2 D. Schimmel, R. Hillert, I. Hänel, H. Hotzel

An Ontology-Composition Algebra 3

An Ontology-Composition Algebra

Prasenjit Mitra and Gio Wiederhold

Stanford University

Stanford CA, 94035, U.S.A.

{mitra, gio}@db.stanford.edu
Abstract

The need for an algebra to manipulate ontologies is motivated by the impossibility of achieving a globally consistent ontology. Our approach is to integrate information from diverse sources by focusing on the intersection of their ontologies, and articulating the sources accordingly. These articulations typically require rules to define synonymy, subsets, overlaps, and abstraction among the terms of interest. The algebra, needed to compose multiple articulations, has to manipulate the ontologies on the basis of these articulation rules.

The intentions of this work is to gain a level of precision in dealing with diverse information that is adequate for routine commerce on the web, as envisaged by the semantic web community. This work is intended for such a setting, where retrieving more is not better than obtaining correct information.

We introduce the problems of being consistent, and then develop the notion of articulation among domains. We describe tools we have developed to create articulations, and some early experiments that demonstrate our approach. Finally we describe the algebra more formally. The conclusion will make it clear that we have only started on this research direction and that many tasks of investigation remain. We do believe strongly, however, that a direction as taken here is the only way that systems involving semantics will become scalable.

1. Introduction

The semantics of an information source is captured by its ontology, the collection of terms and their relationships as used in the domain of discourse for the source. Most of the focus of ontologists has been on developing ever larger, static ontologies[Gruber:93], without an explicit contextual constraint
, even though the developmental efforts were typically initiated in a specific application domain. When new, related applications arise, existing ontologies must be broadened. For instance, to serve a set of intelligence queries hundreds of new definitions had to be added to the already very broad Cyc ontology [Teknowledge:97].

We argue below that it is impossible, and not even desirable to achieve a comprehensive ontology that is also globally consistent. To satisfy the needs of an application no single source is adequate, and therefore, we have to exploit a universe of sources. These sources are autonomous, and hence, without a global mandate, mutually inconsistent. In the absence of global consistency it becomes necessary, when information has to be integrated from diverse sources, to compose ontologies that can serve the application domain. We refer to the process of selecting and exploiting linkages as articulation [Guha:91].

1.1 Global consistency

Global consistency is often assumed by applications that want to exploit the wealth of information that is available today. A cogent and significant example is the semantic net, intended to bring world-wide electronic commerce to the web [Hendler]. We do not argue with the objective, but believe that the required infrastructure must be layered.

While global consistency might be wonderful for the users of information systems, it also has significant costs for the providers of information, and in many cases the costs will be greater than the benefits for specific information providers. We will cover three problems that are being encountered: the process of achieving consistency, the costs of being consistent especially when the objectives of the agents that use the information differ, and the most serious issue, the cost of maintaining consistency over time.

The process of achieving consistency.

 There have been a number of efforts to achieve consistency from multiple sources, typically by merging the terminologies with as much care as is possible. For large terminologies the efforts are large [UMLS]. Problems arise in combining ontologies when the objectives of the sources differ, for instance while combining terms used for diagnosis and reporting of diseases (to the agencies that reimburse for their treatment) with the terms used in the research literature. If exact semantic identity is lacking, terms can be unified at a higher level
, and information that is possibly related can be retrieved as well. When the application objective is to study and understand the end-user can reject misleading records. The volume of information retrieved is larger than needed, and the searcher is assured of not missing anything. Ranking of retrieved material can help in dealing with excessive volume, although ranking based on popularity, as provided by Google is not always the best [Page&Brin].

Merging of large ontologies is a major effort [DAML Cyc ref]. Automating the integration task is desirable. Most merging tools are based on linguistic similarity. To get more matches thesauri might be used [MWJ,Noy, other DAML researchers]. Terms that are spelled similarly may differ in meaning, sometimes because they have a common etymology, as `vehicle' for transport, and `vehicle' in chemical engineering. However, terms is specific domain tend to be unambiguous, the confusion increases when the coverage of the ontology increases.

In more pedestrian situations the cost of missing information (type 1 errors) will often be greater than the benefits of avoiding excess information (type 2 errors). For routine purchases, missing a few suppliers, say 2 out 10, can mean missing one with a slightly better price than that of the chosen supplier. However, the purchaser can save the cost of locating those two suppliers, since to locate them he might have to look through the information corresponding to 50 potential suppliers. To avoid such `information overload' business groups that interact are developing precise, controlled ontologies[ref Petroleum trade, trucking?]. Since they are carefully designed and focused on a specific domain, as petroleum trading or short-haul trucking, they tend to be modest in size, and of high quality for their limited application. Sources with well-defined ontologies can be profitably used for more complex applications, say in an emergency-management application, where petroleum products have to be shipped to supply a disaster site. Using a broad-based engine, say Google, to achieve that goal is not likely to be successful [google ref].

The cost of being consistent

The terms we use in a domain are intended to communicate effectively. We will use short, specific terms and abbreviations when we communicate to our peers. Often, we find ourselves in semantic darkness while listening in on a meeting of specialists. It is a major achievement for a scientist to become fluent in multiple domains. In addition to having to learn new words, and acquire new meanings for old terms, there will also be differences in abstraction and structure. A householder will use the term `nail' for pointed things to be hit with a hammer, while a carpenter talks about brads, sinkers, in addition to modifiers as 8-penny nails, etc. For the householder to acquire the carpenter's terminology will be costly, to require the carpenter to just use the term nail and then specify length, diameter, head size and material engender much inefficiency.

Structural differences create further mismatches. The traditional task of builders of ontologies has been to define a single ordered structure for the domain terminology, in the form of a hierarchical tree or lattice that is effective for the sponsoring audience. In medicine we decompose the human body according to function, while a tailor is content with a decomposition according to external shape. A cannibal may have yet a different model.

Simple scope differences, that can still create troublesome inconsistencies, abound. A vehicle is defined differently for the highway police, for an architect, and for government registration. Registration in California covers houseboats, excluded from the concern of the police and architects. The subsidiary structure will also differ for distinct objectives, since classifications serving processing purposes differ, and alternate application will partition their world to allow effective assignment of processing functions.

When information is to be used for an alternate application we often encounter arrogance: `I can't see why they classified x in category y', forestalling attempts at cooperation and integration. Similarly, error rates are often high when data is exploited for unintended purposes, say billing data for medical research, since differences at low levels in clinical hierarchy would not affect billing.

 The cost of maintaining consistency

As indicated initially, the most serious issue in dealing with large, integrated ontologies is their maintenance. Our knowledge continues to evolve, and ontologies capture knowledge of the world. The intellectual process of splitting and lumping concepts, essential to the progress of science requires updating of source ontologies [ref]. Derived, integrated ontologies have to be updated then as well, a substantial effort when all possibly related linkages have to be re-verified. Cyc addresses that problem through its use of micro-theories, but certainly has not solved the issue in a formal manner [Guha:91].

When the breadth of coverage is such that committees are needed to define terms, compromises are likely and precision suffers. Development and maintenance costs increases more rapidly than the size of the sources, due to the exponential increase in possible interactions [Brooks:75]. We have no quantitative information on the cost of ontology maintenance. The reintegration of changes in ICD-9 codes into UMLS induced a delay of several years. A comprehensive model of maintaining medical ontologies has been proposed, but not yet assessed in a large scale [OliverSSM:98]. Given that ontology maintenance is likely to be similar to software maintenance, we can assume that over the life-time of an ontology maintenance costs will range from 60 to 90%
[SWref], with increasing values for large collections [Capers].

There continue to be extensive debates about establishing a single top-level ontological taxonomy underpinning all terms in existence. The expectation is that a comprehensive ontology is reusable and will also force consistency onto the world. However, global agreement is hard to achieve, and even if it is achieved at an instant, our knowledge, and hence the meaning attached to the terms changes over time. At a given size of ontology the maintenance required to keep the ontology up-to-date will require all available resources.

1.2 Composition

If global consistency is not feasible then the alternatives are to have distinct ontologies for every application or an ability to compose smaller domain ontologies for applications that cover more than one domain. Composition of ontologies for an application by merging has been performed for many instances [ref HPKB papers]. It serves immediate needs effectively, but avoids the long-term maintenance problem. The maintenance problem is exacerbated when many sources must be composed.

Rapid composition for new applications has been demonstrated within the DAML and RKF projects. Participating knowledge engineers must comprehend the shape of the ontology and its relationships in order to accurately gauge how changes will affect the knowledge base's performance. At a workshop, a presentation [ChalupskyHR:97] described preliminary efforts to align and merge two ontologies containing over 3000 concepts apiece. From an observers perspective it became evident that the original structure of the ontology was so fragile enough that no substantial transformation or enhancement was feasible. Many current approaches envisage much larger ontologies [Cyc..].

It is also possibly to defer wholesale composition closer to the time of use. In this case, the end user must use the available tools to bring the sources together. For researchers this task is natural, they do not expect that linkages among concepts have been provided to them. For regular users, as envisaged for the semantic web, that deferred approach is clearly impractical; there is neither sufficient time nor the broad expertise at the point of need. Besides, in this case, several end-users with similar applications, e.g., in a travel-reservation application to book flight tickets and hotel rooms, have to repeat the same task of linking concepts across sources before they can use the sources. If the desired semantics of the applications, say as in several travel-reservation applications, is simple, well-defined and match exactly, it makes more sense to establish the linkages between the concepts correctly once and for all. The task of the end-user is then greatly simplified since she does not have to understand the semantics of the sources and bring them together, but can simply log-on to the application and have all the information of the different sources available to her.

2. Articulation of Ontologies

We now present our alternative to integrating ontologies into ever larger bodies. Two important aspect to articulation - as we define it - are:

Instead of merging the sources we will create linkages to the sources. Physically the source ontologies might remain with their creators and owners, or be copied for faster access, but logically they should remain unchanged by our needs.

Instead of establishing all meaningful linkages between all terms in the source ontologies we only create linkages relevant to a particular application. The articulation is limited to a relevant intersection of the terms. With businesses having limited resources at hand, reducing the scope of the articulation allows expending more effort at making the important linkages more precise, by adding precise rules that include scope specifications, mappings, and the like. Since the sources are still accessible, domain specific, unlinked information can still be extracted from those sources, but such information is then not already matched with corresponding information across the sources.

[image: image1.wmf]Articulation Context c

personnel

Source Context 1

Factory

domain

Source Context 2

Store

domain

 relevant slices

Real world objects

manufactured

Real world objects

sold to customers

Articulation Context b

taxes

Articulation Context a

purchasing

Purchasing

Application

other applications

splicing rules

Figure 1. Concepts of the SKC approach

Figure 1. illustrates our approach. We consider two sources of information, a Factory and a Store, that must share information in order to enable the purchasing of the Factory's goods by the Store. An articulation serves the Purchasing agents, which can be humans or automated agents. Other articulations between the two sources are feasible, however, they are distinct from the Purchasing articulation. The initial knowledge needed to define the Purchasing articulation precisely would come from the existing purchasing agents, or on a broader level, from experts at a Society of Purchasing Agents for specific types of goods. Other articulations, say regarding taxes, would be developed and maintained by other experts.

We will discuss aspects of articulation now in more detail. In Section 3 we will present our experimental work on articulation generators. Since we will also need to support applications with more than two domains, we will also require an algebra that allows composition by further articulation of other articulations. That topic will be addressed in Section 4.

2.1 Linkages with rules

The set of linkages between two domains forms a third ontology, the articulation ontology, supporting the integration needs of an application or a collection of applications having similar needs.

As discussed above, rules are needed to match the actual scopes of concepts precisely. The intensional specification of a domain is, in general, semantically incomplete. There are often implicit constraints that exclude an instance from a set. If we treat the specification as a test of membership, the excluded instances are false positives. Likewise, there are false negatives, exceptional instances that belong to the set, although they violate the specification.

Figure 2 below expresses the mismatch in coverage between the concept specification and its extension.

[image: image2.wmf] false

negatives

 false

 positives

 source instances

 concept intension

Figure 2: Concept Specification Mismatch

These mismatches are often more insidious, and lead to erroneous results that will not be obvious to the end-user of an application. For instance, the set of countries in the CIA Factbook contains an entry for Taiwan, which for political reasons does not appear in the UN databases. Ignoring Taiwan, as a database join over those domains would do, will create a substantial error. The definition of a semantically correct intersection is application dependent. For a regional trade analysis application the Taiwan data from the CIA factbook may be aggregated with those of mainland China. An articulation expert on regional trade will add the required rule into the application articulation ontology. If UN data have to be split, say for sales of shoes, an expert may have to provide a splitting percentage, or better yet, incorporate a third source which contains that specific information.

By explicitly considering the class of real-world objects and their instances, we have an important means for assessing the difference (in the semantics of the term “country” in the UN database and the CIA factbook), and validating the match obtained between the specifications of concepts and their actual instances [WalkerW:90]. An agent can be resolve mismatches between specifications and the actual instances of a class by extracting information about the mismatch and refining specification rules, including constructing rules to include or exclude single anomalous instances. In realistic settings, serving existing applications there are always some people that have dealt with resolving such mismatches in their daily work. Finding them may be hard. Formally describing the articulations is a useful aspect of retaining corporate knowledge, as our organizations change, shrink, and merge.

We assume that narrow, domain-specific ontologies are internally consistent. Since the ontologies are maintained by one specialist (or at most few specialists), few, if any, compromises arise. The content and scope of an ontology is first validated and then used in some computation for a customer. An ontology, by itself, can be reused in its narrow domain, however, if we are able to compose an adequate new context from the existing ontologies using algebraic operations, following our model, new applications can use it too. The ability to compose ontologies reduces the overall cost of building and maintaining an ontology specific to each application.

2.2 Defining the Intersection.

Maintainability is made simpler by keeping the amount of material to be maintained small. Hence we will only include linkage rules in an articulation that

1. are in the semantic intersection of the domains, and

2. define or relate concepts needed in the application.

For the purchasing of, say shoes, concepts dealing with the size, style, and color must be shared. To precisely specify the concepts some secondary concepts, such as the choice of size measurement, European versus U.S, may be needed. Such secondary information might be explicitly stated or implicit, for example, in an information source belonging to a European shoe company, it is implicit that the sizes mentioned are following the European codes. For each source where the sizes are implicit, an articulation agent has to add a specific rule that explicitly states wherever the sizes are following European codes or American ones. Besides, the articulation expert needs to write a rule or a table that converts data from one size measure to the other and this rule or table has to be inserted in the articulation as well.

 Concepts that exist in both ontologies but are irrelevant to the application, say employee for the purchasing example, should not be placed into the articulation ontology. If an application ontology already exists, that ontology can provide a filter. Our experimental work has focused on the de novo creation of articulation ontologies.

 Using specialized expertise at the base level ontologies is required to recognize incomplete specifications and irregular instances. Without such care, combining multiple ontologies and merging disparate instances is fated to produce an increasing divergence between semantic intensions and data extensions.

 The problem is compounded by inaccuracy and erroneous information in ontologies and databases. The next subsection provides our framework for using contexts to manage the correspondence.

3.0 Articulation Generation

As we have seen, in our scenario, information resides in multiple sources. An application that answers the queries or performs other tasks posed by an end-user needs to compose information from these sources. In order to compose the information, an articulating agent needs to examine the source ontologies and establish rules that relate the concepts in the ontologies. We will refer to such an agent as the articulation generator.

 Ideally, we would like to have an automatic articulation generator that would precisely understand the semantics of the information sources and the application and generate the minimum articulation between pairs of ontologies as needed by the application. However, in order to declaratively capture the semantics of the ontologies and the application that uses them, we would have to use a very expressive language. Automated reasoning with very expressive languages soon becomes intractable. Therefore, we have built a semi-automated articulation generator.

 The articulation generator is based on the SKAT (Semantic Knowledge Articulation Tool) system developed to articulate ontologies. Articulation rules are proposed by SKAT using simple expert rules and other external knowledge sources or semantic lexicons (e.g., Wordnet) and then verified by an expert. An inference engine uses the articulation rules generated by SKAT and the rules from the individual source ontologies to derive more rules if possible.

 The articulation generator takes the articulation rules and generates the articulation, i.e., the articulation ontology graph, which is presented along with the source ontologies to the expert for confirmation using a graphical user interface. The expert has the final word on the composition of the articulation and is responsible to correct inconsistencies in the suggested articulation. If the expert suggests modifications or new rules, they are forwarded to SKAT for further generation of new articulation rules. This process is iteratively repeated until the expert is satisfied with the generated articulation.

4.0 The Ontology-Composition Algebra
In this section, we will describe the algebra for the composition of ontologies that we have designed for use in our ONION (ONtology compositION) system[MKW00]. Before we can examine the algebraic operators, we will introduce the format in which the articulation generator we designed expects ontologies to be in and then introduce a few definitions that we use later on in the discussion.

4.1
The ONION Ontology Format

The term “ontology” has many definitions[11],[12]. It has been represented using various data formats and rule languages. Our approach is to use a definition and data format that is simple ­ a “least common format”. The format captures the basic features common to most machine­represented ontologies and is simple enough to allow easy transformations from various other ontology formats to ours. The articulation generator that we have implemented currently can articulate ontologies in a simple format that we have designed – namely the ONION Ontology Format.

 The ONION Ontology Format is based on the work done by Gyssens, et al., [GOOD]. At its core, we represent an ontology as a graph. Formally, an ontology O = (G,R) is represented as a directed labeled graph G and a set of rules R. The graph G=(V,E) comprises a finite set of nodes V and a finite set of edges E. R is expressed as Horn clauses.

 An edge e belonging to the set of edges E is written as (n1, , n2), where n1 and n2 are two nodes belonging to the set of nodes V and  is the label of the edge between them. The label of a node n is given by a function (n) that maps the node to a non-null string. In the context of ontologies, the label is often a noun-phrase that represents a concept. The label  of an edge e = (n_1, , n_2) is a string given by  = (e) where  is a function that returns the label of the edge e. The label of an edge is the name of a semantic relationship among the concepts that are depicted as nodes in the edge and it can be null. The domain of the functions , and  is the universal set of all nodes and edges, respectively (from all graphs), and their range is the set of strings (from all lexicons). We assume that the function  maps a node to a unique label, that is, no two nodes in the same ontology share the same label. Thus, we will use the label of a node as a unique identifier of the node. As a short-hand, instead of writing out an edge with a node and providing its label separately, we will abuse the notation for the sake of clarity, and while representing an edge substitute the label of a node for the node and write an edge e = ((n1), , (n2)).

The graph in the ONION Ontology Format can be expressed using RDF[RDF]. Each edge in our graph is coded as an RDF sentence. The two nodes in an edge are the subject and the predicate of the sentence and the relationship among the nodes is modeled as the property of the subject. In order to provide collection semantics RDF allows a construct called ``containers", however, to keep our model simple, the ONION Ontology Format does not provide a construct to express containers in the graphical format. The onus is on the ontology designer to encode collection semantics or other desired semantics using rules associated with the ontology. Generally, the children of a node in the ontology graph are unordered. In order to express order among the children of a node, we use a special relationship [see MW01]. By choosing RDF, we can leverage the various tools that are available for RDF and do not have to write parsers and other tools for our model.

Rules in an ontology are expressed in a logic-based language. The choice of the rule language, in principle, is left open to the ontology constructor. However, to keep the system simple, we have chosen the language of Horn Clauses as the rule language. Although, theoretically, it might make sense to use first-order logic or any other rule language with greater expressive power, in order to limit the computational complexity we use a simpler language like Horn Clauses. A typical rule r e R in an ontology is of the form :

CompoundStatement (Statement

A Statement is of the form (Concept Relationship Concept). A Concept is either a node or a variable that can be bound to one or more nodes in the ontology graph. Like an edge in the ontology graph, a Retationship also expresses a relation between the two Concepts.

The semantics of the relationships are typically specified in the document it is defined in and the namespace of the relationship is tagged along to clarify the relationship we are referring to. For example, rdfs : subClassOf, where rdfs is an alias of http://www.w3.org/2000/01/rdfschema# indicates that the relationship that is being used is the relationship “subclassOf” as specified in the document whose URL is aliased by rdfs. In the rest of the paper, we omit the namespace unless we need to differentiate between two relationships of the same name or the actual URL is relevant to the discussion.

The antecedent of a rule (CompoundStatement) is either a Boolean value (true or false) or a conjunction of Statements. If the antecedent of the rule is true, we simplify the notation by dropping the body of the rule and writing the consequent as a statement that holds and, like edges, express a relationship between two concepts in the ontology.

Edges can be thought of as rules whose antecedent is always true. Minimally we could define an ontology as a set of concepts and rules (since edges can be expressed as rules), however, we believe the graphical representation aligns with human intuition much better and thus describe our work using the above definition. A more detailed description of the ontology format can be found in [MWD01].

4.2 Preliminaries

For ease of description of the algebra, we will introduce the following terminology:

[image: image3.png]03\@..bc1m0r

hasA §ubC1 58

LauryCar

Articulation Rules:
irue => (02.Car SubClassOf O1.Vehicle)

(X InstanceOf 01.Car),(X hasA XMSRP)(Y InstanceOf X MSRP),

(V hasA ¥.Value), (Z InstanceO! Y- Value), (Y. Value > 40,000)
=> (X InslanceO! 02 LuxuryCar)

For a statement s = (Subject R Object), Nodes(s) contains Subject(Object) provided Subject(Object) is not a variable (that is, it is a node in some ontology graph). For an ontology O1, Nodes(O1) represents the nodes in the ontology graph for O1. For a set of rules R, Nodes(R) represents the union of Nodes(s) for all s, such that s is a statement in any rule r  R.

Fig. 3. Articulation Rules among ontologies.
Example 1: We introduce an example in Figure 3. O1, O2, and O3 are three ontologies. We only show selected portions of the ontology graphs corresponding to the three ontologies. In order to specify which ontology a concept is defined in, we tag the name of the ontology it belongs to the name of the node. For example, the node labeled O2:Car refers the concept Car as defined in the ontology O2. However, where the origin of the definition is not important (or is obvious) to the topic of discussion, we will simply use the concept name without mentioning the fully qualified name (that is, drop the ontology name tagged in front of it). Let the articulation rules among ontologies O1 and O2 be given by:

R = {(O2.Car SubClassOf O1.Vehicle), (O2.HouseBoat SubClassOf O1.Vehicle)}
then Nodes(R) = {O2.Car, O1.Vehicle, O2.HouseBoat}.

Edges(E, n), where E is a set of edges and n is a node in an ontology graph, represents all edges in E incident upon or incident from the node n. Formally, Edges(E, n) = {s | (n1, s = (nl a n) or s = (n a n1)}. Edges(E, N), where N and E are a set of nodes and edges respectively in an ontology graph, represents a set of edges S  E. Both nodes (the node from which an edge is incident from and the node to which it is incident upon) of each edge in the set S must belong to the set of nodes N. Formally, Edges(E, N) ={ s| (n1,n2  N, s = (n1 , l, n2)  E}.

4.3
Articulation Rules and Articulation Generation Functions

As we have seen before, to resolve heterogeneity among ontologies, we need a procedure to generate the correspondences and relationships among concepts in the ontologies being articulated. Such relationships are coded as articulation rules. We call such procedures that generate articulation rules between ontologies articulation generation functions. Note that the articulation generation function can be an automatic subroutine that takes in the two ontologies and outputs the articulation rules or it could be a manual effort where a human expert identifies the articulation rules by inspecting the two ontologies or a hybrid semi-automatic strategy that involves both a component that automatically suggests articulations and a human component that ratifies them.

An articulation generation function f takes is two ontologies (domain: O x O, where O is the set of ontologies in a particular semantic domain) and outputs a subset of the set of all possible rules (range: the set of all possible rules R among the domain ontologies) between them (f : OxO (2R) . We expect the articulation generation to be a complete. That is, for any two ontologies in the domain, the function always terminates and outputs a set of articulation rules that link them. An articulation rule r articulating two ontologies O1 and O2 is such that ((n O1| n  Nodes(R)) and ((n’  O2 | n’ Nodes(R)).

Example 2: In our running example, we show a few of the articulation rules generated by an articulation generation function. For lack of space, all articulation rules are not shown in Figure 1, but we show two rules graphically, and two textually at the lower part of the figure. The two graphical rules are shown by dotted arrows spanning different ontologies in contrast to the edges in an ontology indicated by solid arrows. Specifically, we see that O2:Car is related via the relationship SubClassOf to O1:Vehicle. Similarly O3:Boat is related via the relationship SubClassOf to O1:Vehicle. We show the rule expressing the first relationship both graphically and textually, and the second only graphically. The second articulation rule indicated textually at the bottom of the figure gives a Horn Clause that indicates the relationship between O2:Car and O3:LuxuryCar. Any instance of O2:Car that has a O2:MSRP that, in turn, has a O2:Value that is greater than 40,000 is a O3:LuxuryCar. Of course, such a rule should also consider the O2:Denomination of the O2:MSRP but for the sake of simplicity we have omitted the denomination from the rule. Note that we use the notation On:Concept to refer to Concept as defined in ontology O2. We assume that in the names of concepts are unique within an ontology.

In this work, we do not consider articulation rules that might introduce new nodes. For example, while articulating between PoundSterling and Guilders, an articulation generation function might generate an intermediate node called Euro and then give the relation between PoundSterling and the Euro and that between the Guilder and the Euro.

However, the presence of such an intermediate node influences the properties of the algebraic operators. For example, if an articulation generation function generates intermediate nodes, the intersection operation between ontologies can not be guaranteed to be associative. Thus, we do not consider such articulation generation functions in this work but it is an interesting problem to handle in future.

4.3 The Ontology­Composition Algebra

In order to formalize the task of composing ontologies, we propose an algebra for the composition of ontologies. If we use the algebraic framework to systematically compose ontologies, we can enable optimizations depending upon the properties of the operators. In this sub-section, we describe the ontology­composition algebra.

The algebra has one unary operator: Select, and three binary operations: Intersection, Union, and Difference.

4.3.1 Unary Operator

Select: The Select operator is useful to select portions of an ontology that might be of interest. For example, a person who wants to buy a car and does not care about houseboats, might want to select only portions of ontology O2 that contain terminology about cars and leave out the portions that are not related to cars.

Definition 1. The Select operator has two forms:

1. Given an ontology O = ((N, E), R), and a node n  N, Select(O, n) = (Gn ; Rn) where Gn = (Nn ; En) is a subgraph of G such that for all nodes n’  Nn , there exists a path from n to n’ in G. The set En = {e = (n1 R n2)  E, n1, n2  Nn} is such that each edge in En exists in E and expresses a relationship R between nodes n1 and n2 where both nodes n1 and n2 are in Nn. Similarly, Rn = {r  R | Nodes(R)  Nn} is the subset of rules in R such that each rule in Rn involves concepts that are all in Nn .

2. Given an ontology O = ((N, E), R), and set of nodes V, Select(O,V) = (G, Rv) where G = (V, Ev)). The set Ev ={e = (n1 R n2)  E, n1, n2  V} and the set Rv={r  R | Nodes(R) V}.

Example 6. In our example, the ontology O3 contain the edges (O3.LuxuryCar SubClassOf O3.Automobile), and (O3.LuxuryCar hasA O3.RetailPrice). Select(O3, Automobile) selects all nodes reachable from the node O3.Automobile namely {LuxuryCar, RetailPrice, Denomination, Value, and Dollar), and the edges between them. Select(O3, {Automobile, LuxuryCar}), on the other hand, only selects the nodes {O3.LuxuryCar, O3.Automobile} and the edge (O3.LuxuryCar SubClassOf O3.Automobile).

Note that a rule r in R that does not involve any node in O has Nodes(r) = {}. Such a rule is also included in the selected ontology. For example, a rule expressing the transitivity of the relationship SubClassOf:

(X SubClassOf Y), (Y SubClassOf Z))((X SubClassOf Z)

 contains only variables X, Y, and Z and no concepts from any ontology. Such a rule is included in any selected ontology S since the rule might be useful to reason about the relationships in S.

There is a case that could be made to include in the results of the select operation edges (and rules) that can be derived using the edges and rules available in the source ontology. For example, let us suppose that we had edges (LuxuryCar SubClassOf Car), and (Car SubClassOf Vehicle) in an ontology O. Select(O, {Vehicle, Car}) selects the last edge. On the other hand, Select(O, {Vehicle, LuxuryCar}) selects the nodes Vehicle, and LuxuryCar but no edges since there are no edges between them. We could define Select to add an edge (LuxuryCar SubclassOf Vehicle) if such a relationship could be derived from the ontology O, for example, using a rule that said that the relationship SubClassOf is transitive.

Similarly, it is easy to see that we could introduce additional rules over and above the ones that the current Select operation includes in the selected ontology. However, in order to generate these derived edges and rules, the ontology composition engine would need to interpret the rules of the ontology. In order to allow our framework to be applicable to different ontologies with different interpretation semantics for rules and because potentially we could derive an infinite number of facts in certain scenarios (say with recursive rules), the ontology composition engine does not interpret the rules so as to maintain its simplicity.

4.3.2
Binary Operators

Each binary operator takes as operands two ontologies that we want to articulate, and generates an ontology as a result, using the articulation rules. The articulation rules are generated by an articulation generation function.

Intersection: is the most important and interesting binary operation.

The intersection of two ontologies O1 = ((N1, E1), R1), and O2 = ((N2, E2), R2) with respect to the set of articulation rule generating function f is:

OI1,2 = O1 (f O2 = ((NI , EI) , RI), where

 NI = Nodes(f(O1, O2)),

 EI = Edges(E1, NI (N1) + Edges(E2, NI (N2) + Edges(f(O1, O2)) ,

and RI = Rules(O1, NI (N1) + Rules(O2,NI (N2) + f(O1, O2))).

The nodes in the intersection ontology are those nodes that appear in the articulation rules. An edge in the intersection ontology is an edge among the nodes in the intersection ontology that were either present in the source ontologies or have been output by the articulation generation function as an articulation rule. The rules in the intersection ontology are the articulation rules that are present in the source ontology that use only concepts that occur in the intersection ontology.

Note that since we consider each node as an object instead of the subtree rooted at the node, we will get only the node in the intersection by virtue of its appearing in an articulation rule and not automatically include its attributes or subclasses. Again, a minimal linkage keeps the intersection ontologies small and avoids the inclusion of possibly irrelevant concepts. Inclusion of attributes will be required to define subclass relationships among nodes in the source ontologies precisely.

Each node in the intersection has a label that contains the URI of the source in which it appears. If the attributes of the object that it represents are required, the application’s query processor has to get that information from the original source. Defining the intersection with a minimal outlook reduces the complexity of the composition task, and the maintenance costs, which all depend upon the size of the articulation.

Union: The union of two ontologies O1 = ((V 1, E1), R1) and O2 = ((V 2, E2), R2) with respect to an articulation generating function f is:

OU1,2 = O1 (f O2 = ((VU, EU),RU) where

 VU = V1 (V2 (VI,

 EU = E1 (E2 (EI,

and RU = R1 (R2 (RI,

and where OI1,2 = O1 (f O2 = ((VI, EI), RI) is the intersection of the two ontologies with respect to f.

The set VI adds nodes that are neither in V1 nor V2 to VU only if the articulation rules introduce nodes that are neither in V1 nor V2. However, even if two nodes in the ontologies being articulated have the same label, say, O1.x and O2.x and f indicates that they represent the same concept by generating the rule (O1.x Equals O2.x), in the intersection and the union ontology, we would retain both O1.x and O2.x and the edge between them instead of collapsing them into one node. The articulation rules indicate relationships between nodes in the two source ontologies and thus introduce new edges (the set EI) that were not there in the source ontologies.

Though queries are often posed over the union of several information sources, we rarely expect to materialize the union of several source ontologies, since our objective is not to integrate source ontologies but to create minimal articulations and interoperate based on them. To answer queries, the articulation is used to retrieve information from the individual sources. Since we directly access the primary sources, the information gathered is what is currently available in the sources and is thus fresher than what we would achieve by materializing the union of the sources. We expect that larger applications will have to combine multiple articulations and here is where the union operation is handy. At times, for performance reasons an application might materialize the union of several ontologies in its cache, but we leave the decision of sacrificing freshness for performance to the application-writer who presumably knows what sacrifices are best for the application.

Difference The difference between two ontologies O1 = ((V1, E1), R1) and O2 = ((V2, E2), R2) with respect to an articulating function f is:

OD = O1 –f O2 = ((VD, ED), RD), where

 VD = V1 - VI ,

 ED = E1 - EI,

and RD = R1 - RI,

and where OI1,2 = O1 (f O2 = ((VI, EI), RI) is the intersection of the two ontologies with respect to f.

That is, the difference ontology includes portions of the first ontology that are not common to the second ontology. The nodes, edges and rules that are not in the intersection ontology but are present in the first ontology comprise the difference ontology.

4.5 Properties of the Operators

We defined the operators in the algebra on the basis of the articulation rules produced by the articulation generating function. Not surprisingly, most of the properties of the binary operations are based on the properties of the articulation generating function. For example, the intersection and union operators are commutative if and only if the articulation generation function, on which they are based, is commutative (for proofs see [MW02]).

The commutativity of intersection and union gives an optimizer that is deciding upon an execution plan for a composition task written in terms of the algebraic operators the freedom to swap the order of the operands for these operations ifrequired to optimize the performance of the composition. However, strict commutativity of the articulation generation function might not be achievable or necessary in order to allow the operands to be swapped.

Consider the example where an articulation generator generates articulation rules f(O1, O2) = {(O1.Car NM.SubClassOf O2.Vehicle)} and f(O2, O1) = (O2.Vehicle NM.SuperClassOf O1.Car) .

Although the articulation generation function is not commutative, the semantic information contained in the articulation rules are equivalent as long as the relations SubClassOf and SuperClassOf defined in the namespace "NM" are semantically similar after we invert their parameters. Thus, if the rules obtained by swapping the operands are semantically equivalent, we can swap the operands without compromising on the correctness of the result.

To capture this, we define the concept of semantic commutativity.

Definition 2: An articulation generation function, f, is semantically commutative if and only if f(O1,O2) (f(O2,O1) forall O1, O2, where O1, and O2 are ontologies in the domain of f.

and the necessary and sufficient condition for intersection to be semantically commutative is:

Theorem 1: An intersection operator is semantically commutative iff the articulation generation function that it uses to derive the articulation rules is semantically commutative.

To determine the semantic commutativity of articulation generation functions, we need to prove that for any pairs of ontologies in the domain for which the function is designed, the articulation rules produced by the articulation generation function are in fact semantically equivalent.

Automatically proving an articulation generator commutative or semantically commutative might be easy for the SubClassOf and SuperClassOf examples, but is not always feasible. In such cases, ONION requires the programmer of the articulation generation function or the expert to indicate whether the function is semantically commutative. In the absence of such information, ONION conservatively assmues that the operation is not semantically commutative if it cannot prove otherwise.

For detailed discussions and proofs of the theorems regarding the necessary and sufficient conditions for the operators to have properties (like commutativity, and associativity), please see [MW02].

We have identified the desired properties that a "well-behaved" articulation generation function should have so that ONION can optimize the composition of ontologies. ONION minimizes the maintenance costs in two ways: first of all it can recognize when a change in a source does not require a change in the articulation rules, and if a change is required it can rapidly regenerate the affected articulations, and adapt them to the new situation.

5. Conclusion

Our approach is to overcome the problems associated with large ontologies by supporting application-specific composition or articulations among ontologies. Articulation rules define relationships among terms in ontologies that have useful semantic intersections. A rule-based algebra allows composition of higher-level ontological structures.

 Composition of ontologies allows us to create ontologies for applications as needed. Creating a sound algebra encompassing the required operations also allows manipulation and composition of the process. The algebra uses support rules that resolve semantic mismatches and allow domain-sensitive access to diverse information resources.

The algebraic operators closely depend upon the properties of an articulation generation function that generates the rules on which the algebra is based. Optimizations can be enabled if the operations are commutative and associative. We identified the necessary and sufficient conditions that articulation generation functions need to satisfy before the optimizations can be turned on. This formal basis for the composition of ontologies allows us to perform large tasks that require composing information systematically, and scalably and thereby enables efficient interoperation. Since our model allows the sources to be autonomous, we achieve greater precision by virtue of having fresher information than other methods where information is integrated.

References:

1.
: (The stanford­ibm manager of multiple information sources, http://www­db.stanford.edu/tsimmis/)

2.
: (Information integration using infomaster, http://infomaster.stanford.edu/infomaster­info.html)

3.
Kirk, T., Levy, A.Y., Sagiv, Y., Srivastava, D.: The information manifold. In Knoblock, C., Levy, A., eds.: Information Gath­ ering from Heterogeneous, Distributed Environments, Stanford University, Stanford, California (1995)

4.
C. H. Goh, S. E. Madnick, M.D.S.: (Semantic interoperabil­ ity through context interchange: Representing and reasoning about data conflicts in heterogeneous and autonomous systems http://citeseer.nj.nec.com/191060.html)

5.
Wiederhold, G.: An algebra for ontology composition. In:

Monterey Workshop on Formal Methods. (1994) 56--61

6.
Melnik, S., Garcia­Molina, H., Rahm, E.: Similarity flood­ ing: A versatile graph matching algorithm and its application to schema matching. In: Proceedings of the Twelfth Interna­ tional Conference on Data Engineering, San Jose, CA, IEEE Computer Society (2002)

7.
Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data sources: A machine­learning approach. In:

SIGMOD 2002. (2001)

8.
Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In: VLDB 2001, Proceedings of 27th In­ ternational Conference on Very Large Data Bases, September 11­14, 2001, Roma, Italy, Morgan Kaufmann (2001) 49--58

9.
Noy, N., Musen, M.: Prompt: Algorithm and tool for automated ontology mergin and alignment. In: Seventh National Confer­ ence on Artificial Intelligence (AAAI­2000). (2000) [Brooks:75] Frederick P. Brooks: The Mythical Man-Month, Addison Wesley, 1975, reprinted 1995.

[CIA:97] Central Intelligence Agency: CIA Factbook, 1997, http://www.odci.gov/cia.

[ChalupskyHR:97] H. Chalupsky, E. Hovy, and T. Russ, T.: Presentation on Ontology Alignment at ad hoc group on ontology, NCITS.TC.T2 ANSI, 1997.

[ChaudhriEa:98] Vinay K. Chaudhri, A. Farquhar, R. Fikes, P.D. Karp, and J.~P. Rice, Open Knowledge Base Connectivity (OKBC) 2.0.3, Draft standard proposal, SRI International, July 1998.

[GeneserethF:92] M.Genesereth and R. Fikes: Knowledge Interchange Format, Reference Manual, Stanford University CSD, 1992.

[GeneserethSS:94] Michael R. Genesereth, Narinder P. Singh and Mustafa A. Syed: ``A Distributed and Anonymous Knowledge Sharing Approach to Software Interoperation", Proc. Int.Symp. on Fifth Generation Comp Systems, ICOT, Tokyo, Japan, Vol.W3, Dec.1994, pp.125-139.
[GPO:97] Global Policy Organization: UN Global Policy Site, 1997, http://www.globalpolicy.org.

[Gruber:93] Thomas R. Gruber: ``A Translation Approach to Portable Ontology Specifications'', Knowledge Acquisition, Vol.5 No. 2, pp.199-220, 1993.

[Guarino:97] Nicola Guarino: Talk on Formal Ontology, NCITS.TC.T2 Ansi Ad Hoc Group on Ontology, 1997.

[Guha:91] R.V. Guha: Contexts: A formalization and some application, Doctoral dissertation, Stanford University. Also {MCC} Technical Report Number {ACT-CYC}-423-91, 1991.

[HumphreysL:93] Betsy Humphreys and Don Lindberg: The UMLS project : Making the conceptual connection between users and the information they need, Bulletin of the Medical Library Association, 1993, see also http://www.lexical.com.

[Jannink:98] Jan Jannink: ”Rethinking Information Reuse”, abstract for DARPA Student Workshop, August 1998.

[JanninkSVW:98] Jan Jannink, Pichai Srinivasan, Danladi Verheijen, and Gio Wiederhold: “Encapsulation and Composition of Ontologies”, Proc. AAAI Summer Conference, Madison WI, AAAI, July 1998.

[KashyapS:96] V.Kashyap and A. Sheth: Semantic and Schematic Similarities between Database Objects: A Context-based Approach, VLDB Journal, 1996, Vol. 5 No.4 pp.:276--304.

[<KIF??]. problems in KB mismatch ignored by KIF.

[LenatG:90] Douglas Lenat and R.V. Guha: Building Large Knowledge-Based Systems, Addison-Wesley, 1990.

[LTI:98] the Knowledge finder tool for clinical data

[McCarthy:93] John McCarthy: Notes on formalizing context, Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence,1993, see http://www-formal.stanford.edu.

<<more, buvac or costello>>

[OliverSSM:98>] Diane E. Oliver, Y. Shahar, E.H. Shortliffe, M.A. Musen: Representation of Change on Controlled Medical Terminologies”, Proc. AMIA Conference, Oct.1998.

[OPEC:97] Org. Petroleum Exporting Countries: OPEC web site, Org. Petroleum Exporting Countries 1997, http://www.opec.org.

[Pierce:91] B.C. Pierce: Basic Category Theory for Computer Scientists, The MIT Press, 1991.

[RoyH:97] N.~F. Roy and C.~D. Hafner: The State of the Art in Ontology Design, AI Magazine, 1997, Vol.18 No.3, pp.53--74.

[Sowa:98] John F. Sowa: Knowledge Representation Logical, Philosophical and Computational Foundations, PWS Publishing Company, 1998.

[Teknowledge:97] Teknowledge: High-Performance Knowledge-Bases (HPKB), maintained by Teknowledge Corp. for the Defense Advanced Research Projects Agency, 1997, http://www.teknowledge.com/HPKB.

[Tompa:<oxford.ref.>] Frank Tompa:

[UscholdG:96] Mike Uschold and Michael Gruninger: “Ontologies: Principles, Methods, and Applications”, Knowledge Engineering Review, Nov. 1996.

[WalkerW:90] Michael G . Walker and Gio Wiederhold: "Acquisition and Validation of Knowledge from Data", in Z.W. Ras and M. Zemankova: Intelligent Systems, State of the Art and Future Directions, Ellis Horwood, 1990, pages 415-428.

[Wiederhold:94] Gio Wiederhold: “An algebra for ontology composition”, in Proceedings of 1994 Monterey Workshop on Formal Methods, U.S. Naval Postgraduate School, 1994, pp. 56--61.

[Wiederhold:95] Gio Wiederhold: Objects and Domains for Managing Medical Knowledge, Methods of Information in Medicine, Schattauer Verlag, 1995, pp. 1--7.

[W:95D] Gio Wiederhold: ``Value-added Mediation in Large-Scale Information Systems'', in Meersman(ed): `Database Application Sematnics', Chapman and Hall.

[WiederholdG:97] Gio Wiederhold and Michael Genesereth: "The Conceptual Basis for Mediation Services", IEEE Expert, 1997.

�PAGE \# "'Page: '#'�'" ��Not clear, some more explanation or clarification is necessary on what type of contextual constraint we are referring to.

�PAGE \# "'Page: '#'�'" ��not clear, maybe give an example.

�PAGE \# "'Page: '#'�'" ��Of the cost of creation?

