Planning, Implementing, and Administering Scaleout Solutions with SQL Server 2005
2

[image: image1.png]Microsoft*

SQL Server 2005

Planning, Implementing, and Administering Scaleout Solutions with SQL Server 2005

SQL Server Technical Article

Writer: Bob Beauchemin
Technical Reviewers: Roger Wolter, Burzin Patel, Gopal Ashok, Jaime McGeathy
Published: January 2007
Applies To: SQL Server 2005 SP1
Summary: This white paper describes planning guidelines and administration tasks to consider when implementing a scaleout solution with SQL Server 2005. Different scaleout features are compared to determine when to use a particular feature.
Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

 2007 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Mobile, Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

4Introduction

6Distributed Partitioned Views, Distributed Queries, and Updates

11When and when not to use distributed partitioned views

12Distributed partitioned views summary

14Shared Scalable Database

18Peer-to-Peer Replication

21When to use peer-to-peer replication

21Comparing distributed partitioned views and peer-to-peer replication

21Using peer-to-peer replication in conjunction with data-dependent routing

22Peer-to-peer replication administration

25Implementation of peer-to-peer replication

26Query Notifications

29When to use query notifications

30When not to use query notifications

32Service Broker and the Service-Oriented Database Architecture

32Administering Service Broker

37Physical implementation of Service Broker

38Where do messages go?

38Managing routing

38Real-world implementations

39Service Broker implementation summary

41Towards a Service Oriented Database Architecture

42Data-Dependent Routing

43Dynamic routing with Service Broker

44Data-dependent routing in conjunction with other technologies

44Data-dependent routing summary

45Summary: Comparing Scaleout Technologies

46Conclusion

47References

Introduction
The goal of a scalable application is to achieve linear scaling; if two identical computers configured for an application can service 20,000 users, adding a third identical computer should enable the application to service an additional 10,000 users. Because you design the application to scale by adding additional computers, this is known as scaleout. While linear scaling is generally impossible, the goal of scaleout is to come as close as possible to the ideal. You can also service additional users by upgrading to a more powerful computer. This is known as scaleup.
The key to deciding on a scaleout technology is to determine which application is the ultimate owner of the data; that is, which application has the right to change the data. Although ownership is usually determined on a per-table basis, because of the way relational data is normalized, ownership may be on a per-row basis within the same table. In addition to deciding on the ultimate owner of the data, you must also take some additional factors into consideration:
· Where the data is located and how much of it you want to access at one time

· How often the data is updated

· How important it is that the consuming application receive the data in real time

· The business risk of using data that could be stale due to excessive latency for changes
· The expected response time for each piece of the business process

There is an underlying tension during planning discussions regarding scaleout architectures. Often, scaling out with Microsoft® SQL Server™ was a solution of last resort; a company turns to a scaleout solution when they've almost exhausted (or have exhausted) existing hardware. Scaleup is almost always easier to achieve than scaleout. But, in order to best implement a scaleout architecture, it must be planned in advance. These two statements are in opposition; planning something that's a solution of last resort requires either a lot of forethought, a lot of extra time, or a guess that in the future we'll exhaust the possible hardware. So, when we talk about planning in this paper, we discuss retrofitting scaleout to an existing database application as well as planning a scaleout database application from scratch.
SQL Server 2005 contains a variety of features that exist specifically to support scaleout applications; these are discussed in this paper. We also discuss implementing an architecture that can use any and all of these features—the Service Oriented Database Architecture.

This paper covers the following subjects.
· Scalable shared database. A technology that allows multiple instances of SQL Server 2005 to share the same read-only database.

· Distributed partitioned views. These facilitate distributed queries and distributed updates. Distributed partitioned views are a feature of SQL Server 2000 and above. We also discuss using remote queries with SQL Server, that is, queries against a remote instance of the database. Remote queries use the same basic technology as distributed partitioned views.
· Peer-to-peer replication (P2P). A type of transactional replication in which each of N instances control updates to 1/N of the data and replicates the updates to all other instances. Another implementation of peer-to-peer replication is when each server controls data updates for the entire table for 1/N of the total time; for example, three servers that operate based on time of day. The portion of the data for which the node is not the active-for-update node can be used for reading.

· Query notifications/cache sync. The query notification infrastructure is part of SQL Server 2005 and works to allow cache coherency between the database and middle-tier caches. In addition, the ADO.NET and ASP.NET client stacks enable direct support for the ASP.NET in-memory cache. ASP.NET usage of query notification is known as cache sync. Query notification allows SQL Server to inform the middle tier when cached data is outdated. This is similar in concept to using transactional replication from a central database server to multiple replicas, but differs because the cache is not in a database, but in memory.
· Service Broker. A transactional messaging system built into the database. It is used by some internal SQL Server features and also facilitates a way to design applications known as Service Oriented Database Architecture (SODA). With this architecture, you scale data according to its usage by hiding data behind services and limiting the processing that happens in real time. This is facilitated by dividing updates of unrelated data by using asynchronous messaging. The SQL Server 2005 features that facilitate SODA are Service Broker and HTTP endpoints. HTTP endpoints allow communication with SQL Server using SOAP over the HTTP protocol and may be used as a gateway to Service Broker's reliable messaging.
· Data-dependent routing (DDR). (Also referred to as data-directed routing.) A layer that routes queries and updates to the appropriate data source or service based on a characteristic of the data itself. For example, from a single client or application, requests for data about employees in Redmond are routed to the Redmond server; requests for New York employees are routed to the New York server. This facility is not built into SQL Server 2005 but can be implemented by using Service Broker. Data-dependent routing can also be built in a separate application or data-access tier.

Scaling requires reducing coupling between applications. Relational databases encourage coupling in two major ways:
· In an RDBMS system, data is decomposed into tables according to normalization rules. But data in any table can be combined with data from any other table by using the SQL JOIN syntax; this encourages coupling between applications via inter-application table joins.

· In an RDBMS system, data integrity can be assured by using integrity constraints. Arguably this is the most robust way to ensure data integrity. But integrity constraints don't work across instances or across databases in SQL Server. To spread out the processing and maintain data integrity, you must use distributed transactions (coupling over space), which slows down processing further.
To reduce coupling, it's helpful to declare that each piece of data has an owner, restrict updates to the data owner, and encapsulate updates from the outside behind a service process. The data owner can be defined in terms of an application owning entity (the payroll department owns timecards, the HR department owns benefit plans) but is usually defined, because of the decomposition of relational tables, as an application owning a table (payroll owns the employee table). For scalability reasons, it's useful to think of data ownership as owning particular rows in the same table (the New York office owns the Eastern U.S. employee table rows, the Los Angeles office owns the West Coast employee table rows) or even columns in the same table (the HR system owns the benefit columns for the employee entity). In this case, we can take advantage of relational decomposition to encourage scaling. What is required to facilitate joins is a read-only copy of the portion of the data that an application doesn't own. Integrity constraints aren't maintained in real time, but an allowable skew is decided on, based on the usage of the read-only data.
A micro-level example of this is the difference between ensuring transactional consistency and isolation using versioning versus using locking. In a situation where readers block writers and writers block readers, we decided not to allow others to see data unless it's up-to-date and not in use. Using snapshot isolation loosens the consistency but allows readers to see data at a point in time, even though the data is in the process of being updated. The data that you see may be slightly old, but this is usually good enough to ensure the transactional semantics we need. If, later in the transaction, by virtue of the fact that you've tried to update data based on seeing its old value, the transaction can be rolled back. But being able to see data "as of midnight" is usually good enough. If you can't loosen inter-instance consistency, distributed transactions can be used with multiple instances to ensure transactional consistency whether locking or versioning is used. If you need a single view of a set of data across multiple instances, distributed partitioned views can accomplish this.

Distributed Partitioned Views, Distributed Queries, and Updates

Before discussing distributed partitioned views, it is useful to distinguish between distributed partitioned views, which are a scaleout technology, and partitioned tables and indexes, a scaleup technology. You can scale up an existing application on a single database by distributing the data between multiple physical structures by using the new SQL Server 2005 table and index partitioning features. This only works when all partitions are in the same database; it's not available cross-database or cross-instance. In partitioning, the tables are partitioned into multiple filegroups. Filegroups can exist on the same physical disk or on separate disks. Indexes may be partitioned in a coordinated manner with the tables and partitioned separately. When the query processor evaluates a request that includes a partitioned table, it can optimize the request so that only the partitions that contain the requested data are queried. For more information on partitioning, see the white paper SQL Server 2005 Partitioned Tables and Indexes by Kimberly L. Tripp. Local partitioned views are also supported in SQL Server 2005, but with the advent of partitioned tables and indexes, local partitioned views are mostly used for backward compatibility with previous versions of SQL Server. New implementations should use local partitioned tables and indexes instead. Partitioning can be used to divide historical data and current data (for example, each partition contains orders for a specific fiscal quarter). Or, you can arbitrarily divide the processing into ranges; for example, you might create separate partitions for customers with a last name beginning with A-F, G-N, and O-Z.
However, in a scaleout scenario, you can't restrict partitioning to a single database in a single instance. This is where distributed partitioned views come in. The data is partitioned logically similarly to table and index partitioning, but each partition resides on a different instance.
[image: image2.png]Partitioned Tables

@ | —

CORP 1 Server

Distributed Partitioned Views

o2 (&0

cUsT o8 cUsT DB cusT b8

W 4 g

CORP 1 Server CORP2Server CORP 3 Server

Figure 1 Distributed partitioned views vs. partitioned tables
An example of a distributed partitioned view is the 32-node partitioned configuration that allowed SQL Server 2000 to greatly increase throughput in the TPC-C benchmark. For details, see SQL Server Megaservers: Scalability, Availability, Manageability.
Distributed queries and distributed partitioned views use an OLE DB provider as an inter-instance query and communication mechanism. The mechanism for data access to a remote database is a linked server. A linked server is a SQL Server database object that lives at instance scope. OLE DB access is built into the query engine, so data is retrieved by the same basic mechanism from the SQL Server storage engine or from a remote storage engine. When communicating with another server running SQL Server, the OLE DB provider used in SQL Server 2000 is SQLOLEDB. In SQL Server 2005 the OLE DB provider use by SQL Server changes to SQLNCLI (or SQL Native Client). There are some subtle differences (remote errors, ability to run out of process) between providers. If you upgraded to SQL Server 2005, all of your linked servers now use SQLNCLI.

One way to troubleshoot configuration or performance problems with linked servers is to use SQL Profiler. SQL Server 2005 enhances the ability to see what a linked server is doing by providing tracing information in SQL Profiler regarding which OLE DB calls the engine makes to the linked server. Because OLE DB is interface-based, you can even see the query interface calls if you want to go to that level of abstraction. You can trace these on either or both sides of a SQL Server linked server; outgoing trace works regardless of the destination provider. The SQLNCLI provider adds tracing at the provider level. You can use both server and provider tracing, if needed.
Distributed partitioned views push part of the query tree to the remote database. In SQL Server 2000, neither the startup command of the query or the row-fetching portions of the query executed in parallel. In SQL Server 2005, the startup commands can execute in parallel and accommodation is made for caching the remote connections and using overlapped I/O as an optimization. However, row-fetching does not execute in parallel in SQL Server 2005. And SQL Server OLE DB providers have always been able to send "statistics rowsets" to remote SQL Servers to help out the query processor. Having statistics from the remote instances allows the query processor to perform the same query costing and optimizations as with local queries, and to choose the most efficient overall query plan.
To set up a linked server, you can use either the Server Objects/Linked Server/New Linked Server entry in the SQL Server Management Studio (SSMS) Object Browser or use the sp_addlinkedserver system stored procedure. With SSMS, you specify the instance name of the server to connect to and set the Server Type to SQL Server. SSMS creates a linked server definition named after the instance with reasonable default values. sp_addlinkedserver allows you to specify only the name of a remote server and svrproduct parameters; (svrproduct must be SQL Server) and allows you to choose your own symbolic name for the linked server. Although the name of the OLE DB provider can be chosen when you're using sp_addlinkedserver, in SQL Server 2005 you should use SQLNCLI, which is the default.

Note It's usually best to use at least three partitions with a distributed partitioned view to make the administrative overhead worthwhile, but we use only two partitions to simplify the example.
The following code sets up linked servers between two computers and defines a distributed partitioned view on each machine.

-- on instance A
USE MASTER

GO
EXECUTE sp_addlinkedserver 'ServerB', N'SQL Server'
GO
-- on instance B

USE MASTER

GO
EXECUTE sp_addlinkedserver 'ServerA', N'SQL Server'
GO
You then define the local table on each of the servers. In this case, CustomerID is the partitioning column.
-- on instance A

USE SalesDB

GO

CREATE TABLE SalesSchema.Customers1to4 (

 -- partitioning column

 CustomerId INTEGER PRIMARY KEY

 CHECK (CustomerID BETWEEN 1 AND 49999),
 -- other columns…

)
-- on instance B

USE SalesDB

GO

CREATE TABLE SalesSchema.Customers5to9 (

 -- partitioning column

 CustomerId INTEGER PRIMARY KEY

 CHECK (CustomerID BETWEEN 50000 AND 99999),

 -- other columns…
)

You then define the distributed partitioned view on each instance. Use the linked server name with the four-part name syntax to refer to the remote table as in the following code.
-- on instance A

USE SalesDB

GO

CREATE VIEW AllCustomers AS
 SELECT * FROM SalesDB.SalesSchema.Customers1to4
 UNION ALL

 SELECT * FROM ServerB.SalesDB.SalesSchema.Customers5to9
)

-- on instance B

USE SalesDB

GO

CREATE VIEW AllCustomers AS

 SELECT * FROM ServerA.SalesDB.SalesSchema.Customers1to4

 UNION ALL

 SELECT * FROM SalesDB.SalesSchema.Customers5to9

)
Creating the default linked server sets the default security model, that is "connect to the linked server without using a security context" for all logins. You can have all logins work the same as far as the remote server is concerned or create multiple mappings of local logins to remote logins. You map logins by using the SSMS graphic interface or by using the sp_addlinkedserverlogin system stored procedure. For each login that you map, you can either use a current local login (the useself parameter) or specify a local login, remote login, and remote password triplet. In SQL Server 2005, the remote password is stored in the master database and encrypted using the server master key. Whether you use the current login or specify an impersonation triplet, your mappings can apply to either Microsoft Windows® logins or SQL Server logins.

When you use the Windows identity of the currently logged-on user to connect to a server on a remote computer, you must be aware of the need to enable delegation on both the local and remote servers. Windows logins are valid only between two servers if delegation is used. That is, if I log on from my local workstation (Machine U1) to Server A, my security credentials on Server A are only valid for Server A. An attempt to use those credentials to log on to Server B from Server A will fail. To successfully connect to Server B using my original credentials, Kerberos authentication must be used (NTLM authentication does not allow delegation), and delegation must be enabled on a system level for all the computers involved. Delegation can be enabled on a computer-wide level, but because of the security implications involved with a computer-wide setting, Windows Server® 2003 and above allow constrained delegation. Constrained delegation is the ability to allow delegation with specific applications, rather than on a machine-wide basis. For details, see Configuring Linked Servers for Delegation in SQL Server 2005 Books Online.

Because of the intricacies of granular security configuration for linked servers, most administrators prefer to use a single security principal to connect to the linked server and restrict access by restricting access to the VIEW itself. If you need to allow direct distributed queries without using distributed partitioned views, you must plan for more granular remote security. It is possible to define multiple LINKED SERVER objects for a given physical SQL Server instance, and use each for a different purpose.
You can set processing options for a LINKED SERVER by using the SSMS interface or the system stored procedure sp_serveroption. For distributed partitioned views, you need to turn on the lazy schema validation option. This option minimizes roundtrips to the remote server by checking for schema changes on a remote server only if the query processor determines that the partition of that server will actually be used in the query. If you want to allow use of a direct distributed query using a four-part object name, or using the EXECUTE … AT syntax in SQL Server 2005, you must turn on the RPC OUT option for the local server (the server that issues the query) and the RPC option on the remote server (the server that executes the query). You should also use a consistent collation with linked servers; this can be specified by using sp_serveroption. In SQL Server 2005, you can test the connectivity of a LINKED SERVER using the system stored procedure sp_testlinkedserver.
Once you've configured the tables, the distributed partitioned views, and the linked servers, you use the distributed partitioned view as though it were an ordinary SQL Server view. Just as with local partitioned views, partitioned tables and indexes, if the query optimizer determines that most of the data that a query will return resides on Server A, that part of the query can be executed on Server A. The query optimizer understands which instance contains the requested data by using the check constraints you used to create the partitioned tables. You can take advantage of this type of optimization when each participating instance is an instance of SQL Server, because of the exchange of statistics between servers.

In addition to using distributed partitioned views, you can query a remote server directly. The three ways to do this are:

· Use a four-part object name in a SQL Server DML statement.
· Use dynamic SQL and the EXECUTE … AT syntax.
· Use the OPENQUERY, OPENROWSET, or OPENDATASOURCE system table-valued functions.
Using the four-part object name allows the query processor to control and optimize the entire query, delegating whatever portion it decides onto the remote server. OPENQUERY and EXECUTE … AT perform a pass-through query directly to the remote server, bypassing many of the query processor's potential optimizations.
The OPENROWSET and OPENDATASOURCE system table-valued functions, which specify some of the linked server parameters in the query itself, create the equivalent of a "temporary linked server" on the fly that exists only for the duration of the query. There is, as you would expect, additional overhead involved in this type of remote access, but the biggest consideration is the reduced security involved in dynamic linked server creation and invocation. In SQL Server 2005, OPENROWSET and OPENDATASOURCE are disabled by default. If you really need these (usually when using foreign data sources like Microsoft Excel or Microsoft Access, not SQL Server), they can be enabled by using the SQL Server Surface Area Configuration Utility, or the sp_configure system procedure. This is not recommended.
When and when not to use distributed partitioned views

Distributed queries should not be used if the data can be configured so that the query runs locally. There is overhead involved with remote execution that includes transmission of data, metadata, and statistics, as well as the cost of estimating the overhead of remote execution. Distributed queries can be used to good effect if a large percentage of the queries will fetch data only from a single instance and if the query processor is able to determine when to optimize the query. Scenarios include strictly partitioned data sources; for example, an employee system where most employee queries are for local employees and employee processing is strictly partitioned geographically.

Distributed partitioned views place some fairly strict requirements on the participating tables and columns. Here are some of the major requirements; a complete list can be found in the SQL Server 2005 Books Online.
· The partitioning column must be a single column, needs to be part of the primary key of the underlying tables, must not allow NULLs, and can't be a computed column.

· The CHECK constraint defined on the partitioning column that defines the partitioning criteria can use only the following operators: BETWEEN, AND, OR, <, <=, >, >=, =. The tables can't have identity or timestamp columns, and none of the columns in any of the tables can have a DEFAULT constraint

In addition, relational database tables are seldom stand-alone but are usually joined with related tables. For best performance, the related data should be partitioned in the same way as the original table. For example, if the Customers table is partitioned on CustomerID, all related tables such as Orders must contain a CustomerID column as part of their primary key, if the key domain for the Orders table doesn't produce the required layout.

If you want to update directly through the VIEW, similar rules apply when you're using a local VIEW or a distributed partitioned view. There are additional restrictions for updateable distributed partitioned views, as well as for the structure of the allowable INSERT, UPDATE, and DELETE statements. To work around the restrictions on updateability, you can use INSTEAD OF triggers on the action statement to program a manual distributed update.
When using distributed partitioned views, one thing to bear in mind is that all partitions must be available for the view to be useable; there is no "partial availability." This means that, for the entire table, more points of failure have been introduced. For best availability, partitioning should be combined with a failover mechanism such as clustering.

Finally, distributed partitioned views are most useful when the update or query is issued to the "right" server; that is, the server where most of the data exists. Sending the query to the right server can be facilitated by using data-dependent routing. There must, however be a way to determine this in the routing layer, which is outside the database, unless the data-dependent routing algorithm has a way to acquire the table statistics.
Distributed partitioned views summary
Initial planning
Planning security is critical for distributed partitioned views. Each server must have an identity or identities to use to reach the other server. If you need object security by user identity in the foreign server, you probably need delegation of credentials.

Network latency is critical for distributed partitioned views. Unless there is little communication between servers, remote calls require time. In distributed partitioned views, each INSERT/UPDATE/DELETE statement on any node requires a remote call to each server. SELECT statements that use remote rows must pass those rows across the network, so data-dependent routing is almost always recommended. Taking advantage of the query processor optimizations is critical.

Distributed partitioned views work best if the partitions are close to equal in size. Partition by (equal-sized) regions rather than (unequal) states, for example. Decide on a partitioning key. This must be part of the primary key in each distributed partitioned view. If the distributed partitioned view is not updateable (see the updatability rules in the Modifying Data in Partitioned Views topic in SQL Server 2005 Books Online topic) plan on implementing INSTEAD OF triggers.

Initial implementation and setup

1. Set up linked servers between all nodes, including security.
2. Set up delegation if needed for security.
3. Test the linked servers definitions by using sp_testlinkedserver.
4. Define the tables with the appropriate partitioning column and primary keys as required on each server.

5. Define a distributed partitioned view on each server.
6. Test the distributed partitioned view for both SELECT and action statements.
Refresh the implementation
No special refresh is needed.

To add additional servers
7. Add a linked server for the new node on all the original servers.
8. Configure the new node with the appropriate linked servers.
9. Test linked server connectivity and security at all servers.
10. Change the partitioning ranges. If the new server is all new data (acquired a new company or new region), no data may have to be moved. If you are spreading out existing data, data will have to be moved from one instance to another.

11. Change the distributed partitioned view definitions on all servers.
Because distributed partitioned views require that all nodes be available, plan for and measure the amount of possible down time during the transition.
Limits (number of partitions)
In SQL Server 2005 Enterprise Edition, the query optimizer considers only plans that eliminate some of the partitions. In other editions, a special query hint is required. Distributed partitioned views are, for the most part, only useful when there are at least three participating nodes. This can scale up to 32 or more, depending on network latency. The 32‑node example was as successful as it was because network latency was almost zero.

Replacing a server
Because distributed partitioned views require that all nodes be available, it should be combined with mirroring or failover clustering on each individual server.
Retrofitting an existing application
Because all queries were originally routed to one database, a data-dependent routing system is almost always required. Backup and restore procedures will have to be revisited, as there is no explicit requirement for coordinated backup between servers, but restoring all servers to a particular point in time can be complex. For more information, see Using Marked Transactions (Full Recovery Mode) and Recovering to a Marked Transaction in SQL Server Books Online. Distributed partitioned views are most effective if the SQL query includes a value for the partition column. If the optimizer can’t determine which partition to execute the query on, it must execute it on all the partitions in parallel, which can be very expensive.
Capacity planning
Carefully monitor the amount of time required for INSERT/UPDATE/DELETEs because these require a trip to each node. Or, use data-dependent routing and insert only into the base tables directly by using INSTEAD OF triggers. For any increase in the amount of data traveling over the network, there is an increase in server horsepower or network bandwidth, if the end-to-end response time needs to stay the same.

Shared Scalable Database

At the other side of the spectrum from distributed partitioned views, analysis and reporting data is always read-only, and consistent as possible as of a certain point in time. By definition, a report doesn't update as it reports, and analysts may use what‑if data scenarios but don't have the ability to go back in real time and update pieces of the data. Macro updates made by analysts usually consist of reclassifying the data rather than direct updates to fact tables. In this case, all data is read-only. This is a use case for the SQL Server 2005 scalable shared database feature.

Reporting queries, especially ad hoc queries and what-if queries of the type used in reports and analysis, usually do many reads in order to obtain the data needed for aggregation or reporting. This can slow down OLTP (online transaction processing) systems that use the same database. It's always been a good idea to isolate data used for reporting and analysis on a separate server. This is facilitated by the fact that reporting databases are almost always read-only. Your what-if query should never change the data; an analyst who needs to make a change submits the change through a separate service interface. She should not expect to see the change proliferated to the "real" data until the next refresh.

The shared scalable database feature of SQL Server 2005 allows you to offload processing to multiple instances of SQL Server. This could even be combined with Service Broker routing as a mechanism to achieve load balancing, to permit spreading out the processing among multiple homogeneous or heterogeneous machines.
Shared scalable databases are a good solution for any read-only data that is shared between multiple applications, including price lists, product catalogs, and the corporate phone book. Sharing the data rather than making multiple copies can save time and disk space. The data must reside on a server running SQL Server; Analysis Services databases are not yet supported. The disk volumes should be optimized for heavy read access. Because there are no updates, RAID 5 can also be used with no slowdowns.
Shared scalable databases are available only in SQL Server Enterprise Edition. The feature requires a Storage Area Network (SAN) system with a read-only volume and the Windows Server 2003 SP1 or above operating system.

The general steps involved in administering a shared scalable database are separated into the build process and the attach process.
The build process

12. Unmask the SAN logical unit number to make the volume accessible.

13. Mount the disk volume as read-write by using the DISKPART utility.

14. Build one new copy of the database or refresh an existing database. This can consist of a series of database-building steps, or a RESTORE or ATTACH DDL statement. Set the database to read-write by using the ALTER DATABASE DDL statement.
The attach process

15. Detach the database from the SQL Server instance that built it (the production instance) by using the DETACH command.
16. Mark each volume as read-only by using DISKPART and dismount the disk volume from the production server.
17. Unmask the SAN logical unit number to make the database available to each reporting server.
18. Mount the disk volume on each reporting server by using DISKPART.

19. Attach to one or more instances of SQL Server.
The build and attach processes are shown in Figure 2.
[image: image3.png]I1d Phase

Reporting servers

a—o0 3

Production Reporting
Server Volume is
READ/WRITE on
San

Bulld reporting database. Reporting volume Is
unavalable to reporting servers.

‘Attach Phase

Reporting servers

@

Production Reporting
Server Volume is
READ-ONLY on
san
Mount reporting volume and attach reporting
database.

Figure 2 Shared scalable database build and attach phases
You can acquire the "built" copy of the database by using BACKUP and RESTORE or by copying the database files and using DETACH and ATTACH. You can also build and refresh a database for use as a scalable shared database by using a SQL Server Integration Services data flow.
Additional instances can be added simply by attaching the same database to another instance. Although there are no physical limitations to the number of instances that can be attached, a good practice is to limit the number of instances to eight.

To rebuild a shared scalable database

20. Quiesce the queries against the database.
21. DETACH the database from existing reporting instances.
22. Follow the previous steps to rebuild the database and reattach it.
To maintain the availability of a shared scalable database, you can use two SAN volumes. While one volume is active, the other volume can to be used to rebuild a newer copy of the database. When the updated copy is ready, detach the existing copy and attach the new copy. You can build scripts to automate this process. If a rebuild takes longer than expected, the (now) old copy can be used to provide a modicum of availability. You can update to the new copy by performing a rolling update or a synchronized update.

Quiescing queries against a database is straightforward if the work is queued. The incoming queues are simply disabled or messages routed to the updated database copy. A Service Broker-based front end for queries (see Data-Dependent Routing later in this paper) is a good choice in this scenario. To quiesce the system, you simply disable the queue on the incoming system and change the routing tables. Another good use for data-dependent routing in a load-balancing situation is to provide smart load balancing so that queries that access the same subset of rows run on the same instance of SQL Server. This helps to minimize fetching if most or all of the data is already in memory on a particular instance. This could be as simple as partitioning by using a department number, time period, or product number in the routing algorithm. If you combine that with a rolling update, you need to adjust the routing tables during the update to maintain availability.

If the reporting servers are all the same with respect to the queries, data-dependent routing can be used to achieve load balancing. In a load-balancing scenario, you could do a "rolling refresh" in which report requests are quiesced in a round-robin fashion, one node at a time, without disturbing processing at any given time. A limitation to this is when all of the nodes must maintain data consistency at all times. While a rolling update is taking place, some of the nodes will have old data, some new data.

The SQL Server VSS Writer service provides an excellent adjunct to achieving a timely refresh with minimum disruption. You can use the VSS writer to keep a shadow copy of the database (two copies of the database are kept in sync by using SAN mirroring). Then, when you are ready to update the scalable shared database, you split the mirror and attach one half as the scalable shared database. You can then re-mirror with the alternate copy; the mirror will "catch up" and be ready and in sync for the next refresh. An enhancement in SQL Server 2005 SP1 allows you to split the mirror and effect rollback and recovery of transactions in progress at the time of the split. Once rollback/recovery is complete, you can ATTACH half of the mirror as the scalable shared database.

Because the scalable shared database will be used only for reading, you can optimize the database as part of the build/refresh process by:

· Updating or recreating statistics on affected tables and indexes as needed.
· Rebuilding indexes with a FILL factor of 100.

· Putting the reporting database into simple recovery mode and performing a checkpoint to truncate the transaction log and save log space.

For capacity-planning purposes, you need to plan for heavy disk I/O with a scalable shared database in a similar way to planning for any heavily used database. This involves segregating disk spindles to amortize disk activity, and watching disk queues and other disk-related performance monitor counters as usual. The SQL Server 2005 dynamic management views can be used to look out for I/O-related problems. For more information on using dynamic management views to monitor disk activity, see the white paper Troubleshooting Performance Problems in SQL Server 2005. One nice solution to ameliorate disk I/O related problems with a scalable shared database is to simply provide a second copy of the database on a different SAN volume and split the traffic between the two copies.

Because a shared scalable database is a discrete database on each instance that uses it, if a query accesses additional data that is dynamic (not in the shared scalable database), from one of the connected instances (i.e., JOIN between the product catalog on a scalable shared database and an up-to-date inventory quantity), cross-database ownership chaining is commonly used. Otherwise, no special object or database security is specifically related to a scalable shared database.

Attaching a new node to an existing scalable shared database consists of adding another ATTACH command to the build and refresh scripts. If there are hardware problems on an instance node while connected to a scalable shared database, in a load-balancing scenario, simply remove it from the routing tables. For information on changing routing tables, see Data-Dependent Routing. Otherwise, only the users of that particular instance are affected, until you rebuild the damaged server.

Although clustering is not a requirement for scalable shared databases, you may want to use clustering to improve reliability. Because of the limits of using the same node ID as a resource on both clustering nodes of an active-active cluster, you can't use a scalable shared database on an active-active cluster. It is usable on a failover cluster, however.

There are a few logistic and organization considerations based on how scalable shared databases use SAN, and the need to make changes to the SAN configuration "on-the-fly" during a refresh. There is usually a separation of duties between the SAN administrator and the database administrator (DBA), and the SAN administrator may be unwilling to allow the DBA to manipulate the SAN configuration. In this case, it's best to script the reconfiguration so that it happens automatically on a schedule and make sure that the SAN administrator and DBA are both happy with the robustness of the scripting solution. You must also consider that SAN systems are not homogeneous and no standard set of commands for effecting reconfiguration exists. However, all SAN vendors support scripting in one form or another, so a scripted solution should be viable regardless of the specific hardware chosen.

Initial planning
Plan which tables will be available, which LUNs on the SAN they will occupy, and plan the SAN layout accordingly. RAID 5 is OK, as this is a read-only implementation. Plan and design how the copy of the database will be created. In addition, plan a refresh schedule and strategy (perhaps using a rolling update to minimize down time). Plan a failover strategy, possibly including a hot spare scalable shared database if the scalable shared database fails.
Initial implementation and setup
See The build process and The attach process earlier in this paper. For more detail, including the exact syntax of the appropriate commands and DDL statements, see SQL Server 2005 Books Online. A script should be created to accomplish this. The steps to mask and unmask a logical unit number on the SAN are vendor-specific.
Refreshing the implementation
Build and switch everything "at once" (synchronized refresh) or build continuously and do a rolling refresh.
Adding additional nodes and removing nodes
Either adding or removing nodes requires changing scripts. You can add a node to produce the database for sharing or add additional reader nodes.
Limits (number of nodes)
The scalable shared database feature is available only in SQL Server 2005 Enterprise Edition. There is a practical suggested limit of eight reader nodes per scalable shared database.
Replacing a node
If possible, have a hot spare scalable shared database node for backup. If a scalable shared database is used for load balancing, change the data-dependent routing tables to swap out the old reader instance.

Retrofitting an existing application
Determine which databases can be shared. All shared information must be moved to its own database. Because read-only information will reside on a different database, queries may have to be changed. Cross-database ownership chaining or the TRUSTWORTHY property may need to be applied.
Capacity planning

The throughput capacity of a scalable shared database configuration is limited by disk I/O bottlenecks, so you should monitor the read queues on the disk in order to plan capacity. There are the same spindle configuration concerns as with any highly used database file; the scalable shared database should be on its own spindle and, if possible, channel.
Peer-to-Peer Replication

A halfway measure between making a database in the instance read-only (scalable shared database) and configuring multiple partitions to act as one updatable view (distributed partition view) is to direct each update to a specific node and make most of the table read-only, while keeping all of the rows of the table on all nodes. This can be done on a vertical basis or a horizontal basis; the remainder of the data is available locally as read-only. Moving the updates from "writer/owner nodes" to "reader nodes" can be accomplished through replication. Replication is used to synchronize multiple copies of data for scaleout purposes.
The logical arrangement of servers and the direction of the data flow when using replication is known as a replication topology. SQL Server uses a publisher-subscriber paradigm to describe and set up replication. Changes at a Publisher are replicated to one or more Subscribers through a Distributor. A variety of replication topologies are supported.

· Directed topology. This is the simplest case, in which changes always flow one way, from the Publisher to the Subscriber.
· Republishing topology. This is a type of directed topology where a Publisher replicates to one or more Subscribers, which republish the data to one or more Subscribers. This can produce a hierarchical topology with data flow in a single direction from the top to the bottom of the hierarchy.
· Bus topology. This is a linear topology in which data changes can flow in both directions, but every node receives changes from every other node through only a single path.
· Ring topology. This is similar to a bus topology in that data changes can flow in both directions, but any node can receive changes from all other nodes. This topology must include a mechanism to ensure that each change is applied only once at each node.

· Mixed topology. A combination of data flow that can include any of the directed, republishing, bus, or ring topologies already mentioned.

Figure 3 illustrates these replication topologies.
[image: image4.png]8US Topology

0—0—0

Directed Topology

Any form of Replication

Replication Topologies
Mixed Topology

G,

Ring Topology

G\‘jﬁ
v

o—0—0

Herge Bi-directional P3P
Replication

Combination of forms of
Replication

Figure 3 Replication topologies
SQL Server 2005 supports three major types of replication: snapshot replication, merge replication, and transactional replication.
Snapshot replication entails taking a snapshot of the entire set of data and pushing copies to each Subscriber. It is most useful with reference data when 90% or more of the data changes with each copy. An example of this might be product catalogs with products and prices that change monthly. Although snapshot replication is conceptually similar to shared scalable databases, the data is transferred between servers rather than shared on a SAN volume as with scalable shared databases. If the data size is large, transferring the snapshots can produce a lot of network traffic and the share lock that snapshot takes on the table(s) can cause concurrency problems while the snapshot is in progress. If less than 90% of the reference data changes between snapshots, transactional replication is a more network-efficient choice.
Transactional replication works by reading the transaction log at one node (called the Publisher) and re-applying the changes at the other nodes (called the Subscribers). In directed and republished transactional replication, data changes should only occur at the Publisher because changes to the data on the Subscriber do not flow back to the Publisher. This usually results in a top-down (directed or republished) replication topology in which the Subscribers are effectively read-only for the portion of the data that is being replicated, unless compensation is built into the application.
Two variations of transactional replication permit a modicum of conflict detection and resolution. Immediate updating transactional replication uses distributed transactions to synchronously apply changes made on the Publisher to the Subscriber. Because changes are applied synchronously, network latency is critical and all nodes must always be available. Queued transactional replication uses Microsoft Message Queuing (MSMQ) as a transport for transaction information. This allows the Publisher to continue to function if any or all of the Subscribers are unavailable. It requires that the application must permit compensation if an update made at the Subscriber is overridden by an update on the Publisher.
Merge replication provides conflict detection and uses conflict resolution heuristics or custom program logic as changes are replicated. Although merge replication is the preferred method for replicating between servers and smart clients (for example, replication to SQL Server Everywhere), merge replication is usually slower than transactional replication. Transactional replication is usually preferred for server-to-server replication.
The merge replication and immediate updating or queued transactional replication features of SQL Server allow updates at multiple nodes, but implementation requires schema changes (the addition of a uniqueidentifier column) and the introduction of triggers on the participating tables.
In SQL Server 2000, you can implement bidirectional (multi-master) transactional replication only if you use a bus topology. You enable bidirectional replication by specifying @loopback_detection=true when defining a subscription with the system stored procedure sp_addsubscription. SQL Server 2005 extends transactional replication to make it usable with a ring topology. This is known as peer-to-peer replication. Neither bidirectional nor peer-to-peer transactional replication has built-in conflict detection. It is possible to build your own custom conflict detection by using the replication metadata, invoking the replication system stored procedures, and using custom program logic.
Peer-to-peer replication is a SQL Server 2005 feature that assists scalability based on the premise that, at a given time, each row in a replicated table has one and only one "owner." It's useful in the case where multiple business entities share a table for reading, but each updates it own rows. This can assist with company consolidation while allowing each company to maintain its own data. It's also useful with "partner programs," for example, if each airline wants to allow reads by other airlines on its reservation system, while updates are only allow by the "flight owner" airlines. Row ownership can also vary over time. For example, a company has multiple call centers but each one is only active for a subset of data at certain times of day. The row owner concept must be enforced externally by triggers or business rules; peer-to-peer replication only pushes updates from the owning server to all peers. Based on the replication latency, the data that is being read is accurate in "near real time."
Peer-to-peer replication is available only in the Enterprise Edition of SQL Server 2005. It is a specialization of transactional replication, based on changes made to the log record format to allow multi-master replication without using a republishing or bus topology. There is no physical limit in the number of participant nodes, but for scalability reasons, it is suggested that you limit the architecture to 10 peer nodes.
A real-world example of peer-to-peer replication is at Microsoft.com, where peer-to-peer replication is used to allow different content providers to access a large distributed database and provide network redundancy and a rolling upgrade capability. Update conflicts are prevented by the fact that each row of content has a single owner. For more details, see the TechNet article Inside Microsoft.com: Managing SQL Server 2005 Peer-to-Peer Replication.

When to use peer-to-peer replication

Peer-to-peer replication is meant to support transaction replication with a ring topology when a hierarchical (directed republishing) replication topology is not desirable. Peer-to-peer replication also provides network route redundancy for highest availability. Peer-to-peer replication has an overhead when compared with "ordinary" transactional replication. There is an extra log record written for each transaction so that, regardless of the distribution pattern of the updates, each transaction is only applied once per node. Therefore, you should only use peer-to-peer replication when a hierarchical configuration is not possible and when the configuration involves more than two nodes.

Peer-to-peer replication does not allow some features that are normally supported by transactional replication. These include:

· Heterogeneous replication.
· Filters on either the Publisher or Subscriber.
· Identity range management.
For a complete list of restrictions, see SQL Server 2005 Books Online. If you may move to a peer-to-peer topology in the future, it would be prudent to avoid these features. This may make peer-to-peer replication less flexible than other types of transaction replication, although filtering is not generally used in these scenarios.

Comparing distributed partitioned views and peer-to-peer replication

Peer-to-peer replication requires that updates be strictly controlled so that each row has a distinct row owner but does not enforce this behavior. If the behavior is not enforced by business rules, update conflicts and even lost updates can result. Distributed partitioning enforces row placement and chooses the instance on which a new row will be inserted. If the partitioning key changes, the row automatically changes location and is moved to the correct partition. For example, if rows for New York employees might be updated by the Los Angeles SQL Server instance, distributed views are preferred.

Using peer-to-peer replication in conjunction with data-dependent routing

Because each row of data has an owner, or each table has a different owner at different times of day, avoiding replication conflicts usually works best when used with data-dependent routing. In addition, data-dependent routing can assist in performing a rolling upgrade of a set of replicated servers, if backup and restore is used to initialize the topology. To perform the rolling upgrade, you change the routes to point to one specific node (writer node), upgrade a peer node, back up the writer node and restore the upgraded node. Repeat the upgrade process for each node in turn by changing the routes. This allows you to upgrade all nodes in a topology without down time (although the response may be slower during upgrade because all traffic is routed to one writer node).
Peer-to-peer replication administration
Peer-to-peer replication administration is similar to the administration of "traditional" transactional replication in SQL Server. The main differences are that the data must be assured to be consistent at initial setup, when adding a node, or at publication addition or schema change time. Unlike other forms of transactional replication however, the database snapshot is not used with peer-to-peer, because of the lack of a replication master database. Setting up peer-to-peer replication with the wizard in SSMS consists of setting up a transactional publication-subscription pair between each of the nodes involved. To ensure that the transaction log records are written using the peer-to-peer enabling extension, the publications must be enabled for peer-to-peer replication. The initial setup must start with a nearly consistent copy of the data. This can be provided by BACKUP-RESTORE, DETACH-copy files-ATTACH, custom scripts, or any other database copy mechanism. Providing an initial snapshot using BACKUP-RESTORE is usually an option only if all tables in the database are being replicated. If a peer is initialized from a backup and changes have been made to the original database after the backup was created, it is possible for the new peer to catch up automatically by applying the changes made after the backup was created. Catching up is only possible if changes have been made to the (single) node that produced the backup; it's not possible to catch up if multiple peers have made changes after a back up.
To set up peer-to-peer replication initially
23. Make sure SQL Agent is started on each instance. SQL Server replication uses external programs that run continuously or on a schedule to accomplish replication. These are called replication agents. Replication agents are run as SQL Agent jobs.
24. Set up distribution for each Publisher. The recommended configuration is for each server to have its own separate Distributor. The Distributor can exist on the local server running SQL Server or on a remote server running SQL Server. A Distributor on each local server is preferred because this minimizes the number of points of failure. However, if the Distributor is on the same server as the Publisher, you may lose data that has not been distributed if the Publisher fails.

25. Set up security for the SQL Agent jobs that will run the replication agents. Peer-to-peer replication uses the LogReader agent and the Distribution agent, but does not use the Snapshot agent.
26. Push a copy of the original database to each node. The node can either be initialized from a static copy of the database or be initialized from a backup that allows changes to happen on the parent node after the backup was taken. In this case, replication uses the transaction log to synchronize with the parent node.
Peer-to-peer replication can be configured for redundancy; that is, each instance publishes an identical publication to all peers, and each instance has a subscription to each of the peer instance's publications. This is known as a well-connected topology, and results in a total of n publications and n2 – n subscriptions. Configure peer-to-peer replication with only the amount of redundant routes that you need, rather than n2 – n subscriptions (and agents).
You can set up all of these manually, but a more convenient way is to use the Peer-to-Peer Replication Wizard.
To use the Peer-to-Peer Replication Wizard
27. Define the publication or publications on one server. You can set these up by using SQL Server Management Studio, the RMO (replication management objects), or the replication system stored procedure. The publication should have the enable peer-to-peer replication bit set.

28. Right-click the publication and select Configure Peer-to-Peer Topology. In the wizard screens, enter the names of all of the peers. The wizard sets up all of the necessary publications and subscriptions. For details on using the Configure Peer-to-Peer Topology Wizard, see the white paper Achieving Scalability and Availability with Peer-to-Peer Transactional Replication.
29. Running the wizard configures a topology with "well-connected" routes between all of the servers specified. To use the wizard to configure a topology with less route redundancy, you can run the Peer-to-Peer Replication Wizard multiple times, using only a subset of nodes each time.
[image: image5.png]Peer to Peer connectivity architecture

“Just Enough” Topology

91

Servir A Server 8

-

Server C Server D

Well-connected” Topology

91

Servar A Server 8

-

Server C Server D

Figure 4 A well-connected topology vs. just enough redundancy
· If you do not use the Peer-to-Peer Replication Wizard, scripts that are used for peer-to-peer replication must:
· Specify the same publication name on each peer.

· Specify @enabled_for_p2p = 'true' in the sp_addpublication system stored procedure. This cannot be changed once it is specified.

· Specify @allow_init_from_backup = 'true' in the sp_addpublication system stored procedure.

· Specify @sync_type = 'replication_support_only' in the sp_addsubscription system stored procedure.
· You must manually define a range for identity columns when using peer-to-peer replication.

To add a node to an existing peer-to-peer setup
30. Quiesce the topology. How to quiesce a peer-to-peer topology is defined in the procedure To quiesce a peer-to-peer transactional replication topology.
31. Create a publication and subscriptions on the new node as you did with the existing nodes. If you are using backup and restore to populate the new node's database, you can allow updates on the node that will be providing the backup.
To add a replication article to an existing configuration

32. Quiesce the topology. How to quiesce a peer-to-peer topology is defined in the procedure To quiesce a peer-to-peer transactional replication topology.
33. Stop the Distribution Agent at each node in the topology. For more information, see Programming Replication Agent Executables or How to: Start and Stop a Replication Agent (SQL Server Management Studio) in SQL Server 2005 Books Online.

34. Execute the CREATE TABLE statement to add the new table at each node in the topology.

35. Bulk copy the data for the new table manually at all nodes by using the bcp utility or the SSIS transfer object task. For more information, see bcp Utility in SQL Server Books Online.
36. Execute sp_addarticle (Transact-SQL) to create the new article at each node in the topology. For more information, see How to: Define an Article (Replication Transact-SQL Programming in SQL Server 2005 Books Online.

Note After sp_addarticle (Transact-SQL) is executed, replication automatically adds the article to the subscriptions in the topology.

37. Restart the Distribution Agents at each node in the topology.

To make schema changes to a publication database

38. Quiesce the topology. How to quiesce a peer-to-peer topology is defined in the next procedure.

39. Execute the data definition language (DDL) statements to modify the schema of published tables. For more information about supported schema changes, see Making Schema Changes on Publication Databases in SQL Server 2005 Books Online.

40. Before resuming activity on published tables, quiesce the system again. This ensures that schema changes have been received by all nodes before any new data changes are replicated.

To quiesce a peer-to-peer transactional replication topology

Quiescing a system involves stopping activity on published tables at all nodes (or on all but a single node if you are using backup and restore to initialize the new node) and ensuring that each node has received all changes from all other nodes.

41. Stop activity on all published tables at all nodes.

42. Execute sp_requestpeerresponse (Transact-SQL) on each publication database in the topology.

43. If the Log Reader Agent or Distribution Agent is not running in continuous mode, run the agent. The Log Reader Agent must be started before the Distribution Agent. For more information about running agents, see Programming Replication Agent Executables or How to: Start and Stop a Replication Agent (SQL Server Management Studio) in SQL Server 2005 Books Online.
44. Execute sp_helppeerresponses (Transact-SQL) on each publication database in the topology. Ensure that the result set contains responses from each of the other nodes. This ensures that all changes have been replicated to all nodes.
To ensure that a peer-to-peer node has received all prior changes

45. Execute sp_requestpeerresponse (Transact-SQL) on the publication database at the node you are checking.

46. If the Log Reader Agent or Distribution Agent is not running in continuous mode, run the agent. The Log Reader Agent must be started before the Distribution Agent. For more information about running agents, see Programming Replication Agent Executables or How to: Start and Stop a Replication Agent (SQL Server Management Studio) in SQL Server 2005 Books Online
47. Execute sp_helppeerresponses (Transact-SQL) on the publication database at the node you are checking. Ensure that the result set contains responses from each of the other nodes. This ensures that all changes have been replicated to all nodes.
To replace a node in an existing peer-to-peer setup
To replace a node in a peer-to-peer topology that has failed you can either:

· Restore another peer-to-peer database node backup over the failed DB. Then, follow the instructions for configuring a new node to configure the replacement.

· Follow the standard backup and restore procedure. It must be completely restorable with NO data loss.

Implementation of peer-to-peer replication

Initial planning
Assign an owner to each table or row in the table.
Initial implementation and setup
See To set up peer-to-peer replication initially earlier in this paper.
Refreshing the implementation
Refresh is continuous, so it relies on the SQLAgent jobs to be running.
Adding additional nodes
See To add a node to an existing peer-to-peer setup procedure.
Limits (number of nodes)
Peer-to-peer transactional replication is an Enterprise Edition feature. You should limit it to a practical maximum of 10 nodes.
Replacing a node
After replacing the node, it must start with a fresh copy of the data (the same as when adding a new node).
Retrofitting an existing application
Determine which tables are appropriate. No changes to queries are needed, as the data is available on all tables. SQL action statements should use data-dependent routing to ensure that updates occur at the "owner" node.
Capacity planning
Watch for excessive replication traffic. You can monitor network latency by using tracer tokens and plan for network bandwidth and replication network route redundancy accordingly. Note that the Replication Monitor may report overly long network latency from some nodes, based on the possibility that the update could have been done by a different node. Only configure as much network route redundancy for route failover as you need.
Query Notifications

In each of the cases previously described, we've implemented the solution in terms of storing all of the data in the database, and fetching it from the database each time we need it. Most modern applications have a service layer that consists of an application server. At its simplest, a Web server can be an application server. Application servers have the potential to use memory in order to cache data from the database, so that the database doesn't need to participate in every read. Thought of logically, this is a special case of scalable shared databases or directed transactional replication and could be used to further scale these configurations; in middle-tier caches the "data buffers" are outside the process. This does mean all joins must be done "up front" before transporting the data to the cache.

If the data never changes, the cache is always coherent. But when either the application or another system (perhaps the data owner or another instance of the same application server) changes a row in the database, the change must be proliferated to all the application servers. If the changes are few, you can simply refresh the whole cache. The SQL Server 2005 feature that facilitates this scenario is query notifications.

One way to scale an existing database is to offload some of the query processing to a middle-tier cache. This is most useful for read-only reference data but, with query notifications, can also be used with data that changes infrequently but not on a schedule. Examples of this type of data are Resource operands in drop-down combo boxes in graphic user interfaces. The user usually selects an existing item from the list, but can add an item (for example, a term of greeting combo box might contain the choices Mr., Ms, or Miss, but a user may decide to add "Dr" as an additional greeting). Additionally, the cached list may be changed by a different application, for instance, data arriving via a Web service might contain an item that is not in the original list, but is acceptable. If the database server update does not cause a cache update, the database will of out of sync with the cache. This means that an update to the set of data that corresponds to the cache must provide a cache invalidation message so you can refresh the cache. Query notifications provide this functionality.
Query notifications are implemented in SQL Server 2005 using Service Broker technology. The database engine sends a message to a service specified by the client. The client specifies an activation program to read from the queue (or reads from the queue directly using Service Broker DML); this message is meant to cause a refresh of a client cache. Special client-side code in ADO.NET implements a listener that listens and can also dynamically build the queue, service, and activation program.
Query notifications must be requested by clients. This is done by attaching a notification request to a TDS protocol packet. For this reason query notifications cannot be used inside SQL Server through only Transact-SQL; there must be a client request. Query notifications are currently supported by ADO.NET, OLE DB, ADO, ODBC, and HTTP clients. They may be supported by the Microsoft JDBC driver in the future. Support is dependent on the client/provider version used. Support is provided in:

· SqlClient provider in ADO.NET 2.0 and above.
· SQL Native Client OLE DB provider.
· SQL Native Client ODBC driver.
· HTTP client using SQL Server 2005 Web services.
When a client requests a query notification on a SELECT statement, the notification request contains:

· The name of a service to use.
· The database or service_broker_guid of the broker.
· A request identifier (usually a GUID; this identifies the requester).
· A timeout value. If the timeout expires before the notification is received, a notification with the reason for the timeout is fired.

For the query notification to succeed, the service must already exist and be reachable. This means that it is usually the DBA's responsibility to create the queue and service, and ensure that the appropriate permissions are granted to the SQL Server user identity that will ultimately receive the query notification from the queue. For information on creating queues and services, see Administering Service Broker in this paper or Administering Service Broker in SQL Server 2005 Books Online. Services used for query notifications must support a special service contract: "http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification".

The ADO.NET SqlDependency class and the ASP.NET SqlCacheDependency class (which calls the SqlDependency class) use a special infrastructure that dynamically creates a queue, service, and an activation stored procedure to process the queue. This is accomplished when the application explicitly calls the SqlDependency.Start() static method. For this to work, the identity of the user specified in the Start() call must have access to its default schema in which to create the queue and procedure, and also the following privileges:

· CREATE PROCEDURE

· CREATE SERVICE

· CREATE QUEUE

· REFERENCES ON CONTRACT http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification
· VIEW DEFINITION
Users of SqlDependency (i.e., the callers of SqlDependency or identities that execute ASP.NET pages with caching turned on) must have the following privileges:

· SUBSCRIBE QUERY NOTIFICATIONS
· RECEIVE ON QueryNotificationErrorQueue

· REFERENCES on CONTRACT http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification
· Be a member of the role sql_dependency_subscriber (this role must be created by the DBA)

Calling SqlDependency.Start in an ASP.NET application enables caching of data for any page that has a directive similar to the following code:

<%@ OutputCache SqlDependency="CommandNotification" Duration="99999" VaryByParam="true" %>

For maximum scalability, you could scale the process over multiple Web servers and/or allow additional clients. Notifying multiple caches is easily achieved through the ASP.NET mechanism. The connection string specified in SqlDependency.Start() indicates where the listener will run. So, you can spread listeners across multiple databases within the same application just by including multiple calls to Start, specifying multiple instances. Even more customization is possible by using SqlNotificationRequest or the equivalent feature in other APIs.

Note that the only behavior supported by the ASP.NET cache directly relies on using the vanilla overload or Start, and the dynamically provisioned service, queue, and procedure. Because SqlDependency.Start is usually called using Windows integrated security (many SQL Server installations do not allow SQL logins), and the security context in which the Start call is executed is usually the same context in which all of the remaining data access code runs (NETWORK_SERVICE or the ASP.NET user account in most cases), allowing query notifications means that the security principal for the entire Web site must have CREATE PROCEDURE and the other privileges previously enumerated. This may be too much of an elevation of privilege; in these cases it would be useful to use a pre-provisioned service, queue, and procedure. This is only possible if you use SqlDependency directly rather than use the ASP.NET SqlCacheDependency and manipulate the ASP.NET cache directly. To accomplish this:
48. Pre-provision the service, queue, and stored procedure. The ASP.NET identity only has to have access to CREATE QUERY NOTIFICATION in this case.

49. Change the call to SqlDependency.Start to name to queue that you provisioned.

50. Use the overload of the SqlDependency constructor that specifies the Options parameter. The Options parameter can be used to specify your pre-provisioned service.

This is also a useful option to implement advanced scenarios in which you'd like to spread your query notifications services among multiple SQL Server instances. Any edition of SQL Server, including SQL Server Express Edition can be used for additional query notification servers.

Query notifications use SQL Server resources. In addition to the Service Broker object involved, query notification information concerning subscriptions are stored by SQL Server and are visible by using the metadata view sys.qn_subscriptions. As each query executes, the query processor must consult the sys.qn_subscriptions table to determine if a query notification is involved. This changes the query plan slightly; the effect is similar to having an additional nonclustered index or an indexed view. The query plan difference is shown in the following figure, using a query notification on the query "Select job_id, job_desc from dbo.jobs where job_id = 4". Setting up a query notification entails modifying the query plan to include a search for the query notification instance, possible notification template reuse, and an insert into the query notification and query notification template tables.

[image: image6.png]&] E]

Clustered Index Update
e Compuce Sealar Conpuce Sealar Top
[pubs] . 15y=]. lquery_novit 53 Hete Fa e

[

]

Clustersd Index Sesk
[pubs] - 1dbo). [30bs]. [PK_jobs_1738
Cost: 20 %

Coupne scatar Constane tcan
= (1t e Joint =
= by
Clustared dndex tcan
- bl a1 Tt ot Froaeton,5.

Cost: 20 %

Figure 5 A query plan including a query notification
In Figure 5, the plan is split into two halves. The bottom half of the screenshot (the part up to the TOP query plan step) continues at the top half (the TOP query plan step). Note that the entire plan, except for the step in the second row in the top half, is involved with registering the query notification.
During times of memory pressure, the SQL Server engine may purge query notifications to reclaim the space that they use. In this case, a notification is sent to the queue (and ultimately the client) with the notification reason System: Resource. The application should be coded to understand that this indicates a heavily loaded system and respond appropriately.

If the application exits without the notification being fired, the notification remains in the database until the timeout value is reached. If the DBA notices that stale notifications remain, they can be manually purged by using the KILL QUERY NOTIFICATION Transact SQL statement.

When to use query notifications
Query notifications are useful when a middle-tier cache is desired for read-mostly lookup tables that are refreshed sporadically. Read-mostly tables are lists that are relatively constant, but can be changed by end users. Read-mostly lookup tables are very common in relational databases, because of normalization as a precept of database design.

In the traditional Web application (which is the quintessential example of a three-tier application), cache these types of tables as much as possible. This not only decreases the number of roundtrips to the database, but also decreases the query load on the database, making it more responsive for use-cases like new orders. Read-only tables are easy to cache; you always keep the table in the cache and give a DBA a way to reload the cache on the rare occasion where she has to reload the table.

Refreshing read-mostly lookup tables in a middle-tier cache is a bit more problematic. Refreshing the cache infrequently on a schedule doesn't produce the behavior you want; users don't see each other's changes immediately. A support person could add a new item by using a different application and send an instant messenger message to a friend who tries to use it, but the friend's list of choices doesn't include the new entry. Worse yet, if the second user now tries to re-add the "missing list entry," he receives a database error indicating the item already exists. Caching read-mostly tables usually isn't done if they have more than one "point-of-update" because of problems like this. Query notifications solve this problem.
The Microsoft Windows Mobile® update project at Microsoft used the ASP.NET application object cache invalidation method in their HTTP handler implementation that needs to cache server and application configuration settings stored in SQL tables which get updated rarely. When these records do get updated, it happens out-of-band via an MMC snap-in, which then needs some way of having front-end servers know that settings have been changed so they can reload and operate with the new settings in place. They wanted the application to run as either an ASP.NET application or a Windows service process. Rather than using the built-in SqlCacheDependency, they built their own cache mechanism based on SqlCacheDependency. They did, however, use the ADO.NET SqlDependency and its built-in listener. Because they used their own cache, they could also pre-provision the service, queue, and procedure required by the listener. They used a bank of Web front-ends, each registering a query notification subscription for the row containing their specific machine name. For more information on SqlDependency and SqlCacheDependency, see the Internals, Troubleshooting, and Best Practices for use of Scaleout Technologies in SQL Server 2005 white paper, to be published as a companion white paper.
When not to use query notifications
Because you now know how query notifications work, it's fairly straightforward to figure out where to use them: read-mostly lookup tables. Each notification rowset takes up resources in SQL Server; using them for read-only tables is wasteful. In addition, you don't want to use them for ad hoc queries as there would be too many different rowsets being "watched" at the same time. A useful internal detail to know is that SQL Server folds together notification resources for parameterized queries that use different sets of parameters. Always using parameterized queries when specifying query notifications provides better performance and better scalability. If you are worried after hearing this, bear in mind that this performance feature does not mean that you won't get the appropriate notifications. If User1 watches authors with au_lname from A-M and User2 watches au_lname from N-Z using the au_lname values as parameters, each user receives only the "right" notifications for their subset.

One last caution: when some people think of notification applications, they envision a room full of stockbrokers with changing market prices, each screen changing continuously. This is ABSOLUTELY the wrong use of this feature for two reasons. The rowsets are changing continuously, so the network may be flooded with query notifications and query refresh requests. If there are more than a trivial number of users and they all "watch" the same data, each notification will cause MANY users to requery for the same results at the same time. This could flood SQL Server with MANY requests for the same data; that is, it does not scale to thousands of clients with each client having data cached.
If you think you have programmers who might abuse this feature, you'll be happy to know SQL Server provides information to allow DBAs to monitor this feature through dynamic management views (DMVs). In addition to the Service Broker-related system views and DMVs, there is a special DMV, sys.dm_qn_subscriptions, that lists information about the current subscriptions. Remember, it's always possible for SQL Server 2005 to "decide" that notifications are taking too many resources and start purging them itself.

You must perform to following tasks to plan, step and administer query notifications.

Initial planning
Decide which tables are read-mostly tables. Decide how much cache memory you have available in the application servers, after you've accounted for immutable cached data (read-only tables). Determine which tables or views comprise your read-mostly cache.
Initial implementation and setup
Decide on a user identity for the cache listener. Set up security for the cache listener.
Refreshing the implementation
Refreshing is inherent in the architecture. The cache is acquired in stages. When the application is finished, the cache goes away. There is no affect on the database.
Adding additional nodes
You add nodes by adding application servers. If the query notification traffic is too much for a single database, consider scaling out the listener to a different instance.
Limits (number of nodes)
Limitation is based on amount of data and number of updates, not nodes. Each new notification request slows down the database, although requests that follow the same general query template reuse some of the infrastructure.
Replacing a node
The nodes in this case refer to application server nodes. No change to the database is needed unless notification requests contain Service Broker GUID references.
Retrofitting an existing application
Determine which tables are appropriate. In ASP.NET, you can make all queries in a page notify-able by adding a page directive, OutputCache.
Capacity planning
Watch for notifications that are purged for "server resource" reasons. Measure query time with and without query notifications active to determine the difference in performance. In addition, watch for an increase in updates to read-mostly tables. If you max out your "application server cache memory" with read-only tables, query notifications may be turned off. You can choose not to cache read-only tables if it's determined that a scalable shared database or transactional replication would be faster than the cache; however, this is not true for cacheable views.
Service Broker and the Service-Oriented Database Architecture

One way to scale out processing is to make processing itself asynchronous, rather than change the database or application data topology. In SQL Server 2005, asynchrony is accomplished by using the Service Broker feature. Service Broker is used to implement query notifications and also can be used for load balancing and data-dependent routing, described later. Service Broker, along with the other technologies described so far, is best thought of as a building block in an overall application architecture, the Service-Oriented Database Architecture. The Service Broker infrastructure exists at the database level, although access from outside the instance occurs through an endpoint, an instance-level object. Because inter-service broker access can be intra-database, inter-database in the same instance, or inter-database/inter-instance Service Broker routing and security depend on the exact nature of the application. So I'll cover general administration tasks first, saving general design considerations for later on.
Administering Service Broker
In order to do any Service Broker processing, the Service Broker feature must be enabled in all databases where broker services are used. In addition, it must be enabled in the msdb database, as this database is used for all inter-instance routing. Service Broker is enabled is each new database by default, but is not enabled in the master database or databases migrated from earlier versions of SQL Server and running in pre-9.0 compatibility mode. To see if Service Broker is enabled, you can issue the following query:

SELECT name, is_broker_enabled, service_broker_guid FROM sys.databases

WHERE name = 'yourdatabase'
You may notice that, although each new database is created with Service Broker enabled and a service_broker_guid defined by default, there is no broker active in the MODEL database. This is because each database must have a service_broker_guid that is unique within an organization. This why a uniqueidentifier data type is used as an identifier. Because of this, be careful when restoring or attaching databases when Service Broker is involved. There is a broker-specific operand on the CREATE DATABASE and ALTER DATABASE DDL statements, which is preferred in SQL Server 2005 when either creating new databases or attaching existing databases (CREATE DATABASE dbname … FOR ATTACH) as well as a broker-specific operand on RESTORE DATABASE. The default for this operand is ENABLE_BROKER but there are additional choices for special occasions:

· ENABLE_BROKER. The default, keeps all Service Broker objects (if any) and service_broker_guid in place and enables Service Broker.

· NEW_BROKER. Creates a new service_broker_guid and ends all conversations by using the WITH CLEANUP option. Using the WITH CLEANUP option means that remote endpoints are not notified of the conversation's end.

· ERROR_BROKER_CONVERSATIONS. Disables Service Broker, ends all conversations with an error, and then re-enables Service Broker.

· DISABLE_BROKER. Disables Service Broker but keeps all the related objects in place (this is only an option on ALTER DATABASE).

If Service Broker is not enabled in a database, any attempt to use broker DDL or DML statements will produce the error "Service Broker is not enabled in this database." Be aware of the fact that issuing an ALTER DATABASE command with the ENABLE_BROKER or NEW_BROKER options requires that all users be disconnected from the database.
When using Service Broker, messages are not sent to queues by using the queue name, but by using a services name. Services are defined in terms the following SQL Server database objects:

· Services. An abstraction to be used as a target for messages.
· Queues. A physical storage for messages sent to a service.
· Message Types. A named object associated with a message, used for validation.
· Contracts. A definition of which message types can be used by a service.
Note that by decoupling the physical destination of the message (the queue) from the logical destination that programs use (the service), the sending and receiving of messages is effectively decoupled from the physical implementation. Note also that the message type abstraction makes it possible to evolve the message format over time, easing the transaction from supporting only "Message Version 1" to "Both Version 1 and Version 2" to "Only Version 2." Contracts can be used to enforce that the service only receives message types it expects, making programming and version evolution easier.

The four database objects in the previous list are defined through DDL, just as tables and views are. In the database object catalog, queues are defined at a SQL schema level and can be accessed by using two-part object names (for example, dbo.myqueue). Services, message types, and contracts exist at a database level and cannot be accessed by multi-part names. Because service, message type, and contract names are normally used in intra-database and intra-instance communication, their names are case-sensitive, so that the infrastructure doesn't need to worry about resolving unlike database collations. Since queues are never referred to outside of the database, their names follow the database collation.

The following code defines the Service Broker database objects that a simple pair of services would use the communicate.

-- define two message types with XML validation

CREATE MESSAGE TYPE InvRequestMsg

VALIDATION = WELL_FORMED_XML

GO

CREATE MESSAGE TYPE InvResponseMsg

VALIDATION = WELL_FORMED_XML

GO

-- define a contract between the two sides

CREATE CONTRACT InvContract

 (InvRequestMsg SENT BY INITIATOR,

 InvResponseMsg SENT BY TARGET)

GO

-- create queues and services

CREATE QUEUE InvRequestQueue

GO

CREATE QUEUE InvResponseQueue

GO

CREATE SERVICE InvService

 ON QUEUE InvRequestQueue

 (InvContract)

GO

CREATE SERVICE InvInitiator

 ON QUEUE InvResponseQueue

 (InvContract)

GO
If the application does not need message validation, a special [DEFAULT] message type and contract are provided. Delivering messages is accomplished by:
51. Beginning a dialog conversation between two services.

52. Sending and receiving messages on the conversation.

53. Ending the dialog conversation.
Note that a dialog conversation exists between two services; programs never write to queues directly. Beginning a dialog and sending at least one message to the other side results in a pair of entries in sys.conversation_endpoints. Dialogs must be ended on both sides before the dialog metadata is cleaned up. Even after dialogs are ended on both sides, dialog metadata remains for about five minutes to prevent replay attacks. To end a dialog, either one side or the other issues an END CONVERSATION DML statement. This results in a message being sent to the other side informing the other side to issue an END CONVERSATION statement too. For cleanup purposes, if there is a problem, the DBA can issue an END CONVERSATION WITH CLEANUP DML statement, which ends one side of a conversation but does not send a message to the other side. END CONVERSATION WITH CLEANUP should never be used in application programs, because it results in an "orphaned" half of the conversation.

Routing messages to instances of services is accomplished by using SQL Server ROUTE objects. Routing tables (sets of ROUTE objects) are constructed in each database that will communicate using Service Broker messaging. The msdb database serves as an entry point for incoming cross-instance messages and must have routing tables of its own. Once the routing tables are in place, data-dependant routing can be implemented as an extension to the infrastructure. Though data-dependent routing is not built into SQL Server, it is easily layered over the Service Broker routing infrastructure.
Sending and receiving messages between databases and instances uses two types of security:
· Dialog security. This consists of securing the information in each individual dialog conversation. Except for special cases that use services in the same database or instance, dialog security is accomplished by means of certificates.
· Endpoint security. Inter-instance messages are sent via Service Broker-specific endpoints, which are defined as SQL Server named objects. Endpoints are secured by either Windows integrated security or by using certificates.

Dialogs are encrypted by default, using session keys, with one of the encryptions using the database master key. Therefore, unless you use the ENCRYPTION = OFF option of BEGIN DIALOG, the database master keys must exist in each database that uses Service Broker. The database master key does not exist in a database by default. You must create it by using the following DDL statement.

USE mydb

GO

-- replace password with an actual strong password

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'StrongPW1'
GO
In addition to securing the dialogs and endpoints, if inter-instance communication is desired, proxy user accounts must be defined to represent the identity of the message sender in the sending instance and correspond it to an account that has permission to send in the remote instance. Proxy user accounts are the owners of the certificates used and tie certificates to database permissions. To bind the identity of the local user in a remote service, a database object called remote service binding is used.
If you choose to implement dialog security and/or endpoint encryption you should be aware that they are implemented differently with respect to the topology. If a forwarding topology is used to send messages, endpoint-based encryption would decrypt and re-encrypt messages at each forwarding endpoint. Dialog-based encryption encrypts messages at the sending service and only decrypts them at the receiving service. So endpoint-based encryption may be easier to implement if you don't use forwarding, but dialog-based encryption is more economical if forwarding or gateways are used.

Depending on the specifics of the application and the topology of the databases used, the following database objects may be needed.
· Database master key
· Certificate

· Proxy login (for endpoints)

· Proxy user in master database

· Proxy user in a user database

· Remote service binding
Setting up Service Broker security can be complex, although it is scriptable. There are examples of scripts to set up Service Broker dialog and endpoint security on the GotDotNet Web site (http://www.gotdotnet.com/codegallery/codegallery.aspx?id=9f7ae2af-31aa-44dd-9ee8-6b6b6d3d6319). Jesus Rodriguez has posted an infrastructure for advertising and deploying Service Broker services using UDDI (http://www.gotdotnet.com/Workspaces/Workspace.aspx?id=f2e863c6-3444-47ae-8d13-668484a449f9). I cover some of the finer points in Internals, Troubleshooting, and Best Practices for use of Scaleout Technologies in SQL Server 2005, to be published as a companion white paper.
To set up a Service Broker-based application

54. Ensure that Service Broker is active in each database.
55. Define SERVICES, QUEUES, CONTRACTS, and MESSAGE TYPES in each database.
56. Ensure that a database master key exists in each database; this is required for dialog security.
57. Set up routes in each database and in msdb.
58. Set up endpoints in each instance.
59. Define proxy accounts. These consist of logins/users and remote service binding objects.

The applications that are required are:

· Service Processing programs. These are known as activation programs. If they run inside the database (associated with a queue), they are known as internal activation programs and are implemented as stored procedures. You can also implement service processing programs that run outside the database, called external activators.

· Data-dependent routing programs. These can be implemented as stored procedures associated with services.

· Programs that request data from services. These may be implemented as stored procedures that use Service Broker DML statements, by using SQL Server 2005 Web services as a gateway between the HTTP protocol and the Service Broker infrastructure, or by using any client application that can directly connect to a SQL Server database.

Once a service-oriented database application is running, to add a new node

60. Repartition the data. Note that if the data is transient activity data (for example, Web shopping carts), this may not be necessary. Changing the data-dependant routing program may cause the data to "even out" between the nodes over time. The canonical example of activity data is shopping cart data for a Web-based order entry system.

61. Define the services, queues, contracts, and message types on the new node.
62. Change the data-dependent routing program to include the new node.

Removing a node would involve the same steps as adding a node, that is, changing the routing program and repartitioning the data if needed.

Service Broker messaging is limited only by the number of database objects allowed. Because queues are really a specialized type of table (a queue is a view over a table that enforces special DML rules and special locking semantics), the limit to the size of a queue is the same as the limit of the size of a table. However, when queues are shut down (for whatever reason) or queue throughput is limited as a matter of application semantics, there must be enough room for the queue to grow. If many messages are constantly arriving, the queue can get large quickly.

Broker-based SODA applications assist in scalability by doing complex processing and business rule enforcement by using activation programs and queuing rather than by using distributed transactions in real time. A real-world example of this is to consider ordering a laptop computer online. The Microsoft Developer Network (MSDN) uses Service Broker as part of a highly available content management system. See Inside MSDN: Building the MSDN Aggregation System by John Mollman in the July 2006 issue of MSDN Magazine for more details.
Physical implementation of Service Broker

Service Broker stores its messages as rows in tables. These tables are hidden behind an abstraction called a queue. The row consists of the contents of the message itself (the message_body column) and additional information. The information enables a message to be routed to its ultimate destination (another table/queue). The queue table lives in a database. The reason for hiding the table behind the queue abstraction is to ensure that you cannot directly manipulate the message and that the appropriate locking semantics are used to improve throughput. You can issue only the following DML statements against a queue/table.
· SELECT. Reads the message.

· RECEIVE. Reads the message and deletes it, almost always as part of a transaction. If the transaction rolls back, the message is not deleted.

· WAITFOR. Uses an internal thread to wait for a message to arrive on the queue.
You cannot issue the following statements against a queue/table.
· INSERT

· UPDATE

· DELETE

Queue/tables use READPAST semantics to guarantee scalability. You do not lock the queue/table directly, but ask for a lock of an abstraction known as a conversation group.

As a DBA, you can specify the placement of a queue on a filegroup basis. You indirectly specify parameters that affect how much data appears/remains in a queue by using the RETENTION and MAX_QUEUE_READERS. You can also turn the queue off by setting its status to OFF. If you set a queue to OFF but continue to send it messages (insert rows), the rows will pile up somewhere. So, you can think of a queue as a table with one large column and many small ones, that can grow and shrink over time. The message_body column is varbinary(max) data type, which means SQL Server determines whether or not the column is in-row (the default) or out-of-row (total row > 8060). Because message/rows are immutable (the variable length fields are not directly updateable), this only happens at INSERT time.

Where do messages go?

Each database that needs to send or receive messages must have Service Broker enabled. Having Service Broker enabled means having a sys.transmission_queue available. By default, sent messages are put on sys.transmission_queue. In the special case where communication is between services in the same instance and the queue is enabled and the security allows it, the message is placed directly on the queue, bypassing sys.transmission_queue. There is no way to specify a filegroup for sys.transmission_queue. So on a per-database basis, messages can pile up in sys.transmission_queue and possibly the sender's queue.

Managing routing
Each database that participates in Service Broker must have a routing table (sys.routes). The msdb database also has a sys.routes table. Service Broker acknowledges every message on the receiver, so if the message does not reach its destination, it is not removed from sys.transmission_queue. Alternate routing tables can be set up to accommodate:

· Load balancing – when there are multiple routes to the same service, the routing system chooses one in a round-robin fashion.
· Partitioning (data-dependent routing).
· Testing vs. production service implementations.
Be aware that routes may be hard-coded, so taking a copy of a production database that's running Service Broker and restoring it to a test system could result in messages sent by the test system to wind up in production. Always use the NEW_BROKER option when copying from production to test or from test to production. "Test" in this case also includes staging servers.
Real-world implementations
The MSDN content management server project uses Service Broker to implement a "clearinghouse" application for Publishers and Subscribers of MSDN content. What happens to the content can differ for different content types and is abstracted by a provider-consumer model. Based on the content of the message, different stored procedures (JobWorkers) are run by using Service Broker activation. The messages use XML message format for flexibility and SQLCLR JobWorkers to process requests. Using SQLCLR allows the JobWorker provider model to use object-oriented and interface-based programming concepts, while still running inside SQL Server. To learn more about this application, see Inside MSDN: Building the MSDN Aggregation System in the July 2006 issue of MSDN magazine.

Another example of a Service Broker application is Database Mail, which is built into SQL Server 2005. Some database processes must interact with services outside the database, such as SMTP, FTP, or Web services. The SQL Server 2000 way to send mail from the database used COM components that sent mail messages synchronously. Database Mail sends mail by queuing the mail and passing off the sending to an external activator process. This means that mail sending is asynchronous and that sending takes place outside of SQL Server, so SQL Server threads aren't used to wait for the acknowledgement from the SMTP server.
Service Broker implementation summary
Planning
Service Broker, at its minimal description, is a message queuing system built into the database. The database product provides DDL statements and DML statements to define and manipulate applications built with Service Broker. In addition to planning the Service Broker objects, routes between services must be set up and maintained; this is accomplished with DDL as well.

Because messages can be sent between databases in the same instance and between instances, security is required. Service Broker requires two types of security—dialog security (for all conversations) and endpoint security (for controlling entry to your instance). Dialog security requires SQL DSL (data security language) statements and, in most cases, certificates. Endpoint security requires either Windows Integrated Authentication or certificates. The certificates used by dialog security and endpoint security are different. SQL Server 2005 provides DDL statements for certificate management and secure storage.

From an application point of view, designing an application that uses Service Broker consists of designing application processing that separates data and code into a service. Data encapsulated by a service should not be updateable outside of the application node that includes the service code and local DML statements. Remote DML statements need to be implemented using replication, distributed partitioned views, or asynchronously by using Service Broker services. For example, in the AdventureWorks sample database that ships with SQL Server 2005, the naturally occurring applications follow the schemas:
· Human Resources

· Sales

· Production

· Purchasing

The exception to this rule is the Person schema. The Person schema would be divided into updatable and non-updatable parts. Each row in the updatable part should have an owner (see Peer-to-Peer Replication) and should be read-only to other applications. Note that the information that Sales needs from Production and that Production needs from Purchasing should be encapsulated into services. Queries that require information from all schemas might need a read-only copy of the database, or need a data warehouse.
To implement a Service Broker application that uses the AdventureWorks database

63. Partition the data to meet the needs of all of the applications.
64. Design the service interactions between applications. Service interactions are usually database updates. Using service interactions for updates should not preclude the possibility of joins.

65. Decide which messages should be saved as data.
Initial implementation and setup
Service Broker administration consists of:
66. Ensuring the Service Broker IDs are unique within an installation.
67. Integrating Service Broker ID smarts into restore.

68. Setting up Service Broker database objects.
69. Setting up security. Ensure that you use the appropriate choice or combination of dialog security and endpoint security for your organization and application.
70. Setting up routing.
71. Constructing DDL for application-specific objects, such as XML schema collections for validation and activation stored procedures.

72. Implementing EVENT NOTIFICATIONs or SQL Server Alerts to be informed of queue deactivation due to poison messages. Poison messages will be discussed in more detail in Internals, Troubleshooting, and Best Practices for use of Scaleout Technologies in SQL Server 2005, to be published as a companion white paper.

Refreshing/maintaining the implementation
Maintaining a Service Broker-enabled application consists of the following general tasks.
73. Managing and troubleshooting routing.
74. Managing and troubleshooting message (data) flow, in conjunction with programmers.
75. Managing space for Service Broker queues (a queue is an abstraction over a database table).
76. Managing certificates. Be aware of the fact that the certificates used by Service Broker expire. Service Broker dialog security and endpoint security are both expiration-date aware.

Adding additional nodes
To add nodes that are homogeneous, you replicate the services, including Server Broker objects and security objects. One way to accomplish this is to take a copy of an existing application database, and restore or attach it with the NEW_BROKER option. This keeps the objects in place while changing the service_broker_guid. Use the ALTER DATABASE command to store a copy of the database master key for the new database in the SQL Server instance.
If the new instance is a new "customer" of your service who is going to send inter-instance messages to you, you need to push out the certificates needed to allow communication with the Service Broker endpoint. In addition, the customer must send you the public key portion of their endpoint certificates and you must install them in the master database. In each case, the routing tables must be updated in both the databases that use Service Broker and in msdb.
Limits (number of nodes)
The number of nodes in a Service Broker application is limited by the design of the application. The complexity of implementing new nodes is determined by whether the nodes are local (inside the domain, domain security can be used) or remote (outside the domain or external to the organization).
Replacing a node
You can set up the services and endpoint/dialog security by using a copy of the database that you're replacing. If the service_broker_guid is different on the replacement server, you need to change the routing tables as well.
Retrofitting an existing application

Retrofitting an existing application can be accomplished in stages by examining business processes and existing database tables. If your business process is such that a part of a transaction need not be done in real time, this process can be converted to a message (service) based update. An example of this would be checking credit. If I'm going to walk out of the store with the product and the bank does not guarantee the credit card, the check must be done in real time. If the order takes place online and the item being ordered cannot be shipped over the Internet (ordering a PDF copy of a standards document versus ordering of a book), the credit check does not have to be done in real time as the order can be cancelled before the product is shipped. Most business processes do not take place in real time, "just enough" data concurrency is sufficient. Scalable shared databases, peer-to-peer replication, and query notifications are vehicles to enable choices with respect to just enough data concurrency.
Another way to think about retrofitting an existing application with queuing is to look at an application's tables. If business processes are such that one process inserts rows into a table and another process reads rows, uses them, and marks them as complete, the table is actually being used as a queue. In this case, Service Broker's concurrency enhancements for queues (Readpast semantics on action statements based on conversation groups) result in faster throughput than using tables as queues.
Capacity planning
The biggest consideration in capacity planning is to realize that, in some cases, the messages themselves should be saved as data in their original form, for instance, saving the original order form data in an order entry system. This must be planned for. In addition, any time a queue is stopped or processing capacity is "maxed-out," queue messages have the capability to pile up. This can cause database expansion. Although tables only take up space when they contain rows, the database must be shrunk after an incident of excessive growth.
Towards a Service Oriented Database Architecture
Service Oriented Database Architecture is a term coined by David Campbell in the paper Service Oriented Database Architecture: App Server-Lite?. It is most useful as a design technique when applications are designed with services in mind. Hiding data behind services synchronized by transaction messaging with guaranteed delivery also facilitates the implementation of data-dependant routing.

For the purpose of deciding on architecture and which features to use, it is useful to separate the data into categories, based upon usage. This is especially useful for Service Oriented Database Architecture applications. Based on classification introduced by Pat Helland in his treatise Data on the Outside versus Data on the Inside, we can divide data into three main categories.
· Reference data. This type of data is usually (almost always) read-only, with batched, sporadic updates. Examples include product catalogs, price/rate lists, telephone books, and parameter tables. The data need not be up-to-the-minute to be useful; for example, people look up phone numbers in phone books up to a year old, but the data must be date stamped so that multiple immutable versions are immutable.

· Activity data. This type of data is temporal, associated with a particular order in progress. An example is the shopping cart data in an order-entry Web site. What makes this data interesting and different is that it can be stored on multiple servers. Because it is only updated during an operation in progress, you can add an additional server and “spread out” the existing data traffic in a relatively short period of time.

· Resource data. This represents the “base entities” of an existing application, such as customers, patients, bank accounts, and inventory. Updates to this data must be localized and quick response for read is also desired.

In addition to these three types of data, it is also useful to think of messages between services in a Service Oriented Database Architecture as data to be stored and queried. This is similar to activity data; if the storage and access patterns are different enough, this could be referred to as Service Interaction Data. Classifying data in this manner helps to determine if services can be useful in intra-application processing.
Designing a SODA-based application

77. Analyze the data to determine update patterns and usage. This allows you to determine the best scalability technology to use on a per-entity basis. Note that data entities need not (and usually don't) correspond one-to-one with relational database tables.

78. Design the services. A service consists of a private chunk of code and data which is independent of other code and data used by the application. For example, an inventory service may encapsulate updates to inventory and serve no other purpose. It may, however, result in sending a message to an ordering service if inventory is low. It is essential that the services are autonomous (decoupled) from other pieces of the same application.

79. Deploy the services in such a manner that scaling consists of replicating the service (code and data) on additional nodes.

For example, you can go to a cash machine almost anywhere in the world, put in a plastic card, and either receive money or receive a transaction rejection. At some cash machines, you can get your current balance. If the machine “decides” that your card is stolen, it may take the card and not return it. Is this system possible because each cash machine is connected to each bank in the world? No. Cash machines may contain a local storage (negative files) to identify stolen cards. They may communicate with your bank to determine your balance in real time or to decide that you can take out $40 but not $60, if your balance is $50. Or, they communicate with a service to determine how much you've taken out that day, so that you can't withdraw more than $200 per day. As database and network technology advance, the implementation of this service can change. All that you care about is using this service (cash machine) so you can get the money out in time to spend it at the sale down the street, before all of the [your favorite product here] are gone.
Data-Dependent Routing

In almost all of the technologies mentioned in this paper, it is critical that requests for data either be spread across multiple databases or routed to the correct database, that is, the database where most of the data resides, or where most of the data has been recently used by the database in the case of scalable shared databases. Although, by managing the number of queue readers, Service Broker has the capability to load balance a single instance of a single service over time, load balancing and locality of data reference usually imply data-dependent routing. However, scaling out with copies of the service implies that the data is replicated across all copies; in many cases the replication overhead can cancel the benefits of scaling out. Data-dependent routing can be built into the middle-tier application server or into the database. Both the Microsoft.com Web site example that was cited in the Peer-to-Peer Replication section and the MSDN Aggregation system (described in Inside MSDN: Building the MSDN Aggregation System) use data-dependent routing. Microsoft.com uses middle-tier component-based data-dependent routing and the MSDN Aggregation system uses Service Broker routing to achieve data-dependent routing. In this paper, we explore data-dependent routing implemented by directly or indirectly by using Service Broker routing.
Although data-dependent routing (also known as data-directed routing) is not included as a built-in feature of SQL Server, if you compose an application into services using the Service Oriented Database Architecture, it is straightforward to implement data-dependent routing as a service, in conjunction with Service Broker built-in routing. Rushi Desai of the Service Broker team has published two proof-of-concept implementations of data-dependent routing as Service Broker services on the GotDotNet Service Broker community Web site. One uses redirection, in which a conversation is started with the router service and the data is provided as part of the initial message. The router service looks at the data and redirects the conversation to the appropriate instance. Another way to implement data-dependent routing is by message forwarding, where the first message in a conversation contains the routing data and the routing service takes care of routing each message in a conversation back and forth.
Dynamic routing with Service Broker

Many of the scenarios presented in this paper require that routing tables be changed periodically. Although we can rebuild all of the routing tables in all of the places they exist, it would be more convenient to have a dynamic routing service as a centralized way of controlling the overall route topology. Luckily, Service Broker routing has this built in. A dynamic routing service is an "ordinary" Service Broker service that is called by the Service Broker infrastructure when no route is found for a service with a conversation in progress. The dynamic router "finds" a route for the service in question through custom code; it looks up the route in a directory service, a database table, and by any mechanism. If the route can "find" a route for the service, it creates the route by using the CREATE ROUTE DDL statement and ends the conversation with the broker infrastructure. If the dynamic router cannot create a route, it ends the conversation with an error. A dynamic router service is also responsible for missing service credentials, known as remote service bindings. We'll look at a simple implementation of a dynamic router in Internals, Troubleshooting, and Best Practices for use of Scaleout Technologies in SQL Server 2005, published as a companion white paper.

Data-dependent routing in conjunction with other technologies

Data-dependent routing is used as an adjunct to other technologies, rather than as an end in itself. With distributed partitioned views, data-dependent routing is needed to route the request to the instance where the data is likely located. The request in this case refers to application requests that either read data from or write data to the database.

If the request is routed to the wrong instance, the operation takes longer, but eventually succeeds.

With peer-to-peer replication, updates MUST be directed to the appropriate instance. It usually needs to be a specific instance, although one peer-to-peer node can completely take over the duties of the other for a period of time. The update can happen on only one instance at a time, or problems result. Because the data is replicated from one instance to another, reads need not be directed to a specific instance.

When you use a shared scalable database for load balancing, use routing as a smart load-balancing mechanism. You would route all queries for a specific key range to a specific node to maximum database caching within the nodes. If dynamic routing is implemented by keeping a list of available servers in a database table, each router must be informed of changes to that table. If the changes are made by a central remote authority, hierarchical transactional replication can be used to push changes to copies of the routing database. If the contents of the routing table are large and cached in memory as part of an application layer, query notifications can be used to keep the cache up to date.
Data-dependent routing summary
Initial planning
Decide whether to implement data-dependent routing in the database itself or in a middle-tier application server. Define the topology of the system and determine likely patterns of change so you can script changes to the routing system. If data-dependent routing is used to localize queries, determine what your routing key and criteria is. Determine whether the routing criteria and list of servers will be stored in a database or hard-coded into the routing application. You would most likely use a database query to determine which servers are available.
Initial implementation and setup
Set up a Service Broker or application server front end. Initialize the routing tables and install the program that will accomplish routing if you are using a dynamic routing program.
Refreshing the implementation/Adding additional nodes/Replacing a node
Because data-dependent routing is an enabling technology, a router must be available at all times, so replicating or clustering databases that are used for routing is essential.

When your application or data topology changes, you need to have a mechanism (scripts, database updates, or dynamic reconfiguration) to change the routing tables.
Limits (number of nodes)
The practical limit to the number of nodes is completely application-dependent. The data-dependent routing physical implementation is unrelated to the technology used.
Retrofitting an existing application
If the routing exists in a middle-tier server, your application must be reprogrammed to direct calls to the database through the middle tier. If the routing exists in the database server, database-based business processes that use routing must be available as services.
Capacity planning
Since the router is the gateway to your application, a router must be available at all times. At least two routing servers must be available. If Service Broker is used, the routing must exist in every database that houses Service Broker, thus making the router locally available. Having a local router also improves performance.
Summary: Comparing Scaleout Technologies

There are two main components of any scaleout technology: data storage and data access. The main differences between the data storage solutions consists of whether the data is read-only, read-mostly, or read-write, whether the data is local or remote, and whether the data is in database or in cache.

Table 1 Scaleout solutions and data storage

	Technology
	Data updatability
	Data locality
	In database

	Shared scalable database
	Read-only
	Local, multiple servers
	Yes

	Peer-to-peer replication
	Read-write your portion, read-only for other portions
	All data local
	Yes

	Cache sync with query notifications
	Read-mostly
	All data local
	Most reads from cache

	Partitioned views
	All data can be updatable
	Some local, some remote
	Yes

	SODA
	All data locally updatable
	Data local within a service
	Yes

If you're sharing data between instances, network latency matters. Here's a look at how the different routing architectures route data from point A to point B and how much data they route.

Table 2 Scaleout solutions and data access

	Technology
	Mechanism
	All must be available
	Affect of network latency

	SODA
	Sys.routes
	No
	Moderate

	Data-dependent routing
	Custom
	Implementation dependent
	Used by ameliorate network latency

	Cache sync with query notifications
	Direct connection and read
	Yes / Failover possible
	Moderate

	Partitioned views
	Linked servers
	Yes / Failover possible
	Crucial

	Peer-to-peer replication
	SQL Agent jobs
	No
	Crucial

	Shared scalable database
	Hardware
	No
	None

Conclusion

In this paper we cover planning, implementing, and maintaining services in SQL Server 2005 that enable scaleout. In the Internals, Troubleshooting, and Best Practices for use of Scaleout Technologies in SQL Server 2005 companion paper, we cover more about how the features work and how to diagnose and troubleshoot problems when using them. Note that the choice of a feature is not an either-or choice; the features are complimentary. Using scalable shared databases may cause an existing configuration to keep a good response time for longer, as will moving processing from synchronous to asynchronous. Each technology has a part to play. Your choice of which technologies to implement in what timeframe should be governed by getting the most power for your money, including administrative costs and programming, and in some cases, hardware. If you're designing a new system that will have to be scalable, these points should be made part of the design.
Did this paper help you? Please give us your feedback. On a scale of 1 (poor) to 5 (excellent), how would you rate this paper?
References

Scaling Out SQL Server 2005, Roger Wolter

Service-Oriented Data Architecture: App-Server:Lite?, David Campbell

Data on the Outside vs. Data on the Inside, (an examination of the impact of Service Oriented Architectures on data), Pat Helland

SQL Server 2005 Service Broker, Roger Wolter, Mann Publishing, 2006.

Scalable shared databases are supported by SQL Server 2005

Inside MSDN: Building the MSDN Content Aggregation System, John Mollman
Inside Microsoft.com: Managing SQL Server 2005 Peer-to-Peer Replication, David Lindquist

SQL Server Megaservers: Scalability, Availability, Manageability, Jim Gray and Richard Waymire
Achieving Scalability and Availability with Peer-to-Peer Transactional Replication, Michael Blythe
