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Abstract
Much work has already been done on building named entity recognition systems. However most of this work has been concentrated on English and other European languages. Hence, building a named entity recognition (NER) system for South Asian Languages (SAL) is still an open problem because they exhibit characteristics different from English. This paper makes builds a named entity recognizer which also identifies nested name entities for the Hindi language using machine learning algorithm, trained on an annotated corpus. However, the algorithm is designed in such a manner that it can easily be ported to other South Asian Languages provided the necessary NLP tools like POS tagger and chunker are available for that language. I compare results of Hindi data with English data of CONLL shared task of 2003.

1 Introduction
Identifying and classifying named-entities into person, location, organization or other names in a text is an important task for numerous applications.
I focus here on building a named entity recognition system that will automatically mark the boundaries and labels of the named entities (NEs) in running text. The system also identifies nested named entities which are a superset of the maximal entities. E.g. “Lal Bahadur Shastri National Academy of Administration” is an organization name and is referred as maximal entity. However it also contains “Lal Bahadur Shastri” as a person name present inside an organization name and which is referred as a part of nested entity along with “Lal Bahadur Shastri National Academy of Administration” as an organization name.
To make the problem simpler, I split the problem into three sub tasks. The first (NER module) of which identifies whether an entity is a NE or not; the second (NEC module) identifies the type of label associated with each entity; the third (NNE module) identifies the nested name entities (NNE). Labels considered for this task are: person, organization and location names, measure, time, number, domain specific terms, abbreviation, title and designation.
Conditional random fields (CRFs) (Lafferty et al. 2001) with a variety of novel and traditional features have been used as a classifier for above three modules. CRFs are undirected graphical models, a special case of which is linear chains which are well suited to sequence labeling tasks. They have shown to be useful in part of speech tagging (Lafferty et al. 2001), shallow parsing (Sha and Pereira 2003), and named entity recognition for Hindi newswire data (Li and McCallum 2003).

2 Related Work
Named Entity Recognition (NER) has been considered as subtask of Information Extraction. Different NER systems were evaluated as a part of the Sixth Message Understanding Conference in 1995 (MUC6). The target language was English. Palmer and Day (1997) have worked on Chinese, English, French, Japanese, Portuguese and Spanish and found that the difficulty of the NER task was different for the six languages but that a large part of the task could be performed with simple methods. Cucerzan et al. (1999) used both morphological and contextual clues for identifying named entities in English, Greek, Hindi, Rumanian and Turkish. With minimal supervision, they obtained overall F measures between 40 and 70, depending on the languages used. Collins (1999) showed that use of unlabelled data for NER can reduce the requirements for supervision to just 7 simple seed rules. The CoNLL shared task of 2002 and 2003 focused on language independent NER and has performed evaluations on English, Spanish, Dutch and German and participating systems have performed well. Li and McCallum (2003) used CRFs and feature induction (McCallum 2003) to get an F-score of 71.50 for Hindi language on test-set. May et al. (2003) used HMM to create NER for Hindi and Cebuano. Ekbal et al. (2007) used lexical pattern learning from corpus data for NER for Bangla language. 
3 My Contributions 
I focus here on building a NER system for the Hindi language using conditional random fields (CRFs) using NLPAI Machine Learning Contest 2007 data. The system is built in such a manner that it could be easily ported to other languages. This method was evaluated on test set 1 and test set 2 and attains a maximal F1 measure around 49.2 and nested F1 measure around 50.1 for test-set 1; maximal F1 measure around 44.97 and nested F1 measure 43.70 around  for test-set 2. However the system achieves an F-measure of 58.85 on development set. The great difference in the numbers could be due to some difference in test and development set. I have also compared my results on Hindi data with English data of CONLL shared task of 2003 by introducing interesting phenomena which are not present in English. I perform experiments on English after removing capitalization since . Also there is another interesting phenomenon in Hindi or any other SAL i.e. a word can be a common noun as well as a proper noun. For example “sambhab sinha” is a name of a person but when I use ‘sambhab’ in a sentence “yaha kaam mujse sambhab nahi” It acts as a common noun meaning ‘possible’ in English. Hindi is full of such cases making the task more difficult. Hence it becomes very difficult for NER system to classify it as person or not. 
4 Features

The success of any machine learning algorithm depends on finding an appropriate combination of features.  This section outlines three types of features.

4.1 Contextual features

· Word Window: A word window of size n centered in position iw is the sequence of words in the sentence placed at   iw + jw positions, with jw є [-n , +n]. For each word in the window, word and it’s POS + its relative position jw forms a feature

· Chunk window: A chunk window of context size n centered in position ic is the sequence of chunks in the sentence placed ic + jc positions, with jc є [-n , +n]. The tags (labels) of the chunks in the window + its relative position jc form a feature. 
4.2 Statistical features
· Binary features: As name suggests these features have value 0 or 1. These features are not mutually exclusive features that test whether the following predicates hold in the word: all digits, 4 digit number, contains hyphen, punctuation mark, acronym, alphanumeric etc. I also modeled whether a particular word is a noun or not using the POS information.
· Trigger words: Using the annotated training data I find all those words which have a high probability of being a number, measure, abbreviation and time. I model 4 binary features giving value 1 to high probable words and 0 to the rest. For example, high probable words for number would be “eka”, “xo”, “wIna”, “cAra” etc. (words here are in wx-notation) and will get a value as 1.
4.3 Word Internal Feature
· Affixes: Some prefixes and suffixes are good indicators for identifying certain classes of entities.  Suffixes are typically even more informative. For example, suffixes like -bad , -pur, -pally are good indicators of a name of a location.

· Words are also assigned a generalized ‘word class (WC)’ similar to Collins (2002), which replaces all letters with ‘a’, digits with ‘0’, punctuation marks with ‘p’, and other characters with ‘-’. There is a similar ‘brief class (BWC) (Settles 2004)’ which collapses consecutive characters into one. Thus the words “D.D.T.” and “AB-1946” would both be given the features WC=apapap, BWC=apapap and WC=aap0000, BWC=ap0 respectively, in above example hyphen forms the part of punctuation marks.  This feature has been modeled since this feature can be useful for both unseen words as well as solving the data sparsity problem.

· Stem of the Word was also obtained using a morph analyzer.
We have tried to use the different combination of all these features for all three modules which I am going to discuss in the next section. But before ending there are few features which I haven’t used and would like to use in future. Bag of words i.e. form of the words in the window without considering their position. Gazetteer Features can also be useful. These features couldn’t be used due to computational reasons, lack of resources and time.
5 Modules

5.1 NER module

This module identifies whether an entity is a NE or not. I use well-known BIO model. B denotes begin of an entity, I denotes inside an entity; O denotes outside and is not part of any entity. Here I have only one label i.e. NE. Hence it becomes a three class problem with B-NE, I-NE and O as output labels. Here I am identifying NEs as it’s an easier task as compare to classifying them among named-entity tag-set. It is also done with a hope that this information can be useful for NEC module. For example in entity like “Raja Ram Mohun Roy” tags would be “Raja/B-NE Ram/I-NE Mohun/I-NE Roy/I-NE.” Similarly for “Microsoft Corp.” tags would be “Microsoft/B-NE Corp./I-NE.” Words like “tiger”, “eat”, “happy” etc which are not NEs are tagged as O.
5.2 NEC module
Here I try to classify the NEs among various classes/labels like person (like Mahatma Gandhi), location(like Delhi) and organization(like Microsoft Corp.) names, number (like one, two etc), time (like one day), measure (like 5 kg), domain specific terms (Botany, zoology etc), title (Mr., The Seven Year Itch), abbreviation (D.D.T.) and designation (Emperor). Hence it becomes a 10 (labels/classes) * 2(B+I) = 20 + 1 (O which denotes remaining words) =21 class problem. This module is independent from the previous module. For example in entity like “Raja Ram Mohun Roy” tags would be “Raja/B-NEP Ram/I-NEP Mohun/I-NEP Roy/I-NEP.” Similarly for “Microsoft Corp.” tags would be “Microsoft/B-NEO Corp./I-NEO.”
I could have tried labeling the identified named-entities from NER However; I found that this results in a drop in accuracy. Hence I use the output of the NER module as one of the features for NEC.
5.3 NNE module

The length of nested named entities is unbounded but the majority contains at most 3 words. Therefore, I try to train three classifiers to learn entities of length 1, 2 and 3 independently. This allows us to learn nested entities since the bigger entities can have different tags when compared to smaller entities. For example, Srinivas Bangalore will be tagged as a name of a person by a classifier who is trained to classify NEs of length 2. However, Srinivas and Bangalore will be tagged as a name of a person and location respectively by a classifier which is trained to classify entities of length 1. 
In this module also I use the same BIO model and there will be 21 classes for each of the three classifiers.
6 Experiments and Discussion
In this section I describe the experiments I performed to evaluate presented algorithm with its variations.

NLPAI 2007 NER contest Corpus, I was provided annotated training and development data comprising of 19825 and 4812 sentences respectively for Hindi. The data is labeled with 10 labels described above in NEC module. The average sentence length of the corpus is 24.5. The first step was to enrich the data with POS, chunk information and root of the word using POS tagger, Chunker (Avinesh et al. 2007) and IIIT-Hyderabad morph analyzer. Hence porting this algorithm to any other SAL would require these tools for that language.
In the training data, in about 50% sentences (i.e.10524 sentences) there was not even a single NE. Experimentally I found that the inclusion or exclusion of these sentences did not have a significant effect on system performance. Hence I carried all the remaining experiments with sentences containing NEs. The reason for choosing it is it takes less time to train and more experiments could be performed given the time constraints.

Then I tried to find an appropriate set of features for NER and NEC module. For NNE I used the same features as used in NEC module since I don’t have explicitly labeled data for nested entities. Tweaking and tuning of feature doesn’t affect the accuracy significantly. 

For NER module, where I am trying to identify name entities; context information seems to be more informative than statistical features. I use a window of -1 to +1 for words, -2 to +2 POS and also use features which are combinations of consecutive POS tags and words. For example Ram/NNP eat/VB mangoes/NNS. Combination features for word ‘eat’ would be NNP/VB, VB/NNS, Ram/eat, eat/mangoes, NNP/VB/NNS, Ram/eat/mangoes. The stem of the word and chunk information also doesn’t affect the accuracy. The prefixes and suffixes of length 3 and 4 are found to improve the accuracy of the classifier. For example Hyderabad will have Hyd, Hyde, bad, abad as prefixes and suffixes of length 3 and 4 respectively. The word class (WC) and Brief word class (BWC) features are also very useful features for recognizing named-entities. I have achieved an F-measure of 64.28 by combination of all these features for identifying name-entities on development set. Table 1 shows the detailed results of named entity recognition (NER) module.
For NEC module, the contextual features as well as statistical features are helpful in deciding to which class a name-entity belongs. I use word and POS window of -1 to +1 as context. No combination features are being used as introduction of such features degrades the accuracy rather than improving it. However the statistical features are found to
	Features
	 Precision
	 Recall
	 F-measure

	Contextual
	64.19
	60.53
	62.31

	Contextual+

Word Internal
	64.84
	63.73
	64.28


Table1: Detailed performance of NER module using only contextual features and combining word internal features.
	    Entity
	Precision
	Recall
	F-measure

	Abbreviation
	43.21 
	36.46
	39.55

	Designation
	69.61
	46.84
	56.00

	Location
	67.51
	63.08
	65.22

	Measure
	73.98
	72.84
	73.41

	Number
	70.41
	87.74
	78.13

	organization
	49.71
	39.73
	44.16

	Person
	61.18
	47.37
	53.40

	Title
	31.82
	14.00
	19.44

	Terms
	30.81
	16.72
	21.67

	Time
	67.30
	58.53
	62.61

	Overall
	62.60
	55.52
	58.85


Table2: Detailed performance of the best feature set on development set for maximal/nested named entities.
be more useful in this case as compared to NER. Here also prefixes and suffixes of length 3 and 4 are found to be useful. BWC feature alone is sufficient for classification, we don’t need to use WC feature for improving the accuracy. Chunk information and stem of the word doesn’t improve the accuracy.
I have modeled NER module so that the output of that module can be used as feature for NEC. But using it as a feature doesn’t improve the classification accuracy. Also, I tried using the boundary information from the NER module and combining it with labels learned from NEC module. It also seems to be a futile attempt.
I have used unlabelled data i.e. 24630 sentences provided during the contest and used bootstrapping to make use of it. I have doubled the data i.e. 50% manually annotated data and rest is system output on unlabelled data i.e. 12323 sentences; we have used only those sentences which contains at least one NE. With this data I almost get the same accuracy as I got with only manually annotated data. Table 2 shows the detailed performance of the best feature set on development set for maximal/nested named entities using evaluation script of CONLL shared task of 2003. I have used the evaluation script of NLPAI contest to report results on Test set-1 and Test set-2 (which contains 1091 and 744 sentences) for two systems in Table 3 and 4. One trained using only annotated data and the other trained on annotated and bootstrapped data for the same feature set which performed best on development set. For test-set 2, system trained using annotated and bootstrapped data performs better than the system trained using only annotated data. However, for test set1 both the systems perform almost same. One of the reasons for less results as compared to development set is I haven’t further classified title tag into title object and title person tag and Test sets contain many such instances.
I have trained a single classifier for all the entities but we can use more classifiers and divide the tags in such a fashion that those which are closer to one another fall in one group. For example we can club number, time and measure in one group and call them as number group since these are closer to each other and train a classifier to automatically annotate these entities in running text. Similarly, we can group person, number, and location and call them as name group. I have attempted a similar experiment using the same features of NEC module for number and name group but still there is no improvement. 
For NNE module, I have used the same set of features which I have used in NEC module and I am handling nested entities up to length of 3. Since the development set is not enriched with nested entities, it is difficult to optimize the features for this module and the results would be same as NER module since nested entities are superset of maximal entities. For Test set-1 and Test set-2 Table 3 and 4 are used to report results.
For NEs like title there are fewer instances in training data which is a reason for its low F-measure i.e. 19.44 on development set which is even less than terms (i.e. 21.67) which are most difficult to learn. Also here I have focused on a large tag set but it would be interesting to concentrate only on person, location and organization names, since most of the systems report accuracy for these entities. Hence I did some experiments with Hindi data concentrating only on person, location and Organization but there is not so much increase in the performance.  
	    Entity
	Test set1
	Test set 2

	Maximal Precision
	70.78
	55.24

	Maximal 
Recall
	37.69
	35.75

	Maximal   

F-Measure
	49.19
	43.41

	Nested 

Precision
	74.28
	58.62

	Nested 

Recall
	37.73
	33.07

	Nested 

F-Measure
	50.04
	42.29


Table3: System trained using only annotated data

	    Entity
	Test set1
	Test set 2

	Maximal Precision
	70.28
	57.60

	Maximal 
Recall
	37.62
	36.88

	Maximal   

F-Measure
	49.00
	44.97

	Nested 

Precision
	73.90
	60.98

	Nested 

Recall
	37.93
	34.05

	Nested 

F-Measure
	50.13
	43.70


Table 4: System trained using annotated and bootstrapped data

When I trained my system on English data (which I have made mono case) of Conll-2003 shared task, with only contextual features, system gets an overall F-measure of 84.09 on development set and 75.81 on test set which is far better than Hindi. I have just used contextual features with window size of -1 to +1 for words, POS and chunk to achieve the results reported in Table 5 for test set. The reason for using only contextual information is that these features give the maximum accuracy and the rest of the features don’t increase the accuracy by such a great amount. Also the aim over here is to compare results with Hindi language and not to make the best NER system for English language.
	    Entity
	Precision
	Recall
	F-measure

	Person
	82.05
	79.16
	80.58

	Location
	84.16
	79.32
	81.67  

	Organization
	70.76
	67.01
	68.83  

	Misc.
	73.71
	61.11
	66.82  

	Overall
	78.40
	73.39
	75.81


Table 5: System trained on English mono case data using contextual features

Also to include common noun phenomena in English I have taken 10 random person names from the data and replaced them with common nouns and the results are really surprising. By introducing this, system achieves an F-measure of 84.32 on development set and 76.19 on test set which is better than the results on normal system. The number of tokens corresponding to these names in training data is 500. Table 6 contains the detailed results.

	    Entity
	Precision
	Recall
	F-measure

	Person
	81.92
	79.84
	80.86

	Location
	84.18
	80.10
	82.09

	Organization
	71.98
	67.13
	69.47

	Misc.
	73.04
	60.97
	66.46

	Overall
	78.71
	73.83
	76.19


Table 6: System trained on English mono case data with common noun phenomena using contextual features 

The results for English are far better than Hindi language. The reason is English already has tools like POS tagger and chunker which achieves an F measure around 95 whereas for Hindi we only have an F-measure of 85 for tagger and 80 for chunker. This is the reason why the accuracy of English system didn’t fall when I removed capitalization and introduced common noun phenomena since POS context and chunk context helps a lot. Since CONLL 2003 data is already POS tagged and chunked, hence POS and chunks correspond to capitalized data. To make it more even, I ran Stanford POS tagger (Toutanova et al. 2003) on the same mono case CONLL 2003 data and then train the model using only word and POS context. The numbers drop on test set by more than 15% as shown in Table 7. For development set the overall F-measure is around 74%.
	    Entity
	Precision
	Recall
	F-measure

	Person
	66.97
	53.93
	59.75

	Location
	68.57
	56.54
	61.98  

	Organization
	71.64
	53.55
	61.29  

	Misc.
	74.71
	55.98
	64.01  

	Overall
	69.69
	54.84
	61.38


Table7: System trained on POS tagger ran on mono-case data 

These numbers are comparable to Hindi data. The reason is POS tagger performs badly after removing capitalization. Now the POS tagged data marks proper noun i.e. NNP as common noun i.e. NN or foreign word as FW. The reason is it uses capitalization to mark NNP tag. We still haven’t included common noun phenomena. So to do that, I take the common noun phenomenon English data and train the model using the same features as used above. Here also the system performs in the same way. There is just a decrease of 1% in F-measure of person class. Table 8 contains the detailed results. The introduction of common noun phenomena doesn’t seem to affect the performance too much. The reason can be context helps in disambiguating between the real ‘cheese’ and the ‘cheese’ which has been made up by replacing it with ‘John’.  
	    Entity
	Precision
	Recall
	F-measure

	Person
	65.48
	53.37
	58.81

	Location
	68.23
	56.18
	61.62

	Organization
	73.95
	53.01
	61.75

	Misc.
	74.81
	56.27
	64.23

	Overall
	69.74
	54.45
	61.16


Table8: System trained on POS tagger ran on mono case data which contains common noun phenomenon
After looking at these results, we can easily say that if we can improve the performance of POS tagger, we can do very well on the NER task. Without that it’s even difficult for English to give good numbers. It is correct that Hindi and SAL don’t have capitalization but we could make use of morphological features since most of SAL are morphologically rich. A hybrid approach involving rules along with machine learning approach could help us to improve POS tagger and NER systems.
After seeing results on English we ask what are the actual reasons for lower numbers on Hindi data?  Inconsistency of annotated data is one of the big problems but it’s very difficult to create 100% correct manual data since we have chosen a finely grained tagset. Also the data used for Hindi is from different domains. Hence due to which the lot of terms doesn’t occur in corpus more than once. One of the plausible reasons for bad results on test set for Hindi compared to development set could be difference in domain of test set. Also due to lack of resources like gazetteer for SAL the task becomes more challenging to create everything from scratch. Also the accuracy of tagger, chunker and morph analyzer are not as good as when we compare results with English. 
7 Conclusion
In conclusion, I have confirmed that use of machine learning algorithm on annotated data for Hindi language can be useful and the same algorithm can be useful for other languages. I only need to tune and tweak the features for a particular language. I have described some traditional and novel features for Hindi language. I have also shown that it’s better to directly classify name-entities into various labels or classes rather than first recognizing them. Also the attempt to make use of unlabelled data didn’t help much. 
Also I have showed that capitalization is one of the important clues for high performance of English on various NLP applications. But we could also recognize some other important clues in SAL and can hope to do better than English without having capitalization.
Directions for future work include concentrating on a smaller tag set and trying to improve accuracy for each of the label. Since still we don’t have enough labeled data for other SAL, it would be interesting to try out some unsupervised or semi-supervised approaches. Also I haven’t tried rule based approach which could be very handy when combined with some machine learning approach. Hence adopting a hybrid approach should help in improving the accuracy of the system but still it’s an open question.  
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