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Abstract 
Variable pricing is one way of improving the profitability of credit cards where the price is the interest rate to be charged. However choosing the appropriate price for each risk grade of default is not straightforward as one of the main problems is adverse selection, when the lender finds that the borrowers who actually take a specific offer have a higher default rate than was expected. We show that modelling the choice of credit card by the borrower as an auction process means that the winner’s curse can lead to adverse selection. By modelling the way lenders use the credit score of a borrower in their pricing decision we are able to show there is a simple relationship between the actual probability of a borrower repaying and what the successful lender believes this probability to be no matter what the distribution of the errors  caused by adverse selection. This allows one to assess the impact on profitability of these errors.
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1. Introduction
Credit cards are the most convenient form of credit for customers (Ayadi 1997, Mandell 1990). Variable rate loans where different borrowers are offered different interest rates depending on risk factors like their credit score have been offered in most major economies but in the credit card market standard rate continued to dominate until the early 1990s. As late as 1990, variable rate credit card companies held less than 
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of the whole market (Stango 2000). However, with the advent of the internet and the telephone as essentially private application channels, there has been an increase in the use of risk based pricing. The impact of the global financial crisis on consumer lending has slowed this increase a little but risk based pricing continues to attract more lenders because of the profitability in developing customised products at customised prices (Grenci and Watts 2007).  However, variable pricing can lead to adverse selection and in this paper we extend the idea that in an auction model of a borrower applying for a credit card the “winner’s curse” can lead to adverse selection. The detailed model we develop shows the impact that adverse selection can have on lender’s expected and actual profit. Such a model and the resulting calculations would be useful in modifying the risk based price to allow for this adverse selection.
With a fixed standard rate charged on the loan, lenders used application scoring to determine the default risk of each applicant. Their overall objective was to minimize the default risk for a portfolio of borrowers of a given size by choosing an appropriate cut-off application score (Thomas 2009). With variable pricing lenders seek to charge a price related to the riskiness of the lenders, so that high risk borrowers are put off by the cost of the loan, or else those high risk borrowers who accept generate more revenue to cover the cost of the increased losses. The risk though is still estimated via a credit score. Phillips (2005) outlines a number of reasons why the same product can be sold at different “prices”. The banks are able to “price” their loan products – i.e. charge different interest rates -by adopting methods such as channel pricing, group pricing, regional pricing, and product versioning. Phillips (2005) also identified the importance of estimating the take probabilities for different prices, i.e. what proportion of the population who are made an offer of a loan at a given price will accept that loan. Meyercord (1994), Sinky and Nash (1993), Sullivan and Worden (1995), Ayadi (1997) and Furletti (2003) have pointed out how technological innovations and market developments have radically changed the credit card industry. Developments in credit scoring, response modelling, and solicitation technologies (e.g. e-mail, direct mail and telemarketing) have helped the credit card issuers to market their products more efficiently, and to increase the size of their portfolios of borrowers (Chakravoriti and To 2006).  

Almost all banks build application scorecards to assess the default risk of applicants using information from the applicants’ application forms and from credit bureau data. The scorecards are developed using classification techniques, such as logistic and linear regression, to relate the data on a sample of previous applicants to their subsequent performance, (Thomas (2009)). However these estimates of the credit risk of applicants are likely to have errors in them because the information they are based on is not accurate. There are various reasons for these inaccuracies such as 1) not all information on the applicant is available to the possible lenders; 2) applicants may not make complete and accurate  declarations of their characteristics; 3) there will be changes in the applicants characteristics over time; or 4) the relationship between default status and application characteristics “ages” as economic conditions change. The lenders, therefore face the adverse selection problem. Adverse selection occurs in a trading situation where one side has information concerning the trade which the other party is not aware of. Adverse selection has already been investigated for many years in the insurance industry where the probability of high risk individuals making purchases of insurance policies is higher than those with lower risk (MacLean 1929).  Akerlof (1970) has given a similar analysis in the second-hand cars market and argued that the impact of adverse selection on product quality could be so severe in the market that poor quality vehicles might drive out good quality vehicles from the market. 

In the consumer lending context, Thomas (2009) points out that adverse selection is important in estimating the interaction between the quality of the applicant and the chance of them taking the loan. There is a literature on adverse selection for fixed rate pricing applied in the consumer credit market. Stieglitz and Weiss (1981) built a competitive equilibrium model, where there is one market price for credit. They suggested that if this interest rate is high there may be adverse selection as it is more costly for borrowers to pay back the loan, and so only risky borrowers will take out the loan. This could lead to rationing in the credit market. Ausubell (1991) suggested an alternative version of adverse selection in the credit card market which might explain why credit card rates remained high when other financial loan rates were lowered ( Stango 2002). He suggested low risk consumers underestimate the likelihood of them borrowing using the credit card compared with high risk customers and so are less susceptible to changes in the interest rate charged. Thus credit card issuers would be discouraged from competing on interest rates because a rate cut would attract a disproportionate percentage of high risk borrowers. An alternative explanation based on imperfect competition was put forward by Calem and Mester ( 1995). In this those who want to acquire more debt have a stronger incentive to switch to a new lender and so there is different type of adverse selection occurring. This latter hypothesis was supported by empirical work (Calem et al 2005) based on the Surveys of Consumer Finance

Marquez (2002) and Hauswald and Marquez (2006) described how proprietary information could cause adverse selection in company lending when banks use fixed rate pricing. Broecker (1990) analysed the problem when banks offer fixed interest rates and there are two types of customers. He argued that the “winner’s curse” means a bank should try to undercut the other banks to get the best customers. As the number of banks increases the chance that an individual bank should make low offers should also decrease.

Ausubel (1999) comes closest to the problem outlined in this paper by investigating the situation with variable rate pricing. That paper describes the outcomes of experiments where credit cards were offered on slightly different terms to customers who were randomly assigned to six different groupings. In one case the differences were in the introductory rate; in another the duration of the introductory rate; and in the third the post introductory interest rate was varied. The analysis confirmed the existence of adverse selection, both between those who accept and reject offers and between those who accept offers of different interest rates. The paper suggested thinking about such adverse selection as an example of the winners curse problem where credit card companies are essentially conducting an auction to solicit the borrower by offering different interest rates. However the paper did not model what errors occur in such an auction. It did not calculate the impact on profitability of these errors, nor how the lenders might compensate for these errors. This paper extends this idea and seeks to address all these issues. Whereas Ausbel’s work (1999) was an empirical study we build two models of how credit scoring is used in the auction approach to  variable pricing solicitation. The credit score, which can be translated into the probability of the borrower not defaulting is the basic risk assessment concept used to decide what interest rate to charge. We show the simple relationships between the probability of non default which the successful lender ascribes to a borrower and the borrower’s true probability of non default  no matter what the distribution of the errors involved in the scoring process. We then build a simple model of the profitability of the loan and show the difference in the expected profitability of a borrower to the lender and the actual profitability of the borrower. This suggests what correction a lender might make to the score they get from their scorecard so as to improve their profitability. 
The other concept that is important in variable pricing is the take rate – the percentage of the customers who will take the loan when it is offered at a particular price. Phillips(2005) discusses this in detail in the credit card context and points out that this take rate may depend not just on the interest rate being offered but also on the credit worthiness of the applicant. The credit score is one way of estimating this credit worthiness. The adverse selection problem affects  the quality of the borrowers who accept the credit card but, through this take function also affects the quantity of the borrowers who accept. In this paper we look at two forms of the take function suggested by Phillips (2005)- one where the take rate is linear in the “price” and the credit worthiness and the other where it is a logistic function of these variables. 

The primary objective of this paper is to model how adverse selection could occur in consumer lending when there is variable pricing of loans and credit cards. In the next section we outline an auction model which is a useful way of thinking about the credit card application process. We develop the model in two cases- the first when the scorecard is developed using linear regression so the score is the probability of a borrower being “Good” and not defaulting, and the second when the score is developed using logistic regression, so the score is a log odds scores with a logit relationship with the probability of the borrower being “Good” . In section three we develop a simple model of variable pricing for the interest rate charged in consumer lending and apply this in the case of linear and logistic take probability functions. We investigate how the expected and actual profitability of the lender using this model is affected by adverse selection. This is shown using numerical examples in section 4, while some conclusions are drawn in the final section, including how the lender might adjust his score to partially allow for the adverse selection problem..

2. Auction Model of Credit card Solicitation

Ausubel (1999) suggested that the auction model is a useful analogy to the credit card application process. When a potential customer decides to open a new credit card account, first they collect information including the “price” - interest rate charged, fees - and the benefits - air miles given and free or discounted related products - on the different accounts. To do this they usually have to fill in their details so that the issuers can produce an application score which estimates the default risk of the applicant. Different issuer will have different score cards, and the resultant scores determine not only whether the issuer will accept that customer but with risk based pricing also the interest rate that will be charged. The applicant then evaluates which offer is best, which is usually the “cheapest” account. So the credit card application process is akin to a sealed bid auction where the customer plays the role of the auctioneer and the credit card issuers are the bidders. 

Consider a simple model where the potential customer applies to
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 credit card issuers. In the “auction”, each lender
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, obtains information on the applicant to obtain an application score 
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 for that applicant. We assume that the probability
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of the applicant being “Good” , and so not defaulting on repaying the loan, is related to the score by 
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 Scores obtained using linear regression have the property 
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. We assume each lender develops their own scorecard on different samples of past borrowers. The variations in samples and the changes in the applicant population over time mean the resultant scorecards will not be the same and none of them are completely accurate representations of the current population. Thus when lender i uses the score 
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from his scorecard to obtain 
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 ,the lender’s probability that the applicant is a ‘Good’, this estimate of the probability is not likely to be completely accurate. Another lender will have a scorecard with different scores for each characteristic and so different overall scores for the same borrower. Assume
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is the score from a perfect scorecard, which accurately represents the probability of the borrower being Good and define the error 
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 as the difference between the true score and the lender i’s score so that 
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if we assume the applicant has a true probability of being good of
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. We also assume that the applicant will choose the credit card offer with the lowest interest rate and that all the firms are using the same risk based pricing approach. This means that each of them has the same relationship 
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 offered and the probability 
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of the applicant being Good. ( This can be weakened somewhat as long as it is the lender with the highest belief 
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about the goodness of the applicant who offers the lowest interest rate). So the applicant will choose the firm whose probability
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 of him being Good is the largest. We thus conclude that the lender who has the most positive error 
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is the one who will “win” the applicant. This is an example of the winner’s curse, in that the lender will have a higher assumed probability of the applicant being a good than is really the case. 

Errors when the scorecard is obtained using linear regression
Consider first the simpler but less usual case when the scorecard is built using linear regression. We obtain the relationship between the successful lender’s perceived probability of an applicant being Good and the true probability of the applicant being Good. Recall  that we assume that lender
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 are independent random variable with distribution function 
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 This could  that a lender’s estimated probability of the borrower being Good is greater than 1, but this can happen in practice when one uses linear regression to build scorecards.  
We assume that 
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 are the probability of being Good and the error of the lender, whose credit card is chosen by the borrower because the lender made the largest positive error and so offered the best interest rate. 

So the distribution of the true probability
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of the applicant accepted by the lender being Good when the lender perceives the applicant’s probability of being good to be
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So the density function of 
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Hence the expected value of 
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Defining
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 the linear relationship in this equation is similar to that discussed in Phillips (2005) and Thomas (2009) where 
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  where it is called the linear probability adverse selection function. If one assumes the error in the probability is a uniform distribution for all lenders which spreads more the higher the rate charged, i.e. 
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The choice of such a distribution follows if one assumes that if lenders increase the interest rate, they are willing to accept applicants with a lower probability of being Good and this will lead to a wider range of errors. Note also that the more lenders,
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, there are in the market, the larger is the winner’s curse, in that the winning lender is more likely to make an even more optimistic error about the applicant’s default risk.

Errors when the scorecard is obtained using logistic regression
Thomas (2009) shows how use logistic regression to build a score card leads to a log odds score where the relationship between the credit score and the probability of being Good is given by
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Again suppose lender i has a scorecard which is not based on the complete and accurate information about all past borrowers and so the resultant score 
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for a borrower is not the same as the true score 
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.and this translates into a relationship between the probabilities of being Good of 
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  Again we assume the applicant will choose the lender who gives the highest score since under risk based pricing this will lead to the offer which the lowest rate required on the credit card. Assume that there are N potential lenders and 
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 the scoring errors made by lender
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 is  independent of the other lenders’ errors and has a distribution function
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[image: image63.wmf]*

p

, and so has error 
[image: image64.wmf]*

e

.
We can follow the calculations of the previous error type to get the following results.
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where we used that log(p/(1-p)) is increasing in p. Since    
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So, for the lender who has taken the applicant assuming his score is 
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In terms of probabilities of being Good this becomes 
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In the case when the score errors are uniformly distributed from 
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which is strongly related to the linear log odds adverse selection function suggested in (Thomas 2009) and (Phillips 2005).

3. Impact of Adverse Selection on Risk-based Pricing

Risk-based pricing means that the interest rate charged on a loan to a potential borrower depends on the lender’s view of the borrower’s default risk or equivalently their probability of being Good. We analyse the impact that the errors, we described in the previous section, will have on the lender’s profitability when risk based pricing is used. We use a model which looks at the profitability of deciding whether to lend one unit to an applicant (see Thomas 2009).

In such a model the lender seeks to maximise the expected profit from lending. Define
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 to be the lender’s estimate of the probability of the borrower being Good given the specific loan with a specific interest rate and define
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In modelling how the lender decides what interest rate,
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, to charge on a loan of one unit to such a borrower, we assume that the risk free rate at which the lender can borrower the money is 
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In order to find the optimal interest rate, we differentiate this equation with respect to
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 and set the derivate to zero, to find when the profit is optimised. This gives a risk based interest rate of
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The reality though is that the lender’s estimate of the probability of the borrower being Good is 
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However, the lender’s estimate of the borrower’s probability of being Good is 
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even though the borrower’s true probability is 
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In fact, the borrower will not live up to this expectation and the actual or true expected profit the lender will get is
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4. Numerical Examples

Consider two examples, the first is where the take function and the adverse selection function are linear in form and the second is where both are logistic in form. Take functions of those two forms were discussed in Phillip (2005). The first has the advantage that it makes the calculations easy to undertake and understand while the second has a S-shape which is more realistic of situations where there are major changes in the take rate around the standard price found in the market  and little change elsewhere. The changes in the profit functions are quite similar for both of these take functions but they do have a significant difference on the form of the pricing functions. In both cases we assume the risk free rate is 
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Linear Relationship Model
For the linear, take probability or response rate function define 
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Then the optimal interest rate is 
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We choose the values of 
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.This implies that a 
[image: image115.wmf]%

1

increase in interest rate drops the take probability by 
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The results of applying these relationships in 
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lead to the results that are shown in Table 1.
Table 1 shows the impact of adverse selection with a linear probability function model. The first column shows the true probabilities of the borrower being Good while the second column shows what the winning lender thinks this probability is. The third and fourth columns show the interest rate that should be charged if the true creditworthiness was known and the interest rate the winning lender will actually charge given his belief. The last three columns are the different profits to the lender. The fifth column gives the actual profit he is likely to get according to the model; the sixth column the optimal profit he could get if he knew the correct creditworthiness of the borrower; while the last column gives the profit he expected to get given his incorrect estimate of the borrower’s creditworthiness and the fact he uses that estimate to find the interest rate to charge. Not only does the lender always expect to have a higher profit than the profit he will actually get he also expects, most of the time, to get more than the optimal profit he could get because he keeps being too optimistic about the quality of the borrower. The lender would keep taking borrowers even if his view of their probability of being Good is as low as 35% because he believes they are still profitable but the reality is that a borrower is not profitably until their probability of being Good is above 50% which translates into the lender thinking their probability of being Good is more than 61%. The differences between the three profit function lessen as the borrowers become lower risk ( the probability of being Good approaches 1). Obviously the interest rates charged lessen as the quality of the borrowers improve and the differences between the rates also lessen.

Table 1 Results of a linear probability adverse selection function.
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	-0.2849
	0
	0
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	0.53
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	0.68
	-0.0535
	0.0002
	0.02565

	0.50
	0.61
	0.72
	0.58
	-0.0054
	0.01877
	0.0468

	0.60
	0.69
	0.59
	0.49
	0.03189
	0.04487
	0.0659

	0.70
	0.77
	0.49
	0.42
	0.05987
	0.06749
	0.08079

	0.80
	0.86
	0.39
	0.35
	0.08085
	0.08525
	0.09144

	0.90
	0.95
	0.31
	0.28
	0.09163
	0.0942
	0.0955

	0.94
	0.98
	0.29
	0.26
	0.09317
	0.09531
	0.09546

	0.95
	0.99
	0.28
	0.25
	0.09348
	0.09548
	0.0953

	0.96
	1.00
	0.27
	0.25
	0.09368
	0.09556
	0.09506


The results on the profits can be seen graphically in Figure 1.  The expected profit the lender thinks he will make out of a borrower is higher than the actual profit he makes and in fact is higher than the optimal profit he can make on such borrower. This is because he is too optimistic about the quality of the borrower. As the borrower’s credit worthiness increases the difference between the three curves narrows Note that the lender thinks he can make a profit provided that the  borrower has a probability of around 0.2 of being Good. The reality is that he cannot make a profit until the borrower’s probability of being Good is at least 0.4 and because of his errors which affect the interest rate he charges the lender does not actually make a profit until the borrower’s probability of being Good is over 0.5

.
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Fig.1 Plot of results of a linear model
Logistic Model

The logistic risk-based response function or take rate is 
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In this case the maximum willingness to pay occurs when 
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. This implies the riskier the borrower is, the higher the rate they are willing to pay. The optimal interest rate in this case is
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Using the cost structure of the previous case with risk-free rate being 0.05 and the loss given default 
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 being 0.5, we assume the parameters for the logistic response rate function are 
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 Thus for applicants whose probability of being Good is 0.99 (default rate of 
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We take the values 
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Applying the relationships in 
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gives the results in Table 2 and Fig.2.
Table 2 Results of a linear log odds probability adverse selection.
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	0.2
	0.69
	2.28
	0.55
	-0.3400
	0.0000
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	0.3
	0.74
	1.36
	0.47
	-0.2565
	0.0001
	0.1472

	0.4
	0.78
	1.01
	0.41
	-0.1798
	0.0496
	0.1388

	0.5
	0.81
	0.86
	0.37
	-0.1205
	0.1040
	0.1300

	0.6
	0.84
	0.71
	0.33
	-0.0639
	0.1401
	0.1191

	0.7
	0.88
	0.51
	0.27
	0.0002
	0.1505
	0.1016

	0.8
	0.91
	0.38
	0.23
	0.0355
	0.1328
	0.0866

	0.9
	0.95
	0.24
	0.18
	0.0603
	0.0901
	0.0650

	0.95
	0.97
	0.18
	0.15
	0.0586
	0.0672
	0.0539

	0.98
	0.99
	0.14
	0.13
	0.0461
	0.0467
	0.0431

	1
	1
	0.12
	0.12
	0.0378
	0.0378
	0.0378


The results of Table 2 are somewhat different to those of Table 1. Again for most borrowers the profit that the lender expects is higher than the profit that actually occurs, and this difference is considerable for the high risk borrowers. However for very good borrowers ( p=0.95 for example) the expected profit is below the true profit. This is because the lender thinks these borrowers are better than they are and so has to offer them a lower interest rate to attract them. This means that the chance of the borrower actually taking the offer at this rate  ( 0.90 compared with 0.68 that the lender expected ) more than compensates for the fact they are more likely to default than the lender was expecting. The optimal profit is always better than the actual profit the lender receives but for high risk customers the expected profit is higher than the optimal possible profit. For low risk customers though what the lender expects is below what he would get if he knew correctly the credit worthiness of the borrower. For high risk borrowers ( relatively low p) the differences between the rate one should charge knowing the correct creditworthiness of the borrower and the rate the lender charges because of the adverse selection error is considerable – much more than in the linear case. The lender is this case thinks almost all borrowers are profitable whereas in fact that is only the case if they true probability of being Good is 0.2. Because of the errors in the scorecard in fact he should only start taking borrowers when his belief that they are Good is 0.88. This is a very large difference in whom to take.
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Fig.2 Plot of results of a linear log odds probability adverse selection
Figure 2 shows the differences in the expected profits graphically. The lender expects to make a profit from almost everyone whereas one really only makes a profit when the Probability of being Good is 0.2, and should not lend below that case. Because of the adverse selection errors are affecting the interest rate he charges the lender in reality only starts to obtain profits when the probabilities of the customer being Good reaches 0.7. It is also interesting to see that after this point the 
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 curves decrease relatively rapidly. Unlike in the linear case where the optimal profits and expected profits continue to grow as the riskiness of the customers drop, here they start to fall once 
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 This is because the rate one needs to offer to attract such good customers is dropping so quickly that the profit from each customer is also dropping. This is a more realistic situation, in that the lender is making more profit from the risker borrowers than from the almost risk free ones. However, it is again the case that the difference between expected and actual profit is large especially for risky borrowers.
5. Conclusions

In the last few years, variable pricing has become more common in consumer lending. It is surprising that it has taken so long to become established since it has long been the situation in the consumer insurance industry and in transport and hotels.  However, variable pricing does mean adverse selection can occur, as lenders do not have the full information about the riskiness of the proposed borrowers. In this paper, we show how modelling the way a borrower selects a loan as an auction, means that winner’s curse leads to adverse selection. We show that the relationships between the actual default risk of a borrower and the lender’s perceived view of this risk are very simple ones, whatever the distribution of the errors in the lender’s scorecard. By building a simple model of the profit a lender makes from a loan, we are able to examine the effect of these adverse selection errors. This shows that though the profit the lender expects to make is close to the optimal possible profit, the actual profit could be considerable less, particularly for risky borrowers.
One way out of this dilemma is for the lender to allow for the fact that he will misrepresent the risk of the borrower, when calculating the optimal rate to charge. However this is like recognising that the application scorecard is ‘wrong’ and applying an adjustment to it. It is more likely the lender will seek to build a new scorecard to reflect the riskiness of the borrowers who actually takes the loan. The difficultly with this is that the population who take the loan depend critically on the variable rates being offered, and one of the strengths of variable pricing is that one can vary the rates to respond to charges in the market. Thus the population who take the loan is constantly changing. However the simplicity of the relationship between the successful lender’s perceived probability of the borrower being Good and the expected true probability of the borrower being Good suggests that applying the transformation 
[image: image176.wmf]*

*

pppkr

®=-

%

is a feasible approach. Applying this adjustment before substituting in the pricing formula will  improve the profitability of the borrowers, particularly the high risk ones.
Variable pricing on consumer lending is here to stay. This paper shows that choosing the appropriate price for a loan is not as straightforward as it may seem – even if one has enough data to build robust take probability functions.
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Fig.1 Plot of results of a linear model.

Fig.2 Plot of results of a linear log odds probability adverse selection.
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