[image: image1.png]OASIS

Position Paper: Code Lists

Proposal 05, 29 April 2002

Document identifier:

p-maler-codelists-05 @@(PDF, Word)

Location:

http://www.oasis-open.org/committees/ubl/ndrsc/pos
Author:

Eve Maler, Sun Microsystems <eve.maler@sun.com>

Abstract:

This position paper outlines several options for handling code lists in the UBL library and customizations of that library.

Status:

This is V05 of the code lists position paper intended for consideration by the OASIS UBL Naming and Design Rules subcommittee and other interested parties.

If you are on the ubl-ndrsc@lists.oasis-open.org list for subcommittee members, send comments there. If you are not on that list, subscribe to the ubl-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to ubl-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright © 2001, 2002 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

21
Guidance to the UBL Modeling Process

32
Requirements

33
Contenders

43.1
Current UBL Method

43.1.1
Instance

43.1.2
Schema Definitions

53.1.3
Derivation Opportunities

53.1.4
Assessment

63.2
QName Method

63.2.1
Instance

63.2.2
Schema Definitions

73.2.3
Derivation Opportunities

73.2.4
Assessment

83.3
Namespaced Element Method

83.3.1
Instance

83.3.2
Schema Definitions

93.3.3
Derivation Opportunities

93.3.4
Assessment

93.4
Enumerated List Method

93.4.1
Instance

93.4.2
Schema Definitions

93.4.3
Derivation Opportunities

93.4.4
Assessment

103.5
Instance Extension Method

103.5.1
Instance

103.5.2
Schema Definitions

103.5.3
Derivation Opportunities

103.5.4
Assessment

104
Summary of Strengths and Weaknesses

115
Recommendation

12Appendix A. Revision History

13Appendix B. Notices

1 Guidance to the UBL Modeling Process

@@Need to clearly identify lists that are minimally required…

2 Requirements on a Schema Solution for Code Lists

Here are criteria for measuring potential code list schemes:

1. Semantic clarity: The ability to “dereference” the ultimate normative definition of the code being used. The supplementary components for “Code.Type” CCTs are the expected way of providing this clarity, but there are many ways to supply values for these components in XML, and it’s even possible to supply values in some non-XML form that is referenced by the XML form.

2. [@@NEW #2!] Interoperability: The sharing of a common understanding of the limited set of codes that are expected to be used. There is a continuum of possibilities here. For example, a schema constraint that allows only a hard-coded enumerated list of code values provides “hard” (but inflexible) interoperability. On the other hand, merely documenting the intended shared values is less interoperable, since there are fewer penalties for private arrangements. This requirement is related to, but distinct from, validatability and context rules friendliness.

3. External maintenance: The ability for non-UBL organizations to create XSD schema modules that define code lists in a way that allows UBL to reuse them without manual modification. Some standards bodies are already starting to do this, though we recognize that others may never choose to create such modules.

4. Validatability: The ability to use XSD to validate that the code used is legitimately a member of the chosen code list. For the purposes of the analysis presented here, “validatability” will not measure the ability for ad hoc applications to do validation.

5. Context rules friendliness: The ability to use expected normal mechanisms of the context methodology for allowing codes from additional lists to appear (extension) and for subsetting the legitimate values of existing lists (subsetting), without adding custom features just for code lists. Such friendliness encourages interoperability.

6. Upgradability: The ability to begin using a new version of a code list without the need for upgrading, modifying, or customizing the schema modules being used.

7. Compactness: A representation in the XML instance that is not (subjectively) excessively large or cumbersome.

3 Contenders

The methods proposed so far for handling code lists are as follows:

· The current UBL method, involving supplying attributes for the supplementary components values directly on the element containing the code

· The QName method, involving the use of XML “qualified names” in the content of elements where the URI qualifying the name is associated with the supplementary components

· The namespaced element method, where each element containing a code is namespaced according to the precise list from which that code came

· The enumerated list method, using the classic method of statically enumerating the valid codes in a type corresponding to a code list internally in UBL (which we’re rejected)

· The instance extension method, involving the ability to declare new code lists directly in an instance

Throughout, an element LocaleCode defined as part of the complex type LanguageType is used as an example element in a sample instance, and UBL library schema definitions are demonstrated along with potential opportunities for XSD-style derivation. Finally, each method is assessed to see which requirements it satisfies.

3.1 Current UBL Method

The current UBL method is a result of Gunther’s perl script running over the Library Content SC’s spreadsheet. The script uses our tentative decision about using attributes for supplementary components.

3.1.1 Instance

The current UBL method results in instance documents with the following structure.

<LocaleCode

 CodeListIdentifier=”token”

 CodeListAgencyIdentifier=”token”

 CodeListVersionIdentifier=”token”

 CodeName=”string”

 LanguageCode=”language”>

token

</LocaleCode>

3.1.2 Schema Definitions

The relevant UBL library schema definitions are as follows in V0.64 (leaving out all annotation elements).

<xs:simpleType name="CodeContentType" id="000091">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListAgencyIdentifierType" id="000093">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListIdentifierType" id="000092">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListVersionIdentifierType" id="000099">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeNameType" id="000100">

 <xs:restriction base="string"/>

</xs:simpleType>

<xs:simpleType name="LanguageCodeType" id="000075">

 <xs:restriction base="language"/>

</xs:simpleType>

<xs:complexType name="CodeType" id="000089">

 <xs:simpleContent>

 <xs:extension base="cct:CodeContentType">

 <xs:attribute name="CodeListIdentifier"

 type="cct:CodeListIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeListAgencyIdentifier"

 type="cct:CodeListAgencyIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeListVersionIdentifier"

 type="cct:CodeListVersionIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeName" type="cct:CodeNameType">

 </xs:attribute>

 <xs:attribute name="LanguageCode" type="cct:LanguageCodeType">

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

<xsd:complexType name="LanguageType" id="UBL000013">

 <xsd:sequence>

 <xsd:element name="IdentificationCode" . . .></xsd:element>

 <xsd:element name="Name" . . .></xsd:element>

 <xsd:element name="LocaleCode" type="cct:CodeType" id="UBL000016"

 minOccurs="0">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

3.1.3 Derivation Opportunities

[TBS. Can new simple types be derived and used successfully without the use of xsi:type (which you can’t use on attributes since it’s an attribute)? Can defaults be provided in a derivation? Can facets be set? Would TAAT work here?]

3.1.4 Assessment

Here is how the current UBL method ranks against the requirements. It doesn’t look too good!

	Requirement
	Rank

	Semantic clarity
	High

The various supplementary components for the code are provided directly on the element that holds the code, allowing the code to be uniquely identified and looked up.

	External maintenance
	Low

There is no particular XSD formalism provided for encoding the details of a code list; thus, there is no way for external organizations to create a schema module that works smoothly with the UBL library. However, there are no barriers to creating a code list (in some other form) for use in any code-based UBL element.

	Validatability
	Low

There is no XSD structure for testing the legitimacy of any particular codes. All validation would have to happen at the application level (where the application uses the attribute values to find some code list in which it can do a lookup of the code provided).

	Context rules friendliness
	Low?

If extensions and subsets are to be managed by means of a context rules document at all, there would need to be a code list-specific mechanism added to reflect this method. If extensions and subsets don’t need to be managed by means of context rules because everything happens in the application, there is no need to do anything at all.

	Upgradability
	High

A document creator could merely change the CodeListVersionIdentifier value and supply a code available only in the new version.

	Compactness
	Medium to high

The code is accompanied by “live” supplementary components in the instance, which does swell the instance. However, the latter are in attributes, which is a more efficient way of providing that metadata than elements, which would require end-tags that essentially duplicate the start-tags.

3.2 QName Method

The QName method was proposed in V04 of the code lists paper.

3.2.1 Instance

With the QName method, the code is an XML qualified name, or “QName”, consisting of a namespace prefix and a local part separated by a colon. Following is an example of a QName used in the LocaleCode element, where “iso3166” is the namespace prefix and “US” is the local part [Is this a correct example?]. The “iso3166” prefix is bound to a URI by means of an xmlns:iso3166 attribute (which could have been on a parent element instead).

<LocaleCode

 xmlns:iso3166=”http://www.oasis-open.org/committees/ubl/ns/iso3166”>

iso3166:US

</LocaleCode>

3.2.2 Schema Definitions

QNames are defined by the built-in XSD simple type called QName. The schema definition in UBL must make reference to a UBL type based on QName wherever a code is allowed to appear. For example:

<xs:simpleType name=”CodeType”>

 <xs:restriction base=”QName”/>

</xs:simpleType>

<xsd:complexType name="LanguageType" id="UBL000013">

 <xsd:sequence>

 <xsd:element name="IdentificationCode" . . .></xsd:element>

 <xsd:element name="Name" . . .></xsd:element>

 <xsd:element name="LocaleCode" type="cct:CodeType" id="UBL000016"

 minOccurs="0">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

The intent is for the namespace prefix in the QName to be mapped, through the use of the xmlns attribute as part of the normal XML Namespace mechanism, to a URI reference that stands for the code list from which the code comes. The local part identifies the actual code in the list that is desired.

The namespace URI shown in Section 0 is just an example. However, note that it is likely that the UBL library itself would have to define a set of common namespace URIs in all cases where the owners of external code lists have not provided a URI that could sensibly be used as a code list namespace name.

The documentation for the LocaleCode element must indicate the minimum set of code lists that are expected to be used in this attribute. However, the attribute is allowed to contain codes from additional code lists, as long as they are in the form of a QName.

Applications that produce and consume UBL documents are responsible for validating and interpreting the codes contained in the documents.

3.2.3 Derivation Opportunities

The QName type does have several facets: length, minLength, maxLength, pattern, enumeration, and whiteSpace. However, since namespace prefixes are ideally changeable, depending only on the presence of a correct xmlns namespace declaration, the facets (which are merely lexical in nature) are not a sure bet for controlling values.

3.2.4 Assessment

Here is how the QName method ranks against the requirements.

	Requirement
	Rank

	Semantic clarity
	Low to medium

You have to go through a level of indirection, and a complicated one at that (because QNames in content are pseudo-illegitimate and are not supported properly in many XML tools), in order to refer back to the namespace URI. Further, the namespace URI might not resolve to any useful information. However, in cases where the URI is meaningful or sufficient documentation of the code list exists (something we could dictate by fiat), clarity can be achieved.

	External maintenance
	Low

There is no good way to define a schema module that controls QNames in content.

	Validatability
	Low

All validation is pushed off to the application.

	Context rules friendliness
	Low?

This method is similar to the current UBL method in this respect. If extensions and subsets are to be managed by means of a context rules document at all, there would need to be a code list-specific mechanism added to reflect this method. If extensions and subsets don’t need to be managed by means of context rules because everything happens in the downstream application, there is no need to do anything at all.

	Upgradability
	High

You need to have a different URI for each version of a code list, but if you do this, using a new version is easy: You just use a prefix that is bound to the URI for the version you want. However, there is no magic in namespace URIs that allows version information to be recognized as such; the whole URI is just an undifferentiated string.

	Compactness
	High

The representation is extremely compact because the supplementary component details are deferred to another place (and format) entirely.

3.3 Namespaced Element Method

My understanding is that the namespaced element method is used in the UCC ebXML-based schemas. The idea is that each list is associated with a unique namespaced element, whose content is a code from that list

3.3.1 Instance

The namespaced element method results in instance documents with the following structure.

<LocaleCode

 xmlns:iso3166=”http://www.oasis-open.org/committees/ubl/ns/iso3166”>

<iso3166:code>code</iso3166:code>

</LocaleCode>

As explained in Section 0, the namespace URI shown is just an example, but it’s possible that the UBL library would have to maintain some URIs even for external code lists.

3.3.2 Schema Definitions

The schema definitions to support this might look as follows.

TBS

3.3.3 Derivation Opportunities

[TBS.]

3.3.4 Assessment

Here is how the namespaced element method ranks against the requirements.

	Requirement
	Rank

	Semantic clarity
	TBS

	External maintenance
	TBS

	Validatability
	TBS

	Context rules friendliness
	TBS

	Upgradability
	TBS

	Compactness
	High

Other than the namespace declarations, all the supplementary information is pushed off to some other location, away from the instance.

3.4 Enumerated List Method

The enumerated list method is the “classic” approach to defining code lists in XML and, before it, SGML. In involves creating a type that literally lists the allowed codes.

3.4.1 Instance

The enumerated list method results in instance documents with the following structure.

<LocaleCode>code</LocaleCode>

3.4.2 Schema Definitions

The schema definitions to support this might look as follows.

TBS

3.4.3 Derivation Opportunities

[TBS.]

3.4.4 Assessment

Here is how the enumerated list method ranks against the requirements.

	Semantic clarity
	

	External maintenance
	

	Validatability
	

	Context rules friendliness
	

	Upgradability
	

	Compactness
	

3.5 Instance Extension Method

The instance extension method is apparently used in the ACORD DTDs.

3.5.1 Instance

The instance extension method results in instance documents with the following structure.

TBS

3.5.2 Schema Definitions

The schema definitions to support this might look as follows.

TBS

3.5.3 Derivation Opportunities

[TBS.]

3.5.4 Assessment

Here is how the instance extension method ranks against the requirements.

	Semantic clarity
	

	External maintenance
	

	Validatability
	

	Context rules friendliness
	

	Upgradability
	

	Compactness
	

4 Summary of Strengths and Weaknesses

Here is a summary of the strengths and weaknesses of the different methods.

	Requirement
	Current UBL
	QName
	Namespaced Element
	Instance Extension

	Semantic clarity
	High
	Low to medium
	
	

	External maintenance
	Low
	Low
	
	

	Validatability
	Low
	Low
	
	

	Context rules friendliness
	Low?
	Low?
	
	

	Upgradability
	High
	High
	
	

	Compactness
	Medium to high
	High
	
	

5 Recommendation

Appendix A. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

PAGE
11

