DMA Controller for a Credit-Card Size Satellite Onboard Computer

Michael Meier, Tanya Vladimirova*, Tim Plant and Alex da Silva Curiel
Surrey Satellite Technology Ltd. and Surrey Space Centre*

University of Surrey, Guildford, Surrey, GU2 7XH, UK

Abstract

This paper is concerned with miniaturisation of the on-board data handling system of a small satellite using a system-on-a-chip implemented on a high-density FPGA. The system-on-a-chip consists of a soft CPU core and other intellectual property cores, such as peripherals and supporting modules. An important core in the OBC system-on-a-chip is the Direct Memory Access Controller. The DMA controller handles the data transfer between the main memory and the peripherals bypassing the CPU. The paper first briefly describes the idea of a system-on-a-chip satellite On-Board Computer. The purpose, functionality and design of a suitable DMA controller for the System-on-a-Chip are outlined. Implementation, integration and testing of the DMA controller on a XILINX Virtex-II FPGA are discussed. Experimental and testing results evaluating the design are detailed.

1. Introduction
The Surrey Satellite Technology Limited (SSTL) constructs small satellites with mass of 10 kg to 500 kg. The trend is towards smaller and smaller satellites. The Surrey Space Centre (SSC), which is in close collaboration with SSTL, has a long-term research programme named “ChipSat” [1]. The final goal of this programme is the development of ultra small satellites with a weight less than 100 g. The first stage of the “ChipSat” programme is concerned with miniaturisation of the On-Board Data Handling (OBDH) system. The aim is to design a credit-card size On-Board Computer (OBC) with dimensions of 85 mm x 54 mm and mass about 50 g. The core of such credit-card size OBC is a System-on-a-Chip (SoC) integrated in a programmable logic chip, such as a high-density Field Programmable Gate Array (FPGA).

The SoC consists of soft Intellectual Property (IP) cores including a Central Processing Unit (CPU) and peripheral devices (Figure 1). A Direct Memory Access (DMA) Controller handles data transfers between the peripheral cores and the main memory.
This paper outlines the development of a DMA Controller (DMAC) for the SoC On-Board Computer.
The paper is structured as follows. Section 2 introduces the idea of a small satellite OBC based on a SoC device. A DMAC for this SoC device is introduced in section 3. Section 4 discusses the integration and testing of the DMA Controller with a CPU IP core on a XILINX Virtex-II FPGA prototyping board. Section 5 presents experimental results. Finally, section 6 concludes the paper.
2. System-on-a-Chip On-Board Computer
Figure 1 shows a block diagram of a credit-card size SoC-based OBC, which is intended to be used on future SSTL small satellite missions. Some of the components and interfaces in the SoC are more typical for use in space rather than other applications for example the CAN, HDLC, SpaceWire interface controllers and the EDAC block.

[image: image1.wmf]

Onboard Computer

System on Chip /

FPGA

Memory

Controller

Timers

IRQCtrl

UART

DMA

Controller

AHB/APB

Bridge

AMBA AHB

32bit Data bus

Data Mem

ory

Parity Memory

CAN

Controller

HDLC

Controller

SpaceWire

Controller

AMBA APB

FPU

HDLC

Controller

CAN

Switch

Leon CPU

EDAC

Controller

Boot

PROM

SDRAM

SDRAM

Address/Control bus

RS422

SpaceWire

HDLC1

Up/Downlink

HDLC0

Up/Downlink

CAN0

CAN1

Dual CAN

tra

nsceiver

1.5V Linear

Regulator

+3.3V

+3.3V

+1.5V

CLK

Generator

Configuration

PROM

JTAG

I/O port

PPS out

PPS in

Figure 1: OBC block diagram [2]
The SpaceWire standard is similar to the FireWire standard, but it is developed for usage in spacecraft applications whereas FireWire is developed for consumer electronics products. SpaceWire is a serial interface for a point-to-point connection. It is used to connect other spacecraft components to the OBC. It supports full-duplex data transmission with data rates from 2 Mbit/s to 400 Mbit/s.
The High-level Data Link Control (HDLC) protocol is used on SSTL small satellite missions for up- and downlink transfers from the spacecraft to the ground station. As the name suggests, the HDLC is a second-layer protocol in the OSI reference model. Data rates up to 10 Mbit/s are used for the up- and down-link.

A further interface standard used on SSTL satellites is the Controller Area Network (CAN). It is a serial bus interface and was developed by Bosch for car applications. Its maximum data transfer rate is up to 1 Mbit/s and it is also used to link the OBC with other spacecraft components.

Memory configuration of OBCs is the biggest anomaly against ordinary computers. This is due to satellites flying in Earth orbit where radiation effects can cause bit flips in the main memory of satellite OBCs. Therefore, the memory must be protected. For this protection an Error Detection and Correction (EDAC) controller generates parity information while the data is written into the memory and it checks the parity information against the data information while the data is read from the memory. If the EDAC controller detects a correctable error while data is read, it will correct this error.

Section 2.1 introduces the LEON CPU core and section 2.2 summarises the main points of the on-chip AMBA bus.

2.1. The Microprocessor Core
The heart of the SoC is a highly configurable 32-bit processor IP core compatible with the SPARC V8 architecture, which is written in VHDL [3]. This core, called LEON, was developed by Jiri Gaisler of Gaisler Research while he was working for the European Space Agency (ESA). The LEON microprocessor core implements the CPU instruction set of the Scalable Processor Architecture (SPARC) specified by SPARC International Inc. [4]. The SPARC architecture is a RISC architecture with typical features like linear 32-bit address space and few and simple instruction formats. However, the LEON IP core consists of more than a SPARC compatible CPU. It implements separate instruction and data caches. The CPU provides interfaces to the Meiko FPU and a custom co-processor. A memory controller and some on-chip peripherals such as UARTs, timers, interrupt controller and 16-bit I/O port are integrated. The LEON IP core uses the AMBA-2.0 AHB and APB as on-chip bus.

2.2. The System-on-a-Chip Bus Architecture
The company ARM Limited developed the Advanced Microcontroller Bus Architecture (AMBA) specification [5]. It defines an on-chip communication standard for designing embedded microcontrollers. The following three types of buses are defined:
· Advanced High-Performance Bus (AHB)

· Advanced System Bus (ASB)

· Advanced Peripheral Bus (APB)

The AMBA AHB is for interfacing of high-performance system modules. Normally AHB connects the processor with on-chip or off-chip memory as well as high-bandwidth peripherals. The AMBA ASB is also for high-performance purposes. It is an alternative to AMBA AHB with a reduced interface complexity. In the LEON IP core the AMBA ASB is not used. The AMBA APB is designed for minimal power consumption and reduced interface complexity to support peripheral functions.

AMBA AHB is specified for a non-tristate implementation with multiplexed interconnection between bus masters and bus slaves. The AMBA AHB supports up to 16 masters. The number of slaves is unlimited. Figure 2 illustrates an interconnection structure with two masters and three slaves.

[image: image2.wmf]

Arbiter

Master #2

HADDR

HWDATA

HRDATA

Master #1

HADDR

HWDATA

HRDATA

Slave #3

HADDR

HWDATA

HRDATA

Slave #2

HADDR

HWDATA

HRDATA

Slave #1

HADDR

HWDATA

HRDATA

Decoder

Address and

Control Mux

Read data mux

Write data mux

Figure 2: AMBA AHB multiplexed interconnection [5]
3. The DMA Controller Core
Section 3.1 below gives background information about a DMA controller. Sections 3.2 and 3.3 outline the features and interface signals of the newly designed DMAC.

3.1. Purpose and Functionality of a DMA Controller
As discussed in section 2 the satellite OBC has several high data rate interfaces. There is for instance a SpaceWire interface with a data rate up to 400 Mbit/s to connect to other on-board devices. Another interface is High Data Link Control (HDLC) with up to 10 Mbit/s for up- and downlink to the ground station. All received and sent data must be transferred between the main memory and the interface controller. The DMAC is responsible for these transfers. The CPU allocates a memory block and assigns it to the DMAC. Furthermore, the CPU writes the transfer mode and the peripheral device address to the DMAC registers. After configuring the DMAC there are two possibilities to trigger the data transfer process. In the first option, the CPU sends a start command to the DMAC. In the second option, the transfer will be triggered via a hardware handshake between the DMAC and the peripheral device. In that case the device must be DMA-capable by providing appropriate hardware handshake signals. The minimal hardware handshake between a DMA controller and a peripheral device consists of a request signal. In addition, an acknowledge signal is normally used. If a peripheral device receives data from “outside” the peripheral device asserts the request signal DREQ. The DMAC transfers the received data from the peripheral device controller to the memory and asserts the acknowledge signal DACK. When the transfer is completed a state bit will be set in the DMA controller or the DMA controller causes an interrupt. Figure 3 shows a block diagram of a minimal computer system with a DMAC and a peripheral device.

There are two types of data transfers. In the single-access transfer the DMA controller activates the control and address bus signals, the peripheral device puts its data on the data bus and the memory reads the data, or the memory puts its data on the data bus and the peripheral device reads it. The second technique is called dual-access transfer. Firstly, the DMAC reads the data from a peripheral device or memory and buffers it internally. Secondly, the DMAC writes the data to memory or to a peripheral device.

[image: image3.wmf]

Memory

DMA

Controller

System bus

Peripheral

Controller

CPU

Peripheral

DREQ

DACK

2

1

IRQ

1

Single

-

access transfer

Dual

-

access transfer

2

Figure 3: Computer system with a DMA controller
The single-access transfer has the advantage that a transfer can be executed in only one bus cycle. A dual-access transfer needs a read bus cycle and a write bus cycle. Therefore, the data-throughput of a DMAC with dual-access transfer is only the half of the DMAC with single-access transfer. On the other hand with a dual transfer it is possible to adjust different data widths of different devices (e.g. 32 bits memory and 8 bits peripheral). In some cases the usage of dual-access transfer is inevitable. For example, a memory-to-memory transfer requires a dual-access transfer. Other reasons for the usage of dual-access transfer are restrictions caused by the architecture of the computer system. For instance the non-tristate multiplexer structure of the AMBA bus (Figure 2) makes it impossible to transfer data directly from one bus slave (e.g. peripheral device) to a second bus slave (e.g. memory controller).

A DMAC with its handshake signal set (DREQ, DACK, etc.) and register set (source address register, destination address register, mode register, state register, etc.) is able to serve one peripheral device. However, in most cases a computer system has more than one peripheral device. Therefore, most DMACs are able to handle several devices. These DMACs have several DMA channels. Each DMA channel has its own register set and its own hardware handshake signal set.

3.2. Features of the Designed DMAC
The DMAC is designed for a system using an AMBA 2.0 bus with a big-endian data format. The number of the independent DMA channels is configurable from 1 up to 31. The DMAC executes only dual-access transfers using an internal memory organised as FIFO. The DMAC supports single transfers as well as block transfer. Single transfer consists of an AMBA bus read burst and a subsequent write burst. A block transfer consists of several successive single transfers. The burst length as well as the number of transfers is programmable. The data width of a transfer is programmable from 8 bits up to the data bus width in steps of the power to the base of two (8 bits, 16 bits, …, 1024 bits). A transfer can be triggered by sending a software command from the CPU or by asserting of a request signal DREQ. The controller asserts an acknowledge signal DACK as a response on a hardware request. A peripheral device can break a block by asserting of an end-of-process signal EOP. The controller can generate an interrupt request signals on four different events:
· When a block transfer is completed.

· When a peripheral breaks a block transfer by asserting the signal EOP.

· When a programmed number of single transfers are completed.

· When an error has occurred during the transfer.

3.3. The DMAC Interface Signals
Figure 4 shows all interface signals of the DMAC. The controller has an AMBA AHB master interface to perform the data transfers. Furthermore, it has an AMBA APB slave interface, which is used to access the DMA registers. The signals of these two interfaces are described in detail in [5] and Table 1 describes the remaining signals.

[image: image4.wmf]

HGRANT

HREADY

HRDATA[M

-

1:0]

HRESP

HCACHE

HBUSREQ

HLOCK

HTANS

HADDR[31:0]

HWDATA[M

-

1:0]

HWRITE

HSIZE[2:0]

HBURST[2:0]

HPROT[3:0]

PSEL

PENABLE

PADDR[31:0]

PWRITE

PWDATA[31:0]

PRDATA[31:0]

DM

A controller

AMBA AHB Master interface

AMBA APB Slave interface

DREQ[N

-

1:0]

DACK[N

-

1:0]

EOP[N

-

1:0]

IRQ

N

–

 Number of Channels

M

–

 AMBA AHB data bus width

RESETn

CLK

Figure 4: DMA controller interface
Table 1: Interface signals of the DMAC
	Signal
	Type
	Description

	CLK
	I
	The Clock Input controls the internal operations.

	RESETn
	I
	This signal is active low. It clears internal registers and resets all internal Finite State Machines.

	IRQ
	O
	This signal is the or-combination of the interrupt-outputs of all channels. When at least one channel causes an interrupt this signal will be activated.

	DREQx
	I
	The DMA Request lines are asynchronous channel request inputs. Activating the DREQx input of a channel generates a request. This signal must be held until the controller activates the DACKx signal.

	DACKx
	O
	The DMA Acknowledge output will be activated for one clock cycle when the channel has processed a DMA request.

	EOPx
	I
	A peripheral device can terminate an active DMA block transfer by activation this End of Process signal. The peripheral device must have activated the signal EOPx at beginning of the last clock cycle of the data phase of the write burst. If the peripheral device activates the signal EOPx later, the controller performs a further transfer before it terminates the block transfer.

4. Implementation
This section describes the implementation and testing of the DMAC with the LEON CPU and a DMA-capable device. Section 4.1 introduces a solution for the extension of the LEON memory controller to support the DDR SDRAM memory of the prototyping board. Section 4.2 describes the test environment that was used for on-chip verification of the DMAC.
4.1. Integration of a DDR SDRAM Memory Controller
The DMA controller has been integrated with the LEON CPU core and has been implemented in an FPGA using a prototyping board from Memec [6]. This board comprises a Xilinx Virtex-II XC2V1000 FPGA [7] and 32 MByte Double Data Rate (DDR) SDRAM. For the DDR SRDAM memory a MT46V16M16TG-75 IC [8] from Micron is used.

[image: image5.wmf]

PROM

CS

CE

WE

A

D

I/O

CS

CE

WE

A

D

SRAM

CS

CE

WE

A

D

SDR

SDRAM

BA

CLK

CSN

RAS

A

D

CAS

WE

DQM

LEON

ROMSN[1:0]

OEN

WRITEN

IOSN

RAMSN[4:0]

RAMOEN[4:0]

RWEN[3:0]

SDCSN[1:0]

SDCLK

SDRASN

SDCASN

SDWEN

SDDQM[3:0]

A[27:0]

D[31:0]

A[16:15]

A[14:2]

Figure 5: Memory device interface [3]
The memory controller in the LEON CPU supports the following memory types - PROM, memory mapped I/O, Static RAM (SRAM) and Single Data Rate SDRAM (SDR SDRAM). Figure 5 shows the LEON memory interface to the different types of memory devices.

The LEON memory controller does not support DDR SDRAM as required by the prototyping board used in this project. The DDR SDRAM controller is a complex component and it takes time to design it. Fortunately, a suitable public domain DDR SDRAM controller core, which is written in VHDL, was identified. That is a DDR SDRAM controller core for the same memory IC MT46V16M16TG-75 [8] designed by the German company Array Electronics. The core is published under the conditions of the OpenIPCore Hardware General Public License [9]. Figure 6 shows a block diagram of the developed DDR SDRAM controller for the LEON CPU, which consists of the Array Electronics DDR SDRAM controller and a glue logic block.

[image: image6.wmf]

LEON DDR SDRAM controller

Glue Logic

DDR SDRAM

controller

Data(15:0)

Addr(12:0)

BA(1:0)

DQS(1:0)

CSn

RASn

WEn

CLKE

CLK

CLKn

DM(1:0)

RESETn

RAM_CLK

CPU_CLK

brdyn

data_out(31:0)

data_in(31:0)

address(2

7:0)

ramsn

ramoen

Figure.6: LEON DDR SDRAM controller

The left-hand side of the LEON DDR SDRAM controller in Figure 6 connects to the LEON memory controller and the right-hand side connects to the DDR SDRAM memory IC. The developed glue logic block makes it possible to adjust the user interface of the Array Electronics DDR SDRAM controller to the LEON memory interface.
The Array Electronics DDR SDRAM controller is designed for a clock frequency of 100 MHz. The glue logic is designed such that the DDR SDRAM controller runs at 100 MHz while the LEON CPU core runs at 25 MHz to avoid timing problems in the LEON core.
4.2. Testing Environment
The DMAC was tested extensively. For the verification of all features a series of test scenarios for stand-alone simulations of the DMAC was developed. For each test scenario a test bench was designed to program the DMAC and to monitor its behaviour. The test scenarios runs were analysed thoroughly based on detailed text-file reports generated by the test benches. All of the stand-alone tests were carried out successfully with functional simulation, post-synthesis simulation and timing simulation [2].

For the on-chip verification the LEON core with the DMAC and a DMA-capable UART was implemented in the XILINX Virtex-II FPGA using the prototyping board. A number of testing scenarios like memory-to-memory transfer, memory-to-peripheral transfer and peripheral-to-peripheral transfer were successfully carried out. Furthermore the data transfer rate has been measured during the memory-to-memory transfer scenarios as detailed in section 5.3.

The Universal Asynchronous Receiver-Transmitter (UART) module in the LEON core was selected as a prototype device for the DMA-capable peripheral. An UART can be used for serial interfaces as RS232 or RS422. The bandwidth of RS232 is very low. It supports data rates up to 256 000 kbit/s depending on the cable length. RS232 is based on single-ended data transmission. The interface standard RS422 came into being with differential data transmission. This interface standard supports data rates up to 10 Mbit/s. However, the prototyping board comprised a RS232 transceiver only. So the DMA controller has been tested with this low bandwidth interface only.

To make the UART core DMA-capable the UART entity has been extended by a DREQ output signal for the handshake with the DMAC. If the UART receives a byte it must assert the DREQ signal so that the DMA controller transfers this byte to the memory. In other direction when the UART is clear to send a byte it must assert the DREQ signal so that the DMAC transfers a byte from the memory to the transmitter hold register of the UART. The UART is full duplex capable and it can send and receive data simultaneously. On the other hand a DMA channel and a DREQ signal can support only one data direction at any time. Therefore, an rxDREQ output for the receiver and a txDREQ output for the transceiver have been added to the UART. So one DMA channel can support the transceiver and a second one can support the receiver.

Figure 7 shows a block diagram of the test environment with its relevant SoC components for the on-chip verification. The FPGA contains the LEON IP core with the integrated DMA Controller. The test board is connected via a serial link cable to a Host PC.

[image: image7.wmf]

FPGA prototyping board

FPGA

Memory

Controller

AHB/APB

Bridge

AMBA AHB

Memory Bus

AMBA APB

UART

Leon2

CPU

32

MByte

DDR

SDRAM

DMA

Controller

Boot

PROM

Serial Port

RS232

Tranceiver

RS232

rxDREQ

txDREQ

Figure 7: Environment for on-chip testing
5. Design Evaluation
This section evaluates the hardware implementation of the DMAC. Section 5.1 summarises resource constraints, section 5.2 presents timing results and section 5.3 discusses transfer rates of the DMAC measured using the prototyping board.
5.1. Resource Constraints
The XILINX ISE 6.2i software package was used to implement the DMAC module. The software generates a post-implementation map report, which shows the area of the chip occupied by the DMAC design in terms of FPGA resources such as Configurable Logic Block (CLB) slices, Look-Up Tables (LUT) and Input/Output Blocks (IOB). The map report gives also an estimated value for the total equivalent system gate count for the design. Arguably, this value can be used as a rough estimate of the gate consumption of an equivalent ASIC implementation.

[image: image8.wmf]System gate consumption of the DMAC

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

1

6

11

16

21

26

31

DMA Channels

Figure 8: System gate consumption of the DMAC

The chart in Figure 8 shows the system gate count for the DMAC depending on the number of channels. The values in this diagram are derived as a result of a stand-alone implementation of the DMAC onto a Xilinx XC2V1000 FPGA. As can be seen from Figure 7, the DMAC with 31 channels requires 160 K system gates. In contrast to the DMAC a default configuration of the LEON 2-1.0.13 IP core needs approximately 700 K system gates. Here the system gate count value gives a measure of the proportions between the two IP cores, although, its significance is limited and it cannot be used to express the size of a design. An example of how abstract the gate count value can be is the following. A DMAC with 22 channels, is reported by the software to require 122 K system gates, however it leads to over-mapping of the FPGA, the size of which is being quoted as 1 000 K system gates. On the other hand the LEON CPU core fits nicely in the same FPGA reportedly occupying 700 K gates.
The chart in Figure 9 shows the consumption of CLB slices of the DMAC depending on the number of channels in contrast to a LEON 2-1.0.13 IP core. The left-hand Y-axis displays the absolute number of CLB slices and the right-hand Y-axis is scaled to the available CLB slices in a XILINX Virtex XC2V1000 FPGA. The chart shows that the number of the occupied slices increases proportionally to the number of instantiated DMA channels. With 16 DMA channels 100 % of the available CLB slices are occupied. Although an over-mapping could be expected with the 17th DMA channel, the FPGA is not over-mapped until using 21 DMA channels. This is due to the place and route tool changing its optimisation strategy and exploiting better the area in case when all CLB slices are occupied. However this impairs the timing of the design.

[image: image9.wmf]Consumption of CLB slices of the DMAC

0

1000

2000

3000

4000

5000

6000

7000

1

6

11

16

21

26

31

DMA Channels

0%

20%

40%

60%

80%

100%

120%

DMAC

LEON

XC2V1000

Figure 9: Consumption of CLB slices of the DMAC

The DMAC is designed as an internal IP core for a LEON-based SoC and it does not require any connections between DMAC I/O and FPGA pins. Therefore, the number of the occupied IOBs can be ignored. Furthermore, the DMAC does not occupy any other FPGA resources (BlockRAM, Digital Clock Manager, Multiplier, etc.). Increasing the number of channels increases the usage of the combinatorial logic stronger than the usage of the sequential logic.
5.2. Timing Constraints
5.2.1. Static Timing Analysis
From the placed and routed design and from the known characteristics of the logic cells of the target device the place and route tool generates a clock report. Table 2 shows the maximal clock frequencies of the LEON core and the DMAC depending on its speed grade. These frequencies are derived from the static timing reports of the corresponding implementations. The voltage level and the junction temperature are not considered during this analysis. Naturally, these factors influence the timing as well.

Table 2: Maximal clock frequency of DMAC and LEON core
	Design
	Maximal Frequency

	
	Speed grade –4
	Speed grade –6

	DMAC
	60 MHz
	100 MHz

	LEON
	50 MHz
	60 MHz

These values are only guides for the worst-case delay. Slight changes in the design can cause large fluctuation in routing delays.
5.2.2. Timing Simulation
Timing simulation is the preferred way to verify the timing of an implementation. A VHDL-timing simulation model of the DMAC implementation was used in the timing simulations. For this test the DMAC design was implemented with three channels. Post-synthesis simulations were successful with a clock frequency of 200 MHz, whereas the success of the timing simulations was limited by the clock frequency. The timing simulation tests were carried out using the stand-alone DMAC implementation for the speed grade –4, as well as for the speed grade –6. All 52 stand-alone timing simulations were successful with a maximal clock frequency of 62.5 MHz for speed grade –4 and 66.67 MHz for speed grade –6.

5.3. Data Transfer Rates
The data transfer rates of the DMAC were measured with a system clock frequency of 25 MHz. The transfer rates of the on-chip bus and the DMAC are directly proportional to the clock frequency. For the purposes of the analysis, all transfer rate values are normalised to the theoretically maximal data transfer rate of the AMBA AHB. In the OBC SoC the AMBA AHB has a 32-bit data bus and the system is driven with a clock frequency of 25 MHz. Therefore, the theoretical maximal transfer rate of the AHB is 32 bits x 25 MHz = 800 Mbit/s. If a component in this system would have a transfer rate of 400 Mbit/s, the normalised transfer rate would be 0.5.

In the DMAC design each data transfer consists of a read burst and of a write burst. This halves the transfer rate. The DMAC does not pipeline the read bursts with the write bursts. Therefore, after each burst the DMAC includes an IDLE bus cycle. Figure 11 shows the dependency of the transfer rate on the burst length.

[image: image10.wmf]Transfer rate of the DMAC

0

0.1

0.2

0.3

0.4

0.5

1

6

11

16

21

26

31

Burst length

theoretical

measured

Figure 11: Theoretical and measured transfer rate of the DMAC

The upper curve shows the theoretical transfer rate of the DMAC. With high burst lengths the DMAC can reach transfer rates close to 0.5. The lower curve shows the measured transfer rate of the DMAC. During the measurement the DMAC locks the bus and no other master interferes with the DMAC. Therefore, the measured values are the best case.

The difference between the theoretical transfer rate and the measured transfer rate is caused by the memory. Stand-alone simulations of the DDR SDRAM memory controller with the memory showed that the memory controller has a transfer rate of 0.25. During one transfer the DMAC must read and write the data. Therefore the maximum transfer rate can be 0.125. As can be seen from Figure 10 the measured transfer rate is 0.121, which is very close to the theoretical value of 0.125.

In the real world the system incorporates at least a CPU as an additional bus master. The different masters handicap each other and this decreases the transfer rate of the DMAC. The transfer rate is dependent on several factors, e.g. how often and how long the different bus masters access the bus. Further on, it is dependant on the priorities of the bus masters and the grant strategy of the bus arbiter.

6. Conclusions
This paper describes a DMA Controller for a SoC that is the main component of a credit-card size small satellite OBC. The SoC is based on the LEON CPU IP core and the AMBA bus is used as the on-chip bus. The developed DMAC module is configurable and can have up to 31 channels. The design was tested extensively in a standalone configuration and using an on-chip testing environment. The design addresses the DMA needs of the SoC OBC, however it can be used with any LEON-based system, extending the LEON memory interface to include DDR SRDAM.
The DMAC uses dual-access data transfers only and therefore the bandwidth is less than the half that of the bus bandwidth, which is inherent to the multiplexed AMBA bus architecture. This limitation can be overcome with a dual-master DMA controller and a more complex bus architecture.

References
	 LISTNUM "Reference"
	T. Vladimirova, Prof Sir M. Sweeting: System-on-a-Chip Development for Small Satellite Onboard Data Handling, Journal of Aerospace Computing, Information and Communication (JACIC), AIAA, January 2004

	 LISTNUM "Reference"
	Michael Meier: Design and Integration of a DMA Controller for a System-on-a-Chip, M.Sc. Thesis, Surrey Space Centre/University of Reading, Reading, March 2004

	 LISTNUM "Reference"
	Jiri Gaisler: The LEON-2 Processor User’s Manual Version 1.0.13, http://www.gaisler.com/doc/leon2-1.0.13.pdf, Gaisler Research, August 2003

	 LISTNUM "Reference"
	The SPARC Architecture Manual

http://www.sparc.com/standards/V8.pdf,

SPARC International Inc, 1992

	 LISTNUM "Reference"
	AMBA Specification (Rev. 2.0)

http://www.arm.com/products/solutions/AMBA_Spec.html, ARM Limited, 1999

	 LISTNUM "Reference"
	Virtex-II V2MB1000 Development Board User’s Guide Version 3.0, Memec Design, December 2003

	 LISTNUM "Reference"
	Virtex-II Platform FPGAs: Complete Data Sheet

http://direct.xilinx.com/bvdocs/publications/ds031.pdf
Xilinx, Inc., 14 October 2003

	 LISTNUM "Reference"
	256Mb: x4, x8, x16 DDR SDRAM Data sheet http://download.micron.com/pdf/datasheets/dram/ddr/ 256Mx4x8x16DDR.pdf Micron Technology, Inc., 2003

	 LISTNUM "Reference"
	OpenIPCore Hardware General Public License “OHGPL” http://www.opencores.org/OIPC/OHGPL.shtml OPENCORES.ORG, 19 March 2003

II.

	
	

	
	

	
	

	
	
	

	
	
	

	
	
	

	
	
	
	
	
	

	
	
	

	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	

	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	
	

	

	

	
	

	
	

	
	

	
	
	
	

	

	

	
	

	

	
	
	

C.

Meier
1
208/MAPLD 2004

_1155667078.doc

Leon CPU

FPU

Memory

Controller

Boot PROM

EDAC

Controller

SDRAM

SDRAM

Timers

IRQCtrl

UART

DMA

Controller

AHB/APB Bridge

AMBA AHB

32bit Data bus

Data Memory

Parity Memory

CAN

Controller

HDLC

Controller

SpaceWire

Controller

AMBA APB

HDLC

Controller

CAN

Switch

Address/Control bus

System on Chip /�FPGA

RS422

SpaceWire

Onboard Computer

HDLC1

Up/Downlink

HDLC0

Up/Downlink

CAN0

CAN1

Dual CAN transceiver

1.5V Linear Regulator

+3.3V

+3.3V

+1.5V

CLK Generator

Configuration PROM

JTAG

I/O port

PPS in

PPS out

_1158334002.doc

PROM

CS

OEN

CE

WE

BA

A

D

D

A

WE

CE

CS

I/O

D

A

RAS

CSN

CLK

SDR

SDRAM

D

A

WE

CE

CS

SRAM

CAS

WE

DQM

ROMSN[1:0]

IOSN

WRITEN

RAMSN[4:0]

LEON

RAMOEN[4:0]

RWEN[3:0]

SDCSN[1:0]

SDCLK

SDRASN

SDCASN

SDWEN

SDDQM[3:0]

A[27:0]

D[31:0]

A[14:2]

A[16:15]

_1158691202.doc
[image: image1.wmf]

Leon2 CPU

Memory

Controller

Serial Port

RS232 Tranceiver

DMA

Controller

RS232

txDREQ

AHB/APB Bridge

AMBA AHB

rxDREQ

Memory Bus

AMBA APB

UART

32 MByte DDR SDRAM

FPGA

FPGA prototyping board

Boot PROM

_1155733482.xls
Chart1

		1		1

		2		8

		3		16

		4		32

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

theoretical

measured

Burst length

Normalised Transfer rate

Transfer rate of the DMAC

0.1666666667

0.076

0.25

0.114

0.3

0.119

0.3333333333

0.121

0.3571428571

0.375

0.3888888889

0.4

0.4090909091

0.4166666667

0.4230769231

0.4285714286

0.4333333333

0.4375

0.4411764706

0.4444444444

0.4473684211

0.45

0.4523809524

0.4545454545

0.4565217391

0.4583333333

0.46

0.4615384615

0.462962963

0.4642857143

0.4655172414

0.4666666667

0.4677419355

0.46875

0.4696969697

0.4705882353

Sheet1

		

										burstlen		theoretical		measured

										1		0.1666666667		0.076

										2		0.25

										3		0.3

										4		0.3333333333

										5		0.3571428571

										6		0.375

										7		0.3888888889

										8		0.4		0.114

										9		0.4090909091

										10		0.4166666667

										11		0.4230769231

										12		0.4285714286

										13		0.4333333333

										14		0.4375

										15		0.4411764706

										16		0.4444444444		0.119

										17		0.4473684211

										18		0.45

										19		0.4523809524

										20		0.4545454545

										21		0.4565217391

										22		0.4583333333

										23		0.46

										24		0.4615384615

										25		0.462962963

										26		0.4642857143

										27		0.4655172414

										28		0.4666666667

										29		0.4677419355

										30		0.46875

										31		0.4696969697

										32		0.4705882353		0.121

Sheet2

		

Sheet3

		

_1155734053.xls
Chart1

		1		1		1

		2		2		2

		3		3		3

		4		4		4

		5		5		5

		6		6		6

		7		7		7

		8		8		8

		9		9		9

		10		10		10

		11		11		11

		12		12		12

		13		13		13

		14		14		14

		15		15		15

		16		16		16

		17		17		17

		18		18		18

		19		19		19

		20		20		20

		21		21		21

		22		22		22

		23		23		23

		24		24		24

		25		25		25

		26		26		26

		27		27		27

		28		28		28

		29		29		29

		30		30		30

		31		31		31

XC2V1000

DMAC

LEON

DMA Channels

CLB Slices

Consumption of CLB slices of the DMAC

1

701

4325

1

920

4325

1

1312

4325

1

1540

4325

1

1854

4325

1

2134

4325

1

2446

4325

1

2712

4325

1

3167

4325

1

3278

4325

1

3505

4325

1

3994

4325

1

4026

4325

1

4320

4325

1

4936

4325

1

5030

4325

1

5118

4325

1

5118

4325

1

5118

4325

1

5118

4325

1

5118

4325

1

5118

4325

1

5215

4325

1

5308

4325

1

5812

4325

1

5935

4325

1

6029

4325

1

6406

4325

1

6687

4325

1

6850

4325

1

6821

4325

occupiedSlices

		Channels		XC2V1000		DMAC		Number of Slices containing only related logic		LEON

		1		100%		701		701		4325

		2		100%		920		920		4325

		3		100%		1,312		1,312		4325

		4		100%		1,540		1,540		4325

		5		100%		1,854		1,854		4325

		6		100%		2,134		2,134		4325

		7		100%		2,446		2,446		4325

		8		100%		2,712		2,712		4325

		9		100%		3,167		3,167		4325

		10		100%		3,278		3,278		4325

		11		100%		3,505		3,505		4325

		12		100%		3,994		3,994		4325

		13		100%		4,026		4,026		4325

		14		100%		4,320		4,320		4325

		15		100%		4,936		4,936		4325

		16		100%		5,030		5,030		4325

		17		100%		5,118		4,883		4325

		18		100%		5,118		4,483		4325

		19		100%		5,118		4,308		4325

		20		100%		5,118		3,929		4325

		21		100%		5,118		3,729		4325

		22		100%		5,118		3,909		4325

		23		100%		5,215		3,820		4325

		24		100%		5,308		3,834		4325

		25		100%		5,812		4,523		4325

		26		100%		5,935		4,440		4325

		27		100%		6,029		4,418		4325

		28		100%		6,406		4,897		4325

		29		100%		6,687		5,134		4325

		30		100%		6,850		5,259		4325

		31		100%		6,821		5,026		4325

						1.3671875

_1155733394.xls
Chart1

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

gate count

DMA Channels

System gates

System gate consumption of the DMAC

28026

32528

37974

42031

47047

51614

56415

60304

64941

69937

74141

78596

83121

87396

92601

96122

100735

105845

109447

115460

119314

122909

127422

131569

136394

141045

145646

149605

155241

158691

161874

occupiedSlices

		Channels		XC2Vv1000		gate count

		1		700,000		28,026

		2		700,000		32,528

		3		700,000		37,974

		4		700,000		42,031

		5		700,000		47,047

		6		700,000		51,614

		7		700,000		56,415

		8		700,000		60,304

		9		700,000		64,941

		10		700,000		69,937

		11		700,000		74,141

		12		700,000		78,596

		13		700,000		83,121

		14		700,000		87,396

		15		700,000		92,601

		16		700,000		96,122

		17		700,000		100,735

		18		700,000		105,845

		19		700,000		109,447

		20		700,000		115,460

		21		700,000		119,314

		22		700,000		122,909

		23		700,000		127,422

		24		700,000		131,569

		25		700,000		136,394

		26		700,000		141,045

		27		700,000		145,646

		28		700,000		149,605

		29		700,000		155,241

		30		700,000		158,691

		31		700,000		161,874

				700,000

				700,000

						1.3671875

_1135657340.doc

Arbiter

Master #2

HADDR

HWDATA

HRDATA

HRDATA

HWDATA

HADDR

Master #1

Slave #3

HRDATA

HWDATA

HADDR

HRDATA

HWDATA

HADDR

Slave #2

HRDATA

HWDATA

HADDR

Slave #1

Decoder

Address and Control Mux

Read data mux

Write data mux

_1138903551.doc

HPROT[3:0]

HBURST[2:0]

HSIZE[2:0]

HWRITE

HWDATA[M-1:0]

HADDR[31:0]

HTANS

HLOCK

HBUSREQ

HCACHE

HRESP

HRDATA[M-1:0]

HREADY

HGRANT

DACK[N-1:0]

DREQ[N-1:0]

AMBA APB Slave interface

AMBA AHB Master interface

DMA controller

PWDATA[31:0]

IRQ

N – Number of Channels

M – AMBA AHB data bus width

PWRITE

EOP[N-1:0]

PADDR[31:0]

PENABLE

PSEL

PRDATA[31:0]

RESETn

CLK

_1135616502.doc

CPU

Single-access transfer

Memory

1

DMA

Controller

System bus

Dual-access transfer

Peripheral Controller

2

Peripheral

IRQ

DREQ

2

1

DACK

_1129460361.doc

DQS(1:0)

CLKn

CLKE

WEn

RASn

CLK

CSn

BA(1:0)

LEON DDR SDRAM controller

Glue Logic

Addr(12:0)

DDR SDRAM controller

Data(15:0)

DM(1:0)

RAM_CLK

CPU_CLK

brdyn

data_out(31:0)

data_in(31:0)

address(27:0)

ramsn

ramoen

RESETn

