters thus behave in the same
way as local fields. 

Addition 3

… CHANGING p1 … pn 

Effect

The parameters after CHANGING can accept the same
specifications as those after USING . 
To link the VALUE specification with the change of a parameter value, you can
use the addition CHANGING … . Then, all the formal parameters specified by
VALUE(…) are transported back to the actual parameters at the end of the
subroutine (i.e. after ENDFORM ). If the subroutine is terminated by a dialog
message, none of the parameters referenced by CHANGING VALUE … changes. 
Otherwise, the effect of USING and CHANGING is identical. 

Example

 

DATA: NUMBER_1 TYPE I VALUE 1,

      NUMBER_2 TYPE I VALUE 2,

      TEXT_1(10)      VALUE 'one',

      TEXT_2(10)      VALUE 'two'.

 

PERFORM CONFUSE USING NUMBER_1

                      NUMBER_2

                      TEXT_1

                      NUMBER_1

                      TEXT_2.

 

FORM CONFUSE USING PAR_NUMBER_1 TYPE I

                   PAR_NUMBER_2 TYPE I

                   PAR_TEXT_1   TYPE C

                   VALUE(PAR_V_NUMBER_1) TYPE I

                   VALUE(PAR_V_TEXT_2) TYPE C.

  ADD 3 TO PAR_V_NUMBER_1.

  ADD 4 TO PAR_NUMBER_1.

  ADD NUMBER_1 TO PAR_NUMBER_2.

  TEXT_2 = 'three'.

  PAR_TEXT_1 = PAR_V_TEXT_2.

  PAR_V_TEXT_2 = 'four'.

ENDFORM.

Field contents after the PERFORM call: 

NUMBER_1 = 5 
NUMBER_2 = 7 
TEXT_1 = ‘two’ 
TEXT_2 = ‘three’ 

Note

In subroutines, you are recommended to use the following
procedure: 
Pass input parameters as USING parameters and output parameters as CHANGING
parameters. If in doubt, pass the parameter by VALUE . You should be
particularly careful with passed SY fields. For performance reasons, data
objects which contain tables should not be passed by VALUE if at all possible.
You can protect TABLES parameters whose heasder lines must remain unchanged
with LOCAL . STATICS allows
you to create global fields with a local visibility area. In the case of local
fields which are initialized on each call, you can replace DATA by STATICS .
With frequently called FORM routines, this can lead to a noticeable improvement
in performance. To avoid shadowing problems with parameters, you are
recommended to keep to the naming convnetion for fields in subroutines. You
should, for instance, always start FORM parameters with the prefix ‘P_’ and
local fields with the prefix ‘L_’ . 

Index 
© SAP AG 1996 

FORMAT 

Basic form

FORMAT. 

Additions

1. … COLOR n [ON] or … COLOR OFF 
2. … INTENSIFIED [ON] or … INTENSIFIED OFF 
3. … INVERSE [ON] or … INVERSE OFF 
4. … HOTSPOT [ON] or … HOTSPOT OFF 
5. … INPUT [ON] or … INPUT OFF 
6. … RESET 

Effect

Sets or modifies the valid output format. 

Notes

The formats set by FORMAT work from the next output in the
list, i.e. from the next WRITE command or from the
next new line. 
The addition … ON for switching on the relevant output format is optional. 

Addition 1

… COLOR n [ON] or …COLOR OFF 

Color of line background . n can have the following values: 

	OFF or COL_BACKGROUND
	Background

	1 or COL_HEADING
	Headers (grayish blue)

	2 or COL_NORMAL
	List body (bright gray)

	3 or COL_TOTAL 
	Totals (yellow)

	4 or COL_KEY 
	Key columns (bluish green)

	5 or COL_POSITIVE
	Positive threshold value(green)

	6 or COL_NEGATIVE
	Negative threshold value (red)

	7 or COL_GROUP 
	Control levels (violet)


Note

Every time a new event ( START-OF-SELECTION , TOP-OF-PAGE ,
… ) is started, the system setting reverts to COLOR 0 . 
The additions .. INTENSIFIED and … INVERSE both affect the color display (see
below). 
The attribute …COLOR does not work for lines . 

Addition 2

… INTENSIFIED [ON] or … INTENSIFIED OFF 

Intensified - affects the background color. 

Each color exists in a normal (desaturated) and in an intensified (saturated)
form. … INTENSIFIED takes the current background color from the
"intensified" palette, while the … INTENSIFIED OFF uses the
"normal" palette. 

Note

Every time a new event ( START-OF-SELECTION , TOP-OF-PAGE ,
…) is started, the system setting reverts to … INTENSIFIED . 
On a standard background ( COLOR COL_BACKGROUND ), the foreground color may be
affected in certain cases. 
If, for example, you use the addition … INVERSE with the color palette
"output field intense" (IntNorm), the addition … INTENSIFIED has no
effect; the only exception to this rule is COLOR COL_BACKGROUND . 
The attribute …COLOR does not work for lines . 

Addition 3

… INVERSE [ON] or … INVERSE OFF 

Inverse - affects the background and foreground colors. 

Each color exists in an inverse form. … INVERSE takes the current color from
the "inverse" palette and uses it as the foreground (script) color.
The background ( COL_BACKGROUND ) then has no color. … INVERSE OFF switches
off the inverse display. 

Note

Every time a new event ( START-OF-SELECTION , TOP-OF-PAGE ,
…) is started, the system setting reverts to … INVERSE . 
If the use of … INVERSE results in the same background and foreground colors
( COLOR OFF INVERSE ), the background color and the foreground color are merely
reversed. 
When you are using the inverse display, the addition … INTENSIFIED has no
effect. (As mentioned above, COLOR OFF INVERSE is an exception to this rule.) 
The attribute …COLOR does not work for lines . 

Addition 4

… HOTSPOT [ON] or … HOTSPOT OFF 

Effect

Affects the display format of the mouse pointer and the
effect of the mouse single click: 
If you drage the mouse pointer over list areas which are output with the format
…HOTSPOT (lines or fields), the mouse pointer switches from its standard
display format (usually an arrow) to the format of a hand with an outstretched
index finger. If you then click once, the effect is like double-clicking or
pressing the function key F2 (AT LINE-SELECTION ). 

Note

The addition …HOTSPOT has no effect on input fields. 

Addition 5

… INPUT [ON] or … INPUT OFF 

Effect

Determines whether the user can enter data. You can change
the contents of list lines output with the format … INPUT on the screen. You
can also print out the change or process it further by using READ LINE in interactive events. 
… INPUT OFF reverses the ready for input status. 

Note

Every time a new event ( START-OF-SELECTION , TOP-OF-PAGE ,
…) is started, the system setting reverts to … INPUT . 
The additions … COLOR , … INVERSE and … HOTSPOT have no effect on input
fields. 
The addition … INTENSIFIED affects the background color (color palette
"input field" or "output field intensified"). 
The attribute … INPUT causes lines to be displayed
character-by-character and ready for input ( | or - ). 

Addition 6

… RESET 

Effect

Resets all formats (color, intensified, inverse, hotspot and
input). 
This corresponds to the command: 

 

FORMAT COLOR OFF INTENSIFIED OFF INVERSE OFF HOTSPOT OFF INPUT OFF.

 

Example

 

FORMAT INTENSIFIED INPUT.

WRITE 5 'JOHN'.

FORMAT INPUT OFF.

WRITE 40 'CARL'COLOR COL_GROUP.

produces the following output: 

 

                 ....+....10...+....20...+....30...+....40...+

 

                     JOHN                               CARL

 

ready for input: <------->

intensified:     <------------------------------------------>

color:                                                  <--->

From the beginning of the line to the last character of ‘JOHN’ , the list is
ready to accept input and is thus displayed in intensified form. 
From column 9 (i.e. after the ‘N’ of of ‘JOHN’ ), the list line is also
intensified but no longer ready for input. 
‘CARL’ is output from line 40, together with a colored bar (color COL_GROUP = 7
from the palette "color intensified"). The script color is the color
"output field intensified" (ProtInt). The intensified line display
ends with the last character of ‘CARL’ . 

Note

If the formats apply only to the output of a single field,
you can set the same (and other) parameters as additions to the WRITE statement. If you want to display different formats
on the screen, there are no reserved characters, i.e. you may output 2 fields
with different formats one directly after the other (without gaps). You can
also set the static additions ON , OFF and n (for COLOR ) dynamically with =
var which always interprets the contents of var as a number. Values other than
zero are used as ON or color number, zero works like OFF . 
For color numbers less than zero or greater than 7, the result is not defined. 
Recommended data type: I(nteger) 

Example

 

DATA C TYPE I VALUE 5.

FORMAT INTENSIFIED ON COLOR = C.

Index 
© SAP AG 1996 

FREE 

Reset to appropriate initial value for type, including
relea 
- FREE f. 
Release an area in the ABAP/4 memory 
- FREE MEMORY. 
Release the memory occupied by an external object 
- FREE OBJECT obj. 

Index 
© SAP AG 1996 

FREE - Reset to correct initial value for type,

including release of resources 

 

Basic form

FREE f. 

Effect

Like CLEAR f , FREE f resets any
data object f to the correct initial value for its type. 

In contrast to CLEAR , however, FREE also releases any resources connected with
the data object f . This may be relevant with internal tables, structures with
tabular components as well as table work areas (created with TABLES ). 

After FREE f , you can address the data object f again at any time, but this
may involve reallocating resources. 

Note

If f is an internal table with a header line, the FREE f
statement refers to the table body, but the CLEAR f statement refers to the
header line. 

Note

Performance 
The runtime required to execute the FREE statement is about 5 msn (standardized
microseconds). 

Index 
© SAP AG 1996 

FREE - release work area of a database table 

 

Variant 2

FREE dbtab. 

Effect

Releases the work area for the database table dbtab
specified with TABLES . When you access this table
again, the work area is re-allocated. 
Related TABLES 

Index 
© SAP AG 1996 

FREE - Release memory occupied by an internal
table 

 

Basic form

FREE itab. 

Effect

Releases the memory space needed to process the internal
table itab . 

Example

Release internal table ITAB after processing: 

 

DATA : BEGIN OF ITAB OCCURS 10,

         NAME(10) TYPE C,

       END   OF ITAB.

ITAB-NAME = 'James'.  APPEND ITAB.

...

LOOP AT ITAB.

  WRITE ITAB-NAME.

ENDLOOP.

FREE ITAB.

 

Note

Performance 
The runtime needed to execute the FREE statement is approx. 5 msn (standardized
microseconds). 

Index 
© SAP AG 1996 

FREE - Release an area in ABAP/4 memory 

 

Basic form

FREE MEMORY. 

Addition

… ID key 

Effect

Releases an area in ABAP/4 memory previously defined with EXPORT TO MEMORY , i.e. an additional IMPORT … FROM MEMORY sets the return code value of
SY-SUBRC to 4. 

Note

FREE MEMORY deletes the entire ABAP/4 memory , including
data exported with EXPORT TO MEMORY ID key . 

Addition

… ID key 

Effect

Releases only the ABAP/4 memory for the ID key . 
Related EXPORT TO MEMORY , IMPORT FROM MEMORY 

Index 
© SAP AG 1996 

FREE - Release memory occupied by an external
object 

 

Basic form

FREE OBJECT obj. 

Effect

Releases the memory needed for object obj . The object
cannot be processed afterwards. 

The return code value is set as follows: 

SY-SUBRC = 0 Object was released successfully. 
SY-SUBRC = 1 Error during communication with SAPGUI . 
SY-SUBRC = 2 Error during function call in SAPGUI . 
The OLE function modules are only implemented in Windows. 
FREE OBJECT 

Example

Release an EXCEL object: 

 

INCLUDE OLE2INCL.

DATA EXCEL TYPE OLE2_OBJECT.

CREATE OBJECT EXCEL 'Excel.Application'.

FREE   OBJECT EXCEL.

 

Related CREATE OBJECT , SET PROPERTY , GET PROPERTY
, CALL METHOD 

Index 
© SAP AG 1996 

FROM clause 

 

Variants

1. … FROM dbtab 
2. … FROM (dbtabname) 

Effect

When used in a SELECT statement,
specifies the source (database table or view ) from which data can be selected. 

Variant 1

… FROM dbtab 

Additions

1. … CLIENT SPECIFIED 
2. … BYPASSING BUFFER 
3. … UP TO n ROWS 

Effect

Specifies the name of the database table dbtab in the
program. The database table must be known to the ABAP/4 Dictionary and the
program must contain an appropriate TABLES statement. 

Example

Output a list of all customers: 

 

TABLES SCUSTOM.

 

SELECT * FROM SCUSTOM.

  WRITE: / SCUSTOM-ID, SCUSTOM-NAME.

ENDSELECT.

 

Addition 1

… CLIENT SPECIFIED 

Effect

Switches off automatic client handling. With client-specific
tables, this enables you to read data across all clients. The client field is
treated like a normal table field for which conditions can be formulated in the
WHERE clause . 

The addition CLIENT SPECIFIED must appear immediately after the name of the
database table. 

Example

Output a list of all customers in client 3: 

 

TABLES SCUSTOM.

 

SELECT * FROM SCUSTOM CLIENT SPECIFIED

         WHERE MANDT = '003'.

  WRITE: / SCUSTOM-ID, SCUSTOM-NAME.

ENDSELECT.

 

Addition 2

… BYPASSING BUFFER 

Effect

Reads the data records directly from the database, even if
the table is in the SAP buffer . 

Example

Output address of aircraft manufacturer Boeing: 

 

TABLES SPROD.

 

SELECT * FROM SPROD BYPASSING BUFFER

         WHERE PRODUCER = 'BOE'.

  WRITE: / SPROD-STREET, SPROD-NAME, SPROD-POSTCODE,

           SPROD-CITY, SPROD-COUNTRY.

ENDSELECT.

 

Addition 3

… UP TO n ROWS 

Effect

Restricts the result set to a maximum of n lines. 

Example

Output a list of the 3 business customers with the highest
discounts: 

 

TABLES SCUSTOM.

 

SELECT * FROM SCUSTOM UP TO 3 ROWS

         WHERE CUSTTYPE = 'B'.

         ORDER BY DISCOUNT DESCENDING.

  WRITE: / SCUSTOM-ID, SCUSTOM-NAME, SCUSTOM-DISCOUNT.

ENDSELECT.

 

Notes

If you combine UP TO n ROWS with an ORDER-BY
clause , the records are arranged in the specified order and the first n
records are output. To achieve this, you must sometimes read more than n
records in the database. 
If n = 0, all the selected records are returned. 
If n < 0, a
runtime error occurs. 

Variant 2

… FROM (dbtabname) 

Additions

1. … CLIENT SPECIFIED 
2. … BYPASSING BUFFER 
3. … UP TO n ROWS 

Effect

Specifies the name of the database table as the contents of
the field dbtabname at runtime. The database table must be known to the ABAP/4
Dictionary . 

Example

Output a list of all customers: 

 

DATA  TABNAME(10).

DATA: BEGIN OF WA,

        ID   LIKE SCUSTOM-ID,

        NAME LIKE SCUSTOM-NAME,

        REST(100),

      END OF WA.

 

TABNAME = 'SCUSTOM'.

SELECT * INTO WA FROM (TABNAME).

  WRITE: / WA-ID, WA-NAME.

ENDSELECT.

 

Notes

If you use an INTO clause , you
can only specify the name of the database table at runtime. 
The database table name must always be in upper case. 

Addition 1

… CLIENT SPECIFIED 

Effect

As for variant 1. 

Addition 2

… BYPASSING BUFFER 

Effect

As for variant 1. 

Addition 3

… UP TO n ROWS 

Effect

As for variant 1. 

Note

Performance 
With small datasets, you should always try to avoid specifying the name of the
database table at runtime because this adversely affects performance. With
larger datasets, there is no such problem. 

Index 
© SAP AG 1996 

FUNCTION 

Basic form

FUNCTION func. 

Effect

Defines a function module called by CALL
FUNCTION . 

Note

To create and edit function modules, select Tools ->
ABAP/4 Workbench -> Function Library . 

Index 
© SAP AG 1996 

FUNCTION-POOL 

Effect

The FUNCTION-POOL statement is equivalent to the REPORT statement and introduces a function group. 
A function group contains function modules introduced by the FUNCTION statement and called with the CALL FUNCTION statement. 

Index 
© SAP AG 1996 

GENERATE 

Generate a program 
- GENERATE REPORT prog. 
- GENERATE SUBROUTINE POOL itab NAME name. 
Generate a screen 
- GENERATE DYNPRO h f e m ID g. 

Index 
© SAP AG 1996 

GENERATE - Generate a screen 

GENERATE DYNPRO h f e m ID g. 
…MESSAGE F1 …LINE F2 …WORD F3. 

Additions

1. … OFFSET f4 
2. … TRACE-FILE f5 

Effect

Generates the screen specified in the field g . 
Here, the source code is taken from the structure h and the internal tables f ,
e and m . The field h (screen header) should correspond to the structure D020S
, the internal table f (field list) to the structure D021S , the internal table
e (flow logic) to the structure D022S and the internal table m (matchcode
information) to the structure D023S . 

If a syntax error occurs, the error message is stored in the field f1 . 

If a syntax error occurs, the number of the incorrect line is stored in the
field f2 . 
By reading the return code value, you can determine whether this line refers to
the flow logic or the field list. 

If a syntax error occurs, the incorrect word is stored in the field f3 . 

The return code value is set as follows: 

SY-SUBRC = 0 The screen was generated. 
SY-SUBRC <> 0 The screen could not be generated. 
SY_SUBRC = 4 The error is in the flow logic. 
SY-SUBRC = 8 The error is in the field list. 

Addition 1

… OFFSET f4 

Effect

If a syntax error occurs, the position of the incorrect word
is output in this field. 

Addition 2

… TRACE-FILE f5 

Effect

Stores performance data in this file. This addition
automatically switches on the trace mode. 
Related IMPORT DYNPRO , EXPORT
DYNPRO , DELETE DYNPRO , SYNTAX-CHECK
FOR DYNPRO . 

Index 
© SAP AG 1996 

GENERATE - Generate a program 

 

Variants

1. GENERATE REPORT prog. 
2. GENERATE SUBROUTINE POOL itab NAME name. 

Variant 1

GENERATE REPORT prog. 

Additions

1. … MESSAGE f1 
2. … INCLUDE f2 
3. … LINE f3 
4. … WORD f4 
5. … OFFSET f5 
6. … TRACE-FILE f6 
7. … DIRECTORY ENTRY f7 
8. … WITHOUT SELECTION-SCREEN 

Effect

Generates the program specified in the field prog . If the
program is a report (i.e. a type 1 program), the selection screen is generated
automatically. 

The return code value is set as follows: 

SY-SUBRC = 0 Program generated successfully. 
SY-SUBRC <> 0 Unable to generate program. 
SY_SUBRC = 4 Syntax error. 
SY-SUBRC = 8 Generation error. 
SY-SUBRC = 12 Error when generating selection screen. 

Addition 1

… MESSAGE f1 

Effect

When a syntax error occurs, the error message is stored in
this field. 

Addition 2

… INCLUDE f2 

Effect

When a syntax error occurs, the name of the include program
concerned is stored in this field. 

Addition 3

… LINE f3 

Effect

When a syntax error occurs, the number of the incorrect line
is stored in this field. 

Addition 4

… WORD f4 

Effect

When a syntax error occurs, the incorrect word is stored in
this field. 

Addition 5

… OFFSET f5 

Effect

When a syntax error occurs, the position of the incorrect
word in the incorrect line is stored in this field. 

Addition 6

… TRACE-FILE f6 

Effect

Trace output is stored in this file. This addition
automatically activates the trace mode. 

Addition 7

… DIRECTORY ENTRY f7 

Effect

The program attributes required for checking are taken from
the field f4 . This field must correspond to the structure of the table TRDIR . 

Addition 8

… WITHOUT SELECTION-SCREEN 

Effect

Does not generate the selection screen. 

Variant 2

GENERATE SUBROUTINE POOL itab NAME name. 

Additions

1. … MESSAGE f1 
2. … INCLUDE f2 
3. … LINE f3 
4. … WORD f4 
5. … OFFSET f5 
6. … TRACE-FILE f6 

The additions have the same meaning as with GENERATE REPORT . Only the addition
DIRECTORY-ENTRY is not supported with GENERATE SUBROUTINE POOL because
temporary subroutine pools are always generated as type S programs and the
arithmetic flag is taken over from the generating program. 

Effect

Generates a temporary subroutine pool. The source code for
the subroutine pool to be generated is passed on in the internal table itab .
The field name contains the name under which FORM routines can be addressed in
the temporary subroutine pool via external PERFORM . 

The return code value is set as follows: 

SY-SUBRC = 0 Generation successful. 
SY-SUBRC <> 0 Generation unsuccessful. 
SY_SUBRC = 4 Syntax error. 
SY-SUBRC = 8 Generation error. 
In contrast to GENERATE REPORT , the source code is passed on in an internal
table with GENERATE SUBROUTINE POOL , not read from the database. The load
version generated is not written to the database but held in main memory only. 

Notes

Temporary subroutine pools belong to the runtime context of
the generating program, i.e. to the roll area of the internal mode from which
the generation is performed. They may therefore be addressed only within this
context, i.e. the generated FORM routines can only be called from within the
generating mode. 
Up to 36 temporary subroutine pools can currently be managed for each roll
area. 
Related SYNTAX-CHECK 

Index 
© SAP AG 1996 

GET 

 

Basic forms

1. GET dbtab. 
2. GET CURSOR … 
3. GET PARAMETER ID key FIELD f. 
4. GET TIME. 
5. GET RUN TIME FIELD f. 
6. GET PROPERTY OF obj p = f. 

Index 
© SAP AG 1996 

GET 

 

Basic form 1

GET dbtab. 

Additions

1. … LATE 
2. … FIELDS f1 … fn 

Effect

Processing event. 

Gets the table dbtab for processing while the logical database is running. You
can address all the fields from dbtab in the subsequent processing. You can
also refer to fields from tables in the logical database on the access path to
the table dbtab . 

Note

You can use the event " GET dbtab. " only once in
the report. 

Example

The program uses the logical database F1S which has a
structure where the table BOOKING appears below the table FLIGHT . 

 

TABLES: SFLIGHT, SBOOK.

 

GET SFLIGHT.

  WRITE: SFLIGHT-CARRID,

         SFLIGHT-CONNID,

         SLFIGHT-FLDATE,

         SFLIGHT-PLANETYPE.

 

GET SBOOK.

  WRITE: SBOOK-BOOKID,

         SBOOK-CUSTOMID,

         SBOOK-ORDER_DATE.

 

Addition 1

… LATE. 

Effect

Executes the code following " GET dbtab LATE. "
only when all the subordinate tables have been read and processed. 

Example

Count the smokers among the bookings already made. 

 

TABLES: SFLIGHT, SBOOK.

DATA SMOKERS TYPE I.

 

GET SFLIGHT.

  ULINE.

  WRITE: / SFLIGHT-SEATSMAX,

           SFLIGHT-SEATSOCC.

  SMOKERS = 0.

 

GET SBOOK.

  CHECK SBOOK-SMOKER <> SPACE.

  ADD 1 TO SMOKERS.

 

GET FLIGHT LATE.

  WRITE SMOKERS.

 

Addition 2

… FIELDS f1 … fn 

Effect

Performance option. Addresses only the fields f1, …, fn of
the tabelle dbtab (also possible with a dynamic ASSIGN
). Since only these fields have to be assigned values by the logical database,
this can improve performance considerably. 

Notes

The addition (for GET dbtab or GET dbtab LATE ) is allowed
only for tables intended for field selection by the logical database (SELECTION-SCREEN FIELD SELECTION FOR TABLE dbtab ). 
When executing the events GET dbtab , GET dbtab LATE or GET dbtab_2 for a
subordinate table dbtab_2 in the database hierarchy, the contents of all all
fields of dbtab apart from f1, …, fn are undefined. 
If both GET dbtab FIELDS f1 …fn and GET dbtab LATE FIELDS g1 …gm occur in
the program, values are assigned to all the fields f1, …, fn, g1, …, gm . 
In addition to the specified fields, values are also assigned to the key fields
of dbtab . 
If you use the FIELDS addition, you access only the specified fields. Any
external PERFORM calls should be taken into account
here. 
A special rule applies for tables which are intended for field selection by the
logical database, for which neither a GET dbtab nor a GET dbtab LATE event
exists in the program, yet for which there is a subordinate table dbtab_2 with
GET dbtab_2 or GET dbtab_2 LATE in the program. 

If the table is declared with TABLES dbtab in the program,
the work area of dbtab exists for GET dbtab_2 or GET dbtab_2 LATE and is can
therfore receive values. Also, if a restricted field selection is sufficient
for dbtab , you can achieve this with a GET dbtab FIELDS f1 … fn statement
(without subsequent processing). 

If the program contains no TABLES dbtab statement, the
system assumes no access to the work area of dbtab . In this case, therefore,
only the key fields of dbatab are assigned values. If, however, you want to fill
the work area of dbtab completely (e.g. for an external PERFORM
call), you must include the TABLES dbtab statement in
the program. 
The field lists are made available to the report and the logical database in an
internal table SELECT_FIELDS . 

The exact definition of the object SELECT_FIELDS is stored in the TYPE-POOL RSFS and reads: 

TYPES: BEGIN OF RSFS_TAB_FIELDS, 
TABLENAME LIKE RSDSTABS-PRIM_TAB, 
FIELDS LIKE RSFS_STRUC OCCURS 10, 
END OF RSFS_TAB_FIELDS. 

… 

TYPES: RSFS_FIELDS TYPE RSFS_TAB_FIELDS OCCURS 10. 

DATA SELECT_FIELDS TYPE RSFS_FIELDS. 

SELECT_FIELDS is thus an internal table. Each line of this internal table
contains a table name ( TABLENAME ) and another internal table ( FIELDS ) which
contains the desired table fields ( TABLENAME ). 

Neither the TYPE-POOL RSFS nor the declaration of
SELECT_FIELDS have to be in the report. Both are automatically included by the
system, if required. If, for some reason, you need to assign values to more
fields, you can manipulate this table under INITIALIZATION
or START-OF-SELECTION . 

Examples

Specify the necessary fields under GET . Both SFLIGHT and
SBOOK must be defined for field selection. 

 

TABLES: SFLIGHT, SBOOK.

 

GET SFLIGHT FIELDS CARRID CONNID FLDATE PLANETYPE.

  WRITE: SFLIGHT-CARRID,

         SFLIGHT-CONNID,

         SFLIGHT-FLDATE,

         SFLIGHT-PLANETYPE.

 

GET SBOOK FIELDS BOOKID CUSTOMID ORDER_DATE.

  WRITE: SBOOK-BOOKID,

         SBOOK-CUSTOMID,

         SBOOK-ORDER_DATE.

In the above ’smoker’ example, you can also specify the required SFLIGHT fields
under ‘GET SFLIGHT LATE’: 

 

TABLES: SFLIGHT, SBOOK.

DATA SMOKERS TYPE I.

 

GET SFLIGHT.

  ULINE.

  WRITE: / SFLIGHT-SEATSMAX,

           SFLIGHT-SEATSOCC.

  SMOKERS = 0.

 

GET SBOOK FIELDS SMOKER.

  CHECK SBOOK-SMOKER <> SPACE.

  ADD 1 TO SMOKERS.

 

GET SFLIGHT LATE FIELDS SEATSMAX SEATSOCC.

  WRITE SMOKERS.

Only fields from SBOOK are output. No TABLES SFLIGHT statement exists. Then,
for the table SFLIGHT , only the key fields are read (regardless of whether the
FIELDS addition is used with GET SBOOK or not). 

 

TABLES: SBOOK.

 

GET SBOOK FIELDS BOOKID CUSTOMID ORDER_DATE.

  WRITE: SBOOK-BOOKID,

         SBOOK-CUSTOMID,

         SBOOK-ORDER_DATE.

Only fields from SBOOK are output, but SFLIGHT is declared by TABLES SFLIGHT .
In this case, all the fields of table SFLIGHT are read (regardless of whether
the FIELDS addition is used with GET SBOOK or not). 

 

TABLES: SFLIGHT, SBOOK.

 

GET SBOOK FIELDS BOOKID CUSTOMID ORDER_DATE.

  WRITE: SBOOK-BOOKID,

         SBOOK-CUSTOMID,

         SBOOK-ORDER_DATE.

Related PUT 

Index 
© SAP AG 1996 

GET CURSOR 

 

Variants

1. GET CURSOR FIELD f. 
2. GET CURSOR LINE lin. 

Variant 1

GET CURSOR FIELD f. 

Additions

1. … OFFSET off 
2. … LINE lin 
3. … VALUE g 
4. … LENGTH len 

Effect

Transfers the name of the field at the cursor position to
the field f . 

The return code value is set as follows: 

SY-SUBRC = 0 Cursor was positionedd on a field. 
SY_SUBRC = 4 Cursor was not positioned on a field. 

Note

Unlike screen processing, list processing allows you to
output literals, field symbols, parameters and local variables of subroutines.
Literals, local variables and VALUE parameters of subroutines are treated like
fields without names (field name SPACE , return value 0). 
Otherwise, GET CURSOR FIELD returns only names of global fields, regardless of
whether they are addressed directly (i.e. by " WRITE "), by field
symbols or by reference parameters. 

Example

 

DATA: CURSORFIELD(20),

      GLOB_FIELD(20)    VALUE 'global field',

      REF_PARAMETER(30) VALUE 'parameter by reference',

      VAL_PARAMETER(30) VALUE 'parameter by value',

      FIELD_SYMBOL(20)  VALUE 'field-symbol'.

FIELD-SYMBOLS: <F>.

PERFORM WRITE_LIST USING REF_PARAMETER VAL_PARAMETER.

ASSIGN GLOB_FIELD TO <F>.

 

AT LINE-SELECTION.

  GET CURSOR FIELD CURSORFIELD.

  WRITE: /   CURSORFIELD, SY-SUBRC.

 

FORM WRITE_LIST USING RP VALUE(VP).

  DATA: LOK_FIELD(20)  VALUE 'lokal field'.

  ASSIGN FIELD_SYMBOL TO <F>.

  WRITE: /  GLOB_FIELD,  /  LOK_FIELD,

         /  RP,          /  VP,

         /  'literal',   /  FIELD_SYMBOL.

ENDFORM.

When you double-click on the word " global field ", CURSORFIELD
contains the field name GLOB_FIELD , on " parameter by reference "
the field name REF_PARAMETER , on " field symbol " the field name
FIELD_SYMBOL , and on " local field ", " parameter by value
" and " literal " the value SPACE . 

Addition 1

… OFFSET off 

Effect

Copies the position of the cursor within the field to the
field off (1st column = 0). 
If the cursor is not somewhere within a field ( SY-SUBRC = 4 ), the offset value
is set to 0. 

Addition 2

… LINE lin 

Effect

With step loops, lin contains the number of the loop line
where the cursor stands. In list processing, this is the absolute line number
(as stored in the system field SY-LILLI ). 

Addition 3

… VALUE g 

Effect

g contains the value of the field where the cursor stands,
always in output format (character display). 

Addition 4

… LENGTH len 

Effect

len contains the output length of the field where the cursor
stands. 

Variant 2

GET CURSOR LINE lin. 

Additions

1. … OFFSET off 
2. … VALUE g 
3. … LENGTH len 

Effect

As for variant 1 with addition LINE , except that there are
differences with the return value and the effect of the additions. 

The return code value is set as follows: 

SY-SUBRC = 0 The cursor is on one of the list lines (list processing) or on a
loop line (step loop). 
SY_SUBRC = 4 The cursor is not on one of the list or loop lines. 

Addition 1

… OFFSET off 

Effect

Applies to list processing only. The field off contains the
position of the cursor releative to the beginning of the list line (1st column
= 0). With horizontally shifted lists, the offset value can thus be greater
than 0, even if the cursor is positioned on the extreme left of the window. 

Addition 2

… VALUE g 

Effect

List processing only. The field g contains the list line
where the cursor is positioned. 

Addition 3

… LENGTH len 

Effect

List processing only. len contains the length of the line (
LINE-SIZE ). 
Related SET CURSOR 

Index 
© SAP AG 1996 

GET 

 

Basic form 3

GET PARAMETER ID key FIELD f. 

Effect

Transfers the value stored under the key pid from the global
user-related SAP memory memory to the field f . 
The key pid must consist of three characters. For an overview of the keys
(parameters) used, refer to the SAP system description or the appropriate
function in the ABAP/4 Development Workbench. 

The return code value is set as follows: 

SY-SUBRC = 0 A
value was read from SAP memory. 
SY_SUBRC = 4 No value was found in SAP memory under the specified key 

Notes

· The
global user-related SAP memory is available to each user for the entire
duration of a terminal session. For this reason, set values are retained
when you leave a program. 

· The
SAP memory should not be used for intermediate storage, since a user’s
parallel sessions use the same global memory. 

 

Example

Read the program name from SAP memory: 

 

DATA : REPID(8).

GET PARAMETER ID 'RID' FIELD REPID.

Related SET PARAMETER 

Index 
© SAP AG 1996 

GET 

 

Basic form 6

GET PROPERTY OF obj p = f. 

Addition

… NO FLUSH 

Effect

Transfers attribute p of object obj to field f . 
Object obj must be of type OLE2_OBJECT . 
GET PROPERTY 

Addition

… NO FLUSH 

Example

Read the attribute ‘Visible’ of an EXCEL worksheet. 

 

INCLUDE OLE2INCL.

DATA: EXCEL   TYPE OLE2_OBJECT,

      VISIBLE TYPE I.

CREATE OBJECT EXCEL 'Excel.Application'.

GET PROPERTY OF EXCEL 'Visible' = VISIBLE.

Related SET PROPERTY 
CALL METHOD 
CREATE OBJECT 
FREE OBJECT 

Index 
© SAP AG 1996 

GET 

 

Basic form 5

GET RUN TIME FIELD f. 

Effect

Relative runtime in microseconds. The first call sets
(initializes) the field f to zero. For each subsequent call, f contains the
runtime in microseconds since the first call. The field F should be of type I . 

Note

If the applications server is a multiple processor,
switching the CPU to another processor may lead to fluctuations in the returned
runtime. When measuring the runtime of smaller program components, you can
achieve the correct result by taking several small measurements. 

Example

 

DATA: T1   TYPE I,

      T2   TYPE I,

      TMIN TYPE I.

 

DATA: F1(4000), F2 LIKE F1.

 

TMIN = 1000000.

DO 10 TIMES.

  GET RUN TIME FIELD T1.

    MOVE F1 TO F2.        "Time measurement of the MOVE statement

  GET RUN TIME FIELD T2.

  T2 = T2 - T1. IF T2 < TMIN. TMIN = T2. ENDIF.

ENDDO.

WRITE: 'MOVE 4000 bytes takes', TMIN, 'microseconds'.

Related To perform runtime measurements of complex processes use the
runtime analysis transaction (SE30) . 

Index 
© SAP AG 1996 

GET TIME 

 

Basic form 4

GET TIME. 

Addition

… FIELD f 

Effect

Sets the system field SY-UZEIT to the current time and
resets SY-DATUM . 

Addition

… FIELD f 

Effect

Transfers the current time to the field f , depending on the
type. SY-DATUM and SY-UZEIT are not set. 

Index 
© SAP AG 1996 

GROUP-BY clause 

 

Variants

1. … GROUP BY f1 … fn 
2. … GROUP BY (itab) 

Variant 1

… GROUP BY f1 … fn 

Effect

Groups database table data in a SELECT
command on one line in the result set. A group is a set of lines which all have
the same values in each column determined by the database fields f1 … fn . 

… GROUP BY f1 … fn always requires a list in the SELECT
clause . Each field f1 … fn must be specified in this list If you use
aggregate functions together with one or more database fields in the SELECT
clause , you must also all the database fields not specified by one of the
aggregate functions under GROUP BY f1 … fn . 

Example

Output the number of passengers, the total weight and the
average weight of luggage for all Lufthansa flights on 28.02.1995: 

 

TABLES SBOOK.

DATA:  COUNT TYPE I, SUM TYPE P DECIMALS 2, AVG TYPE F.

DATA:  CONNID LIKE SBOOK-CONNID.

 

SELECT CONNID COUNT( * ) SUM( LUGGWEIGHT ) AVG( LUGGWEIGHT )

       INTO (CONNID, COUNT, SUM, AVG)

       FROM SBOOK

       WHERE

         CARRID   = 'LH'       AND

         FLDATE   = '19950228'

       GROUP BY CONNID.

  WRITE: / CONNID, COUNT, SUM, AVG.

ENDSELECT.

 

Note

… GROUP BY f1 … fn is not supported for pooled and
cluster tables. 

Variant 2

… GROUP BY (itab) 

Effect

Works like GROUP BY f1 … fn if the internal table itab
contains the list f1 … fn as ABAP/4 source code. The internal table itab can
only have one field. This field must be of the type C and should not be more
than 72 characters long. itab must be enclosed in parentheses and there should
be no blanks between the parentheses and the table name. 

Note

The same restrictions apply to this variant as to GROUP BY
f1 … fn . 

Example

Output all Lufthansa departure points with the number of
destinations: 

 

TABLES: SPFLI.

DATA:   BEGIN OF WA.

          INCLUDE STRUCTURE SPFLI.

DATA:     COUNT TYPE I.

DATA:   END OF WA.

DATA:   GTAB(72) OCCURS 5 WITH HEADER LINE,

        FTAB(72) OCCURS 5 WITH HEADER LINE,

        COUNT TYPE I.

 

REFRESH: GTAB, FTAB.

FTAB = 'CITYFROM COUNT( * ) AS COUNT'. APPEND FTAB.

GTAB = 'CITYFROM'.                     APPEND GTAB.

 

SELECT DISTINCT (FTAB)

       INTO CORRESPONDING FIELDS OF WA

       FROM SPFLI

       WHERE

         CARRID   = 'LH'

       GROUP BY (GTAB).

  WRITE: / WA-CITYFROM, WA-COUNT.

ENDSELECT.

 

Note

Performance 
If possible, you should use the aggregate functions (for example, to determine
the minimum value of a database field). 

Index 
© SAP AG 1996 

HIDE 

 

Basic form

HIDE f. 

Effect

Hides the contents of the field f in relation to the current
output line. If you select this line, the system automatically assigns the
hidden value to f . 
Such a selection may result from any of the following: 
AT LINE-SELECTION AT PFx AT USER-COMMAND READ LINE 
To hide the contents of a field, you do not need to output the field beforehand
with WRITE . 

Index 
© SAP AG 1996 

IF 

 

Basic form

IF logexp. 

Effect

Used for case distinction. 

Depending on whether the logical expression logexp is true or not, this
statement triggers the execution of various sections of code enclosed by IF and
ENDIF . 

There are three different types: 
IF logexp. 
processing1 
ENDIF. 

If the logical expression is true, processing1 is executed. Otherwise, the program
resumes immediately after ENDIF . 
IF logexp. 
processing1 
ELSE. 
processing2 
ENDIF. 

If the logical expression is true, processing1 is executed. Otherwise,
processing2 is executed (see ELSE ). 
IF logexp1. 
processing1 
ELSEIF logexp2. 
processing2 
ELSEIF … 
… 
ELSE. 
processingN 
ENDIF. 

If the logexp1 is false, logexp2 is evaluated and so on. You can use any number
of ELSEIF statements. If an ELSE statement exists, it
always appears after all the ELSEIF statements. 

Notes

All IF statements must be concluded in the same processing
block by ENDIF . 
IF statements can be nested as mayn times as you like. 
The IF statement does not directly affect the selection. For this purpose, you
should use the CHECK statement. 

Index 
© SAP AG 1996 

IMPORT 

Get data 
- IMPORT f itab FROM MEMORY. 
- IMPORT f itab FROM DATABASE dbtab(ar) ID key. 
- IMPORT DIRECTORY INTO itab FROM DATABASE dbtab(ar) ID key. 
- IMPORT f itab FROM DATASET dsn(ar) ID key. 
Get a screen 
- IMPORT DYNPRO h f e m ID id. 

Index 
© SAP AG 1996 

IMPORT - Get data 

 

Variants

1. IMPORT f itab FROM MEMORY. 
2. IMPORT f itab FROM DATABASE dbtab(ar) ID key. 
3. IMPORT DIRECTORY INTO itab FROM DATABASE dbtab(ar) ID key. 
4. IMPORT f itab FROM DATASET dsn(ar) ID key. 

Variant 1

IMPORT f itab FROM MEMORY. 

Additions

1. … TO g (for each field f to be imported) 
2. … ID key 

Effect

Imports data objects (fields or tables) from the ABAP/4
memory (see EXPORT ). Reads in all data without an
ID that was exported to memory with "EXPORT … TO MEMORY." . In
contrast to the variant IMPORT FROM DATABASE , it does not check that the
structure matches in EXPORT and IMPORT . 

The return code value is set as follows: 

SY-SUBRC = 0 The data objects were successfully imported. 
SY_SUBRC = 4 The data objects could not be imported, probably 
because the ABAP/4 memory was empty. 
The contents of all objects remain unchanged. 

Addition 1

… TO g (for each field f to be imported) 

Effect

Takes the field contents stored under f from the global
ABAP/4 memory and places them in the field g . 

Addition 2

… ID key 

Effect

Imports only data stored in ABAP/4 memory under the ID key .

The return code value is set as follows: 

SY-SUBRC = 0 The data objects were successfully imported. 
SY_SUBRC = 4 The data objects could not be imported, probably 
because an incorrect ID was used. 
The contents of all objects remain unchanged. 

Variant 2

IMPORT f itab FROM DATABASE dbtab(ar) ID key. 

Additions

1. … TO g (for each field f to be imported) 
2. … MAJOR-ID maid (instead of ID key ) 
3. … MINOR-ID miid (together with MAJOR-ID maid ) 
4. … CLIENT h (after dbtab(ar) ) 
5. … USING form 

Effect

Imports data objects (fields, field strings or internal
tables) with the ID key from the area ar of the database dbtab (see also EXPORT ) 

The return code value is set as follows: 

SY-SUBRC = 0 The data objects were successfully imported. 
SY_SUBRC = 4 The data objects could not be imported, probably 
because an incorrect ID was used. 
The contents of all objects remain unchanged. 

Example

Import two fields and an internal table: 

 

TABLES INDX.

DATA: INDXKEY LIKE INDX-SRTFD,

      F1(4), F2 TYPE P,

      BEGIN OF TAB3 OCCURS 10,

        CONT(4),

      END OF TAB3.

 

INDXKEY = 'INDXKEY'.

IMPORT F1 F2 TAB3 FROM DATABASE INDX(ST) ID INDXKEY.

 

Notes

The structure of fields, field strings and internal tables
to be imported must match the structure of the objects exported to the dataset.
In addition, the objects must be imported under the same name used to export
them. If this is not the case, either a runtime error occurs or no import takes
place. 
Exception: You can lengthen or shorten the last field if it is of type CHAR ,
or add/omit CHAR fields at the end of the structure. 

Addition 1

… TO g (for each field f to be imported) 

Effect

Takes the field contents stored under the name f from the
database and places them in g . 

Addition 2

… MAJOR-ID maid (instead of ID key ) 

Addition 3

… MINOR-ID miid (together with MAJOR-ID maid ) 

Effect

Searches for a record with an ID that matches maid in the
first part (length of maid ) and - if MINOR-ID miid is also specified - is
greater than or equal to miid in the second part. 

Addition 4

… CLIENT h (after dbtab(ar) ) 

Effect

Takes the data from the client h (only with client-specific
import/export databases). 

Example

 

TABLES INDX.

DATA F1.

IMPORT F1 FROM DATABASE INDX(AR) CLIENT '002' ID 'TEST'.

 

Addition 5

… USING form 

Effect

Does not read the data from the database. Instead, calls the
FORM routine form for each record read from the database without this addition.
This routine can take the data key of the data to be retrieved from the
database table work area and write the retrieved data to this work area
schreiben; it therefore has no parameters. 

Note

Runtime errors 

Depending on the operands or the datsets to be imported, various runtime errors
may occur. 

Variant 3

IMPORT DIRECTORY INTO itab FROM DATABASE dbtab(ar) ID key. 

Additions

1. … CLIENT h (after dbtab(ar) ) 

Effect

Imports an object directory stored under the specified ID
with EXPORT into the table itab . 

The return code value is set as follows: 

SY-SUBRC = 0 The directory was successfully imported. 
SY_SUBRC = 4 The directory could not be imported, probably because an incorrect
ID was used. 

The internal table itab must have the same structure as the Dictionary
structure CDIR (INCLUDE STRUCTURE ). 

Addition 1

… CLIENT h (after dbtab(ar) ) 

Effect

Takes data from the client h (only with client-specific
import/export databases). 

Example

Directory of a cluster consisting of two fields and an
internal table: 

 

TABLES INDX.

DATA: INDXKEY LIKE INDX-SRTFD,

      F1(4), F2 TYPE P,

      BEGIN OF TAB3 OCCURS 10,

        CONT(4),

      END OF TAB3,

      BEGIN OF DIRTAB OCCURS 10.

        INCLUDE STRUCTURE CDIR.

DATA  END OF DIRTAB.

 

INDXKEY = 'INDXKEY'.

EXPORT F1 F2 TAB3 TO

       DATABASE INDX(ST) ID INDXKEY.    " TAB3 has 17 entries

...

IMPORT DIRECTORY INTO DIRTAB FROM DATABASE INDX(ST) ID INDXKEY.

Then, the table DIRTAB contains the following: 

NAME OTYPE FTYPE TFILL FLENG 
———————————– 
F1 F C 0 4 
F2 F P 0 8 
TAB3 T C 17 4 
The meaning of the individual fields is as follows: 
NAME : Name of stored object OTYPE : Object type ( F : Field, R : Field string
/ Dictionary structure, T : Internal table) FTYPE : Field type ( C : Character,
P : Packed, …) 
Field strings and internal tables have the type C. TFILL : Number of internal
table lines filled FLENG : Length of field in bytes 
With internal tables: Length of header line. 

Variant 4

IMPORT f itab … FROM DATASET dsn(ar) ID key. 

Note

This variant is not to be used at present. 

Index 
© SAP AG 1996 

IMPORT DYNPRO - Import a screen 

 

Basic form

IMPORT DYNPRO h f e m ID id. 

Effect

Imports the screen specified in the field id . Loads the
screen information into the structure h (screen header, structure D020S ) and
into the internal tables f (field list, structure D021S ), e (flow logic,
structure D022S ) and m (matchcode information, structure D023S ). 

The return code value is set as follows: 

SY-SUBRC = 0 The screen was successfully imported. 
SY_SUBRC = 4 The screen does not exist. 
Related EXPORT DYNPRO , 
GENERATE DYNPRO , 
SYNTAX-CHECK FOR DYNPRO , 
DELETE DYNPRO . 

Index 
© SAP AG 1996 

INCLUDE prog 

 

Basic form

INCLUDE prog. 

Effect

Includes the program prog in the main program for syntax
check and generation purposes. 
Include programs are used to divide very large programs into smaller more
manageable units. They also allow you to create common program components. 

Example

 

INCLUDE LSPRITOP.

 

Notes

The whole of an INCLUDE statement must appear on one line
where it is the only statement allowed. The include program must consist of
complete statements (and comments). You can use the service report RSINCL00 to
generate reference lists for include programs. 

Index 
© SAP AG 1996 

INCLUDE STRUCTURE 

 

Basic form

INCLUDE STRUCTURE rec. 

Effect

When you define a structure rec (with DATA
or TYPES ), this statement copies the components of the
structured data type subRec to the structure rec . 

Since you can define nested data structures (i.e. structures with
sub-structures) starting from Release 3.0, you should use INCLUDE STRUCTURE
only if you want to introduce types in a program first and nested structures in
a later step. 

A data definition 

 

DATA: BEGIN OF rec.

        INCLUDE STRUCTURE subRec.

DATA: END OF rec.

is equivalent to 

 

DATA rec LIKE subRec.

You are recommended to use the second formulation. 

Even if the structure rec to be defined contains additional components, instead
of 

 

DATA: BEGIN OF rec,

        ...

        INCLUDE STRUCTURE subRec.

DATA:   ...

      END OF rec.

you should use 

 

DATA: BEGIN OF rec,

        ...

        rec LIKE subRec,

        ...

      END OF rec.

so that subRec can be referenced as a sub-structure of rec . 

Note

Although " INCLUDE STRUCTURE subRec. " breaks up
the sub-structure subRec into its components, the alignment of subRec is
retained. This means that padding fields may be inserted before the first
and/or before the last component of subRec in rec . 
Related INCLUDE TYPE 

Index 
© SAP AG 1996 

INCLUDE TYPE 

 

Basic form

INCLUDE TYPE subRec. 

Effect

When you define a structure rec (with DATA
or TYPES ), this statement copies the components of the
structured data type subRec to the structure rec . 

Since you can define nested data structures (i.e. structures with
sub-structures) starting from Release 3.0, you should use INCLUDE TYPE only if
you want to introduce types in a program first and nested structures in a later
step. 
Related INCLUDE STRUCTURE 

Index 
© SAP AG 1996 

INCLUDE 

 

Basic forms

1. INCLUDE prog. 
2. INCLUDE STRUCTURE rec. 
3. INCLUDE TYPE type. 

Index 
© SAP AG 1996 

INFOTYPES 

Basic form

INFOTYPES nnnn. 

nnnn between 0000 and 0999: HR master data info types 
nnnn between 1000 and 1999: HR planning data info types 
nnnn between 2000 and 2999: HR time data info types 
nnnn between 3000 and 8999: Not yet used 
nnnn between 9000 and 9999: Customer-specific info types 

Additions

1. … NAME c 
2. … OCCURS occ 
3. … MODE N 
4. … VALID FROM begin TO end 

Effect

Declares the HR info type nnnn . Creates an internal table
as follows: 

 

DATA BEGIN OF Pnnnn OCCURS 10.

  INCLUDE STRUCTURE Pnnnn.

DATA END OF Pnnnn VALID BETWEEN BEGDA AND ENDDA.

 

Example

INFOTYPES: 0000, 0001, 0002. 

Addition 1

… NAME c 

Effect

c is a name up to 20 characters long. Creates an internal
table as follows: 

DATA BEGIN OF c OCCURS 10. 
INCLUDE STRUCTURE Pnnnn. 
DATA END OF c VALID BETWEEN BEGDA AND ENDDA. 

Example

INFOTYPES: 0005 NAME VACATION, 0006 NAME ADDRESS. 

Addition 2

… OCCURS occ 

Effect

occ is a number for the OCCURS value. Creates an internal
table as follows: 

DATA BEGIN OF c OCCURS m. 
INCLUDE STRUCTURE Pnnnn. 
DATA END OF c VALID BETWEEN BEGDA AND ENDDA. 

Example

 

INFOTYPES 0003 OCCURS 1.

 

Addition 3

… MODE N 

Applies only to the HR logical databases PNP and PCH . 

Effect

The info type tables are not filled by GET PERNR (logical
database PNP ) or GET OBJEC (logical database PCH ). The effect of the
INFOTYPES statement is then the same as the data declaration of an internal
table (as described above). 

Example

 

INFOTYPES: 2001 MODE N, 2002 MODE N, 2003 MODE N.

 

Addition 4

… VALID FROM begin TO end. 

Effect

This addition should only be used with the logical database
PNP . 
GET PERNR retrieves only those info type records which are valid within the
time range ( begin and end ) specified. begin and end are dates with the format
YYYYMMDD. 

Example

 

INFOTYPES: 0007 VALID FROM 19910101

                      TO   19911231.

 

Note

Each info type has a formal description in the ABAP/4
Dictionary as table Pnnnn . 
If you enter SHOW INFOTYPES nnnn in the editor command line, the system
displays information about the info type nnnn . 
If you enter SHOW INFOTYPES * , you see a list of all info types. 

Index 
© SAP AG 1996 

INITIALIZATION 

 

Basic form

INITIALIZATION. 

Effect

Processing event. 

Executed before the selection screen is displayed. 

The parameters (PARAMETERS ) and selection criteria
(SELECT-OPTIONS ) defined in the program already
contain default values (if specified). You can assign different values here and
also change the database-specific selections. 

In contrast to R/2 , this event is also executed during background processing. 

Example

Define the last day of the previous month as the key date: 

 

PARAMETERS QUAL_DAY TYPE D DEFAULT SY-DATUM.

INITIALIZATION.

  QUAL_DAY+6(2) = '01'.

  QUAL_DAY      = QUAL_DAY - 1.

Here, the default value of QUAL_DAY is the current date, e.g. 05.04.88 (
QUAL_DAY = ‘19880405′). Two subseqent statements set the date first to the
beginning of the month, e.g. 01.04.88 ( QUAL_DAY = ‘19880401′) and then, by
subtracting one day, to the last day of the previous month, e.g. 31.03.88 (
QUAL_DAY = ‘19880331′). 

Note

In more precise terms, INITIALIZATION is executed in the
following steps: 
Specify default values for the selections. Execute the event INITIALIZATION.
Import variant (if used to start the report). On SUBMIT
, the values specified for each WHERE clause are also transferred, if
necessary. Execute the event AT SELECTION-SCREEN OUTPUT
, if it occurs in the report (unlike INITIALIZATION , this event is always
executed for PBO of a selection screen). Display selection screen. Transport
the screen fields containing user input to the report fields. Continue with START-OF-SELECTION . 

Note

Since INITIALIZATION is only executed once when you start
the report, it is not suitable for screen modifications such as suppressing
individual parameters (LOOP AT SCREEN , MODIFY SCREEN ) because these changes would disappear
again when the user pressed ENTER. The correct event for screen modifications
is AT SELECTION-SCREEN OUTPUT . 

Related AT SELECTION-SCREEN , START-OF-SELECTION 

Index 
© SAP AG 1996 

INPUT 

 

Basic form

INPUT. 
This key word will only be supported for a limited period (for the sake of compatibility
with R/2). Instead, please use FORMAT INPUT (see FORMAT
) or the addition … INPUT of the WRITE statement. 

Index 
© SAP AG 1996 

INSERT 

Insert into a database table 
- INSERT INTO dbtab [CLIENT SPECIFIED] VALUES wa. 
INSERT INTO (dbtabname) [CLIENT SPECIFIED] VALUES wa. 
- INSERT dbtab [CLIENT SPECIFIED]. 
INSERT *dbtab [CLIENT SPECIFIED]. 
INSERT (dbtabname) [CLIENT SPECIFIED] … . 
- INSERT dbtab [CLIENT SPECIFIED] FROM TABLE itab. 
INSERT (dbtabname) [CLIENT SPECIFIED] FROM TABLE itab. 
Insert into an internal table 
- INSERT [wa INTO|INITIAL LINE INTO] itab [INDEX idx]. 
INSERT LINES OF itab1 [FROM idx1] [TO idx2] INTO itab2 
[INDEX idx3]. 
Insert into a field group 
- INSERT f1 f2 … INTO fg. 
Insert a program 
- INSERT REPORT prog FROM itab. 
Insert text elements 
- INSERT TEXTPOOL prog …FROM itab …LANGUAGE lg. 

Index 
© SAP AG 1996 

INSERT - Insert in a database table 

 

Variants

1. INSERT INTO dbtab VALUES wa. or 
INSERT INTO (dbtabname) VALUES wa. 
2. INSERT dbtab. or 
INSERT *dbtab. or 
INSERT (dbtabname) … 
3. INSERT dbtab FROM TABLE itab. or 
INSERT (dbtabname) FROM TABLE itab. 

Effect

Inserts new lines in a database table . 

You can specify the name of the database table either in the program itself in
the form dbtab or at runtime as the contents of the field dbtabname . In both
cases, the database table must be defined in the ABAP/4 Dictionary . If the
program contains the name of the database table, it must also include a
corresponding TABLES statement. Normally, lines are
inserted only in the current client. Data can only be inserted using a view if
the view refers to a single table and was defined in the ABAP/4 Dictionary with
the maintenance status "No restriction". 

INSERT belongs to the Open SQL command set. 

Notes

You cannot insert a line if a line with the same primary key
already exists or if a UNIQUE index already has a line with identical key field
values. 
When inserting lines using a view , all fields of the database table that are
not in the view are set to their initial value (see TABLES
) - if they were defined with NOT NULL in the ABAP/4 Dictionary . Otherwise
they are set to NULL . 
Since the INSERT statement does not perform authorization checks , you must
program these yourself. 
Lines specified in the INSERT command are not actually added to the database
table until after the next ROLLBACK
WORK . Lines added within a transaction remain locked until the transaction
has finished. The end of a transaction is either a COMMIT
WORK , where all database changes performed within the transaction are made
irrevocable, or a ROLLBACK WORK , which cancels all
database changes performed within the transaction. 

Variant 1

INSERT INTO dbtab VALUES wa. or 
INSERT INTO (dbtabname) VALUES wa. 

Addition

… CLIENT SPECIFIED 

Effect

Inserts one line into a database table. 

The line to be inserted is taken from the work area wa and the data read from
left to right according to the structure of the table work area dbtab (see TABLES ). Here, the structure of wa is not taken into
account. For this reason, the work area wa must be at least as wide (see DATA ) as the table work area dbtab and the alignment of
the work area wa must correspond to the alignment of the table work area.
Otherwise, a runtime error occurs. 

When the command has been executed, the system field SY-DBCNT contains the
number of inserted lines (0 or 1). 

The return code value is set as follows: 

SY-SUBRC = 0 Line was successfully inserted. 
SY_SUBRC = 4 Line could not be inserted since a line with the same key already
exists. 

Example

Insert the customer Robinson in the current client: 

 

TABLES SCUSTOM.

SCUSTOM-ID        = '12400177'.

SCUSTOM-NAME      = 'Robinson'.

SCUSTOM-POSTCODE  = '69542'.

SCUSTOM-CITY      = 'Heidelberg'.

SCUSTOM-CUSTTYPE  = 'P'.

SCUSTOM-DISCOUNT  = '003'.

SCUSTOM-TELEPHONE = '06201/44889'.

 

INSERT INTO SCUSTOM VALUES SCUSTOM.

 

Addition

… CLIENT SPECIFIED 

Effect

Switches off automatic client handling. This allows you to
insert data across all clients even when dealing with client-specific tables.
The client field is then treated like a normal table field which you can
program to accept values in the work area wa that contains the line to be
inserted. 

The addition CLIENT SPECIFIED must be specified immediately after the name of
the database table. 

Example

Insert the customer Robinson in client 2: 

 

TABLES SCUSTOM.

SCUSTOM-MANDT     = '002'.

SCUSTOM-ID        = '12400177'.

SCUSTOM-NAME      = 'Robinson'.

SCUSTOM-POSTCODE  = '69542'.

SCUSTOM-CITY      = 'Heidelberg'.

SCUSTOM-CUSTTYPE  = 'P'.

SCUSTOM-DISCOUNT  = '003'.

SCUSTOM-TELEPHONE = '06201/44889'.

 

INSERT INTO SCUSTOM CLIENT SPECIFIED VALUES SCUSTOM.

 

Variant 2

INSERT dbtab. or 
INSERT *dbtab. or 
INSERT (dbtabname) … 

Additions

1. … FROM wa 
2. … CLIENT SPECIFIED 

Effect

These are the SAP -specific short forms for the statements
explained under variant 1. 

· INSERT
INTO dbtab VALUES dbtab. or 

· INSERT
INTO dbtab VALUES *dbtab. or 

· INSERT
INTO (dbtabname) VALUES wa. 

When the command has been executed, the system field SY-DBCNT contains the
number of inserted lines (0 or 1). 

The return code value is set as follows: 

SY-SUBRC = 0 Line successfully inserted. 
SY_SUBRC = 4 Line could not be inserted, since a line with the same key already
exists. 

Example

Add a line to a database table: 

 

TABLES SAIRPORT.

SAIRPORT-ID   = 'NEW'.

SAIRPORT-NAME = 'NEWPORT APT'.

 

INSERT SAIRPORT.

 

Addition 1

… FROM wa 

Effect

The values for the line to be inserted are not taken from
the table work area dbtab , but from the explicitly specified work area wa .
The work area wa must also satisfy the conditions described in variant 1. As
with this variant, the addition allows you to specify the name of the database
table directly or indirectly. 

Note

If a work area is not explicitly specified, the values for
the line to be inserted are taken from the table work area dbtab if the
statement is in a FORM or FUNCTION where the table work area is stored in a
formal parameter or local variable of the same name. 

Addition 2

… CLIENT SPECIFIED 

Effect

As for variant 1. 

Variant 3

INSERT dbtab FROM TABLE itab. or 
INSERT (dbtabname) FROM TABLE itab. 

Additions

… CLIENT SPECIFIED 
… ACCEPTING DUPLICATE KEYS 

Effect

Mass insert: Inserzts all lines of the internal table itab
in a single operation. The lines of itab must satisfy the same conditions as
the work area wa in variant 1. 

When the command has been executed, the system field SY-DBCNT contains the
number of inserted lines. 

The return code value is set as follows: 

SY-SUBRC = 0 All lines successfully inserted. Any other result causes a runtime
error . 

Note

If the internal table itab is empty, SY-SUBRC and SY-DBCNT
are set to 0 after the call. 

Addition 1

… CLIENT SPECIFIED 

Effect

As for variant 1. 

Addition 2

… ACCEPTING DUPLICATE KEYS 

Effect

If a line cannot be inserted, the processing does not
terminate with a runtime error, but the return code value of SY-SUBRC is merely
set to 4. All the remaining lines are inserted when the command is executed. 

Index 
© SAP AG 1996 

INSERT - Insert into a field group 

 

Basic form

INSERT f1 f2 … INTO fg. 

Effect

Inserts one or more fields into the field group fg (see FIELD-GROUPS ). 

Notes

This basic form of INSERT is not a declarative, but an
operational, statement, i.e. it must be executed at runtime. 
A field group can only accept global data objects, not data objects which have
been defined locally in a FORM or FUNCTION . 
The actual data transport is performed by EXTRACT . 
As soon as the first dataset for a field group has been extracted with EXTRACT , the field group can no longer be extended with
INSERT . The field group HEADER cannot be extended at all after the first EXTRACT (regardless of the field group). 

Note

Runtime errors 

· EXTRACT_INSERT_LOCAL_DATA
: Attempt to insert local data objects into a field group. 

 

· INSERT_INTO_LOCKED_FIELD_GROUP
: INSERT into field group after records of this type had already been
extracted with EXTRACT . 

Index 
© SAP AG 1996 

INSERT - Insert into internal table 

 

Variants

1. INSERT [wa INTO|INITIAL LINE INTO] itab [INDEX idx]. 
2. INSERT LINES OF itab1 [FROM idx1] [TO idx2] INTO itab2 
[INDEX idx3]. 

Variant 1

INSERT [wa INTO|INITIAL LINE INTO] itab [INDEX idx]. 

Effect

Inserts a new line into an internal table. 

If you specify wa INTO , the new line is taken from the contents of the
explicitly specified work area wa . 

When using INITIAL LINE INTO , a line containing the appropriate initial value
for its type is inserted into the table. 

If you omit the specification before itab , the new line is taken from the
header line of the internal table itab . 

INDEX idx specifies the table index before which the line is inserted into the
table itab . If the table has exactly idx - 1 entries, the line is appended to
the table. 

Within a LOOP , on an internal table, you do not
have to specify the insertion point with INDEX idx . The source table is then
inserted before the current LOOP line in the target table. 

The return code value is set as follows: 

When specifying the insertion point with INDEX idx : 

SY-SUBRC = 0 The entry was inserted. 
SY_SUBRC = 4 Index specification too large. The entry was not inserted because
the table has fewer than idx - 1 entries. 
Return code value If the insertion point is not specified, the is set to 0. 

Note

Inserting lines within a LOOP … ENDLOOP structure affects
subsequent loop passes. 
Invalid index specifications (for example, idx <= 0), result in a runtime
error. 

Example

Insert values into a table of whole numbers: 

 

DATA: VALUE TYPE I,

      ITAB  TYPE I OCCURS 100 WITH HEADER LINE.

 

ITAB  = 5.

VALUE = 36.

 

INSERT ITAB INDEX 1.

INSERT VALUE INTO ITAB INDEX 2.

INSERT INITIAL LINE INTO ITAB INDEX 2.

The table ITAB now contains three lines with the values 5, 0 and 36. 

Variant 2

INSERT LINES OF itab1 [FROM idx1] [TO idx2] INTO itab2 
[INDEX idx3]. 

Effect

Inserts the internal table itab1 or a section of itab1 into
the internal table itab2 . 

As with variant 1, INDEX idx3 is to specifies the table index before which you
want to insert in the target table itab2 . 

Within a LOOP , on an internal table, you do not
have to specify the insertion point with INDEX idx3 . The source table is then
inserted before the current LOOP line in the target table. 

By specifying FROM idx1 or TO idx2 , you can restrict the line area from which
the source table itab1 is taken. If there is no FROM specification, the line
area begins with the first line of itab1 . If there is no TO specification, the
line area ends with the last line of itab1 . This means that the whole table is
inserted, if neither a FROM nor a TO is specified. 
Return code value 
The is set as for variant 1. 

Note

You can use DESCRIBE TABLE itab1 LINES
… to determine the size of the table itab1 before or after the INSERT
statement and thus establish how many lines were actually inserted into the
table. 

Note

Inserting lines within a LOOP … ENDLOOP structure affects
subsequent loop passes. 
Invalid index specifications (for example, idx <= 0), result in a runtime
error. 

Example

Insert a name table into another name table: 

 

TYPES NAME(10) TYPE C.

 

DATA: NAME_TAB_1 TYPE NAME OCCURS 5,

      NAME_TAB_2 TYPE NAME OCCURS 5.

 

APPEND 'Alice'  TO NAME_TAB_1.

APPEND 'Martha' TO NAME_TAB_1.

APPEND 'Ruth'   TO NAME_TAB_1.

 

APPEND 'Harry'  TO NAME_TAB_2.

APPEND 'Walter' TO NAME_TAB_2.

 

INSERT LINES OF NAME_TAB_1 FROM 2 INTO NAME_TAB_2 INDEX 2.

After the insertion, the table NAME_TAB_2 contains four entries with the names
Harry , Martha , Ruth and Walter . 

Note

Performance 

Inserting a line into an internal table incurs index maintenance costs which
depend on the insertion point. 

For example, inserting a line in the middle of a 100-byte wide internal table
with 200 entries requires about 90 msn (standardized microseconds). 
If you want to insert the contents of one internal table into another internal
table, you incur index maintenance costs only once with the variant INSERT
LINES OF … . Compared with a LOOP which inserts the lines of the source table
one-by-one into the target table, this represents a distinct improvement in
performance. 

Inserting a table of 500 lines with a 100-byte line width in the middle of a
similar size table can thus be amde up to 20 times faster. 

Note

Runtime errors 

· TABLE_INVALID_INDEX
: Invalid index value (<= 0) with a FROM , TO or INDEX specification. 

Related COLLECT itab , APPEND
, SELECT / FETCH NEXT CURSOR … INTO/APPENDING TABLE
itab , MODIFY itab , WRITE
f TO itab INDEX idx , SORT itab , READ TABLE itab , LOOP AT itab
, DELETE itab 

Index 
© SAP AG 1996 

INSERT - Insert a program 

 

Basic form

INSERT REPORT prog FROM itab. 

Effect

Inserts the program prog from the internal table itab into
the library. The internal table itab contains the source code; the lines of the
table cannot be more than 72 characters long. The program attributes (type,
date, …) are set by the system, but you can change them manually or in the
program (table TRDIR ). 

Note

Runtime errors 

· INSERT_PROGRAM_INTERNAL_NAME
: 

The program name prog is reserve internally; it begins with ‘%_T’ . 

· INSERT_PROGRAM_NAME_BLANK
: 

The program name prog must not contain any blanks characters. 

· INSERT_PROGRAM_NAME_TOO_LONG
: 

The program name prog is too long; it cannot be more than 8 characters
long. 

· INSERT_REPORT_LINE_TOO_LONG
: 

One of the source code lines is longer than 72 characters. 

Related DELETE REPORT , READ
REPORT , INSERT TEXTPOOL , SYNTAX-CHECK
, GENERATE REPORT 

Index 
© SAP AG 1996 

INSERT - Insert text elements 

 

Basic form

INSERT TEXTPOOL prog …FROM itab …LANGUAGE lg. 

Effect

Assigns the text elements in the internal table itab to the
program prog and the language lg and inserts them in the library. The line
structure of the table itab is described in the section Text elements . 

Example

The following program uses the internal table TAB to set the
text elements of the program PROGNAME . 

 

DATA: PROGRAM(8) VALUE 'PROGNAME',

      TAB LIKE TEXTPOOL OCCURS 50 WITH HEADER LINE.

 

TAB-ID = 'T'. TAB-KEY = SPACE.  TAB-ENTRY = 'Sales'.

APPEND TAB.

TAB-ID = 'I'. TAB-KEY = '200'.  TAB-ENTRY = 'Tax'.

APPEND TAB.

TAB-ID = 'H'. TAB-KEY = '001'.  TAB-ENTRY = 'Name   Age'.

APPEND TAB.

TAB-ID = 'S'. TAB-KEY = 'CUST'. TAB-ENTRY = 'Customer'.

APPEND TAB.

TAB-ID = 'R'. TAB-KEY = SPACE.  TAB-ENTRY = 'Test program'.

APPEND TAB.

 

SORT TAB BY ID KEY.

INSERT TEXTPOOL PROGRAM FROM TAB LANGUAGE SY-LANGU.

 

Notes

As in the example, the internal table should be sorted by
the components ID and KEY to enable faster access to the text elements at
runtime. However, this is not obligatory. 
The component LENGTH (see text elements ) for the length of a text element does
not have to be set explicitly. In this case - as in the example - the actual
length of the text element is used. 
The value of LENGTH cannot be smaller than the text to which it applies. If
your length specification is too short, it is ignored by INSERT and the actual
length is used instead. 
On the other hand, larger values are allowed and can be used to reserve space
for texts that may be longer when translated into other languages. 
Related DELETE TEXTPOOL , READ TEXTPOOL 

Index 
© SAP AG 1996 

INTO clause 

 

Variants

1. … INTO wa 
2. … INTO CORRESPONDING FIELDS OF wa 
3. … INTO (f1, …, fn) 
4. … INTO TABLE itab 
5. … INTO CORRESPONDING FIELDS OF TABLE itab 
6. … APPENDING TABLE itab 
7. … APPENDING CORRESPONDING FIELDS OF TABLE itab 

Effect

With SELECT or FETCH
, this statement determines the target area into which the data is to be read.
If no data is read, the target area remains unchanged. 
The result set is transported to the target area field by field. This means
that the ABAP/4 Dictionary data types must correspond to the ABAP/4 data types
of the target fields as follows: 

	Result field
	Target field

	Dict. data type
	ABAP/4 data type

	ACCP
	-> C or N

	 
	 

	CHAR
	-> C

	 
	 

	CLNT
	-> C

	 
	 

	CUKY
	-> C

	 
	 

	CURR
	-> I, P or F

	 
	 

	DEC 
	-> I, P or F

	 
	 

	DATS
	-> D

	 
	 

	FLTP
	-> I or F

	 
	 

	INT1
	-> I, P or F

	 
	 

	INT2
	-> I, P or F

	 
	 

	INT4
	-> I, P or F

	 
	 

	LCHR
	-> C

	 
	 

	LRAW
	-> X

	 
	 

	LANG
	-> C

	 
	 

	NUMC
	-> C or N

	 
	 

	PREC
	-> X

	 
	 

	QUAN
	-> I, P or F

	 
	 

	RAW 
	-> X

	 
	 

	TIMS
	-> T

	 
	 

	UNIT
	-> C

	 
	 

	VARC
	-> C

	 
	 


If the ABAP/4 data type of the target field is C , N or X , the contents of the
result field are placed left-justified in the target field. If the target field
is too short, the result value is truncated. If the ABAP/4 of the target field
is numeric, the target field must be long enough to hold the contents of the
result field. When transporting the contents of a result field of type FLTP ot
a target field of type I , the whole number part is copied. If a field in the
result set contains a NULL value, the initial value of the ABAP/4 data type
corresponding to the field type is placed in the target area (see TABLES ). Depending on the database system, any violation
of the correspondence rules can lead to a runtime error. 

Variant 1

… INTO wa 

Effect

Places the result set in the target area wa line by line.
The fields are transported to the corresponding components of the wa from left
to right. 
If you specify a "*" in the SELECT clause
, the selected data is placed left-justified in wa according to the structure
of the table work area dbtab (see TABLES ). Therefore,
the structure of wa does not have to correspond to the structure of the result
set. However, to access the columns of the results line symbolically, the
structures of wa and dbtab must be compatible. In each case, the work area wa
must be at least as wide as the table work area dbtab . If wa is wider, the
contents of the remaining area on the right are undefined. 
If you specify a list of fields in the SELECT clause
, the selected data is placed field by field in wa according to the structure
of the work area . If wa has fewer components than the SELECT list, a runtime
error occurs. If it has more, the contents of the excess components of wa
remain undefined. 
If the result of a selection is a table, the data is retrieved in a processing
loop introduced by SELECT and concluded by ENDSELECT . The processing passes through the loop once
for each line read. If the result is a single record, the closing ENDSELECT is
omitted. 

Examples

Output a list of all airlines (with short description and
name): 

 

TABLES SCARR.

DATA   WA LIKE SCARR.

 

SELECT * INTO WA FROM SCARR.

  WRITE: / WA-CARRID, WA-CARRNAME.

ENDSELECT.

Output a list of all airlines (with short description and name): 

 

TABLES SCARR.

DATA TABNAME(10).

DATA BEGIN OF WA1,

       CARRID   LIKE SCARR-CARRID,

       CARRNAME LIKE SCARR-CARRNAME,

       REST(100),

     END   OF WA1.

 

TABNAME = 'SCARR'.

SELECT * INTO WA1 FROM (TABNAME).

  WRITE: / WA1-CARRID, WA1-CARRNAME.

ENDSELECT.

Output a list of all airlines (with short description and name): 

 

DATA BEGIN OF WA2,

       CARRID   LIKE SCARR-CARRID,

       CARRNAME LIKE SCARR-CARRNAME,

       REST(100),

     END   OF WA2.

 

SELECT CARRID CARRNAME

       INTO WA2

       FROM SCARR.

  WRITE: / WA2-CARRID, WA2-CARRNAME.

ENDSELECT.

 

Variant 2

… INTO CORRESPONDING FIELDS OF wa 

Effect

Places the result set in the target area wa line by line.
Each field of the result set is transported to the field of the same name in wa
. If no such field exists, a runtime error occurs. 
If the result of a selection is a table, the data is retrieved in a processing
loop introduced by SELECT and concluded by ENDSELECT . The processing passes through the loop once
for each line read. If the result is a single record, the closing ENDSELECT is
omitted. 

Example

Output a list of all airlines (with short description and
name): 

 

TABLES SCARR.

 

SELECT CARRID CARRNAME

       INTO CORRESPONDING FIELDS OF SCARR

       FROM SCARR.

  WRITE: / SCARR-CARRID, SCARR-CARRNAME.

ENDSELECT.

 

Variant 3

… INTO (f1, …, fn) 

Effect

Places the result set in the target area (f1, …, fn) . The
fields of the result set are transported to the target fields fi from left to
right. INTO (f1, …, fn) is allowed only if a list with n elements is also
specified in the SELECT clause. 
If the result of a selection is a table, the data is retrieved in a processing
loop introduced by SELECT and concluded by ENDSELECT . The processing passes through the loop once
for each line read. If the result is a single record, the closing ENDSELECT is
omitted. 

Example

Output a list of all airlines (with short description and
name): 

 

TABLES SCARR.

DATA:  CARRID   LIKE SCARR-CARRID,

       CARRNAME LIKE SCARR-CARRNAME,

 

SELECT CARRID CARRNAME

       INTO (CARRID, CARRNAME)

       FROM SCARR.

  WRITE: / CARRID, CARRNAME.

ENDSELECT

 

Variant 4

… INTO TABLE itab 

Addition

… PACKAGE SIZE n 

Effect

Works like … INTO wa , except that the selected data is
not assigned to the internal table itab line by line, but in one single
operation. In this case, SELECT does not introduce a
processing loop, so there can be no ENDSELECT
statement. The old contents of itab are overwritten. 

Example

Output a list of all airlines (with short description and
name): 

 

TABLES SCARR.

DATA   ITAB LIKE SCARR OCCURS 100 WITH HEADER LINE.

 

SELECT * INTO TABLE ITAB FROM SCARR.

LOOP AT ITAB.

  WRITE: / ITAB-CARRID, ITAB-CARRNAME.

ENDLOOP.

 

Addition

… PACKAGE SIZE n 

Effect

Works like … INTO wa , except that the selected data is
not assigned to the internal table 

· If
n = 0, all lines selected by the WHERE condition are returned in one
single operation. 

 

· n
< 0 causes a runtime error. 

 

· Internally,
n is placed in a type I field. Here, the usual conversion rules apply (see
MOVE ). 

 

· After
leaving the processing loop, the contents of the internal table itab are
undefined. 

If the result of a selection is a table, the data is retrieved in a processing
loop introduced by SELECT and concluded by ENDSELECT . The processing passes through the loop once
for each line read. If the result is a single record, the closing ENDSELECT is
omitted. 

Example

Output a list of all airlines (with short description and
name): 

 

TABLES SCARR.

DATA   ITAB LIKE SCARR OCCURS 100 WITH HEADER LINE.

 

SELECT * INTO TABLE ITAB PACKAGE SIZE 20 FROM SCARR.

  LOOP AT ITAB.

    WRITE: / ITAB-CARRID, ITAB-CARRNAME.

  ENDLOOP.

ENDSELECT.

 

Variant 5

… INTO CORRESPONDING FIELDS OF TABLE itab 

Addition

… PACKAGE SIZE n 

Effect

Works like … INTO CORRESPONDING FIELDS OF wa , except that
the selected data is not assigned to the internal table SELECT
does not introduce a processing loop, so there can be no ENDSELECT
statement. The old contents of itab are overwritten. 

Addition

… PACKAGE SIZE n 

Effect

Works like … INTO TABLE itab . 

Variant 6

… APPENDING TABLE itab 

Addition

… PACKAGE SIZE n 

Effect

Works like … INTO TABLE itab , except that the read lines
are appended to the old contents of the internal table itab . 

Addition

… PACKAGE SIZE n 

Effect

Works like … INTO TABLE itab . 

Variant 7

… APPENDING CORRESPONDING FIELDS OF TABLE itab 

Addition

… PACKAGE SIZE n 

Effect

Works like … INTO CORRESPONDING FIELDS OF TABLE itab ,
except that the read lines are appended to the old contents of the internal
table itab . 

Addition

… PACKAGE SIZE n 

Effect

Works like … INTO TABLE itab . 

Notes

Performance 
If you only want to evaluate the selected data once, you should read it into a
work area. Reading it into an internal table would incur additional costs for
the handling of internal tables and also use more memory space. 
If you want to read the data into an internal table, it is better to do this in
a single operation than to read it line-by-line in a SELECT loop and then use
APPEND to append it to an internal table. 
You should only use the variant … INTO CORRESPONDING FIELDS … with large
volumes of data because otherwise the time required to compare the field names
in the name table is too high. 

Index 
© SAP AG 1996 

LEAVE 

Effect

Leave processing. 

Basic forms

1. LEAVE PROGRAM. 
2. LEAVE TO TRANSACTION tcod. 
3. LEAVE TO SCREEN scr. 
4. LEAVE SCREEN. 
5. LEAVE TO LIST-PROCESSING. 
6. LEAVE LIST-PROCESSING. 
7. LEAVE. 

Index 
© SAP AG 1996 

LEAVE 

 

Basic form 7

LEAVE. 

Effect

Leaves the " CALL mode " (introduced by: CALL TRANSACTION , CALL DIALOG
, 
LEAVE TO LIST-PROCESSING 

 

Basic form 5

LEAVE TO LIST-PROCESSING. 

Addition

… AND RETURN TO SCREEN scr. 

Effect

Switches from "dialog processing" (module pool,
screens) of the current transaction to "list processing". You can
then use all the usual list layout commands ( WRITE , SKIP , …). 
After leaving the current screen, the list formatted in this way is displayed
implicitly or explicitly by LEAVE SCREEN . Here, all
list programming options are possible, e.g. line selection, F keys , windows. 
LEAVE LIST-PROCESSING continues with
"Processing Before Output" ( PBO ) of the screen which controls the
list processing. 

Note

After switching to list processing mode with SET PF-STATUS … , you are recommended to define a GUI
(Graphical User Interface) of type List or List in dialog box . 

Addition

… AND RETURN TO SCREEN scr. 

Effect

LEAVE LIST-PROCESSING continues
with "Processing Before Output" ( PBO ) of the screen scr. 

Note

Using LEAVE LIST-PROCESSING to leave list processing
explicitly is only necessary in exceptional cases; normally, the standard F
keys (F3 Back and F15 Exit ) are sufficient. 

Index 
© SAP AG 1996 

LEAVE TO SCREEN 

Basic form 3

LEAVE TO SCREEN scr. 

Effect

Leaves the current screen and processes the screen scr . 

If scr = 0, processing in CALL mode continues after the CALL
SCREEN statement. Otherwise, you branch to the transaction selection
screen. 
Related SET SCREEN , LEAVE
SCREEN 

Index 
© SAP AG 1996 

LEAVE TO TRANSACTION 

Basic form 2

LEAVE TO TRANSACTION tcod. 

Addition

… AND SKIP FIRST SCREEN 

Effect

Terminates the current processing and starts the (new)
transaction tcod . 

Examples

Start Transaction SM02 : 

 

LEAVE TO TRANSACTION 'SM02'.

Restart current transaction: 

 

LEAVE TO TRANSACTION SY-TCODE.

 

Addition

… AND SKIP FIRST SCREEN 

Effect

Processes the first screen of the transaction in the
background. If possible, the fields on this screen are filled with values from
the SAP memory . Therefore, you should set the desired values with SET PARAMETER . If an error occurs when processing the
initial screen (due to incorrect or imcomplete parameter values), this is
reported and you must correct or complete the input manually on this screen. 

Index 
© SAP AG 1996 

LEAVE LIST-PROCESSING 

Basic form

LEAVE LIST-PROCESSING. 

Effect

Returns from list processing and re-processes the return screen (LEAVE TO LIST-PROCESSING) . 

Note

LEAVE LIST-PROCESSING is not required if you use the
standard F keys in list processing (F3 Back and F15 Exit ). 
Related LEAVE SCREEN 

Index 
© SAP AG 1996 

Basic form 1

LEAVE PROGRAM. 

Effect

Leaves the current program and continues processing after CALL TRANSACTION , CALL DIALOG
or SUBMIT prog AND RETURN . 
If you use LEAVE TO TRANSACTION , SUBMIT prog or start the program via the transaction menu
or a transaction code, you branch to the transaction selection screen. 

Note

LEAVE PROGRAM always leaves the current program - there is
never any processing after LEAVE PROGRAM ! 

Index 
© SAP AG 1996 

LEAVE SCREEN 

Basic form 4

LEAVE SCREEN. 

Effect

Leaves the current screen and processes the next screen. 

If the next screen has the number 0 (either defined statically or set
dynamically by SET SCREEN 0 ), processing in CALL
mode continues after the CALL SCREEN statement.
Otherwise, you branch to the transaction selection screen. 

Note

If the next screen is specified dynamically, you can use the
short form "LEAVE TO SCREEN scr. " instead
of a combination of the " SET SCREEN scr. " and " LEAVE SCREEN.
" commands. 
Related SET SCREEN , LEAVE
TO SCREEN 

Index 
© SAP AG 1996 

LOAD 

 

Basic form

LOAD REPORT prog PART part INTO itab. 

Variants

1. LOAD REPORT prog PART ‘HEAD’ INTO itab. 
2. LOAD REPORT prog PART ‘TRIG’ INTO itab. 
3. LOAD REPORT prog PART ‘CONT’ INTO itab. 
4. LOAD REPORT prog PART ‘DATA’ INTO itab. 
5. LOAD REPORT prog PART ‘DDNM’ INTO itab. 
6. LOAD REPORT prog PART ‘DATV’ INTO itab. 
7. LOAD REPORT prog PART ‘SELC’ INTO itab. 
8. LOAD REPORT prog PART ‘STOR’ INTO itab. 
9. LOAD REPORT prog PART ‘LITL’ INTO itab. 
10. LOAD REPORT prog PART ‘SYMB’ INTO itab. 
11. LOAD REPORT prog PART ‘LREF’ INTO itab. 
12. LOAD REPORT prog PART ‘SSCR’ INTO itab. 
13. LOAD REPORT prog PART ‘BASE’ INTO itab. 
14. LOAD REPORT prog PART ‘INIT’ INTO itab. 
15. LOAD REPORT prog PART ‘DATP’ INTO itab. 
16. LOAD REPORT prog PART ‘TXID’ INTO itab. 
17. LOAD REPORT prog PART ‘COMP’ INTO itab. 

Effect

Loads the specified part of the generated version of the
program prog into the internal table itab (for analysis purposes only). 

The return code value is set as follows: 

SY-SUBRC = 0 The load for the program prog exists and is current. 
SY_SUBRC = 4 The load for the program prog does not exist. 
SY-SUBRC = 8 The load for the program prog exists, but is not current. In some
cases, this SY-SUBRC may mean that the program load has been destroyed. You can
resolve this by generating the program. With PART ‘LREF’ , SY-SUBRC = 8 means
that the line reference table is incorrect for the program. With PART ‘CONT’ ,
it means that the reference part of the internal table is empty. 
itab has been filled only if SY-SUBRC = 0 . 

Variant 1

LOAD REPORT prog PART ‘HEAD’ INTO itab. 

Effect

Loads the program header into line 1 of the internal table
itab . itab must have the Dictionary structure RHEAD . 

Variant 2

LOAD REPORT prog PART ‘TRIG’ INTO itab. 

Effect

Loads the event control blocks into the internal table itab
. itab must have the Dictionary structure RTRIG . 

Variant 3

LOAD REPORT prog PART ‘CONT’ INTO itab. 

Effect

Loads the processing control blocks into the internal table
itab . itab must have the Dictionary structure RCONT . 

Variant 4

LOAD REPORT prog PART ‘DATA’ INTO itab. 

Effect

Loads the static data descriptions into the internal table
itab . itab must have the Dictionary structure RDATA . 

To find the data description for a data index i, proceed as follows: 

 

   0 <= i < 2^14  ==>  i+1        Index in data_itab

2^14 <= i < 2^15  ==>  i+1 - 2^14 Index in datv_itab

2^15 <= i < 2^16  ==>  i+1 - 2^15 Parameter index

(2^14 = 16384, 2^15 = 32768) 

Variant 5

LOAD REPORT prog PART ‘DDNM’ INTO itab. 

Effect

The names of the dictionary structures used in the program
are set in the internal table itab . itab must have the dictionary structure
RDDNM . 

Variant 6

LOAD REPORT prog PART ‘DATV’ INTO itab. 

Effect

Loads the variable data descriptions into the internal table
itab . itab must have the Dictionary structure RDATA . 

To find the data description for a data index i, proceed as follows: 

 

   0 <= i < 2^14  ==>  i+1        Index in data_itab

2^14 <= i < 2^15  ==>  i+1 - 2^14 Index in datv_itab

2^15 <= i < 2^16  ==>  i+1 - 2^15 Parameter index

(2^14 = 16384, 2^15 = 32768) 

Variant 7

LOAD REPORT prog PART ‘SELC’ INTO itab. 

Effect

Loads the description of the selection variables (
SELECT-OPTIONS and PARAMETERS ) into the internal table itab . itab must have
the Dictionary structure RSELC . 

Variant 8

LOAD REPORT prog PART ‘STOR’ INTO itab. 

Effect

Loads the initial values of the global data into the
internal table itab . The line width of itab determines where the line break
occurs. Ideally, itab should contain exactly one field of the type X . 

Variant 9

LOAD REPORT prog PART ‘LITL’ INTO itab. 

Effect

Loads the literal table into the internal table itab . The
line width of itab determines where the line break occurs. Ideally, itab should
contain exactly one field of the type X . 

Variant 10

LOAD REPORT prog PART ‘SYMB’ INTO itab. 

Effect

Loads the symbol table into the internal table itab . itab
must have the Dictionary structure RSYMB . 

Variant 11

LOAD REPORT prog PART ‘LREF’ INTO itab. 

Effect

Loads the line reference into the internal table itab . itab
must have the Dictionary structure RLREF . 

Variant 12

LOAD REPORT prog PART ‘SSCR’ INTO itab. 

Effect

Loads the description of the selection screen into the
internal table itab . itab must have the Dictionary structure RSSCR . 

Variant 13

LOAD REPORT prog PART ‘BASE’ INTO itab. 

Effect

Loads the segment table into the internal table itab . itab
must have the Dictionary structure RBASE . 

Variant 14

LOAD REPORT prog PART ‘INIT’ INTO itab. 

Effect

Loads the initial values of the local data into the internal
table itab . The line width of itab determines where the line break occurs.
Ideally, itab should contain exactly one field of the type X . 

Variant 15

LOAD REPORT prog PART ‘DATP’ INTO itab. 

Effect

Loads the data descriptions of the parameters and local
field symbols into the internal table itab . itab must have the dictionary
structure RDATA . 

Variant 16

LOAD REPORT prog PART ‘TXID’ INTO itab. 

Effect

Loads the index of the text elements (assignment of text
keys to data control blocks) into the internal table itab . itab must have the
dictionary structure RTXID . 

Variant 17

LOAD REPORT prog PART ‘COMP’ INTO itab. 

Effect

Loads the description of the components of the (internal)
structures used in the program into the internal table itab . itab must have
the dictionary structure RDATA . 

Note

Runtime errors 

· LOAD_REPORT_PART_NOT_FOUND
: An invalid identification was specified under part . 

· LOAD_REPORT_PROGRAM_NOT_FOUND
: The specified program prog does not exist. 

· LOAD_REPORT_TABLE_TOO_SHORT
: The specified internal table is too narrow. 

Index 
© SAP AG 1996 

LOAD REPORT 

Variations: 
1. LOAD REPORT prog PART ‘HEAD’ INTO itab. 
2. " ‘TRIG’ " 
3. " ‘CONT’ " 
4. " ‘DATA’ " 
5. " ‘DATV’ " 
6. " ‘SELC’ " 
7. " ‘STOR’ " 
8. " ‘LITL’ " 
9. " ‘SYMB’ " 
10. " ‘LREF’ " 
11. " ‘SSCR’ " 
12. " ‘BASE’ " 
13. " ‘INIT’ " 

Effect

Loads the specified part of the generated version of the
program prog into the internal table itab (for analysis purposes only). 

After LOAD REPORT , SY-SUBRC may be set to any of the following values: 
0 if the load for the program prog exists and is current, 4 if the load for the
program prog does not exist, 8 if the load for the program prog exists, but is
not current. In certain cases, this value of SY-SUBRC can also mean that the
program load has been destroyed. The remedy for this is normally a generation.
With PART ‘LREF’, a SY-SUBRC value of 8 means that the line reference table is
not correct for the program. With PART ‘CONT’, it means that the reference part
of the internal table is empty. 
Only where SY-SUBRC = 0 is itab filled. 

Variant 1

LOAD REPORT prog PART ‘HEAD’ INTO itab. 

Effect

Loads the program header into line 1 of internal table itab
. The structure of itab must be the same as the Dictionary structure RHEAD. 

Variant 2

LOAD REPORT prog PART ‘TRIG’ INTO itab. 

Effect

Loads the event control block into the internal table itab .
The structure of itab must be the same as the Dictionary structure RTRIG. 

Variant 3

LOAD REPORT prog PART ‘CONT’ INTO itab. 

Effect

Loads the processing control blocks into the internal table
itab . The structure of itab must be the same as the Dictionary structure
RCONT. 

Variant 4

LOAD REPORT prog PART ‘DATA’ INTO itab. 

Effect

Loads the static data descriptions into the internal table
itab . The structure of itab must be the same as the Dictionary structure
RDATA. 

To find the relevant data description for a data index i, proceed as follows: 

 

   0 <= i < 2^14  ==>  i+1        Index in data_itab

2^14 <= i < 2^15  ==>  i+1 - 2^14 Index in datv_itab

2^15 <= i < 2^16  ==>  i+1 - 2^15 Parameter index

 

(2^14 = 16384, 2^15 = 32768) 

Variant 5

LOAD REPORT prog PART ‘DATV’ INTO itab. 

Effect

Loads the variable data descriptions into the internal table
itab . The structure of itab must be the same as the Dictionary structure
RDATA. 

To find the relevant data description for a data index i, proceed as follows: 

 

   0 <= i < 2^14  ==>  i+1        Index in data_itab

2^14 <= i < 2^15  ==>  i+1 - 2^14 Index in datv_itab

2^15 <= i < 2^16  ==>  i+1 - 2^15 Parameter index

 

(2^14 = 16384, 2^15 = 32768) 

Variant 6

LOAD REPORT prog PART ‘SELC’ INTO itab. 

Effect

Loads the description of the selection variables
(SELECT-OPTIONS and PARAMETERS) into the internal table itab . The structure of
itab must be the same as the Dictionary structure RSELC. 

Variant 7

LOAD REPORT prog PART ‘STOR’ INTO itab. 

Effect

Loads the initial values of the global data into the
internal table itab . The line length of itab determines the line break.
Ideally, itab should also contain exactly one field of type X. 

Variant 8

LOAD REPORT prog PART ‘LITL’ INTO itab. 

Effect

Loads the literal table into the internal table itab . The
line length of itab determines the line break. Ideally, itab should contain
exactly one field of type X. 

Variant 9

LOAD REPORT prog PART ‘SYMB’ INTO itab. 

Effect

Loads the symbol table into the internal table itab . itab
must have the same structure as the Dictionary structure RSYMB. 

Variant 10

LOAD REPORT prog PART ‘LREF’ INTO itab. 

Effect

Loads the line reference into the internal table itab . itab
must have the same structure as the Dictionary structure RLREF. 

Variant 11

LOAD REPORT prog PART ‘SSCR’ INTO itab. 

Effect

Loads the selection screen description into the internal
table itab . itab must have the same structure as the Dictionary structure
RSSCR. 

Variant 12

LOAD REPORT prog PART ‘BASE’ INTO itab. 

Effect

Loads the segment table into the internal table itab . itab
must have the same structure as the Dictionary structure RBASE. 

Variant 13

LOAD REPORT prog PART ‘INIT’ INTO itab. 

Effect

Loads the initial values of the local data into the internal
table itab . The line length of itab determines the line break. Ideally, itab
should contain exactly one field of type X. 

Index 
© SAP AG 1996 

LOCAL 

 

Basic form

LOCAL f. 

Effect

Can only be used after the FORM
statement. 
Saves the current value of the field f when you enter the routine and restores
it when you leave the routine. 
You can also use LOCAL for field symbols and formal parameters. With field
symbols, it not only saves and restores the field reference created using ASSIGN , but also the contents of the field referenced
when you enter the routine. 
With formal parameters, please note that although changing the value of the
formal parameter does not affect the actual parameter after you leave the
routine (if you specified the formal parameter after LOCAL ), the values of the
formal and actual parameter within the routine are always identical. 
This contrasts with the VALUE specification (see FORM )
where changing the passed field within the routine does not affect the value of
the formal parameter. 

Index 
© SAP AG 1996 

LOOP 

Loop on an internal table 
- LOOP AT itab. 
LOOP AT itab INTO wa. 
Loop on an extract dataset 
- LOOP. 
Loop on screen fields 
- LOOP AT SCREEN. 
Loop on a database table 
- LOOP AT dbtab. 

Index 
© SAP AG 1996 

LOOP - Loop on an extract dataset 

 

Basic form

LOOP. 

Effect

Processes the extracted dataset. 

By using LOOP … ENDLOOP , you can process the dataset generated by EXTRACT like an internal table (as in LOOP AT itab ) - if required, after sorting with SORT . 

For control break processing in a LOOP on an extract dataset, there are special
control break control structures for extracts you
can use. 

At the end of a control level, the control total of a numeric field f is stored
in the field SUM(f) . This total includes all records read, even if further
processing in the LOOP has been skipped by CHECK . 

At the end of a control level, the number of different values which a field f
has accepted from the sort key within the group, i.e. the number of control
records where the field f has changed its value, is stored in the field CNT(f)
. 

You can use the CONTINUE statement to leave the
current loop pass prematurely and continue with the next loop pass. To leave
loop processing altogether, you use EXIT . 

At present, the return code value in SY-SUBRC is not set when you use LOOP with
extracts. In Release 4.0, however, SY-SUBRC will also specify for LOOP via
extracts at the end of loop processing (i.e. after ENDLOOP ) whether the loop
was processed at least once when (similar to LOOP with internal tables). 

Notes

When you have processed a dataset with SORT
or LOOP … ENDLOOP , you cannot extract any more records with EXTRACT . 
You cannot nest loops on extracted datasets (unlike internal tables), i.e. only
one loop on an extracted dataset can be active at any time. However, several
consecutive loops are allowed. 

Example

 

DATA: ONR(7), POSITION(3) TYPE N,

      CUSTOMER(20),

      PNR(5) TYPE N, NAME(15), UNITS TYPE I,

      ORDERS TYPE I.

FIELD-GROUPS: HEADER, ORDER, PRODUCT.

INSERT ONR POSITION      INTO HEADER.

INSERT CUSTOMER          INTO ORDER.

INSERT PNR NAME UNITS    INTO PRODUCT.

ONR = 'GF00012'. POSITION = '000'.

CUSTOMER = 'Good friend'.

EXTRACT ORDER.

ADD 1 TO POSITION.

PNR = '12345'. NAME = 'Screw'.  UNITS = 100.

EXTRACT PRODUCT.

ADD 1 TO POSITION.

PNR = '23456'. NAME = 'Nail'.   UNITS = 200.

EXTRACT PRODUCT.

ONR = 'NB00056'. POSITION = '000'.

CUSTOMER = 'Nobody'.

EXTRACT ORDER.

ONR = 'MM00034'. POSITION = '000'.

CUSTOMER = 'Moneymaker'.

EXTRACT ORDER.

ADD 1 TO POSITION.

PNR = '23456'. NAME = 'Nail'.   UNITS = 300.

EXTRACT PRODUCT.

ADD 1 TO POSITION.

PNR = '34567'. NAME = 'Hammer'. UNITS = 4.

EXTRACT PRODUCT.

SORT.

LOOP.

  AT ORDER.

    WRITE: /, / ONR, CUSTOMER.

  ENDAT.

  AT ORDER WITH PRODUCT.

    WRITE 'ordered:'.

  ENDAT.

  AT PRODUCT.

    WRITE: / ONR, PNR, NAME, UNITS.

  ENDAT.

  AT END OF ONR.

    WRITE: / 'Sum of units:', 26 SUM(UNITS).

    ORDERS = CNT(POSITION) - 1.

    WRITE: / 'Number of orders:', ORDERS.

  ENDAT.

ENDLOOP.

This code generates the following list: 

GF00012 Good friend ordered: 
GF00012 12345 Screw 100 
GF00012 23456 Nail 200 
Sum of units: 300 
Number of orders: 2 

MM00034 Moneymaker ordered: 
MM00034 23456 Nail 300 
MM00034 34567 Hammer 4 
Sum of units: 304 
Number of orders: 2 

NB00056 Nobody 
Sum of units: 0 
Number of orders: 0 
Related EXTRACT , LOOP
AT itab 

Note

Runtime errors 

· LOOP_WITHIN_LOOP
: Nested loop on an extracted dataset. 

Index 
© SAP AG 1996 

LOOP - loop processing with a database table 

 

Basic form

LOOP AT dbtab. 

Addition

… VERSION vers 

Note

This variant is no longer maintained and should therefore
not be used (see also Obsolete key words ). Instead, please use a SELECT statement. 

Effect

Loop processing of the database table dbtab . 

You must declare the table dbtab under TABLES in the
program. dbtab is a table name which begins with "T" and consists of
up to five characters. 
The processing is the same as for variant 1 (except that the system field
SY-TABIX is not set). If you want to process the whole table, you must set all
table fields to SPACE . Otherwise, the table fields you want to use as a
generic argument must be filled beforehand (READ TABLE
dbtab. ). 

Note

Fields of type P and type N have an initial value other than
SPACE . This means that fields of this type after CLEAR
or MOVE SPACE TO … are not set to SPACE . 
In the case of tables which have arguments containing fields of type P or type
N , the entire table header line must be set to SPACE ( MOVE SPACE TO dbtab ,
not (!) CLEAR dbtab ). It is preferable to use SELECT
instead. 

Addition

… VERSION vers 

Note

You should use this addition only if it is absolutely
necessary. In some cases, you can (and it makes sense) to avoid this LOOP
addition by using a generation program. 

Effect

Specifies a dynamically definable table name. The field vers
must be a 4-character C field which contains the table name. It is declared
under PARAMETERS and evaluated at runtime. The entry read is always placed in
the assigned table T…. . 

Index 
© SAP AG 1996 

LOOP - Loops on an internal table 

 

Basic form

LOOP AT itab. 
LOOP AT itab INTO wa. 

Additions

1. … FROM n1 
2. … TO n2 
3. … WHERE logexp 
4. … TRANSPORTING NO FIELDS 

Effect

Processes an internal table (DATA ) in
a loop which begins with LOOP and ends with ENDLOOP . Each of the internal
table entries is sent to the output area in turn. 

When LOOP AT itab. is used, the header line of the internal table itab is used
as output area. In the case of LOOP AT itab INTO wa , there is an explicitly
specified work area wa . 

If the internal table is empty, all the statements between LOOP and ENDLOOP are
ignored. 

In each loop pass, SY-TABIX contains the index of the current table entry.
After leaving a LOOP , SY-TABIX has the same value as it had before. 

Inserting and/or deleting lines in a LOOP affects subsequent loop passes. 

For control break processing in a LOOP on internal tables, there are special control break control structures for internal tables you
can use. 

You can use the CONTINUE statement to leave the
current loop pass prematurely and continue with the next loop pass. To leave
loop processing altogether, you use EXIT . 

At the end of loop processing (i.e. after ENDLOOP ), the return code value of
SY-SUBRC specifies whether the loop was actually processed. 

SY-SUBRC = 0 The loop was executed at least once. 
SY_SUBRC = 4 The loop was not executed, either because there was no entry at
all or because there was no entry which satisfied the conditions. 

Example

The table T is defined as follows: 

 

DATA: BEGIN OF T OCCURS 100,

        BAREA(2), BLNCE TYPE P,

      END OF T.

After the table has been filled with data (using APPEND
), it is then output: 

 

LOOP AT T.

  WRITE: / T-BAREA, T-BLNCE.

ENDLOOP.

 

Notes

If an internal table is processed only on a restricted basis
(with the additions FROM , TO and /or WHERE ), you should not use the control structures for control break processing because
the interaction of a restricted LOOP and the AT statement is undefined at
present. 
If SUM is used in a LOOP and an explicit output area wa
has also been specified, this output area must be compatible with the line type
of the internal table itab . 

Addition 1

… FROM n1 

Addition 2

… TO n2 

Effect

Places all internal table entries from the entry with the
index ( SY-TABIX ) = n1 to the entry with the index = n2 inclusive in the
output area in turn. 

Note

If either one of the additions " FROM n1 " or
" TO n2 " is missing, then the table is processed either from the
first entry or up to the last entry (according to what is missing). 

Example

Output table entries 7 and 8: 

 

DATA: BEGIN OF T OCCURS 100,

        BAREA(5), BLNCE(5),

      END OF T.

 

LOOP AT T FROM 7 TO 8.

  WRITE: / T-BAREA, T-BLNCE.

ENDLOOP.

 

Addition 3

… WHERE logexp 

Effect

Places all internal table entries which satisfy the
condition logexp in turn in the output area. The condition logexp can be almost
any logical expression . The only restriction is that the first field for each
comparison must be a sub-field of the line structure of the internal table itab
. 

Example

 

DATA: BEGIN OF T OCCURS 100,

        BAREA(5), BLNCE(5),

      END OF T.

 

LOOP AT T WHERE BAREA > 0.

  WRITE: / T-BAREA, T-BLNCE.

ENDLOOP.

which has the same effect as: 

 

LOOP AT T.

  CHECK T-BAREA > 0.

  WRITE: / T-BAREA, T-BLNCE.

ENDLOOP.

 

Notes

The interaction between the LOOP AT … WHERE statement and
the AT control break statements is currently
undefined. It is therefore important to avoid using either the AT NEW/END OF or
FIRST/LAST statements in a LOOP loop with a WHERE condition. 
The performance of a LOOP AT … WHERE statement can be improved significantly
if the fields to be compared always have the same data type. The comparison
fields should be defined as follows: 

DATA LIKE 

	. 

Example

 

DATA: BEGIN OF T OCCURS 100,

        BAREA(5), BLNCE(5),

      END OF T.

DATA CMP_BAREA LIKE T-BAREA.

CMP_BAREA = '01'.

LOOP AT T WHERE BAREA = CMP_BAREA.

  WRITE: / T-BAREA, T-BLNCE.

ENDLOOP.

 

Addition 4

… TRANSPORTING NO FIELDS 

Effect

There is no field transport in the output area of the
internal table. This addition can be used only in conjunction with a WHERE
condition. Since it would make no sense to specify a work area with INTO wa
when using the addition TRANSPORTING NO FIELDS , this option does not exist. 

This addition can be used to determine a set of line indexes (index set) or
to determine the number of lines in a table which satisfy a given condition. 

Example

Determining the number COUNT of lines in a name table TAB
which contain the name ‘Walter’ and the corresponding index set INDEX_SET . 

 

DATA: BEGIN OF TAB OCCURS 100,

        NAME(30) TYPE C,

      END OF TAB,

      COUNT TYPE I,

      INDEX_SET LIKE SY-TABIX OCCURS 10 WITH HEADER LINE.

 

LOOP AT TAB TRANSPORTING NO FIELDS WHERE NAME CS 'Walter'.

  INDEX_SET = SY-TABIX.

  APPEND INDEX_SET.

  ADD 1 TO COUNT.

ENDLOOP.

Related Loop structures: 

DO , WHILE 

Table processing: 

APPEND , COLLECT , INSERT , MODIFY , DELETE , SORT , 
AT NEW/END OF/FIRST/LAST , READ
TABLE . 

Index 
© SAP AG 1996 


 

LOOP - Loops on screen fields 

 

Basic form

LOOP AT SCREEN. 

Effect

All fields of the current screen are stored in the system
table SCREEN with their attributes. 
The " LOOP AT SCREEN " statement places this information in the
header line of the system table. 
If you want to change the attributes, you must put back the changed header line
with MODIFY SCREEN . However, you can only do this
in the PBO module of a screen . 
If you use this statement for step loop processing, the information (and any
changes) apply only to the current steploop line. Outside step loop processing,
the information for a step loop field applies to the complete column. 
Step loop fields should never be changed after the corresponding step loop processing
has been performed. 
You can use the CONTINUE statement to leave the
current loop pass prematurely and continue with the next loop pass. 
Overview of all SCREEN fields: 

Field Length Type Meaning 

SCREEN-NAME 30 C
Field name 
SCREEN-GROUP1 3 C
Evaluation of 
modification group 1 
SCREEN-GROUP2 3 C
Evaluation of 
modification group 2 
SCREEN-GROUP3 3 C
Evaluation of 
modification group 3 
SCREEN-GROUP4 3 C
Evaluation of 
modification group 4 
SCREEN-REQUIRED 1 C
Field input mandatory 
SCREEN-INPUT 1 C
Field ready to accept input 
SCREEN-OUTPUT 1 C
Field will be displayed 
SCREEN-INTENSIFIED 1 C
Field highlighted 
SCREEN-INVISIBLE 1 C
Field invisible 
SCREEN-LENGTH 1 X Field length 
SCREEN-ACTIVE 1 C
Field active 

Example

Make all fields display only: 

 

CONSTANTS OFF VALUE '0'.

LOOP AT SCREEN.

  SCREEN-INPUT = OFF.

  MODIFY SCREEN.

ENDLOOP.

Related MODIFY SCREEN , LOOP
AT itab 

Index 
© SAP AG 1996 

MESSAGE 

 

Variants

1. MESSAGE xnnn. 
2. MESSAGE ID mid TYPE mtyp NUMBER mnr. 

Variant 1

MESSAGE xnnn. 

Additions

1. … WITH f1 … f4 
2. … RAISING exception 

Effect

Outputs the message no. nnn for the MESSAGE-ID specified in
the REPORT statement with the message type x. Dialog
control recognizes the following message types: 
I - Info : Press ENTER to continue W - Warning : Correction possible E - Error
: Correction required A - Abend : Transaction terminated X - Exit : Transaction
terminated with short dump 
MESSAGE_TYPE_X S - Success : Message on next screen 

See also MODULE . 

Notes

In list processing (see LEAVE TO
LIST-PROCESSING ), the effect of the message types differs in some
respects: 

· With
type E messages, the processing leaves any details list which has been
started and returns to the previous list level. 

· Type
W messages are always output as error messages (like type E). 

· During
generation of the basic list, type W and type E messages result in
termination (like type A). 

Example

 

MESSAGE I121.

 

Notes

· You
edit messages by selecting Tools -> ABAP/4 Workbench -> Development
-> Programming environ. -> Messages . 

· You
can specify a different MESSAGE-ID in parentheses after the error number,
e.g. MESSAGE I121(44) . 

· When
executing the statement, the following system variables are set: 

* SY-MSGID (message ID) 
* SY-MSGTY (message type) 
* SY-MSGNO (message number) 

 

Addition 1

… WITH f1 … f4 

Effect

Inserts the contents of a field fi in the message instead of
in the variables &i. If unnumbered variables (&) are used in a message
text, these are replaced consecutively by the fields f1 to f4 . 
To aid conversion, only numbered variables (&1 to &4) are to be used in
future if several fields are involved. 
If a "&" is supposed to appear in the message at runtime, you
must enter "&&". 
In the long text of a message, the symbol &Vi& is replaced by the field
contents of fi . 
After WITH , you can specify 1 to 4 fields. 

Note

You can output up to 50 characters per field. If the field
contains more characters, these are ignored. 

Example

 

MESSAGE E010 WITH 'Example' SY-UNAME.

 

Note

When executing the statement, the contents of the fields f1
to f4 are assigned to the system fields SY-MSGV1 , SY-MSGV2 , SY-MSGV3 and
SY-MSGV4 . 

Addition 2

… RAISING except. 

Effect

Only possible within a function module (see FUNCTION ): 

Triggers the exception except. 

If the program calling the function module handles the exception itself,
control returns immediately to that program (see CALL
FUNCTION ). In this case, the export parameters of the function module are
ignored. However, the calling program can refer to the system field values (see
above). 

If the calling program does not handle the exception itself, the message is
output (see RAISE ). 

Example

MESSAGE E777 RAISING NOT_FOUND. 

Variant 2

MESSAGE ID mid TYPE mtyp NUMBER mnr. 

Effect

As for variant 1, where you can set the following message
components dnyamically: 
ID Message ID TYPE Message type NUMBER Number 
You can also use all the other additions as with the basic form. 

Example

 

MESSAGE ID 'XX' TYPE 'E' NUMBER '001'

        WITH 'Text'.

 

Outputs the message with the number 001 and MESSAGE-ID XX
(see above) as an E (Error) message and replaces the first variable (&)
with ‘Text’. 

Example

 

MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO

        WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.

 

Constructs the message dynamically from the contents of the
system fields SY-MSGID , SY-MSGTY , SY-MSGNR and SY-MSGV1-4 . These may, for
example, be set by an exception after CALL FUNCTION or CALL TRANSACTION …
USING . 

Note

Runtime errors 

· MESSAGE_TYPE_UNKNOWN
: Message type unknown 

· MESSAGE_TYPE_X
: Conscious triggering of termination with short dump 

Index 
© SAP AG 1996 

MODIFY 

Change a database table 
- MODIFY dbtab. 
MODIFY *dbtab. 
MODIFY (dbtabname) … . 
- MODIFY dbtab FROM TABLE itab. 
MODIFY (dbtabname) FROM TABLE itab. 
- MODIFY dbtab VERSION vers. 
MODIFY *dbtab VERSION vers. 
Change an internal table 
- MODIFY itab [FROM wa] [INDEX idx]. 
Change a list line 
- MODIFY LINE n. 
- MODIFY LINE n OF CURRENT PAGE. 
- MODIFY LINE n OF PAGE m. 
- MODIFY CURRENT LINE. 
Change the attributes of a screen field 
- MODIFY SCREEN. 

Index 
© SAP AG 1996 

MODIFY - Change a database table 

Variants

1. MODIFY dbtab. or 
MODIFY *dbtab. or 
MODIFY (dbtabname) … . . 
2. MODIFY dbtab FROM TABLE itab. or 
MODIFY (dbtabname) FROM TABLE itab. 
3. MODIFY dbtab VERSION vers. or 
MODIFY *dbtab VERSION vers. 

Effect

Inserts new lines or updates existing lines in a database
table . If a line with the specified primary key already exists, an INSERT is executed. Otherwise, an UPDATE
is performed. You can specify the name of the database table either in the
program itself in the form MODIFY dbtab … or at runtime as the contents of
the field dbtabname in the form MODIFY (dbtabname) … . In both cases, the
database table must be defined in the ABAP/4 Dictionary. If the program
contains the name of the database table, it must also have a corresponding TABLES statement. Normally, records are inserted or
updated only in the current client. Data can only be inserted or updated using
a view , if the view refers to a single table and was created in the ABAP/4
Dictionary with the maintenance status "No restriction". 

MODIFY belongs to the Open SQL command set. 

When the statement has been executed, the system field SY-DBCNT contains the
number of edited lines. 

The return code value is set as follows: 

SY-SUBRC = 0 All lines were successfully inserted or updated. Any other result
causes a runtime error. 

Notes

Automatic definition of INSERT and UPDATE is expensive. You
should therefore use MODIFY only if you cannot define the INSERT and UPDATE
cases yourself in the program. 
Since the MODIFY statement does not perform authority checks , you have to
program them yourself. 

Variant 1

MODIFY dbtab. or 
MODIFY *dbtab. or 
MODIFY (dbtabname) … . 

Additions

1. … FROM wa 
2. … CLIENT SPECIFIED 

Effect

Inserts a new line or updates an existing line in a database
table. If you specify the name of the database table yourself, the primary key
for identifying the line to be inserted or updated and the relevant values are
taken from the table work area dbtab or *dbtab (see TABLES
). If the name of the database table is not determined until runtime, you need
to use the addition … FROM wa . 

Example

Insert or change data of the customer Robinson in the
current client: 

 

TABLES SCUSTOM.

SCUSTOM-ID        = '12400177'.

SCUSTOM-NAME      = 'Robinson'.

SCUSTOM-POSTCODE  = '69542'.

SCUSTOM-CITY      = 'Heidelberg'.

SCUSTOM-CUSTTYPE  = 'P'.

SCUSTOM-DISCOUNT  = '003'.

SCUSTOM-TELEPHONE = '06201/44889'.

 

MODIFY SCUSTOM.

 

Addition 1

… FROM wa 

Effect

The values for the line to be inserted or upodated are not
taken from the table work area dbtab , but from the explicitly specified work
area wa . When doing this, the data is read from left to right according to the
structure of the table work area dbtab (see TABLES ).
Since the structure of wa is not taken into account, the work area wa must be
at least as wide (see DATA ) as the table work area
dbtab and the alignment of the work area wa must correspond to the alignment of
the table work area. Otherwise, a runtime error occurs. 

Note

If a work area is not explicitly specified, the values for
the line to be inserted or updated are also taken from the table work area
dbtab if the statement is in a FORM or FUNCTION where the table work area is storeed in a
formal parameter or local variable of the same name. 

Addition 2

… CLIENT SPECIFIED 

Effect

Switches off automatic client handling. This allows you to
edit data across all clients even when dealing with client-specific tables. The
client field is treated like a normal table field that can be programmed to
accept values in the table work area dbtab or *dbtab where the line to be
edited occurs. 

The addition CLIENT SPECIFIED must be specified immediately after the name of
the database table. 

Variant 2

MODIFY dbtab FROM TABLE itab. or 
MODIFY (dbtabname) FROM TABLE itab. 

Addition

… CLIENT SPECIFIED 

Effect

Mass modify: Inserts new lines or updates existing lines of
a database table. The primary keys for identifying the lines to be inserted or
updated and the relevant values are taken from the internal table itab . The
lines of the internal table itab must satisfy the same conditions as the work
area wa in addition 1 to variant 1. 

Note

If the internal table itab is empty, SY-SUBRC and SY-DBCNT
are set to 0. 

Addition

… CLIENT SPECIFIED 

Effect

As for variant 1. 

Variant 3

MODIFY dbtab VERSION vers. or 
MODIFY *dbtab VERSION vers. 

Note

This variant is obsolete . 

Effect

Inserts a new line or updates an existing line in a database
table, the name of which is taken from the field vers at runtime. If no line
exists with the specified primary key, an INSERT is executed. Otherwise, an
UPDATE is performed. The database table must be defined in the ABAP/4
Dictionary and its name must conform to the naming conventions for R/2 ATAB tables.
These stipulate that the name must begin with ‘T’ and may contain up to four
further characters. The field vers must contain the table name without the
leading ‘T’. Only lines in the current client are inserted or updated. The line
to be inserted is taken from the statically specified table work area dbtab or
*dbtab . 

SY-SUBRC is set to 0 if the line is successfully inserted or updated. SY-SUBRC
<> 0 is not possible since any other result causes a runtime error. 

Index 
© SAP AG 1996 

MODIFY - Change an internal table 

Variant

MODIFY itab [FROM wa] [INDEX idx]. 

Effect

Changes an entry in the internal table itab . 

If you specify FROM wa , the line is replaced by the explicitly specified work
area wa . If the FROM specification is omitted, the line is replaced by the
header line from itab . 

With INDEX idx , you can specify the table index of the line to be changed. The
index specification can be omitted in a LOOP on an
internal table. 

The INDEX specification can also appear before the FROM specification. 

The return code value is set as follows: 

When specifying the insertion point with INDEX idx : 

SY-SUBRC = 0 The change was executed. 
SY_SUBRC = 4 The index specification was too big. The change was not executed
because the table had fewer than idx entries. 
If you do not specify the insertion point, the &ABAP_SUBRC is set to 0. 

Note

The counting of table entries begins with 1. 

Note

Performance 

You can avoid unnecessary assignments by using statements which have an
explicitly specified work area for internal tables with a header. 

The runtime required to execute the MODIFY itab INDEX idx statement is about 5
msn (standardized microseconds). 

Index 
© SAP AG 1996 

MODIFY - Change a list line 

Variants

1. MODIFY LINE n. 
2. MODIFY LINE n OF CURRENT PAGE. 
3. MODIFY LINE n OF PAGE m. 
4. MODIFY CURRENT LINE. 

Variant 1

MODIFY LINE n. 

Additions

1. … INDEX idx 
2. … LINE FORMAT fmt1 … fmtn 
3. … FIELD VALUE f1 FROM g1 … fn FROM gn 
4. … FIELD FORMAT f1 fmt11 … fmt1m … fn fmtn1 … fmtnm 

Effect

Changes the n th line of the list. This could be, for
example, after line selection ( AT LINE-SELECTION , AT PFxx , AT USER-COMMAND
). 
The current contents of the system field SY-LISEL are restored to the list as
the line contents and the HIDE area for the line is re-determined from the
current contents of the fields hidden with HIDE . 

The return code value is set as follows: 

SY-SUBRC = 0 Line was successfully changed. 
SY-SUBRC <> 0 Line does not exist. 

Note

With multiple-level line selection, the modification is
always performed in the list where the (last) line selection was made, except
in the case of the addition … INDEX idx and MODIFY CURRENT LINE (see below). 

Addition 1

… INDEX idx 

Effect

Changes the relevant line in the list to list level idx (0,
1, 2, …) with multiple line selection ( SY-LSIND ). 

Addition 2

… LINE FORMAT fmt1 … fmtn 

Effect

The output format of the selected line is determined by the
format specifications fmt1 , fmt2 … . For a list of valid format
specifications, see FORMAT . 

Example

 

DATA I TYPE I VALUE 2.

 

WRITE: / 'Intensified'     INTENSIFIED,

         'Input'           INPUT,

         'color 1'         COLOR 1,

         'intensified off' INTENSIFIED OFF.

 

* Line selection

AT LINE-SELECTION.

  MODIFY CURRENT LINE

    LINE FORMAT INVERSE

                INPUT OFF

                COLOR = I.

After you have selected the the output list line (by double-clicking), the
whole line is set to COLOR 2 and INVERSE and all INPUT fields are set to INPUT
OFF . The fields with the attribute INTENSIFIED or INTENSIFIED OFF retain this
because the attribute is not addressed here. 

Addition 3

… FIELD VALUE f1 FROM g1 … fn FROM gn 

Effect

Overwrites the contents of the fields f1 , f2 , … in the
list line with the current contents of the fields g1 , g2 , … (type
conversion as for MOVE g1 , g2 , … to type C). The
field contents of f1 , f2 , … themselves remain unchanged. 

Notes

· If
a field (e.g. f2 ) is output several times in the line to be modified,
only the first occurrence is modified. If the field is not output in the
line at all, it is ignored. 

· You
can omit the addition FROM g2 if the field f2 in the list line is to be
modified from the current contents of f2 . 

This means that 

… FIELD VALUE f2 

has the same effect as 

… FIELD VALUE f2 FROM f2 

The return code value of SY-SUBRC is not affected by the addition FIELD
VALUE and so only depends on the existence of the selected list line. 

 

Addition 4

… FIELD FORMAT f1 fmt11 … fmt1m 
… fn fmtn1 … fmtnm 

Effect

Modifies the output format of the field f1 according to the
format specifications fmt11 … fmt1m . 
Similar to f2 , …, fn . For a list of valid format specifications, see FORMAT . Fields that occur several times or not at all in
the line are treated as in the addition FIELD VALUE . 

Notes

· If
you combine the additions LINE FORMAT and FIELD FORMAT , the format set by
LINE FORMAT is always valid for the whole line initially. Afterwards, it
is changed by the format specifications for the individual fields. 

 

Example

 

DATA: FLAG     VALUE 'X',

      TEXT(20) VALUE 'Australia',

      I TYPE I VALUE 7.

FORMAT INTENSIFIED OFF.

WRITE: / FLAG AS CHECKBOX, TEXT COLOR COL_NEGATIVE.

 

AT LINE-SELECTION.

  MODIFY CURRENT LINE

    LINE  FORMAT INTENSIFIED

    FIELD VALUE  FLAG FROM SPACE

    FIELD FORMAT FLAG INPUT OFF

                 TEXT COLOR = I.

When the user selects the displayed list line by double-clicking, the checkbox
for FLAG is reset and can no longer accept values. The format of the entire
line is set to "intensified" and TEXT is displayed in a different
color. 

Variant 2

MODIFY LINE n OF CURRENT PAGE. 

Additions

1. … FIELD VALUE f1 FROM g1 … fn FROM gn 
2. … LINE FORMAT fmt1 .. fmtn 
3. … FIELD FORMAT f1 fmt11 … fmt1m … fn fmtn1 … fmtnm 

Effect

Changes the n th line on the current page (stored in the
system field SY-CPAGE ). 

Addition 1

… FIELD VALUE f1 FROM g1 … fn FROM gn 

Addition 2

… LINE FORMAT fmt1 .. fmtn 

Addition 3

… FIELD FORMAT f1 fmt11 … fmt1m 
… fn fmtn1 … fmtnm 

Effect

See MODIFY LINE 

Variant 3

MODIFY LINE n OF PAGE m. 

Additions

1. … FIELD VALUE f1 FROM g1 … fn FROM gn 
2. … LINE FORMAT fmt1 … fmtn 
3. … FIELD FORMAT f1 fmt11 … fmt1m … fn fmtn1 … fmtnm 

Effect

Changes the n th line on page m . 

Addition 1

… FIELD VALUE f1 FROM g1 … fn FROM gn 

Addition 2

… LINE FORMAT fmt1 … fmtn 

Addition 3

… FIELD FORMAT f1 fmt11 … fmt1m 
… fn fmtn1 … fmtnm 

Effect

See MODIFY LINE 

Variant 4

MODIFY CURRENT LINE. 

Additions

1. … FIELD VALUE f1 FROM g1 … fn FROM gn 
2. … LINE FORMAT fmt1 … fmtn 
3. … FIELD FORMAT f1 fmt11 … fmt1m … fn fmtn1 … fmtnm 

Effect

Changes the last line read (with line selection or READ LINE ), even across line levels. This variant is
especially useful if the line to be modified has been read immediately before
through line selection or using READ LINE . You then
need to note the number of the line until the MODIFY . 

Addition 1

… FIELD VALUE f1 FROM g1 … fn FROM gn 

Addition 2

… LINE FORMAT fmt1 … fmtn 

Addition 3

… FIELD FORMAT f1 fmt11 … fmt1m 
… fn fmtn1 … fmtnm 

Effect

See MODIFY LINE 

Index 
© SAP AG 1996 

MODIFY - Change the attributes of a screen
field 

 

Basic form

MODIFY SCREEN. 

Effect

Changes the attributes belonging to the current screen field
whilst processing with LOOP AT SCREEN … ENDLOOP . 
The attributes of all fields of a screen are stored in the system table SCREEN
. This can be edited line by line using LOOP AT SCREEN … ENDLOOP . Changes to
the properties of the attributes of the current screen field (= current line in
the system table SCREEN ) can be put into effect using MODIFY SCREEN . 

Note

This statement should be used only within a LOOP AT SCREEN
… ENDLOOP loop at PBO time as part of the process logic of a screen. 
Related MODIFY itab 

Index 
© SAP AG 1996 

MODULE 

 

Basic form

MODULE modl. 

Additions

1. … OUTPUT 
2. … INPUT 

Effect

The processing block between the " MODULE modl. "
and " ENDMODULE. " statements is known as a module . 

You call the module modl in the screen flow logic with the statement "
MODULE modl. ". This screen must belong to the same program (module pool)
as the module. 

Example

 

DATA: INPUT, GOOD_INPUT.

MODULE CONTROL.

  ...

  IF INPUT NE GOOD_INPUT.

    MESSAGE E123.

  ENDIF.

ENDMODULE.

 

Note

The ABAP/4 statement MODULE , which is always terminated by
ENDMODULE , must not be confused with the flow logic statement MODULE ( screen ). 

Addition 1

… OUTPUT 

Addition 2

… INPUT 

Effect

The module called before screen output (in the PROCESS
BEFORE OUTPUT section of the flow logic) should be qualified by the addition
OUTPUT . 
Since the addition INPUT is the default value, it can be omitted. This means
that the module called user input (in the PROCESS AFTER INPUT section of the
flow logic), is either followed by no addition or qualified by the addition
INPUT . 
A module modl can thus exist twice - as an input and as an output module. 

Notes

· You
cannot combine the additions OUTPUT and INPUT . 

· An
error message (MESSAGE Emnr ) cancels processing
of the module. 

· A
warning message (MESSAGE Wmnr ) repeats the
current module (or the module chain [CHAIN ]) if you enter different data.

If you just press ENTER after the warning (or even after I and S
messages), processing continues after the MESSAGE statement. 

Index 
© SAP AG 1996 

MOVE 

 

Variants

1. MOVE f TO g. 
2. MOVE f+off1(len1) TO g+off2(len2). 
3. MOVE c1 TO c2 PERCENTAGE n. 

Variant 1

MOVE f TO g. 

Effect

Moves the contents of field f to field g . Field f remains
unchanged. 
This statement is equivalent to: 

 

g = f.

 

Example

 

DATA: NUMBER TYPE I,

      FIVE   TYPE I.

MOVE 5 TO FIVE.

MOVE FIVE TO NUMBER.

The fields NUMBER and FIVE now both 5. 

Notes

Multiple assignments like 

NUMBER = FIVE = 5. 

are also possible. ABAP/4 executes them from right to left (as in the above
example). 
If the field types or lengths differ, type conversion follows automatically.
Type I fields are handled like type P fields. If you select the fixed point
arithmetic attribute for an ABAP/4 program, type P fields are either rounded
according to the number of decimal places or filled with zeros. 
In contrast to WRITE TO , the decimal character is
always a period (.), regardless of the specification in the user master. 
MOVE allows you to copy tables and structures which contain other tables. 

Two tables can be copied only if this is possible for their respective lines.
If the line types are incompatible, conversions are performed line by line. If
itab is a table with a header line, the table itself can be addressed with
itab[] . 

Two structures which themselves contain tables can only be copied if they are
compatible (i.e. if the ABAP/4 type check allows this). 
Conversion table ( f -> g ) depending on the types of f and g : 
C -> C Left-justified transfer. If the target field is longer than the
source field, it is padded with blanks on the right. If it is shorter than the
source field, the left part of the source field is copied and the rest is
truncated. C -> D The field f must be an 8-character date in YYYYMMDD
format. C -> F The character string in f must be a valid representation of a
floating point number (DATA ). C -> N Only the digits
in f are valid here. They are moved to g , right-justified and padded with
zeros on the left. If the target field is too short, digits on the left are
truncated. C -> T The field f must contain a 6-character time specification
in HHMMSS format. C -> P the field f must contain a decimal number, i.e. a
sequence of numeric characters with optional signs and more than once decimal
point; there may be blanks on either side. If g is too short, an overflow error
can occur. C -> X The field f must contain a hexadecimal character string
(i.e. the only valid characters are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). The
number to be converted is treated as a hexadecimal number rather than a decimal
number, 
e.g.: C’15′ -> X’15′ . 
It is transported left-justified to g and either padded with zeros or
truncated, 
e.g.: C’AB’ -> X’AB00′ . 
f is processed up to the first blank. 
Examples: 
C’ABC’ -> X’ABC0′, C’ABC0′ -> X’ABC0′ 
C’ABC D’ -> X’ABC0′, C’ AB’ -> X’0000′ 
D -> C Left-justified transfer without conversion D -> D Transfer without
conversion D -> F As for D -> P and then P -> F D -> N As for D
-> C and then C -> N D -> P Inverse of P -> D D -> T Not
supported: Error message D -> X Inverse of X -> D 
F -> C f is converted to E format and moved to g . E.g.: F’-3.142′ ->
C’-3.14200000000000E+00′ 
If the mantissa is unequal to 0, it is standardized so that it lies between 1.0
and 9.99… 
The exponent is generally 2-digit; it is only converted to 3-digit format if it
is greater than 99 or smaller than -99 
The exponent always appears with a sign. 
If g is too short, the mantissa is rounded. 
e.g.: F’3.152′ -> C’ 3.2E+00′ . 
The length of g should be at least 6, otherwise it g is filled with asterisks
(*). F -> D See F -> N F -> F Transfer without conversion F -> N f
is rounded as with F -> P and then treated like a P field. F -> P f is
rounded, e.g. F’-3.512′ -> P’-4′ . F -> T See F -> N F -> X See F
-> N 
N -> C f is treated like a C field; leading zeros remain. N -> D As for N
-> C and then C -> D N -> F As for N -> P and then P -> F N
-> N Right-justified transfer; on the left, padded with zeros or truncated.
N -> P f is packed and moved to g with a positive sign (+). If g is too
short, an overflow error can occur. N -> T As for N -> C and then C ->
T N -> X As for N -> P and then P -> X 
P -> C f is moved to g with a trailing sign and, if required, a decimal
point. 
e.g.: P’-1234567′ -> C’12345.67-’ 
Notes: 
1) One position is always reserved for the sign and, in the event of a positive
number, a blank is output. 
2) Leading zeros are output as blanks. 
3) If g is too short, the blank representing the sign in the case of positive
numbers is omitted; if this is insufficient, the number is truncated on the
left - this is indicated by an asterisk (*). 
Examples (the P field f has the length 2, the C field g the length 3): 
P’123′ -> C’123′, P’-123′ -> C’*3-’ 
4) If you do not want to reserve a position for the sign, use the WRITE TO statement with the addition NO-SIGN . 
5) To convert with leading zeros and without formatting characters, use the UNPACK statement. P -> D The value in f is the
absolute date (i.e. the number of days since 01.01.0001) and is moved to g in
the YYYYMMDD format. This takes into account that the Julian Calendar was
replaced by the Gregorian Calendar on 15.10.1582. The value 0 (and negative
values) are transferred into the initial date ‘00000000′. P -> F The field f
is moved to g as a floating point number. P -> N Right-justified transfer
without sign; padded with zeros on the left. P -> P If g is too short, an
overflow error can occur. P -> T The value in f is an absolute time (i.e.
the number of seconds since midnight modulo 24 hours = 86.400 seconds) and is
moved to g in HHMMSS format. P -> X The value in f is stored in g as a
hexadecimal number. E.g.: P’15′ -> X’0F’ . 
Negative numbers are represented by the two’s complement. 
e.g.: P’-153′ -> X’FF67′ . 
If the length of g is greater than 4, only the last 4 Bytes are provided for
according to the value of f ; the Bytes before them are padded with Hex-0. 
If g is too short, the number is truncated on the left. 
T -> C As for D -> C T -> D Not supported: Error message T -> F As
for T -> P and then P -> F T -> N As for T -> C T -> P Inverse
of P -> T T -> T Transfer without conversion T -> X Inverse of X ->
T 
X -> C f is converted to hexadecimal format. The result is transferred
left-justified and padded with blanks or truncated on the right. 
e.g.: X’0F’
-> C’0F’
X -> D The value in f is an absolute date (number of days since 01.01.0001)
and is moved to g in YYYYMMDD format. (See also P -> D.) X -> F As for X
-> P and then P -> F X -> N As for X -> P and then P -> N X
-> P f is treated as a hexadecimal number and moved to g in decimal packed
format. 
e.g.: X’0F’
-> P’15′ 
If f is longer than 4, only the last 4 bytes are processed. 
If g is too short, an overflow error can occur. X -> T The value in f is an
absolute time (i.e. the number of seconds since midnight modulo 24 hours =
86,400 seconds) and is moved to g in HHMMSS format. (See also P -> T.) X
-> X Left-justified transfer; padded with X’00′ on the right or truncated. 

Note

Runtime errors 

· BCD_BADDATA
: Source field (type P ) does not contain the correct BCD format 

· BCD_FIELD_OVERFLOW
: Result field defined too small (type P ) 

· BCD_OVERFLOW
: Arithmetic operation overflow (type P ) 

· CONVT_NO_NUMBER
: Source field cannot be interpreted as a number 

· CONVT_OVERFLOW
: Source field conversion overflow 

· MOVE_COMPLEX_OVERLAP
: Assignment not allowed for deep structures in case they overlap 

· MOVE_NOT_SUPPORTED
: Assignment between types involved is not supported 

· MOVE_TO_LIT_NOTALLOWED
: Constants and literals must not be overwritten 

Related COMPUTE , WRITE
TO 

Variant 2

MOVE f+off1(len1) TO g+off2(len2). 

Effect

With offset off2 and length len2 , field g receives the
contents of field f with offset off1 and length len1 . 
Therefore, the offset and length specifications can also be variable. 

Example

 

DATA: FIELD1(10) VALUE '1234567890',

      OFF1 TYPE I VALUE 1,

      LEN1 TYPE I VALUE 2,

      FIELD2(8) VALUE 'abcdefgh',

      OFF2 TYPE I VALUE 3,

      LEN2 TYPE I VALUE 4.

MOVE FIELD1+OFF1(LEN1) TO FIELD2+OFF2(LEN2).

FIELD2 now has the value ‘ abc23 h ‘. 

Variant 3

MOVE c1 TO c2 PERCENTAGE n. 

Additions

1. … LEFT 
2. … RIGHT 

Effect

c1 and c2 must be type C fields; n is a field with a numeric
value between 0 and 100. The left part of field c1 ( n percent) is moved to
field c2 and is left-justified. c2 is filled with blanks if necessary. 

Addition 1

… LEFT 

Effect

This is the standard. With this statement, you can make
clear that transfer is to be left-justified. 

Addition 2

… RIGHT 

Effect

Transfer is right-justified, the left part of field c1 as
standard. 

Note

Performance 
The runtime required to transfer a C(1) field to a C(1) field is 1 msn
(standard microseconds). 
Conversions should be avoided for performance reasons, i.e. the fields should
have the same type and length. For example, a MOVE of a C(10) field to a C(10)
field takes about 2 msn, while a MOVE of a C(10) field to a type I field needs
about 10 msn. 

Index 
© SAP AG 1996 

MOVE-CORRESPONDING 

 

Basic form

MOVE-CORRESPONDING rec1 TO rec2. 

Effect

Interprets rec1 and rec2 as field strings. If, for example,
rec1 and rec2 are tables, executes the statement for their header lines. 
Searches for the sub-fields which occur both in rec1 and rec2 and then
generates, for all relevant field pairs which correspond to the sub-fields ni ,
statements of the form 

MOVE rec1-ni TO rec2-ni. 

The other fields remain unchanged. 

With complex structures, the full names of the corresponding field pairs must
be identical. 

Example

 

DATA: BEGIN OF INT_TABLE OCCURS 10,

        WORD(10),

        NUMBER TYPE I,

        INDEX  LIKE SY-INDEX,

      END   OF INT_TABLE,

      BEGIN OF RECORD,

        NAME(10) VALUE 'not WORD',

        NUMBER TYPE I,

        INDEX(20),

      END   OF RECORD.

...

MOVE-CORRESPONDING INT_TABLE TO RECORD.

This MOVE-CORRESPONDING statement is equivalent to both the following
statements: 

 

MOVE INT_TABLE-NUMBER TO RECORD-NUMBER.

MOVE INT_TABLE-INDEX  TO RECORD-INDEX.

 

Example

 

TYPES: BEGIN OF ROW1_3,

         CO1 TYPE I,

         CO2 TYPE I,

         CO3 TYPE I,

       END   OF ROW1_3.

TYPES: BEGIN OF ROW2_4,

         CO2 TYPE I,

         CO3 TYPE I,

         CO4 TYPE I,

       END   OF ROW2_4.

TYPES: BEGIN OF MATRIX1,

         R1 TYPE ROW1_3,

         R2 TYPE ROW1_3,

         R3 TYPE ROW1_3,

       END OF   MATRIX1.

TYPES: BEGIN OF MATRIX2,

         R2 TYPE ROW2_4,

         R3 TYPE ROW2_4,

         R4 TYPE ROW2_4,

       END OF   MATRIX2.

DATA: ROW TYPE ROW1_3,

      M1  TYPE MATRIX1,

      M2  TYPE MATRIX2.

 

ROW-CO1 = 1. ROW-CO2 = 2. ROW-CO3 = 3.

MOVE: ROW TO M1-R1, ROW TO M1-R2, ROW TO M1-R3.

MOVE-CORRESPONDING  M1 TO M2.

The last MOVE-CORRESPONDING statement is equivalent to the statements: 

 

MOVE: M1-R2-CO2 TO M2-R2-CO2,

      M1-R2-CO3 TO M2-R2-CO3,

      M1-R3-CO2 TO M2-R3-CO2,

      M1-R3-CO3 TO M2-R3-CO3.

Related MOVE , ADD-CORRESPONDING
, SUBTRACT-CORRESPONDING , MULTIPLY-CORRESPONDING
, DIVIDE-CORRESPONDING 

Index 
© SAP AG 1996 

MOVE-DYNPRO is not an ABAP/4 key word (in R/3). 

Index 
© SAP AG 1996 

MULTIPLY 

 

Basic form

MULTIPLY n1 BY n2. 

Effect

Multiplies the contents of n1 by the contents of n2 and
places the result in n1 . 

This is equivalent to: n1 = n1 * n2. 

Example

 

DATA: DAYS_PER_YEAR    TYPE P VALUE 365,

      HOURS_PER_DAY    TYPE F VALUE '24.0',

      MINUTES_PER_YEAR TYPE I VALUE 1.

MULTIPLY MINUTES_PER_YEAR BY DAYS_PER_YEAR.

MULTIPLY MINUTES_PER_YEAR BY HOURS_PER_DAY.

MULTIPLY MINUTES_PER_YEAR BY 60.

MINUTES_PER_YEAR now contains 525600. 

Note

The details about conversions and performance given under COMPUTE also apply to MULTIPLY . 

Note

Runtime errors 

· BCD_BADDATA
: P field contains no correct BCD format 

· BCD_FIELD_OVERFLOW
: Result field too small (type P ) 

· BCD_OVERFLOW
: Overflow with arithmetic operation (type P ) 

· COMPUTE_INT_TIMES_OVERFLOW
: Whole number overflow with multiplication 

Related COMPUTE , MULTIPLY-CORRESPONDING
Index 
© SAP AG 1996 

MULTIPLY-CORRESPONDING 

 

Basic form

MULTIPLY-CORRESPONDING rec1 BY rec2. 

Effect

Interprets rec1 and rec2 as field strings. If, for example,
rec1 and rec2 are tables, executes the statement for their header lines. 
Searches for all sub-fields which occur both in rec1 and rec2 and then
generates, for all field pairs corresponding to the sub-fields ni , statements
of the form 

 

MULTIPLY rec1-ni BY rec2-ni.

The other fields remain unchanged. 

With complex structures, the full names of the corresponding field pairs must
be identical. 

Example

 

DATA: BEGIN OF MONEY,

        VALUE_IN(20) VALUE 'German marks'.

        USA TYPE I VALUE 100,

        FRG TYPE I VALUE 200,

        AUT TYPE I VALUE 300,

      END   OF MONEY,

      BEGIN OF CHANGE,

        DESCRIPTION(30)

            VALUE 'DM to national currency'.

        USA TYPE F VALUE '0.6667',

        FRG TYPE F VALUE '1.0',

        AUT TYPE F VALUE '7.0',

      END   OF CHANGE.

MULTIPLY-CORRESPONDING MONEY BY CHANGE.

MONEY-VALUE_IN = 'National currency'.

The above MULTIPLY-CORRESPONDING statement is equivalent to the following three
statements: 

 

MULTIPLY MONEY-USA BY CHANGE-USA.

MULTIPLY MONEY-FRG BY CHANGE-FRG.

MULTIPLY MONEY-AUT BY CHANGE-AUT.

 

Note

All fields with identical names are multiplied, whether
numeric or not. The conversions performed are similar to those for MULTIPLY and the same runtime errors can also occur. 
Related MULTIPLY , MOVE-CORRESPONDING
, ADD-CORRESPONDING , SUBTRACT-CORRESPONDING
, DIVIDE-CORRESPONDING 

Index 
© SAP AG 1996 

NEW-LINE 

 

Basic form

NEW-LINE. 

Addition

… NO-SCROLLING 
… SCROLLING 

Effect

Generates a new line during list processing. 

Terminates the current list line and moves the cursor to the next list line. If
there has been no output (with WRITE or SKIP ) since the last NEW-LINE , the NEW-LINE is ignored,
i.e. no new line is started. 

Notes

You can also generate a new line with WRITE
AT /… . 
The following key words implicitly generate a new line: 
NEW-PAGE , 
CALL SCREEN . 

Addition

… NO-SCROLLING 

Effect

Flags the new line as "not movable" (i.e.
horizontal scrolling has no effect). This allows you to keep title lines and
indented comment lines or areas in the same position. 

Notes

· The
system does not automatically flag the standard title line (text elements,
NEW-PAGE WITH-TITLE ) as "not
movable". 

· SET_SCROLL-BOUNDARY allows you to flag columns in
a list so that they cannot be scrolled horizontally. In this case, using
NEW-LINE NO-SCROLLING means that lines which are not subject to the
division of the page into fixed and movable column areas remain visible
and are not moved during horizontal scrolling. 

 

Example

Scattered comment lines - unmovable 

 

NEW-PAGE LINE-SIZE 255.

WRITE: / 'This line will be moved'.

NEW-LINE NO-SCROLLING.

WRITE: / 'This line will  n o t  be moved'.

WRITE: / 'This line will be moved'.

 

Addition 2

… SCROLLING 

Effect

Flags the new line as "not movable". Since
SCROLLING is the default setting of NEW-LINE , it can normally be omitted. 
You only have to use NEW-LINE SCROLLING after NEW-LINE NO-SCROLLING , which is
not followed by any output. This ensures that the next line introduced with
NEW-LINE also has the attribute SCROLLING . 

Example

Conditional comment lines: 

 

NEW-PAGE LINE-SIZE 255.

WRITE: / 'This line will be moved'.

NEW-LINE NO-SCROLLING.

IF 0 = 1.

  WRITE: / 'Conditional comment line'.

ENDIF.

NEW-LINE.                                 "Incorrect

WRITE: / 'This line will  n o t  be moved'.

WRITE: / 'This line will be moved'.

NEW-LINE NO-SCROLLING.

IF 0 = 1.

  WRITE: / 'Conditional comment line'.

ENDIF.

NEW-LINE SCROLLING.                       "Correct

WRITE: / 'This line will be moved'.

Index 
© SAP AG 1996 

NEW-PAGE 

 

Basic form

NEW-PAGE. 

Additions

1. … NO-TITLE 
2 … WITH-TITLE 
3. … NO-HEADING 
4. … WITH-HEADING 
5. … LINE-COUNT lin 
6. … LINE-SIZE col 

Effect

Starts a new page during list processing. 

Terminates the current page and continues output on a new page. 

Notes

· NEW-PAGE
does not generate blank pages, i.e. it ignores pages containing no output. 

· NEW-PAGE
increments the page counter (the system field SY-PAGNO ). 

· The
event END-OF-PAGE is not processed. 

· To
start a new page depending on the number of unused lines remaining on the
current page, use the RESERVE statement. 

 

Addition 1

… NO-TITLE 

Effect

Starts a new page but no longer outputs the standard header
(title, date and page number). This is the default setting for secondary lists. 

Addition 2

… WITH-TITLE 

Effect

Starts a new page and continues to output of the standard
header (title, date and page number). This is the default setting for basic
lists (see REPORT … NO STANDARD PAGE HEADING ). 

Addition 3

… NO-HEADING 

Effect

Starts a new page but no longer outputs column headings
(text elements). This is the default setting for secondary lists. 

Addition 4

… WITH-HEADING 

Effect

Starts a new page and continues to output the column
headings (text elements). This is the default setting for basic lists (see REPORT … NO STANDARD PAGE HEADING ). 

Addition 5

… LINE-COUNT lin 

Effect

Starts a new page containing the number of lines specified
by lin (in the exceptional case of LINE-COUNT 0 , the number of lines per page
is unlimited). 

Note

The default setting is taken from the addition …
LINE-COUNT in the REPORT statement. 
Further notes about the use of LINE-COUNT . 

Addition 6

… LINE-SIZE col 

Effect

Formats the new page with the number of columns specified in
col . The exception to this is LINE-SIZE = 0 which indicates line length set by
the system according to the standard window width. 
The addition … LINE-SIZE col is only effective on the new page if it is also
the first page of a new list level. 

Note

The addition works only before initialization of the new
list level (with WRITE, SKIP, … ). 
The default setting is also taken from the addition … LINE-SIZE in the REPORT statement. 

Index 
© SAP AG 1996 

NEW-PAGE 

 

Additions

7. … PRINT ON … 
… DESTINATION dest 
… COPIES cop 
… LIST NAME name 
… LIST DATASET dsn 
… COVER TEXT text 
… LIST AUTHORITY auth 
… IMMEDIATELY flag 
… KEEP IN SPOOL flag 
… NEW LIST IDENTIFICATION flag 
… DATASET EXPIRATION days 
… LINE-COUNT lin 
… LINE-SIZE col 
… LAYOUT layout 
… SAP COVER PAGE mode 
… RECEIVER rec 
… DEPARTMENT dep 
… ARCHIVE MODE armode 
… ARCHIVE PARAMETERS arparams 
… NEW-SECTION 
… NO DIALOG 

8. … PRINT ON … 
… PARAMETERS params 
… ARCHIVE PARAMETERS arparams 
… NEW-SECTION 
… NO DIALOG 

9. … PRINT OFF 

Addition 7

… PRINT ON … 

… DESTINATION dest (Output device) 
… COPIES cop (Number of copies printed) 
… LIST NAME name (Name of the list) 
… LIST DATASET dsn (Name of the spool dataset) 
… COVER TEXT text (Title of the spool request) 
… LIST AUTHORITY auth (Authorization required 
for display) 
… IMMEDIATELY flag (Print immediately?) 
… KEEP IN SPOOL flag (Keep list after 
printing?) 
… NEW LIST IDENTIFICATION flag (New spool request?) 
… DATASET EXPIRATION day (Keep the list for 
day days) 
… LINE-COUNT lin ( lin lines per 
page) 
… LINE-SIZE col ( col columns 
per line) 
… LAYOUT layout (Print layout) 
… SAP COVER PAGE mode (Print SAP cover sheet?) 
… RECEIVER rec (SAP user name of 
recipient) 
… DEPARTMENT dep (Name of department) 
… ARCHIVE MODE armode (Archiving mode) 
… ARCHIVE PARAMETERS arparams (Structure with achiving 
parameters) 
… NEW-SECTION (Start of a new section) 
… NO DIALOG (Omit print control screen) 
In the case of the IMMEDIATELY , KEEP IN SPOOL and NEW LIST IDENTIFICATION
parameters, the flag must be a literal or character field of length 1. If the
flag contains no value, the parameter is switched off. Any other character
switches the parameter on. Any of the sub-parameters for PRINT ON can be
omitted. The specification mode for SAP COVER PAGE can take any of the values ‘
‘, ‘X’ and ‘D’ . These values have the following meanings: 

‘ ‘ : Do not output cover sheet. 
‘X’ : Output cover sheet. 
‘D’ : Printer setting determines whether cover sheet is printed. 

The specification armode for ARCHIVE MODE can take any of the values ‘1′, ‘2′
and ‘3′ . These values have the following meanings: 

‘1′ : Print only. 
‘2′ : Archive only. 
‘3′ : Print and archive. 

The specification arparams for ARCHIVE PARAMETERS must have the structure of
ARC_PARAMS . This parameter should be edited only using the function module
GET_PRINT_PARAMETERS . 

Effect

New page. 

All WRITE statements (similarly SKIP, ULINE, … ) from the new page onwards
are interpreted as printer instructions. Before the first page is printed, the
user sees a screen for determining the print parameters, provided NO DIALOG was
not specified. The values defined in NEW-PAGE PRINT ON for LINE-SIZE and
LINE-COUNT are used by this screen. Default values are also available if no
others exist. The specifications for LINE-COUNT and LINE-SIZE in the report
header have no meaning here. The various print parameters can be proposed or
(in the case of NO DIALOG ) determined for the specifications of the other
additions. If you use NEW-SECTION , the page numbering is set back to 1. If
printing is currently in progress, the current spool request is closed. If the
newly specified print parameters are compatible with the previously specified
print parameters, the new spool request is added to the end of the request just
closed. 

Notes

· Records
cannot be placed in the spool across events ( AT LINE-SELECTION , AT PFx ,
AT USER-COMMAND )! In this case, a new NEW-PAGE PRINT OFF statement (see
addition [image: image1]is be executed, even if it is not programmed! 

· For
LINE-SIZE , you should not specify values greater than 132 because most
printers cannot handle wider lists. 

 

Addition 8

… PRINT ON … 

… PARAMETERS params (Structure with print 
parameters) 
… ARCHIVE PARAMETERS arparams (Structure with archiving 
parameters) 
… NEW-SECTION (Start of a new section) 
… NO DIALOG (Omits print control 
screen) 

Effect

New page. 

All WRITE statements (similarly SKIP, ULINE, … ) from the new page onwards
are interpreted as printer instructions. Before the first page is printed, the
user sees a screen for determining the print parameters, provided NO DIALOG was
not specified. The print parameters are passed via the field string params
which must have the same structure as PRI_PARAMS . The field string can be
filled and modified with the function module GET_PRINT_PARAMETERS . The
specification arparams for ARCHIVE PARAMETERS must have the same structure as
ARC_PARAMS . This parameter should only be edited with the function module
GET_PRINT_PARAMETERS . See addition 7 for information on the meaning of
NEW-SECTION 

Note

· Records
cannot be placed in the spool across events ( AT LINE-SELECTION , AT PFx ,
AT USER-COMMAND )! In this case, a new NEW-PAGE PRINT OFF statement (see
addition [image: image2]is be executed, even if it is not programmed! 

Example

 

* Printing without archiving

 

DATA PARAMS LIKE PRI_PARAMS.

 

DATA: DAYS(1)  TYPE N VALUE 2,

      COUNT(3) TYPE N VALUE 1,

      VALID    TYPE C.

 

CALL FUNCTION 'GET_PRINT_PARAMETERS'

  EXPORTING DESTINATION           = 'LT50'

            COPIES                = COUNT

            LIST_NAME             = 'TEST'

            LIST_TEXT             = 'Test NEW-PAGE PRINT ON'

            IMMEDIATELY           = 'X'

            RELEASE               = 'X'

            NEW_LIST_ID           = 'X'

            EXPIRATION            = DAYS

            LINE_SIZE             = 79

            LINE_COUNT            = 23

            LAYOUT                = 'X_PAPER'

            SAP_COVER_PAGE        = 'X'

            RECEIVER              = 'SAP*'

            DEPARTMENT            = 'System'

            NO_DIALOG             = ' '

  IMPORTING OUT_PARAMETERS        = PARAMS

            VALID                 = VALID.

 

IF VALID <> SPACE.

  NEW-PAGE PRINT ON PARAMETERS PARAMS NO DIALOG.

 

  WRITE / 'First line'.

ENDIF.

 

Example

 

* Printing with archiving

 

DATA: PARAMS   LIKE PRI_PARAMS,

      ARPARAMS LIKE ARC_PARAMS,

      DAYS(1)  TYPE N VALUE 2,

      COUNT(3) TYPE N VALUE 1,

      VALID    TYPE C.

 

CALL FUNCTION 'GET_PRINT_PARAMETERS'

  EXPORTING DESTINATION            = 'LT50'

            COPIES                 = COUNT

            LIST_NAME              = 'TEST'

            LIST_TEXT              = 'Test NEW-PAGE PRINT ON'

            IMMEDIATELY            = 'X'

            RELEASE                = 'X'

            NEW_LIST_ID            = 'X'

            EXPIRATION             = DAYS

            LINE_SIZE              = 79

            LINE_COUNT             = 23

            LAYOUT                 = 'X_PAPER'

            SAP_COVER_PAGE         = 'X'

            RECEIVER               = 'SAP*'

            DEPARTMENT             = 'System'

            SAP_OBJECT             = 'RS'

            AR_OBJECT              = 'TEST'

            ARCHIVE_ID             = 'XX'

            ARCHIVE_INFO           = 'III'

            ARCHIVE_TEXT           = 'Description'

            NO_DIALOG              = ' '

  IMPORTING OUT_PARAMETERS         = PARAMS

            OUT_ARCHIVE_PARAMETERS = ARPARAMS

            VALID                  = VALID.

 

IF VALID <> SPACE.

  NEW-PAGE PRINT ON PARAMETERS PARAMS

                    ARCHIVE PARAMETERS ARPARAMS

           NO DIALOG.

  WRITE / 'First line'.

ENDIF.

 

Addition 9

… PRINT OFF 

Effect

New page. 

From the new page onwards, all WRITE statements are again output to the screen.
The completed page is output to the spool file. 

Index 
© SAP AG 1996 

NEW-SECTION 

NEW-SECTION continues to be supported only for reasons of compatibility, but it
is processed internally after NEW-PAGE PRINT ON . 

Instead of " NEW-SECTION ", use " NEW-PAGE PRINT ON ". You
can select the previous standard function of NEW-SECTION - i.e. resetting the
page counter to 1 - with the addition " NEW-SECTION " of NEW-PAGE
PRINT ON . 

Index 
© SAP AG 1996 

ON 

 

Basic form

ON CHANGE OF f. 

Addition

… OR f1 

Effect

Executes the processing block enclosed by the " ON
CHANGE OF f " and " ENDON " statements whenever the contents of
the field f change (control break processing). 

Normally, you use the statement to manipulate database fields during GET events
or SELECT / ENDSELECT processing. 

Note

There are special control structures for processing control
breaks in LOOP s on internal tables or extract datasets AT ). 

ON CHANGE OF is unsuitable for recognizing control levels in loops of this type
because it always creates a global auxiliary field which is used to check for
changes. This global auxiliary field can only be changed in the relevant ON
CHANGE OF statement. It is not reset when the processing goes into loops or
subroutines, so unwanted effects can occur if the loop or subroutine is
executed again. Also, since it is set to its initial value when created (like
any other field), any ON CHANGE OF processing will be executed after the first
test, unless the contents of the field concerned happen to be identical to the
initial value. 

Example

 

TABLES T100.

SELECT * FROM T100 WHERE SPRSL = SY-LANGU AND

                         MSGNR < '010'

                   ORDER BY PRIMARY KEY.

  ON CHANGE OF T100-ARBGB.

    ULINE.

    WRITE: / '***', T100-ARBGB, '***'.

  ENDON.

  WRITE: / T100-MSGNR, T100-TEXT.

ENDSELECT.

Displays all messages with their numbers in the logon language, provided the
number is less than ‘010′. 
Each time the message class changes, it is output. 

Addition

… OR f1 

Effect

Also executes the code whenever the contents of the field f1
changes. 
You can use this addition several times. 

Example

 

* Logical database F1S

TABLES: SPFLI, SFLIGHT, SBOOK.

GET SBOOK.

  ON CHANGE OF SPFLI-CARRID   OR

               SPFLI-CONNID   OR

               SFLIGHT-FLDATE.

 

    ULINE.

    WRITE: /5 SPFLI-CARRID, SPFLI-CONNID,

            5 SFLIGHT-FLDATE, SPFLI-FLTIME,

            5 SFLIGHT-SEATSMAX, SFLIGHT-SEATSOCC.

  ENDON.

  WRITE: / SBOOK-CUSTOMID.

The code between ON CHANGE OF and ENDON is executed only if at least one of the
fields SPFLI-CARRID , SPFLI-CONNID or SFLIGHT-FLDATE has changed, i.e. there is
a different flight connection (which also has bookings). 

Notes

Between ON CHANGE OF and ENDON , you can use ELSE for case distinction. You can also use ELSEIF
statements in conjunction with special implementation of ON , but should always
try to avoid this because they may not be supported in future. 
Related AT - control breaks with internal
tables 
AT - control breaks with extracts 

Index 
© SAP AG 1996 

OPEN 

 

Basic forms

1. OPEN DATASET dsn. 
2. OPEN CURSOR [WITH HOLD] c FOR SELECT … . 

Index 
© SAP AG 1996 

OPEN 

 

Basic form 2

OPEN CURSOR [WITH HOLD] c FOR SELECT … . 

Effect

Opens a database cursor c in a database table or view for a SELECT command. The variable c must be of the type CURSOR
. You can use any SELECT command that returns a table, but not a single record,
as a result. When the cursor has been opened, the dataset specified with SELECT
can be read with FETCH until the cursor is closed. 

OPEN CURSOR belongs to the Open SQL command set. 

If you attempt to open a cursor that has already been opened, you get a runtime
error. 

The following events close a cursor: The CLOSE CURSOR
command. The Open SQL command. COMMIT WORK A database
commit in Native SQL . In this case, a cursor opened with WITH HOLD is not
closed. The Open SQL command ROLLBACK WORK A
database rollback in Native SQL A screen change, in particular the commands CALL SCREEN , CALL DIALOG , CALL TRANSACTION , MESSAGE A
Remote Function Call . 

Example

Open the database cursor C1 in the database table SFLIGHT
for the SELECT command 

· SELECT
* FROM SFLIGHT WHERE CARRID = ‘LH ‘. 

 

 

TABLES SFLIGHT.

DATA   C1 TYPE CURSOR.

 

OPEN CURSOR C1 FOR

     SELECT * FROM SFLIGHT WHERE CARRID = 'LH '.

 

Notes

In the above example, the OPEN command contains no INTO clause . With cursor processing, you must always
specify the target area for the selected data in the FETCH
command. 
The OPEN CURSOR command allows you to open several cursors at the same time in
a table. Unlike with SELECT , you thus have several independent access paths to
this table. 
Since you can open only a restricted number of cursors at the same time, you
should close cursors that are no longer required with CLOSE
CURSOR . 
Since the OPEN statement does not support authorization checks , you must
program these yourself. 
Related SELECT , FETCH
und CLOSE . 

Index 
© SAP AG 1996 

OPEN 

 

Basic form 1

OPEN DATASET dsn. 

Additions

1. … FOR OUTPUT 
2. … FOR INPUT 
3. … FOR APPENDING 
4. … IN BINARY MODE 
5. … IN TEXT MODE 
6. … AT POSITION pos 
7. … TYPE attr 
8. … MESSAGE msg 
9. … FILTER filter 

Effect

Opens the specified file. 

If no addition is specified, the file is opened for reading and in binary mode
(see below). 

The return code value is set as follows: 

SY-SUBRC = 0 The file was opened. 
SY-SUBRC = 8 The file could not be opened. 

Example

 

DATA: DSN(20) VALUE '/usr/test',

      RECORD(80).

 

OPEN DATASET DSN.

DO.

  READ DATASET DSN INTO RECORD.

  IF SY-SUBRC NE 0.

    EXIT.

  ELSE.

    WRITE: / RECORD.

  ENDIF.

ENDDO.

CLOSE DATASET DSN.

 

Notes

The file must be accessible from the application server. You
cannot use OPEN DATASET to process files on the current presentation server
(whether PC or workstation). The function modules WS_DOWNLOAD and WS_UPLOAD
exist for this purpose. 
The format of file names depends largely on the operating system. You can
access portable programs by using the function module FILE_GET_NAME which
returns the physical file name for a given logical file name. 

Notes

For the UNIX operating system 

· You
should specify the path name of any file you wish to open in its absolute
form (’/usr/test’), not in its relative form (’test’). Otherwise, the file
may be opened in the directory where the SAP System is already running. 

· When
you create a file, it exists under the user name used to start the SAP
System. This user name is not normally identical with the user’s UNIX
name. To be able to create the file, the user must have the appropriate
write authorization. 

 

Addition 1

… FOR OUTPUT 

Effect

Opens the file for writing. If the file already exists, its
contents are deleted unless it is already open. If it is open, the positioning
is set back to the start of the file. If the file does not exist, it is
generated. 

Addition 2

… FOR INPUT 

Effect

Opens an existing file for writing. If the file is already
open, the positioning is set back only to the start of the file. The addition
FOR INPUT does not have to be specified explicitly. 

Addition 3

… FOR APPENDING 

Effect

Opens the file for writing to the end of the file. If the
file does not exist, it is generated. If the file is already open, positioning
is only set back to the end. 

Note

The additions 1 to 3 are mutually exclusive. 

Addition 4

… IN BINARY MODE 

Effect

The contents of the file are not interpreted by the read and
write operations READ DATASET and TRANSFER . The data areas specified with
these key words are directly input or output. The addition IN BINARY MODE does
not have to be specified explicitly. 

Addition 5

… IN TEXT MODE 

Effect

If a file is opened with this addition, the system assumes
that the file has a line structure. Each time READ DATASET or TRANSFER occurs,
exactly one line is input or output. If the data area is too big for the line
read, the remaining area is padded with blanks. If it is too small, the remainder
of the line is lost. 

Note

The additions 4 and 5 are mutually exclusive. 

Addition 6

… AT POSITION pos 

Effect

This addition allows you to specify an explicit file
position pos in bytes from the start of the file. The next read or write
operation then occurs there. You cannot specify a position before the start of
the file. 
Although this addition can also be used with the addition IN TEXT MODE , it
makes little sense, because the physical format of a text file depends largely
on the operating system. 

Addition 7

… TYPE attr 

Effect

In the field attr , you can specify further file attributes.
The contents of this field are passed unchanged to the operating system. No
checks are performed. See the documentation of the fopen command for the
relevant operating system. 

Example

Generate a MVS file " ‘QXX.YYY’ " with the
specified attributes. (The apostrophes [’] are part of the file name.): 

 

OPEN DATASET '''QXX.YYY'''

  TYPE 'lrecl=80, blksize=8000, recfm=F'

  FOR OUTPUT.

 

Example

Generate an OpenVMS file ‘TEST.LOG’ with the specified
attributes. The individual parameters must be separated by blanks: 

 

OPEN DATASET 'TEST.LOG'

  TYPE 'alq=100 deq=100 fop=cif,ctg'

  FOR OUTPUT.

 

Addition 8

… MESSAGE msg 

Effect

Stores the relevant operating system message in the field
msg if an error occurs when opening the file. 

Example

 

DATA: DSN(20) VALUE '/usr/test',

      MSG(100).

 

OPEN DATASET DSN FOR INPUT MESSAGE MSG.

 

IF SY-SUBRC <> 0.

  WRITE: / MSG.

  STOP.

ENDIF.

 

Addition 9

… FILTER filter 

Effect

Under UNIX and Windows NT, you can specify an operating
system command in the field filter . 

Example

Under UNIX 

 

DATA DSN(20) VALUE '/usr/test.Z'.

 

OPEN DATASET DSN FOR OUTPUT FILTER 'compress'.

opens the file DSN and writes the output data to this file via the UNIX command
‘compress’. 

 

OPEN DATASET DSN FOR INPUT FILTER 'uncompress'.

reads the file in again. 

Index 
© SAP AG 1996 

ORDER BY clause 

 

Variants

1. … ORDER BY PRIMARY KEY 
2. … ORDER BY f1 … fn 
3. … ORDER BY (itab) 

Effect

Orders the records in a SELECT
command. Without the ORDER-BY clause, the order in which the selected lines are
supplied is undefined. This means that two similar SELECT commands may produce
lines in a different order. 

Variant 1

…ORDER BY PRIMARY KEY 

Effect

Sorts the selected lines in ascending order by the primary
key of the database table. This variant is only permitted for SELECT * … . 

Example

Output the passenger list for the Lufthansa flight 0400 on
28.02.1995: 

 

TABLES SBOOK.

 

SELECT * FROM SBOOK

         WHERE

           CARRID  = 'LH '      AND

           CONNID  = '0400'     AND

           FLDATE  = '19950228'

         ORDER BY PRIMARY KEY.

  WRITE: / SBOOK-BOOKID, SBOOK-CUSTOMID,   SBOOK-CUSTTYPE,

           SBOOK-SMOKER, SBOOK-LUGGWEIGHT, SBOOK-WUNIT,

           SBOOK-INVOICE.

ENDSELECT.

 

Notes

Since views do not have a primary key, specifying ORDER BY
PRIMARY KEY only makes sense with database tables. If, however, you do specify
ORDER BY PRIMARY KEY with a view, all fields of the view are sorted in
ascending order. 

Variant 2

ORDER BY f1 … fn 

Effect

Sorts the selected records in ascending order by the
specified database fields f1 … fn . If a list is also specified in the SELECT clause , the fields f1, …, fn must appear in
this list. 

By supplementing the statement with DESCENDING , you can sort in descending
order using any of the fields f1, …, fn . 

The default sort sequence is ascending order, but you can make this explicit by
adding the addition ASCENDING . 

Examples

Output Lufthansa flights from 27.02.1995 to 05.03.1995,
sorted by plane type and number of occupied seats: 

 

TABLES: SFLIGHT.

 

SELECT * FROM SFLIGHT

         WHERE CARRID = 'LH' AND

               FLDATE BETWEEN '19950227' AND '19950305'

         ORDER BY PLANETYPE ASCENDING SEATSOCC DESCENDING.

  WRITE: / SFLIGHT-PLANETYPE, SFLIGHT-SEATSOCC, SFLIGHT-CONNID,

           SFLIGHT-FLDATE.

ENDSELECT.

 

Notes

Pooled and cluster tables can only be sorted by their
primary key. 
With a SELECT * … , the client field automatically becomes the first sort
criterion in client-specific tables, unless the addition CLIENT SPECIFIED is
specified in the FROM clause . 
Specifying FOR ALL ENTRIES IN itab WHERE … in the WHERE
clause excludes ORDER BY f1 … fn . 

Notes

Performance 

Notes

In contrast to … ORDER BY PRIMARY KEY , ORDER BY f1 … fn
is not automatically supported by a (sorted) index . Without an index, you must
sort the result set at runtime. Because of the SAP architecture, this should
not be performed on the database server, but on the applications server. If it
does not make sense to create an index, you should not sort the result set with
… ORDER BY f1 … fn on the database server, but with SORT
on the applications server. 
With larger datasets, you should only use the variant ORDER BY f1 … fn if the
order of the database fields f1 … fn is exactly the same as the order of the
indexes. 

Variant 3

… ORDER BY (itab) 

Effect

Works like ORDER BY f1 … fn if the internal table itab
contains the list f1 … fn as ABAP/4 source code. The internal table itab must
only have one field. This must be a type C field and must not be more than 72
characters long. itab must be specified in parentheses. There must be no blanks
between the parentheses and the table name. 

Note

The same restrictions apply to this variant as to ORDER BY
f1 … fn . 

Example

Output all Lufthansa points of departure with the number of
destinations: 

 

TABLES: SPFLI

DATA:   BEGIN OF WA.

          INCLUDE STRUCTURE SPFLI.

DATA:     COUNT TYPE I:

DATA:   END OF WA.

DATA:   GTAB(72) OCCURS 5 WITH HEADER LINE,

        FTAB(72) OCCURS 5 WITH HEADER LINE,

        OTAB(72) OCCURS 5 WITH HEADER LINE,

        COUNT TYPE I.

 

REFRESH: GTAB, FTAB, OTAB.

FTAB = 'CITYFROM COUNT( * ) AS COUNT'. APPEND FTAB.

GTAB = 'CITYFROM'.                     APPEND GTAB.

OTAB = 'CITYFROM'.                     APPEND OTAB.

 

SELECT DISTINCT (FTAB)

       INTO CORRESPONDING FIELDS OF WA

       FROM SPFLI

       WHERE

         CARRID   = 'LH'

       GROUP BY (GTAB)

       ORDER BY (OTAB).

 

  WRITE: / WA-CITYFROM, WA-COUNT.

ENDSELECT.

Index 
© SAP AG 1996 

OVERLAY 

 

Basic form

OVERLAY c1 WITH c2. 

Addition

… ONLY c3 

Effect

The contents of the field c2 overlay the field c1 in all
positions where c1 has the value SPACE ; c2 itself remains unchanged. 

The return code value is set as follows: 

SY-SUBRC = 0 At least one character in c1 is overlaid by a character from c2 . 
SY_SUBRC = 4 No character in c1 was overlaid by a character from c2 . 

Example

 

DATA: WORK(20) VALUE 'Th t h s ch ng d.',

      HELP(20) VALUE 'Grab  a   pattern'.

OVERLAY WORK WITH HELP.

WORK now contains ‘ That has changed. ‘ and the system field SY-SUBRC is set to
0. 

Note

If c1 is longer than c2 , c1 is only overlaid by the length
of c2 . The result for overlapping fields c1 and c2 is undefined. 

Addition

… ONLY c3 

Effect

The contents of the field c2 overlay the field c1 only in
those positions where c1 has one of the characters existing as a value in c3 ;
the fields c2 and c3 remain unchanged. 

Example

Linking field selection templates: 

 

DATA: ONE(16), TWO(16).

ONE = '----****++++....'.

TWO = '-*+.-*+.-*+.-*+.'.

OVERLAY ONE WITH TWO ONLY '.'.

OVERLAY TWO WITH ONE ONLY '.+'.

OVERLAY ONE WITH TWO ONLY '+*'.

Field ONE now contains ‘—–***-*++-*+.’ and field TWO contains
‘-*—***-*++-*+.’ . 

Note

Performance 
The runtime required for the OVERLAY command in the example of the basic form
is about 45 msn (standardized microseconds). To execute the addition … ONLY
c3 , about 40 msn are needed. 
Related REPLACE , SEARCH
, SHIFT , TRANSLATE 

Index 
© SAP AG 1996 

PACK 

 

Basic form

PACK f TO g. 

Effect

Places the character field f in packed format in the field g
. Reverse of the UNPACK command. 

Example

 

DATA C_FIELD(4) TYPE C VALUE '0103',

     P_FIELD(2) TYPE P.

PACK C_FIELD TO P_FIELD.

 

C_FIELD: C’0103′ –> P_FIELD: P’103C’ 

Note

The field f can contain up to 16 characters. 

Index 
© SAP AG 1996 

PARAMETERS 

 

Basic form

PARAMETERS p 

Additions

1. … DEFAULT f 
2. … TYPE typ 
3. … DECIMALS 
4. … LIKE g 
5. … MEMORY ID pid 
6. … MATCHCODE OBJECT mobj 
7. … MODIF ID key 
8. … NO-DISPLAY 
9. … LOWER CASE 
10. … OBLIGATORY 
11. … AS CHECKBOX 
12 … RADIOBUTTON GROUP radi 
13. … FOR TABLE dbtab 
14. … AS MATCHCODE STRUCTURE 
15. … VALUE-REQUEST 
16. … HELP-REQUEST 

Effect

Definition of report parameters. 

This statement only makes sense in report programs, i.e. in programs defined as
type ‘1′ in the attributes. You execute report programs with the SUBMIT statement. When this takes place, the parameters
and selection options (SELECT-OPTIONS ) specified in
the report program shape the interface which determines what the user sees on
the selection screen. These parameters and selection options are then presented
to the user who can enter values (see the addition NO-DISPLAY or SUBMIT without the addition VIA SELECTION-SCREEN ). 

Creates internal fields like the DATA statement. 

By making the appropriate entry in the attributes, you can assign a report to a
logical database ldb . In this case, both the logical database ldb and the
report can define parameters (and selection options). You define the
database-specific parameters (i.e. those belonging to the logical database) in
an ABAP/4 INCLUDE program DBldbSEL (in the logical database maintenance
transaction). Since the system then integrates this INCLUDE program in the
logical database access program SAPDBldb and (partially) in the report, the
database-specific parameters (and selection options) are available to both. 
The ("report-specific") parameters defined in the report are known
only in the report (not in the SAPDBldb ). 

Some additions of PARAMETERS are allowed only in the DBldbSEL . 

Example

 

PARAMETERS: SUM(1).

 

Notes

The name of a parameter can be up to 8 characters long. 
By selecting Goto -> Text elements and then choosing Selection texts
followed by Display , you can enter a description for each parameter; this is
then displayed on the selection screen. You define the report-specific
parameter texts with the text elements of the report and the database-specific
parameter texts with the text elements of the database program SAPDBldb . 

Addition 1

… DEFAULT f 

Effect

Assigns the default value f to the parameter. 

Note

You must specify the default value f in internal format,
e.g. PARAMETERS DATE LIKE SY-DATUM DEFAULT ‘19931224′ , not … DEFAULT
‘24.12.1993′ . 

Addition 2

… TYPE typ 

Effect

Assigns the type typ to the internal field. 

Example

 

PARAMETERS: NUMBER(4) TYPE P DEFAULT '999'.

 

Addition 3

… DECIMALS dec 

Effect

Assigns dec decimal places to the internal field. dec must
be numeric. 

Note

You can only use the addition DECIMALS dec with the addition
TYPE P , i.e. it is only allowed with parameters of type P . 

Example

 

PARAMETERS: NUMBER (4) TYPE P DECIMALS 2 DEFAULT '123.45'.

 

Addition 4

… LIKE g 

Effect

Creates the field p with the same attributes as the field g
which is already defined. g can be either a database field or an existing
internal field. 

Note

You cannot use the addition … LIKE g with the addition …
TYPE typ . No explicit length may be specified for the parameter (for example,
a statement such as PARAMETERS p(len) LIKE g is not allowed). 

Example

 

PARAMETERS PROGRAM LIKE SY-REPID.

 

Note

If g is an ABAP/4 Dictionary field of the type CHAR , length
1 and default values ‘X’ and ‘ ‘ (according to the relevant domain), the
parameter is always displayed as a checkbox on the selection screen (see also
AS CHECKBOX ). 
Field attributes on the selection screen: 

The input/output field which appears on the selection screen for the parameter
has the attributes of the field g specified after LIKE . These include type,
length or - with ABAP/4 Dictionary fields - conversion exit . 

If g is an ABAP/4 Dictionary field, the selection screen is automatically
regenerated after most field attribute changes. An excception to this rule are
the attributes "Check table" and "Fixed values". If these
change, you must generate the program in the ABAP/4 Development Workbench. This
also generates the selection screen. 
The maximum permitted length of a parameter on the selection screen is 45
(scrollable up to length 132). If you have defined it longer than this (either
explicitly with p(200) or implicitly with LIKE ), the parameter is truncated on
the selection screen after the 132nd character. However, you can use SUBMIT to pass longer parameters to a report
(particularly if these are not displayed on the selection screen at all because
of the addition NO-DISPLAY ). 

Addition 5

… MEMORY ID pid 

Effect

On the selection screen, assigns the memory ID pid to the
parameter, i.e. when you execute the report, the selection screen displays the
last value which the user entered in a field with the memory ID pid . 

Note

The memory ID must be a constant, i.e. a value specified
without quotation marks, and can be up to 3 characters long. 

Addition 6

… MATCHCODE OBJECT mobj 

Effect

On the selection screen, assigns the matchcode object mobj
to the parameter. 

Note

The name of the matchcode object must be a constant, i.e. a
value specified without quotation marks, and can be up to 4 characters long. 

Addition 7

… MODIF ID key 

Effect

The screen fields contain the specified modification group (
SCREEN-GROUP1 ) which you can use for screen modifications (e.g. set to
"not ready for input") under AT
SELECTION-SCREEN . 

Note

The name of the modification group must be a constant, i.e.
a value specified without quotation marks, and can be up to 3 characters long. 

Example

 

PARAMETERS CHARLY MODIF ID ABC.

 

...

 

AT SELECTION-SCREEN OUTPUT.

  LOOP AT SCREEN.

    IF SCREEN-GROUP1 = 'ABC'.

      SCREEN-INPUT = '0'.

      MODIFY SCREEN.

    ENDIF.

  ENDLOOP.

 

...

 

Effect

The parameter is not ready for input on the selection
screen. 

Addition 8

… NO-DISPLAY 

Effect

Does not display the parameter on the selection screen. With
"normal" parameters, the associated data object is created and the
parameter can be passed when SUBMIT is executed. 

These parameters are the part of the report interface not presented to the user
on the selection screen. You can set the parameter values either internally
(with the routine INIT in the SAPDBldb or at INITIALIZATION
) or pass them when SUBMIT is executed. These parameters are also stored along
with the variants. 

If, under certain circumstances (e.g. because of the values of other parameters
or due to the selection options ), you want to
present the parameter to the user for input, you can do this in the PAI modlue
of the database program SAPDBldb (for database-specific parameters) or under AT SELECTION-SCREEN (for report-specific parameters) by
calling a function module (CALL FUNCTION ) or your
own screen (CALL SCREEN < /> ). 

Note

Since the parameter is not generated on the selection
screen, the NO-DISPLAY parameters do not allow you to use any of the additions
concerning the display and handling of parameters on the selection screen. 

Addition 9

… LOWER CASE 

Effect

The parameter is not case-sensitive (i.e. allows both upper
and lower case). 

Addition 10

… OBLIGATORY 

Effect

Makes an entry on the selection screen compulsory. 

Addition 11

… AS CHECKBOX 

Effect

Displays the parameter as a checkbox on the selection
screen. 
Since you are not allowed to specify type or length when defining this
parameter, it always has the type C and the length 1 as default values. 

The checkbox is displayed on the left and the associated text on its right. To
define any order other than this, use the SELECTION-SCREEN
statement. 

Note

If LIKE refers to an ABAP/4 Dictionary field, you cannot use
the addition AS CHECKBOX . If the ABAP/4 Dictionary field has the type CHAR , a
length of 1 and the fixed values ‘X’ and ‘ ‘ (according to the relevant
domain), the parameter is always displayed as a checkbox on the selection
screen. 

Addition 12

… RADIOBUTTON GROUP radi 

Effect

Displays the parameter on the selection screen as a radio
button (selection field). All parameters assigned in this way to the same group
radi (which can be up to 4 characters long) form a group of radio buttons on
the selection screen, i.e. if the user presses one of these buttons, the others
are set to "not pressed". 
When you define one of these parameters, you are not allowed to make type or
length specifications. However, you can use LIKE to point to a field of length
1 and type C . 

The addition has no effect on the ordering of the parameter (as is the case
with the addition AS CHECKBOX ). You can make changes to the order with the SELECTION-SCREEN . 

Note

A RADIOBUTTON group must contain at least two parameters.
One of these can have a DEFAULT addition and the DEFAULT value must be ‘X’ . 
In the database INCLUDE DBldbSEL , a RADIOBUTTON parameter must include the
addition FOR TABLE dbtab just like any other parameter. All parameters in a
group must belong to the same table dbtab . 
A group name radi used in the DBldbSEL cannot be used in the report. 
In contrast to "normal" parameters, the event AT
SELECTION-SCREEN ON p is not executed (it is not even allowed
syntactically). Instead, the event AT SELECTION-SCREEN
ON RADIOBUTTON GROUP radi exists for the entire group. If an E message or a W message is
output, all radio buttons in the group are ready for input. 

Addition 13

… FOR TABLE dbtab 

Effect

Assigns the database-specific parameter p to the table dbtab
. 
This addition only makes sense in a logical database access program. 
With database-specific parameters, you need this addition to ensure that the
selection screen for a report contains only database-specific parameters which
belong to a table from the currently active report. 

Addition 14

… AS MATCHCODE STRUCTURE 

Effect

Creates the database-specific parameter p as a field string
according to the Dictionary structure MCPARAMS with the fields MCID (matchcode
ID ) and STRING (search string ). 

Used for data selection through matchcode entry. 

On the selection screen, both sub-fields are displayed in a box with the text
"Matchcode selection". 

You can get a list of possible entries for the matchcode ID and the search
string by pressing F4 . If you choose a matchcode ID and press F4 in the field
"Search string", you see a dialog box where you can enter a search
criterion for each field of the matchcode ID. The system interprets what you enter
generically for each sub-field. 

Note

The addition AS MATCHCODE STRUCTURE only makes sense in a
logical database access program and must therefore be used together with the
addition FOR TABLE . It can also be combined with the addition MODIF ID , but not
with any other additions. The matchcode object to which the matchcode ID and
the search string refer is determined when you define the logical database. 

Example

Input on the selection screen: 
Matchcode ID: Customers Search string: Daniel 
The effect of this is to select all customers whose names begin with
"Daniel". 

Note

Performance 

Matchcode selection can improve program performance considerably. This is
because specifying a search string often describes the required set of data
records more accurately than the key fields of the table. For example, it is
easier to select by name ("Daniel") than by customer number
("000043010") and far fewer records are read from the database. 

Note

If a logical database (e.g. ldb ) contains a parameter p
defined with AS MATCHCODE STRUCTURE , the system always creates an internal
table ldb_MC which includes all the key fields of the selected records. The
structure of ldb_MC is determined by the matchcode object and generated
automatically. In the maintenance transaction for logical databases, the
structure is displayed as a comment in the database program. 

Example

Matchcode object for table T1 with key field T1-K1 . The
table ldb_MC then has the following structure: 

DATA: BEGIN OF ldb_MC OCCURS 100, 
T1_K1 LIKE T1-K1, 
END OF ldb_MC. 

Note

If the user has entered values in the matchcode parameter
fields, the program reads the selected data from the matchcode table after START-OF-SELECTION and makes it available to the
logical database program in the internal table ldb_MC . Then, the database
program processes the records in the subroutine PUT_ldb_MATCHCODE and, with the
help of PUT , triggers the appropriate GET
events in the report. Subsequent processing is exactly the same as that for
data selection direct from the database. 

Example

FORM PUT_ldb_MATCHCODE. 
SELECT * FROM T1 
WHERE K1 = ldb_MC-T1_K1 
FOR ALL ENTRIES IN ldb_MC. 
PUT T1. 
ENDSELECT. 
ENDFORM. 

Note

In matchcode selection, the system flags all fields in the
internal table MC_FIELDS which are filled with values by the matchcode (the
field name is in MC_FIELDS-FIELDNAME and the flag is in MC_FIELDS-SUPPLIED ). 

Example

A field F0 is supplied with a value by the matchcode if the
following condition is satisfied: 

IF MC_FIELDS-FIELDNAME EQ ‘F0′ 
AND MC_FIELDS-SUPPLIED NE SPACE. 

Note

Further documentation: 

· In
the maintenance transaction for logical databases, select Help ->
Extended help 

· In
the editor: logical databases ( LDB ) 

Addition 15

… VALUE-REQUEST 

Effect

This addition is only allowed for database-specific
parameters in the INCLUDE DBldbSEL . It permits self-programmed value help (for
report-specific parameters, this is achieved by specifying the event key word AT SELECTION-SCREEN ON VALUE-REQUEST FOR … ). The
addition has the following effect: 
On the selection screen, the parameter has a button for requesting possible
entries. When the user presses this button or F4 , this starts the FORM routine
p_VAL in the database access program SAPDBldb (if it exists). Then - even if
the parameter with LIKE points to a Dictionary field - this FORM routine is
processed rather than displaying the check table or the fixed values of the
Dictionary field. You can also branch from the routine p_VAL to a function
module which offers a selection list of possible values. At the end of the FORM
routine, the contents of the field p are copied to the appropriate input/output
field. 

Example

* INCLUDE DBXYZSEL 
… 
PARAMETERS PL_TYPE LIKE SAPLANE-PLANETYPE VALUE-REQUEST. 
… 

REPORT SAPDBXYZ DEFINING DATABASE XYZ. 
… 
TABLES SAPLANE. 
… 
FORM PL_TYPE_VAL. 
… 
CALL FUNCTION … 
… 
ENDFORM. 

Addition 16

… HELP-REQUEST 

Effect

Like VALUE-REQUEST , this addition is only allowed for
database-specific parameters in the INCLUDE DBldbSEL . It permits
self-programmed value help (for report-specific parameters, this is achieved by
specifying the event key word AT SELECTION-SCREEN ON
VALUE-REQUEST FOR … ). When the user presses F1 , this starts the FORM
routine p_HLP in the database access program SAPDBldb (if it exists). Then -
even if the parameter with LIKE points to a Dictionary field - this FORM
routine is processed rather than displaying the data element documentation of
the Dictionary field. You can also branch from the routine p_HLP to a function
module which displays its own documentation. 

Example

* INCLUDE DBXYZSEL 
… 
PARAMETERS PL_TYPE LIKE SAPLANE-PLANETYPE HELP-REQUEST. 
… 

REPORT SAPDBXYZ DEFINING DATABASE XYZ. 
… 
TABLES SAPLANE. 
… 
FORM PL_TYPE_HLP. 
… 
CALL FUNCTION … 
… 
ENDFORM. 

Index 
© SAP AG 1996 

PERFORM 

 

Variants

1. PERFORM form. 
2. PERFORM form(prog). 
3. PERFORM form IN PROGRAM prog. 
4. PERFORM n OF form1 form2 form3 … . 
5. PERFORM n ON COMMIT. 

Variant 1

PERFORM form. 

Additions

1. … USING p1 p2 p3 … 
2. … CHANGING p1 p2 p3 … 
3. … TABLES itab1 itab2 … 

Effect

Calls the subroutine form specified in the FORM
statement. On completion, processing in the main program resumes. 

Example

 

PERFORM HELP_ME.

...

FORM HELP_ME.

  ...

ENDFORM.

The PERFORM statement calls the subroutine HELP_ME . 

Notes

Nested calls are allowed (i.e. PERFORM within a FORM …
ENDFORM ). 
Recursive calls are also possible. 
To define local data, use the DATA statement after FORM . Each time you enter the subroutine, the data is
recreated (with an initial value) and released at the end (from the stack). 
To define global data used within a subroutine, use the LOCAL
statement after FORM . The values are saved when you
enter the subroutine and then released at the end (from the stack). 

Note

Runtime errors 

· PERFORMANCE_PARAMETER_MISSING
: The called form expects more parameters than were specified. 

· PERFORM_PARAMETER_COUNT
, 

· PERFORM_TOO_MANY_PARAMETERS
: More parameters were given than 
the FORM expected. 

· PERFORM_CONFLICT_TYPE
, 

· PERFORM_CONFLICT_GENERIC_TYPE
, 

· PERFORM_BASE_WRONG_ALIGNMENT
, 

· PERFORM_PARAMETER_TOO_SHORT
, 

· PERFORM_TABLE_REQUIRED
: The parameter type does not match the type specified in the FORM
definition. 

· PERFORM_BASE_LITL
: A literal was passed to a structured parameter. 

 

Addition 1

… USING p1 p2 p3 … 

Addition 2

… CHANGING p1 p2 p3 … 

Effect

These additions are equivalent to each other. For
documentation reasons however, you should use the same one as with the associated
FORM definition. 
Both additions pass the parameters p1 p2 p3 … to the called subroutine. You
can use as many parameters as you like. 
Sequence is important here because the first parameter of the PERFORM call is
passed to the first parameter of the FORM definition, the second to the second
and so on. 
You can use the following as parameters: 

· DATA
fields (see DATA ) 

· Field
strings (see DATA BEGIN OF ) 

· Literals 

· Field
symbols (see FIELD-SYMBOLS ) 

Parameter offset and length can be passed as variables. The addition ‘ …USING
p1+off(*) ‘ causes parameter p1 to be passed with offset off so that the field
limits of p1 are not exceeded. 

Example

 

DATA: NUMBER_I TYPE I VALUE 5,

      NUMBER_P TYPE P VALUE 4,

      BEGIN OF PERSON,

        NAME(10)      VALUE 'Paul',

        AGE TYPE I    VALUE 28,

      END   OF PERSON,

      ALPHA(10)       VALUE 'abcdefghij'.

FIELD-SYMBOLS .

ASSIGN NUMBER_P TO .

PERFORM CHANGE USING 1

                     NUMBER_I

                     NUMBER_P

                     

                     PERSON

                     ALPHA+NUMBER_I().

 

FORM CHANGE USING VALUE(PAR_1)

                  PAR_NUMBER_I

                  PAR_NUMBER_P

                  PAR_POINTER

                  PAR_PERSON STRUCTURE PERSON

                  PAR_PART_OF_ALPHA.

  ADD PAR_1 TO PAR_NUMBER_I.

  PAR_NUMBER_P = 0.

  PAR_PERSON-NAME+4(1) = ALPHA.

  PAR_PERSON-AGE = NUMBER_P + 25.

  ADD NUMBER_I TO PAR_POINTER.

  PAR_PART_OF_ALPHA = SPACE.

ENDFORM.

Field contents after the PERFORM call are as follows: 

NUMBER_I = 6 
NUMBER_P = 6 
= 6 
PERSON-NAME = ‘Paula’ 
PERSON-AGE = 25 
ALPHA = ‘abcde j’ 

Note

The field type and length of the parameters remain. If
parameter values change within the subroutine, these new values remain after
you leave the subroutine. However, this does not apply to parameters passed
with VALUE (see FORM ). 
If you pass literals, you must either leave them unchanged or pass them in the
FORM definition with the USING VALUE statement. 

Addition 3

… TABLES itab1 itab2 … 

Effect

You use TABLES to pass internal tables to subroutines. 

Example

 

DATA: BEGIN OF ITAB OCCURS 100,

        TEXT(50),

        NUMBER TYPE I,

      END   OF ITAB.

      STRUC LIKE T005T.

...

PERFORM DISPLAY TABLES ITAB

                USING  STRUC.

 

FORM DISPLAY TABLES PAR_ITAB STRUCTURE ITAB

             USING  PAR STRUCTURE T005T.

  DATA LOC_COMPARE LIKE PAR_ITAB-TEXT.

 

  WRITE: / PAR-LAND1, PAR-LANDX.

  ...

  LOOP AT PAR_ITAB WHERE TEXT = LOC_COMPARE.

    ...

  ENDLOOP.

  ...

ENDFORM.

Within the subroutine DISPLAY , you can apply all the available table
operations to the internal tables passed. 

Note

TABLES must always appear first in the PERFORM call. It must
not be preceded by an addition. 

Variant 2

PERFORM form(prog). 

Additions

1. … USING p1 p2 p3 … 
2. … CHANGING p1 p2 p3 … 
3. … TABLES itab1 itab2 … 
4. … IF FOUND 

Effect

Calls the subroutine form defined in the program prog (i.e.
external PERFORM ). 

Notes

Parameter passing to the external subroutine is the same as
in variation 1. 
Parameter passing can be implemented by using a common data area (see DATA BEGIN OF COMMON PART ). 
Nested calls are possible, even with several external subroutines from
different programs. 
If you call a subroutine of a program prog , the system loads the program prog

Note

Runtime errors 

· PERFORM_NOT_FOUND
: The subroutine specified was not found. 

 

Addition 1

… USING p1 p2 p3 … 

Effect

See addition 1 of variation 1. 

Addition 2

… CHANGING p1 p2 p3 … 

Effect

See addition 2 of variation 1. 

Addition 3

… TABLES itab1 itab2 … 

Effect

See addition 3 of variation 1. 

Addition 4

… IF FOUND 

Effect

Calls the specified subroutine only if it already exists.
Otherwise, the statement is ignored. 

Notes

· If
the program specified is not available or incorrect, a runtime error is
output. 

· The
only way of determining whether the specified routine existed (in an
available program) is by writing your own program (e.g. by setting a flag
that is passed to the subroutine). 

 

Variant 3

PERFORM form IN PROGRAM prog. 

Additions

1. … USING p1 p2 p3 … 
2. … CHANGING p1 p2 p3 … 
3. … TABLES itab1 itab2 … 
4. … IF FOUND 

Effect

Similar to variation 2 (external PERFORM ), except that here
you can specify both the subroutine and the program dynamically (at runtime);
in this case, you must enclose the variables form or prog in parentheses. If
you omit specification of the program after IN PROGRAM , ABAP/4 searches for
the routine in the current program. 

Example

 

DATA: RNAME(30) VALUE 'WRITE_STATISTIC',

      PNAME(8)  VALUE 'ZYX_STAT'.

PERFORM WRITE_STATISTIC(ZYX_STAT).

PERFORM (RNAME)         IN PROGRAM ZYX_STAT.

PERFORM WRITE_STATISTIC IN PROGRAM (PNAME).

PERFORM (RNAME)         IN PROGRAM (PNAME).

All four of the above PERFORM statements have the same effect, i.e. they call
the subroutine ‘WRITE_STATISTIC’ defined in the program ‘ZYX_STAT’ . 

Note

This dynamic PERFORM requires more CPU time, since the
system has to search for the subroutine each time. 

Addition 1

… USING p1 p2 p3 … 

Effect

See addition 1 of variation 1. 

Addition 2

… CHANGING p1 p2 p3 … 

Effect

See addition 2 of variation 1. 

Addition 3

… TABLES itab1 itab2 … 

Effect

See addition 3 of variation 1. 

Addition 4

… IF FOUND 

Effect

Calls the specified subroutine only if it already exists.
Otherwise, the statement is ignored. 

Variant 4

PERFORM n OF form1 form2 form3 … . 

Effect

Drives a subroutine specified by the index n from a list of
subroutine names listed in the statement. At runtime, the variable n must
contain a value between 1 (first name) and the total number of subroutines
specified (last name). Up to 256 subroutine names are possible. 

Note

Runtime errors 

· PERFORM_INDEX_0
: The index specified was too small. 

· PERFORM_INDEX_NEGATIVE
: The index specified was negative. 

· PERFORM_INDEX_TOO_LARGE
: The index specified was too large. 

 

Variant 5

PERFORM n ON COMMIT 

Addition

1. … LEVEL level 

Effect

Executes the specified subroutine when a COMMIT WORK occurs.
This allows you to execute a subroutine only if the logical transaction has
ended successfully. The subroutine is not executed until the key word COMMIT
WORK is called. FORMs specified several times are executed only once on COMMIT
WORK (see COMMIT WORK ). 
If you call ROLLBACK WORK , you delete all the specified routines. 

Note

With PERFORM … ON COMMIT , you cannot transfer any data
with USING/CHANGING . To do this, you must either store the data in global
variables or store it temporarily with EXPORT … TO MEMORY . 

Addition 1

… LEVEL level 

Effect

The addition LEVEL , followed by a field, defines the order
in which the subroutines are executed after COMMIT WORK . They are called in
ascending order of level. If there is no addition LEVEL , the subroutine always
has the level zero. If the level is the same, the order of calls determines the
order of execution. Level assignment occurs during development, e.g. by
defining constants in an include program. The level must be of type I. 

Index 
© SAP AG 1996 

POSITION 

 

Basic form

POSITION col. 

Effect

The contents of the field col sets the output position
(column) of the subsequent WRITE statement. 

Notes

· If
the column defined by POSITION lies in the part of the line already
described, it will be overwritten by any subsequent WRITE statement. 

· For
vertical positioning (variable line), see SKIP TO LINE
. 

 

Example

The routine LINEOUTPUT has three input parameters - COLUMN ,
LENGTH and CHAR . Starting from COLUMN , it outputs a line comprising the
character CHAR with the length LENGTH : 

 

FORM LINEOUTPUT USING COLUMN LENGTH CHAR.

  DATA LINEPOS TYPE P.

  LINEPOS = COLUMN.

  DO LENGTH TIMES.

    POSITION LINEPOS. WRITE CHAR.

    ADD 1 TO LINEPOS.

  ENDDO.

ENDFORM.

If you call the above FORM with 

PERFORM LINEOUTPUT USING 5 10 ‘=’. 
the output is: 

========== 
Related WRITE … AT , WRITE
… UNDER 

Index 
© SAP AG 1996 

PRINT-CONTROL 

 

Variants

1. PRINT-CONTROL. 
2. PRINT-CONTROL INDEX-LINE f. 

Variant 1

PRINT-CONTROL. 

Additions

1. … CPI cpi 
2. … LPI lpi 
3. … SIZE size 
4. … COLOR 
… BLACK 
… RED 
… BLUE 
… GREEN 
… YELLOW 
… PINK 
5. … LEFT MARGIN col 
6. … FONT font 
7. … FUNCTION f 
8. … LINE lin 
9. … POSITION col 

Effect

Determines the desired print format for the subsequent
characters, starting from the current output position. 
You define the output position either implicitly: 

· Line
1/column 1 before the first WRITE output on the current page. 

· Line
and column of the next field output with WRITE . 

or explicitly: 

· Line
1/column 1 using NEW-PAGE , 

· Line
n/column 1 using SKIP TO LINE n 

· Line
*/column m using POSITION n (* = current output
line). 

With output to the screen or when printing screen output, the
statement has no effect. 

Addition 1

… CPI cpi Letters per inch 

Addition 2

… LPI lpi Lines per inch 

Addition 3

… SIZE size Script size 

Addition 4

… COLOR Color … 
… BLACK black 
… RED red 
… BLUE blue 
… GREEN green 
… YELLOW yellow 
… PINK pink 

Addition 5

… LEFT MARGIN col Distance from left edge 

Addition 6

… FONT font Set font 

Addition 7

… FUNCTION f Reference function 
directly as sub- 
argument of Table T022D 

Effect

Sets the specified print format for the subsequent characters,
starting from the current output position. 

Example

PRINT-CONTROL SIZE 2 COLOR BLACK FONT 5. 

Addition 8

… LINE lin 

Effect

Explicitly sets the output line of the current page from
which you want the PRINT-CONTROL options to take effect (from column 1). 

Addition 9

… POSITION col 

Effect

Explicitly sets the column of the line specified by the
addition " LINE " from which you want the print options to take
effect. If the addition " LINE " is missing, the current line is
assumed. 

Note

You must always use additions 8 and 9 in conjunction with one of
the additions 1 to 7. This has no effect on the current line number ( SY-LINNO
) or column number ( SY-COLNO ). You can thus also use the PRINT-CONTROL
statements after all WRITE statements for the current page. 

Example

 

PRINT-CONTROL LINE 10 POSITION 70 FONT 5.

 

Note

Conversion to machine-specific control characters is
performed via tables TSP03 and T022D : 

+===================+==============================+ 
I Option I Argument for table I T022D I 
+===================+======================+=======+ 
I CPI ‘xxx’ I Printer name (TSP03) I CIxxx I 
+——————-+———————-+——-+ 
I LPI ‘xxx’ I Printer name (TSP03) I LIxxx I 
+——————-+———————-+——-+ 
I SIZE ‘xxx’ I Printer name (TSP03) I SIxxx I 
+——————-+———————-+——-+ 
I FONT ‘xxx’ I Printer name (TSP03) I FOxxx I 
+——————-+———————-+——-+ 
I COLOR BLACK I Printer name (TSP03) I CO001 I 
+——————-+———————-+——-+ 
I COLOR RED I Printer name (TSP03) I CO002 I 
+——————-+———————-+——-+ 
I COLOR BLUE I Printer name (TSP03) I CO003 I 
+——————-+———————-+——-+ 
I COLOR GREEN I Printer name (TSP03) I CO004 I 
+——————-+———————-+——-+ 
I COLOR YELLOW I Printer name (TSP03) I CO005 I 
+——————-+———————-+——-+ 
I COLOR PINK I Printer name (TSP03) I CO006 I 
+——————-+———————-+——-+ 
I LEFT MARGIN ‘xxx’ I Printer name (TSP03) I LMxxx I 
+——————-+———————-+——-+ 
I FUNCTION ‘yyyyy’ I Printer name (TSP03) I yyyyy I 
+——————-+———————-+——-+ 
If (according to table TSP03 ) a particular printer type does not support a
particular option in table T022D (i.e. there is no entry), this option is
ignored when printing. For further details, please refer to the documentation
for tables TSP03 and T022D . 

Variant 2

PRINT-CONTROL INDEX-LINE f. 

Effect

Ouputs the contents of the field f as an index line in the
current print output. An index line usually contains only administration
information for archiving and is not output when printing. If no print mode is
active, the statement has no effect. If the WRITE statement has already begun a
print line, the index line is output after this line. 

Example

 

DATA: INDEX_LINE(200).

PRINT-CONTROL INDEX-LINE INDEX_LINE.

Index 
© SAP AG 1996 

PROGRAM 

 

Effect

The PROGRAM statement is equivalent to the REPORT statement. 

Index 
© SAP AG 1996 

PROVIDE 

 

Basic form

PROVIDE f1 f2 … FROM itab1 
g1 g2 … FROM itab2 
… 
* FROM itabi 
… 
BETWEEN f AND g. 

Effect

Retrieves the contents of the specified fields from the
internal tables ( itab1 , itab2 , …) and places them in the table header
lines within the required range. Also executes the processing block enclosed by
the PROVIDE and ENDPROVIDE statements for each range. 

Note

Für itab1 , itab2 … only tables with header lines are
allowed. 

Effect

Basic principle: 

The diagram below illustrates the functionality of the PROVIDE statement for
the most simple case where just two tables A and B are to be processed: 

IA1 IA2 
|———–| |————–| table A 
: : : : 
: IB1 : IB2 : : 
: |———–| |————-| : table B 
: : : : : : : : 
: : PROVIDE area : : : 
…|—————————————-|… 
: : : : : : : : 
:TI1: TI2 :TI3: : TI4 : TI5 : TI6 : 
…|—|——-|—| |——-|—–|—–|… 
result ranges 

The data structures which form the basis for the table lines must each contain
two components which can be interpreted as a range (e.g. start date and end
date). In the diagram, the ranges belonging to the entries in table A are
marked with IA1 or IA2 , and those in table B with IB1 or IB2 . If you split
the ranges of both tables into overlapping and non-overlapping ranges and then
form the union set with the PROVIDE area, this results in 6 sub-ranges TI1 to
TI6 . In these sub-ranges, the values of the tables A and B are constant. The
PROVIDE statement makes the contents of the tables A and B available for the 6
sub-ranges, one after the other. It thus acts as a kind of loop where the data
of the tables involved can be processed with reference to each range. 

Effect

General principle 
Each of the specified internal tables has two fields which contain the
line-related validity range. You can determine these in the DATA
statement with the addition " VALID BETWEEN … AND … ". If this
addition is not used, sub-fields of the table determine these range fields
(e.g. VALID BETWEEN first field AND second field). These fields can be date
fields, time fields or even number fields. Both these two fields and also f and
g should be the same type. 

PROVIDE splits the range f to g into sub-ranges so that each of the fields ( f1
, f2 , …) specified for each table is constant in this range and so that each
sub-range is as large as possible (range limits are considered part of the
range). 
Each time the processing passes through the loop, the current range limits and
the specified sub-fields are placed in the header lines of the internal tables.
If you want to make all sub-fields available, enter ‘*’ instead of the field
list. The unspecified sub-fields are set to their initial value (CLEAR ). 
It is a requirement that the ranges within a table are in ascending order and
not overlapping. However, there can be gaps between one upper range limit and
the next lower range limit. 

For each table itab1 , itab2 … , the automatically generated fields
itab1_VALID , itab2_VALID , … indicate (with ‘X’ oder Leerzeichen ‘ ‘ )
whether a suitable entry was found for the current sub-range. 

Example

The entries in the table SE , PR and SH contain time ranges
and are filled as follows: 

 

DATA: BEGIN OF SE OCCURS 3,

        FROM     TYPE D,

        TO       TYPE D,

        NAME(15) TYPE C,

        AGE TYPE I,

      END OF SE,

 

      BEGIN OF PR OCCURS 4,

        START    TYPE D,

        END      TYPE D,

        PRICE    TYPE I,

        NAME(10) TYPE C,

      END OF PR,

 

      BEGIN OF SH OCCURS 2,

        CLOSED   TYPE D,

        STR(20)  TYPE C,

        OPENED   TYPE D,

      END OF SH VALID BETWEEN OPENED AND CLOSED,

 

      BEGIN TYPE D VALUE '19910701',

      END   TYPE D VALUE '19921001'.

 

SE-FROM = '19910801'. SE-TO  = '19910930'.

SE-NAME = 'Shorty'.   SE-AGE = 19. APPEND SE.

SE-FROM = '19911005'. SE-TO  = '19920315'.

SE-NAME = 'Snowman'.  SE-AGE = 35. APPEND SE.

SE-FROM = '19920318'. SE-TO  = '19921231'.

SE-NAME = 'Tom'.      SE-AGE = 25. APPEND SE.

 

PR-START = '19910901'. PR-END = '19911130'.

PR-NAME  = 'Car'.   PR-PRICE = 30000. APPEND PR.

PR-START = '19911201'. PR-END = '19920315'.

PR-NAME  = 'Wood'.  PR-PRICE = 10.    APPEND PR.

PR-START = '19920318'. PR-END = '19920801'.

PR-NAME  = 'TV'.    PR-PRICE = 1000.  APPEND PR.

PR-START = '19920802'. PR-END = '19921031'.

PR-NAME  = 'Medal'. PR-PRICE = 5000.  APPEND PR.

 

SH-CLOSED = '19920315'. SH-STR = 'Gold Avenue'.

SH-OPENED = '19910801'. APPEND SH.

SH-CLOSED = '19921031'. SH-STR = 'Wall Street'.

SH-OPENED = '19920318'. APPEND SH.

 

PROVIDE NAME AGE FROM SE

        NAME     FROM PR

        *        FROM SH

        BETWEEN BEGIN AND END.

  ...

ENDPROVIDE.

The three tables are processed according to the following schema: 

ISE1 ISE2 ISE3 
|——-| |———–| |————————| 
: : : : : : 
: :IPR1 IPR2 : : IPR3 IPR4 : 
: |———-|——| |————–|——| : 
: : : : : : : : : : 
: : ISH1 : : : ISH2 : : : 
|———————-| |———————| : 
: : : : : : : : : : 
: : : : PROVIDE area : : : 
|————————————————–|… 
: : : : : : : : : 
: : : : : : : : : 
…|—-|–|–|—-|——| |————–|——|… 
result ranges 

This PROVIDE loop is executed 7 times and produces the following sub-ranges: 

· 01.08.1991
- 31.08.1991 

· 01.09.1991
- 30.09.1991 

· 01.10.1991
- 04.10.1991 

· 05.10.1991
- 30.11.1991 

· 01.12.1991
- 15.03.1992 

· 18.03.1992
- 01.08.1992 

· 02.08.1992
- 01.10.1992 

In most of the loop passes, the fields SE_VALID , PR_VALID and SH_VALID contain
‘X’ . The exceptions to this are the 1st loop pass, where PR_VALID contains ‘ ‘
, and the 3rd loop pass, where AB>SE_VALID contains ‘ ‘ . 

Field contents (header lines) during the third loop pass: 

SE-FROM = ‘01101991′ 
SE-TO = ‘04101991′ 
SE-NAME = ‘ ‘ 
SE-AGE = 0 
PR-START = ‘01101991′ 
PR-END = ‘04101991′ 
PR-PRICE = 0 
PR-NAME = ‘Car’ 
SH-CLOSED = ‘04101991′ 
SH-STR = ‘Gold Avenue’ 
SH-OPENED = ‘01101991′ 

Notes

Strictly speaking, if you imagine each range as a short way
of writing a set of single values, this is an "outer join" of the
tables. After ENDPROVIDE , the contents of the system fields SY-INDEX ,
SY-TABIX and SY-SUBRC are undefined. Neither the header lines nor the actual
table lines of the table specified with PROVIDE should be changed between
PROVIDE and ENDPROVIDE . Otherwise, the PROVIDE results are undefined. 
Related LOOP AT itab 

Index 
© SAP AG 1996 

PUT 

 

Basic form

PUT dbtab. 

Effect

This statement is only to be used in the access program of
the logical database where the table dbtab occurs. 
" PUT dbtab. " triggers the event " GET dbtab. " in the
relevant report. Then, it calls the PUT suroutines of the immediately following
tables in the structure, provided that GET events exist for subsequent tables
in the report. 

Note

The work areas of the tables defined in the database program
and in the report are used together. As a result, the contents of dbtab at the
time of the PUT statement are also automatically available in the corresponding
GET event. 
Related GET , CHECK , REJECT 

Index 
© SAP AG 1996 

RAISE 

 

Basic form

RAISE except. 

Effect

This statement only makes sense if used in conjunction with
function modules. 

It triggers the exception except . 

If the program calling the function module is to handle the exception (see CALL FUNCTION ), control returns immediately to that
program and the EXPORT parameters of the function module are not assigned
values. 
Otherwise, the program terminates with a suitable error message. 

Example

The function module STRING_SPLIT would look something like
the code specified below (see also the example for CALL
FUNCTION ): 

 

FUNCTION-POOL CSTR.

FUNCTION STRING_SPLIT.

  ...

  IF STRING NA DELIMITER.

    RAISE NOT_FOUND.

  ENDIF.

  ...

ENDFUNCTION.

The calling program may then contain the code: 

 

PROGRAM EXAMPLE.

...

CALL FUNCTION 'STRING_SPLIT'

*    ...

     EXCEPTIONS

          NOT_FOUND = 7.

IF SY-SUBRC = 7.

  WRITE / 'There is a problem.'.

ELSE.

  ...

ENDIF.

If the RAISE statement in the function module STRING_SPLIT triggers the
exception NOT_FOUND , processing of the function module terminates and returns
to the calling program. In this case, the return code, which you read directly
after the CALL FUNCTION statement, contains the value 7. 
Related MESSAGE … RAISING 

Index 
© SAP AG 1996 

RANGES 

 

Basic form

RANGES sel FOR f. 

Effect

Defines an internal table similar to a selection criterion
sel defined using the SELECT-OPTIONS sel FOR f
statement. 

The above statement is identical to: 

 

DATA: BEGIN OF sel OCCURS 10,

         SIGN(1),

         OPTION(2),

         LOW  LIKE f,

         HIGH LIKE f,

      END   OF sel.

 

Note

If you use the IN operator in conjunction with SUBMIT ,
CHECK , IF , WHILE or SELECT , always define the associated internal table
using SELECT-OPTIONS or RANGES (never directly). 

Addition

… OCCURS occ 

Effect

Changes the OCCURS value 10 to the value of occ . 

Index 
© SAP AG 1996 

READ 

Read an internal table 
- READ TABLE itab. / READ TABLE itab INTO wa. 
Read a list line 
- READ LINE lin. 
- READ LINE lin OF CURRENT PAGE. 
- READ LINE lin OF PAGE pag. 
- READ CURRENT LINE. 
Read a program 
- READ REPORT prog INTO itab. 
Read text elements 
- READ TEXTPOOL prog …INTO itab …LANGUAGE lg. 
Read a file 
- READ DATASET dsn INTO f. 
Read a database table 
- READ TABLE dbtab. 
Determine calendar information 
- In R/2: READ CALENDAR. 

Index 
© SAP AG 1996 

READ - Determine calendar information 

The READ CALENDAR statement exists only in the R/2 System. In the R/3 System,
the following function modules are substituted: 

· DATE_COMPUTE_DAY
: 

Returns the day for a date 

· DATE_CONVERT_TO_FACTORYDATE
: 

Returns the factory calendar date for a date 

· DATE_GET_WEEK
: 

Returns the week in which a date occurs 

· EASTER_GET_DATE
: 

Returns the Easter dates for a year 

· FACTORYDATE_CONVERT_TO_DATE
: 

Returns the date for a factory calendar date 

· HOLIDAY_CHECK_AND_GET_INFO
: 

Checks whether a date is a public holiday and, if necessary, returns
information 

· WEEK_GET_FIRST_DAY
: 

Returns the first day of a week 

Index 
© SAP AG 1996 

READ - Read a file 

 

Basic form

READ DATASET dsn INTO f. 

Addition

… LENGTH len 

Effect

Reads a record from the sequential file specified in dsn (a
field or a literal) and stores it in the field f (usually a field string). 

· Binary
mode (addition IN BINARY MODE in the OPEN DATASET
statement: 

Read from file in length of field f . 

· Text
mode (addition IN TEXT MODE in the OPEN
statement): 

Read a line. 

If the specified file is not open, READ DATASET attempts to open the file dsn (
IN BINARY MODE FOR INPUT or with the specifications of the last OPEN command
for this file). Any errors result in the termination of the program. 
To read all the records in a file, you are recommended to place READ DATASET in
a DO loop that you leave with EXIT
. 

The return code value is set as follows: 

SY-SUBRC = 0 Record read from file. 
SY_SUBRC = 4 End of file reached. 

Example

Define the field string REC : 

 

DATA: BEGIN OF REC,

        TEXT(30),

        NUMBER TYPE I,

      END OF REC.

 

Read the file "/usr/test": 

 

DO.

  READ DATASET '/usr/test' INTO REC.

  IF SY-SUBRC <> 0.

    EXIT.

  ENDIF.

  WRITE: / REC-TEXT, REC-NUMBER.

ENDDO.

 

Notes

· You
can use TRANSFER to output records to a
sequential dataset. 

 

· The
format of file names depends largely on the operating system. You can
access portable programs by using the function module FILE_GET_NAME which
returns the physical name for a given logical file name. 

 

Addition

… LENGTH len 

Effect

Stores the length of the record read from the file in the
field len . 

Index 
© SAP AG 1996 

READ - Read a list line 

 

Variants

1. READ LINE lin. 
2. READ LINE lin OF CURRENT PAGE. 
3. READ LINE lin OF PAGE pag. 
4. READ CURRENT LINE. 

Variant 1

READ LINE lin. 

Additions

1. … INDEX idx 
2. … FIELD VALUE f1 INTO g1 
… 
fm INTO gm 

Effect

Reads line no. lin in the list, for instance by line
selection ( AT LINE-SELECTION , AT PFxx, AT USER-COMMAND ). 
Places the read line in the field SY-LISEL and automatically restores all
‘hidden’ information (see HIDE ) to the original fields.

Sets the output format of the read line for all subsequent MODIFY LINE and
WRITE statements. 

The return code value is set as follows: 

SY-SUBRC = 0 Line exists 
SY-SUBRC <> 0 Line does not exist 

Addition 1

… INDEX idx 

Effect

With multiple line selection, reads the line from the list
generated in level idx (0,1,2,…). 

Addition 2

… FIELD VALUE f1 INTO g1 
… 
fm INTO gm 

Effect

Transports the contents of the fields f1 , f2 , … from the
read list line to the fields g1 , g2 , … . (The field contents stored in the
list line always have the type C; type conversion is the same as for MOVE .) 

Note

All formatting characters in the list output of f1 , f2 ,
… count as field contents. If a field is output several times on the selected
line, only the first occurrence is taken into account. If the field (such as f2
) is not output on the line at all, the field g2 remains unchanged. The
addition INTO g2 , for example, can be omitted if the field contents are to be
restored to the original field (e.g. f2 ), i.e. 

 

... FIELD VALUE ... f2

has the same effect as 

 

... FIELD VALUE ... f2 INTO f2

Since the return code value in SY-SUBRC is not affected by the addition FIELD
VALUE , it depends only on the existence of the selected list line. 

Note

The addition FIELD VALUE is especially suitable for
processing user input in list fields (see FORMAT , WRITE ) in the program. (Field contents entered by the
user cannot be addressed with HIDE .) 

Example

You can make a line "selectable" with 

 

DATA MARKFIELD(1) TYPE C.

     ...

WRITE: / MARKFIELD INPUT, 'Text'.

After line selection, you can use 

 

CLEAR MARKFIELD.

READ LINE SY-CUROW FIELD VALUE MARKFIELD.

in the program to check whether the user has selected the line or not ( IF
MARKFIELD = SPACE … ). 

Variant 2

READ LINE lin OF CURRENT PAGE. 

Additions

As with variant READ LINE 

Effect

As with variant READ LINE lin . The line number lin refers
to the current page (as specified in the system field SY-CPAGE at the beginning
of the current event. If the contents of SY-CPAGE is changed by the application
program, this does not affect the display.) 

Notes

With multiple level line selection, the read operation is
always take place in the list where line selection was performed. 
When returning from line selection, the system always resets the positioning to
the last page displayed. (For scrolling purposes, you can use the SCROLL statement.) 

Variant 3

READ LINE lin OF PAGE pag. 

Additions

As with variant READ LINE 

Effect

As with variant 2, but reads the page pag instead of the
current page. 

Variant 4

READ CURRENT LINE. 

Addition

… FIELD VALUE f1 INTO g1 
… 
fm INTO gm 

Effect

Reads the last line to be read (by line selection or with
READ LINE ) once again. You can use this variant, for example, in connection
with the addition FIELD VALUE (see below) .u.) if you want to retrieve field
contents from the selected line (in cases where you cannot retrieve from the
HIDE area). 

Addition

… FIELD VALUE f1 INTO g1 
… 
fm INTO gm 

Effect

See addition 2 of the variant READ LINE lin 

Index 
© SAP AG 1996 

READ - Read a program 

 

Basic form

READ REPORT prog INTO itab. 

Effect

Reads the program prog from the database into the internal
table itab . Table itab should be at least 72 lines long. 
The return code value is set as follows: 

SY-SUBRC = 0 Program was read. 
SY-SUBRC <> 0 Program could not be read. 

Example

 

DATA: PROGRAM LIKE SY-REPID VALUE 'PROGNAME',

      BEGIN OF T OCCURS 500,

        LINE(72),

      END   OF T.

READ REPORT PROGRAM INTO T.

IF SY-SUBRC <> 0.

  ...

ENDIF.

Index 
© SAP AG 1996 

READ - Read an internal table 

 

Basic form

READ TABLE itab. 
READ TABLE itab INTO wa. 

Additions

1a. … WITH KEY k1 = v1 … kn = vn 
1b. … WITH KEY = value 
1c. … WITH KEY key 
2. … BINARY SEARCH 
3. … INDEX idx 
4a. … COMPARING f1 f2 … 
4b. … COMPARING ALL FIELDS 
5a. … TRANSPORTING f1 f2 … 
5b. … TRANSPORTING NO FIELDS 

Effect

Reads an internal table entry. An entry can be chosen using
a key or its index. 

With " READ TABLE itab. ", the header line of the internal table itab
is used as the output area; with " READ TABLE itab INTO wa. " the
explicity specified work area wa is used for this purpose. 

The return code value of SY-SUBRC specifies whether a suitable entry was found.
In turn, this determines the value of the table index SY-TABIX . 

SY-SUBRC = 0 Entry found 

SY-TABIX is set to the index of the found entry. 

SY-SUBRC <> 0 Entry not found 

The value of SY-TABIX is undefined. 
The output area remains unchanged. 

Note

In the case of internal tables with a header, a table line
can be accessed without specifying an explicit key (addition: WITH KEY … ) or
index (addition: INDEX idx ). The system then uses (as an implicit key) all
table header fields that are not number fields (type I, F, P), are not tables
themselves (compare default keys of internal tables) and whose contents are
unequal to SPACE . It searches for the first entry which matches the header in
all key fields and transfers this entry into the output area. 

The implicit key is only set up (dynamically) at runtime. If the search key is
already known at the time of generation (static), the read with an explicit key
is faster than with an implicit key, and is therefore preferable. 

Addition 1a

… WITH KEY k1 = v1 … kn = vn 

Effect

Accesses the first entry which matches v1 … vn in the
components specified with k1 … kn . Here, the component type forms the basis
for the comparison between the components and the values. If the type of a
value and the type of a component are not compatible, the value is converted to
the type of the component before the read access is performed. 

Notes

If a component is not determined until runtime, you can use
WITH KEY … (ni) = vi … to specify it dynamically as the contents of the
field ni . If ni is empty at runtime, the component is ignored. If ni contains
an invalid component name, a runtime error occurs. 
You can use offset and/or length specifications to further restrict components,
regardless of whether they have been specified statically or dynamically. 

Addition 1b

… WITH KEY = value 

Effect

Accesses the first entry which matches value . In this case,
the type of the table line forms the basis for the comparison between table
lines and the specified value. If the type of the specified value and the type
of the table line are not compatible, the specified value is converted to the
type of the table line before the read access is performed. 

Note

Even with internal tables containing lines with no
components, the addition WITH KEY = value allows you to access an entry via an
explicity specified key. Internal tables without line components result when
you define internal tables directly via an elementary data type or a table
type, but not via a field string. 

Addition 1c

… WITH KEY key 

Effect

Accesses the first entry which begins with key
(left-justified). The type of the specified key forms the basis for the
comparison between table lines and the specified key. 

Note

The key key can be neither a table nor a structure that
contains tables as components. 

Note

Runtime errors (only when using addition 1c): 

· READ_BAD_KEY_ALIGN
: The alignment requirements of the key take priority over those of
individual table lines. 

· READ_BAD_KEY_PARTIAL
: The key is longer than a table line and cannot be shortened. 

 

Addition 2

… BINARY SEARCH 

Effect

The addition BINARY SEARCH only makes sense with one of the
WITH-KEY additions (1a-1c). 

The read access is performed using a binary search method and is
non-sequential. It is assumed that the internal table is sorted in ascending
order according to the specified key, with addition 1a in the order of the
specified key fields. 

If the specified key is not unique, the entry with the lowest index is placed
in the output area. 

The return code value of SY-SUBRC specifies whether a suitable entry was found.
In turn, this determines the value of the table index SY-TABIX . 

SY-SUBRC = 0 Entry found 

SY-TABIX is set to the index of the found entry 

SY-SUBRC <> 0 Entry not found 

The output area remains unchanged. 

SY_SUBRC = 4 SY-TABIX points to the next largest entry. 

SY-SUBRC = 8 The key sought is greater than that of the last table entry. 

SY-TABIX is set to (number of all entries + 1). 

Example

 

DATA: BEGIN OF INT_TABLE  OCCURS 100,

        COMP1,

        COMP2,

        COMP3,

      END OF INT_TABLE.

 

FORM PUT_ENTRY USING ENTRY LIKE LINE OF INT_TABLE.

  READ TABLE INT_TABLE WITH KEY COMP2 = ENTRY-COMP2

                       BINARY SEARCH

                       TRANSPORTING NO FIELDS.

  IF SY-SUBRC <> 0.

    INSERT ENTRY INTO INT_TABLE INDEX SY-TABIX.

  ENDIF.

ENDFORM.

The method used in this subroutine makes it easy (and desirable for
performance) to add new entries to a table and sort them. 
Before PERFORM PUT_ENTRY , you fill the transferred work area ENTRY with the
new values. The READ statement checks (in the sorted internal table INT_TABLE )
whether an entry with the specified key already exists. The system fields
SY-SUBRC and SY-TABIX are set accordingly. Then, if ( SY-SUBRC <> 0 ),
the new entry is inserted at the appropriate place. 

Addition 3

… INDEX idx 

Effect

Accesses the entry with the index idx of an internal table. 

The return code value of SY-SUBRC specifies whether a suitable entry was found.
In turn, this determines the value of the table index SY-TABIX . 

SY-SUBRC = 0 Entry found 

SY-TABIX is set to the index of the found entry. 

SY-SUBRC <> 0 Entry not found 

The value of SY-TABIX is undefined. 
The output area remains unchanged. 

Addition 4a

… COMPARING f1 f2 … 

Effect

This addition has no effect on the read process itself, i.e.
it is normally used together with one of the additions 1, 2 or 3. 

Only when an entry - regardless of the read method - already exists does this
addition cause the contents of the sub-fields f1, f2, … of the found entry to
be compared with the corresponding fields of the output area before
transporting the found entry to the output area. 

The return code value of SY-SUBRC specifies whether the value sought was found
and, if so, the result of the comparison: 

SY-SUBRC = 0 Entry found, field contents identical 
SY-SUBRC = 2 Entry found, field contents different 
SY-SUBRC > 2 Entry not found 
If you want to indicate explicitly that no fields are compared (even though
this is the default), you can use COMPARING NO FIELDS . 

Notes

If you use COMPARING together with an explicitly specified
work area, the lattter must be compatible with the line type of the internal
table. 
If a comparison criterion is not known until runtime, you can use COMPARING …
(name) … to specify it dynamically as the contents of the name . If name is
blank at runtime, the comparison criterion is ignored. If name contains an
invalid component name, a runtime error occurs. 
You can use offset and/or length specifications to further restrict comparison
criteria, regardless of whether they have been specified statically or
dynamically. 
If you use READ TABLE itab in its basic form (i.e. without one of its additions
1, 2 or 3, the addition COMPARING f1 f2 … makes sense only if the fields f1,
f2, … are not part of the read key, i.e. if f1, f2, … are number fields
(type I, F or P). 

Addition 4b

… COMPARING ALL FIELDS 

Effect

As with addition 4a, but compares all sub-fields. 

Addition 5a

… TRANSPORTING f1 f2 … 

Effect

If an entry is found, not all sub-fields are transported to
the output area (default), but only the specified sub-fields f1, f2, … ; the
other sub-fields remain unchanged. 
If you want to indicate explicitly that all fields are transported (even though
this is the default), you can use TRANSPORTING ALL FIELDS . 

Notes

If you use TRANSPORTING f1 f2 … together with an
explicitly specified output area, the latter must be compatible with the line
type of the internal table. 
If a transport field is not known until runtime, you can use TRANSPORTING …
(name) … to specify it dynamically as the contents of the name . If name is
blank at runtime, the transport criterion is ignored. If name contains an
invalid component name, a runtime error occurs. 
You can use offset and/or length specifications to further restrict transport
fields, regardless of whether they have been specified statically or
dynamically. 
If you use the additions " COMPARING " and " TRANSPORTING "
together, " COMPARING " must come before " TRANSPORTING ". 

Addition 5b

… TRANSPORTING NO FIELDS 

Effect

Does not change the output area of the internal table. The
only purpose of the access is to set the system fields SY-SUBRC and SY-TABIX . 

Note

Performance 

The fastest way of reading a single record from an internal table is to make a
direct access by specifying an index, because this is not dependent on the
number of table entries and is much the same as the cost of transporting one
line. 
If you use a key to access the table, the required runtime increases with the
number of lines and the size of the search key. A binary search is considerably
faster than a linear search. Therefore, it is usually advisable to keep the
table sorted and to use the addition BINARY SEARCH . 

Reading a record from a table with 100 entries with an index specification
requires about 7 msn (standardized microseconds). Access with a 30-byte wide
key takes about 25 msn. with a binary search, and about 100 msn. without a
binary search. 
If you use statements with an explicit work area for internal tables with a
header line, you can avoid unnecessary assignments. 

Index 
© SAP AG 1996 

READ - Read a database table 

 

Basic form

READ TABLE dbtab. 

Additions

1. … SEARCH FKEQ 
2. … SEARCH FKGE 
3. … SEARCH GKEQ 
4. … SEARCH GKGE 
5. … WITH KEY key 
6. … VERSION vers 

Note

This variant is no longer maintained and should therefore
not be used (see also obsolete lanuguage elements ). Please use a SELECT (SINGLE) statement instead. 

Effect

Accesses the database table dbtab 
The table dbtab must be declared under TABLES in the
program. dbtab is a table name which begins with "T" and comprises no
more than five characters altogether. 
You must fill the argument fields of the table first; then you can use READ
TABLE to make direct access to the table entry. 

Example

Declare table: 

 

TABLES T006.

Fill argument fields: 

 

MOVE: '001'  TO T006-MANDT,

      'STD'  TO T006-MSEHI.

Access: 

 

READ TABLE T006.

Process fields: 

 

WRITE T006-DIMID.

 

Addition 1

… SEARCH FKEQ Full Key Equal (Default) 

Addition 2

… SEARCH FKGE Full Key Greater or Equal 

Addition 3

… SEARCH GKEQ Generic Key Equal 

Addition 4

… SEARCH GKGE Generic Key Greater or Equal 

Effect

Access table using one of the above search methods. 

Note

You can only specify one of the additions 1 - 4 

Addition 5

… WITH KEY key 

Effect

Access table with the key key . 

Addition 6

… VERSION vers 

Note

You should use this addition only if absolutely necessary.
In some cases, it is possible (and it makes sense) to avoid this READ addition
by using a generation program. 

Effect

Specifies a dynamically definable table name. The field vers
must be a 4-character C field which contains the table name. It is generally
declared under PARAMETERS and evaluated at runtime. 
The entry read is always made available in the permanently assigned table T… 

The return code value of SY-SUBRC specifies whether a suitable entry was found:

SY-SUBRC = 0 Entry found 
SY-SUBRC <> 0 Entry not found 
If the entry is not found, the system automatically sets the function part of
the table entry to SPACE . 

Index 
© SAP AG 1996 

READ - Read text elements 

 

Basic form

READ TEXTPOOL prog … INTO itab … LANGUAGE lg. 

Effect

Reads the text elements for the program prog and the
language lg from the library into the internal table itab . The line structure
of the table itab is described in the section on text elements 

The return code value is set as follows: 

SY-SUBRC = 0 Text elements were read. 
SY-SUBRC <> 0 Unable to read text elements. 

Example

Read text elements for the program PROGNAME : 

 

DATA: PROGRAM(8) VALUE 'PROGNAME',

      TAB LIKE TEXTPOOL OCCURS 50 WITH HEADER LINE.

 

READ TEXTPOOL PROGRAM INTO TAB LANGUAGE SY-LANGU.

Related INSERT TEXTPOOL , DELETE TEXTPOOL 

Index 
© SAP AG 1996 

RECEIVE 

 

Basic form

RECEIVE RESULTS FROM FUNCTION func. 

Additions

1. … IMPORTING p1 = f1 … pn = fn 
2. … TABLES p1 = itab1 … pn = itabn 
3. … EXCEPTIONS except1 = rc1 … exceptn = rcn 

Effect

Used within a FORM routine to receive the results of an
asynchronous function module call (CALL FUNCTION func
STARTING NEW TASK task name ) as IMPORTING or TABLES parameters. In
addition, the FORM routine must have a placeholder to receive the task name
(e.g. when you use USING task name ). See example below. 

Notes

This key word occurs only with the function module call CALL
FUNCTION func STARTING NEW TASK task name . If the function module returns no
results, this part need not be defined. 

This key word is new from Release 3.0. Therefore, both partner systems (client
and server) must have Release 3.0 of the R/3 System. 

Addition 1

… IMPORTING p1 = f1 … pn = fn 

Effect

IMPORTING returns the values of fields and field strings
from the function module to the calling program. In the function module, the
formal parameters are defined as export parameters. You can pass any number of
export parameters. 

Addition 2

… TABLES p1 = itab1 … pn = itabn 

Effect

The TABLES statement contains references to internal tables.
All table parameters of the function module must be covered. 

Addition 3

… EXCEPTIONS except1 = rc1 … exceptn = rcn 

Effect

Under EXCEPTIONS , you execute the exceptions handled by the
calling program itself. At the end of the exception list, you can use OTHERS to
refer to all remaining exceptions. 
If one of the listed exceptions occurs, SY-SUBRC is set to the assigned value
rc (number literal!) and control passes to the calling program. By specifying a
return code, you can group exceptions into classes. With the second form,
without " = rc ", SY-SUBRC is set to a value other than 0 if an
exception occurs. 
If the function module triggers an exception (RAISE and
MESSAGE … RAISING ) not meant to be handled by the
program itself, 

· RAISE
terminates the program with a runtime error; 

· MESSAGE
… RAISING outputs the message. 

 

Note

The following EXCEPIONS are predefined by the system and
have a special meaning: 

· OTHERS
: Covers all user-defined exceptions in the calle function module 

· ERROR_MESSAGE
: Specifcation of this exception means that S messages, I messages and W
messages are ignored until return from the function module (although, in
the case of background jobs, thery appear in the log). If an E message or
an A message occurs, the called function module terminates, as if the
exception ERROR_MESSAGE had been triggered. 

 

Example

 

DATA: INFO LIKE RFCSI,

* Result of RFC_SYSTEM_INFO function

      SYSTEM_MSG(80) VALUE SPACE.

* Exception handling

 

CALL FUNCTION 'RFC_SYSTEM_INFO'

     STARTING NEW TASK 'INFO'

     PERFORMING 'RETURN_INFO' ON END OF TASK.

 

WRITE: 'Wait for reply'.

...

AT USER-COMMAND.

* Return from FORM routine RETURN_INFO

   IF SYSTEM_MSG = SPACE.

     WRITE: 'Destination =', INFO-RFCDEST.

   ELSE.

     WRITE SYSTEM_MSG.

   ENDIF.

...

FORM RETURN_INFO USING TASKNAME.

 

  RECEIVE RESULTS FROM FUNCTION 'RFC_SYSTEM_INFO'

      IMPORTING  RFCSI_EXPORT = INFO

      EXCEPTIONS SYSTEM_FAILURE MESSAGE SYSTEM_MSG.

 

  REFRESH SCREEN. "Simulate command field = return key

ENDFORM.

RECEIVE_ILLEGAL_SWITCH 

Index 
© SAP AG 1996 

REFRESH - Initialize a control 

 

Basic form

REFRESH CONTROL ctrl FROM SCREEN scr. 

Effect

Initializes the control ctrl defined by a CONTROLS statement according to its description in the
screen scr . The screen scr does not have to match the initial screen for the
control (see also ABAP/4 table control ). 
Related CONTROLS 

Index 
© SAP AG 1996 

REFRESH - Delete an internal table 

 

Variants

1. REFRESH itab. 
2. REFRESH itab FROM TABLE dbtab. 
3. REFRESH itab FROM SELECT-OPTIONS. 

Variant 1

REFRESH itab. 

Effect

The internal table itab is
reset to its initial state, i.e. all table entries are deleted. 

The return code value SY-SUBRC is undefined. 

Notes

· The
header entry of a table with a header line remains unchanged. It can be
reset to its initial value using CLEAR . 

· FREE itab can be used to free up the memory
allocated to the table. 

 

Variant 2

REFRESH itab FROM TABLE dbtab. 

Note

This variant is no longer maintained and should no longer be
used (see also obsolete language constructs ). Please use the SELECT … INTO TABLE statement instead. 

Effect

The internal table itab is
deleted and it is then filled with the contents of the database table dbtab . 
A generic argument can be used to specify a restriction to a particular part of
the database table when filling (LOOP AT dbtab , READ TABLE dbtab ). 
The table dbtab must be declared in the program using TABLES
. 

The return code value SY-SUBRC is undefined. 

Example

Deleting an internal table MESSAGES , followed by filling
the table with all messages from the table T100 with language key ‘D’ and ID
‘RF’ . 

 

TABLES T100.

DATA BEGIN OF MESSAGES OCCURS 200.

       INCLUDE STRUCTURE T100.

DATA END   OF MESSAGES.

MESSAGES-TEXT = 'Delete me'.

APPEND MESSAGES.

T100-SPRSL = 'D'.

T100-ARBGB = 'RF'.

REFRESH MESSAGES FROM TABLE T100.

 

Variant 3

REFRESH itab FROM SELECT-OPTIONS. 

Note

This variant is no longer supported (see also obsolete
language constructs ). The equivalent functionality is now available in the
function module RS_REFRESH_FROM_SELECTOPTIONS . 

Effect

Deletes the internal table itab and then transfers the
database selections and the selection parameters together with the values
entered by the user. 

Notes

Performance 
The runtime for the execution of the REFRESH statement is around 5 ms (standard
microseconds). 

Index 
© SAP AG 1996 

REFRESH - Refresh the SAPGUI interface 

 

Basic form

REFRESH SCREEN. 

Note

This statement is no longer maintained and should therefore
not be used (see also Obsolete key words ). 
Instead, please use a SET USER-COMMAND f statement. 

Effect

Refreshes the SAPGUI interface after receiving the results
of the asynchronous Remote Function Call via RECEIVE RESULTS FROM FUNCTION func . 

This form of the REFRESH statement simulates pressing the return key. 

Notes

Using this variant only makes sense in connection with the
asynchronous Remote Function Call (CALL FUNCTION func
…STARTING NEW TASK taskname ) after receiving the results of such a call
within the FORM routine (RECEIVE RESULTS FROM FUNCTION
func ). It has no effect in other environments. 
It ensures that the last screen is processed again with the commad ‘%_RS’. You
can see this value in the command field in the top left corner of the current
screen. 

Index 
© SAP AG 1996 

REFRESH 

Delete an internal table 
- REFRESH itab. 
- REFRESH itab FROM TABLE dbtab. 
- REFRESH itab FROM SELECT-OPTIONS. 
Refresh the SAPGUI interface 
- REFRESH SCREEN. 
Initialize a control 
- REFRESH CONTROL ctrl FROM SCREEN scr. 

Index 
© SAP AG 1996 

REJECT 

 

Variants

1. REJECT. 
2. REJECT dbtab. 

Variant 1

REJECT. 

Effect

Stops processing the current database table line and resumes
with the next line of the table on the same hierarchy level. Unlike the CHECK
statement, you can also use REJECT within a subroutine or loop for table
selection. 

Variant 2

REJECT dbtab. 

Effect

Similar to variation 1. In this case, however, dbtab is a table from
the database hierarchy on a level no deeper than the current database table.
Processing continues by reading the next record of the table dbtab . 

Example

Logical database F1S 
Hierarchy: SPFLI -> SFLIGHT -> SBOOK 

 

TABLES: SFLIGHT,

        SBOOK.

 

GET SFLIGHT.

    ...

GET SBOOK.

    ...

    REJECT 'SFLIGHT'.

    ...

REJECT cancels processing of the event ‘GET SBOOK’ and resumes with the
processing of the event ‘GET SFLIGHT’ . 

Note

The name of the subroutine containing the "PUT
dbtab" statement must begin with PUT_dbtab . 
Related CHECK , EXIT
, STOP 

Index 
© SAP AG 1996 

REPLACE 

 

Basic form

REPLACE f WITH g INTO h. 

Addition

… LENGTH len (length specification for field f ) 

Effect

Replaces the first occurrence of the contents of field f in
field h with the contents of field g . All fields are handled in their defined
length; this means that closing blanks are not ignored. 

The return code value indicates whether the string f was found in h and
replaced by g : 

SY-SUBRC = 0 String replaced. 
SY_SUBRC = 4 String not replaced. 

Example

 

DATA FIELD(10).

MOVE 'ABCB' TO FIELD.

REPLACE 'B' WITH 'string' INTO FIELD.

returns: 

FIELD = ‘AstringCB’, SY-SUBRC = 0 

Note

The fields f and g in the REPLACE statement should not
overlap. Otherwise, the result is undefined. 

Addition

… LENGTH len … (length specification for field f ) 

Effect

Searches for the string f in the field h not in its (full)
field length, but in the length len . 

Example

 

DATA: PATTERN(5) VALUE 'ABC',

      LEN TYPE I,

      REPL_STRING(5) VALUE '12345',

      FIELD(12) VALUE 'abcdeABCDE'.

 

REPLACE PATTERN WITH REPL_STRING

                INTO FIELD.

 

does not change FIELD , since ‘ABC ‘ does not occur in
abcdeABCDE ‘ . 

 

LEN = STRLEN( PATTERN ).

REPLACE PATTERN LENGTH LEN

                WITH REPL_STRING

                INTO FIELD.

 

changes FIELD to ‘abcde12345DE’ . 
Related SEARCH , TRANSLATE
, OVERLAY 

Index 
© SAP AG 1996 

REPORT 

 

Basic form

REPORT rep. 

Additions

1. … NO STANDARD PAGE HEADING 
2. … LINE-SIZE col 
3. … LINE-COUNT lin(n) 
4. … MESSAGE-ID xx 
5. … DEFINING DATABASE ldb 

Effect

Introduces the report. You can choose any name you like up
to 8 characters long. 

Example

 

REPORT ZREPNAME.

 

Note

Only standard SAP reports should begin with ‘R’. 

Addition 1

… NO STANDARD PAGE HEADING 

Effect

Suppresses output of the standard page header (see NEW-PAGE ). 

Addition 2

… LINE-SIZE col 

Effect

Creates a report with col columns per line. The maximum line
length permitted is 255 characters. 
If the LINE-SIZE specification is missing, the line length corresponds to the
current screen width. The system field SY-LINSZ contains the current line size
for generating reports (see NEW-PAGE … LINE-SIZE
). 

Notes

· The
specified LINE-SIZE must not appear in quotation marks. 

· If
the you want the report list (i.e. the output) to be printable, do not define
a LINE-SIZE with a value greater than 132 because most printers cannot
handle wider lists. 

 

Example

 

REPORT ZREPNAME LINE-SIZE 132.

 

Addition 3

… LINE-COUNT lin(n) 

Effect

Creates a report with lin lines per page, of which n lines
are reserved for the END-OF-PAGE processing. If you
omit the " (n) ", the default value 0 applies. The system field
SY-LINCT contains the current number of lines per page for generating reports. 
If the LINE-COUNT specification is missing, the number of lines per page is
calculated dynamically from the number of lines actually output on this page.
Here, a page break no longer occurs automatically, but must be specified
explicitly with NEW-PAGE , and the system field
SY-LINCT is set to 0. (NEW-PAGE … LINE-COUNT ) 

Note

The LINE-COUNT must not be enclosed in quotation marks.
Further information about using LINE-COUNT . 

Examples

 

REPORT ZREPNAME LINE-COUNT 65.

 

The page has 65 lines. 

 

REPORT ZREPNAME LINE-COUNT 65(8).

 

The page has 65 lines, of which the last 8 are only defined
by END-OF-PAGE . 

Addition 4

… MESSAGE-ID xx 

Effect

Takes the messages output by MESSAGE
under the specified 2-character ID xx from table T100 . 

Note

This ID must not be enclosed in quotation marks. 

Example

 

REPORT RSTEST00 MESSAGE-ID SY.

 

Addition 5

… DEFINING DATABASE … 

Effect

All the database programs must specify in the REPORT
statement the three-character name of the logical database to which they
belong. 
This addition is generated automatically (in the REPORT statement) when you
create a logical database by selecting Utilities -> Development/test ->
Logical databases . 

Example

 

REPORT SAPDBKDF DEFINING DATABASE KDF.

Index 
© SAP AG 1996 

RESERVE 

 

Basic form

RESERVE n LINES. 

Effect

If there is not enough space left on the current page for at
least n lines, this statement starts a new page. n can be a constant
(1,2,3,…) or a variable. 

Notes

· Before
starting a new page, the END-OF-PAGE processing is executed. This differs
from NEW-PAGE . 

· If
the RESERVE statement does not trigger a new page, output is continued on
the current page. 

· Use
BACK to return to the first line you can display
after RESERVE . 

 

Note

Performance 
The runtime required to execute a RESERVE statement is approx. 1 msn
(standardized microseconds). 

Index 
© SAP AG 1996 

RESTORE is not an ABAP/4 key word (in R/3). 

Index 
© SAP AG 1996 

If required, the return code value is stored in the system
field SY-SUBRC. 

Index 
© SAP AG 1996 

ROLLBACK 

 

Basic form

ROLLBACK WORK. 

Effect

Closes a logical processing unit by reversing all database
changes made since the last COMMIT . 

You use this statement if you cannot be certain that all the database changes
have been executed correctly. 

The update routines are not performed. 

ROLLBACK WORK belongs to the Open SQL command set. 

Note

If the ROLLBACK statement occurs within a SELECT loop, the processing cannot continue because the
database cursor is invalid. After the ROLLBACK statement, you should therefore
ensure that all SELECT processing has been explicitly terminated. 

Note

Runtime errors 

· ROLLBACK_IN_PERFORM_ON_COMMIT
: ROLLBACK WORK is not allowed in a FORM called with PERFORM
… ON COMMIT . 

· ROLLBACK_IN_POSTING
: ROLLBACK WORK is not allowed in the update task. 

Index 
© SAP AG 1996 

SCAN 

 

Basic form

SCAN ABAP-SOURCE itab1 TOKENS INTO itab2 
STATEMENTS INTO itab3. 

Additions

1. … FROM n1 
2. … TO n2 
3. … KEYWORDS FROM itab4 
4. … LEVELS INTO itab5 
5. … OVERFLOW INTO c1 
6. … WITH ANALYSIS 
7. … WITH COMMENTS 
8. … WITH INCLUDES 
9. … WITHOUT TRMAC 
10. … PROGRAM FROM c2 
11. … INCLUDE INTO c3 
12. … MESSAGE INTO c4 
13. … WORD INTO c5 
14. … LINE INTO n3 
15. … OFFSET INTO n4 

Effect

Breaks down the ABAP/4 source code in the source code table
itab1 into tokens according to the rules of the ABAP/4 scanner. The tokens are
written - one per line - to the token table itab2 . 

The token table itab2 must have the structure STOKEN . (If you specify the
addition WITH ANALYSIS , the token table must have the extended structure
STOKEX .) 

Normally, comments are filtered out and subordinate source code units (included
programs, called macros) are ignored. If you want to include these items, use
the additions WITH COMMENTS and WITH ANALYSIS . 

In addition to classifying the source code by token, the scanner organizes the
tokens themselves into statements - using the colon-comma logic to form chain
records - and the statement table itab3 contains a statement description on
each line. Here, a three-part chain record "a: b, c1 c2, d." results
in three entries "a b,", "a c1 c2," and "a d." in
the statement table itab3 . 

The statement table itab3 must have the structure SSTMNT . 

The statement classification characters colon, comma and period are not written
to the token table itab2 . Instead, the table itab3 contains details about the
position of a colon or the type (comma or period and position of the end marker
in the statement description. 

The return code value is set as follows: 

SY-SUBRC = 0 Source code table is not empty, contains no errors and is broken
down into tokens. 
SY-SUBRC = 1 Source code table is not empty and is broken down into tokens, but
at least one include program does not exist (can occur only in connection with
the addition WITH INCLUDES ). 
SY-SUBRC = 2 Source code table itab1 is empty or a blank line range was
selected (applies to the additions FROM and TO ). 
SY_SUBRC = 4 Scanner detects error in source code. 
SY-SUBRC = 8 Other error or RABAX in scanner. 
The fields of the structure STOKEN , and thus the columns of the token table
itab2 , have the following meaning: 
TYPE Type of token with possible values: 

I (Identifier) 
S (String, i.e. character literal) 
L (List, enclosed in parentheses) 
C (Comment) 
ROW Number of line where token occurs or where it begins (>= 1) 
COL Offset of first character of token relative to start of line (>= 0) 
LEN Length of token 
STR Character string forming the token (or just first part) 
OVFL Overflow flag for field STR with the following possible values: 

SPACE (no overflow, token fits completely in field STR ) 
X (overflow, either not resolved (no overflow are specified) or token fits in
overflow area c1 )) 
O (overflow of token and overflow of overflow area c1 ) 
OFF1 Offset in overflow area, if 

token does not fit completely in field STR and 
an overlfow area c1 is specified and 
token fits completely in overflow area c1 . 
The fields of the structure SSTMNT , and thus the columns of the statement
table itab3 , have the following meaning: 
TYPE Type of statement with the following possible values: 

E (Native SQL statement between EXEC SQL and 
ENDEXEC ) 
I ( INCLUDE prog ) 
J ( INCLUDE prog , prog does not exist, can 
occur only in connection with the addition 
WITH INCLUDES ) 
R (Call a macro from table TRMAC ) 
D (Call an internally defined macro with DEFINE ) 
M (Macro definition between DEFINE and 
END-OF-DEFINITION ) 
C ( COMPUTE statement, sometimes without 
COMPUTE as first token) 
K (Other ABAP/4 key word) 
N (Blank statement) 
U (Unknown, non-blank statement) 
LEVEL Index of source code unit in the level table itab5 (>= 1, if level
table specified, otherwise 0) 
FROM Index of first token of statement in the token table itab2 
TO Index of last token of statement in the token table itab2 (the end marker of
the statement - comma or period - counts as no more then a token) 
NUMBER Statement counter in a source code unit. Covers all statements,
regardless of how many are actually selected - in cases where a key word table
itab4 is specified 
PREFIXLEN Number of tokens before the colon (with chain statements >= 1,
otherwise 0) 
COLONROW Line number of colon (with chain statements >= 1, otherwise 0) 
COLONCOL Column position of colon (with chain statements >= 0, otheriwse 0) 
TERMINATOR End marker of a statement (normally a period or a comma, but SPACE
in the case of native SQL statements and internal macro definitions) 
TROW Line number of end marker (>= 1, if TERMINATOR <> SPACE ,
otherwise 0) 
TCOL Column position of end marker (>= 0, if TERMINATOR <> SPACE ,
otherwise 0) 

Notes

When expanding macro calls, no position specifications are
available. The relevant fields in the token table itab2 and in the statement
table itab3 are then set to 0. 
Unlike the usual syntax check, the following are not treated as errors: 

· Comma
without preceding colon (the comma then acts as an end marker), 

· Open
chain statement sequence at end of source code, i.e. the last statement is
closed by a comma, not by a period, 

· Open
statement at end of source code, i.e. the last statement is closed neither
by a period nor by a comma. 

To be able to analyze errors without modifying programs, use
the additions INCLUDE , MESSAGE , WORD , LINE and OFFSET . These provide
information about the errors which have occurred. 

Addition 1

… FROM n1 

Addition 2

… TO n2 

Effect

Breaks down the source code table itab1 into tokens not from
start to finish, but only from line n1 to line n2 . 

The additions FROM n1 and TO n2 must follow specification of the source code
table itab1 - in this order. 

Notes

When using the start specification n1 , use the addition
WITHOUT TRMAC to ensure that there are no unnecessary database accesses to the
table TRMAC . 
The end specification n2 is treated as "soft", i.e. a statement that
begins on a line <= n2 , but ends only on a line > n2 , is not returned
completely. 
If the end specification n2 is split in a chain statment, only the split part
up to the next comma is returned completely, not the entire chain statement up
to the next period. 
Negative line specifications are not allowed and result in a runtime error. 
A line specification of 0 amounts essentially to no specification. 
If n1 number of lines in source code table, the scanner is not called (
SY-SUBRC = 2). 
If n1 > n2 and n2 > 0, the scanner is not called ( SY-SUBRC = 2). 

Addition 3

… KEYWORDS FROM itab4 

Effect

Does not return all statements, only those specified in the
key word table itab4 . 

If the key word table is empty (i.e. it contains 0 lines), all the statements
are selected. 

The lines of the key word table are treated as a character field. 

To select a native SQL statement or a macro definition, you can specify the
pseudo key words EXEC_SQL or DEFINE_MACRO . It makes no difference whether
these are intercepted. Native SQL statements and macro definitions are returned
as statements (of type E or M whenever the expansion of a macro definition
results in more than one statement. 

If the key word contains a blank line, blank statements are also selected. 

Addition 4

… LEVELS INTO itab5 

Effect

Stores details about each edited source code unit (source
code table itab1 itself, expanded include programs, expanded macro definitions)
in the level table itab5 . 

Specification of a level table makes sense only with the addition WITH INCLUDES
. 

The level table itab5 must have the structure SLEVEL . 
The fields of the structure SLEVEL - and consequently the columns of the level
table itab5 have the following meaning: 
TYPE Type of source code unit with the following possible values: 

P (Program) 
D (Internal DEFINE macro) 
R (Macro from table TRMAC ) 
NAME Name of source code unit (name of include program, macro name) 
DEPTH Current nesting depth of source code unit (>= 1) 
LEVEL Index of superior (i.e. included or called) source code unit in the level
table (>= 1, if DEPTH >= 2, otherwise 0) 
STMNT Index of superior (d.h. included or called) statement in the statement table
(>= 1, if DEPTH >= 2, otherwise 0) 
FROM Index of first statement of source code unit in the statement table (>=
1) 
TO Index of last statement of source code unit in the statement table (>= 1)

If the source code unit contains include programs or macro calls, the line
range [ FROM, TO ] in the statement table also covers the statements in
subordinate source code units. 

Addition 5

… OVERFLOW INTO c1 

Effect

If a token is too large to be stored in the token table in
the field STR , it is placed in the overflow area c1 . The offset of the token
in the overflow area then lies in the token table in the field OFF1 . 

Addition 6

… WITH ANALYSIS 

Effect

Breaks down each token t = a+b(c) according to the logic of
the RSYN key word >ANALY into its three components a, b and c. 

Offset and length of components a, b and c are stored in the fields OFF1 , LEN1
, OFF2 , LEN2 , OFF3 and LEN3 in the token table. 

If you specify the addition WITH ANALYSIS , the token table itab2 must have the
structure STOKEX , so that the fields LEN1 , OFF2 , LEN2 , OFF3 and LEN3 are
available. 

If the whole token exists in the token table, the offset specifications are
relative to the token start. If the token is in the overflow area c1 , the
offset specifications are relative to the start of the overflow area. 

Addition 7

… WITH COMMENTS 

Effect

Returns comments also, with each individual comment
representing a token. 

Note

The addition … WITH COMMENTS is unfortunately not
supported at present! 

Addition 8

… WITH INCLUDES 

Effect

Also breaks down subordinate source code units (included
programs, called macros) into tokens. 

You should normally combine the addition WITH INCLUDES with the addition LEVELS
INTO itab5 . 

Note

If (at least) one included program does not exist, SY-SUBRC
is set to 1 and the relevant INCLUDE statement is flagged in the statement
table itab3 by the statement type J (instead of I). Otherwise, the breakdown
process continues. The level table itab5 contains no entry for include programs
that do not exist. 
If you combine WITH INCLUDES with WITHOUT TRMAC , TRMAC macros are not expanded
because the system does not recognize them as subordinate source code units. 
When macro calls are expanded, no position specifications are available. The
fields in the token table itab2 and the statement table itab3 are then set to
0. 

Addition 9

… WITHOUT TRMAC 

Effect

If a statement begins neither with an ABAP/4 key word nor
with a DEFINE macro, the system does not check whether this is a TRMAC macro,
but assumes an unknown statement. (Unknown statements are flagged in the
statement table itab3 with a U in the field TYPE .) 

To avoid unnecessary database accesses to the table TRMAC , you should use the
addition WITHOUT TRMAC whenever you want to assume that the source code to be
scanned contains unknown statements. Unknown statements are particularly likely
to occur if you use the addition FROM n1 . In this case, the scanner does not
start at the beginning of the source code, but from a specified point. 

Note

If you use WITHOUT TRMAC with WITH INCLUDES , TRMAC macros
are not expanded because the system does not recognize them as subordinate
source code units. 

Addition 10

… PROGRAM FROM c2 

Addition 11

… INCLUDE INTO c3 

Addition 12

… MESSAGE INTO c4 

Addition 13

… WORD INTO c5 

Addition 14

… LINE INTO n3 

Addition 15

… OFFSET INTO n4 

Effect

The above additions have the same meaning as the those for
the SYNTAX-CHECK statement: c2 is an input field for
a program name to be assigned to the source code, while the fields c3, c4, c5,
n3 and n4 are output fields in case an error occurs. 

To be able to analyze errors without modifying programs, use the additions
INCLUDE , MESSAGE , WORD , LINE and OFFSET . These provide information about the
errors which have occurred. 

Index 
© SAP AG 1996 

SCROLL 

Program-driven scrolling in lists 

Variants

1. SCROLL LIST TO FIRST PAGE. 
2. SCROLL LIST TO LAST PAGE. 
3. SCROLL LIST TO PAGE pag. 
4. SCROLL LIST TO COLUMN col. 
5. SCROLL LIST FORWARD. 
6. SCROLL LIST BACKWARD. 
7. SCROLL LIST LEFT. 
8. SCROLL LIST RIGHT. 

Note

The return code value is set as follows: 

SY-SUBRC = 0 O.K. 
SY_SUBRC = 4 List limits have been reached - scrolling not possible 
SY-SUBRC = 8 List does not exist - scrolling not possible 

Variant 1

SCROLL LIST TO FIRST PAGE. 

Additions

1. … INDEX idx 
2. … LINE lin 

Effect

Scrolls up to the first page of the report displayed on the
screen (corresponds to a command field entry, P– and PP– ). When a basic list
is created, the current list is itself the basic list; When a details list is
created, it is the list directly below it. 

Addition 1

… INDEX idx. 

Effect

Scrolls to the list level idx . idx corresponds to the value
of system field SY-LSIND when creating the report. 

Example

Scroll to the beginning of the report at list level 1. 

 

SCROLL LIST INDEX 1 TO FIRST PAGE.

 

Note

If a new list (which is to replace the last list displayed)
is created at an event ( AT USER-COMMAND , AT LINE-SELECTION… ), and if you
want to scroll to a particular place in this new list, note the following: A
change made to the system field SY-LSIND is only ever taken into account after
the event. Therefore, SY-LSIND should be manipulated using the last command belonging
to the event (e.g. SY-LSIND = SY-LSIND - 1 ). A SCROLL command with the
addition …INDEX idx must therefore be used for scrolling in this new list. In
this way, scrolling in the old list (instead of the new list) is avoided. 

Addition 2

… LINE lin 

Effect

Displays the report from the line lin (corresponds to the
command field entry PLnn). The standard page header and TOP-OF-PAGE area are
not moved vertically and are therefore ignored when line lin is determined. 

Variant 2

SCROLL LIST TO LAST PAGE. 

Additions

1. … INDEX idx (see addition 1 of variant 1) 
2. … LINE lin (see addition 2 of variant 1) 

Effect

Scrolls to the last page of the report displayed on the
screen (corresponds to the command field entries P++ and PP++ ). 

Variant 3

SCROLL LIST TO PAGE pag. 

Additions

1. … INDEX idx (see addition 1 of variant 1) 
2. … LINE lin (see addition 2 of variant 1) 

Effect

Scrolls to the specified page of the report displayed on the
screen (corresponds to the command field entry PPnn ). 

Examples

Scroll report on list level 1 to page 7. 

 

SCROLL LIST INDEX 1 TO PAGE 7.

Scroll report on list level 1 to page 7 and display from line 5. 

 

SCROLL LIST INDEX 1 TO PAGE 7 LINE 5.

 

Note

Although the list is now displayed from page 7 and line 5,
it is precisely this line which is overlayed by the page header, if a header
exists for page 7 (standard header and/or TOP-OF-PAGE lines). 
If you want to display a particular line immediately after the page header, you
can use the function module ‘LIST_SCROLL_LINE_TOPMOST’ which makes the
necessary calculations (according to DESCRIBE LIST …
). 

Variant 4

SCROLL LIST TO COLUMN col. 

Additions

1. … INDEX idx (see addition 1 of variant 1) 
2. … LINE lin (see addition 2 of variant 1) 

Effect

Displays the current page from column col (corresponds to
the command field entry PSnn ). The current page is the last page to be seen on
the screen or the page that was scrolled with a preceding SCROLL LIST
TO…PAGE… statement. 

Example

Scroll to page 5 of current report and display this page
from column 20. 

 

SCROLL LIST TO PAGE 5.

 

SCROLL LIST TO COLUMN 20.

 

Variant 5

SCROLL LIST FORWARD. 

Additions

1. … INDEX idx (see addition 1 of variant 1) 
2. … n PAGES 

Effect

Scrolls down 1 screen page (but no further than the last
page; corresponds to the command field entry P+). 

Example

Scroll report last displayed one page down. 

SCROLL LIST FORWARD. 

Addition 2

… n PAGES 

Effect

Scrolls n pages (corresponds to the command field entry PP+
n ). 

Note

When you use the addition … n PAGES , scrolling is by
page, not by screen section. 

Variant 6

SCROLL LIST BACKWARD. 

Additions

1. … INDEX idx (see addition 1 of variant 1) 
2. … n PAGES (see addition 2 of variant 5) 

Effect

Scrolls one screen page back (but no further than the first
page; corresponds to the command field entry P-). 

Addition 2

… n PAGES 

Effect

Scrolls n pages backwards (corresponds to the command field
entry PP- n ). 

Note

When you use the addition … n PAGES , scrolling is by
page, not by screen section. 

Variant 7

SCROLL LIST LEFT. 

Additions

1. … INDEX idx (see addition 1 of variant 1) 
2. … BY n PLACES 

Effect

The display begins with column 1 of the report (i.e.
left-justified; corresponds to the command field entry PS–). 

Addition 2

… BY n PLACES 

Effect

Shifts the report n columns. You determine the direction
using the parameters …LEFT… or …RIGHT… (corresponds to the command
field entries PS+ n and PS- n ). 

Example

Scroll report at last list level displayed 2 columns to the
left. 

 

SCROLL LIST LEFT BY 2 PLACES.

 

Variant 8

SCROLL LIST RIGHT. 

Additions

1. … INDEX idx (see addition 1 of variant 1) 
2. … BY n PLACES (see addition 2 of variant 7) 

Effect

Shifts the display to the right until that side of the
report so far not visible on the screen is fully visible (i.e. right-
justified). This only makes sense with reports that are defined wider than the
standard screen size by REPORT … LINE-SIZE corresponds
to the command field entry PS++). 

Note

Horizontal scrolling is also affected by the area boundaries
set (SET SCROLL-BOUNDARY ) and by
"unmovable" lines (NEW-LINE NO-SCROLLING
). 

Index 
© SAP AG 1996 

SEARCH 

 

Variants

1. SEARCH f FOR g. 
2. SEARCH itab FOR g. 

Variant 1

SEARCH f FOR g. 

Additions

1. … ABBREVIATED 
2. … STARTING AT n1 
3. … ENDING AT n2 
4. … AND MARK 

Effect

Searches the field f for the string in the field g . This
string can have any of the following formats: 
’str’ a character string (trailing blanks are ignored) ‘.str.’ any character
string between the periods ‘*str’ a word ending with "str", including
the word "str" ’str*’ a word beginning with "str",
including the word "str" 
You can use the following characters as delimiters: 

‘ ‘, ‘,’, ‘;’, ‘:’, ‘.’, ‘!’, ‘?’, ‘(’, ‘)’, ‘+’, ‘/’ and ‘=’. 

The return code value is set as follows: 

SY-SUBRC = 0 The search string g was found in the field f . SY-FDPOS contains
the offset of the found string or the found word within the field. 
SY_SUBRC = 4 The search string g was not found in the field f . 

Addition 1

… ABBREVIATED 

Effect

Searches the field f for a word containing the character
string specified in the field. Here, the characters specified in g may be
separated by other characters in a word. If the string g occurs in a word, the
return code in system field SY-SUBRC is set to 0. The first letter of the
search string g and the word must match. 

Example

 

DATA F(50).

MOVE 'Alaska Texas California' TO F.

SEARCH F FOR 'Clfrn' ABBREVIATED.

 

Here, SY-SUBRC is set to 0, since not only does the string
‘Clfrn’ occur (separated by other characters) in ‘California’ , but ‘Clfrn’ and
‘California’ begin with the same letter. 

Addition 2

… STARTING AT n1 

Effect

Searches the field f starting from the position n1 . Here, a
field can be anything containing the corresponding value. The first character
in the field f is in position 1. 
When you use the addition STARTING AT , the position specified for the found
pattern in SY-FDPOS does not refer to the start of the field, but to the
position n1 . 

Addition 3

… ENDING AT n2 

Effect

Searches the field f up to the position n2 . 

Addition 4

… AND MARK 

Effect

If the search string g is found, all the characters of the
search string and all the characters occurring in between (in the case of
SEARCH ABBREVIATED ) are converted to upper case in the field f . 

Example

 

DATA F(20) VALUE 'Peter Paul Mary'.

SEARCH F FOR '*UL' AND MARK.

 

SY-SUBRC is now set to 0, since the search string was found
in ‘Paul’ . SY-FDPOS has the value 6, since the character string found starts
at the offset 6. Also, the search string is marked, so that the new contents of
f are as follows: 

‘Peter PAUL Mary’ 

Variant 2

SEARCH itab FOR g. 

Additions

1. … ABBREVIATED 
2. … STARTING AT lin1 
3. … ENDING AT lin2 
4. … AND MARK 

Effect

Searches the internal table itab for the string in field g .
The string can have the same format as in variant 1. The value of SY-SUBRC is
set to 0, if the search string in the field or table is found. The system field
SY-TABIX then contains the number of the table line where the string was found.
Meanwhile, SY-FDPOS specifies the offset of the found string within the table
line. 

Note

The statement does not search the header line of an internal
table itab . 

Addition 1

… ABBREVIATED 

Effect

As with SEARCH ABBREVIATED , searches the internal table
itab for a word that contains the character string specified in the field g .
Here, the characters specified in g can be separated by other characters. The
return code value of the system field SY-SUBRC is set to 0, if the string g
occurs in a word. The first letter of the search string g and the word must
match. 

Addition 2

… STARTING AT lin1 

Effect

Searches the internal table itab starting from line lin1 to
the end. lin1 can be a field that contains the corresponding values. 

Addition 3

… ENDING AT lin2 

Effect

Searches the internal table itab up to the line lin2 . 

Addition 4

… AND MARK 

Effect

If the search string g is found, all the characters of that
search string and all the characters occurring in between (in the case of
SEARCH ABBREVIATED ) are converted to upper case in the internal table itab . 

Example

Let T be an internal table which is empty: 

 

DATA: BEGIN OF T OCCURS 100,

        LINE(80),

      END OF T.

MOVE 'Alaska Texas       ' TO T.

APPEND T.

MOVE 'California Arizona ' TO T.

APPEND T.

SEARCH T FOR '*ONA' AND MARK.

 

SY-SUBRC is now set to 0 because the search string was found
in ‘Arizona’ . SY-TABIX contains the value 2 because ‘Arizona’ appears in the
second line of the table T. SY-FDPOS is set to 11 because the found character
string begins at the offset 11. Also, the search string was marked in the
second line in such a way that the contents of that line now look as follows: 

‘California ARIZONA’ 
Related REPLACE , OVERLAY
, SHIFT , SPLIT , TRANSLATE 

Note

Performance 
Searching for the string ‘*str’ in an internal table is much more
runtime-intensive (approx. 500000 msn (standardized microseconds)) than
searching for ’str*’ (approx. 10000 msn) or ’str’ (approx. 35 msn). The latter
involves searching a table with 230 entries and 15 fields. 
If you perform a search in a field which is 35 bytes long for ‘*str’ or ’str*’,
the runtime consumption is approx. 600 msn, whereas searching for ’str’ takes
about 25 msn. 

Index 
© SAP AG 1996 

SELECT 

 

Basic form

SELECT result [target] FROM source [where] [GROUP BY fields]
[ORDER BY order]. 

Effect

Retrieves an extract and/or a set of data from a database
table or view (see Relational database ). SELECT belongs to the OPEN SQL
command set. 

Each SELECT command consists of a series of clauses specifying different tasks:

The SELECT result clause specifies 

· whether
the result of the selection is a table or a single record, 

· which
columns the result is meant to have and 

· whether
the result is allowed to include identical lines. 

The INTO target clause specifies the target area
into which the selected data is to be read. If the target area is an internal
table, the INTO clause specifies 

· whether
the selected data is to overwrite the contents of the internal table or 

· whether
the selected data is to be appended to the contents and 

· whether
the selected data is to be placed in the internal table all at once or in
several packets. 

The INTO clause can also follow the FROM clause. 
You can omit the INTO clause. The system then makes the data available in the
table work area (see TABLES ) dbtab . If the SELECT
clause includes a "*", the command is processed like the identical
SELECT * INTO dbtab FROM dbtab statement. If the SELECT clause contains a list
a1 … an , the command is executed like SELECT a1 … an INTO CORRESPONDING
FIELDS OF dbtab FROM dbtab . 
If the result of the selection is meant to be a table, the data is usually (for
further information, see INTO -Klausel ) read line
by line within a processing loop introduced by SELECT and concluded by ENDSELECT . For each line read, the processing passes
through the loop once. If the result of the selection is meant to be a single
record, the closing ENDSELECT is omitted. 
The FROM source clause the source (database table or
view ) from which the data is to be selected. It also determines 

· the
type of client handling, 

· the
behavior for buffered tables and 

· the
maximum number of lines to be read. 

The WHERE where clause specifies the conditions which
the result of the selection must satisfy. It thus determines the lines of the
result table. Normally - i.e. unless a client field is specified in the WHERE
clause - only data of the current client is selected. If you want to select across
other clients, the FROM clause must include the addition … CLIENT SPECIFIED .

The GROUP-BY fields clause combines groups of lines
together into single lines. A group is a set of lines which contain the same
value for every database field in the GROUP BY clause. 
The ORDER-BY order clause stipulates how the lines
of the result table are to be ordered. 
Each time the SELECT statement is executed, the system field SY-DBCNT contains
the number of lines read so far. After ENDSELECT , SY-DBCNT contains the total
number of lines read. 

The return code value is set as follows: 

SY-SUBRC = 0 At least one line was read. 
SY_SUBRC = 4 No lines were read. 
SY-SUBRC = 8 The search key was not fully qualified. 
(nur bei SELECT SINGLE ). The returned single record is any line of the
solution set. 

Example

Output the passenger list for the Lufthansa flight 0400 on
28.02.1995: 

 

TABLES SBOOK.

 

SELECT * FROM SBOOK

  WHERE

    CARRID   = 'LH '      AND

    CONNID   = '0400'     AND

    FLDATE   = '19950228'

  ORDER BY PRIMARY KEY.

  WRITE: / SBOOK-BOOKID, SBOOK-CUSTOMID,   SBOOK-CUSTTYPE,

           SBOOK-SMOKER, SBOOK-LUGGWEIGHT, SBOOK-WUNIT,

           SBOOK-INVOICE.

ENDSELECT.

 

Note

Performance 
In client/server environments, storing database tables in local buffers (see
SAP buffering ) can save considerable amounts of time because the time required
to make an access via the network is much more than that needed to access a
locally buffered table. 

Notes

A SELECT command on a table for which SAP buffering is
defined in the ABAP/4 Dictionary is normally satisfied from the SAP buffer by
bypassing the database. This does not apply with 

- SELECT SINGLE FOR UPDATE 
- SELECT DISTINCT in the SELECT clause , 
- BYPASSING BUFFER in the FROM clause , 
- ORDER BY f1 … fn in the ORDER-BY clause , 
- aggregate functions in the SELECT clause , 
- when using IS [NOT] NULL WHERE condition , 

or if the generic key part is not qualified in the WHERE-Bedingung
for a generically buffered table. 
Authorization checks are not supported by the SELECT statement, so you must
program these yourself. 
In dialog systems, the database system locking mechanism cannot always
guarantee to synchronize the simultaneous access of several users to the same
dataset. In many cases, it is therefore advisable to use the SAP locking mechanism
. 
Changes to data in a database are only finalized after a database commit (see
LUW ). Prior to this, any database update can be reversed by a database
rollback (see Programming transactions ). At the lowest isolation level (see
the section on the "uncommitted read" under Locking mechanism ), this
can result in the dataset selected by the SELECT command not really being
written to the database. While a program is selecting data, a second program
can add, change or delete lines at the same time. Then, the changes made by the
second program are reversed by rolling back the database system. The selection
of the first program thus reflects only a very temporary state of the database.
If such "phantom data" is not acceptable for a program, you must either
use the SAP locking mechanism or at least set the isolation level of the
database system to "committed read" (see Locking mechanism ). 
In a SELECT-ENDSELECT loop, the CONTINUE statement
terminates the current loop pass prematurely and starts the next. 
If one of the statements in a SELECT … ENDSELECT loop results in a database
commit, the cursor belonging to the SELECT … ENDSELECT loop is lost and the
processing terminates with a runtime error. Since each screen change automatically
generates a database commit, statements such as CALL
SCREEN , CALL DIALOG , CALL
TRANSACTION or MESSAGE are not allowed within a
SELECT … ENDSELECT loop. 
Related OPEN CURSOR , FETCH
und CLOSE CURSOR 

Index 
© SAP AG 1996 

SELECTION-SCREEN 

 

Variants

1. SELECTION-SCREEN BEGIN OF LINE. 
2. SELECTION-SCREEN END OF LINE. 
3. SELECTION-SCREEN SKIP n. 
4. SELECTION-SCREEN ULINE. 
5. SELECTION-SCREEN POSITION pos. 
6. SELECTION-SCREEN COMMENT fmt name. 
7. SELECTION-SCREEN PUSHBUTTON fmt name USER-COMMAND ucom. 
8. SELECTION-SCREEN BEGIN OF BLOCK block. 
9. SELECTION-SCREEN END OF BLOCK block. 
10. SELECTION-SCREEN FUNCTION KEY n. 
11. SELECTION-SCREEN BEGIN OF VERSION ver TEXT-xxx. 
12. SELECTION-SCREEN END OF VERSION ver. 
13. SELECTION-SCREEN EXCLUDE … . 
14. SELECTION-SCREEN DYNAMIC SELECTIONS FOR TABLE dbtab. 
15. SELECTION-SCREEN FIELD SELECTION FOR TABLE dbtab. 

Effect

The key word SELECTION-SCREEN only makes sense in reports,
i.e. programs specified as type "1" in the attributes. You use it to
design the selection screen in the program or logical database access routine. 

The selection screen is normally generated from the SELECT-OPTIONS
and PARAMETERS statements in the report and logical
database access routine. Each of these objects occupies a separate line on the
selection screen. 

SELECTION-SCREEN allows you to form blocks, combine several parameters and
comments together on one line, generate pushbuttons on the screen or activate
them in the application toolbar, as well as insert blank lines, underscore
lines and comments. 

Like SELECT-OPTIONS and PARAMETERS
, you can use SELECTION-SCREEN statements in reports and in the include program
DBldbSEL of the logical database ldb assigned to the report in the attributes.
Some variants are defined only for logical databases and can therefore only be
used in the include program DBldbSEL . 

Variant 1

SELECTION-SCREEN BEGIN OF LINE. 

Variant 2

SELECTION-SCREEN END OF LINE. 

Effect

Allows you to combine several parameters and comments
specified between the SELECTION-SCREEN BEGIN OF LINE and SELECTION-SCREEN END
OF LINE statements and output them on one line. As a result, there is no
automatic new line for each PARAMETER and no
selection texts are displayed. 

Example

 

SELECTION-SCREEN BEGIN OF LINE.

  SELECTION-SCREEN COMMENT 1(10) TEXT-001.

  PARAMETERS: P1(3), P2(5), P3(1).

SELECTION-SCREEN END OF LINE.

 

Selection screen: 

Comment ___ _____ _ 

Note

You cannot order SELECT-OPTIONS
between SELECTION-SCREEN BEGIN OF LINE and SELECTION-SCREEN END OF LINE because
several objects are generated on the selection screen for a SELECT-OPTION (e.g.
fields for the lower and upper limits of ranges). 

Variant 3

SELECTION-SCREEN SKIP n. 

Additions

1. … FOR TABLE dbtab 
2. … ID id 

Effect

Generates n blank lines (see also SKIP
). 

You must specify a value for n between 1 and 9. If you want to output just one
blank line, you can omit n . 

Addition 1

… FOR TABLE dbtab 

Effect

This addition is allowed only in the database include
program DBldbSEL . It is, in fact, a requirement. If you use SELECTION-SCREEN
SKIP in DBldbSEL , you must assign the statement to a table (or to a field -
see the variant COMMENT . 
This assignment is necessary in order to restrict the SELECTION-SCREEN
statements for a report selection screen to those relevant for the tables used
in the report, i.e. those which refer to a table used in the report. Any
SELECTION-SCREEN statement assigned to a table not used in the report with the
addition FOR TABLE dbtab are ignored when the report selection screen is
generated. 

Note

A table dbtab of the logical database ldb is considered as
"used in the report" if it is either declared in a TABLES statement or its position in the database
hierarchy lies somewhere between the root and a table dbtab_2 declared in the
report. 

Example

Hierarchy of logical database ldb : 

 

 SPFLI

  |

  ----  SAPLANE

         |

         ----  SFLIGHT

                |

                ----  SBOOK

 

In the report:

 

 TABLES SFLIGHT.

 

Tables considered as "used" include  SFLIGHT  (since it is

declared directly), as well as  SAPLANE  and  SPFLI  (since

they lie on the path from the hierarchy root " SPFLI " to the

declared table  SFLIGHT ). The table  SBOOK  is not

considered  as used, i.e. all the  SELECTION-SCREEN  statements

qualified with the addition " FOR TABLE SBOOK " in  DBldbSEL

are ignored.

 

Addition 2

… ID id 

Effect

This addition is allowed only in the database include
program DBldbSEL . It is used to identify a SELECTION-SCREEN object (in this
case blank lines) via an ID which can be up to 3 characters long. This ID is
then specified in SELECTION-SCREEN EXCLUDE IDS id in order to exclude the
object from a selection screen version. 

Variant 4

SELECTION-SCREEN ULINE. 

Additions

1. … fmt 
2. … FOR TABLE dbtab 
3. … MODIF ID mod 
4. … ID id 

Effect

Generates an underline (see also ULINE
). 

Addition 1

… fmt 

Effect

Format specification with the form /pos(len) , pos(len) or
(len) . The slash ( / ) generates a new line and is therefore not allowed
between BEGIN OF LINE and END OF LINE . The effect of the statement is to
underscore the current line starting from the position pos for the length len .
The variant (len) (without position specification) is allowed only between
BEGIN OF LINE and END OF LINE . In this case, the current position in the line
is used. See also WRITE . 
You can specify the position pos as a number (in this case, it is relative to
the frame if the statement comes between SELECTION-SCREEN BEGIN OF BLOCK …
WITH FRAME … and SELECTION-SCREEN END OF BLOCK … ). Also allowed are the
symbolic positions POS_LOW and POS_HIGH . These are the positions at which the
input fields of the SELECT-OPTI ONS are output (
POS_LOW is also the position of PARAMETERS . 

Note

Format specifications which do not generate a new line can
produce overlapping objects on the selection screen. Therefore, you should be
particularly careful with position and length specifications. 

Example

 

SELECTION-SCREEN ULINE /1(10).

SELECTION-SCREEN ULINE POS_LOW(10).

SELECTION-SCREEN ULINE POS_HIGH(10).

This generates three underscore blocks, each with a length of 10, on one line. 

Addition 2

… FOR TABLE dbtab 

Effect

See variant 3 ( SELECTION-SCREEN SKIP ). 

Addition 3

… MODIF ID mod 

Effect

The specified modification group ( SCREEN-GROUP1 ) is
assigned to the underscore. You can use this under AT
SELECTION-SCREEN in the report or in the PAI routine of the database
program SAPDBldb to modify the screen. 

Note

The name of the modification group must be specified without
quotation marks. It can be up to three characters long. 

Addition 4

… ID id 

Effect

See variant 3 ( SELECTION-SCREEN SKIP ) 

Variant 5

SELECTION-SCREEN POSITION pos. 

Addition

… FOR TABLE dbtab 

Effect

Outputs the parameter starting from the position pos . 
This variant is allowed only between SELECTION-SCREEN BEGIN OF LINE< />
and SELECTION-SCREEN END OF LINE . 
As with the addition ULINE , you can specify the position as fixed (if
necessary relative to the frame) or symbolically in the form POS_LOW or
POS_HIGH . 

Addition

… FOR TABLE dbtab 

Effect

See variant 3 ( SELECTION-SCREEN SKIP ) 

Variant 6

SELECTION-SCREEN COMMENT fmt name. 

Additions

1. … FOR TABLE dbtab 
2. … FOR FIELD f 
3. … MODIF ID mod 
4. … ID id 

Effect

Generates a comment on the selection screen. For the name
name , there are two options: 
name takes the form TEXT-xxx where xxx is a three-character name for a text
symbol. In this case, the contents of the text symbol are displayed at runtime,
i.e. the text cannot be changed dynamically. name is another eight-character
name. Here, you create a field with the name name in the length specified in
the format fmt< /> and it is then generated as an output field on the
selection screen. The contents of these comments must therefore be set at
runtime (e.g. at INITIALIZATION or - in the case of comments in the database
include program DBldbSEL - in the routine INIT of the database program SAPDBldb
. They can also be changed when the selection screen is being processed. 

Note

The field name is generated automatically and so cannot be
defined with DATA . 
With comments, you must always specify a format fmt (see variant ULINE ). 

Note

You must program a new line yourself via the format fmt . 

Addition 1

… FOR TABLE dbtab 

Note

See variation 3 (SELECTION-SCREEN SKIP). 

Addition 2

… FOR FIELD f 

Effect

Since the comment is assigned to a parameteror
a select-option , the help display shows the
documentation of the reference field if this parameter or selection option. 
In addition, the comment is suppressed if the reference object was set to
‘invisible’ via a selection variant. 

Note

In database access routines, the comment is generated
whenever the reference field is output. Therefore, you should not use the
addition FOR TABLE with this variant. 

Example

 

SELECTION-SCREEN BEGIN OF LINE.

  SELECTION-SCREEN COMMENT 10(20) TEXT-001

                   FOR FIELD PARM.

  SELECTION-SCREEN POSITION POS_LOW.

  PARAMETERS PARM LIKE SAPLANE-PLANETYPE.

SELECTION-SCREEN END OF LINE.

 

This code displays a 20-byte long comment followed by the
parameter at the normal position ( POS_LOW ) on the same line. If the user
presses F1 for both objects, the documentation of SAPLANE-PLANETYPE is
displayed. 

Addition 3

… MODIF ID mod 

Effect

See variant 4 ( SELECTION-SCREEN ULINE ) 

Addition 4

… ID id 

Effect

See variant 3 ( SELECTION-SCREEN SKIP ) 

Variant 7

SELECTION-SCREEN PUSHBUTTON fmt name USER-COMMAND ucom. 

Additions

1. … FOR TABLE dbtab 
2. … MODIF ID mod 
3. … ID id 

Effect

Generates a pushbutton on the selection screen. Also
specified is the user command ucom (without quotation marks) which can be up to
4 characters long. This is generated when the user presses the button. Apart
from this, the syntax is largely similar to that of SELECTION-SCREEN COMMENT : 

For the name name , there are two options: 
name takes the form TEXT-xxx where xxx is a three-character name for a text
symbol. In this case, the contents of the text symbol are displayed at runtime,
i.e. the text cannot be changed dynamically. name is another eight-character
name. Here, you create a field with the name name in the length specified in the
format fmt< /> and it is then generated as an output field on the
selection screen. The contents of these comments must therefore be set at
runtime (e.g. at INITIALIZATION or - in the case of comments in the database
include program DBldbSEL - in the routine INIT of the database program SAPDBldb
. They can also be changed when the selection screen is being processed. 

Note

The field name is generated automatically and so cannot be
defined with DATA . 
With pushbuttons, you must always specify a format fmt (see variant ULINE ). 

Note

You must program a new line yourself via the format fmt . 
The best way to respond to the user pressing the pushbutton is in the event AT SELECTION-SCREEN or - in the case of pushbuttons in
the database include program DBldbSEL - in the routine PAI (with FNAME = ‘*’
and MARK = SPACE ) in the database program SAPDBldb . Here, the field
SSCRFIELDS-UCOMM contains the user command ucom (the table SSCRFIELDS must be
declared with the TABLES statement). 

Addition 1

… FOR TABLE dbtab 

Effect

See variant 3 ( SELECTION-SCREEN SKIP ) 

Addition 2

… MODIF ID mod 

Effect

See variant 4 ( SELECTION-SCREEN ULINE ) 

Addition 3

… ID id 

Effect

See variant 3 ( SELECTION-SCREEN SKIP ) 

Example

 

TABLES SSCRFIELDS.

 

  ...

 

SELECTION-SCREEN PUSHBUTTON /10(20) CHARLY USER-COMMAND ABCD.

 

  ...

 

INITIALIZATION.

 

  MOVE 'My text' TO CHARLY.

 

  ...

 

AT SELECTION-SCREEN.

 

  IF SSCRFIELDS-UCOMM = 'ABCD'.

    ...

  ENDIF.

The selection screen displays a pushbutton with the text ‘My text’ . With AT SELECTION-SCREEN , the field SSCRFIELDS-UCOMM
contains ABCD after the user has pressed the button. 

Variant 8

SELECTION-SCREEN BEGIN OF BLOCK block. 

Additions

1. … WITH FRAME 
2. … TITLE title 
3. … NO INTERVALS 

Effect

Starts a logical block on the selection screen. If you use
the addition WITH FRAME , a frame is generated around the block. The addition
TITLE title is allowed only in conjunction with WITH FRAME . 

For the title title ,there are two options (see also the variants COMMENT and
PUSHBUTTON ): 
title takes the form TEXT-xxx where xxx is a three-character name for a text
symbol. In this case, the contents of the text symbol are displayed at runtime,
i.e. the text cannot be changed dynamically. title is another eight-character
name. Here, you create a field with the name title in the length specified in
the format fmt< /> and it is then generated as an output field on the
selection screen. The contents of these comments must therefore be set at
runtime (e.g. at INITIALIZATION or - in the case of comments in the database
include program DBldbSEL - in the routine INIT of the database program SAPDBldb
. They can also be changed when the selection screen is being processed. 

Note

The field title is generated automatically and so cannot be
defined with DATA . 
At runtime, the event AT SELECTION-SCREEN ON BLOCK block
is executed for every block in the PAI module of the selection screen (with
database- specific blocks, the PAI module in the program SAPDBldb is also
executed with the parameters FNAME = BLOCK_block and MARK = SPACE ). If this
produces an error message, just the fields of this block are ready for input. 
You can nest blocks. The maximum nesting depth for blocks with frames is 5. 

Addition 3

… NO INTERVALS 

Effect

Displays all SELECT-OPTIONS
within the block in simplified form without a ‘to’ field on the selection
screen (like the addition " NO INTERVALS " with SELECT-OPTIONS
). If the block has a frame, this is correspondingly small. 

Note

In the case of blocks without frames, the attribute "
NO INTERVALS " is not inherited by subordinate blocks. However, all
subordinate blocks of blocks with frames inherit this attribute because the
generated frame is smaller and there is no space for the ‘to’ field. 

Variant 9

SELECTION-SCREEN END OF BLOCK block. 

Effect

Closes the block opened by SELECTION-SCREEN BEGIN OF BLOCK
block . If the block has a frame, the frame is closed here. Blocks opened in
the include program DBldbSEL must also be closed there. 

Note

Blocks defined in the database include program DBldbSEL must
also be close there. As with SELECTION-SCREEN BEGIN OF LINE and
SELECTION-SCREEN END OF LINE , you cannot use the addition FOR TABLE with
blocks. Instead, the objects in the blocks (selection
options , parameters , comments, underscores
…) are omitted if the table to which they belong is not used in the report
(see note under variant SELECTION-SCREEN SKIP ). Empty blocks (possibly with
frames) are also omitted. 

Example

 

 

TABLES SAPLANE.

 

SELECTION-SCREEN BEGIN OF BLOCK CHARLY

                 WITH FRAME TITLE TEXT-001.

  PARAMETERS PARM(5).

  SELECT-OPTIONS SEL FOR SAPLANE-PLANETYPE.

SELECTION-SCREEN END   OF BLOCK CHARLY.

 

(Let TEXT-001 contain ‘Block
Charly’ ). 

Selection screen: 

–Block Charly———————————– 
| PARM _____ | 
| SEL ________ bis ________ | 
————————————————- 

Variant 10

SELECTION-SCREEN FUNCTION KEY n. 

Additions

1. … FOR TABLE dbtab 
2. … ID id 

Effect

With this variant, you can activate up to 5 function keys in
the application toolbar on the selection screen ( n is one of the numbers 1 to
5). 
At runtime, the text must be placed in the Dictionary field
SSCRFIELDS-FUNCTXT_01 or … SSCRFIELDS-FUNCTXT_05 . 
The function code placed in the field SSCRFIELDS-UCOMM is ‘FC01′ or … ‘FC05′
. You can read this function code under AT
SELECTION-SCREEN or in the PAI module of the database access program
SAPDBldb . 

Addition 1

… FOR TABLE dbtab 

Effect

See variant 3 ( SELECTION-SCREEN SKIP ) 

Addition 2

… ID id 

Effect

See variant 3 ( SELECTION-SCREEN SKIP ) 

Example

 

TABLES SSCRFIELDS.

 

  ...

 

SELECTION-SCREEN FUNCTION KEY 1.

 

  ...

 

INITIALIZATION.

 

  MOVE 'My text' TO SSCRFIELDS-FUNCTXT_01.

 

  ...

 

AT SELECTION-SCREEN.

 

  IF SSCRFIELDS-UCOMM = 'FC01'.

    ...

  ENDIF.

The selection screen displays a pushbutton with the text ‘My text’ . With AT SELECTION-SCREEN , the field SSCRFIELDS-UCOMM
contains FC01 after the user has pressed the button. 

Variant 11

SELECTION-SCREEN BEGIN OF VERSION ver TEXT-xxx. 

Variant 12

SELECTION-SCREEN END OF VERSION ver. 

Variant 13

SELECTION-SCREEN EXCLUDE … . 

Effect

Defines a selection screen version (with a three-character
name ver ). These variants are only allowed in the database include program
DBldbSEL . Between BEGIN OF VERSION and END OF VERSION , you can exclude
selection screen objects for the version ver , i.e. remove them from the
selection screen with SELECTION-SCREEN EXCLUDE. . 

For a report, you activate a selection screen by making an entry in the
attributes. If the database access program SAPDBldb itself has a selection
screen version in the attributen, this applies for all reports which use this
logical database and have attributes where no separate selection screen version
is declared. 

The text symbol TEXT -xxx is used merely to facilitate selection of a selection
screen version via F4 help when maintaining the attributes. 

Additions

(to SELECTION-SCREEN EXCLUDE ) 

1. … PARAMETERS par 
2. … SELECT-OPTIONS sel 
3. … RADIOBUTTON GROUPS radi 
4. … BLOCKS block 
5. … IDS id 

Effect

Excludes selection screen objects between SELECTION-SCREEN
BEGIN and END OF VERSION . This allows you to exclude individual parameters or selection options
, radiobutton groups , blocks defined by
SELECTION-SCREEN BEGIN/END OF BLOCK and other objects such as comments and
underscores specified by the addition ID id . 

Note

The database program SAPDBldb can get the active version for
the current report with the function module RS_SELSCREEN_VERSION . 

Example

PARAMETERS PAR_1 LIKE dbfield_1 FOR TABLE dbtab_1. 
SELECT-OPTIONS SEL_1 FOR dbfield_01. 
SELECT-OPTIONS SEL_2 FOR dbfield_02. 
SELECT-OPTIONS SEL_3 FOR dbfield_03. 

SELECTION-SCREEN COMMENT /10(20) TEXT-100 FOR TABLE dbtab_1 ID 001. 
SELECTION-SCREEN COMMENT /8(30) TEXT-200 FOR TABLE dbtab_2 ID 002. 

PARAMETERS PAR_2 LIKE dbfield_1 FOR TABLE dbtab_2. 
PARAMETERS PAR_3 LIKE dbfield_1 FOR TABLE dbtab_2. 

… 

SELECTION-SCREEN BEGIN OF VERSION ABC TEXT-008. 

SELECTION-SCREEN EXCLUDE PARAMETERS: PAR_1, PAR_3. 
SELECTION-SCREEN EXCLUDE SELECT-OPTIONS: SEL_2. 
SELECTION-SCREEN EXCLUDE IDS: 001. 

SELECTION-SCREEN END OF VERSION ABC. 
If the report attributes (or the attributes of the database program SAPDBldb )
contain the selection screen version ABC , the parameters PAR_1 and PAR_3 , the
selection option SEL_2 and the comment with the text number 100 ( ID 001 ) are
not displayed on the selection screen. When you maintain the attributes, the
text symbol 008 of SAPDBldb is displayed if you press F4 on the field
‘Selection screen version’. 

Variant 14

SELECTION-SCREEN DYNAMIC SELECTIONS FOR TABLE dbtab. 

Addition

… ID id 

Effect

This variant is allowed only in the database include program
DBldbSEL . It informs you for which logical database tables additional
selections are supported. If one of these tables is active in the report (i.e.
it is declared under TABLES or lies somewhere on the path from the root of the
database hierarchy to a table declared with TABLES ), a psuhbutton called
‘Dynamic selections’ appears on the selection screen. On pressing this button,
the user branches to a dialog Taste where it is possible to enter selections
for the fields of the relevant tables in the logical database. You can define
the field list in two different ways: 
Via a selection view defined for the purpose: 

You can maintain selection views within the logical database maintenance
transaction. They consist of a set of fields from logical database tables which
are divided into groups. It is also possible to preselect fields. Customers can
overlay these selection views with their own (i.e. in this case, the system
searches first for the customer selection view and only accesses the SAP
selektion view if no customer-specific view exists). 
If a preselection has already been made in the selection view, the user
immediately sees the selection screen for the preselected fields and can enter
selections. Otherwise, a fields must be selected first. 
Via all fields of all tables 

In this case, the user must first choose the tables and then select the fields
for which additional selections are to be made before branching to the
selection screen to enter the dynamic selections. 
The database access programm SAPDBldb then receives the WHERE clauses generated
from the user entries in the form of a complex data object DYN_SEL . 

Addition

… ID id 

Effect

Similar to the addition 2 ( SKIP ). This allows you to
exclude tables from the possibility of dynamic selection via the selection
screen versions. 

Note

The exact definition of the object DYN_SEL is stored in the TYPE-POOL RSDS and is as follows: 

 

 

TYPES: BEGIN OF RSDS_WHERE,

         TABLENAME LIKE RSDSTABS-PRIM_TAB,

         WHERE_TAB LIKE RSDSWHERE OCCURS 5,

       END OF RSDS_WHERE.

 

  ...

 

TYPES: BEGIN OF RSDS_TYPE,

         CLAUSES TYPE RSDS_WHERE OCCURS 5,

         TEXPR   TYPE RSDS_TEXPR,

         TRANGE  TYPE RSDS_TRANGE,

       END   OF RSDS_TYPE.

 

DATA DYN_SEL TYPE RSDS_TYPE.

The object DYN_SEL thus contains a component ( CLAUSES ) which is an internal
table. Each line of this internal table contains a table name ( TABLENAME ) and
another table ( WHERE_TAB ) which contains the WHERE clauses for the table (
TABLENAME ). 
You can find the structure of the other components in the type pool RSDS . 
TEXPR contains the selections in a format which allows storage and can be used
for the "freely callable" function modules when entering dynamic
selections ( FREE_SELECTIONS_INIT , FREE_SELECTIONS_DIALOG ). TRANGE contains
the selections in the form of RANGES tables which can
be used with the IN operator in SELECT , CHECK and IF . 

Note

Neither the TYPE-POOL RSDS nor
the declaration of DYN_SEL must appear in the database program. Both are
automatically included by the system. 
In the database program SAPDBldb , an access to a table XXXX could look
something like below: 

 

FORM PUT_XXXX.

 

  DATA L_DS_CLAUSES TYPE RSDS_WHERE.

 

  MOVE 'XXXX' TO L_DS_CLAUSES-TABLENAME.

  READ TABLE DYN_SEL-CLAUSES WITH KEY L_DS_CLAUSES-TABLENAME

                             INTO L_DS_CLAUSES.

 

  SELECT * FROM XXXX

           WHERE field1 IN ...

           AND   field2 ....

              ...

           AND (L_DS_CLAUSES-WHERE_TAB).

      PUT XXXX.

  ENDSELECT.

ENDFORM.

 

Note

If the table L_DS_CLAUSES-WHERE_TAB is empty, i.e. if no
dynamic selections are entered for the table XXXX , the addition … AND
(L_DS_CLAUSES-WHERE_TAB) is ignored during the SELECT
. 

Variant 15

SELECTION-SCREEN FIELD SELECTION FOR TABLE dbtab. 

Addition

… ID id 

Effect

This variant is allowed only in the database include program
DBldbSEL . It informs you for which logical database tables field selection is
supported. 
For these tables, you can fill just those database fields which the report
actually needs. In the report, you determine these fields with GET dbtab FIELDS f1 … fn or GET dbtab
LATE FIELDS f1 … fn (the field list is then supplemented by the key
fields of the table dbtab ). 
By restricting to the really necessary field, you considerably improve
performance. The database access program SAPDBldb receives the desired fields
for the dynamic field selection in the form of an internal table SELECT_FIELDS
. 

Note

The exact definition of the object SELECT_FIELDS is stored
in the TYPE-POOL RSFS and looks something like
below: 

 

TYPES: BEGIN OF RSFS_TAB_FIELDS,

         TABLENAME LIKE RSDSTABS-PRIM_TAB,

         FIELDS LIKE RSFS_STRUC OCCURS 10,

       END OF RSFS_TAB_FIELDS.

 

  ...

 

TYPES: RSFS_FIELDS TYPE RSFS_TAB_FIELDS OCCURS 10.

 

DATA SELECT_FIELDS TYPE RSFS_FIELDS.

 

SELECT_FIELDS is thus an internal table. Each line of this
internal table contains a table name ( TABLENAME ) and another internal table (
FIELDS ) which contains the desired fields of the table ( TABLENAME ). 

Note

Neither the TYPE-POOL RSFS nor
the declaration of SELECT_FIELDS has to appear in the database program. Both
are automatically included by the system. Unlike the objects connected with the
addition DYNAMIC SELECTIONS , SELECT_FIELDS is also available in the report. 
In the database program SAPDBldb , an access to a table XXXX could look
something like below: 

 

FORM PUT_XXXX.

 

  DATA L_TAB_FIELDS TYPE RSFS_TAB_FIELDS.

 

  MOVE 'XXXX' TO L_TAB_FIELDS-TABLENAME.

  READ TABLE SELECT_FIELDS WITH KEY L_TAB_FIELDS-TABLENAME

                           INTO L_TAB_FIELDS.

 

  SELECT (L_TAB_FIELDS-FIELDS)

             INTO CORRESPONDING FIELDS OF XXXX

             FROM XXXX

         WHERE field1 IN ...

         AND   field2 ....

              ...

      PUT XXXX.

  ENDSELECT.

ENDFORM.

 

Note

If the table L_TAB_FIEDLS is empty, i.e. if no dynamic
selections are entered for the table XXXX , SELECT
(L_TAB_FIELDS) … works like SELECT * … , i.e.
all fields of the table XXXX are filled. 
The internal table SELECT_FIELDS already contains values when the routine INIT
is executed in the database program or when the INITIALIZATION
processing is executed in the report. It can be manipulated by the appropriate
program if it is absolutely necessary to fill another field for the logical
database. 

Index 
© SAP AG 1996 

SELECT clause 

 

Variants

1. SELECT [SINGLE [FOR UPDATE] | DISTINCT] * 
2. SELECT [SINGLE [FOR UPDATE] | DISTINCT] s1 … sn 
3. SELECT [SINGLE [FOR UPDATE] | DISTINCT] (itab) 

Effect

The result of a SELECT statement is
itself a table . The SELECT clause describes which columns this table is
supposed to have. 

In addition, you can use the optional addition SINGLE or DISTINCT if you want
only certain lines of the solution set to be visible for the calling program: 
SINGLE The result of the selection is a single record . If this record cannot
be uniquely identified, the first line of the solution set is selected. The
addition FOR UPDATE protects the selected record against parallel changes by
other transactions until the next database commit occurs (see LUW and Database
locking ). If the database system detects a deadlock, the result is a runtime
error. 
DISTINCT Any lines which occur more than once are automatically removed from
the selected dataset. 

Note

To ensure that a record is uniquely determined, you can
fully qualify all fields of the primary key by linking them together with AND
in the WHERE condition. 

Note

Performance 
The additions SINGLE FOR UPDATE and DISTINCT exclude the use of SAP buffering .

The addition DISTINCT requires sorting on the database server and should
therefore only be specified if duplicates are likely to occur. 

Variant 1

SELECT [SINGLE [FOR UPDATE] | DISTINCT] * 

Effect

In the result set, the columns correspond exactly in terms
of order, ABAP/4 Dictionary type and length to the fields of the database table
(or view ) specified in the FROM clause . 

Example

Output all flight connections from Frankfurt to New York: 

 

TABLES SPFLI.

 

SELECT * FROM SPFLI

         WHERE

           CITYFROM = 'FRANKFURT' AND

           CITYTO   = 'NEW YORK'.

  WRITE: / SPFLI-CARRID, SPFLI-CONNID.

ENDSELECT.

 

Example

Output all free seats on the Lufthansa flight 0400 on
28.02.1995: 

 

TABLES SFLIGHT.

DATA   SEATSFREE TYPE I.

 

SELECT SINGLE * FROM SFLIGHT

                WHERE

                  CARRID   = 'LH '      AND

                  CONNID   = '0400'     AND

                  FLDATE   = '19950228'.

SEATSFREE = SFLIGHT-SEATSMAX - SFLIGHT-SEATSOCC.

WRITE: / SFLIGHT-CARRID, SFLIGHT-CONNID,

         SFLIGHT-FLDATE, SEATSFREE.

 

Variant 2

SELECT [SINGLE [FOR UPDATE] | DISTINCT] s1 … sn 

Effect

The order, ABAP/4 Dictionary type and length of the columns
of the result set are explicitly defined by the list s1 … sn . Each si has
the form 
ai or ai AS bi . 
Here, ai stands either for 

· a
field f of the database table or 

· a
aggregate print. 

bi is an alternative name for the i-th column of the result
set. 
When using INTO CORRESPONDING FIELDS OF wa in the INTO
clause , you can specify an alternative column name to assign a column of the
result set uniquely to a column of the target area. 
An aggregate print uses an aggregate function to group together data from one
or all columns of the database table. Aggregate prints consist of three or four
components: 
An aggregate function immediately followed by an opening parenthesis DISTINCT
(optional) The database field f A closing parenthesis 
All components of a print must be separated by at least one blank. 

The following aggregate functions are available: 
MAX Returns the greatest value in the column determined by the database field f
for the selected lines. Specifying DISTINCT does not change the result. NULL
values are ignored unless all values in a column are NULL values. In this case,
the result is NULL . 
MIN Returns the smallest value in the column determined by the database field f
for the selected lines. Specifying DISTINCT does not change the result. NULL
values are ignored unless all values in a column are NULL values. In this case,
the result is NULL . 
AVG Returns the average value in the column determined by the database field f
for the selected lines. AVG can only apply to a numeric field. NULL values are
ignored unless all values in a column are NULL values. In this case, the result
is NULL . 
SUM Returns the sum of all values in the column determined by the database
field f for the selected lines. SUM can only apply to a numeric field. NULL
values are ignored unless all values in a column are NULL values. In this case,
the result is NULL . 
COUNT Returns the number of different values in the column determined by the
database field f for the selected lines. Specifying DISTINCT is obligatory
here. NULL values are ignored unless all values in a column are NULL values. In
this case, the result is 0 
COUNT( * ) Returns the number of selected lines. If the SELECT command contains
a GROUP BY clause , it returns the number of lines
for each group. The form COUNT(*) is also allowed. 
If ai is a field f , MAX( f ) , MIN( f ) or SUM( f ) , the corresponding column
of the result set has the same ABAP/4 Dictionary format as f . With COUNT( f )
or COUNT( * ) , the column has the type INT4 , with AVG( f ) the type FLTP . 
If you specify aggregate functions together with one or more database fields in
a SELECT clause, all database fields not used in one of the aggregate functions
must be listed in the GROUP-BY clause . Here, the
result of the selection is a table. 
If only aggregate functions occur in the SELECT clause, the result of the
selection is a single record. Here, the SELECT command is not followed later by
an ENDSELECT . 

Notes

This variant is not available for pooled tables and cluster
tables . 
If the SELECT clause contains a database field of type LCHAR or LRAW , you must
specify the appropriate length field immediately before. 

Notes

Performance 
Specifying aggregate functions excludes the use of SAP buffering . 
Since many database systems do not manage the number of table lines and
therefore have to retrieve this at some cost, the function COUNT( * ) is not
suitable for checking whether a table contains a line or not. To do this, it is
best to use SELECT SINGLE f … for any table field f . 
If you only want to select certain columns of a database table, you are
recommended to specify a list of fields in the SELECT clause or to use a View . 

Examples

Output all flight destinations for Lufthansa flights from
Frankfurt: 

 

TABLES SPFLI.

DATA   TARGET LIKE SPFLI-CITYTO.

 

SELECT DISTINCT CITYTO

       INTO TARGET FROM SPFLI

       WHERE

         CARRID   = 'LH '       AND

         CITYFROM = 'FRANKFURT'.

  WRITE: / TARGET.

ENDSELECT.

Output the number of airline carriers which fly to New York: 

 

TABLES SPFLI.

DATA   COUNT TYPE I.

 

SELECT COUNT( DISTINCT CARRID )

       INTO COUNT FROM SPFLI

       WHERE

         CITYTO = 'NEW YORK'.

WRITE: / COUNT.

Output the number of passengers, the total weight and the average weight of
luggage for all Lufthansa flights on 28.02.1995: 

 

TABLES SBOOK.

DATA:  COUNT TYPE I, SUM TYPE P DECIMALS 2, AVG TYPE F.

DATA:  CONNID LIKE SBOOK-CONNID.

 

SELECT CONNID COUNT( * ) SUM( LUGGWEIGHT ) AVG( LUGGWEIGHT )

       INTO (CONNID, COUNT, SUM, AVG)

       FROM SBOOK

       WHERE

         CARRID   = 'LH '      AND

         FLDATE   = '19950228'

       GROUP BY CONNID.

  WRITE: / CONNID, COUNT, SUM, AVG.

ENDSELECT.

 

Variant 3

SELECT [SINGLE [FOR UPDATE] | DISTINCT] (itab) 

Effect

Works like SELECT [SINGLE [FOR UPDATE] | DISTINCT] s1 … sn
if the internal table itab contains the list s1 … sn as ABAP/4 source code,
and like SELECT [SINGLE [FOR UPDATE] | DISTINCT] * , if itab is empty. The
internal table itab can only have one field which must be of type C and cannot
be more than 72 characters long. itab must appear in parentheses and there
should be no blanks between the parentheses and the table name. 

Note

With this variant, the same restrictions apply as for SELECT
[SINGLE [FOR UPDATE] | DISTINCT] s1 … sn . 

Example

Output all Lufthansa flight routes: 

 

TABLES: SPFLI.

DATA:   FTAB(72) OCCURS 5 WITH HEADER LINE.

 

REFRESH FTAB.

FTAB = 'CITYFROM'. APPEND FTAB.

FTAB = 'CITYTO'.   APPEND FTAB.

SELECT DISTINCT (FTAB)

       INTO CORRESPONDING FIELDS OF SPFLI

       FROM SPFLI

       WHERE

         CARRID   = 'LH'.

  WRITE: / SPFLI-CITYFROM, SPFLI-CITYTO.

ENDSELECT.

Index 
© SAP AG 1996 

SELECT-OPTIONS 

 

Basic form

SELECT-OPTIONS sel FOR f. 

Additions

1. … DEFAULT g 
2. … DEFAULT g … OPTION xx … SIGN s 
3. … DEFAULT g TO h 
4. … DEFAULT g TO h … OPTION xx … SIGN s 
5. … MEMORY ID pid 
6. … MATCHCODE OBJECT mobj 
7. … MODIF ID key 
8. … NO-DISPLAY 
9. … LOWER CASE 
10. … OBLIGATORY 
11. … NO-EXTENSION 
12. … NO INTERVALS 
13. … NO DATABASE SELECTION 
14. … VALUE-REQUEST 
15. … VALUE-REQUEST FOR LOW/HIGH 
16. … HELP-REQUEST 
17. … HELP-REQUEST FOR LOW/HIGH 

Effect

Declares a variable selection option. 

This statement only makes sense in reports, i.e. in programs defined as type 1 in the attributes. You can
execute reports with the SUBMIT statement. The
statements SELECT-OPTIONS and PARAMETERS determine
the technical interface and the user interface. The parameters and selection
options you specify are displayed on the selection screen for the user to enter
values (see also the addition NO-DISPLAY or SUBMIT
without the addition VIA SELECTION-SCREEN . 

sel must be 1 - 8 characters long. 

Note

· This
statement defines an internal table sel with a fixed structure which
consists of the fields sel-SIGN , sel-OPTION , sel-LOW and sel-HIGH . 

· A
report can (by means of an entry in the attributes) be assigned to a logical
database ldb . This means that both the logical database ldb and the
report can define selection options (and parameters). You define the
(database-specific) selection options in an ABAP/4 include program
DBldbSEL (in logical database maintenance). The system then imports this
include program into the actual logical database access program SAPDBldb
and (partially) into the report. As a result, the database-specific
selection options (and parameters) relevant to the report are available
both to the database program SAPDBldb and to the report. 
The ‘report-specific’ selection options are known only in the report (not
in SAPDBldb ). 
Some SELECT-OPTIONS additions are allowed only in DBldbSEL . The addition
‘NO DATABASE SELECTION’ can only be used in the report. 

· Each
line of the internal table sel formulates a condition. If you require
precise details about how to formulate these conditions, see the section
on the IN operator under Logical expressions . 

· If
the user enters a value set on the selection screen, the internal table
sel is automatically filled. 
You can use normal ABAP/4 statements to read and manipulate the internal
table sel . 

· The
values you enter for the database-specific selection options are passed
directly to the database for data selection (i.e. no unwanted records are
read). This also applies to report-specific SELECT-OPTIONS that refer to a
field in a logical database table defined for dynamic selections (see also
the addition " NO DATABASE SELECTION "). 
You must check report-specific selections that refer to other fields with
the CHECK statement (i.e. unwanted records must
first be read from the database and discarded afterwards). This process is
therefore not as efficient as the process described above. 

· Under
"Text elements/selection texts", you should enter a description
for each selection criterion sel . This description is displayed on the
selection screen. If no such text exists, the name sel of the selection
option is displayed instead. 

· The
LOW and HIGH fields of a selection option are displayed in a length up to
18 bytes long (scrollable up to 45 bytes). If you define a length longer
than 45, fields are truncated on the selection screen after the 45th
character. This affects the first line of the SELECT-OPTIONS table. You
can, however, pass longer selection options to a report if they are
specified with the addition NO-DISPLAY and thus do not appear on the
selection screen. Without NO-DISPLAY , the fields are then truncated
whenever the selection screen is processed in the background (SUBMIT without VIA SELECTION-SCREEN ). 

 

Example

 

SELECT-OPTIONS PROGRAM FOR SY-REPID.

&ABAP-EFFECT& Suppose you create an internal table PROGRAM with the
header line fields PROGRAM-SIGN , PROGRAM-OPTION , PROGRAM-LOW and PROGRAM-HIGH
. PROGRAM-LOW and PROGRAM-HIGH have the same field attributes as SY-REPID .
When the report is executed, a line on the selection screen contains the text
‘PROGRAM’ or the associated selection text as well as input fields for
PROGRAM-LOW and PROGRAM-HIGH . At the end of the line, there is a pushbutton
with an arrow. When you press this button, you branch to the ‘Complex
Selections’ screen where you can enter more selection lines for sel . Here, you
can formulate very complicated selection conditions. For further information
about how these entries determine the result set, see Logical expressions or
select Utilities -> Help sel. screen on the ‘Complex Selections’ screen. 

Note

· Field
attributes on the selection screen. 

The input/output fields displayed on the selection screen for entry of
upper and lower limits have the same attributes for type, length or
conversion exits as the field f specified after FOR . 

If f is a Dictionary field, the selection screen is regenerated
automatically after most changes to its attributes. The attributes ‘Check
table’ and ‘Fixed values’ are exceptions to this rule. If these are
changed, you have to generate the program in the ABAP/4 Editor. This also
generates the selection screen. 

Addition 1

… DEFAULT g 

Effect

Proposes the single value g as the default selection when
the report is called. 

Notes

· For
each SELECT-OPTION , you can only specify one DEFAULT . 

· You
must specify the default value g in its internal format, e.g. "
SELECT-OPTIONS DATE FOR SY-DATUM DEFAULT ‘19931224′ ", not " …
DEFAULT ‘24.12.1993′ ". 

· The
default value g should normally be a literal because, at runtime, it is
transferred to the selection options table sel so early that no value can
be assigned to the field g . System fields are an exception here because
the system usually assigns values to them as soon as the report processing
starts. 

Example

 

SELECT-OPTIONS DATE FOR SY-DATUM DEFAULT SY-DATUM.

 

Addition 2

… DEFAULT g … OPTION xx … SIGN s 
( xx is OPTION , i.e. one of the values EQ,NE,CP,NP,GE,LT,LE,GT ); s is SIGN ,
i.e. one of the values I or E ) 

Effect

Similar to " … DEFAULT g ", except that the
system also proposes the specified selection option and SIGN . 
You can specify the additions OPTION and SIGN in any order or omit them. The
standard OPTION is EQ , the standard SIGN is I . 

Example

 

DATA CITY(20).

SELECT-OPTIONS SO_CITY FOR CITY DEFAULT 'SAN*'

                                OPTION CP SIGN E.

 

On the selection screen, this results in an entry specifying
that cities not beginning with " SAN " are selected. 

Notes

· For
each SELECT-OPTION , you can only specify one DEFAULT . 

· The
option xx and SIGN s must be specified without quotation marks. 

Addition 3

… DEFAULT g TO h 

Effect

Proposes the range from g to h when the report is called. 

Note

For each SELECT-OPTION , you can only specify one DEFAULT . 

Addition 4

… DEFAULT g TO h … OPTION xx … SIGN s 
( xx is OPTION , i.e. one of the values EQ,NE,CP,NP,GE,LT,LE,GT ); s is SIGN ,
i.e. one of the values I or E ) 

Effect

Similar to " DEFAULT g TO h ", except that the
system proposes the specified selection option and SIGN . 
You can specify the additions OPTION and SIGN in any order or omit them. The
default OPTION is BT , the default SIGN is I . 

Example

 

DATA WORD(20).

SELECT-OPTIONS SO_WORD FOR WORD DEFAULT 'SPRING' TO 'SUMMER'

                                OPTION NB SIGN I.

On the selection screen, this results in an entry specifying that the words
between " SPRING " and " SUMMER " are excluded. 

Notes

· For
each SELECT-OPTION , you can only specify one DEFAULT . 

· The
option xx and SIGN s must be specified without quotation marks. 

 

Addition 5

… MEMORY ID pid 

Effect

On the selection screen, the SET/GET ID pid is assigned to
the left range limit of the selection criterion. 

Note

You must specify the memory ID without quotation marks. It
can be up to 3 characters long. 

Addition 6

… MATCHCODE OBJECT mobj 

Effect

On the selection screen, the matchcode object mobj is
assigned to the left range limit of the selection criterion. 

Note

You must specify the name of the matchcode object without
quotation marks. It can be up to 4 characters long. 

Addition 7

… MODIF ID key 

Effect

The specified modification group ( SCREEN-GROUP1 ), which
can be used for screen modifications, is assigned to the screen fields. 

Note

You must specify the name of the modification group without
quotation marks. It can be up to 3 characters long. 

Example

 

TABLES SAPLANE.

...

SELECT-OPTIONS S_PTYPE FOR SAPLANE-PLANETYPE MODIF ID ABC.

...

AT SELECTION-SCREEN OUTPUT.

LOOP AT SCREEN.

  IF SCREEN-GROUP1 = 'ABC'.

    SCREEN-INTENSIFIED = '1'.

    MODIFY SCREEN.

  ENDIF.

ENDLOOP.

 

Addition 8

… NO-DISPLAY 

Effect

Does not display the selection on the selection screen.
Creates the internal table sel as with ‘normal’ selection options and you can
then transfer the selection option with SUBMIT . 

These selection options represent a part of the interface which the user does
not see on the selection screen. You can set the values either internally
(through the routine INIT in SAPDBldb or INITIALIZATION
in the report) or with SUBMIT . These selection options are also stored for
variants. 

Sometimes, (e.g. when the user has entered particular values for other
selection options or parameters ), you may want to
display these undisplayed selection options on the screen so that the user can
enter values. You can do this in the routine PAI of the database program
SAPDBldb (for database-specific selection options) or under AT SELECTION SCREEN (for report-specific selection
options) by calling a function module (see CALL FUNCTION
) or your own screen (CALL SCREEN . 

Addition 9

… LOWER CASE 

Effect

The selection is not case-sensitive (i.e. allows upper and
lower case letters). 

Addition 10

… OBLIGATORY 

Effect

The user must enter a value for this selection (in the LOW
field). 

Addition 11

… NO-EXTENSION 

Effect

The user can only make an entry on one line. Calling the
additional "Multiple Selection" screen is not supported and no
pushbutton for this appears on the selection screen. 

Addition 12

… NO INTERVALS 

Effect

The selection option is displayed on the selection screen
without a ‘to’ field. The pushbutton for calling the "Multiple
Selection" screen appears immediately after the ‘from’ field. 
This addition thus allows you to generate a simplified display on the selection
screen. This is particularly useful if you are not making any range selections
for this selection option. 

Notes

· On
the "Multiple Selection" screen, you can also enter ranges for
selection options with " NO INTERVALS ". 

· By
combining this addition with " NO-EXTENSION ", you can restrict
the user to entry of a single value for the selection option, but with the
possibility of also choosing single value options like ‘Greater than’ or
‘Less than or equal’. 

· By
using the addition " NO INTERVALS " with SELECTION-SCREEN
BEGIN OF BLOCK , you can activate the simplified display for all
selection options in a block. 

· The
function module SELECT_OPTIONS_RESTRICT allows you to restrict the set of
selection options available for a SELECT-OPTION (for example, only single
values and patterns, i.e. ‘EQ’ and ‘CP’ are allowed). You can also forbid
the leading sign ‘E’ (= ‘Exclude from selection’). This means that you can
considerably restrict the selections which can be entered on the selection
screen. 

Addition 13

… NO DATABASE SELECTION 

Effect

This addition is allowed only for report-specific
SELECT-OPTIONS which refer to a field f belonging to a table dbtab of the
logical database. Here, the selections entered by the user are not passed
directly to the logical database unless the logical database supports dynamic
selections for dbtab (if dynamic selections for dbtab are not supported, the
addition has no effect. 

This addition can be useful if you only want the selections entered by the user
for this SELECT-OPTION to be effective under certain conditions. However, you
should be careful when using it: Since the selections have to be checked with CHECK after the records have been read, this has a considerable
effect on performance. 

Addition 14

… VALUE-REQUEST 

Addition 15

… VALUE-REQUEST FOR LOW/HIGH 

Effect

This addition is allowed only for database-specific
SELECT-OPTIONS in the include program DBxyzSEL (where xyz = logical database
name). It allows you to implement self-programmed value help. (To implement
self-programmed value help for report-specific SELECT-OPTIONS , you can use the
event key word AT SELECTION-SCREEN ON VALUE-REQUEST FOR
… .) If you specify only VALUE-REQUEST (without FOR … ), the value help
refers to both input/output fields of the SELECT-OPTION (i.e. to sel-LOW and
sel-HIGH). Otherwise, it refers only to the specified field. The addition has
two effects: 
The affected input/output fields are displayed on the selection screen with the
pushbutton for F4 (possible entries). 
When the user presses this button or F4 , this triggers the FORM routine
sel-LOW_VAL or sel-HIGH_VAL in the database access program SAPDBxyz (if it
exists). If this addition is specified - and even if the SELECT-OPTION with FOR
points to a Dictionary field - this FORM routine is executed when the user
presses F4 and the check table or the fixed values of the Dictionary field are
not displayed. You can, for example, branch from the routine sel-LOW_VAL or
sel-HIGH_VAL to a function module which offers a selection list of possible
values. At the end of this FORM routine, the contents of the field sel-LOW or
sel-HIGH are copied to the appropriate input/output field. 

Example

 

* INCLUDE DBXYZSEL

...

SELECT-OPTIONS S_PTYPE FOR SAPLANE-PLANETYPE VALUE-REQUEST FOR LOW.

...

 

REPORT SAPDBXYZ DEFINING DATABASE XYZ.

...

TABLES SAPLANE.

...

FORM S_PTYPE-LOW_VAL.

...

  CALL FUNCTION '...'.

...

ENDFORM.

 

Addition 16

… HELP-REQUEST 

Addition 17

… HELP-REQUEST FOR LOW/HIGH 

Effect

Like VALUE-REQUEST , this addition is allowed only for
database-specific SELECT-OPTIONS in the include program DBxyzSEL (where xyz =
logical database name). It allows you to implement self-programmed value help.
(To implement self-programmed value help for report-specific SELECT-OPTIONS ,
you can use the event key word AT SELECTION-SCREEN ON
HELP-REQUEST FOR … .) If you specify only HELP-REQUEST (without FOR …
), the help refers to both input/output fields of the SELECT-OPTION (i.e. to
sel-LOW and sel-HIGH). Otherwise, it refers only to the specified field. When
the user presses F1 , this triggers the FORM routine sel-LOW_HLP or
sel-HIGH_HLP in the database access program SAPDBxyz (if it exists). If this
addition is specified - and even if the SELECT-OPTION with FOR points to a
Dictionary field - this FORM routine is executed when the user presses F1 and
the documentation of the Dictionary field is not displayed. You can, for example,
branch from the routine sel-LOW_HLP or sel-HIGH_HLP to a function module which
displays its own documentation. 

Example

 

* INCLUDE DBXYZSEL

...

SELECT-OPTIONS S_PTYPE FOR SAPLANE-PLANETYPE HELP-REQUEST.

...

 

REPORT SAPDBXYZ DEFINING DATABASE XYZ

...

TABLES SAPLANE.

...

FORM S_PTYPE-LOW_HLP.

...

  CALL FUNCTION '...'.

...

ENDFORM.

 

FORM S_PTYPE-HIGH_HLP.

...

  CALL FUNCTION '...'.

...

ENDFORM.

Index 
© SAP AG 1996 

SET 

 

Effect

Sets different processing parameters 

Basic forms

1. SET PF-STATUS pfstat. 
2. SET TITLEBAR f. 
3. SET SCREEN scr. 
4. SET CURSOR … 
5. SET PARAMETER ID pid FIELD f. 
6. SET LANGUAGE lg. 
7. SET COUNTRY f. 
8. SET BLANK LINES ON/OFF. 
9. SET MARGIN x y. 
10. SET USER-COMMAND f. 
11. SET LEFT SCROLL-BOUNDARY. 
12. SET EXTENDED CHECK ON/OFF. 
13. SET PROPERTY OF obj p = f. 
14. SET RUN TIME ANALYZER ON/OFF. 

Index 
© SAP AG 1996 

SET 

 

Basic form 8

SET BLANK LINES ON. 
SET BLANKS LINES OFF. 

Effect

These statements allow you to specify whether you want to
output blank lines or not. Use SET BLANK LINES ON to output blank lines or SET
BLANK LINES OFF to suppress them. The default setting is SET BLANK LINES OFF . 

Example

When outputting texts, include blank lines: 

 

DATA: BEGIN OF TEXTTAB OCCURS 100,

        LINE(72),

      END   OF TEXTTAB.

SET BLANK LINES ON.

LOOP AT TEXTTAB.

  WRITE / TEXTTAB-LINE.

ENDLOOP.

Suppress blank lines again with the statement: 

SET BLANK LINES OFF. 

Index 
© SAP AG 1996 

SET COUNTRY 

 

Basic form 7

SET COUNTRY f. 

Effect

Displays the decimal point and date in all subsequent output
( WRITE ) according to the settings specified in the table T005X for the
country ID f . 

The return code value is set as follows: 

SY-SUBRC = 0 The statement was successful. 
SY_SUBRC = 4 The country ID was not found in table T005X . 

Notes

The country must exist in table T005X . Otherwise, the
formats used are "." for the decimal point and "MM/DD/YYYY"
for the date. 
The special form SET COUNTRY SPACE (or f contains SPACE ) resets the decimal
point and date display formats to the setting contained in the current user’s
master record. In this case, table T005X is not read and the return code value
is always 0. 
The effect of SET COUNTRY is not restricted to the current program, but applies
at once to all programs in the current roll area. 

Example

When outputting documents, display the decimal point and
date in the format specified for the country of the recipient: 

 

DATA: RECEIVER_COUNTRY LIKE T005X-LAND,

      DATE             LIKE SY-DATUM,

      AMOUNT           TYPE P DECIMALS 2.

...

SET COUNTRY RECEIVER_COUNTRY.

IF SY-SUBRC = 4.

   WRITE: / RECEIVER COUNTRY, ' is unknown'.

ENDIF.

WRITE: / DATE, AMOUNT.

Then, you can say 

 

SET COUNTRY SPACE.

to display the decimal point and date according to the specification for the
user again. 

Index 
© SAP AG 1996 

SET CURSOR 

Variants

1. SET CURSOR FIELD f. 
2. SET CURSOR LINE lin. 
3. SET CURSOR col lin. 

Effect

Sets the cursor dynamically in display (screen program or
list). 

Variant 1

SET CURSOR FIELD f. 

Additions

1. … OFFSET off 
2. … LINE lin 

Effect

Places the cursor dynamically at the start of the field g
which is specified in the field f . 

Note

With step loops and in list processing, you also need the
addition … LINE lin . 

Addition 1

… OFFSET off 

Effect

Offsets the cursor position by off columns from the start of
the field g which is specified in the field f (1st column = 0). 

Addition 2

… LINE lin 

Effect

Places the cursor in the field g (specified in the field f )
of the loop line lin with step loops, or of the absolute list line lin (
SY-LILLI ) in the case of list processing. 

Notes

Specifying LINE lin is possible only with step loops and in
list processing. In these cases, it is necessary. The name specified in the
field f must be a global field. For field symbols and reference parameters, you
must use the name of the global field which is assigned to the field symbol or
parameter at the time of output (i.e. with " WRITE "). 

Examples

1. Place the cursor on a screen field. 

 

DATA F(5) VALUE 'MODUS'.

DATA MODUS(10) VALUE '1234567890'.

...

MODULE set_cursor OUTPUT.

...

  SET CURSOR FIELD  F.

 

or 

 

  SET CURSOR FIELD 'MODUS'.

 

Both statements place the cursor at the beginning of the
field MODUS . 

SET CURSOR FIELD F OFFSET 2. 
or 

 

  SET CURSOR FIELD 'MODUS' OFFSET 2.

 

Both statements place the cursor on the third character (in
this case the digit "3") of the field MODUS . 

… 

 

ENDMODULE.

 

2. Place the cursor at the beginning of a field when
selecting a line in list processing. 

 

MOVE 'MODUS' TO F.

MOVE '1234567890' TO MODUS.

 

DO 10 TIMES.

  NEW-LINE.   POSITION SY-INDEX   WRITE MODUS.

ENDDO.

 

AT LINE-SELECTION.

  SET CURSOR FIELD F LINE SY-LILLI.

 

or 

 

  SET CURSOR FIELD 'MODUS' LINE SY-LILLI.

 

Both statements place the cursor at the beginning of the
field MODUS on this line when the user double-clicks. 

SET CURSOR FIELD F LINE SY-LILLI OFFSET 2. 
or 

 

  SET CURSOR FIELD 'MODUS' LINE SY-LILLI OFFSET 2.

 

Both statements place the cursor on the third character (in
this case the digit "3") of the field MODUS on this line when the
user double-clicks. 

Variant 2

SET CURSOR LINE lin. 

Additions

1. … OFFSET off 

Effect

Places the cursor dynamically in the loop line lin with step
loops or in the absolute list line lin ( SY-LILLI ) in list processing. This
variant is only possible with step loops and in list processing. 

Addition 1

… OFFSET off 

Effect

Places the cursor off columns from the beginning of the
line. 

Example

Place the cursor at the beginning of the line when selecting
a line in list processing. 

 

DATA MODUS(10) VALUE '1234567890'.

 

DO 10 TIMES.

  NEW-LINE. WRITE MODUS.

ENDDO.

 

AT LINE-SELECTION.

  SET CURSOR LINE SY-LILLI.

 

This statement sets the cursor at the beginning of the line
when the user double-clicks. 

 

  SET CURSOR LINE SY-LILLI OFFSET 2.

 

This statement sets the cursor on the third column (in this
case the digit "3" of the field MODUS ) on this line when the user
double-clicks. 

Variant 3

SET CURSOR col lin. 

Effect

Places the cursor dynamically on the column col and the line
lin of the current screen . 

Example

 

SET CURSOR 60 5.

 

 Positions the cursor on line 5, column 60.

 

Related GET CURSOR 

Index 
© SAP AG 1996 

SET 

 

Basic form 12

SET EXTENDED CHECK OFF. 
SET EXTENDED CHECK ON. 

Effect

You use these statements tot switch the extended syntax
check off or on. 
If the extended syntax check (Transaction SLIN ) reports errors which you do
not consider to be errors, and you want to suppress them in future, you can
insert the above statements at the appropriate places in the program. A "
SET EXTENDED CHECK OFF. " should be followed as soon as possible by a
" SET EXTENDED CHECK ON. ", so that the check is only switched off
for a short time. 

These statements are not interpreted at runtime. You use them only to mark the
source code. 

During the extended syntax check, you can ignore these statements by using the
additional function Include suppressed fields . 

Index 
© SAP AG 1996 

SET 

 

Basic form 6

SET LANGUAGE lg. 

Effect

Initializes all text elements TEXT-nnn and all
language-specific text literals ‘abcd…..’(nnn) ( nnn = text number) in the
specified language. 
If the text pool does not exist in the desired language, searches in the system
language. If the text pool does not exist in the system language either,
searches in the secondary language. 

Notes

The length of the texts must be the same in all languages. 
The effect is restricted to the current program and is neither extended by an
external PERFORM nor by a SUBMIT
from another program. 

Index 
© SAP AG 1996 

SET 

 

Basic form

SET MARGIN x y. 

Effect

Applies only to list output: 

Produces a Print with a margin of x columns on the left and (if specified) y
lines from the top of the page. x and y can be constants or variables. 

Note

The MARGIN specification is always effective on the current
page. 

Index 
© SAP AG 1996 

SET 

 

Basic form 5

SET PARAMETER ID pid FIELD f. 

Effect

Writes the contents of the field f to the global SAP memory
under the key pid . If the key already contains a value, it is overwritten. 

The key pid must consist of three characters. You can find a list of the keys
(parameters) used in the SAP system description or in the ABAP/4 Development
Workbench. 

Notes

· The
global SAP memory remains available to the user during the entire terminal
session. This means that set values are retained when you leave a program. 

· You
should not use the SAP memory for temporary storage of values because
other modes use the same global memory. 

· If
you need a new key (parameter), you can create this in the ABAP/4
Development Workbench. 

 

Example

 

DATA: REPID(8) VALUE 'RFSCHU01'.

SET PARAMETER ID 'RID' FIELD REPID.

Sets the program name, e.g. for transfer to another program. 

Notes

Runtime errors 

· SET_PARAMETER_ID_TOO_LONG
: Key longer than 3 characters. 

· SET_PARAMETER_ID_WRONG_TYPE
: Key neither type C nor type N. 

· SET_PARAMETER_VALUE_TOO_LONG
: Value longer than 250 characters. 

Related GET PARAMETER 

Index 
© SAP AG 1996 

SET 

 

Basic form 1

SET PF-STATUS pfstat. 

Additions

1. … EXCLUDING f or … EXCLUDING itab 
2. … IMMEDIATELY 

Effect

Sets a GUI (Graphical User Interface) status pfstat which
can be up to 8 characters long. There are many of these statuses in the GUI of
a program. Each one describes which functions are available and how you can
select these via menus and menu bars or by pressing function keys or
pushbuttons. For further information about this, refer to the Menu Painter
documentation. 

Setting a status makes the functions contained therein selectable. 

This method allows you to vary the available functions according to the current
screen, list level and/or previous program flow. 

The current status is stored in the system field SY-PFKEY . 

A status remains valid until reset. 

Example

Event in program: 

 

START-OF-SELECTION.

  SET PF-STATUS 'MAIN'.

  WRITE SY-PFKEY.

 

AT USER-COMMAND.

  CASE SY-UCOMM.

    WHEN 'F001'.

      SET PF-STATUS '0001'.

      WRITE SY-PFKEY.

    ...

  ENDCASE.

 

Produces a list (contents MAIN ) with a GUI framework which
allows you to select functions assigned to the the status MAIN . If you choose
the function code F001 (e.g. from the menu or by pressing a pushbutton), you
trigger the event AT USER-COMMAND . This generates a details list (contents
0000) with a GUI framework which allows you to select functions assigned to the
status 0001 . On returning from the details list to the basic list the status
MAIN is reactivated. 

Example

PBO module: 

MODULE PBO_100 OUTPUT. 
SET PF-STATUS ‘S001′. 
ENDMODULE. 
Displays the screen 100 with a GUI framework which allows you to select
functions assigned to the status S001 . 

Notes

· If
no GUI is defined in the list processing (or it is deactivated with SET
PF-STATUS SPACE ), the system supplies a standard user interface. 

· This
statement converts the contents of the field pfstat to type C. The
converted value is used to search for the desired status. Since the
conversion employs the standard conversion rules as for MOVE , you should
use a field similar to type C (e.g. type C or N) for pfstat to avoid
unwanted conversions. In this case, a field of type I with a value of 12
would give the key ‘ 12 ‘. 

Addition 1

… EXCLUDING f 
… EXCLUDING itab 

Effect

Deactivates one or more of the status functions, so that
they cannot be selected. Specify the appropriate function codes using one of
the following: 

· a
field f or a literal which contains a function code 

· an
internal table itab which contains several function codes 

This method allows you simply to modify the selectable
functions of a status at runtime. 

Example

 

DATA: BEGIN OF TAB OCCURS 10,

        FCODE(4),

      END OF TAB.

 

REFRESH TAB.

MOVE 'DELE' TO TAB-FCODE.

APPEND TAB.

MOVE 'AUSW' TO TAB-FCODE.

APPEND TAB.

SET PF-STATUS 'STA3' EXCLUDING TAB.

 

Sets the status STA3 which renders the functions with the
function codes DELE and AUSW inactive. 

Addition 2

… IMMEDIATELY 

Effect

List processing: The status becomes effective for the last
list displayed and is not flagged for the next details list. In screen
processing, this addition has no effect because every status becomes
immediately effective anyway. 

Example

Event in program: 

 

START-OF-SELECTION.

  SET PF-STATUS 'MAIN'.

  WRITE SY-PFKEY.

 

AT USER-COMMAND.

  CASE SY-UCOMM.

    WHEN 'F002'.

      SET PF-STATUS '0002' IMMEDIATELY.

      EXIT.

    ...

  ENDCASE.

 

Selecting the function F002 in the basic list (contents MAIN
, status MAIN ) redisplays the basic list, but this time with the status 0002 . 

Note

Without the addition … IMMEDIATELY , the old status MAIN
becomes active again. 

Index 
© SAP AG 1996 

SET 

 

Basic form 13

SET PROPERTY OF obj p = f. 

Addition

… NO FLUSH 

Effect

Sets the property p of the object obj according to the
contents of the field f . 

The object obj must be of type OLE2_OBJECT . 

SET PROPERTY 

Addition

… NO FLUSH 

Example

Sets the property ‘Visible’ of an EXCEL worksheet. 

 

INCLUDE OLE2INCL.

DATA EXCEL TYPE OLE2_OBJECT.

CREATE OBJECT EXCEL 'Excel.Application'.

SET PROPERTY OF EXCEL 'Visible' = 1.

Related GET PROPERTY 
CALL METHOD 
CREATE OBJECT 
FREE OBJECT 

Index 
© SAP AG 1996 

SET RUN TIME ANALYZER ON/OFF 

 

Variants

1. SET RUN TIME ANALYZER ON. 
2. SET RUN TIME ANALYZER OFF. 

Variant 1

SET RUN TIME ANALYZER ON. 

Addition

… MODE mode 

Effect

Switches on runtime analysis. 

The return code value is set as follows: 

 

 

SY-SUBRC = 0 Runtime analysis was switched on. 
SY-SUBRC <> 0 Runtime analysis was not switched on because the
performance data file was not open. 

Addition

… MODE mode 

Effect

Writes certain records to the performance data file and
assigns the associated performance data to the superior entry. This ensures
that the performance data file does not become too big through entries that
cannot be used individually. 
The processing mode mode controls write behavior when an object is measured.
You can assign a whole value to the processing mode mode . MODE 0 is optional.
MODE 0 has the following meaning: 

· MODE
0 <-> Standard setting 

All records are written to the performance data file. 

Certain flags are set depending on the binary format of mode
whose value is other than zero. If any of the following bits are of the binary
value are set, the procedure is different: 

· 1st
bit <-> With internal tables is switched off. 

The records für APPEND , COLLECT and SORT are omitted. 

· 2nd
bit <-> With technical DB information is switched off. 

Database operations (OPEN, FETCH, CLOSE, LOAD, GET, MODIFY) and buffer
operations (PREPARE, OPEN, FETCH, CLOSE, INSERT, UPDATE, DELETE, COMMIT,
ROLLBACK) are not written to the performance data file. 

· 3rd
bit <-> With subroutines is switched off. 

The records for PERFORM are omitted. 

 

Examples

a) SET RUN TIME ANALYZER ON MODE 3. 
b) SET RUN TIME ANALYZER ON MODE 11. 

a) and b) have the same effect because the 1st and 2nd bits are set in both
cases (see the explanantions above). 

Variant 2

SET RUN TIME ANALYZER OFF. 

Effect

1. Closes the performance data file. 
2. Switches off runtime analysis. 

Example

 

DO 2 TIMES.

  IF SY-UNAME = 'SMITH'.

    CALL FUNCTION 'S_ABAP_TRACE_OPEN_FILE'.

    SET RUN TIME ANALYZER ON.

  ENDIF.

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

* The modularization unit to be measured is called

* here.

* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

  IF SY-UNAME = 'SMITH'.

    SET RUN TIME ANALYZER OFF.

  ENDIF.

ENDDO.

Index 
© SAP AG 1996 

SET 

 

Basic form 3

SET SCREEN scr. 

Effect

In ABAP/4 dialogs, this sets the next screen number. 

In addition to the current screen , processes the screen with the number scr . 

Example

 

SET SCREEN 200.

 

Note

To leave a screen called with CALL
SCREEN or to return from a branch to the transaction selection screen, you
must use the statement 

 

SET SCREEN 0.

or 

 

LEAVE TO SCREEN 0.

Related LEAVE TO SCREEN LEAVE
SCREEN 

Index 
© SAP AG 1996 

SET 

 

Basic form 11

SET LEFT SCROLL-BOUNDARY. 

Addition

… COLUMN col 

Effect

When you create a list, the current write position (system
field SY-COLNO , see WRITE ) is set as the left
boundary of the movable area. When this list page is displayed on the screen,
you can scroll horizontally with the scrollbar only from this list column - all
list column to the left of this are fixed at the left edge. 

Addition

… COLUMN col 

Effect

Sets the column col as the left boundary of the movable
area. 

Note

The last value set by SET SCROLL-BOUNDARY affects the entire
page display and must be reset for each list page (usually in the event
TOP-OF-PAGE ) - although it can be different for each list page. 
The NEW-LINE NO-SCROLLING statement allows you to
exclude individual list lines from horizontal scrolling (e.g. title lines and
indented comment blocks). 

Example

Fix the leading column 

 

DATA: NUMBER     TYPE I,

      SUB_NUMBER TYPE I.

 

NEW-PAGE NO-TITLE NO-HEADING.

 

DO 10 TIMES.

  NUMBER = SY-INDEX.

  DO 10 TIMES.

    SUB_NUMBER = SY-INDEX.

    WRITE: /(10) NUMBER,     '|',

            (10) SUB_NUMBER, '|'.

    SET LEFT SCROLL-BOUNDARY.

Not really necessary here because it was already set in the
event TOP-OF-PAGE . 

 

    WRITE: 'Data 1', '|', 'Data 2', '|',  'Data 3', '|'. " ... 'Data n'

  ENDDO.

ENDDO.

ULINE.

 

TOP-OF-PAGE.

  ULINE.

  WRITE: /(10) 'No',     '|',

          (10) 'Sub_No', '|'.

  SET LEFT SCROLL-BOUNDARY.

  WRITE: 'DATA 1', '|', 'DATA 2', '|',  'DATA 3', '|'. " ... 'DATA n'

  ULINE.

 

This produces the following list: 

—————————————————— 
No | Sub_No | DATA 1 | DATA 2 | DATA 3 | 
—————————————————— 
1 | 1 | Data 1 | Data 2 | Data 3 | 
1 | 2 | Data 1 | Data 2 | Data 3 | 
1 | 3 | Data 1 | Data 2 | Data 3 | 
… 
10 | 8 | Data 1 | Data 2 | Data 3 | 
10 | 9 | Data 1 | Data 2 | Data 3 | 
10 | 10 | Data 1 | Data 2 | Data 3 | 
—————————————————— 

Only the columns DATA 1 , DATA 2 and DATA 3 are moved with horizontal
scrolling. 

Example

Reset the leading column for a new page: 

 

NEW-PAGE.

 

SET LEFT SCROLL-BOUNDARY COLUMN 0.

Index 
© SAP AG 1996 

SET 

 

Basic form 2

SET TITLEBAR f. 

Addition

… WITH g1 g2 … gn 

Effect

Sets a screen title 

You use the Menu Painter to edit these program-driven screen headers. If there
is a text for the three-character title, it is displayed in the title bar of
the next screen. 
If the program is in an external subroutine, the name of the main program is
used as the program name. In contrast, a function module sets a title belonging
to the function group. 
A set title remains valid within a transaction until you call SET TITLEBAR
again. 
After SET TITLEBAR , the system field SY-TITLE contains the current screen
header. 
SY-TITLE can be up to 70 characters long. 

Note

Here, the contents of the field f are converted to a value
of type C (according to the standard conversion rules) and the desired title is
found using this value. It is therefore advisable to use a field similar to
type C (e.g. type C or N) to avoid unwanted conversions. For example, a field
of type I with a value of 9 would give the key ‘ 9 ‘. 

Addition

… WITH g1 g2 … gn 

Effect

Allows you to build up to 9 parameters into the header,
using the variables &1 to &9. Starting on the left, all &
characters are replaced by the corresponding parameter (i.e. the first & is
replaced by the first parameter specified under WITH and so on). If you do not
want a & character to be replaced, you must specify it twice ( &&
). 
If a parameter is missing for one of the title variables, it is replaced by a
blank. 
On account of the upper limit of 70 characters (the length of SY-TITLE , &1
characters can be lost when replacing with WITH . 

Example

 

DATA: PAR1(4) VALUE 'par1',

      PAR2(4) VALUE 'par2'.

 

SET TITLEBAR 'ABC' WITH PAR1 PAR2 'par3'.

If the title "ABC" contains 

"Title & &1 &3 intermediate text & &2 && &
&4" 

the above example would produce a title bar with the text 

"Title par1 par1par3 intermediate text par2 par2 & par3 " . 

Index 
© SAP AG 1996 

SET 

Basic form

SET UPDATE TASK LOCAL. 

Effect

Switches on the local update task. This means that when you
specify CALL FUNCTION …IN UPDATE TASK , the update
data is not stored in the database, but in ABAP/4 memory . The update works as
before. The only difference is that it is not performed in a separate process,
but in the same process as the calling program, i.e. when a COMMIT
WORK occurs, processing does not continue until all the update requests
have been performed. In the standard setting, the normal update task is always
active. 
The switch status is not passed on to programs. This means that CALL TRANSACTION and SUBMIT
use the standard setting. In contrast to this, a module called with CALL DIALOG inherits the switch setting. This is
because CALL TRANSACTION and SUBMIT run in their own LUW , whereas CALL DIALOG
does not. 
On COMMIT WORK and ROLLBACK
WORK the switch is reset. 
Update requests with a delayed start (V2) cannot be processed locally. 
Like in the normal update task, all messages apart from type ‘S’ result in
termination and rollback. 

Note

Unlike the normal update task, the local update task does
not run in its own LUW . If a rollback occurs, any changes made in the dialog
part are also reset. 

The return code value is set as follows: 

 

 

SY-SUBRC = 0 The local update task was switched on. 
SY-SUBRC = 1 The local update task could not be switched on because a CALL
FUNCTION … IN UPDATE TASK has already been started. The system continues in
the normal update mode. 

Example

Switch on local update task: 

 

SET UPDATE TASK LOCAL.

Index 
© SAP AG 1996 

SET 

 

Basic form

SET USER-COMMAND f. 

Effect

Only valid with report list output: 

Sets the contents of the field f as USER-COMMAND and executes them immediately
when the list is next displayed (i.e. the system suppresses the list display
und immediately processes the event AT LINE-SELECTION
, AT USER-COMMAND or, in the case of a system
function code (list of reserved function codes, see AT
USER-COMMAND ), this system function). 
The effect is exactly as if the user had entered the function in the command
field and pressed ENTER . This means that the current positioning of the list (SCROLL ) and the cursor (SET
CURSOR ) is taken into account. 

Note

You can specify SET USER-COMMAND several times in the same
event. 
If you set several functions one after the other with USER-COMMAND when
creating a list, only the last one is effective. 
If the function key ENTER in the GUI status of the relevant list itself
contains a function code, this is executed rather than that specified with SET
USER-COMMAND . 

Example

Process a line selection immediately: 

 

WRITE: 'List'...  "Create a list

SET CURSOR LINE 7.

 

SET USER-COMMAND 'PICK'.

 

The event AT LINE-SELECTION is processed immediately for
list line 7. 

Example

Process a function immediately: 

 

WRITE: 'List'...  "Create a list

 

 

SET USER-COMMAND 'FUN'.

 

Processes the event AT USER-COMMAND immediately; the system
field SY-UCOMM contains the function code FUN . 

Example

Leave list immediately: 

 

WRITE: 'List'...  "Create a list

 

 

SET USER-COMMAND 'BACK'.

 

The list is not displayed, but is left immediately. 

Example

Create list with dialog box ‘Find by…’: 

 

WRITE: 'List'...  "Create a list

 

 

SET USER-COMMAND '%SC'.

 

The list is displayed with the dialog box ‘Find by…’. 

Index 
© SAP AG 1996 

SET USER-COMMAND 

Basic form

SET USER-COMMAND f. 

Effect

Only with report output: 

Interprets the contents of the field f as a user command and executes it as
soon as the list is next displayed, i.e. the list display is suppressed and the
event AT LINE-SELECTION or AT USER-COMMAND is processed or, in the case of a
system function code (list of reserved function codes ), the appropriate system
function is executed. 
The effect is exactly as if the user had entered the function in the command
field and pressed ENTER. This means in particular that the current position of
the list (SCROLL ) and the cursor (SET CURSOR ) are taken into account. 

Note

You can use SET USER-COMMAND recursively, i.e. request the
statement again within the event processed by SET USER-COMMAND. 
If a list of several consecutive functions is defined when creating a list,
only the last of these is effective. 
If the ENTER function key itself contains a function code in the GUI status of
the relevant list, the system executes this and not the function requested with
SET USER-COMMAND. 

Example

Processing a block of selected lines immediately 

 

WRITE ...  "create a list

SET CURSOR LINE 7.

 

SET USER-COMMAND 'PICK'.

 

The event AT LINE-SELECTION is processed at once for the
list line 7. 

Example

Immediate processing of a function 

 

WRITE ...  "create a list

 

 

SET USER-COMMAND 'FUN'.

 

The event AT USER-COMMAND is processed and the system field
SY-UCOMM contains the function code ‘FUN’. 

Example

Leave list immediately 

 

WRITE ...  "create a list

 

 

SET USER-COMMAND 'BACK'.

 

The list is not displayed and the user leaves it
immediately. 

Example

Generate list with pop-up ‘Find by…’ 

 

WRITE ...  "create a list

 

 

SET USER-COMMAND '%SC'.

 

The list is displayed with the system pop-up ‘Find by…’. 

Index 
© SAP AG 1996 

SET 

 

Grundform 10

SET USER-COMMAND f. 

 

Wirkung

Nur bei Report-Listausgaben: 
Der Inhalt des Feldes f wird als USER-COMMAND registriert und bei der nächsten
Listanzeige sofort ausgeführt, d.h. die Listanzeige wird unterdrückt und es
wird sofort das entsprechende Ereignis AT LINE-SELECTION
, AT USER-COMMAND bzw. im Falle eines
Systemfunktioncodes (Liste der reservierten Funktionscodes: siehe AT USER-COMMAND ) diese Systemfunktion prozessiert. 
Die Wirkung ist exakt so, als hätte der Benutzer selbst die entsprechende
Funktion in das OK-Codefeld eingegeben und die ENTER -Taste gedrückt. Dies
bedeutet insbesondere, daß die aktuelle Positionierung der Liste (SCROLL ) und des Cursors (SET
CURSOR ) berücksichtigt werden. 

 

Hinweis

In dem durch SET USER-COMMAND
prozessierten Ereignis darf wieder SET USER-COMMAND verlangt werden. 
Werden während der Erstellung einer Liste mehrere Funktionen nacheinander durch
SET USER-COMMAND gesetzt, dann wirkt nur die jeweils letztgenannte. 
Falls im GUI-Status der betreffenden Liste die Funktionstaste ENTER selbst mit
einem Funktionscode belegt ist, dann wird diese ausgeführt und nicht die mit
SET USER-COMMAND verlangte. 

Beispiel

Sofortiges Prozessieren einer
Zeilenauswahl: 

 

WRITE:
‘List’… "Erstellung einer Liste 
SET CURSOR LINE 7. 
SET
USER-COMMAND ‘PICK’. 
Es wird sofort das Ereignis AT
LINE-SELECTION für die Listzeile 7 prozessiert. 

 

Beispiel

Sofortiges Prozessieren einer
Funktion: 

 

WRITE:
‘List’… "Erstellung einer Liste 
 

SET
USER-COMMAND ‘FUN’. 
Es wird sofort das Ereignis AT
USER-COMMAND prozessiert, das Feld SY-UCOMM enthält den Funktionscode FUN . 

 

Beispiel

Liste sofort verlassen: 

 

WRITE:
‘List’… "Erstellung einer Liste 
 

SET
USER-COMMAND ‘BACK’. 
Die Liste erscheint nicht,
sondern wird sofort wieder verlassen. 

 

Beispiel

Liste mit Popup ‘Suchen nach…’
erzeugen: 

 

WRITE:
‘List’… "Erstellung einer Liste 
 

SET
USER-COMMAND ‘%SC’. 
Die Liste erscheint bereits mit
dem Systempopup ‘Suchen nach…’. 

Index 
© SAP AG 1996 

SHIFT 

 

Variants

1. SHIFT c. 
2. SHIFT c BY n PLACES. 
3. SHIFT c UP TO c1. 
4. SHIFT c LEFT DELETING LEADING c1. 
5. SHIFT c RIGHT DELETING TRAILING c1. 

Variant 1

SHIFT c. 

Additions

1. … CIRCULAR 
2. … RIGHT 
3. … LEFT 

Effect

Shifts the field c one position to the left. Omits the first
letter and inserts a blank on the right. 

Example

 

DATA ALPHABET(10) VALUE 'ABCDEFGHIJ'.

SHIFT ALPHABET.

ALPHABET now contains ‘BCDEFGHIJ ‘ . 

Addition 1

… CIRCULAR 

Effect

Shifts the field c , so that the "lost" character
on the left appears on the right. 

Example

 

DATA ALPHABET(10) VALUE 'ABCDEFGHIJ'.

SHIFT ALPHABET CIRCULAR.

ALPHABET now contains ‘BCDEFGHIJA’ . 

Addition 2

… RIGHT 

Effect

Shifts the field c to the right instead of the left. 

Example

 

DATA ALPHABET(10) VALUE 'ABCDEFGHIJ'.

SHIFT ALPHABET RIGHT CIRCULAR.

ALPHABET now contains ‘JABCDEFGHI’ . The additional specifications can also be
combined. 

Addition 3

… LEFT 

Effect

Shifts the field c to the left. Since this is the default,
you can omit this addition. 

Variant 2

SHIFT c BY n PLACES. 

Additions

Similar to variant 1. 

Effect

Shifts the field c by n positions to the left and inserts
blanks on the right. 

Example

 

DATA ALPHABET(10) VALUE 'ABCDEFGHIJ',

     FIVE TYPE I  VALUE 5.

SHIFT ALPHABET BY FIVE PLACES.

ALPHABET now contains ‘FGHIJ ‘ . 

Note

If n = 0 or has a negative value, c remains unchanged. 
If n is greater than the field length of c , c is padded with blanks. 

Variant 3

SHIFT c UP TO c1. 

Additions

Similar to variant 1. 

Effect

Searches c for the character string in c1 (starting on the
left!). If it finds a match, it shifts the contents of c to the left until the
character string concerned appears on the left. If no match is found, c remains
unchanged. 

The return code value is set as follows: 

SY-SUBRC = 0 c1 was found in c . 
SY_SUBRC = 4 c1 was not found in c ; c remains unchanged. 

Example

 

DATA ALPHABET(10) VALUE 'ABCDEFGHIJ',

     THREE(3)     VALUE    'DEF',

     FOUR(4)      VALUE    'DEF '.

SHIFT ALPHABET UP TO FOUR.

SY-SUBRC is now set to 4 and the field ALPHABET remains unchanged. 

 

SHIFT ALPHABET UP TO THREE CIRCULAR.

SY-SUBRC is now set to 0 and the field ALPHABET contains ‘DEFGHIJABC’. 

Note

The operation searches c for the full length of the string
in c1 , together with any existing blanks. 

Variant 4

SHIFT c LEFT DELETING LEADING c1. 

Variant 5

SHIFT c RIGHT DELETING TRAILING c1. 

Effect

Shifts the field c to the left or right so that it begins or
ends with a character which occurs in c1 and pads it with blanks accordingly. 
If c does not begin or end with a character from c1 , c remains unchanged. 

Example

 

DATA: ALPHABET(15) VALUE '     ABCDEFGHIJ',

      M1(4)        VALUE 'ABCD',

      M2(6)        VALUE 'BJJCA '.

SHIFT ALPHABET LEFT DELETING LEADING M1.

The field ALPHABET is unchanged. 

 

SHIFT ALPHABET LEFT DELETING LEADING SPACE.

The field ALPHABET now contains ‘ABCDEFGHIJ ‘ . 

 

SHIFT ALPHABET RIGHT DELETING TRAILING M2.

The field ALPHABET now contains ‘ ABCDEFGHI’ . 

Note

Performance 
The use of the SHIFT command in WHILE loops should be avoided for performance
reasons. 
Shifting a field one position to the right or left requires approx. 5 msn
(standardized microseconds), while cyclical shifting requires approx. 7 msn.
The variant … LEFT DELETING LEADING … needs about 3,5 msn, the variant
…RIGHT DELETING TRAILING … about 4,5 msn. 
Related CONCATENATE , SEARCH
, SPLIT 

Index 
© SAP AG 1996 

SKIP 

 

Variants

1. SKIP. 
2. SKIP n. 
3. SKIP TO LINE lin. 

Variant 1

SKIP. 

Effect

Outputs a blank line. 

Example

The statements 

 

WRITE: 'Text 1 ......'.

SKIP.

WRITE: 'Text 2 ......'.

produce the following output: 

Text 1 …… 

Text 2 …… 

Variant 2

SKIP n. 

Effect

Outputs n blank lines. 

Note

The SKIP statement is only executed if there are still
enough lines on the current page. Otherwise, a new page is started (see NEW-PAGE LINE-COUNT ). At the beginning of a new page,
SKIP only generates blank lines if this page is the first page of the list or
if this page was explicitly requested by NEW-PAGE .
Otherwise, SKIP statements are ignored at the beginning of a page. At the end
of the last list page, SKIP only generates blank lines if there is more output
(WRITE , ULINE ). Otherwise,
SKIP statements are ignored at the end of the last page. 

Variant 3

SKIP TO LINE lin. 

Effect

Moves the output position to the line lin . You can move up
or down to any position on the current page. The line count starts at 1. 

Example

The statement 

 

REPORT TEST NO STANDARD PAGE HEADING.

 

DATA: ROW TYPE I VALUE 3.

 

WRITE 'Line 1'.

SKIP TO LINE 5.

WRITE 'Line 5'.

SKIP TO LINE ROW

WRITE 'Line 3'.

 

produces the following output: 

Line 1 

Line 3 

Line 5 

Note

The statement SKIP TO LINE lin is executed only if the
contents of lin lie between 1 and the maximum number of lines per page (see NEW-PAGE LINE-COUNT ). 

Index 
© SAP AG 1996 

SORT 

 

Variants

1. SORT itab. 
2. SORT. 

Variant 1

SORT itab. 

Additions

1. … DESCENDING 
2. … ASCENDING 
3. … BY f1 f2 … fi 

Effect

Sorts the entries of the internal table itab in ascending
order. 

The default key is used as the sort key for internal tables. 

Notes

The number of sort fields is restricted to 250. 
The sorting process is not stable, i.e. if no sort is performed for a
predefined sequence of fields, the sequence is not retained. 
To delete all duplicate entries from a sorted internal table, you can specify DELETE ADJACENT DUPLICATES FROM itab after SORT . 
The sort itself uses the Quicksort process where the key fields for all the
data records are retrieved and placed in an area of main memory. 
If there is not enough space in memory, the key fields are written to a temporary
file and sorted by an external sort program. You can modify the directory which
the SORT uses to store such auxiliary files by modifying the SAP profile
parameter DIR_SORTTMP . Normally, auxiliary files are created in the SAP data
directory (SAP profile parameter DIR_DATA ). 

Addition 1

… DESCENDING 

Effect

Sorts itab in descending order. 

Addition 2

… ASCENDING 

Effect

Sorts itab in ascending order (default). 

Addition 3

… BY f1 f2 … fi 

Effect

Sorts itab by the sub-fields f1 , f2 , …, fi which form
the sort key. These fields can be any type (even number fields or tables).
Unless you specify otherwise, the sort is in ascending order. You can also use
additions 1 and 2 before BY if you want all sub-fields to apply. To change the
sort sequence for each individual field, specify DESCENDING or ASCENDING after
each of the sub-fields f1 , f2 , …, fi . 

Example

 

DATA: BEGIN OF PEOPLE OCCURS 5,

        NAME(10),

        AGE TYPE I,

        NATIONALITY(3),

      END   OF PEOPLE.

PEOPLE-NAME = 'Sally'. PEOPLE-AGE = 22.

PEOPLE-NATIONALITY = 'USA'. APPEND PEOPLE.

PEOPLE-NAME = 'Peter'. PEOPLE-AGE = 25.

PEOPLE-NATIONALITY = 'FRG'. APPEND PEOPLE.

PEOPLE-NAME = 'Paula'. PEOPLE-AGE = 22.

PEOPLE-NATIONALITY = 'USA'. APPEND PEOPLE.

PEOPLE-NAME = 'Peter'. PEOPLE-AGE = 23.

PEOPLE-NATIONALITY = 'USA'. APPEND PEOPLE.

SORT PEOPLE.

The sequence of table entries now reads: ‘Paula’ , ‘Peter’ from ‘FRG’ , ‘Peter’
from ‘USA’ , ‘Sally’ . 

 

SORT PEOPLE DESCENDING BY NATIONALITY AGE NAME.

The sequence now reads: ‘Peter’ from ‘USA’ , ‘Sally’ , ‘Paula’ , ‘Peter’ from
‘FRG’ . 

 

SORT PEOPLE DESCENDING BY AGE ASCENDING NAME.

The sequence now reads: ‘Sally’ , ‘Paula’ , ‘Peter’ from ‘USA’ , ‘Peter’ from
‘FRG’ . 

Notes

If a sort criterion is not known until runtime, you can use
SORT itab BY … (name) … to specify it dynamically as the contents of the
field name . If name is blank at runtime, the sort criterion is ignored. If
name contains an invalid component name, a runtime error occurs. 
You can use offset and length specifications to further restrict sort criteria,
regardless of whether they are specified statically or dynamically. 
If itab is an internal table with a header line, you can also use a field
symbol pointing to the header line of itab as a dynamic sort criterion. If the
field symbol does not point to the header line of the internal table, a runtime
error occurs. 

Note

Performance 
The runtime required to sort an internal table increases with the number of
entries and the width of the sort key. 

Sorting an internal table with 100 entries and the 50-byte wide default key
would take about 1300 msn (standardized microseconds). A 30-byte wide sort key
would need about 950 msn. 
If one of the specified sort criteria is itself an internal table, the SORT may
sometimes take longer. 
Runtime errors 

· SORT_ITAB_FIELD_INVALID
:A field symbol used as a dynamic sort criterion does not point to the
header line of the internal table to be sorted. 

 

· SORT_TOO_MANY_FIELDS
: More than 250 sort criteria. 

Related APPEND … SORTED BY 

Variant 2

SORT. 

Additions

1. … DESCENDING (similar to variant 1) 
2. … ASCENDING (similar to variant 1) 
3. … BY f1 f2 … fi 
4. … BY fg 

Effect

Sorts the dataset generated with EXTRACT
by the fields in the field group HEADER (see FIELD-GROUPS
). 
Here, blank fields (i.e. fields not defined with EXTRACT ) are inserted before
all non-blank fields, regardless of whether the sort sequence is in ascending
or descending order. 

Notes

The number of sort criteria is restricted to 50. 
As with variant 1, any sequence of fields you specify for sorting purposes does
not remain fixed. Any sequence of records which belongs to different field
groups, but has the same HEADER field contents, is arbitrary. 
Again like variant 1, sorting takes place in main memory if at all possible. If
there is insufficient space there, ABAP/4 calls an external sort program. You
can modify the directory used to create the temporary auxiliary file by
modifying the SAP profile parameter DIR_SORTTMP . 
As soon as a dataset has been processed with SORT or LOOP
… ENDLOOP , you cannot extract any more records with EXTRACT
. 

Addition 3

… BY f1 f2 … fi 

Effect

Can sort only by fields in the field group HEADER . 
Otherwise, the effect is similar to variant 1. 

Addition 4

… BY fg 

Effect

Sorts by the fields in field group fg . 
However, the only fields which can be sorted are those in the field group
HEADER , i.e. the field group fg can consist only of fields from the field
group HEADER (see INSERT … INTO ). 

Example

 

DATA: ONR(7), DATE TYPE D, POSITION(3) TYPE N,

      CUSTOMER(16),

      PNR(5) TYPE N, NAME(10), UNITS TYPE I,

      ORDERS TYPE I.

FIELD-GROUPS: HEADER, ORDER, PRODUCT, DATE_FIRST.

INSERT ONR DATE POSITION INTO HEADER.

INSERT CUSTOMER          INTO ORDER.

INSERT PNR NAME UNITS    INTO PRODUCT.

INSERT DATE ONR POSITION INTO DATE_FIRST.

ONR = 'GF00012'. DATE = '19921224'.

POSITION = '000'. CUSTOMER = 'Good friend (2.)'.

EXTRACT ORDER.

ADD 1 TO POSITION.

PNR = '12345'. NAME = 'Screw'.  UNITS = 100.

EXTRACT PRODUCT.

ADD 1 TO POSITION.

PNR = '23456'. NAME = 'Nail'.   UNITS = 200.

EXTRACT PRODUCT.

ONR = 'MM00034'. DATE = '19920401'.

POSITION = '000'. CUSTOMER = 'Moneymaker'.

EXTRACT ORDER.

ADD 1 TO POSITION.

PNR = '23456'. NAME = 'Nail'.   UNITS = 300.

EXTRACT PRODUCT.

ADD 1 TO POSITION.

PNR = '34567'. NAME = 'Hammer'. UNITS = 4.

EXTRACT PRODUCT.

ONR = 'GF00011'. DATE = '19921224'.

POSITION = '000'. CUSTOMER = 'Good friend (1.)'.

EXTRACT ORDER.

ADD 1 TO POSITION.

PNR = '34567'. NAME = 'Hammer'. UNITS = 5.

EXTRACT PRODUCT.

SORT BY DATE_FIRST.

LOOP.

  AT ORDER.

    WRITE: /, / DATE, ONR, POSITION,

                CUSTOMER, 'ordered:'.

  ENDAT.

  AT PRODUCT.

    WRITE: /    DATE, ONR, POSITION,

                PNR, NAME, UNITS.

  ENDAT.

ENDLOOP.

This generates the following output: 

01041992 MM00034 000 Moneymaker ordered: 
01041992 MM00034 001 23456 Nail 300 
01041992 MM00034 002 34567 Hammer 4 

24121992 GF00011 000 Good friend (1.) ordered: 
24121992 GF00011 001 34567 Hammer 5 

24121992 GF00012 000 Good friend (2.) ordered: 
24121992 GF00012 001 12345 Screw 100 
24121992 GF00012 002 23456 Nail 200 

Note

Performance 

The runtime required to sort an internal table increases with the number of
entries and the width of the sort key. 

Note

Runtime errors 

· SORT_EXTRACT_TOO_MANY_FIELDS
: More than 50 sort criteria 

 

· SORT_FIELD_NOT_IN_HEADER
: Sort criterion not in field group HEADER 

 

· SORT_NO_HEADER
: Field group HEADER not created 

 

· SORT_WITHIN_LOOP
: SORT on extract dataset within LOOP on extract dataset 

Index 
© SAP AG 1996 

SPLIT 

 

Variants

1. SPLIT f AT g INTO h1 … hn. 
2. SPLIT f AT g INTO TABLE itab. 

Variant 1

SPLIT f AT g INTO h1 … hn. 

Effect

Splits the contents of the f according to the delimiter g
and places them in the fields h1 to hn ( n >= 2). 
g is used in its defined length. 

The return code value is set as follows: 

SY-SUBRC = 0 All hi fields (1 <= i <= n ) were big enough. 
SY_SUBRC = 4 One of the hi fields was not big enough and had to be truncated. 

Examples

 

DATA: NAMES(30)    VALUE 'Charly, John, Peter',

      ONE(10),

      TWO(10),

      DELIMITER(2) VALUE ','.

SPLIT NAMES AT DELIMITER INTO ONE TWO.

Now, ONE has the value "Charly" and TWO has the value "John,
Pete" . 
SY-SUBRC is set to 4, since TWO was not big enough to include "John,
Peter" . 

 

DATA: NAMES2(30) VALUE 'Charly, John, Peter',

      THREE(10)  VALUE 'New York',

      FOUR(10),

      FIVE(10),

      SIX(10)    VALUE 'SAP'.

SPLIT NAMES2 AT ',' INTO THREE FOUR FIVE SIX.

IF THREE = 'Charly' AND

   FOUR  = ' John'  AND

   FIVE  = ' Peter' AND

   SIX   = SPACE.

  WRITE 'SPLIT is OK'.

ENDIF.

Outputs "SPLIT is OK" . 

Note

· Unless
the number of target fields is greater than the number of delimiters in
the source field, very little information ought to be lost. Therefore, the
last target field in this case contains the "rest", including
the delimiters (see first example). 

· If
the source field does not contain the separator sequence at all, it is
copied incomplete to the first target field. 

 

Variant 2

SPLIT f AT g INTO TABLE itab. 

Effect

Like variant 1. 

Stores the components of f in the internal table itab . For each part of f , a
"special" table line is created. 
f is considered without trailing blanks. 

Example

 

DATA: BEGIN OF ITAB OCCURS 10,

        WORD(20),

      END   OF ITAB.

SPLIT 'STOP Two STOP Three STOP   ' AT 'STOP' INTO TABLE ITAB.

Now, ITAB has three lines. The first line is blank, the second contains ‘Two’
and the third contains ‘Three’ . 

Note

Performance 
The runtime required for the SPLIT command in the first example for variant 1
is about 15 msn (standardized microseconds). If the sub-fields of f are written
to an internal table, about 30 msn are needed. 
Related CONCATENATE , SEARCH
, SHIFT 

Index 
© SAP AG 1996 

START-OF-SELECTION 

 

Basic form

START-OF-SELECTION. 

Effect

This is an event key word. 

Before the first logical database table access, it introduces any initial
processing to be executed prior to the block specified under the next event key
word 

Note

The REPORT statement automatically
starts the START-OF-SELECTION processing. Any processing between the REPORT
statement and the subsequent event key word is executed at START-OF-SELECTION .

Immediately after, the processing block introduced by an explicit
START-OF-SELECTION is executed. 
Related INITIALIZATION , END-OF-SELECTION 

Index 
© SAP AG 1996 

STATICS 

 

Variants

1. STATICS f. 
2. STATICS f(len). 
3. STATICS: BEGIN OF rec, 
… 
END OF rec. 
4. STATICS: BEGIN OF itab OCCURS n, 
… 
END OF itab. 

Effect

The STATICS statement is a variation of the DATA statement. It allows you to define variables in a
procedure (i.e. a FORM or FUNCTION ) with local visibility, but static
validity. 

Static validity means that, unlike normal local variables, the life of static
variables does not depend on the defining procedure, but on the program at
runtime. Static variables are thus not redefined on the stack each time the
defining procedure is called, but exist independently of this in the program
and keep their value, regardless of calls to the defining procedure. 

Like all other data objects , static variables always have a particular data
type. Data types and data objects are important components of the ABAP/4 type
concept . 

Example

 

DATA RESULT TYPE I.

 

PERFORM RANDOM CHANGING RESULT.

 

FORM RANDOM CHANGING P_RESULT TYPE I.

  STATICS L_STATE TYPE I.

  L_STATE = ( L_STATE * 113 + 34 )  MOD 256.

  P_RESULT = L_STATE.

ENDFORM.

Index 
© SAP AG 1996 

STOP 

 

Basic form

STOP. 

Effect

Cancels all data selection. No further tables are read. 

Note

STOP is followed immediately by the END-OF-SELECTION
processing. If you do not want this, you may have to use EXIT
instead. 
Related EXIT , CHECK
, REJECT 

Index 
© SAP AG 1996 

SUBMIT 

 

Basic form

SUBMIT rep. 

Additions

1. … LINE-SIZE col 
2. … LINE-COUNT lin 
3. … TO SAP-SPOOL 
4. … VIA SELECTION-SCREEN 
5. … AND RETURN 
6. … EXPORTING LIST TO MEMORY 
7. … USER user VIA JOB job NUMBER n 
8. … Various additions for parameter transfer to rep 
9. … USING SELECTION-SETS OF PROGRAM prog 

Effect

Calls the report rep . Leaves the active program and starts
the new report rep . 

Addition 1

… LINE-SIZE col 

Effect

Prints the report with the line width col . 

Addition 2

… LINE-COUNT lin 

Effect

Prints the report with lin lines (per page). 

Addition 4

… VIA SELECTION-SCREEN 

Effect

Displays the selection screen for the user. In this case,
the selection screen is redisplayed after return from the report list display -
the user’s entries are retained. 

Addition 5

… AND RETURN 

Effect

Returns to the calling transaction or program after the
called program has been executed. SUBMIT … AND RETURN creates a new internal
mode . 

Addition 6

… EXPORTING LIST TO MEMORY 

Effect

Does not display the output list of the called report, but
saves it in SAP memory and leaves the called report immediately. Since the
calling program can read the list from memory and process it further, you need
to use the addition … AND RETURN . Also, since the called report cannot be
requested for printing, the addition … TO SAP-SPOOL is not allowed here. You
can read the saved list from SAP memory with the function module
‘LIST_FROM_MEMORY’ and then (for example) store it in the database with EXPORT . You can process this list further with the
function modules ‘WRITE_LIST’ , ‘DISPLAY_LIST’ … of the function group
"SLST" . 

Addition 7

… USER user VIA JOB job NUMBER n 

Effect

Schedules the specified report in the job specified by the
job name job and the job number n . The job runs under the user name user and
you can omit the addition USER user . The assignment of the job number occurs
via the function module JOB_OPEN (see also the documentation for the function
modules JOB_CLOSE and JOB_SUBMIT . This addition can only be used with the
addition …AND RETURN . 

Note

When scheduling a report with the SUBMIT … VIA JOB job
NUMBER n statement, you should always use the addition …TO SAP-SPOOL to pass
print and/or archive parameters. Otherwise, default values are used to generate
the list and this disturbs operations in a production environment. 

Addition 9

… USING SELECTION-SETS OF PROGRAM prog 

Effect

Uses variants of the program prog when executing the program
rep . 

Note

Important 

The programs prog and rep must have the same SELECT-OPTIONS
and PARAMETER s. Otherwise, variants of the program
prog may be destroyed. 

Note

When using this addition, the specified variant vari of the
program prog is taken in USING SELECTION-SET vari .
On the other hand, all variant-related actions on the selection screen of rep
(Get , Save as variant , Display , Delete ) refer to the variants of prog . 

Example

 

SUBMIT REPORT01

       VIA SELECTION-SCREEN

       USING SELECTION-SET 'VARIANT1'

       USING SELECTION-SETS OF PROGRAM 'REPORT00'

       AND RETURN.

 

Effect

Executes the program REPORT01 with the variant VARIANT1 of
the program REPORT00 . 

Note

Runtime errors 

· LOAD_PROGRAM_NOT_FOUND
: The specified program was not found. 

· SUBMIT_WRONG_TYPE
: The specified program is not a report. 

· SUBMIT_IMPORT_ONLY_PARAMETER
: Only one value passed to a report parameter. 

· SUBMIT_WRONG_SIGN
: Invalid value passed to a selection with the addition SIGN . 

· SUBMIT_IN_ITAB_ILL_STRUCTURE
: Table passed to a selection with WITH sel IN itab had an unexpected structure. 

Index 
© SAP AG 1996 

Passing parameters with SUBMIT 

 

Variants

1. … USING SELECTION-SET vari 
2. … WITH p op f SIGN s 
3. … WITH p BETWEEN f1 AND f2 SIGN s 
4. … WITH p NOT BETWEEN f1 AND f2 SIGN s 
5. … WITH p IN sel 
6. … WITH SELECTION-TABLE seltab 
7. … WITH FREE SELECTIONS texpr 

Effect

Passes values to the SELECT-OPTIONS
and PARAMETERS of the program rep (these can also be
defined in the database program SAPDBldb of the relevant logical database ldb
). p is the name of a parameter or selection criterion . 

Variant 1

… USING SELECTION-SET vari 

Effect

The variable vari contains the name of a variant used to
start the report. 

Variant 2

… WITH p op f SIGN s 

Effect

op is one of the operations EQ, NE, CP, NP, GE, LT, LE, GT .
s is a variable which must contain one of the values ‘I’ or ‘E’ (any other
values result in a runtime error). The addition SIGN is optional and the
default is ‘I’ . If p is a selection criterion (SELECT-OPTIONS
), an entry with LOW = f , OPTION = op and SIGN = s is generated in the
relevant internal table. 
If p is a parameter (PARAMETERS ), the system treats
all options like EQ , i.e. it always transfers a single value. The field f is
passed to the parameter p or to the field p-LOW of the selection criterion (xxx
in the above list) in internal format. If p is not the same type as f , a type
conversion is performed in the target report when data is passed. 

Variant 3

… WITH p BETWEEN f1 AND f2 SIGN s 

Effect

Passes the range with the lower limit f1 and the upper limit
f2 to the selection criterion p . As with variant 2, f1 and f2 are passed in
internal format and the handling of SIGN is also the same. The system thus
generates an entry with LOW = f1 , HIGH = f2 , OPTION = BT and SIGN = s . When
data is passed, a type conversion is performed. 

Variant 4

… WITH p NOT BETWEEN f1 AND f2 SIGN s 

Effect

Similar to 3, except that OPTION NB is generated instead of
OPTION BT . 

Variant 5

… WITH p IN sel 

Effect

p is a selection criterion and sel is an internal table
which is compatible with p and contains the transfer values. You are
recommended to define sel with RANGES . The lines of
sel must have exactly the same structure as the lines of a sdlection table (see
SELECT-OPTIONS ). 

Variant 6

… WITH SELECTION-TABLE seltab 

Effect

seltab is an internal table with the structure RSPARAMS. 
This variant allows you to set the names and contents of the parameters and
selection options dynamically at runtime. 
You can use the function module RS_REFRESH_FROM_SELECTOPTIONS to read the
contents of the parameters and selection options of the current program into an
internal table seltab with the structure RSPARAMS . By using SUBMIT … WITH
SELECTION-TABLE seltab , you can then pass these values on directly. 

Variant 7

… WITH FREE SELECTIONS texpr 

Effect

Passes dynamic selections. 

texpr is an internal table of the type RSDS_TEXPR (see type pool RSDS). 

Note

You can, for example, fill the object texpr in one of the
following ways: 

· While
processing a report with dynamic selections, call the function module
RS_REFRESH_FROM_DYNAMICAL_SEL . This returns an object of the type
RSDS_TRANGE which a subsequent function module FREE_SELECTIONS_RANGE_2_EX
then converts to an object of the type RSDS_TEXPR . In this way, you can
pass on the dynamic selections of the current report with SUBMIT . 

· Call
the function modules FREE_SELECTIONS_INIT and FREE_SELECTIONS_DIALOG in
order to offer the user a dialog for entering dynamic selections. These
function modules return an object of the type RSDS_TEXPR . 

 

Notes

You can combine the variants 1-7 in any permutation. The same
selection criterion may be addressed several times with WITH . This generates
several lines in the internal table assigned to the selection
criterion p . You can also combine parameter transfer using a variant with
explicit parameter passing via the WITH clause. In the event of a conflict, the
parameter passed explicitly overwrites the corresponding parameter or selection
criterion from the variant. Addition 6 ( WITH SELECTION-TABLE ) can be combined
with parameter transfer using a variant (like directly written WITH clauses),
but not with direct WITH clauses. 
The values passed during SUBMIT are not taken over until the event INITIALIZATION has been processed, i.e. default values
set at INITIALIZATION are overwritten if values are
passed for the PARAMETER or SELECT-OPTION
during SUBMIT . 

Example

1st combination - variant and WITH 

 

RANGES RANGE_LANGU FOR SY-LANGU.

 

PARAMETERS: MSG_FR LIKE T100-MSGNR,

            MSG_TO LIKE T100-MSGNR.

 

MOVE: 'I'  TO RANGE_LANGU-SIGN,

      'BT' TO RANGE_LANGU-OPTION,

      'D'  TO RANGE_LANGU-LOW,

      'I'  TO RANGE_LANGU-HIGH.

APPEND RANGE_LANGU.

 

MOVE: 'EQ'  TO RANGE_LANGU-OPTION,

      'E'   TO RANGE_LANGU-LOW.

APPEND RANGE_LANGU.

 

SUBMIT REPORT00

       USING SELECTION-SET 'VARIANT1'

       WITH  MSG   BETWEEN MSG_FR AND MSG_TO

       WITH  LANGU IN RANGE_LANGU.

 

Example

2nd combination - variant and WITH SELECTION-TABLE 

 

DATA: BEGIN OF SELTAB OCCURS 5.

  INCLUDE STRUCTURE RSPARAMS.

DATA: END OF SELTAB.

 

MOVE: 'LANGU' TO SELTAB-SELNAME,

      'S'      TO SELTAB-KIND,      " SELECT-OPTION

      'I'      TO SELTAB-SIGN,

      'BT'     TO SELTAB-OPTION,

      'D'      TO SELTAB-LOW,

      'I'      TO SELTAB-HIGH.

APPEND SELTAB.

 

MOVE: 'E'      TO SELTAB-SIGN,

      'EQ'     TO SELTAB-OPTION,

      'F'      TO SELTAB-LOW,

      SPACE    TO SELTAB-HIGH.

APPEND SELTAB.

 

CLEAR SELTAB.

MOVE: 'ARBGB' TO SELTAB-SELNAME,

      'P'      TO SELTAB-KIND,      " PARAMETER

      'XX'     TO SELTAB-LOW.

APPEND SELTAB.

 

 

SUBMIT REPORT00

       USING SELECTION-SET 'VARIANT1'

       WITH  SELECTION-TABLE SELTAB

       AND RETURN.

Index 
© SAP AG 1996 

SUBMIT TO SAP-SPOOL 

 

Basic form

SUBMIT rep … TO SAP-SPOOL. 

Additions

1. … DESTINATION dest 
… COPIES cop 
… LIST NAME name 
… LIST DATASET dsn 
… COVER TEXT text 
… LIST AUTHORITY auth 
… IMMEDIATELY flag 
… KEEP IN SPOOL flag 
… NEW LIST IDENTIFICATION flag 
… DATASET EXPIRATION days 
… LINE-COUNT lin 
… LINE-SIZE col 
… LAYOUT layout 
… SAP COVER PAGE mode 
… COVER PAGE flag 
… RECEIVER rec 
… DEPARTMENT dep 
… ARCHIVE MODE armode 
… ARCHIVE PARAMETERS arparams 
… WITHOUT SPOOL DYNPRO 

2. … SPOOL PARAMETERS params 
… ARCHIVE PARAMETERS arparams 
… WITHOUT SPOOL DYNPRO 

Effect

Calls the report rep with list output to the SAP spool
database. 

Additions

… DESTINATION dest (output device) 

… COPIES cop (number of copies) 

… LIST NAME name (name of list) 

… LIST DATASET dsn (name of spool dataset) 

… COVER TEXT text (title of spool request) 

… LIST AUTHORITY auth (authorization for display) 

… IMMEDIATELY flag (print immediately ?) 

… KEEP IN SPOOL flag (keep list after print ?) 

… NEW LIST IDENTIFICATION flag (new spool request ?) 

… DATASET EXPIRATION days (number of days list retained) 

… LINE-COUNT lin ( lin lines per page) 

… LINE-SIZE col ( col columns per line) 

… LAYOUT layout (print format) 

… SAP COVER PAGE mode ( SAP cover sheet ?) 

… COVER PAGE flag (selection cover sheet ?) 

… RECEIVER rec ( SAP user name of 
recipient) 

… DEPARTMENT dep (name of department) 

… ARCHIVE MODE armode (archiving mode) 

… ARCHIVE PARAMETERS arparams (structure with archiving 
parameters) 

… WITHOUT SPOOL DYNPRO (skip print control screen) 
With the parameters IMMEDIATELY , KEEP IN SPOOL , NEW LIST IDENTIFICATION and
COVER TEXT , flag must be a literal or character field with the length 1. If
flag is blank, the parameter is switched off, but any other character switches
the parameter on. You can also omit any of the sub-options of PRINT ON . mode
with SAP COVER PAGE can accept the values ‘ ‘ , ‘X’ and ‘D’ . These values have
the following meaning: 

‘ ‘ : Do not output cover sheet 
‘X’ : Output cover sheet 
‘D’ : Cover sheet output according to printer setting 

armode with ARCHIVE MODE can accept the values ‘1′ , ‘2′ and ‘3′ . These values
have the following meaning: 

‘1′ : Print only 
‘2′ : Archive only 
‘3′ : Print and archive 

arparams with ARCHIVE PARAMETERS must have the same structure as ARC_PARAMS .
This parameter should only be processed with the function module
GET_PRINT_PARAMETERS . 

Effect

Output is to the SAP spool database with the specified
parameters. If you omit one of the parameters, the system uses a default value.
Before output to the spool, you normally see a screen where you can enter
and/or modify the spool parameters. However, you can suppress this screen with
the following statement: 

 

 ... TO SAP-SPOOL WITHOUT SPOOL DYNPRO

This you could use this option if all the spool parameters have already been set! 

Note

When specifying the LINE-SIZE , you should not give any
value > 132 because most printers cannot print wider lists. 

Addition 2

… SPOOL PARAMETERS params (structure with print 
parameters) 
… ARCHIVE PARAMETERS arparams (Structure with archive 
parameters) 
… WITHOUT SPOOL DYNPRO (skip print parameters 
screen) 

Effect

Output is to the SAP spool database with the specified
parameters. The print parameters are passed by the field string params which
must have the structure of PRI_PARAMS . The field string can be filled anf
modified with the function module GET_PRINT_PARAMETERS . The specification
arparams with ARCHIVE PARAMETERS must have the structure of ARC_PARAMS . This
parameter should only be processed with the function module GET_PRINT_PARAMETERS
. Before output to the spool, you normally see a screen where you can enter
and/or modify the spool parameters. However, you can suppress this screen with
the following statement: 

 

 ... WITHOUT SPOOL DYNPRO

 

Example

 

* Without archiving

DATA: PARAMS LIKE PRI_PARAMS,

      DAYS(1)  TYPE N VALUE 2,

      COUNT(3) TYPE N VALUE 1,

      VALID    TYPE C.

 

CALL FUNCTION 'GET_PRINT_PARAMETERS'

  EXPORTING DESTINATION           = 'LT50'

            COPIES                = COUNT

            LIST_NAME             = 'TEST'

            LIST_TEXT             = 'SUBMIT ... TO SAP-SPOOL'

            IMMEDIATELY           = 'X'

            RELEASE               = 'X'

            NEW_LIST_ID           = 'X'

            EXPIRATION            = DAYS

            LINE_SIZE             = 79

            LINE_COUNT            = 23

            LAYOUT                = 'X_PAPER'

            SAP_COVER_PAGE        = 'X'

            COVER_PAGE            = 'X'

            RECEIVER              = 'SAP*'

            DEPARTMENT            = 'System'

            NO_DIALOG             = ' '

  IMPORTING OUT_PARAMETERS        = PARAMS

            VALID                 = VALID.

 

IF VALID <> SPACE.

  SUBMIT RSTEST00 TO SAP-SPOOL

    SPOOL PARAMETERS PARAMS

    WITHOUT SPOOL DYNPRO.

ENDIF.

 

Example

 

* With archiving

DATA: PARAMS   LIKE PRI_PARAMS,

      ARPARAMS LIKE ARC_PARAMS,

      DAYS(1)  TYPE N VALUE 2,

      COUNT(3) TYPE N VALUE 1,

      VALID    TYPE C.

 

CALL FUNCTION 'GET_PRINT_PARAMETERS'

  EXPORTING DESTINATION            = 'LT50'

            COPIES                 = COUNT

            LIST_NAME              = 'TEST'

            LIST_TEXT              = 'SUBMIT ... TO SAP-SPOOL'

            IMMEDIATELY            = 'X'

            RELEASE                = 'X'

            NEW_LIST_ID            = 'X'

            EXPIRATION             = DAYS

            LINE_SIZE              = 79

            LINE_COUNT             = 23

            LAYOUT                 = 'X_PAPER'

            SAP_COVER_PAGE         = 'X'

            COVER_PAGE             = 'X'

            RECEIVER               = 'SAP*'

            DEPARTMENT             = 'System'

            SAP_OBJECT             = 'RS'

            AR_OBJECT              = 'TEST'

            ARCHIVE_ID             = 'XX'

            ARCHIVE_INFO           = 'III'

            ARCHIVE_TEXT           = 'Description'

            NO_DIALOG              = ' '

  IMPORTING OUT_PARAMETERS         = PARAMS

            OUT_ARCHIVE_PARAMETERS = ARPARAMS

            VALID                  = VALID.

 

IF VALID <> SPACE.

  SUBMIT RSTEST00 TO SAP-SPOOL

    SPOOL PARAMETERS PARAMS

    ARCHIVE PARAMETERS ARPARAMS

    WITHOUT SPOOL DYNPRO.

ENDIF.

Index 
© SAP AG 1996 

SUBTRACT 

 

Basic form

SUBTRACT n1 FROM n2. 

Effect

Subtracts the contents of n1 from the contents of n2 and
stores the result in n2 . 

This is equivalent to: n2 = n2 - n1. 

Example

 

DATA NUMBER TYPE P VALUE 3,

     RESULT TYPE I VALUE 7.

SUBTRACT NUMBER FROM RESULT.

The field RESULT now contains 4; the value of NUMBER remains unchanged at 3. 

Note

Performance 
The remarks about conversions and performance under COMPUTE
apply equally to SUBTRACT . 
The runtime required to subtract two numbers of type I or F is approx. 2 msn
(standardized microseconds). For numbers of type P, about 9 msn are needed. 

Note

Runtime errors 

· BCD_BADDATA
: P field contains no correct BCD format 

· BCD_FIELD_OVERFLOW
: Result field is too small (type P ) 

· BCD_OVERFLOW
: Overflow with arithmetic operation (type P ) 

· COMPUTE_INT_MINUS_OVERFLOW
: Whole number overflow during subtraction 

Related COMPUTE , SUBTRACT-CORRESPONDING
Index 
© SAP AG 1996 

SUBTRACT-CORRESPONDING 

 

Basic form

SUBTRACT-CORRESPONDING rec1 FROM rec2. 

Effect

Interprets rec1 and rec2 as field strings. If, for example,
rec1 and rec2 are tables, executes the statement for their header lines. 

Searches for all sub-fields which occur both in rec1 and rec2 and then
generates, for all relevant field pairs corresponding to the component fields
ni , statements of the form 

 

SUBTRACT rec1-ni FROM rec2-ni.

The other fields remain unchanged. 

With complex structures, the full names of the field pairs must be identical. 

Example

 

DATA: BEGIN OF PERSON,

        NAME(20)     VALUE 'Paul',

        MONEY TYPE I VALUE 5000,

      END   OF PERSON,

      BEGIN OF PURCHASES OCCURS 10,

        PRODUCT(10),

        MONEY TYPE I,

      END   OF PURCHASES.

PURCHASES-PRODUCT = 'Table'.

PURCHASES-MONEY = 100.

APPEND PURCHASES.

 

PURCHASES-PRODUCT = 'Chair'.

PURCHASES-MONEY =  70.

APPEND PURCHASES.

 

LOOP AT PURCHASES.

  SUBTRACT-CORRESPONDING PURCHASES FROM PERSON.

ENDLOOP.

The value of PERSON-MONEY is now 4830. The above SUBTRACT-CORRESPONDING
statement (executed twice here) is equivalent to: 

 

SUBTRACT PURCHASES-MONEY FROM PERSON-MONEY.

 

Note

All fields of the same name are subtracted, whether they are
numeric or not. Here, the conversions performed are the same as with SUBTRACT and the same runtime errors can occur. 
Related SUBTRACT 
MOVE-CORRESPONDING 
ADD-CORRESPONDING 
MULTIPLY-CORRESPONDING 
DIVIDE-CORRESPONDING 

Index 
© SAP AG 1996 

SUM 

 

Basic form

SUM. 

Effect

When processing an internal table in a block starting with LOOP and concluded by ENDLOOP
, SUM calculates the control totals of all fields of type I , F and P (see also
ABAP/4 number types ) and places them in the LOOP output area (header line of
the internal table or an explicitly specified work area). 

You can use the SUM statement both at the end and the beginning of a control
group (see also AT FIRST/LAST ). 

Example

Display the table T with sub-totals: 

DATA: BEGIN OF T OCCURS 100, 
CODE(4), 
SALES TYPE P, 
DISCOUNT TYPE P, 
END OF T. 
… 
LOOP AT T. 
AT FIRST. 
SUM. 
WRITE: /4 ‘Grand Total:’, 
20 T-SALES, 40 T-DISCOUNT. 
ULINE. SKIP. 
ENDAT. 
WRITE: / T-CODE, 
20 T-SALES, 40 T-DISCOUNT. 
AT END OF CODE. 
SUM. 
WRITE: / T-CODE, 10 ‘Total:’, 
20 T-SALES, 40 T-DISCOUNT. 
SKIP. 
ENDAT. 
ENDLOOP. 

Notes

When you use SUM in a LOOP with an explicitly specified
output area, this output area must be compatible with the line type of the
internal table. 
When using LOOP to process a sorted extract (see SORT ), the control total of f at the end of the group
appears in the field SUM(f) - - if f is type I , F
or P . 

Note

Runtime errors 

· SUM_OVERFLOW
: Value too large when calculatng totals in internal table, field too
small. 

 

· SUM_NO_INTERNAL_TABLE
: The SUM statement was used outside a LOOP on an internal table. 

 

· SUM_ON_FOREIGN_INTERNAL_TABLE
: The SUM statement was used in a LOOP belonging to another ABAP/4
program. 

Index 
© SAP AG 1996 

SUMMARY 

 

Basic form

SUMMARY. 
This key word corresponds to 

FORMAT INTENSIFIED ON 

which should be used instead for the sake of clarity. 

Note

When outputting data to a list, you can use the addition
INTENSIFIED ON of the WRITE statement to modify the
output format for individual fields. 
Related FORMAT 

Index 
© SAP AG 1996 

SUM 

 

Basic form

… SUM(g) …. 

Effect

SUM(g) is not a statement, but a field which is
automatically created and filled when g is a sub-field of an extract dataset . 

SUM(g) can only be addressed from within a LOOP on a
sorted extract dataset. 

If g is a numeric field in an extract dataset (see also ABAP/4 number types ),
SUM(g) contains the appropriate control total at the end of a control level (AT END OF , AT LAST ). 
Related CNT(h) 

Index 
© SAP AG 1996 

SUPPRESS 

 

Basic form

SUPPRESS DIALOG. 

Effect

Suppresses output of the current screen. 

However, flow control continues normally and dialog resumes on the next screen. 

Note

SUPPRESS DIALOG should only be used in a PBO ( PROCESS
BEFORE OUTPUT ) module. 

Index 
© SAP AG 1996 

SYNTAX-CHECK 

 

Basic forms

1. SYNTAX-CHECK FOR itab …MESSAGE f …LINE g …WORD
h. 
2. SYNTAX-CHECK FOR DYNPRO h f e m …MESSAGE f1 …LINE
f2 
…WORD f3. 

Index 
© SAP AG 1996 

SYNTAX-CHECK 

 

Basic form

SYNTAX-CHECK FOR DYNPRO h f e m …MESSAGE f1 …LINE f2 
…WORD f3. 

Additions

1. … OFFSET f1 
2. … TRACE-TABLE t1 

Effect

Syntax check for screen 

The screen description is taken from the field string h and the internal tables
f , e and m . The field string h (screen header) should correspond to the
structure D020S , the internal table f (field list) to the structure D021S ,
the internal table e (flow logic) to the structure D022S and the internal table
m (matchcode information) to the structure D023S . 

Example

 

DATA: DHEAD    LIKE D020S,               "screen header

      DFIELDS  LIKE D021S OCCURS 20,     "field list

      DFLOWL   LIKE D022S OCCURS 20,     "flow logic

      MCINFO   LIKE D023S OCCURS 20.     "matchcode information

If a syntax error is detected during the check, the fields
f1 , f2 and f3 are filled as follows: 
- f1 contains the error message text 
- f2 contains the screen line where the error occurred 
- f3 contains the incorrect word in the screen 

The return code value is set as follows: 

SY-SUBRC = 0 The screen contains no syntax errors. 
SY_SUBRC = 4 The screen contains syntax errors. 

Addition 1

… OFFSET f1 

Effect

When a systax error occurs, this field contains the position
of the incorrect word in the incorrect line. 

Addition 2

… TRACE-TABLE t1 

Effect

Any trace output is stored in this table. Trace output is
automatically switched on when you specify this addition. 

Index 
© SAP AG 1996 

SYNTAX-CHECK 

 

Basic form

SYNTAX-CHECK FOR itab …MESSAGE f …LINE g …WORD h. 

Additions

1. … PROGRAM f1 
2. … INCLUDE f2 
3. … OFFSET f3 
4. … TRACE-TABLE t1 
5. … DIRECTORY ENTRY f4 
6. … REPLACING f5 
7. … FRAME ENTRY f6 
8. … MESSAGE-ID f7 
9. … ID tabid TABLE itab 

Effect

Syntax check for programs 

The program code is taken from the internal table itab . If a syntax error is
detected during the check, the fields f , g and h are filled as follows: - f
contains the error message text - g contains the program line where the error
occurred - h contains the incorrect word in the program 

Example

f and h are declared as text fields and g as a whole number
(integer). 

 

DATA: f(240),

      g TYPE I,

      h(72).

 

The return code value is set as follows: 

SY-SUBRC = 0 The program contains no syntax errors. 
SY_SUBRC = 4 The program contains syntax errors. 
SY-SUBRC = 8 Other errors hav occurred. 

Addition 1

… PROGRAM f1 

Effect

Specifies a program name 

If the addition DIRECTORY ENTRY is missing, the program name is used to
determine the program attributes required for the check, e.g.: 
- include or program - the logical database 
The field f1 is meant to contain the field attributes of SY-REPID . 

Addition 2

… INCLUDE f2 

Effect

If there is a syntax error, this field contains the name of
the include program where the error occurred. 
The field f2 is meant to contain the field attributes of SY-REPID . 

Addition 3

… OFFSET f3 

Effect

If there is a syntax error, this field contains the position
of the incorrect word in the incorrect line. 
The field f3 should be declared as a whole number (integer). 

Addition 4

… TRACE-TABLE t1 

Effect

Trace output is stored in this table. To switch trace output
on or off during program checks, you use the SYNTAX-TRACE ON and SYNTAX-TRACE
OFF statements. 

Addition 5

… DIRECTORY ENTRY f4 

Effect

The program attributes required for the check are taken from
the field f4 which must correspond to the structure of the table TRDIR . 

Addition 6

… REPLACING f5 
The field f5 is meant to contain the field attributes of SY-REPID . 

Effect

The program code placed in the internal table is an include,
not the main program. Therefore, it is the main program specified under PROGRAM
which is to be checked. If this program contains an include name f5 , the
contents of the internal table should be taken into account instead. 
You should use this addition only with PROGRAM . 

Addition 7

… FRAME ENTRY f6 

Effect

The main program attributes required for the check (e.g.
logical database, program type) are taken from the field f6 . f6 should have
the structure of the table TRDIR . 

Addition 8

… MESSAGE-ID f7 

Effect

If a syntax error occurs, the field f7 contains the relevant
message key which has a structure similar to the table TRMSG . 

Addition 9

… ID tabid TABLE itab 

Effect

Returns syntax check information. tabid contains the type of
information written to the internal table itab . 
For correction proposals ( ID ‘CORR’ ), the type group SLIN must be included,
for other information the tyep group SYNT . Both these type groups contain the
necessary type specifications. 
Please do not use this addition. It is intended only for internal use! 
tabid outputs the following information from the program code: ID ‘MSG ‘ …
warning messages ID ‘CORR’ … correction proposals ID ‘SYMB’ … technical
symbol table dump ID ‘DATA’ … data objects from the program ID ‘DPAR’ …
data object parameters ID ‘TYPE’ … type objects from the program ID ‘FOTY’
… type objects used by FORM routines ID ‘FUTY’ … type objects used by
function modules ID ‘TYCH’ … components of type objects ID ‘CROS’ … referenced
data objects ID ‘STR ‘ … identifiers ID ‘FORM’ … FORM routines ID ‘FPAR’
… FORM parameters ID ‘PERF’ … PERFORM calls ID ‘APAR’ … PERFORM
parameters ID ‘FUNC’ … function modules ID ‘FFPA’ … function module
parameters ID ‘CALL’ … CALL FUNCTION calls ID ‘FAPA’ … CALL FUNCTION
parameters ID ‘HYPH’ … data objects with a hyphen in the name ID ‘INCL’ …
includes in the program 

Index 
© SAP AG 1996 

SYNTAX-TRACE 

 

Variants

1. SYNTAX-TRACE ON. 
2. SYNTAX-TRACE ON OPTION CODING. 
3. SYNTAX-TRACE ON OPTION EXPAND. 
4. SYNTAX-TRACE OFF. 

Variant 1

SYNTAX-TRACE ON. 

Effect

This statement has no effect at runtime except to switch on
the syntax check or the generation of the program it specifies. If the syntax check
or generation was called in the test environment, this statement switches on a
syntax trace. 

Variant 2

SYNTAX-TRACE ON OPTION CODING. 

Effect

This statement has the same effect as SYNTAX-TRACE ON , but
the syntax trace is restricted to the processed program lines. 

Variant 3

SYNTAX-TRACE ON OPTION EXPAND. 

Effect

This statement has no effect at present. 

Variant 4

SYNTAX-TRACE OFF. 

Effect

Switches off the syntax trace switched on with SYNTAX-TRACE
ON . 

Index 
© SAP AG 1996 

TABLES 

 

Basic form

TABLES dbtab. 

Effect

Makes the database table , view or structure dbtab known to
the program. These objects are created by selecting Development -> ABAP/4
Dictionary . This transaction automatically defines an identical field string -
the table work area - in the program. The names and the sequence of the fields
of the table work area dbtab correspond exactly to the names and the sequence
of the fields when declaring the database table or view in the ABAP/4
Dictionary . The ABAP/4 data type (see DATA ) and the
length of the fields are derived from the data types in the ABAP/4 Dictionary
as follows: 

	Dict. data type
	ABAP/4 data type

	ACCP
	-> N(6) 

	CHAR n
	-> C(n)

	CLNT
	-> C(3)

	CUKY
	-> C(5)

	CURR n, m, s 
	-> P((n + 2) / 2) DECIMALS m [NO-SIGN]

	DEC n, m, s
	-> P((n + 2) / 2) DECIMALS m [NO-SIGN]

	DATS 
	-> D

	FLTP 
	-> F

	INT1 
	-> No correspondence

	INT2 
	-> No correspondence

	INT4 
	-> I

	LCHR n 
	-> C(n)

	LRAW n 
	-> X(n)

	LANG 
	-> C(1)

	NUMC n 
	-> N(n)

	PREC 
	-> X(2)

	QUAN n, m, s 
	-> P((n + 2) / 2) DECIMALS m [NO-SIGN]

	RAW n 
	-> X(n)

	TIMS 
	-> T

	UNIT n 
	-> C(n)

	VARC n 
	-> C(n)


The fields of the table work area are set to the initial values for their
ABAP/4 data types (see DATA ). For the ABAP/4 Dictionary
data types INT1 and INT2 , whole number fields of length 1 or 2 are created
with the initial value 0 in
the table work area. 
The length of the table work area is not just the sum of the lengths of the
individual fields. Depending on how different fields have to be aligned
(Alignment ), the structure can contain nameless "holes". 

Example

 

TABLES SPFLI.

 

SELECT * FROM SPFLI.

  WRITE: / SPFLI-CARRID, SPFLI-CONNID.

ENDSELECT.

 

Notes

You can display the structure of the table work area in the
ABAP/4 Editor by double-clicking on the table name. 
The divisions for determining ABAP/4 field lengths are whole number divisions
without rounding. The field of the table work area can accept numbers which
contain one digit more than the ABAP/4 Dictionary data type allows. Such a
situation results in a runtime error when writing to the database. 
The table work area always has a global validity area. Even if the TABLES
statement is specified in a FORM or FUNCTION , the work area is known when the
subroutine has been defined. However, changes to the work area in a subroutine
remain local to the FORM or FUNCTION . Therefore, it is advisable to specify
the TABLES statement globally. You can keep changes to the table work area
local to the subroutine with LOCAL . 
Related DATA , TYPES 

Index 
© SAP AG 1996 

Text elements 

You use text elements to store texts that cannot be defined in the program
code. You can maintain them outside the program where they are used (in the
ABAP/4 Editor, select Goto -> Text elements . They are particularly useful
for maintaining texts intended for multi-language applications. 

The following text element types exist: 

· Report
or program titles 

· List
headings 

· Column
headings 

· Selection
texts (text belonging to selection criteria and program parameters) 

· Text
symbols (constant text passages) 

The structure of text elements is determined by the structure TEXTPOOL which
contains the following fields: 
ID : A single character for the text element type. Possible values are: 

R - Report or program titles 
T - List headings 
H - Column headings 
S - Selection texts 
I - Text symbols 
KEY : Key field that contains the following values depending on the text
element type: 

H - Number of a line with column 
headings (001 - 004) 
S - Max. 8-character name of a selection 
criterion or program parameter 
I - 3-character number of a text symbol 

For report or program titles and list headings, the field is blank. 
ENTRY : Text belonging to the text element, max. 255 characters. 
LENGTH : Length of text 

Examples

The following table shows typical values for text elements. 

	ID
	KEY
	ENTRY
	LENGTH

	H
	001
	‘Name Age’
	10

	I
	100
	‘Tax’
	10

	R
	 
	‘Test program’
	12

	S
	CUST
	‘Customer’
	8

	T
	 
	‘Sales’
	10


Notes

LENGTH contains the text length. If the text is to be
translated into other languages, it is usual to choose a value for LENGTH that
is greater than in the original language. In this way, you create extra space
for text that may be longer in translation. 
You can address text symbols in two different ways - with TEXT-xxx or with
‘…’(xxx) . Here, xxx stands for the number and … for the text of the text
symbol. The second form makes programs easier to read. The text enclosed in
quotation marks should match the text stored under the text symbol. If it does
not, the text stored under the text symbol is used. Exception: If the number
xxx contains no text, the text enclosed in quotation marks is used. 

Example

If the text symbol with the number 001 contains the text
‘Please enter your name’ , the command 

 

       WRITE: / TEXT-001,

              / 'Please enter your name'(001),

              / 'What is your name?'(001).

 

produces the same output (i.e. " Please enter your name ") three

times.

 

When you are in the ABAP/4 program editor, you can compare the texts

used in the program with the texts stored in text symbols by selecting

Goto -> Text elements -> Compare text symbols .

 

If the LENGTH value you specify for text symbols is greater
than the actual length of the text, the system pads the text up to the length
LENGTH with blanks. This means that when you use the notation ‘…’(xxx) , the
text enclosed by quotation marks must be explicitly padded with blanks up to
the length LENGTH . Otherwise, the text stored under the text symbol would not
match the text specified in quotation marks (see note 2). 

Example

If the text symbol with the number 036 contains the text
‘Name’ , but the length is 10, the command 

 

       WRITE: / SY-VLINE, TEXT-036,        SY-VLINE,

              / SY-VLINE, 'Tax     '(036), SY-VLINE,

              / SY-VLINE, 'Tax'(036),      SY-VLINE.

 

produces the same output (i.e. " | Tax       | " three times. In

the third line, the text stored under the number  036  is output

with a length of 8 and not just the 3-character long text " Tax ".

If you perform a text element comparison here, (see note 2), the text

symbols in the second and third lines would be shown as different.

Index 
© SAP AG 1996 

TOP-OF-PAGE 

 

Basic form

TOP-OF-PAGE. 

Addition

… DURING LINE-SELECTION 

Effect

TOP-OF-PAGE is a list processing event which is executed
before the the first data is output on a new page. 

Notes

· Without
the addition … DURING LINE-SELECTION , TOP-OF-PAGE is processed only
when generating basic lists, not when creating secondary lists. 

· TOP-OF-PAGE
allows you to define output which supplements the standard page header at
the beginning of the page or. Alternatively, if the standard page header
is suppressed (with (REPORT … NO STANDARD PAGE
HEADING. ), it allows you to design your own page header. 

· TOP-OF-PAGE
is only executed before outputting the first line on a new page. It is not
triggered by a NEW-PAGE statement 

 

Example

 

PROGRAM DOCUEXAM NO STANDARD PAGE HEADING.

 

START-OF-SELECTION.

  WRITE: / 'line 1'.

  WRITE: / 'line 2'.

  WRITE: / 'line 3'.

 

TOP-OF-PAGE.

  WRITE: / 'Heading'.

  ULINE.

 

 

This program produces the following output: 

Heading 
——————————- 
line 1 
line 2 
line 3 

Addition

… DURING LINE-SELECTION 

Effect

Ensures that TOP-OF-PAGE is executed when generating
secondary lists. (AT LINE-SELECTION , AT USER-COMMAND ). 

Note

The event TOP-OF-PAGE DURING LINE-SELECTION. is executed
when generating each secondary list. If you want to generate different page
headers for different secondary lists, you must specify this in the program
(e.g. by using status variables). 
Related END-OF-PAGE 

Index 
© SAP AG 1996 

TRANSFER 

 

Basic form

TRANSFER f TO dsn. 

Addition

… LENGTH len 

Effect

Transfers the field f (usually a field string) to the
sequential file specified in dsn (this may be a literal or a field). 

· Binary
mode (addition IN BINARY MODE of the OPEN DATASET
statement): 

Write to the file in the length of field f . 

· Text
mode (addition IN TEXT MODE of the OPEN DATASET
statement): 

Write a line. 

If the specified file is not open, TRANSFER attempts to open the file dsn FOR
OUTPUT ( IN BINARY MODE or using the further specifications of the last OPEN
command for this file). If this fails, a runtime error occurs. 

Example

 

DATA REC(80).

TRANSFER REC TO '/usr/test'.

 

Notes

· You
can read sequential datasets with READ DATASET
. 

 

· The
structure of file names depends very much on the operating system you are
using. You can access portable programs with the function module
GET_FILE_NAME . This returns the relevant physical name for a given
logical file name. 

 

Addition

… LENGTH len 

Effect

Transfers the length of the record to be output in the
length len . 

Index 
© SAP AG 1996 

TRANSFER-DYNPRO is not an ABAP/4 key word (in R/3). 
To create batch input sessions, please use the function modules BDC_… in the
function group SBDC . 

Index 
© SAP AG 1996 

TRANSLATE 

 

Variants

1. TRANSLATE c TO UPPER CASE. 
2. TRANSLATE c TO LOWER CASE. 
3. TRANSLATE c USING c1. 
4. TRANSLATE c FROM CODE PAGE g1 TO CODE PAGE g2. 
5. TRANSLATE c FROM NUMBER FORMAT n1 TO NUMBER FORMAT n2. 

Variant 1

TRANSLATE c TO UPPER CASE. 

Variant 2

TRANSLATE c TO LOWER CASE. 

Effect

In the field c , converts all lower case letters to upper
case or all upper case letters to lower case, as specified. 

Example

 

DATA LETTERS(3).

MOVE 'abc' TO LETTERS.

TRANSLATE LETTERS TO UPPER CASE.

The field LETTERS now contains ‘ABC’ . 

Variant 3

TRANSLATE c USING c1. 

Effect

Replaces the letters in the field c according to the
contents of c1 . 
If a character in c also exists in c1, it is replaced by the letter that f o l
l o w s it in c1. If a character from c is not found in c1, it remains
unchanged. 

Example

 

DATA: LETTERS(10) VALUE 'abcX',

      CHANGE(6)   VALUE 'aXBY'.

TRANSLATE LETTERS USING CHANGE.

 

The field LETTERS now contains ‘XbcX’ . 

Variant 4

TRANSLATE c …FROM CODE PAGE g1 …TO CODE PAGE g2. 

TRANSLATE F TO CODE PAGE G2. 
TRANSLATE F FROM CODE PAGE G1. 

Effect

Performs a character code conversion in the field F . To
achieve this, the SAP character code is determined from the conversion table G1
and a new character code derived from G2 . You can use the Transaction SPAD to
maintain the conversion tables TCP00 - TCP02 . 

Example

 

DATA F(72).

TRANSLATE F FROM CODE PAGE '1110' TO CODE PAGE '0100'.

 

translates the contents of F from the HP character set to
EBCDIC ( IBM 274). 

Note

Type I , P , F and X fields remain unchanged. Field strings
and work areas of internal tables are converted to the correct type for each
individual field. At present, table work areas (as defined in TABLES … ) are
not treated according to type, but are converted as a whole. If necessary,
declare a field string with INCLUDE STRUCTURE and then perform a conversion. 

Variant 5

TRANSLATE c …FROM NUMBER FORMAT n1 …TO NUMBER FORMAT n2.

TRANSLATE F TO NUMBER FORMAT N1. 
TRANSLATE F FROM NUMBER FORMAT N1. 

Effect

Performs a number format conversion in the field F . The
number formats supported at present are ‘0000′ ( HP , SINIX , IBM ) and ‘0101′
( DEC alpha OSF ). Any attempt to enter formats other than these results in a
runtime error. If you omit FROM NUMBER FORMAT or TO NUMBER FORMAT , the system
number format is used for the omitted part. 

Example

 

DATA: F TYPE F,

      HEX (2) TYPE X,

      NFORM LIKE TCP00-CPCODEPAGE.

...

* In /ARCHIV was stored by another platform from HEX and F.

* HEX contains the valid number format and can be read on all

* platforms.

READ DATASET '/ARCHIV' INTO HEX.

READ DATASET '/ARCHIV INTO F.

NFORM = HEX.  "Conversion of machine-independent HEX to NUMC(4)

TRANSLATE F FROM NUMBER FORMAT NFORM.

 

Effect

Converts the contents of F from the format NFORM of a
platform to the system format. 

Note

Type I and F fields are converted. Field strings and work
areas of internal tables are converted to the correct type for each individual
field. Table work areas (as defined with TABLES … ) are treated as type C at
present and are not converted. If necessary, declare a field string with
INCLUDE STRUCTURE and then perform a conversion. 
In the interests of storing additional information for archiving purposes, you
can use the function module SYSTEM_FORMAT to display the system code page and
system number format. 

Note

Performance 
Converting lower case letters to upper case letters or upper case letters to
lower case letters in a 10-byte long character field takes approx. 7 msn
(standardized microseconds). 
Replacing two letters in a 10-byte long field with the variant … c USING c1
… takes approx. 9 msn. 

Note

Runtime errors 

· TRANSLATE_WRONG_NUM_FORMAT
: Invalid number format. 

Related REPLACE , OVERLAY
Index 
© SAP AG 1996 

TYPES 

 

Variants

1. TYPES typ. 
2. TYPES typ(len). 
3. TYPES: BEGIN OF rectyp, 
… 
END OF rectyp. 

Effect

The TYPES statement introduces user-defined data types . As
with standard data types, you can use them when creating data objects and when
assigning types to formal parameters and field symbols. User-defined data types
are an essential component of the ABAP/4 type concept . 

Variant 1

TYPES f. 

Additions

1. … TYPE typ1 
2. … LIKE f 
3. … TYPE typ1 OCCURS n 
4. … LIKE f OCCURS n 
5. … TYPE LINE OF itabtyp 
6. … LIKE LINE OF itab 
7. … DECIMALS n 

Effect

Creates a new type. If the TYPE addition is not used, the
new type points to the standard type C . 

The type name typ can be up to 30 characters long. Apart from the special
characters ‘(’, ‘)’, ‘+’, ‘.’, ‘,’, ‘:’, ‘-’, ‘<’ and ‘>’, you can use
any characters. Numbers are allowed, but the name cannot consist of numbers
alone. 

Recommendations for type names: 
Always use a letter as the first character. 
Use the underscore as the link in multiple word names (e.g. NEW_PRODUCT ). 

Addition 1

… TYPE typ1 

Effect

Defines the new type with the type typ1 . typ1 can be one of
the predefined types specified below or a type you define yourself with TYPES .

The length (SL) of the type typ is the same as the type typ1 . 

Type Description Std len. Initial value 

C Text (character) 1 Blank 
N Numeric text 1 ‘00…0′ 
D Date (YYYYMMDD) 8 ‘00000000′ 
T Time (HHMMSS) 6 ‘000000′ 
X Hexadecimal 1 X’00′ 
I Whole number (integer) 4 0 
P Packed number 8 0 
F Floating point number 8 ‘0.0′ 

Example

 

TYPES NUMBER TYPE I.

This defines the type NUMBER NUMBER with the type I . It can then be used in
the program. 

Notes

The data type I is the whole number type for the hardware
you are using. Its value range is -2**31 to 2**31-1 (-2.147.483.648 to
2.147.483.647). 
While type P is used for money amount fields, you should use type I for number
fields, index fields, position specifications, etc. 
Apart from zero, type F allows you to display positive and negative numbers in
the range from 1E-307 to 1E+307 with 15 decimal places. (The ABAP/4 processor
uses the floating point operations of the relevant hardware and does not
attempt to standardize them.) Floating point literals must be enclosed in
quotation marks. The standard output length is 22. 
Input in type F fields can be formatted differently: 

Decimal number with or without sign, with or without decimal point. 
In the form E, where the mantissa is a decimal number and the exponent can be
specified with or without a sign. (Examples of floating point literals: ‘1′,
‘-12.34567′, ‘-765E-04′, ‘1234E5′, ‘+12E+34′, ‘+12.3E-4′, ‘1E160′). 

Floating point arithmetic is fast on our hardware platforms. It is ideal when
you require a large value range and can take rounding errors into account when
making calculations. Such rounding errors can occur when converting from
external (decimal) format to internal format (base 2 or 16) or vice-versa (see
ABAP/4 number types ). 

Addition 2

… LIKE f 

Effect

Defines the type typ with the type of the field f . f may be
a database field or an already defined internal field. 

Example

 

TYPES TABLE_INDEX_TYP LIKE SY-TABIX.

The type TABLE_INDEX_TYP now points to the type of the field SY-TABIX (index
for internal tables). 

Note

This addition is useful in a number of cases, since any
field type changes are automatically known to the program. Also, any
unnecessary and unwanted conversions are not performed. 

Addition 3

… TYPE typ1 OCCURS n 

Effect

Defines the type of an internal table without a header line.
An internal table without a header line consists of any number of table lines
that have the same structure as that specified by TYPE . 
You fill and process an internal table with statements such as APPEND , READ TABLE , LOOP and SORT . 
The OCCURS parameter n specifies how many table lines of storage is required.
This storage reservation process does not happen until the first line is
inserted in the table. The value n of the OCCURS specification has no effect on
type checking, i.e. data objects which have types with different OCCURS
specifications are type-compatible. 

Example

TYPES: TAB_TYPE TYPE I OCCURS 20. 
DATA: TAB TYPE TAB_TYPE, 
TAB_WA TYPE I. 

TAB_WA = 1. 
APPEND TAB_WA TO TAB. 
TAB_WA = 2. 
APPEND TAB_WA TO TAB. 
The internal table TAB now consists of two table entries. 

Addition 4

… LIKE f OCCURS n 

Effect

Defines the type of an internal table without a header line.
This table consists of any number of table lines which have the structure
specified by the data object f . Processing is the same as for addition 3. 

Example

 

DATA:  BEGIN OF PERSON,

         NAME(20),

         AGE TYPE I,

       END OF PERSON.

TYPES  TYPE_PERSONS LIKE PERSON OCCURS 20.

DATA   PERSONS TYPE TYPE_PERSONS.

 

PERSON-NAME = 'Michael'.

PERSON-AGE  = 25.

APPEND PERSON TO PERSONS.

PERSON-NAME = 'Gabriela'.

PERSON-AGE  = 22.

APPEND PERSON TO PERSONS.

The internal table PERSONS now consists of two table entries. 

Addition 5

… TYPE LINE OF itabtyp 

Effect

The specified type itabtyp must be the type of an internal
table with or without a header line. The statement creates a type corresponding
to the line type of the specified table type. 

Example

 

TYPES TAB_TYP TYPE I OCCURS 10.

TYPES MY_TYPE TYPE LINE OF TAB_TYP.

 

The type MY_TYPE now has the same attributes as a line of
the table type TAB_TYP and is thus type I . 

Addition 6

… LIKE LINE OF itab 

Effect

The data object itab must be an internal table with or
without a header line. The statement defines a type which corresponds to the
line type of the specified table. 

Example

 

DATA  TAB TYPE I OCCURS 10.

TYPES MY_TYPE LIKE LINE OF TAB.

The type MY_TYPE now has the same attributes as the line type of the table TAB
and thus has the type I . 

Addition 7

… DECIMALS n 

Effect

This addition only makes sense with the field type P . When
making calculations and outputting data, a field of this type has n decimal
places. n must be a value between 0 and 14. 

Normally, the attribute for fixed point arithmetic is set with newly created
programms. If you switch this attribute off, the DECIMALS -specification is
taken into account on output, but not when making calculations. In this case,
the programmer must take care that the decimal point is in the right place by
multiplying or dividing (COMPUTE ) by the appropriate
power of ten. 
When making calculations, you should always have fixed point arithmetic
switched on. Then, even intermediate results (division!) are calculated with
the greatest possible accuracy (31 decimal places). 
To decide whether the fixed point type P or the floating point type F is more
suitable, see also "ABAP/4 number types ". 

Variant 2

TYPES typ(len). 

Additions

Similar to variant 1 

Effect

Creates the type typ with the
length len . 
This variant should only be used with the types C , N , P and X . Other types
can only be created in the standard length (see table under effect of variant
1). 
The permitted lengths depend on the type being pointed to: 

Type Permitted lengths 

C 1 - 65535 
N 1 - 65535 
P 1 - 16 
X 1 - 65535 

Note

For each byte, you can display one character, two decimal
digits or two hexadecimal digits. With P fields, one place is reserved for the
leading sign, so that a P field of the length 3 can contain 5 digits, while an
X field of the length 3 can contain 6 digits. Both have an output length of 6. 

Variant 3

TYPES: BEGIN OF rectyp, 
… 
END OF rectyp. 

Effect

Defines the field string type rectyp by grouping together
all fields of the type rectyp defined between " BEGIN OF rectyp " and
" END OF rectyp ". Each name is prefixed by " rectyp- ". 

Example

 

TYPES: BEGIN OF PERSON,

         NAME(20) TYPE C,

         AGE      TYPE I,

       END   OF PERSON.

Index 
© SAP AG 1996 

TYPE-POOL 

 

Basic form

TYPE-POOL typepool. 

Effect

Introduces a type group. You can only maintain a type group
via the ABAP/4 Dictionary (using Transaction SE11 ). The name typepool must
match the name in the ABAP/4 Dictionary . You can only define types and
constants in type groups. The names of all these types and constants must begin
with the name of the type group and an underscore. 

Example

 

TYPE-POOL ABCDE.

TYPES: ABCDE_PACKED TYPE P,

       ABCDE_INT    TYPE I.

Index 
© SAP AG 1996 

TYPE-POOLS 

 

Basic form

TYPE-POOLS typepool. 

Effect

Includes the types and constants of a type group. If the
type group typepool has already been included, the statement is ignored. You
can only maintain a type group via the ABAP/4 Dictionary (using Transaction
SE11 ). You introduce a type group with the TYPE-POOL
statement. Since the types and constants specified in a type group have global
validity, you cannot use the statement within a FORM or FUNCTION . 

Example

 

TYPE-POOLS VERI1.

DATA X TYPE VERI1_TYP1.

Index 
© SAP AG 1996 

ULINE 

 

Variants

1. ULINE. 
2. ULINE AT pl. 

Variant 1

ULINE. 

Effect

Outputs an unbroken underline. 

Note

The underline extends across the entire line depending on
the list width. Then, the cursor is positioned at the beginning of the next
line. 

Variant 2

ULINE pl. 

Effect

Outputs an underline with a position and length determined
by pl . 
The position and length specification can consist of three parts: 

/ New line 

p Output position (one- to three-character number or 
variable) 

(l) Output length (one- to three-character number or 
variable) 

Any of these components can be omitted (see WRITE ). 

Note

If the position and length specification contains
exclusively direct values, it can be specified without an introductory AT . 

The statement 

ULINE AT 3(10). 

corresponds to the statement 

WRITE AT 3(10) SY-ULINE. 

Index 
© SAP AG 1996 

UNPACK 

 

Basic form

UNPACK f TO g. 

Effect

Unpacks the packed field f and places it in the field g with
leading zeros. If g is too short, it is truncated on the left. 

Example

 

DATA: P_FIELD(2) TYPE P VALUE 103,

      C_FIELD(4) TYPE C.

UNPACK P_FIELD TO C_FIELD.

P_FIELD: P’103C’
–> C_FIELD: C’0103′ 

Notes

If f is not type P , it is converted to type P (see MOVE ). 
g should always be type C . Otherwise, unwanted side effects may occur. 
The sign in the packed number is ignored. 

Index 
© SAP AG 1996 

UPDATE 

 

Variants

1. UPDATE dbtab SET s1 … sn. 
2. UPDATE dbtab. or 
UPDATE *dbtab. or 
UPDATE (dbtabname) … . 
3. UPDATE dbtab FROM TABLE itab. or 
UPDATE (dbtabname) FROM TABLE itab. 

Effect

Updates values in a database table (see Relational database
). You can specify the name of the database table either directly in the form
dbtab or at runtime as contents of the field dbtabname . In both cases, the
table must be known to the ABAP/4 Dictionary . If you specify the name of the
database table directly, the program must also contain an appropriate TABLES statement. Normally, lines are updated only in the
current client. Data can only be updated using a view if the view refers to a
single table and was created in the ABAP/4 Dictionary with the maintenance
status "No restriction". 

UPDATE belongs to the Open SQL command set. 

Notes

Authorization checks are not supported by the UPDATE
statement. You must include these in the program yourself. 
Changes to lines made with the UPDATE command only become final after a
database commit (see LUW ). Prior to this, any database update can be canceled
by a database rollback (see Programming transactions ). 
In the dialog system, you cannot rely on the database system locking mechanism
alone to synchronize simultaneous access to the same database by several users.
Therefore, it is often necessary to use the SAP locking mechanism . 

Variant 1

UPDATE dbtab SET s1 … sn. 

Additions

1. … WHERE condition 
2. … CLIENT SPECIFIED 

Effect

Updates values in a database table. If there is no WHERE clause , all lines (in the current client) are
updated. If a WHERE condition is specified, only those records which satisfy
the condition are updated. 

The SET clause s1 … sn identifies the columns to be updated and assigns
values to them. Three types of SET statements si are supported: 
f = g In all selected lines, the database table column determined by f receives
the values of the ABAP/4 field or literal g . 
f = f + g In all selected lines, the contents of the ABAP/4 field or literal g
is added to the value in the database table column determined by f . The NULL
value remains unchanged. This statement can only be applied to a numeric field.

f = f - g In all selected lines, the contents of the ABAP/4 field or literal g
is subtracted from the value in the database table column determined by f . The
NULL value remains unchanged. This statement can only be applied to a numeric
field. 
When the command has been executed, the system field SY-DBCNT contains the
number of updated lines. 

The return code value is set as follows: 

SY-SUBRC = 0 At least one line was updated, 
SY_SUBRC = 4 No line was updated because no line could be selected. 

Note

With pooled and cluster tables, an UPDATE cannot change any primary
key field. 

Examples

Update discount for all customers (in the current client) to
3 percent: 

 

TABLES SCUSTOM.

 

UPDATE SCUSTOM SET DISCOUNT = '003'.

 

Note

The ‘colon and comma’ logic in the program fragment 

 

UPDATE SCUSTOM SET: DISCOUNT  = '003',

                    TELEPHONE = '0621/444444'

              WHERE ID        = '00017777'.

 

defines record chains, 

· not
through a single statement which updates the discount and the telephone
number of the customer with the customer number ‘00017777′, 

· but
by means of two statements where the first updates the discount for all
customers and the second changes the telephone number of the customer with
the customer number ‘00017777′. 

 

Addition 1

… WHERE condition 

Effect

Updates only those lines which satisfy the WHERE clause condition . 

Example

Increase the number of occupied seats on Lufthansa flight
0400 on 28.02.1995 by 3 (in the current client): 

 

TABLES SFLIGHT.

 

UPDATE SFLIGHT SET   SEATSOCC = SEATSOCC + 3

               WHERE CARRID   = ‘LH’   AND

                     CONNID   = ‘0400′ AND

                     FLDATE   = ‘19950228′.

 

Addition 2

… CLIENT SPECIFIED 

Effect

Switches off automatic client handling. This allows you to
update across all clients when using client-specific tables. The client field
is treated like a normal table field, for which you can formulate suitable
conditions in the WHERE clause. 

This addition must immediately follow the database table name. 

Example

Increase the number of occupied seats on Lufthansa flight
0400 on 28.02.1995 by 3 in
client 2: 

 

TABLES SFLIGHT.

 

UPDATE SFLIGHT CLIENT SPECIFIED

               SET   SEATSOCC = SEATSOCC + 3

               WHERE MANDT    = '002'  AND

               WHERE CARRID   = 'LH'   AND

                     CONNID   = '0400' AND

                     FLDATE   = '19950228'.

 

Variant 2

UPDATE dbtab. or 
UPDATE *dbtab. or 
UPDATE (dbtabname) … . 

Additions

1. … FROM wa 
2. … CLIENT SPECIFIED 

Effect

These are SAP-specific short forms which update one single
line of a database table. The primary key for identifying the line to be
updated and the values to be changed when specifying the database table name in
the program are taken from the table work area - dbtab or *dbtab . If the
database table name is determined at runtime, you need to use the addition …
FROM wa . 
When the command has been executed, the system field SY-DBCNT contains the
number of updated lines (0 or 1). 

The return code value is set as follows: 

SY-SUBRC = 0 The specified line was updated, 
SY_SUBRC = 4 No line was updated because no line with the specified primary key
exists. 

Examples

Update discount for the customer with the customer number
‘00017777′ to 3 percent (in the current client): 

 

TABLES SCUSTOM.

 

SCUSTOM-ID       = '00017777'.

SCUSTOM-DISCOUNT = '003'.

UPDATE SCUSTOM.

 

Addition 1

… FROM wa 

Effect

Takes the values for the line to be updated not from the
table work area dbtab , but from the explicitly specified work area wa . Here,
the data is taken from wa , moving from left to right according to the
structure of the table work area dbtab (defined with TABLES
). Since the structure of wa is ignored, the work area wa must be at least as
wide (see DATA ) as the table work area dbtab and the
alignment of the work area wa must correspond to the alignment of the table
work area. Otherwise, a runtime error occurs 

Example

Update the telephone number of the customer with the
customer number ‘12400177′ in the current client: 

 

TABLES SCUSTOM.

DATA   WA LIKE SCUSTOM.

 

WA-ID        = '12400177'.

WA-TELEPHONE = '06201/44889'.

UPDATE SCUSTOM FROM WA.

 

Note

If you do not explicitly specify a work area, the values for
the line to be updated are taken from the table work area dbtab , even if the
statement appears in a FORM or FUNCTION
where the table work area is held in a formal parameter or a local variable. 

Addition 2

… CLIENT SPECIFIED 

Effect

Like variant 1. 

Variant 3

UPDATE dbtab FROM TABLE itab. or 
UPDATE (dbtabname) FROM TABLE itab. 

Addition

… CLIENT SPECIFIED 

Effect

Mass update of several lines in a database table. Here, the
primary key for identifying the lines to be updated and the values to be
changed are taken from the lines of the internal table itab . The lines of the
internal table must satisfy the same conditions as the work area wa in addition
1 to variant 2. 

The system field SY-DBCNT contains the number of updated lines, i.e. the number
of lines in the internal table itab which have key values corresponding to
lines in the database table. 

The return code value is set as follows: 

SY-SUBRC = 0 All lines from itab could be used to update the database table. 
SY_SUBRC = 4 At least one line of the internal table itab in the database
table, had no line with the same primary key. The other lines of the database
table were updated. 

Note

If the internal table itab is empty, SY-SUBRC and SY-DBCNT
are set to 0. 

Addition

… CLIENT SPECIFIED 

Effect

Like variant 1. 

Index 
© SAP AG 1996 

WHEN 

 

Variants

1. WHEN f. 
2. WHEN OTHERS. 

Effect

See CASE . 

Index 
© SAP AG 1996 

WHERE clause 

 

Variants

1. … WHERE f op g 
2. … WHERE f [NOT] BETWEEN g1 AND g2 
3. … WHERE f [NOT] LIKE g 
4. … WHERE f [NOT] IN (g1, …, gn) 
5. … WHERE f [NOT] IN itab 
6. … WHERE f IS [NOT] NULL 
7. … WHERE NOT cond 
8. … WHERE cond1 AND cond2 
9. … WHERE cond1 OR cond2 
10. … WHERE (itab) 
11. … WHERE cond AND (itab) 
12. … FOR ALL ENTRIES IN itab WHERE cond 

Effect

If a WHERE clause is specified with the commands SELECT , OPEN CURSOR , UPDATE and DELETE , only the
lines of the database table (or view ) which satisfy the specified condition(s)
are selected. 

With Open SQL key words, automatic client handling is normally active. This
ensures that only data from the current client is processed when you are
working with client-specific tables. Therefore, specifying a client in the
WHERE clause does not make sense and is rejected as an error by the syntax
check. 

If you use the addition … CLIENT SPECIFIED in the FROM
clause to switch off automatic client handling, the client field is treated
like a normal table field and you can formulate conditions for it in the WHERE
clause. 

Notes

If, when using transparent tables, there are frequent
accesses without a complete primary key or the data is sorted in an order other
than by the primary key, you should consider whether it is worth creating an
index . 
If no WHERE condition is specified, all lines (in the current client) are
selected. 

Variant 1

…WHERE f op g 

Effect

The condition is true if the comparison f op g is true. The
condition is false if the comparison f op g is false. Here, f is the name of a
database field (without a prefix) and g is the name of any field or literal.
You can use any of the following comparison operators: 
, = EQual 
NE, <>, >< Not Equal 
LT, < Less Than 
LE, <= Less than or Equal 
GT, > Greater Than 
GE, >= Greater than or Equal 

Examples

Select all Lufthansa flight connections: 

… WHERE CARRID = ‘LH’ 

Select passenger planes with fewer than 200 seats: 

… WHERE SEATSMAX LT 200 

Notes

If the database field f contains the NULL value, the result
of evaluating the condition is neither "true" nor "false",
but "unknown". 
You can reverse the effect of a comparison operator by prefixing it with NOT ,
i.e. NOT EQ corresponds to NE , while NOT LE corresponds to GT , etc. 

Example

If a line contains the NULL value for the field TELEPHONE ,
you cannot use any of the following conditions to select this line: 

… WHERE TELEPHONE = ‘ ‘ 

… WHERE TELEPHONE <> ‘ ‘ 

… WHERE NOT TELEPHONE = ‘ ‘ 

Variant 2

… WHERE f [NOT] BETWEEN g1 AND g2 

Effect

The condition is true, if the contents of the table field f
(do not) lie between g1 and g2 . Otherwise, the condition is false. 

Examples

Select all passenger planes with between 200 and 250 seats: 

… WHERE SEATSMAX BETWEEN 200 AND 250 

Note

If the database field f contains the NULL value, the result
of evaluating the condition is neither "true" nor "false",
but "unknown". 

Variant 3

… WHERE f [NOT] LIKE g 

Addition

… ESCAPE h 

Effect

The condition is true, if the contents of the table field f
(do not) correspond to the contents of the field g . Within the search pattern,
two characters have a particular meaning: 

· ‘_’
stands for any one character. 

· ‘%’
stands for any character string, including a blank string. 

If the statement does not apply, the condition is false. 

Examples

Select all customers whose names begin with ‘M’ : 

… WHERE NAME LIKE ‘M%’ 

Select all texts which contain the word ‘customer’ : 

… WHERE TEXT LIKE ‘%customer%’ 

Select all customers whose names do not contain ‘n’ as the second letter: 

… WHERE NAME NOT LIKE ‘_n%’ 

Notes

You can
apply LIKE only to alphanumeric database fields, i.e. the table field f must be
one of the Dictionary types ACCP , CHAR , CLNT , CUKY , LCHR , NUMC , UNIT ,
VARC , TIMS or DATS . The comparison field g must always be type C . 
The pattern can consist of up to 2n - 1 characters, if n is the same length as
the field f . 
Trailing blanks in the comparison field g are ignored. If a pattern
contains trailing blanks, you must enclose it in quotation marks. If a
quotation mark is part of the pattern, you must double the opening and closing
quotation marks. 
If the database field f contains the NULL value, the result of evaluating the
condition is neither "true" nor "false", but
"unknown". 

Addition

… ESCAPE h 

Effect

The field h contains an escape symbol. Within the pattern g
, this makes a special character following the escape symbol lose its special
meaning. 

Example

Select all function modules whose names begin with ‘EDIT_’ :

… WHERE FUNCNAME LIKE ‘EDIT#_%’ ESCAPE ‘#’ 

Notes

An escape symbol can only precede one of the special
characters ‘%’ and ‘_’ or itself. 
The addition ESCAPE g refers only to the immediately preceding LIKE condition.
If a WHERE clause contains several LIKE conditions, you must specify ESCAPE as
many times as required. 
The field g which contains the escape symbol is always treated like a type C
field of length 1. 
The addition ESCAPE g is not supported with pooled and cluster tables. 

Variant 4

… WHERE f
[NOT] IN (g1, …, gn) 

Effect

The condition is true, if the contents of the table field f
are (not) the same as the contents of one of the fields or literals g1, …, gn
. Otherwise, the condition is false. 

Examples

Select the flight connections of American Airlines,
Lufthansa and Singapore Airlines: 

… WHERE CARRID IN (’AA’, ‘LH’, ‘SQ’) 

Select all flight connections apart from those of Lufthansa and Lauda Air: 

… WHERE CARRID NOT IN (’LH’, ‘NG’) 

Notes

There must be no blanks between the opening parenthesis
which introduces the field list and the name g1 of the first field in the field
list. 
If the database field f contains the NULL value, the result of evaluating the
condition is neither "true" or "false", but
"unknown". 

Variant 5

… WHERE [NOT] in itab 

Effect

The condition is true, if the contents of the database table
field f are (not) found in the internal table itab . Otherwise, the condition
is false. 

The internal table itab must have the structure of a RANGES
table for f . You can define it with RANGES itab FOR f , SELECT-OPTIONS itab
FOR f or DATA . If itab is defined with SELECT-OPTIONS , it is automatically filled with the
user’s predefined values. Otherwise, you must specify it explicitly in the
program. This is a method of specifying parts of the WHERE condition at runtime.

Each line of itab contains an elementary condition where the columns have the
following meaning: 
SIGN Specifies whether the condition is inclusive or exclusive. Possible values
are: 

I Inclusive 
E Exclusive 
OPTION Contains the operator for the elementary condition. Possible values are:

EQ, NE EQual, Not Equal 
BT, NB BeTween, Not Between 
CP, NP Contains Pattern, 
does Not contain Pattern 
LT, LE Less Than, Less than or Equal 
GT, GE Greater Than, Greater than or Equal 
LOW With EQ , NE , LT , LE , GT and GE , this field contains the compare value.
With BT and NB , it contains the lower limit of a range. With CP and NP , it
can extend beyond LOW and HIGH . 
HIGH With BT and NB , this field contains the upper limit of a range. With CP
and NP , it contains the end of the specification begun in LOW . 
The elementary conditions in itab are combined together to form a complex
condition in the following manner: 

· If
itab is empty, the condition f IN itab is always true. 

 

· If
itab contains only the inclusive elementary conditions i1, …, in , the
resulting condition is 

( i1 OR … OR in ) 

 

· If
itab contains only the exclusive elementary conditions e1, …, em , the
resulting condition is 

( NOT e1 ) AND … AND ( NOT em ) 

 

· If
itab contains the inclusive elementary conditions i1, …, in and the
exclusive elementary conditions e1, …, em , the resulting condition is 

( i1 OR … OR in ) AND 
( NOT e1 ) AND … AND ( NOT em ) 

 

Example

· Select the customer numbers 

· ‘10000000′
to ‘19999999′, 

· ‘01104711′
as well as 

· all
customer numbers greater than or equal to ‘90000000′, 

but not the customer numbers 

· ‘10000810′
to 10000815′, 

· ‘10000911
as well as 

· all
customer numbers where the fifth character is a ‘5′. 

 

 

TABLES: SCUSTOM.

 

SELECT-OPTIONS: R FOR SCUSTOM-ID.

* RANGES:       R FOR SCUSTOM-ID.

 

* Let R be filled as follows (the order of lines is

* of no significance):

*

* SIGN  OPTION  LOW       HIGH

* I     EQ      01104711

* I     BT      10000000  19999999

* I     GE      90000000

* E     EQ      10000911

* E     BT      10000810  10000815

* E     CP      ++++5*

*

* This generates the condition

*

* ( ID = '01104711'                        OR

*   ID BETWEEN '10000000' AND '19999999'   OR

*   ID >= ‘90000000′ )                       AND

* ID <> ‘10000911′                           AND

* ID NOT BETWEEN ‘10000810′ AND ‘10000815′   AND

* ID NOT LIKE '____5%'

*

SELECT * FROM SCUSTOM WHERE ID IN R.

  ...

ENDSELECT.

 

Notes

Since a condition of the form f IN itab triggers a complex
condition at runtime, but the size of the SQL statement is restricted by the
underlying database system (e.g. no more than 8 KB), the internal table itab
must not contain too many lines. 
If the database field f contains the NULL values, the result of evaluating the
condition is neither "true" nor "false", but
"unknown". 

Variant 6

… WHERE f IS [NOT] NULL 

Effect

The condition is true if the contents of the table field f
(do not) contain the NULL value. 

Example

Select all customers with customer numbers for which no
telephone number is specified: 

… WHERE TELEPHONE IS NULL 

Note

Performance 
The SAP buffer does not support this variant. Therefore, the effect of each SELECT command on a buffered table or on a view of fields
from buffered tables that contains … WHERE f IS [NOT] NULL is as if the
addition BYPASSING BUFFER was specified in the FROM
clause. 

Variant 7

… WHERE NOT cond 

Effect

NOT cond is true if cond is false. The condition is false of
cond is true. This produces the following truth table: 

	NOT 
	 

	true
	false

	false
	true

	unknown
	unknown


cond can be any condition according to the WHERE variants 1 - 9. NOT takes priority
over AND and OR . You can also determine the evaluation sequence by using
parentheses. 
Note

Parentheses which determine the evaluation sequence must be
preceded and followed by a blank. 

Example

Select the customers with customer numbers who do not live
in postal code area 68: 

… WHERE NOT POSTCODE LIKE ‘68%’ 

Variant 8

… WHERE cond1 AND cond2 

Effect

cond1 AND cond2 is true if cond1 and cond2 are true. The
condition is false if cond1 or cond2 is false. This produces the following
truth table: 

	AND
	true
	false
	unknown

	 
	 
	 
	 

	true
	true
	false
	unknown

	false
	false
	false
	false

	unknown
	unknown
	false
	unknown


cond1 and cond2 can be any conditions according to the WHERE variants 1 - 9. AND
takes priority over OR , but NOT takes priority over AND . You can also
determine the evaluation sequence by using prenetheses. 

Note

Parentheses which determine the evaluation sequence must be
preceded and followed by a blank. 

Example

Select the customers with customer numbers which are less
than ‘01000000′ and do not live in the postal code area 68. 

… WHERE ID < ‘01000000′ 
AND NOT 
POSTCODE LIKE ‘68%’ 

Variant 9

… WHERE cond1 OR cond2 

Effect

cond1 OR cond2 is true if cond1 or cond2 is true. The
condition is false if cond1 and cond2 are false. This produces the following
truth table: 

	OR
	true
	false
	unknown


	 
	 
	 
	 

	true
	true
	true
	true

	 
	 
	 
	 

	false
	true
	false
	unknown

	 
	 
	 
	 

	unknown
	true
	unknown
	unknown

	 
	 
	 
	 


cond1 and cond2 can be any conditions according to the WHERE variants 1 - 9.
Both NOT and AND take priority over OR . You can also determine the evaluation
sequence by using parentheses. 

Note

Parentheses which determine the evalutation sequence must be
preceded and followed by a blank. 

Example

Select the customers with customer numbers which are less
than ‘01000000′ or greater than ‘02000000′: 

… WHERE ID < ‘01000000′ OR 
ID > ‘02000000′. 

Select the customers with customer numbers which are less than ‘01000000′ or
greater than ‘02000000′ and do not live in the postal code areas 68 or 69 

… WHERE ( ID < ‘01000000′ OR ID > ‘02000000′ ) 
AND NOT 
( POSTCODE LIKE ‘68%’ OR POSTCODE LIKE ‘69%’ ) 

Variant 10

… WHERE (itab) 

Effect

The condition is true if the contents of the table fields
satisfy the condition stored in the internal table itab . itab is filled at
runtime, i.e. the condition for the fields is specified dynamically. 

Notes

This variant is exclusively for use with SELECT . The
internal table itab can only have one field which must be of type C and not be
greater than 72 characters. itab must be specified in parentheses with no
blanks between the parentheses and the table name. The condition specified in
the internal table itab must have the same form as a condition in the ABAP/4
source code. The following restrictions apply: 

- You can only use literals as values, not variables. 

- The operator IN cannot be used in the form f1 IN itab1 . 
The internal table itab can be empty. 

Note

Performance 
Since the syntax check may not be performed until runtime, a WHERE condition
needs more execution time than a corresponding specification in the program
code. 

Example

Display flight connections after entry of airline carrier
and flight number: 

 

TABLES:     SPFLI.

PARAMETERS: CARR_ID LIKE SPFLI-CARRID,

            CONN_ID LIKE SPFLI-CONNID.

DATA:       WTAB(72) OCCURS 100 WITH HEADER LINE,

            AND(3).

 

REFRESH WTAB.

IF NOT CARR_ID IS INITIAL.

  CONCATENATE ‘CARRID = ”’ CARR_ID ”” INTO WTAB.

  APPEND WTAB.

  AND = 'AND'.

ENDIF.

IF NOT CONN_ID IS INITIAL.

  CONCATENATE AND ' CONNID = ''' CONN_ID '''' INTO WTAB.

  APPEND WTAB.

ENDIF.

 

SELECT * FROM SPFLI WHERE (WTAB).

  WRITE: / SPFLI-CARRID, SPFLI-CONNID, SPFLI-CITYFROM,

           SPFLI-CITYTO, SPFLI-DEPTIME.

ENDSELECT.

 

Variant 11

… WHERE cond AND (itab) 

Effect

Like variant 10. For the condition to be true, the table
fields must also satisfy the condition cond . 

Note

When specifying a condition cond in the program code
together with a condition in an internal table itab , the table name must
appear in parentheses after the condition cond and be linked with AND . There
must be no blanks between the name of the internal table and the parentheses. 

Variant 12

… FOR ALL ENTRIES IN itab WHERE cond 

Effect

Selects only those lines of the database table which satisfy
the WHERE condition cond where each occurring replacement symbol itab-f is
replaced by the value of the component f in the internal table itab for at
least one line. Clearly, a SELECT command with … FOR ALL ENTRIES IN itab
WHERE cond forms the union of solution sets for all SELECT commands which
result when, for each line of the internal table itab , each symbol itab-f
addressed in the WHERE condition is replaced by the relevant value of the
component f in this table line. Duplicate lines are eliminated from the result
set. If the internal table itab contains no entries, the processing continues
as if the WHERE condition cond has failed. 

Example

Display a full list of flights on 28.02.1995: 

 

TABLES SFLIGHT.

DATA:  BEGIN OF FTAB OCCURS 10,

         CARRID LIKE SFLIGHT-CARRID,

         CONNID LIKE SFLIGHT-CONNID,

       END OF FTAB,

       RATIO TYPE F.

 

* Let FTAB be filled as follows:

*

* CARRID  CONNID

* --------------

* LH      2415

* SQ      0026

* LH      0400

 

SELECT * FROM SFLIGHT FOR ALL ENTRIES IN FTAB

                      WHERE CARRID = FTAB-CARRID AND

                            CONNID = FTAB-CONNID AND

                            FLDATE = '19950228'.

  RATIO = SFLIGHT-SEATSOCC / SFLIGHT-SEATSMAX.

  WRITE: / SFLIGHT-CARRID, SFLIGHT-CONNID, RATIO.

ENDSELECT.

 

Notes

… FOR ALL ENTRIES IN itab WHERE cond can only be used with
a SELECT command. 
In the WHERE condition … FOR ALL ENTRIES IN itab WHERE cond , the symbol
itab-f always has the meaning of a replacement symbol and must not be confused
with the component f of the header line in the internal table itab . The internal
table itab does not have to have a header line. 
The line structure of the internal table itab must be a field string. Each
component of this field string which occurs in a replacement symbol in the
WHERE condition must be of exactly the same type and length as the
corresponding component in the table work area (see TABLES
). 
Replacement symbols must not occur in comparisons with the operators LIKE ,
BETWEEN and IN . 
FOR ALL ENTRIES IN itab excludes ORDER BY f1 … fn in the ORDER-BY clause . 
The internal table itab cannot be used at the same time in the INTO clause . 

Notes

Performance 
Conditions should always be checked with the WHERE clause, not with CHECK , because
the data can then be selected with an index. Also, this reduces the load on the
network. 
For frequently used SELECT statements, you should employ an index. In the WHERE
clause, the fields of the index should be specified in the defined order and linked
by the logical AND with comparisons for equality. 
Complex WHERE clauses are unsuitable for the statement optimizer of a database
system because they must be broken down into several single statements. 
In a WHERE clause, the logical NOT cannot be supported by an index. 

Index 
© SAP AG 1996 

WHILE 

 

Basic form

WHILE logexp. 

Addition

… VARY f FROM f1 NEXT f2. 

Effect

Repeats the processing enclosed between the WHILE and ENDWHILE
statements as long as the logical expression logexp is true. 

Checks the condition before each loop pass. If it is no longer true, processing
resumes after ENDWHILE . 

You can use the CONTINUE statement to leave the current
loop pass prematurely and skip to the next loop pass. 

Example

 

DATA: SEARCH_ME TYPE I,

      MIN       TYPE I VALUE 0,

      MAX       TYPE I VALUE 1000,

      TRIES     TYPE I,

      NUMBER    TYPE I.

SEARCH_ME = 23.

WHILE NUMBER <> SEARCH_ME.

  ADD 1 TO TRIES.

  NUMBER = ( MIN + MAX ) / 2.

  IF NUMBER > SEARCH_ME.

    MAX = NUMBER - 1.

  ELSE.

    MIN = NUMBER + 1.

  ENDIF.

ENDWHILE.

The above code performs a (binary) search for the "unknown" number
SEARCH_ME which lies between MIN and MAX . TRIES contains the number of
attempts needed to find it. 

Notes

WHILE loops can be nested any number of times within
themselves and other loops. 
The termination condition and the processing you want to perform in the loop
should be well thought out beforehand, so as to avoid the occurrence of endless
loops. 

Addition

… VARY f FROM f1 NEXT f2. 

Effect

Varies the value of the field f during loop processing. 

At the start of each loop pass, f receives a new value. During the first loop
pass, f has the value of the field f1 ; on the second loop pass, it has the
value of the field f2 , and so on. 

The difference between the fields f1 and f2 determines the size of the step
varying the value of the variable f in all subsequent loop passes, i.e. it is
important that the fields you want to process within the loop have the same
distance between each other in memory (see also DO VARYING
). 

If the value of f changes when processing passes through the loop, the new
value is placed in the field fn just assigned (transfer type: by value and
result) at the end of the relevant loop pass. If the loop pass is terminated by
a dialog message, any changed value of f is not transported back for this loop
pass. 

VARY can declare any number of variables. 

Example

 

DATA: BEGIN OF WORD,

        ONE   VALUE 'E',

        TWO   VALUE 'x',

        THREE VALUE 'a',

        FOUR  VALUE 'm',

        FIVE  VALUE 'p',

        SIX   VALUE 'l',

        SEVEN VALUE 'e',

        EIGHT VALUE '!',

      END   OF WORD,

      LETTER1, LETTER2.

WHILE LETTER2 <> '!'

  VARY LETTER1 FROM WORD-ONE NEXT WORD-THREE

  VARY LETTER2 FROM WORD-TWO NEXT WORD-FOUR.

  WRITE: LETTER1, LETTER2.

ENDWHILE.

This code outputs the character string 

" E x a m p l e !" . 

Note

If VARY fields (i.e. fields which are filled with a new
value on every loop pass) also occur in the WHILE condition, you must ensure
that the WHILE condition is evaluated first. Then, if the WHILE condition is
(still) true, the VARY fields can be reset. 
Related DO , LOOP . 

Index 
© SAP AG 1996 

WINDOW 

 

Basic form

WINDOW STARTING AT x1 y1. 

Addition

… ENDING AT x2 y2 

Effect

Displays the current secondary list as a modal dialog box (see
CALL SCREEN ). The same rules apply as for
displaying a list on the full screen, i.e. the page size corresponds to the
window size. 

The left upper edge of the window appears at column x1 and line y1 . If you do
not specify the addition ENDING AT , the position of the right lower edge
corresponds to the coordinates of the current screen. 

You can use variables to specify the coordinates. 

All the functions for secondary lists are supported. These include: 

· Scrolling
in the window. 

· Hiding
field contents (see HIDE ). 

· Line
selection in the window (see AT LINE-SELECTION
, …) 

· Set
the window title (see SET TITLEBAR ) 

 

Addition

… ENDING AT x2 y2 

Effect

Positions the right lower edge of the window in column x2
and line y2 . 

You can use variables to specify the coordinates. 

Example

Define a
window covering columns 1 to 79 and lines 15 to 23: 

 

WINDOW STARTING AT 1  15

       ENDING   AT 79 23.

 

WRITE 'Text'.

 

Note

Inserts a window on the normal screen . 

You can insert the windows described above only within the context of list
processing, i.e. not until after an interactive event (see AT LINE-SELECTION ). 

You can use the technique shown in the example below to insert a window
containing a list during a dialog (see CALL SCREEN
). 

Example

Display a list as a modal dialog box: 

 

CALL SCREEN 100.     "Screen of modal dialog box type

*    STARTING AT 10 10  "... can be started as

*    ENDING   at 60 15. "... separate window with

*                       "... these additions

In the flow logic of the screen 100, the processing branches to list processing
in the PBO ( Process Before Output ) module (see LEAVE
TO LIST-PROCESSING ). 
Flow logic: 
PROCESS BEFORE OUTPUT. 
MODULE LIST. 
Program: 

 

MODULE LIST OUTPUT.

  LEAVE TO LIST-PROCESSING.

*    AND RETURN TO SCREEN 0. "Alternative to LEAVE SCREEN

*                            "at end


PERFORM OUTPUT. "Output list 

 

  LEAVE SCREEN.

ENDMODULE.

Index 
© SAP AG 1996 

WRITE 

Output to a list 
- WRITE f. 
Output to a field or internal table 
- WRITE f TO g. 
- WRITE f TO itab INDEX idx. 

Index 
© SAP AG 1996 

WRITE - Output to a list 

 

Basic form

WRITE f. 

Additions

1. … AT pl (position and length specification, 
before the field) 
2. … option (formatting option) 
3. … ofmt (output format by field) 
4. … AS CHECKBOX (output as checkbox) 
5. … AS SYMBOL (output as symbol) 
6. … AS ICON (output as icon) 
7. … AS LINE (output as line) 

Effect

Outputs the field f in the correct format for its type to
the current list. The field f can be: 

· a
field declared by DATA , 

· a
component of a structure declared by TABLES , 

· a
field symbol (FIELD-SYMBOLS ), 

· a
text literal which is not language-specific 

· a
language-specific text literal (text symbol). 

 

Examples

 

TABLES SPFLI.

DATA N TYPE I VALUE 123.

 

...

WRITE N.

WRITE SPFLI-FLTIME.

 

FIELD-SYMBOLS <CF>.

ASSIGN ‘NEW YORK’ TO <CF>.

WRITE <CF>.

 

WRITE: ‘—->’, SPFLI-DISTANCE.

 

WRITE: TEXT-001, SPFLI-ARRTIME.

or 

 

WRITE: 'Time:'(001), SPFLI-ARRTIME.

Text symbols can be addressed in two different ways (TEXT-001 or’Time:’(001)) . 

Notes

If no explicit position is specified for a field on a new
line, it is output on the left (in column 1). Otherwise, output is one column
removed from the previously output field. If a field does not fit on one line,
a new line is started. 
You can perform explicit positioning with a position and length specification
(see addition 1) or with ABAP/4 statements (e.g. POSITION
). In this case, the field is always output at the defined position, even if
the line is not quite long enough for it to fit completely. 
If a field is too long to fit completely on the line, the excess characters are
truncated. 
Each field occupies a number of characters in the list. If this number is not
explicitly defined (see addition 1), the system uses a type-specific standard
length or the output length specified in the ABAP/4 Dictionary . 

Type-specific output: (len = field length) 

	 

	Type
	Standard output
length
	Output

	C
	len
	left-justified

	 
	 
	 

	D
	8
	left-justified

	 
	 
	 

	F
	22
	right-justified

	 
	 
	 

	I
	11
	right-justified

	 
	 
	 

	N
	len
	left-justified

	 
	 
	 

	P
	2*len or 2*len+1
	right-justified

	 
	 
	 

	T
	6 
	left-justified

	 
	 
	 

	X
	2*len 
	left-justified

	 
	 
	 


Number fields (types P , I and F ) are always output
right-justified, but all other types are left-justified; if required, blanks are
used for padding. With number fields, leading zeros are replaced by blanks. If
there is enough space, types P and I have thousands separators. To accommodate
the decimal point, the output length of type P fields is 1 byte longer. 

Addition 1

WRITE AT pl (position and length 
specification before the field) 

Effect

You can use the position and length specification pl to
define the precise output position and length of a field. The specification
consists of: 

/ New line 
c Output position (1-3 character number or variable) 
(l) Output length (1-3 character number or variable) 

Combinations are possible. 

Examples

 

DATA: WORD(16), VALUE '0123456789ABCDEF',

      COL TYPE I VALUE 5,

      LEN TYPE I VALUE 10.

WRITE AT / WORD.          "new line

WRITE AT 5 WORD.          "column 5

WRITE AT (10) WORD.       "output length 10

WRITE AT /5(10) WORD.     "new line, column 5, length 10

WRITE AT COL WORD.        "column = contents of COL

WRITE AT (LEN) WORD.      "output length = contents of LEN

WRITE AT /COL(LEN) WORD.  "new line, column = contents of COL

                          "output length = contents of LEN

 

Note

The position and length specification must appear before the
field. If the position and length specification contains only constants, you
the introductory AT is unnecessary. (In the first four of the above examples,
you can therefore omit AT .) Always write the position and length specification
without gaps and in the specified order. Leave at least one space between the
position and length specification and the field name. For dynamic positioning,
see also POSITION . No output results from
positioning to the right of the far right edge of the page. With explicit
column specifications, the field is output from this column, even if it no
longer completely fits on the line or overwrites another field. If the output
length is too short, number fields (types P , I and F are prefixed with an
asterisk (’*'), while all other types are truncated on the right. If you want
the abbreviated output of a variable, you should always use WRITE (10)
T100-TEXT rather than WRITE T100-TEXT(10) (sub-field access). 
On the one hand, the first form is always allowed and the second form can be
forbidden for certain data types (e.g. TYPE P ). On the other hand, only the
first form guarantees the identity of the variables for GET
CURSOR … FIELD and F1 help. 

Addition 2

… option (formatting option) 

Effect

You can modify the output of the field f by using one of the
special formatting options . 

Addition 3

… ofmt (output format by field) 

Effect

Outputs the field with the specified output formats (color,
intensity, ready for input, …). 
You can use the same output options as for FORMAT . If
no specifications are made, the field is output with the standard formats or
with the format set by a preceding FORMAT statement. 

Example

 

DATA F.

 

FORMAT INTENSIFIED OFF INPUT.

WRITE F INPUT OFF INVERSE COLOR 3.

 

Note

The format specifications with WRITE apply only for output
of the field f . They modify the currently valid format for this field. This
means that, in the above example, the non-highlighted output remains for the
field F . When f has been output, the system reverts to the old format. 

Addition 4

… AS CHECKBOX (output as
checkbox) 

Addition 5

… AS SYMBOL (output as
symbol) 

Addition 6

… AS ICON (output as icon) 

Addition 7

… AS LINE (output as line) 

Note

General notes on outputting boxes to lists 

When you output a list, this is sometimes combined with vertical and horizontal
lines to form closed boxes: 

· Vertical
lines are output by the system field SY-VLINE or by a field containing
" | " (vertical bar), 

· Horizontal
lines are output by the system field SY-ULINE or by a field containing
only " - " (minus sign), 

· Vertical
and horizontal lines converge (without gaps). 

Index 
© SAP AG 1996 

WRITE - Output as checkbox 

 

Effect

Outputs the field f as a checkbox. The contents of the first
character of f is interpreted as the "status": 

‘ ‘ = not selected 
‘X’ = selected 

The user can change this as required. 

Note

To prevent the user changing the contents of the checkbox,
you can use the addition … INPUT OFF . The checkbox is then nothing more than
a status display and can only be changed by programming. 
In technical terms, a checkbox behaves exactly like an input field with a
length of 1 (FORMAT INPUT ). 

Examples

 

DATA: MARKFIELD(1) TYPE C VALUE 'X'.

...

WRITE MARKFIELD AS CHECKBOX.           "checkbox selected

MARKFIELD = SPACE.

WRITE MARKFIELD AS CHECKBOX.           "deselected

WRITE MARKFIELD AS CHECKBOX INPUT OFF. "deselected, protected

Index 
© SAP AG 1996 

WRITE - Output as icon 

 

Effect

You can output certain characters as icons using the
addition …AS ICON . You should only address these characters with their
system-defined names. The include <ICON> (or the more comprehensive
include <LIST> ) contains the relevant identifiers as constants, e.g.
ICON_OKAY (see List of icons ). 

Example

 

INCLUDE <ICON>.

WRITE: / ICON_OKAY AS ICON,         "output as icon

         'Text line'.

 

Note

Although an output length of 2 characters is enough for most
icons, some (e.g. the traffic light icons ICON_RED_LIGHT , …) have a greater
output length. 
You can determine the length of an icon with DESCRIBE
FIELD ICON_… output length … . 
You cannot print out all list icons. The printable icons are flagged as such in
the ‘list of icons’ mentioned above. 

Index 
© SAP AG 1996 

WRITE - Output as line 

 

Effect

On list output, automatically links certain characters together
to form continuous lines or boxes, if there is no space between them: 

· vertical
lines, output with the system field SY-VLINE or using a field with the
contents " | " (vertical line) 

· horizontal
lines, output with the system field SY-ULINE or using a field with at
least 2 consecutive minus signs " — ". 

Exactly how each line segment is output (e.g. whether as straight line, corner,
T-piece or cross) depends on the adjoining characters. 
A good rule of thumb sipulates that if the cell adjacent to a line character
also contains a line character, the missing piece required to form a connection
is added. If an adjacent cell does not also contain a line character, the line
character is truncated on that side. Line characters standing on their own remain
unchanged. 
This technique is sufficient to cope with most cases (e.g. tables, boxes,
simple hierarchies). However, no matter how carefully you use some empty
characters and lines, it is not possible to stop adjacent line characters being
joined in an inappropriate way (e.g. very compact hierarchy diagrams, or
densely boxes). The solution here is to output the required line segment
explicitly using the addition … AS LINE . 
The include <LINE> (or the more comprehensive include <LIST> )
contains the relevant identifiers for lines as constants, e.g.
LINE_TOP_LEFT_CORNER , LINE_BOTTOM_MIDDLE_CORNER . 

Note

Lines cannot have any other display attributes. If
attributes such as color ( COLOR ), reverse video ( INVERSE ) or intensified (
INTENSIFIED ) are set, these are ignored on output. If the ready for input
attribute ( INPUT ) is set, the actual characters (minus sign, vertical line)
are displayed. 

Example

Output two nested corner segments: 

 

INCLUDE <LINE>.

 

ULINE /1(50).

WRITE: / SY-VLINE NO-GAP, LINE_TOP_LEFT_CORNER AS LINE.

ULINE 3(48).

WRITE: / SY-VLINE NO-GAP, SY-VLINE NO-GAP.

Index 
© SAP AG 1996 

WRITE - Output formatting options 

 

Options

… NO-ZERO 
… NO-SIGN 
… DD/MM/YY 
… MM/DD/YY 
… DD/MM/YYYY 
… MM/DD/YYYY 
… DDMMYY 
… MMDDYY 
… YYMMDD 
… CURRENCY w 
… DECIMALS d 
… ROUND r 
… UNIT u 
… EXPONENT e 

… USING EDIT MASK mask 
… USING NO EDIT MASK 

… UNDER g (only with WRITE ) 
… NO-GAP (only with WRITE ) 

… LEFT-JUSTIFIED 
… CENTERED 
… RIGHT-JUSTIFIED 

Note

The formatting options UNDER g and NO-GAP are intended only
output to lists and therefore cannot be used with WRITE
… TO . 

Option

… NO-ZERO 

Effect

If the contents of f are equal to zero, only blanks are
output; if f is of type C or N , leading zeros are replaced by blanks. 

Option

… NO-SIGN 

Effect

The leading sign is not output if f is of type I , P or F . 

Option

… DD/MM/YY 

Option

… MM/DD/YY 

Effect

If f is a date field (type D ), the date is output with a
2-character year as specified in the user’s master record. Both of these
formatting options have the same value. 

Option

… DD/MM/YYYY 

Option

… MM/DD/YYYY 

Effect

If f is a date field (type D ), the date is output with a
4-character year as specified in the user’s master record. Both of these
formatting options have the same value. 

Option

… DDMMYY 

Option

… MMDDYY 

Effect

Date formatting like the additions … DD/MM/YY and …
MM/DD/YY , but without separators. 

Option

… YYMMDD 

Effect

If f is a date field (type D ), the date is output in the
format YYMMDD (YY = year, MM = month, DD = Day). 

Option

… CURRENCY w 

Effect

Correct format for currency specified in the field w . 
Treats the contents of f as a currency amount. The currency specified in w
determines how many decimal places this amount should have. 
The contents of w are used as a currency key for the table TCURX ; if there is
no entry for w , the system assumes that the currency amount has 2 decimal
places. 

Option

… DECIMALS d 

Effect

d specifies the number of decimal places for a number field
(type I , P or F ) in d . If this value is smaller than the number of decimal places
in the number, the number is rounded. If the value is greater, the number is
padded with zeros. 
Since accuracy with floating point arithmetic is up to about 15 decimal places
(see ABAP/4 number types ), up to 17 digits are output with floating point
numbers (type F ). (In some circumstances, 17 digits are needed to
differentiate between two neighboring floating point numbers.) If the output
length is not sufficient, as many decimal places as possible are output.
Negative DECIMALS specifications are treated as DECIMALS 0 . 

Example

Effect of different DECIMALS specifications: 

 

DATA: X TYPE P DECIMALS 3 VALUE '1.267',

      Y TYPE F            VALUE '125.456E2'.

 

WRITE: /X DECIMALS 0,  "output: 1

       /X DECIMALS 2,  "output: 1.27

       /X DECIMALS 5,  "output: 1.26700

       /Y DECIMALS 1,  "output: 1.3E+04

       /Y DECIMALS 5,  "output: 1.25456E+04

       /Y DECIMALS 20. "output: 1.25456000000000E+04

 

Option

… ROUND r 

Effect

Scaled output of a field of type P . 

The decimal point is first moved r places to the left ( r > 0) or to the
right ( r < 0); this is the same as dividing with the appropriate exponent
10** r . The value determined in this way is output with the valid number of
digits before and after the decimal point. If the decimal point is moved to the
left, the number is rounded. 
For further information about the interaction between the formatting options
CURRENCY and DECIMALS , see the notes below. 
&ABAP-EXAMPLE& Effect of different ROUND specifications: 

 

DATA: X TYPE P DECIMALS 2 VALUE '12493.97'.

 

WRITE: /X ROUND -2,   "output: 1,249,397.00

       /X ROUND  0,   "output:    12,493,97

       /X ROUND  2,   "output:       124.94

       /X ROUND  5,   "output:         0.12

 

Option

… UNIT u 

Effect

Formats a value according to the unit specified in the field
u . 
The contents of f are treated as a quantity. The unit specified in u determines
how many decimal places should be output. 
If f has more places after the decimal point than determined in u , the output
value will only have the number of decimal places determined by u , unless the
operation truncates digits other than zero. 
If f has fewer places after the decimal point than determined by u , the option
has no effect. 
The contents of u are used as a unit in the table T006 , but if there is no
entry, the formatting option has no effect. 
The field f which is to be output must have the type P . This option is used
for table fields which have the Dictionary type QUAN , or for fields defined
with reference to such fields (DATA … LIKE … ). 
This formatting option excludes the options DECIMALS and ROUND . 

Example

Suppose the unit ‘STD’ has 3 decimals 

 

DATA HOUR TYPE P DECIMALS 3 VALUE '1.200'.

 

WRITE (6) HOUR UNIT 'STD'. "output:   1,2

HOUR = '1.230'.

WRITE (6) HOUR UNIT 'STD'. "output: 1,230

 

Option

… EXPONENT e 

Effect

The field e defines a fixed exponent for a floating point
number (type F ). The mantissa is adjusted to the exponent by moving the
decimal point and padding with zeros. With EXPONENT 0 , the exponent
specification is suppressed. 
However, if the output length is too short to accommodate all digits before the
decimal point, the standard output format is used. 

Example

Effect of different EXPONENT specifications: 

 

DATA: X TYPE P VALUE '123456789E2'.

 

WRITE: /X     EXPONENT 0,    "output:     12345678900,000000

       /X(10) EXPONENT 0,    "output:  1,235E+10

       /X     EXPONENT 3,    "output:  12345678,90000000E+03

       /Y     EXPONENT -3,   "output:  12345678900000,00E-03

       /Y     EXPONENT 9,    "output:  12,34567890000000E+09

       /Y     EXPONENT 2

       /Y     DECIMALS 4.    "output:     123456789,0000E+02

 

Option

… USING EDIT MASK mask 

Effect

Outputs f according to the formatting template mask . 
Without this addition, f is output in the standard format for that particular
type or with a format defined in the ABAP/4 Dictionary . The addition allows
you to define a different format. 
You can specify the formatting template as follows: 

· ‘_’
represents one character of the field f 
or one digit with type P or I 

· ‘V’
only with fields of type P or I : 
output of leading sign 

· ‘LL’
at beginning of template: 

· left
justify (standard) 

· ‘RR’
at beginning of template: 

· right
justify 

· ‘==conv’
perform output conversion conv 

· ‘:’,
… separator 

· (all
other characters) 

When formatting, the characters ‘_’ in the template are replaced from the left
( ‘LL’ ) or from the right ( ‘RR’ ) by the characters or digits (type P or I )
of the field f . 

Notes

When using a template, you must specify the an explicit
output length because otherwise the implicit output length of the field f is
used. Usually, the template is longer than the implicit output length. 
If the leading sign is to be output with a field of type P or I , you must
specify the wildcard character V at the desired place. If this character does
not appear in the template, no leading sign will be output if the value of f is
negative. 
When formatting a field of type P with decimal places, the value is not aligned
with a character in the template representing the decimal point (either a
period or a comma). If you want to have this character in the output, you must
insert it in the correct position in the template and define the formatting
from the right. If there is no character for the decimal point in the template,
no such character is output. 
Fields of type F are first converted to the standard format and the resulting
sequence is then copied to the template in the case of a field of type C . 
You implement the user-specific conversion conv with a function module called
CONVERSION_EXIT_conv_OUTPUT , e.g. COONVERSION_EXIT_ALPHA_OUTPUT for the
conversion of numeric values with leading zeros to a format without leading
zeros for type C fields. If a Dictionary field is output and the domain of that
field defines a conversion routine, this is executed automatically. For a
description of the conversion, refer to the documentation of the appropriate
function module. 

Example

Formatted output of the time: 

 

DATA TIME TYPE T VALUE '154633'.

 

WRITE (8) TIME USING EDIT MASK '__:__:__'.  "Output: 15:46:33

If the output length " (8) " was not specified here, the output would
be " 15:46: " because the implicit output length for the type T is 6. 

Option

… USING NO EDIT MASK 

Effect

Switches off a conversion routine specified in the ABAP/4
Dictionary . 

Option

… UNDER g 

Effect

Output of the field f begins at the column from which the
field g was output. If this happens in the same output line, the output of the
field g is overwritten. 

Note

After UNDER , the field g must be written exactly as the
reference field in the previous WRITE statement, i.e. with an offset and length
if necessary. The exception to this rule is if g is a text symbol. In this
case, the reference field is determined by the number of the text symbol (not
by the text stored there). 

Example

Align output to the reference fields: 

 

FIELD-SYMBOLS <FNAME>.

ASSIGN 'First Name' TO <FNAME>.

 

WRITE: /3 'Name'(001), 15 <FNAME>, 30 'RoomNo', 40 'Age'(002).

...

WRITE: /   'Peterson' UNDER 'Name'(001),

           'Ron'      UNDER <FNAME>,

           '5.1'      UNDER 'RoomNo',

       (5) 24         UNDER TEXT-002.

This produces the following output (numbers appear right-justified in their
output fields!): 

Name First Name RoomNo Age 
Peterson Ron 5.1 24 

Option

… NO-GAP 

Effect

Suppresses the blank after the field f . Fields output one after
the other are then displayed without gaps. 

Example

Output
several literals without gaps: 

 

WRITE: 'A' NO-GAP, 'B' NO-GAP, 'C'.  "Output: ABC


If NO-GAP was not specified here, the output would have been " A B C
" because one blank is always implicitly generated between consecutive
output fields. 

Option

… LEFT-JUSTIFIED 
… CENTERED 
… RIGHT-JUSTIFIED 

Effect

Left-justified, centered or right-justified output. 
For number fields (types I , P and F ), RIGHT-JUSTIFIED is the standard output
format, but LEFT-JUSTIFIED is used for all other types, as well as for
templates. 

Examples

Output to a list ( WRITE ): 

 

DATA: FIELD(10) VALUE 'abcde'.

 

  WRITE: / '|' NO-GAP, FIELD LEFT-JUSTIFIED  NO-GAP, '|',

         / '|' NO-GAP, FIELD CENTERED        NO-GAP, '|',

         / '|' NO-GAP, FIELD RIGHT-JUSTIFIED NO-GAP, '|'.

 

* Output: |abcde     |

*         |  abcde   |

*         |     abcde|

Formatting in a program field ( WRITE…TO… ) 

 

DATA: TARGET_FIELD1(10),

      TARGET_FIELD2 LIKE TARGET-FIELD1,

      TARGET_FIELD3 LIKE TARGET-FIELD1.

 

WRITE: '123' LEFT-JUSTIFIED  TO TARGET-FIELD1,

       '456' CENTERED        TO TARGET-FIELD2,

       '789' RIGHT-JUSTIFIED TO TARGET-FIELD3.

 

  WRITE: / '|' NO-GAP, TARGET_FIELD1 NO-GAP, '|',

         / '|' NO-GAP, TARGET-FIELD2 NO-GAP, '|',

         / '|' NO-GAP, TARGET_FIELD3 NO-GAP, '|'.

 

* Output: |123       |

*         |   456    |

*         |       789|

 

Notes

Specifying several formatting options 

You can use the additions of the first group ( NO-ZERO , NO-SIGN , DD/MM/YY
etc., CURRENCY , DECIMALS , ROUND , EXPONENT ) simultaneously, provided it
makes sense. You can combine the additions UNDER and NO-GAP with all other
additions in any permutation; however, they are not taken into account until
the field f has been formatted according to all the other options. 
Templates, conversion routines and alignment 

If you want to format a field using a special conversion routine , all the
other additions (apart from UNDER and NO-GAP ) are ignored. This also applies
if the conversion routine is not explicitly specified, but comes from the
ABAP/4 Dictionary . 
If you want to format a field using a template , the system first takes into
account the options of the first group, and then places the result in the
template. However, if you specify one of the date-related formatting options (
DD/MM/YY etc.), the template is ignored. 
Finally, the formatted field or the template is copied to the target field
according to the requested alignment . For type C fields, it is the occupied
length that is relevant, not the defined length; this means that trailing
blanks are not taken into account. 
Combined usage of CURRENCY , DECIMALS and ROUND 

The rounding factor (from the right) in 

WRITE price CURRENCY c ROUND r DECIMALS d 

results from the formula 

rounding factor = c + r - d . 

If DECIMALS is not specified, d = c applies. 

You read this formula in the following manner: 

The field price is supposed to be of ABAP/4 type P (or I ); it contains a
currency amount. The CURRENCY specification expresses how many decimal places
price is to have and may differ from the definition of price (the decimal point
is not stored internally, but comes from the type attributes of price ).
Normally, price is output with as many decimal places as the field has
internally according to the type attributes or the CURRENCY specification. You
can override this number of output decimal places with DECIMALS . The addition
ROUND addition moves the decimal point r places to the left, if r is positive,
otherwise to the right. This means that a $ amount is output with ROUND 3 in the unit 1000 $. 

According to the above formula, there can also be a "negative"
rounding factor; then, the corresponding number of zeros is appended to the amount
price on the right using the "rounding factor". However, the value of
"rounding factor" must be at least equal to -14. 
Currency fields and DATA with DECIMALS 

If the field price is normally formatted with decimal places (e.g. fields for
currency amounts), these are treated like a CURRENCY specification when
rounding, if CURRENCY was not expressly specified. 
If present, the DECIMALS specification defines how many decimal places are to
be output after rounding. 
If the DECIMALS and the (explicit or implicit) CURRENCY specifications are
different, rounding takes place according to the above formula, even if no
ROUND specification was made (i.e. r = 0). 
If a field in the DATA statement was declared with
DECIMALS n , WRITE treats it like a currency field with n decimal places. 

Examples

Sales in pfennigs or lira: 246260 
Unit TDM or TLira with 1 decimal place. 

 

DATA SALES TYPE P VALUE 246260.

WRITE SALES CURRENCY 'DEM' ROUND 3 DECIMALS 1. "    2,5  TDM

WRITE SALES CURRENCY ‘ITL’ ROUND 3 DECIMALS 1. "  246,3  TLira


Sales in pfennigs or lira: 99990 
Unit TDM or TLira with 1 decimal place. 

 

SALES = 99990.

WRITE SALES CURRENCY ‘DEM’ ROUND 3 DECIMALS 1. "   1,0  TDM

WRITE SALES CURRENCY ‘ITL’ ROUND 3 DECIMALS 1. " 100,0  TLira


Sales in pfennigs or lira: 93860 
Unit 100 DM or 100 lira with 2 decimal places: 

 

SALES = 93860.

WRITE SALES CURRENCY ‘DEM’ ROUND 2 DECIMALS 2. "   9,38 HDM

WRITE SALES CURRENCY ‘ITL’ ROUND 2 DECIMALS 2. " 938,60 HLira


Sales in pfennigs: 93840 
Unit 1 DM without decimal places. 

 

SALES = 93860

WRITE SALES CURRENCY ‘DEM’         DECIMALS 0. " 938    DM

Sales in pfennigs: 93860 
Unit 1 DM without decimal places. 

 

SALES = 93860.

WRITE SALES CURRENCY 'DEM'         DECIMALS 0. " 939    DM

 

Note

Runtime errors 

· WRITE_CURRENCY_ILLEGAL_TYPE
: CURRENCY parameter with WRITE is not type C 

· WRITE_ROUND_TOO_SMALL
: Rounding parameter is less than -14 

· WRITE_UNIT-ILLEGAL_TYPE
: UNIT parameter with WRITE is not type C 

Index 
© SAP
AG 1996 

WRITE -
Output as symbol 

 

Effect

You can output certain characters as symbols using the
addition … AS SYMBOL . You should only address these characters with their
system-defined names. The include <SYMBOL> (or the more comprehensive include
<LIST> ) contains the relevant identifiers as constants, e.g. SYM_PHONE ,
SYM_CIRCLE . 

Example

 

INCLUDE <SYMBOL>.

WRITE: / SYM_RIGHT_HAND AS SYMBOL,    " output as symbol

         'Tip, Note',

         SYM_LEFT_HAND  AS SYMBOL.    " output as symbol

 

Note

An output length of one character is enough for most
symbols, but some (e.g. SYM_FAX ) are twice as long. 
You can determine the length of a symbol with DESCRIBE
FIELD SYM_… OUTPUT-LENGTH … 

Index 
© SAP AG 1996 

WRITE -
Output to a variable 

 

Variants

1. WRITE f TO g[+off][(len)]. 
2. WRITE f TO itab[+off][(len)] INDEX idx. 

Variant 1

WRITE f TO g[+off][(len)]. 

Addition

… option 

Effect

Assigns the contents of the
source field f to the target field g as a new value. 

In contrast to MOVE , the format of the target field g
is the same as when outputting to a list with WRITE .
The field type C is always used, regardless of the actual data type. 

As with list output, the settings in the user’s master record for decimal point
(period or comma) and date format are taken into account. 

Other formatting options are also possible with list
output. 

Instead of specifying a static source field f , you can make a dynamic source
field specification (name) . In this case, the contents of the field name is
interpreted as the source field name at runtime and the contents are formatted
accordingly. 

You can identify the target field g more precisely by specifying the offset
and/or length in the form g+off(len) . Both the offset and the length
specifications off and len can also be dynamic. 

The return code value SY-SUBRC is undefined. 

Example

WRITE … TO with dynamic source field specification and
dynamic offset and length specification for the target field: 

 

DATA: NAME(5)  VALUE 'FIELD',

      FIELD(5) VALUE 'Harry',

      DEST(18) VALUE 'Robert James Smith',

      OFF      TYPE I,

      LEN      TYPE I.

 

OFF = 7.

LEN = 8.

WRITE (NAME) TO DEST+OFF(LEN).

 

The field DEST noew contains the value " Robert Harry
ith ". 

Notes

Only values between 0 and the length of the target field g are
allowed as offset specifications. Any other offset specifications result in a
runtime error. 
Only values >= 0 are allowed as length specifications. Negative length
specifications result in a runtime error. Excessive length specifications are
automatically truncated. 
If you specify the field length as the offset or the value 0 as the length, the
target field is blank. In this case, the statement has no effect. 

Addition

… option 

Effect

Modifies the output format with the aid of special formatting options . 

Variant 2

WRITE f TO itab[+off][(len)] INDEX idx. 

Additions like variant 1. 

Effect

Like variant 1, except that output is to the idx -th line of
the internal table itab . 

Ayn offset and/or length specifications refer to the table line used for
output. 

The return code value is set as follows: 

SY-SUBRC = 0 Valid index specification, i.e. the internal table itab contains a
line with the index idx . 

SY_SUBRC = 4 Index specification is too large, i.e. the internal table itab
contains fewer than idx entries. 

Note

Invalid index specifications, i.e. idx <= 0, result in a
runtime error. 

Note

Runtime errors 

· WRITE_TO_LENGTH_NEGATIVE
: Negative length specification in len . 

· WRITE_TO_OFFSET_NEGATIVE :
Negative offset specification in off . 

· WRITE_TO_OFFSET_TOOLARGE :
Offset specification in off is greater than field length. 

· TABLE_INVALID_INDEX : Invalid
index specification <= 0
in idx (variant 2 only). 


Related MOVE , WRITE 

************************************************************************************************************************************************************************
