ORACLE TEACHING NOTES (PART II)

PL/SQL Topic 0. PL/SQL Environment

(SQL: Structured Query Language, or Fourth Generation Language (4GL)

- “script” language

- Data Definition Language: creating table structures

- Data Manipulation Language (DML): insert, update, delete data

- Query: select...

- Transaction Control: commit, rollback
(Third Generation Language (3GL), or procedural program, such as Pascal, COBOL, Ada, Basic

- Step by step procedures

- Control structure, such as IF...THEN and LOOP...
(PL/SQL: An Oracle product, stands for Procedural Language/SQL, similar to the role of Visual Basic to Microsoft products.

• Stored procedures and packages

(The three sections in a PL/SQL block: Declaration, Executable, and Exception

(A typical PL/SQL program looks like this:

declare

declaration section

begin

executable section

exception

exception section

end;

/

(Only executable section is required.

(PL/SQL commands are NOT case sensitive. Note: For character strings, an ‘A’ is different from an ‘a’.

(Flow of Control

- A block is run as a whole

Debugging

A typical error message looks like this:

DECLARE

*

ERROR at line 1:

ORA-06550: line 6, column 2:

PLS-00201: identifier 'VSTUDENTMAJAR' must be declared

ORA-06550: line 6, column 2:

PL/SQL: Statement ignored

Line 6: the sixth line from the word declare, including comments lines, but not including blank lines.

Column 2: The second character from the left, including spaces. [tab] is considered one space.

Write a Program with Output on Screen

set serveroutput on

....

dbms_output.put (‘Hello’);

dbms_output.put (‘World’);

dbms_output.put_line (‘Hello World’);

dbms_output.put_line (‘Hello!’ || vSname || ‘How are you?’);

Write your first PL/SQL program

Open the text editor, and write the following program:

set serveroutput on

begin

dbms_output.put_line ('Hello World!');

end;

/

Run it in SQL*Plus, and you will see the following feedback:

SQL> start a:pl1

Hello World!

PL/SQL procedure successfully completed.

Problems: it is not stored in the server

Write your first Stored Procedure

Block Structure

(PL/SQL commands only work within PL/SQL blocks (such as dbms_output.put.line, IF...THEN, LOOP, etc.)

(SQL*Plus Commands only work outside of PL/SQL blocks, such as prompt, accept, etc.)

(SQL DDL only works outside of PL/SQL blocks.

(DML’s work both in and out of the PL/SQL blocks, such as insert, update, delete, and select...into. (Note: not select..., but select...into.)

(You can have nested block structure. (that is, one block within another.)

(How to judge if the block structures are “legal”? Look for / and check backwards!

Program:
Execution:

	/* CASE 1. Test of Program Block */

prompt before Block 1

begin

dbms_output.put_line ('in Block 1');

end;

/

prompt betweem block 1 and 2

begin

dbms_output.put_line ('in Block 2');

end;

/

	SQL> start a:29.sql

before Block 1

in Block 1

PL/SQL procedure successfully completed.

betweem block 1 and 2

Input truncated to 1 characters

in Block 2

PL/SQL procedure successfully completed.

	/* CASE 2. Test of Program Block */

prompt before Block 1

begin

dbms_output.put_line ('in Block 1');

end;

begin

dbms_output.put_line ('in Block 2');

end;

/
	SQL> start a:29.sql
before Block 1

Input truncated to 1 characters

begin

*

ERROR at line 1:

ORA-06550: line 4, column 1:

PLS-00103: Encountered the symbol "BEGIN"

ORA-06550: line 7, column 0:

PLS-00103: Encountered the symbol ";" when expecting one of the following:

function package pragma procedure form

	/* CASE 3. Test of Program Block */

prompt before Block 1

begin

begin

dbms_output.put_line ('in Block 1');

end;

begin

dbms_output.put_line ('in Block 2');

end;

end;

/
	SQL> start a:29.sql
before Block 1

Input truncated to 1 characters

in Block 1

in Block 2

PL/SQL procedure successfully completed.

	/* CASE 4. Test of Program Block */

prompt before Block 1

begin

begin

dbms_output.put_line ('in Block 1');

end;

prompt between Block 1 and 2

begin

dbms_output.put_line ('in Block 2');

end;

end;

/
	SQL> start a:29.sql
before Block 1

Input truncated to 1 characters

begin

*

ERROR at line 1:

ORA-06550: line 5, column 8:

PLS-00103: Encountered the symbol "BETWEEN" when expecting one of the following:

:= . (@ % ;

	/* CASE 5. Test of Program Block */

prompt A

begin

begin

dbms_output.put_line (‘B');

begin

dbms_output.put_line ('C');

end;

dbms_output.put_line (‘D’);

end;

end;

/
	SQL> start a:29.sql
?

	/* CASE 6. Test of Program Block */

prompt A

dbms_output.put_line (‘B’);

begin

begin

dbms_output.put_line (‘C');

begin

dbms_output.put_line ('C');

end;

end;

end;

/
	SQL> start a:29.sql
?

S (Student)

	SNUM
	SNAME
	STANDING
	GPA

	111

222

333
	Andy

Betty

Cindy
	4

2

3
	

C (Course)
	CNUM
	CTITLE
	CRHR
	STANDING
	CAPACITY

	240

301

380
	Intro to MIS

Statistics

Database
	3

3

3
	2

3

3
	5

5

3

E (Enroll)
	S#
	C#
	GRADE

	111

333

.....
	240

240

.....
	A

B

....

PL/SQL Topic 1. Declaration

(You “declare” variables to be used in the program in this section.

(Variable names are NOT case sensitive. The maximum length for a variable name is 30 characters. You can use letters, dollar signs, underscores, and number signs in a variable name. A variable name must start with a letter.

(A variable must be “declared” at first. Use the declare key word to declare variables.

(Variable Name

Name something meaningful. Starting with a v (my habit, at least)

vStudentName

vCustomerAmount

vLoopIndex1

(The syntax of declaring is

variable_name type;

variable_name type :=value;

vabiable_name type default value;

variable_name constant type :=value;

Example:

declare

vEmpLastname char(30);

vEmpSalary number(7,2);

vBaseSalary number(7,2) := 12000;

vBaseSalary number(7,2) default 12000;

vBoss char(30) := ‘Sophie’;

vPi number constant number := 3.14159;

Variable Type

number

number(n)

number(n,d)

n: number of digits in the value,

d: number of digits allowed to the right of the decimal point

binary_integer

integer

integer(n)

varchar2(n)

- varchar2 without any length is not allowed

char

char(n)

- char without any length means char(1)

date

%type

- You can declare a variable to be the same data definition as a column in a table

vStudentName student.name%type;

- You can declare a variable to be the same data definition as another variable in the declare section

vCustomerNumber char(9);

vAnotherCustomerNumber vCustomerNumber%type;

boolean

declare

vCreditCheck boolean := true;

begin

IF vCreditCheck = false

THEN

Value from User Input

accept amount prompt ‘Please Enter Amount: ‘;

accept cname prompt ‘Please Enter NameL ‘;

declare

vCustomerAmount integer := &amount;

vCustomerName char(10) := ‘&cname’;

...

(Matching data type

/* Program 30. Test Numeric Data type between SQL*Plus and PL/SQL variables */

accept ANumber prompt 'Please Enter a Number: ';

declare

vInteger integer := &ANumber;

vNumber number := &ANumber;

vNumber42 number(4,2) := &ANumber;

begin

dbms_output.put_line ('vInteger = '||vInteger);

dbms_output.put_line ('vNumber = '||vNumber);

dbms_output.put_line ('vNumber42 = '||vNumber42);

end;

/

SQL> start a:30.sql
Please Enter a Number: 1.23456
vInteger = 1

vNumber = 1.23456

vNumber42 = 1.23

PL/SQL procedure successfully completed.

SQL> start a:30.sql
Please Enter a Number: 123.456
declare

*

ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error

ORA-06512: at line 4

/* Program 31. Test Character Data Type between SQL*Plus and PL/SQL variables */

accept AText prompt 'Please Enter a set of characters: ';

declare

vChar5 char(5) := '&AText';

begin

dbms_output.put_line ('vChar5 = '||vChar5);

end;

/

SQL> start a:31.sql
Please Enter a set of characters: jjj
Input truncated to 1 characters

vChar5 = jjj

PL/SQL procedure successfully completed.

SQL> start a:31.sql
Please Enter a set of characters: jjjjjj
Input truncated to 1 characters

declare

*

ERROR at line 1:

ORA-06502: PL/SQL: numeric or value error

ORA-06512: at line 2

Exercise 1.1

Declare a variable vYesNo to be a boolean variable, and assign a “false” value to it.

Exercise 1.2

Declare a variable vAmount to be the same data type as the amount column in the customer table.

Exercise 1.3

Declare a variable vStudentGPA for student GPA. Allow 1 integer digit and 2 digits after the decimal point.

Exercise 1.4

Run Program 30 with the following input, what will be printed?

SQL> start a:30.sql
Please Enter a Number: -12.345
?????

How about

SQL> start a:30.sql
Please Enter a Number: -123.45
?????
Exercise 1.5

Which of the following variable declaration is “illegal”? How would you fix it?

/* Program 32. Test of Declaration */

declare

vVariable1 number;

vVariable2 number(8) = 0;

vVariable3 boolean := 'True';

vVariable4 varchar2;

vVariable5 char;

vVariable6 vVariable5%type;

vVariable7 vVariable8%type;

vVariable8 integer;

begin

null;

end;

/

Exercise 1.6

Will the following work? If not, how would you assign a boolean value through user input?

/* Program x. Assign a Boolean Value through User Input */

accept TrueFalse prompt ‘Please Enter True or False: ‘;

declare

vTrueFalse boolean := &truefalse;

begin

null;

end;

/

Topic 2. The Executable Section

Assignment vs. Expressions

:=
To assign the value from the right-hand-side of the := to the variable on the left-hand-side of the :=.

=
equality (expressions)

/* Program 1.2 */

declare

x1 number;

x2 char(20);

x3 number;

begin

x1 := 5;

x2 := 'Hello World!';

x3 := x1 + 3;

dbms_output.put_line ('x1 is: ' || x1);

dbms_output.put_line ('x2 is: ' || x2);

dbms_output.put_line ('x3 is: ' || x3);

end;

/

SQL> start a:1.2.txt
Input truncated to 1 characters

x1 is: 5

x2 is: Hello World!

x3 is: 8

PL/SQL procedure successfully completed.

Exercise 2.1

What will the following program produce?

set serveroutput on

declare

x1 number := 3;

x2 number := 5;

begin

x1 := x2;

x2 := x1;

dbms_output.put_line ('x1 = ' || x1);

dbms_output.put_line ('x2 = ' || x2);

end;

/

Exercise 2.2

What will the following program produce?

set serveroutput on

declare

x1 number := 3;

x2 number := 5;

x3 constant number := 7;

begin

x1 := x2;

x2 := x1;

x1 := x3;

x3 := x1;

dbms_output.put_line ('x1 = ' || x1);

dbms_output.put_line ('x2 = ' || x2);

end;

/

Something about “null”

A PL/SQL variable that is not assigned any value is “null.” Similarly, in tables, a data item not assigned any value is a “null”. The following are properties about “null”.

/* Program 19 Experiment on NULL */

declare

vValue1 boolean ;

vValue2 boolean := true;

vValue3 boolean := false;

vValue4 number ;

vValue5 number := 0;

begin

IF vValue1 > vValue2 THEN dbms_output.put_line ('NULL > TRUE'); END IF;

IF vValue1 = vValue2 THEN dbms_output.put_line ('NULL = TRUE'); END IF;

IF vValue1 < vValue2 THEN dbms_output.put_line ('NULL < TRUE'); END IF;

IF vValue1 > vValue3 THEN dbms_output.put_line ('NULL > FALSE'); END IF;

IF vValue1 = vValue3 THEN dbms_output.put_line ('NULL = FALSE'); END IF;

IF vValue1 < vValue3 THEN dbms_output.put_line ('NULL < FALSE'); END IF;

IF vValue2 > vValue3 THEN dbms_output.put_line ('TRUE > FALSE'); END IF;

IF vValue2 = vValue3 THEN dbms_output.put_line ('TRUE = FALSE'); END IF;

IF vValue2 < vValue3 THEN dbms_output.put_line ('TRUE < FALSE'); END IF;

IF vValue4 > vValue5 THEN dbms_output.put_line ('NULL > 0'); END IF;

IF vValue4 = vValue5 THEN dbms_output.put_line ('NULL = 0'); END IF;

IF vValue4 < vValue5 THEN dbms_output.put_line ('NULL < 0'); END IF;

end;

/

Run this program, what will you see?

SQL> start a:19.sql

TRUE > FALSE

PL/SQL procedure successfully completed.

The IF Statement

IF condition THEN

<statements>

END IF;

IF condition THEN

<statement>

ELSE

<statement>

END IF;

IF condition

THEN statement;

statement;

...

ELSIF condition

THEN <statements>;...

<as many ELSIF as you wish>

ELSE

statements;

END IF;
Note:

(ELSIF
/* Program 1.1 Simple IF-THEN-ELSE */

-- This program will tell you whether a number is an even or an odd number.

accept x1 prompt 'Please enter x1: ';

set serveroutput on

declare

vX1 number := &x1;

begin

IF mod(vX1,2) = 0

THEN dbms_output.put_line ('x1 is an even number.');

ELSE dbms_output.put_line ('x1 is an odd number.');

END IF;

end;

/
Note: The modulus function, mod(value, divisor), returns the remainder of value divided by divisor. For instance, mod(7,3)=1. The floor function, floor(value), returns the largest integer smaller than or equal to value. For instance, floor(5.234)=5; floor(mod(7,3))=2. These are very common functions in any programming language. If you are not familiar with it, check out Chapter 5. Built-in SQL Functions of ORACLE8: PL/SQL Programming.

Nested IF Statement

/* Program 1.1 Nested IF Statement */

-- This program will examine if the number entered is negative or non-integer.

accept x1 prompt 'Please enter an integer x1: ';

set serveroutput on

declare

vX1 number := &x1;

begin

IF vX1 < 0

THEN dbms_output.put_line ('x1 must be a positive number! Please try again!');

ELSE

IF mod(vX1,2) = 0

THEN dbms_output.put_line ('x1 is an even number.');

ELSIF mod(vX1, 2) = 1

THEN dbms_output.put_line ('x1 is an odd number.');

ELSE

dbms_output.put_line ('x1 must be an integer number! Please try again!');

END IF;

END IF;

end;

/

Exercise 2.3

Write a PL/SQL program that will read a grade from the user (either A, B, C, D, or F), and display the grade point (that is, 4, 3, 2, 1, or 0). If the input is any other letters (such as H), then the program will display the message: H is not a valid grade.

Think point: The knowledge that ‘A’ is 4, ‘B’ is 3, ... is now coded in your program. Can you store the knowledge in tables? What are the pros and cons? How would that change your programs?

Exercise 2.4

For the following PL/SQL Program:

BEGIN

IF ConditionA

THEN actionA1;

 actionA2;

ELSE

action X;

IF ConditionB

THEN actionB1;

ELSE actionB2;

END IF;

actionY;

END IF;

END;

/

Answer the following questions:

a) If condition A is true and condition B is true, which action(s) would be executed?

b) If condition A is not true and condition B is true, which action(s) would be executed?

c) If condition A is not true and condition B is not true, which action(s) would be executed?

Exercise 2.5

Write a PL/SQL program to do the following:

The system prompts: Please enter the number of student credit hours:. After the user enters a number, the system would respond in the following fashion. If it is between 0 and 30 (including), the system prints "This student is a Freshmen" on the screen; if between 31 and 60 credits, print "This student is a Sophomore", between 61-90 credits, print "This student is a Junior"; for more than 91 credits, print "This student is a Senior." For negative numbers, print “This is an invalid input. Number of credits must be a positive number.” Notice that a user may enter fractional numbers such as 12.34, use declaration so that only the integer part is considered.

Exercise 2.6

Does the following program reflect the logic of the previous problem?

IF credit <= 30

THEN dbms_output.putline (‘This student is a Freshmen’.);

END IF;

IF credit <= 60

THEN dbms_output.putline (‘This student is a Sophomore.’);

END IF;

IF credit <= 90

THEN dbms_output.putline (‘This student is a Junior.’);

END IF;

IF credit > 90

THEN dbms_output.putline (‘This student is a Senior.’);

END IF;

Exercise 2.7

The following is the return/refund policy of Thing’n Things.

If an item is returned with a receipt and with the tag on, then give full-price refund. If the customer paid cash originally, then refund cash; if it was a credit card transaction, then credit to the credit card. If the customer does not have the original credit card, then issue a full-price store credit. If the item is returned without receipt but with the tag on, then issue a sales-price store credit (that is, the lowest sales price within the last 30 days). For any merchant returned without a tag, call supervisor.

Write IF.. THEN statements to describe the above logic. (You don’t need to write it in perfect PL/SQL statements. Just use structured English to code it; such as

IF receipt is yes and tag is yes

THEN give full-price refund;

....

END IF;

Exercise 2.8

Write a PL/SQL program to do the following. First, the program asks the user the amount of merchandise and the amount of cash tendered. The program will then tell the user how many twenty-dollar-bill, ten-dollar-bill, five-dollar-bill, and one-dollar-bill you should give back. Notice that, for instance, if no ten-dollar-bill is needed, it will not be printed (i.e., it will not print 0 Ten Dollar Bill.)

Note 1. Assume that all the amounts are integer (there is no coins). Also, there are only 20, 10, 5, and 1-dollar bills.

Note 2. If the cash tendered is less than the amount, the program should print “You need to give me more money!”. If the cash tendered is exactly the amount, the program should print “You just gave me exact change! Thank you!”.

Note 3. you may use the following functions.

floor(x) will return the integer portion of x if x is a positive number; e.g., floor(12.34) = 12.

mod(x,y) will return the remainder of x divided by y; e.g., mod(5,2)=1.

SQL> start a:17.sql
Enter Amount of Merchandise: 12
Enter Cash Tendered: 200
Input truncated to 1 characters

9 Twenty Dollar Bill

1 Five Dollar Bill

3 One Dollar Bill

PL/SQL procedure successfully completed.

The LOOP and EXIT Statement

The syntax is

LOOP

statement1;

statement2;

...

END LOOP;

Make sure there is an exit point of your loop.

loop

statements;

if <condition> then EXIT;

end if;

statements;

end loop;

or

loop

statements;

EXIT WHEN <conditions>;

statements;

end loop;

declare

n integer := 1;

begin

loop

dbms_output.put_line (n);

n := n+1;

if n >= 10

then exit;

end if;

end loop;

end;

/

The WHILE-LOOP Statement

The syntax is

WHILE <condition> LOOP

statements;

END LOOP;
The program will first examine the condition. If it is true, then the program executes the statements; otherwise, it jumps out of the loop.

Note: any condition may have three possible states: true, false, or null. The WHILE loop will execute only when the while condition is true.

declare

n integer := 1;

begin

while n < 10 loop

dbms_output.put_line (n);

n := n+1;

end loop;

end;

/

Notice that the conditions in LOOP-EXIT and WHILE-LOOP are reversed (one is when n<10 and the other one is when n<=10).

The FOR LOOP Statement

In the FOR LOOP statement, you declare the loop index, a starting number, and an ending number. The loop index increments 1 each time until the loop is completed.

declare

n integer := 1;

begin

FOR N IN 1..10 LOOP

insert into dummy1 values (n);

END LOOP;
end;

/

Example:

/* Program 18. Use of basic LOOP */

-- You put in a fixed amount each month. There is a certain annual interest

-- rate. You hope to accumulate to a certain amount in the future. This

-- program will tell you how long it will take you to achieve that goal.

set serveroutput on

set verify off

accept AmountPerMonth prompt 'Please enter the Amount you put in each Month: ';

accept AnnualRate prompt 'Please enter the ANNUAL interest rate (such as 0.09 for 9%): ';

accept ExpectedAmount prompt 'Please enter the Expected Amount: ';

declare

vAmountPerMonth number := &AmountPerMonth;

vAnnualRate number := &AnnualRate;

vExpectedAmount number := &ExpectedAmount;

vEndingAmount number(10,2) := 0;

vMonth integer := 0;

begin

WHILE vExpectedAmount >= vEndingAmount LOOP

vEndingAmount := vEndingAmount*(1+(vAnnualRate/12)) + vAmountPerMonth;

vMonth := vMonth+1;

-- dbms_output.put_line (vEndingAmount);

END LOOP;

dbms_output.put_line ('You will achieve your goal after ' || vMonth/12 || ' Years.');

end;

/

Exercise 2.9

Re-write the previous program using LOOP...EXIT.

Exercise 2.10

Use LOOP to write a PL/SQL program which produces the following output:

2x1=2

2x2=4

2x3=6

2x4=8

2x5=10

2x6=12

2x7=14

2x8=16

2x9=18

Exercise 2.11 The Multiplication Table

Use LOOP to write a PL/SQL program which produces the entire Multiplication Table, like:

2x1=2

2x2=4

2x3=6

2x4=8

2x5=10

2x6=12

2x7=14

2x8=16

2x9=18

3x1=3

3x2=6

3x3=9

....

...

9x7=63

9x8=72

9x9=81

Exercise 2.12 The Love Wizard

Use LOOP to write a PL/SQL program which does the following (for guys, use She instead of He. :-))

SQL> start a:love.sql

Welcome to the Love Wizard!

Please enter your magic number: 7

He loves you...

He loves you not...

He loves you...

He loves you not...

He loves you...

He loves you not...

He loves you...

===> He loves you!!!

SQL> start a:love.sql

Welcome to the Love Wizard!

Please enter your magic number: 8

He loves you...

He loves you not...

He loves you...

He loves you not...

He loves you...

He loves you not...

He loves you...

He loves you not...

===> He loves you not :-(

Exercise 2.13 The Fill Function

Write a PL/SQL program to imitate the "fill" function in spreadsheet.

SQL>start a:fill.sql

Start at: 2

Step: 3

Times: 5

2

5

8

11

14

****** Write code here. Then change something...They don't know how to write any loop code.

Topic 3. SQL in PL/SQL

You can write all SQL statement outside of the PL/SQL block the same way SQL works.

For instance,

declare

variables...

begin

PL/SQL statements;

end;

create table

commit;

Within PL/SQL blocks, however, the only SQL statements allowed are Data Manipulation Language (INSERT, UPDATE, DELETE, SELECT) and transaction control language (COMMIT, ROLLBACK, SAVEPOINT). Data Definition Language (CREATE, ALTER, DROP, etc.) are not allowed. Of the SQL allowed in PL/SQL blocks, some work the same way while others are slightly different.

The INSERT Statement

(PL/SQL INSERT works the same way as SQL.

(The student table has five fields: snum, sname, major, standing, and balance. All three of the following INSERT statements work in the PL/SQL block.

begin

insert into student values ('222','Betty',null,null,null);

insert into student (snum, sname) values ('222','Betty');

insert into student select * from student;

end;

/

The UPDATE Statement

(The UPDATE statement works the same way as in SQL.

declare

vNewStanding char(10);

vBalanceIncrease number;

begin

vNewStanding := 'Sophomore';

update student set standing = vNewStanding where snum='222';

vBalanceIncrease:=20;

update student

set balance = balance + vBalanceIncrease

where snum='111';

end;

/

Note: Now that you are used to :=, you may be tempted to write := in the update.... set statement. Don’t! It is ALWAYS = in the set statement.

The DELETE Statement

The DELETE statement works the same as in the SQL.

declare

vMajor char(10);

begin

vMajor := 'IS';

delete from student where major=vMajor;

end;

/

However, watch out for the following case!!

declare

major char(10);

begin

major := 'IS';

delete from student where major=major;

end;

/

What will it do? Since in the delete statement, the condition is where major=major (which is always true!), ALL students will be deleted, not just the IS student!

The SELECT Statement

SELECT statement in SQL is to “query”, or display data on your screen. In PL/SQL, the function of SELECT... is to copy the data to a local, PL/SQL variable so you can further use it in your PL/SQL code. The syntax goes like this:

	SELECT
	columns or expressions
	INTO
	PL/SQL variables
	FROM tables WHERE conditions;

Notice that the PL/SQL variables need to be declared in the declare... first.

declare

vStudentName char(15);

vTotalCrhr number(3);

tStudentRecord
student%rowtype;

....

begin

select sname into vStudentName from student where snum=‘111’;

select sum(crhr) into vTotalCredit from student where snum=‘111’;

select * into tStudentRecord from student;

....

Note:

- select...into should return only one row. If it returns no row, there will be an NO_DATA_FOUND error message and the program will exit. If it returns more than one row, there will be a TOO_MANY_ROWS error message and the program will exit.

- If you need to select multiple rows into your PL/SQL variables, you need to use cursor.

- Note that for insert, update, delete, it does not matter how many rows are affected by the action.

SQL%...

pl/sql has built-in SQL%... functions that will return values.

SQL%FOUND

Returns TRUE if the last SQL statement (SELECT...INTO, INSERT, UPDATE, or DELETE) has found any data. ie., for a select..., it has selected data; for an update, it has updated data, and so forth. It returns FALSE if otherwise.

SQL%NOTFOUND

Returns FALSE if the last SQL statement (SELECT...INTO, INSERT, UPDATE, or DELETE) has found any data. ie., for a select..., it has selected data; for an update, it has updated data, and so forth. It returns TRUE if otherwise.

SQL%ROWCOUNT

Return the number of records processed by the latest SQL statement.

Note:

You can use SQL%NOTFOUND with Select...into, but it is not useful. Since selecting nothing is treated as an error in Oracle, the program would exit or jump to the EXCEPTION section right away. Therefore, the SQL%NOTFOUND part will never be executed.

SQL> select * from student;

SNUM SNAME MAJOR S BALANCE

--------- --------------- ---------- - ---------

222 Betty IS 5 100

111 Andy IS 4 160

333 Cindy MKT 4 100

/* Program 33. SQL%... */

set serveroutput on

begin

update student set major='MIS' where major='IS';

IF sql%found

THEN dbms_output.put_line ('Update completed.');

END IF;

IF sql%notfound

THEN dbms_output.put_line ('There is no record to be updated.');

END IF;

dbms_output.put_line ('There are '||sql%rowcount||' Records Updated.');

end;

/

SQL> start a:33.sql

Input truncated to 1 characters

Update completed.

There are 2 Records Updated.

PL/SQL procedure successfully completed.

The COMMIT, ROLLBACK, and SAVEPOINT Statement

COMMIT and ROLLBACK work in PL/SQL blocks the same way as they work in SQL.

begin

insert into student (snum, sname) values ('111','Andy');

insert into student (snum, sname) values ('222','Betty');

insert into student (snum, sname) values ('333','Cindy');

commit;

end;

/

begin

insert into student (snum, sname) values ('111','Andy');

insert into student (snum, sname) values ('222','Betty');

insert into student (snum, sname) values ('333','Cindy');

rollback;

commit;

end;

/

begin

insert into student (snum, sname) values ('111','Andy');

insert into student (snum, sname) values ('222','Betty');

insert into student (snum, sname) values ('333','Cindy');

commit;

rollback;

end;

/

SAVEPOINT will keep track of different points to ROLLBACK. (Note: SAVEPOINT is available under both SQL and PL/SQL)

begin

insert into student (snum, sname) values ('111','Andy');

savepoint s1;

insert into student (snum, sname) values ('222','Betty');

savepoint s2;

insert into student (snum, sname) values ('333','Cindy');

savepoint s3;

rollback to s2;

commit;

end;

/

(It is often handy to use savepoint-rollback under conditional control. For instance,

update...

insert...

savepoint s1

...

savepoint s2

...

IF <something something>

THEN rollback to s1;

ELSE rollback to s2;

...

For Exercise 3.1 - 3.4, assume the following tables are in place:

*** Make better tables here...

S (Student)

	SNUM
	SNAME
	STANDING
	GPA

	111

222

333
	Andy

Betty

Cindy
	4

2

3
	

C (Course)
	CNUM
	CTITLE
	CRHR
	STANDING
	CAPACITY

	240

301

380
	Intro to MIS

Statistics

Database
	3

3

3
	2

3

3
	5

5

3

E (Enroll)
	S#
	C#
	GRADE

	111

333

.....
	240

240

.....
	A

B

....

Exercise 3.1

Finish the following PL/SQL program to enroll a student in a course.

/* Ex 3.1 Enroll a student */

accept snum prompt ‘Please Enter Student Number: ‘;

accept cnum prompt ‘Please Enter Course Number: ‘;

declare

....

Exercise 3.2

Certain classes require academic standing, such as Junior or Senior. The coding for standing is 1 for freshman, 2 for sophomore, 3 for junior, and 4 for senior. A student can enroll in a class only when his standing is equal or higher than the standing required by the course. Finish the following PL/SQL program so that the system will enroll a student only when the standing requirement is met.

/* Program Ex 3.2 Enroll with Standing Requirement */

accept snum prompt ‘Please Enter Student Number: ‘;

accept cnum prompt ‘Please Enter Course Number: ‘;

declare

....

Exercise 3.3

Within the same semester, a student can only enroll for 15 or less credit hours. (You can judge whether the enrollment is at the current semester by checking the GRADE column; if it is null, the enrollment is at the current semester.) Write a PL/SQL program that will enroll a student only when after enrolling, his total semester credit hours is equal or less to 15.

Exercise 3.4

For a given student, if his total credit hours is between 0-30, update his standing to “1”; if his total credit hours is between 31-60, update his standing to “2”; if his total credit hours is between 61-90, update his standing to “3”; if his total credit hours is greater than 91, then update his standing to “4”. Please write a PL/SQL program to do this.

Exercise 3.5

Each course has a capacity limitation. Write a program that will enroll a student only if after his enrollment, the course is still kept within the capacity limitation.

A Sample Program: Display All Prerequisite Courses

/* Program 14. Demonstrate the use of LOOP */

set serveroutput on

set verify off

accept cnum prompt 'Please Enter the Course Number: ';

declare

vCnum char(3) := &cnum;

vPreqApp char(3) := null;

vPreqList char(30) := null;

begin

LOOP

select preqnum into vPreqApp from preq

where cnum=vCnum;

vPreqList := rtrim(vPreqList) ||' '|| vPreqApp;

vCnum := vPreqApp;

END LOOP;

exception

when no_data_found

then dbms_output.put_line (vPreqList);

end;

/

Nested Program Blocks

/* Program 1.8 Demonstrate the use of Nested Program Block */

accept cnum prompt 'Please Enter the Course Number: ';

declare

vCnum char(3) := &cnum;

vPreqApp char(3) := null;

vPreqList char(30) := null;

begin

begin

LOOP

select preqnum into vPreqApp from preq

where cnum=vCnum;

vPreqList := rtrim(vPreqList) ||' '|| vPreqApp;

vCnum := vPreqApp;

END LOOP;

exception

when no_data_found then null;

end;

IF vPreqList is null

THEN dbms_output.put_line ('This Class Does Not Require Any Prerequisite.');

ELSE

dbms_output.put_line (vPreqList);

END IF;

end;

/

Topic 4. Procedures and Functions

What is a procedure? It is a program that can be called by another program. Some languages call them sub-routines.

First, you create the procedure by running a program like:

create procedure DoABunchOfThingsFor(cnum)

as

do thing 1;

do thing 2;

....

After the procedure is created, you can use it by either calling it from another program:

/* in another program */

......

DoABunchOfThingsFor(‘Tom’);

.....

or directly call it at SQL prompt,

SQL> execute DoABunchOfThingsFor(‘Tom’);

What is a Function? It is a program that can be called by another program. The difference is that a function returns a value (or several values), while procedures does not. Functions can not stand on its own like procedures.

First, you create the function by running a program like:

create function CalculateAgeOf(cnum) return number
as

statements;

....

You can use it by calling it from another program:

/* in another program */

......

IF CalculateAgeOf(‘Tom’) < 18 THEN something something...

.....

Benefit of using Procedures and Functions:

- Improve the structure and understandability of your program

- Can pass parameters

- Can be called by other programs

- Stored in database

Procedures

** Give simple procedures at first. Such as, a series of print statements; then add in one parameters; lots of simple code examples (my examples are too complex! They don't even get the question straight!)

Syntax of creating a procedures

CREATE OR REPLACE PROCEDURE procedure_name

(parameter1 type,

parameter2 type,

...)

AS

variable1 type;

variable2 type;

....

BEGIN

<pl/sql Statements>;

END procedures_name;

/

Note 1. You can use the parameters directly in your PL/SQL code.

Note 2. Naming of parameters

Note 3. The parameters are defaulted to be “in” modes, which means the program can only receive the value and cannot change the value in the procedure.

/* Program 36 Write a procedure ArchiveGraduation */

create or replace PROCEDURE ArchiveGraduation (

pCurrentSemester offering.semester%type) AS

begin

insert into StudentArchive

select snum, sname, major, pCurrentSemester from student

where standing='5';

delete from student where standing='5';

end;

/

In the future, I can call this procedure and pass the parameter value in my PL/SQL program:

begin

...

ArchiveGraduation(‘994’);

...

end;

/

or call it directly under SQL> by the key word execute:

SQL> execute ArchiveGraduation(‘994’);

Exercise 4.1

Write a procedure DisplayStudentInfo(pSnum) that will receive a parameter snum and display the student’s name, standing, and GPA, like the following:

SQL> execute DisplayStudentInfo('111');
Student Name: Andy

Student Standing: 4

Student GPA: 4

PL/SQL procedure successfully completed.

Exercise 4.2

Write a procedure DisplayCourseInfo(pCnum) that will receive a parameter cnum and display the course title, credit hour, standing requirement, and capacity.

SQL> execute DisplayCourseInfo('240');
Course Title: Intro to MIS

Credit Hours: 3

Standing Requirement: 2

Capacity: 5

PL/SQL procedure successfully completed.

Functions

/* Program ADD1.1.sql Function CheckValidStudent */

create or replace function CheckValidStudent

(pSNum student.snum%type)

return boolean is

vSnum
student.snum%type := pSNum;

vStudentValid
boolean := true;
begin

select snum into vSnum from student where snum=vSnum;

return vStudentValid;
exception

when no_data_found then

vStudentValid := False;

dbms_output.put_line ('This Student Number is Not Valid.');

return vStudentValid;
end;

/

Now I can call this function (and use the return value to do things) in another program:

/* Program ADD1.sql The Main Program */

accept snum prompt 'Please Enter the Student''s Student ID: ';

declare

vSnum student.snum%type := &snum;

begin

IF CheckValidStudent(vSnum) THEN

<statements>

END IF;

end;

/

Exercise 4.3

Write a function ConvertGrade(grade) that will return 4 if grade is ‘A’, 3 if grade is ‘B’, etc.

Exercise 4.4

Write a function ConvertStanding(TotalCreditHour) that will return 1 if total credit hour is between 0-30, 2 if between 31-60, etc.

View Source Code

To View the Original Code (Source Code) of the function or procedure, you can query the data dictionary table user_source.

SQL> describe user_source;
 Name Null? Type

 ------------------------------- -------- ----

 NAME NOT NULL VARCHAR2(30)

 TYPE VARCHAR2(12)

 LINE NOT NULL NUMBER

 TEXT VARCHAR2(2000)

SQL> column text format a60

SQL> select line, text from user_source where name='ADDNEWSTUDENT';
 LINE TEXT

--------- --

 1 procedure AddNewStudent (

 2 pSNum student.snum%type,

 3 pSName student.sname%type)

 4 as

 5 begin

 6 insert into student (snum, sname) values (pSnum, pSname);

 7 end;

7 rows selected.

-- To find out what procedures/functions you have:

SQL> SELECT DISTINCT(NAME), TYPE FROM USER_SOURCE;
NAME TYPE

------------------------------ ------------

ADDNEWSTUDENT PROCEDURE

ARCHIVEGRADUATION PROCEDURE

Debugging

Any bug in a procedure code will result in the following seemingly harmless little warning:

Warning: Procedure created with compilation errors.

This means that there are bugs in your program! To view the error messages, use

SQL> show errors
Errors for PROCEDURE ARCHIVEGRADUATION:

LINE/COL ERROR

-------- ---

2/23 PLS-00103: Encountered the symbol "(" when expecting one of the

 following:

 := .) , @ % default

 The symbol ":=" was substituted for "(" to continue.

Note: The show errors command will display errors associated by the most recently run procedure. To view errors of other function/procedures, you can query the data dictionary table user_errors.

SQL> describe user_errors;
 Name Null? Type

 ------------------------------- -------- ----

 NAME NOT NULL VARCHAR2(30)

 TYPE VARCHAR2(12)

 SEQUENCE NOT NULL NUMBER

 LINE NOT NULL NUMBER

 POSITION NOT NULL NUMBER

 TEXT NOT NULL VARCHAR2(2000)

SQL> SELECT LINE, POSITION, TEXT FROM USER_ERRORS
 2 WHERE NAME='ADDNEWSTUDENT';
no rows selected

Exercise 4.4

Write a function CheckStanding(snum, cnum) that will return True is the student has appropriate standing to take the course, false otherwise.

Exercise 4.5

Write a function CheckClassCapacity(cnum) that will return true is the class still has room for one more student, and false otherwise.

Exercise 4.6

Write a procedure ADD(snum, cnum) that will add a student to the E (enroll) table. First, the program displays the student information and course information. Then the program will add the student to the course if he is a valid student, he has appropriate standing, and the class still has room. Use procedures/functions created in previous exercises.

Homework 2 (Due Date:

)

Write a procedure AddCourse(psnum, pcnum) that will enroll the student to a course. The program should check for the following things:

1. The student must be a valid student.

2. The course must be a valid course.

3. There is still room in the class.

4. After enrolling, the total credit hours of the student does not exceed 15 credit hours.

5. The student is not currently enrolled in this class. You can check for current enrollment by a NULL grade.

6. If the student has enrolled in this course before (by a NOT NULL grade), s/he must have received a D or F in order to enroll in this course again.

You need to call at least 1 function in the AddCourse procedure. Possible functions include:

CheckValidStudent(psnum) that returns TRUE when the student exists in the STUDENT table; FALSE otherwise.

CheckValidCourse(pcnum) that returns TRUE when the course exists in the COURSE table; FALSE otherwise.

CheckStanding(snum, cnum) that will return True is the student has appropriate standing to take the course, false otherwise.

CheckClassCapacity(cnum) that will return true is the class still has room for one more student, and false otherwise.

Deliveries:

1. Turn in a copy of all program code.

2. Turn in a copy of execution.

Declare Records

You can declare a “record”, i.e., a set of variables, in PL/SQL.

(User-defined record:

declare

-- first define the record structure with the TYPE keyword

TYPE tType1 IS RECORD (

field1 char(1),

field2 char(1), ...);

...

-- then define a PL/SQL record to be “that” record

rRec1 tType1;

rRec2 tType1;

(%ROWTYPE

You can also define the record to follow a table’s structure by using %ROWTYPE.

declare

rStudent
student%ROWTYPE;

With the above command, two things happen.

(rStudent is defined as a record.

(The rStudent record has fields corresponding to the columns in the student table.

(To refer field in a record, use record.field, such as vStudent.snum.

Topic 5. Cursors

“Cursor” is a pointer to an area that will process multiple records from database tables to PL/SQL programs.

This program will move records of students who are cleared for graduation from the STUDENT table to the StudentArchive table. In the StudentArchive table, we also record the graduating semester as ‘992’ (Spring of 1999).

set serveroutput on

declare

vSnum student.snum%type;

vSname student.sname%type;

vMajor student.major%type;

CURSOR cStudent IS

select snum, sname, major from student

where standing='5';

-- standing ‘5’ means ‘cleared for graduation’

begin

open cStudent;

LOOP

fetch cStudent into vSnum, vSname, vMajor;

EXIT when cStudent%NOTFOUND;

insert into StudentArchive values (vSnum, vSname, vMajor, '992');

delete from student where snum=vSnum;

END LOOP;

close cStudent;

end;

/

There are 4 steps in a cursor processing:

1. Declaring a cursor: define what the cursor is.

CURSOR CursorName IS select....
Note 1. The SELECT... statement has no INTO clause.

Note 2. You can use other PL/SQL variables in the where... clause. These variables need to be declared *before* the CURSOR... statement; such as

declare

vMajor student.major%type;

CURSOR cStudent is

select snum from student where major=vMajor;

The following will produce an error message:

declare

CURSOR cStudent is

select snum from student where major=vMajor;

vMajor student.major%type;

2. Open a Cursor

OPEN CursorName;

Note 1. When the open... statement is executed, all variables in the cursor are “binded”, i.e., their value will not change through out the cursor execution.

3. Fetch value

FETCH CursorName INTO PL/SQLVariables;

Note 1. Each “fetch” return one record of value to the PL/SQL variable.

4. Close a Cursor

CLOSE CursorName;

Cursor Attributes

There are 4 pre-defined cursor attributes that is handy to use with exit or other conditions.

CursorName%FOUND

Returns TRUE when the last fetch found data; FALSE when the last fetch did not find any data.
CursorName%NOTFOUND

Returns TRUE when the last fetch did not find data; FALSE when the last fetch did find data.
CursorName%ISOPEN

Returns TRUE if the cursor is open; FALSE otherwise.
CursorName%ROWCOUNT

Returns the number of records that have been fetched.
Detailed Process in Cursor

What happened when the fetch does not return any record?

declare

vSnum student.snum%type;

vSname student.sname%type;

vMajor student.major%type;

CURSOR cStudent IS

select snum, sname, major from student

where standing='5';

-- standing: 1=Freshman, 2=Sophomore, 3=Junior, 4=Senior, 5=Cleared for Graduation

begin

open cStudent;

LOOP

fetch cStudent into vSnum, vSname, vMajor;

insert into StudentArchive values (vSnum, vSname, vMajor, '992');

delete from student where snum=vSnum;

EXIT when cStudent%NOTFOUND;

END LOOP;

close cStudent;

end;

/

Note 1. the difference between fetch... and select...into. If there is nothing to fetch, fetch will not return an error message. It will just use the prior record. However, if select...into does not find any record, it will return an error message and exit entirely from the program.

Exercise 5.1

Write a PL/SQL program that will update every student’s standing.

Exercise 5.2

Use the s, c, and e tables.

Write a PL/SQL program that would read a student number, and calculate his GPA. Notice that a student has enrolled in multiple courses.
Exercise 5.3

Write a PL/SQL program to calculate and update every student’s GPA.

Topic 6. The Exception Section

What is an “exception”? Any expected or unexpected errors that are not handled by the usual program block. For instance, when the query did not find any match, when the query finds too many matches, when the class is full and no body can add, etc. It is like writing an IF...THEN... to handle those exceptions.

Two types of Oracle exceptions: Predefined and User-defined.

Pre-defined Exceptions

There are several exceptions defined by Oracle. They all have an exception name that you can use.

DUP_VAL_ON_INDEX
When unique constraints are violated

NO_DATA_FOUND
No data found during a select...into phrase

TOO_MANY_ROWS
When a select...into returns more than one row

INVALID_NUMBER
When a conversion to a number field failed

ZERO_DIVIDE
Division by zero

/* Program 38 Pre-defined Exceptions */

declare

vSnum s.snum%type;

begin

insert into s (snum) values ('111');

select snum into vSnum from s where snum='999';

select snum into vSnum from e where snum='111';

select standing into vSnum from s where snum='111';

exception

when dup_val_on_index then

dbms_output.put_line ('ERROR1: Insert failed -- duplicate student record exists! ');

when no_data_found then

dbms_output.put_line ('ERROR2: This student does not exist!');

when too_many_rows then

dbms_output.put_line ('ERROR3: Single value record expected when returning multiple records.');

when invalid_number then

dbms_output.put_line ('ERROR4: Mismatched data types.');

when others then

dbms_output.put_line ('ERROR: I don''t know what it is but there is something wrong about your program! ');

end;

/

SQL> start a:38.sql

Input truncated to 1 characters

ERROR1: Insert failed -- duplicate student record exists!

PL/SQL procedure successfully completed.
User-Defined Exceptions

You can declare your own exceptions in PL/SQL.

declare

eErrorSituation1 exception;

....

begin

IF

THEN raise eErrorSituation1;

...

exception

when eErrorSituation1 then ...;

when eErrorSituation2 then ...;

when eErrorSituation1 or eErrorSituation2 then ... ;

end;

/

Example:

/* Program 39 User-Defined Exceptions */

declare

eNoEnrollRecord exception;

begin

update e set grade='A' where snum='222' and cnum='240';

IF sql%notfound THEN

raise eNoEnrollRecord;

END IF;

exception

when eNoEnrollRecord then

dbms_output.put_line ('There is no such enrollment record.');

end;

/

Exercise 6.1

Rewrite the procedure ADD so that if the student passes all requirements but the class capacity is full, move him to a waiting list. Note that there is an order on the waiting list.

- What type of table design do you need?

Topic 7. Triggers

Trigger: A PL/SQL block that will be “fired” (executed) when a DML (insert, update, or delete) is performed on a table.

CREATE OR REPLACE TRIGGER BeforeDeleteStudent AS

before delete on student

begin

dbms_output.put_line (‘A Student Record is about to be deleted! ‘);

end;

/

After this program is executed, the trigger is saved in your database. In the future, whenever there is a deletion performed on the student table, the trigger would “fire.”

There are 12 types of triggers:

	
	before

after
	X
	insert

update

delete

	X
	for each row (can use :old, :new)
for each statement

for each row: the trigger is fired each time a row is affected.

:old.column

:new.column

insert: The value to be inserted can be denoted by :new, such as

... where snum = :new.snum.

:old is not defined.

update: The value to be replaced is denoted by :old, and the new value is denoted by :new.

delete: The value to be deleted is denoted as :old. :new is not defined.

for each statement: the trigger is fired for each statement. The :old, :new option does NOT work in for each statement triggers.

/* Program 22. A Sample Trigger */

create or replace trigger BeforeUpdateStudentAmount

before update on student

for each row

begin

IF :new.balance - :old.balance >= 50

THEN insert into student2 (snum, balance) values (:old.snum, :old.balance);

END IF;

end;

/

After Program 22 is run and saved in my database, any update to the student table will cause the trigger to fire.

SQL> select * from student;

SNUM SNAME MAJOR S BALANCE

--------- --------------- ---------- - ---------

222 Betty MKT 5 100

111 Andy MKT 5 100

333 Cindy MKT 4 100

SQL> select * from student2;

no rows selected

SQL> update student set balance=160 where snum='111';
1 row updated.

SQL> select * from student;

SNUM SNAME MAJOR S BALANCE

--------- --------------- ---------- - ---------

222 Betty MKT 5 100

111 Andy MKT 5 160

333 Cindy MKT 4 100

SQL> select * from student2;

SNUM SNAME MAJOR S BALANCE

--------- --------------- ---------- - ---------

111 100

Exercise 7.1

Write a trigger EnrollWaitingStu that when a student drops from the course (i.e., a record is deleted from the e table), the program will move the next first student on the waiting list to regular enrollment.

Exercise 7.2

Write a trigger AuditGPA that when a student’s new GPA is 1 point lower than the previous GPA, print a warning message.
Homework 3. Cursors and Triggers

Due Date:

Write a procedure UpdateGPA that will update all students' GPA according to his/her enrollments and grades. If the student's new GPA is 1 point lower than the student's previous GPA, print a warning message.

Mid-Term Exam

Date/Time: March 28, 2000, 7-8:30 pm

Format: Open book open notes. No computers.

Topics:

PL/SQL Topic 1. Declaration

PL/SQL Topic 2. The Execution Section

PL/SQL Topic 3. SQL in PL/SQL

PL/SQL Topic 4. Procedures and Functions

PL/SQL Topic 6. Exceptions

40

_998291787

