Introduction to DB




Introduction to Databases

Data vs. Information

Numbers, text, images or any recording in a form that is accessible to human beings are classified as ___________.  Data themselves have no ___________.  It is only when data is ________________ then the data content will become meaningful. Interpreted data are referred to as _______________.  For example, the number 33.5 tells us almost nothing.  However when readers are told that the number stands for the temperature in centigrade, the number makes sense to us.  In this example, 33.5 is a piece of data whereas 33.5 as a temperature in centigrade is a piece of information.  Information is stored in computers such that both its data value and interpretation will be recorded.  In most cases, interpretation of computer data is typically given by the corresponding data name.

In the context of databases (which will be elaborated in the next section) as well as in daily use, the terms “information” and “data” are often used interchangeably although such a kind of confusion is not desirable. In most cases, the interpretation of the term “data” should be clear from the context of discussion.  In the context of databases, “data” usually means “information”.

The Data Hierarchy

Each information system has a _____________ of data organization, and each succeeding level in the hierarchy is the result of combining the elements of the preceding level.  The six levels are bits, characters (bytes), fields (data elements), records, files, and data base (see Figure 1).  A bit is a binary digital which has a value of either 0 or 1.  A byte is a composed of 8 ordered bits.  
[image: image1.png]Data Base
Files

Records

Fields

Characters

Bits





Figure 1.   Hierarchy of data organization.
Data Field/Element

A (data) ________ or ________________ is the lowest level “logical unit” in the data hierarchy that can be interpreted in a meaningful way, e.g., “David” for a name, “23469345” for a phone number.  The maximum number of characters (not bytes) that a field can have is called ______________________.  
Record

A _______________ is a logical group of related data fields describing an event or an item, e.g., a student enrollment record consists of fields such as student-ID, student-name, programme-code, module-code, date-of-enrollment, etc.
File

A _________________ is composed of occurrences of records. A _____________ is used to refer to a named area on a secondary storage device that contains a program, a textual material, or even an image.  One logical file is not necessary mapped to one physical file and vice versa.  For example, a logical file may consist of an index area and a record area such that each of the areas is associated with a separate physical file.  End-users are usually concerned with logical files instead of physical files.  

Data Base

A ___________________ is a collection of files that are logically related and integrated to one another so that data redundancy is minimized or reduced.____________________ exists when a data field is stored in more than one logical file.  Data redundancy often cannot be eliminated entirely for various reasons but it should be kept under control.  _________________________________ is devised to control the data redundancy problem by ideally storing every data item once and/or by propagating data changes to all related record occurrences probably among a number of files so that _________________________ (which concerns the validity, accuracy and correctness of data) can be maintained. Database management system is often referred to as DBMS, database or database system. 

Need for Storing Persistent Data

Almost all computer applications require some data be kept for describing some inherently stable properties or up-to-date status of certain items or events.  Let us think about the information kept by a bank for its saving account holders.  For each saving account, the bank must store its unique account number, name(s) of account holder(s), contact address(es) of account holder(s), account balance, etc., to say a few.  Those data are considered to be ____________________ as they are not changed frequently.  However some data are more persistent than the others.  For example, an account number should never been changed whereas there is a slim chance that changes would be required for the name(s) of the account holder(s).  Account balance is most susceptible to change among the pieces of listed data as transactions like money deposit or withdrawal will affect its value.  Obviously the correctness of all recorded persistent data is important to the functioning of the associated computer applications.  

Whether or not a piece of data is persistent varies from application to application.  Age may not be considered as a piece of persistent data as it changes every year for most people.  However the age field is definitely persistent if it appears on a death certificate.
Problems of File Systems

Persistent data can be stored in file(s).  However there are potential problems with that.

1. Since files are designed to fit individual application needs, a data element may appear in several files if that piece of data is needed in several applications.  For example, a bank customer may open a saving account and a stock account at the same time.  For the stock account, the account balance is composed of the quantity of each stock purchased.  Obviously at least two different files are needed to keep data for the two types of accounts but data elements such as name(s) of account holder(s) and contact address(es) of account holder(s), are common. When the customer moves to a new address, both file are required to be updated. This is caused by the data redundancy problem. ___________________________ can cause a number of problems during data modifications.
2. A consequence of data redundancy problem is __________________ or ____________________________. Data become inconsistent if copies of data are not updated simultaneously.
3. Traditional file systems suffer from __________________ and ___________________. If a new report which needs to use some but not all data from two files is required, should one be allowed to access both files? As ______________ on a file system can only be made at the file level, allowing someone to read both files implies unnecessary exposure of data.  If a new file is created to store all data needed to produce the new report, _______________________ problem emerges.

4. _________________________ (also known as __________________________) exhibits in file systems.  In order to use a file, a program needs to know the file structure, i.e., details of all data stored in the file.  A change in any file’s structure requires the modification of all programs using that file.
Aims of Database Systems

The aims of database systems are as follows:

· Reduce ______________________ and _______________________
· Separate user data view from physical file structure

· Impose ____________________________ constraints, e.g., for data validation

· Tackle ________________ problem, i.e., all activities in a transaction is either completely performed or undone.  For example, if money is transferred from a saving account to a stock account, the saving account will be debited whereas the stock account will be credited with the same amount.  The corresponding transaction has to ensure that both data changes are done as one single unit. 
· Allow _________________data access

· Offer ______________ data access
· Help make data management more efficient and effective

· Allow quick answers to ad hoc queries using some _______________________
· Provide end users better access to more and better-managed data

Some databases may not be able to achieve all the above aims.  Early databases may not support transaction processing or offer secured data access for concurrent users.
Separating User Data View from Physical File Structure
A key advantage of database is that the end-users and application programmers do not have to know how data files are organized and stored in the database. This is referred to as the ___________________________(or _____________________________).  Thus changing the structure of a file does not necessarily require computer programs that access the file be modified.  Databases achieve structural independence by organizing data through advanced data structures in which the data fields and records are related to each other.  Computer programs do not access files for data.  Instead, computer programs that need accessing data have to direct their requests to the DBMS which in turn processes the requests against the data base; in other words, all operations on the data base are coordinated by the DBMS.  Figure 2 describes the interactions between different parties in a database environment.
[image: image2.png]writes and enforces ‘
«—
Procedirres

and standards

Analysts
End users Programmers

use write

Applications
programs

access

2

Database
designer

designs

L

Database
administrator

manages

DBMS utilities

2

System
administrator

Hardware





Figure 2.   Interactions between various parties in a database environment.
Types of Databases

There are many ways to classify databases and two of them are listed below.

Number of Users

Many databases designed to run on personal computers are expected to be used by one user at a time.  We usually referred them as ____________________.  Earlier versions of Microsoft FoxPro and Access belong to such a type. More sophisticated databases like MySQL, Microsoft SQL Server, IBM DB2 and Oracle are called ___________________ as they have built-in facilities for secured and concurrent data access.

Location

A database may be either ______________ or __________________.  In a centralized database, all database functions run entirely on a single computer.  A distributed database is composed of a set of partially independent databases running on a group of networked computers. 

Another form of distributed implementation of databases, more commonly known as client-server databases, focuses on the distribution of various database functions over multiple computers.  In particular, the database front-end functionality such as input validation is typically done by the client machines (which are usually personal computers) whereas the back-end functionality like transaction handling and data base update is provided by server systems, which are typically either data servers or transaction servers.

Applications of Databases in Society

Almost all computer applications need to use database to store persistent data.  In a library system, at least the following data need to be kept.

· Library user ID number

· Library user name

· Library user contact address

· Maximum number of books that a library user can borrow

· Library user ID number, book’s call number and due date of the loan period for each book which is on loan

· Author name(s), publisher, year of publication, and status (e.g, on-loan, on-hold, on-request, and missing, etc.) of each book.

The above information must be kept in order to support basic library operations like book search, borrowing and return, etc.

In a supermarket, inventory information needs to be stored so as to facilitate the inventory, purchasing, marketing and other business functions of the company.  Some of the information to be kept is given below.

· Item ID number

· Item name (e.g., ABC dental cream)

· Item category (e.g., oral hygienic)

· Unit price

· Stock level

· Reorder level (below which an order needs to be placed for replacement)

· Reorder amount (i.e., the number of items to be ordered)

In a credit card system, the following information should be recorded.

· Card number

· Card owner’s name, contact address and phone number

· Credit limit

· Credit amount used

· Card’s expiry date

· Card’s date of issue

· First issued date

· Number of times that the card was reported missing

· Number of times of late payment

Databases not only support day-to-day operations of organizations only.  Applications can be built to analyze historical data in databases for planning purpose.  Banks use various types of customer information such as account balances, salary information, saving patterns, credit card repayment patterns, mortgage repayment patterns to create their customers’ profiles.  Customer details like occupation, age and marital status are recorded too.  Such information is stored in databases and would be analyzed so as to enable the banks to identify potential customers for specific products, e.g., fund investment and insurance.  Such a kind of database applications is known as __________________ which analyzes data in databases to look for data trends or anomalies without the knowledge of the meaning of the data.

Discussion

1.
To discuss the importance of databases in business environments and how they are related to the success of a business.

2.
Suggest the information  that should be included in a student personal information file of a secondary school ( Define the structure of a file).

3.
Suggest the files that should be included in a school database.

Data Models

A data model is a collection of logical constructs used to represent data structure, data semantics and data relationships found within the database.  Database models can be conceptual or implementation oriented.  
i)
Conceptual data models
Conceptual data models are used to describe data at the logical and (user) view levels.  It offers no description about the implementation issues.  Conceptual models are often used as a communication tool between database designers and end-users so as to help the designers understand the data requirements of the end-users correctly.  The entity-relationship model is an instance of conceptual data model.
ii)
Implementation data models

Three popular implementation models are hierarchical, network and relational models.  Note that the problem of structural dependence in both hierarchical and network models is resolved in the relational model. 

iii) Relational data model

The relational data model represents data and relationships among data by a collection of tables, each of which has a number of columns with unique names. Figure 3.1 is a sample relational database showing customers and the accounts they have. It shows, for example, that customer John lives on Sha Tsui Road in Tsuen Wan, and has two accounts, one numbered 232-678098 with a balance of $12000, and the other numbered 232-239850 with a balance of $3000. Note that customers Mary and John share account 232-678098 (They may share a business).

	NAME
	STREET
	TOWN
	ACCOUNT
	
	ACCOUNT
	BALANCE

	Peter
	Tai Wo
	Tai Po
	433-234813
	
	433-234813
	45000

	Mary
	Yuen Wo
	Shatin
	345-534733
	
	345-534733
	28000

	Mary
	Yuen Wo
	Shatin
	232-678098
	
	232-678098
	12000

	John
	Sha Tsui
	Tsuen Wan
	232-239850
	
	232-239850
	3000

	John
	Sha Tsui
	Tsuen Wan
	232-678098
	
	
	


Figure 3.1 Relational Model
iv) Network model

Data in the network model are represented by collections of records and relationships among data are represented by links. The records in the database are organized arbitrarily. Figure 3.2 represents a sample network database using the same information as in Figure 3.1.

	Peter
	Tai Wo
	Tai Po


	Mary
	Yuen Wo
	Shatin


	John
	Sha Tsui
	Tsuen Wan


Figure 3.2 Network Model

v) Hierarchical model

The hierarchical model is similar to the network model in the sense that data and relationships among data are represented by records and links, respectively. It differs from the network model in that the records are organized as collections of trees. Figure 1.3 represents a sample hierarchical database with the same information as in Figure 3.2.






Figure 3.3 Hierarchical Model

vi) Why choose relational model?

The key advantages of relational model are as follows:

· Structural independence 

· Improved conceptual simplicity as data are structured in simple-to-understand tables

· Easier database design, implementation, management, and use

· Ad hoc query capability with the use of the structured query language
· Powerful database management system can be built with the system’s complexity being hidden from the user view

Relational Database Concepts

Introduction

In this section, basic relational database terminology and concepts will be introduced.  The definitions and characteristics of entity, relation, attribute, domain and key, etc., are detailed.  In particular, the difference between keys and indexes, and three concepts about data integrity, namely entity integrity, referential integrity and domain integrity, are explained.  In order to help explain the above terminology and concepts, a problem scenario about a school library is introduced as below:

The library of XYZ School has decided to computerize its services so as to make them more efficient and effective.  Since computerization is relatively new to the school, the library aims to provide only basic library functions to the users initially through the implementation of a simple computerized library system.  The system is expected to offer a computerized catalogue of all library items, e.g., books and past examination papers, and basic circulation functions such as item borrowing, returning and reserving.  Obviously the system needs to keep library user information such as the number of library items that s/he is allowed to borrow, dates and call numbers of those library items that s/he has borrowed, or requested, etc.  Library item details such as its call number, author(s), ISBN, year of publication and status (e.g., available, on loan, requested and damaged), etc., are also kept.

As a teacher librarian of the school, you are asked to design a suitable database schema to support the mentioned library operations.

Whenever applicable, examples will be provided in relation to the above problem scenario so as to provide a clear context for illustrating the database terminology and concepts.

Entity and Entity Set/Type
· An ___________ is a distinguishable object to be described.  It can be any object such as a person, a place, an event or a thing, etc.
· Entities that share the same properties or attributes are collectively referred to as an _________________ (or _______________).  Example entity sets that can be found in a school environment are students (person), classrooms (place), examinations (event), and subjects (thing), etc.  

Entity sets in the XYZ School library example:  

· Suppose Linus and Jeff are students, they are entities (library users) because they share properties of a student and are distinguishable objects in a school library system.  

· Library users who may be teachers or students (person), library items (things), circulation transactions such as a book request (event), and user privilege (things) etc. 

· In relational database, an entity set is typically represented in terms of one or more _____________ (a mathematical term for ____________), with each of which being composed of rows and columns.
· Each _____________ (a mathematical term for rows in a table) in a relation represents an entity of the associated entity set.
· Each ______________, which is uniquely named within the table that it is associated with, represents a category of information that corresponds to an attribute.
· A relational database is typically composed of a number of related tables.  Note that the order of the rows and columns within a table is ______________ to the database.

As shown in the table below, the “user privilege” entity set of XYZ School library example is composed of 6 rows with each row defining the privilege of a user type for a given material type.  

[image: image3.png]Tser  Descriphion Typeof  Loan  Tolalrumberofilems
e material __ Period __that can be borrawed
IS Junior swdent Book T4 days 3
(FI-F3)
TS Junior swdent  Exampaper 2 hours Z
(FI-F3)
§5 Senor student Book T days 5
(F4-F.5)
§5  Senor Student  Exampaper 4 hours 3
(F4-F.5)
T Teacher Book T days m
T Teacher Exampaper 1 day 5





Table 1.  The “user privilege” table of XYZ School library.

Attributes
Attribute and Domain 

Each entity has certain descriptive properties known as ____________ (or ___________).  Some potential attributes for the student entity are student-name, student-number, and sex, etc.  

Attributes in the XYZ School library example:  

· student ID, class name (in the “library usesr” entity set)

· call number, material type (e.g., CD-ROM, book), item name (e.g., book title)

The set of all possible values for an attribute is called its _____________.  For the student entity set, the domain of the attribute sex should be {______________} whereas the domain of the attribute age should be any positive integer (although it may make more sense by setting an upper bound for the domain).

Attribute domains in XYZ School library example:  

· Domain of “class name”: all valid class names found in XYZ school.

· Domain of  “maximum number of library items that a user can borrow”: any non-zero integer not greater than 10.
The relational database theory does not restrict what data type that an attribute can associate with.  However, some commonly supported data types in relational database are:

· Integer

· Real

· Character

· String

· Boolean

· Date and time

Simple vs. Composite Attributes

Attributes that cannot be divided into subparts are known as simple attributes (e.g., age); otherwise they are composite attributes (e.g., address).  Whether there is a need to re-structure an attribute to finer attributes depends on the application needs.  In the XYZ School library example, the library user name is represented as a composite attribute as it is not further divided into simpler attributes such as first-name and surname.  Such a representation does not cause any problem as the library does not have any need of processing library information in accordance with its user’s first-name or surname.  To facilitate detailed queries (for the future), many database designers prefer to change a composite attribute into a series of simple attributes.
Null Attributes

It is possible to use a null as the value of an attribute of an entity.  For example, the value of the ISBN field will be set to null for past examination papers but a valid ISBN is needed for most books.

Derived Attributes
In some occasions, the value of an attribute can be derived from other related attributes or entities.  Such a kind of attributes is referred to as derived attribute.  Suppose a database keeps an employee table to store employee information like employee-number, employee-name and number-of-dependents, and a dependent table to record information of each employee’s dependent in a separate row.  In this case, the number-of-dependents attribute in the employee table is a derived attribute as its value is equal to the number of associated rows in the dependent table. 

In a good database design, integrity constraint (which will be detailed later) should be defined between derived attributes and their base attributes in order to ensure that an update of the value of any base attribute will trigger a corresponding update of any associated derived attributes.  Otherwise, data inconsistency will occur.

Intuitively, we should eliminate all derived attributes of a database because their values, if required, can be computed in real-time.  However the use of derived attributes can improve the efficiency of a database.  In the XYZ School library example, it is better to have (derived) attributes to record the number of times that a teacher does not return borrowed items to the library on time and the cumulative number of days overdue although those pieces of information can be derived from the teacher’s circulation records history.  The use of derived attributes in this example can greater enhances the database efficiency when compared to rescanning all past circulation records of a teacher for computing the required information.  In this example, the computational effort for maintaining the integrity of the values of the derived attributes and their base attribute values is small.

Keys

· A key is a value of one or more selected attributes used to identify an entity in an entity set.  The concerned attribute(s) is/are known as the key field(s).  A potential key field of the “library user” entity set of the XYZ School library example is the “library user ID” which is unique for each library user.  
· A superkey is a set of one or more attributes that, taken collectively, uniquely identify an entity in an entity set.  However, a superkey may contain extraneous attributes. In the “user privilege” table of the XYZ School library example, all of the following combinations of attributes are superkeys

·  “User type” and “Type of material”

· “User type”, “Type of material” and “Loan period

· “User type”, “Type of material”, “Loan period”, and “Total number of items that can be borrowed”

· “Description” and “Type of material”

· “Description”, “Type of material” and “Loan period.

Once the values of any of the above attribute combinations are given, we can always uniquely identify an entity (row) in an entity set (table).

The following attribute combinations are NOT superkeys:

·  “User type” and “Description”

· “Type of material” and “Loan period

because giving the values of any of the above attribute combinations, more than one entity (row) may be identified.

Teaching remarks
· The identification of superkeys for a table must be based on the semantics of the attributes of the table instead of the table content.  In “the “user privilege” table of the XYZ School library example (see Table 2), it appears that giving the values of the “Loan Period” and “Total number of items that can be borrowed”, a unique entity (row) can be identified and thus the two attributes, when combined, can be taken as a superkey.  However this is misleading.  Suppose school alumni are allowed to use the library and they are allowed to borrow up to 3 books for a maximum of 14 days.  This obviously makes the “Loan Period” and “Total number of items that can be borrowed” no longer a superkey as a junior student is also allowed to borrow the same number of books for the same loan period.
· In reality, teachers as well as textbooks often use table contents to explain the concept of key (and normalization, which will be covered later).  Teachers must indicate to students their assumption that the table contents give an exhaustive illustration of the table semantics.
· Minimal superkeys are called candidate keys.  Removal of any attribute in a candidate key will render the remaining attribute(s) no longer a key.  In the “user privilege” table of the XYZ School library example, all of the following combinations of attributes are candidate keys

·  “User type” and “Type of material”

· “Description” and “Type of material”

In the above example, it clearly shows that it is okay for a table to have more than one candidate key.  However multiple candidate keys in a table might imply the existence of transitive dependency in the table.   Transitive dependency is an indicator of poor database design and should be avoided.  The notion of transitive dependency will be introduced when introducing the notion of database normalization”.

Teaching remark
· Like superkeys, the identification of candidate keys for a table must NOT base on the table content, but the semantics of the attributes of the table.  
· A primary key is a candidate key chosen by the database designer as the major means of identifying an entity (row) within an entity set (table). No part of a primary key can be null.  Unlike the candidate key, a table can only have one primary key.

Teaching remark
· Some textbooks in the market may have given an imprecise definition of candidate key and primary key.  In one textbook, a primary key is defined as a field or combination of fields that uniquely and minimally identify a particular record in a table.  According to this definition, it is possible that a table would have more than one primary key but this is obviously incorrect.  The definition given in the book in fact describes a candidate key rather than a primary key.
· Any attribute which is not a part of any candidate key is known as a non-key attribute.  In the XYZ School library example, the loan-period is a non-key attribute.
· A foreign key is either null or not a superkey in its own table but a candidate key in another table.  Suppose we have two tables, namely student-subject and subject which store the subjects that a student has enrolled and the subject description respectively.  The student-subject table records student-ID (a part of the primary key) and subject-ID (another part of the primary key) whereas the subject table stores subject-ID (primary key) and subject-descriptor.  The subject-ID in the student-subject table is a foreign key to the subject table.  
student-subject



    subject
	student-ID
	subject-ID
	
	subject-ID
	subject-descriptor

	200425642
	CS1132
	
	CS1132
	Databases

	200425654
	CS1132
	
	CS1145
	Programming

	200425854
	CS1145
	
	
	




Teaching remarks
· It is wrong to say the subject-ID in the student-subject table is a foreign key.  The notion of foreign key is defined on two tables.
· Many textbooks do not explicitly state that the value of a foreign key can be null.
Indexes

· One or more indexes can be defined for a table for efficient data retrieval. Unlike primary key, an index does not have to be unique.  Whether or not an index is required for a table depends on the application needs.  Inclusion or omission of an index in a table definition may affect the efficiency, but not the functionality, of any data retrieval.

· An index is an implementation structure such that given one or more attribute values, relevant rows can be efficiently retrieved.  It is typically implemented through the use of sophisticated data structures like ISAM and B+ trees.

Common mistakes

· Some people may use the terms “index” and “secondary key” interchangeably but this should be avoided.  Keys are logical concepts whereas indexes are implementation concepts.  In fact, there is no notion of “secondary key” or “index” in relational database theory.
Teaching remarks
· Most relational databases create an index for the primary key of each table for efficient data retrieval. 
· Although indexing can facilitate efficient data retrieval, it should not be overused.  Index creation and maintenance may involve a lot of computations that take time to finish.
Data Integrity
As mentioned before, data integrity is concerned with the validity, accuracy and correctness of data.  In relational database, three type of data integrity are of particular concerns.  They are entity integrity, domain integrity and referential integrity.

Entity Integrity

Entity integrity is a property that ensures that 

1. no rows are duplicated, and 

2. no attributes that make up the primary key have a null value. 

Note that condition 1 must be enforced or a primary key will not be able to uniquely identify an entity (a row) in an entity set (a table). As an example, the “user privilege” table does meet the criteria of entity integrity.
Domain Integrity

Domain integrity is a property that ensures that whenever a new data item is entered into the database, it must be within the domain of the corresponding attribute.  For instance, the enforcement of domain constraint can stop one from entering a value other than “female” or “male” to the sex attribute.  
Referential Integrity

Referential integrity is concerned with the data consistency between coupled tables. In particular, we may want to ensure that an attribute value that appears in one table also appears for a certain set of attributes in another table.  For example, the XYZ School library database may keep one table to store library user personal information like user-ID, user-name, and contact-address, etc. and another table to keep information about loaned books like user-ID, book-call-number, and due date, etc.  The user-ID is the primary key of the library-user-details table whereas the concatenation of user-ID and book-call-number forms the primary key of the loaned-book table.  The user-ID attribute of the loaned-book table is a foregin key to the library-user-details table (as user-ID is not a superkey in the loaned-book table but a candidate key in the library-user-details table).  Obviously, it is important to ensure that any value appeared in the user-ID attribute of the loaned-book table also appears in the user-ID attribute of the library-user-details table.  

In relational databases, referential integrity is typically enforced by defining a referential constraint between a primary key and a foreign key. For referential integrity to hold, any attribute(s) in a table that is declared a foreign key can contain only values from the primary key attribute(s) of the table that the foreign key relationship is referred to. Thus, deleting a row that contains a value referred to by a foreign key in another table would break referential integrity.  In the XYZ School library example, this is equivalent to removing a library user from the library-user-details table without demanding the user to return all books that s/he has borrowed.  More examples about referential integrity can be found here.

It is important to note that a referential constraint may not enable us to avoid errors at the database design level.  The following example illustrates such a problem.  

[image: image4.png]) name =
> ahin

<02 teckly

<03 felix

Record: 1| [ T ln 5



   [image: image5.png]call number | _user ID duedate |~
»[a01 o1] 3/3/2005

204 02 4/4/2005

77 4/5/2005

Record: 14] < T o Dalosof 3




The table on the left stores ID numbers and names of all library users whereas the table on the right keeps all loaned books.  ID and call number are the primary keys of the library user and loan event tables respectively.  user ID in the loan event table is a foreign key to the library user table.  According to the definition of foreign key, it is acceptable to assign a null value to user ID as found in third record of the loan event table.  This obviously does not make sense from a user perspective to allow a book being loaned to an unknown person but the referential constraint setting between the two tables does not stop the assignment of null to user ID.  To avoid the problem, we need to make user ID in the loan event table a mandatory attribute.
row (tuple)





column (attribute)





foreign key to the subject table





433-234813�
45000�
�



345-534733�
28000�
�



232-678098�
12000�
�



232-239850�
3000�
�












Peter�
Tai Wo�
Tai Po�
�






John�
Sha Tsui�
Tsuen Wan�
�






Mary�
Yuen Wo�
Shatin�
�






433-234813�
45000�
�






345-534733�
28000�
�






232-678098�
12000�
�






232-678098�
12000�
�






232-239850�
3000�
�











16
15

