PAGE  
15

31
The Problem


31.1
Introduction


41.2
About animation


41.2.1
Cel animation


51.2.2
CGI animation


61.3
Lip synchronisation


61.4
Empathy


71.5
The impact


72
Previous work


82.1
Changing faces


82.1.1
Muscle-based face modelling and animation


92.1.2
Morphing techniques


92.2
Motion capture methods


92.2.1
Marker systems


102.2.2
Facial cue recognition


112.2.3
Physical probes


112.3
Vocal cues


123
My Solution


123.1
Objectives of the system


133.2
System Design


133.2.1
Data collection


133.2.2
The marker extractor


133.2.3
The Maya plug-in


163.3
Marker extractor implementation


163.3.1
Filming a sequence


193.3.2
Digitising the sequence


203.3.3
Marker recognition


253.3.4
Frame capture


263.3.5
Optimisation


273.3.6
Output


283.4
Maya plug-in implementation


283.4.1
File input


283.4.2
Objects


303.4.3
Cluster transformation


313.4.4
Keyframing


333.4.5
3D Effect


334
Results


354.1
Effectiveness


Error! Bookmark not defined.4.1.1
Lip reading


Error! Bookmark not defined.4.1.2
Empathy


354.2
Processing costs


354.2.1
Marker processing time


354.2.2
Marker processing optimisation


374.2.3
Animation time


374.3
System requirements


144.4
Technologies used


144.4.1
Delphi


144.4.2
Visual C++ and the Maya API


154.4.3
Maya


Error! Bookmark not defined.5
Results


376
Extensions


376.1
Full-facial system


376.1.1
Marker extensions


376.1.2
Single marker colour system


416.1.3
Eye tracking


426.2
Nonhuman faces


426.3
Networking


436.3.1
Avatar chatting


436.3.2
Games and avatars


456.3.3
Virtual videoconferencing


466.3.4
Speaking email


Error! Bookmark not defined.6.4
Expression emphasis


Error! Bookmark not defined.6.4.1
Current trends in children’s programs


Error! Bookmark not defined.6.4.2
How to implement it


467
Conclusion


478
Bibliography


499
Appendices


499.1
Appendix A: Files


509.2
Appendix B: Maya classes


519.3
Appendix C: Delphi classes


5110
Index




1 The Problem

1.1 Introduction

Animation has traditionally provided a way for film makers to express themselves without having to use real people, objects and scenarios. Characters can be any shape, size or entity, and don’t have to move or act according to any specific rules. Very early animation almost never tried to be realistic, but there is a recent trend towards realism in animation, fuelled by the advent of CGI XE "CGI"  [Computer Generated Image] animation. Faster processing speeds and more sophisticated graphics techniques yield smoother, more detailed animation.

Real objects, such as animals and vegetation, do not move in very regular patterns. They behave erratically as a result of internal and external influences. An example of an internal influence would be motion compelled by conscious thought rather than by reflex, and an external influence could be wind. To achieve realism, depictions of living entities must move in the same slightly erratic way as the entities on which they are modelled.
Humans are especially difficult to animate realistically. Even when we are sitting still, we are seldom totally stationary.
Lip synchronisation and facial animation are two of the most vital elements in shots focused on the upper body. Facial expression plays a large part in human communication, as does lip synchronisation, within the context of animation. Facial expressions are fairly difficult to recreate perfectly, but lip synchronisation has always been difficult to emulate accurately, and time-consuming when accuracy is the goal. This project attempts to create a system that will make accurate lip synchronisation automatic and easy.
1.2 About animation
1.2.1 Cel animation XE "Cel animation" 
The first known animated film, “Un bon bock”, was produced by Emile Reynaud in 1888. It consisted of a series of drawings made on cellulose that were projected by a device of his own invention [3]. Emile Cohl (1857-1938) produced the first animated film produced by photographing drawings on paper, called “Fantasmagorie”, in 1908 [Crandol, 1999].
The first true pioneer of character animation was Winsor McCay (1867-1934). From 1911 to 1921, he worked to elevate the art of animation from a simple camera trick to full-blown character animation. He conceived and produced all animations by himself, often taking more than a year to complete a 5 minute sequence. His film “Gertie the Dinosaur” [1914] is considered the first landmark animated film.
Drawings were originally done on paper, but a John Bray Studio employee called Earl Hurd developed a process in 1914 whereby the drawings were done on colourless cellulose [the origin of “cel XE "cel" ”] and then photographed to produce the final image.

Max Fleischer patented the Rotoscope XE "Rotoscope"  in 1916. This allowed animators to trace over live action footage, which gave the characters realistic movement.
Animation studios soon sprang up, with teams working to produce animations. A senior artist draws keyframes XE "keyframes" , which are cels depicting a notable event, such as the beginning or ending of a certain motion. The keyframe cels are then be passed down to junior artists to fill in the cels producing the actual movement. After the line drawings are completed, the cel sequences are handed over to a colourist to be filled in with colour. This process has remained unchanged for decades. Cel animation is still in use by many animation houses, but is occasionally mixed with or replaced by CGI animation. 
The Walt Disney Studio was created in 1928, and has dominated animation ever since. Walt Disney himself, unlike many other heads of animation houses, was involved in the production of his films. He steered his artists away from the “rubber hose” style of animation, so called because of the boneless motion given to animated characters until then, and toward more realistic and natural movement. Disney Studios produced the first full-length animated movie, “Snow White and the Seven Dwarfs” in 1940.
1.2.2 CGI XE "CGI"  animation

CGI animation is a relatively new animation method. Although CGI has been in development since the 1950’s, using it for animation has only truly taken off in the last fifteen years.

CGI animation can be used in either a 2D or a 3D environment. 2D CGI animation is very similar to traditional cel animation, but for the notable difference of medium. Instead of drawing the images on paper, the cels are produced using graphics programs on a computer, which can handle keyframes and tends to animate the images by morphing between them.
The first CGI to be used on film was created in 1961. John Whitney Snr. devised the introduction to Alfred Hitchcock’s Vertigo on an analogue computer.  The first digital human was created by an employee of Boeing to be used in cockpit studies in 1963 [Carlson, 2001]. “Westworld”, made in 1972, featured a view through the eyes of a robot generated by 2D CGI, the first to be used in-film and not just to create the opening logo. It’s sequel, “Futureworld”, displayed the first use of 3D CGI in a motion picture [Morie, 1998].  1981 brought “Tron”, which made extensive use of 3D CGI and required four major animation companies to fulfil the vision of a world inside a computer. The first commercially-released CGI animation appeared in 1992, titled “Gas Planet”
. The first full-length CGI motion picture was “Toy Story”, released by Pixar
 in 1995. 
1.3 Lip synchronisation XE "Lip synchronisation" 
Lip synchronisation was a skill that took years for an animator to perfect. The animator would have to work frame by frame to produce convincing lip motion. A voice actor would then have to fit a vocal performance to the animation. One mistake in timing could ruin the entire sequence.
Apart from needing a very skilled animator, the big drawback to good lip synch was the amount of time it took. Creating the preliminary animations was an arduous task, and an inept voice actor could add days to a schedule by making mistakes.
With the advent of CGI, an obvious solution to the problem of accurate lip synch is to record lip motion during the actor’s performance, and then generate the appropriate lip motions using the data. This makes lip synch almost instantaneous, and frees animators up to perform other tasks.

This approach was partly tried by animators at Industrial Light and Magic during work on “Dragonheart” in 1996. The film required a dragon that could talk, with Sean Connery supplying the voice. Lip synchronisation was achieved by making 2D drawings based on Sean Connery’s lip movements while recording his part, and then using those drawings to animate the dragon’s speech [Cotta Vaz, 1996]. The problem with this approach is that it still requires an animator to draw the input pictures and then animate the model. This makes it a more realistic solution than previous attempts at lip synch, but still time-consuming.
1.4 Empathy
Inaccurate lip synchronisation can effectively ruin an animation. To enjoy a movie, the viewers must get involved. To do this, they must identify and empathise with the characters. If they perceive that the characters are acting in a non-human way, then it is extremely difficult to feel any empathy with them and to become truly involved in the movie. Serious scenes may become humorous simply because the speech is slightly out of synch with the characters’ lip movements. Years of badly-dubbed Japanese films have created a running joke among the movie-going community. XE "Empathy" 
1.5 The impact 
The most immediate impact of a user not enjoying the film is that they will tell other potential movie-goers, whether they are a critic writing for a newspaper or simply a friend talking about the film to another friend. Word of mouth has a powerful impact on the box office ratings of a newly-released film.

Accompanying the drop in viewers comes a significant drop in revenue. SquareSoft Studios released “Final Fantasy” in 2000. The film cost around one hundred million dollars to produce, and was touted as “the next big thing” because it was the first CGI film to strive for utter realism. It succeeded in most of its realistic targets, but failed in a major one, namely in characterisation. Users on internet chat groups and message boards slammed the film for having “inhuman” characters. One of the major gripes among viewers was that the speech did not look realistic at all. Although there were a few other major problems that viewers claimed to have with the movie, problems with character animation and speech was mentioned most often.

“Final Fantasy” made around eleven million dollars at the box office. That meant that it lost around eighty-nine million dollars. SquareSoft studios have no future plans for further films.
2 Previous work

A similar, though more complex system than the one developed here has been developed by Michel Bondy and others at the University of Ottawa [Bondy et al, 2001]. It aims to produce a fully animated 3D head model from an audio track input, and incorporates automatic face modelling, marker tracking, facial feature tracking and lip motion generation from an audio track. 

Another system dealing with face model animation and lip synchronisation for cartoons, but focussing also on expression synthesis has been developed by a team at Microsoft’s Research Centre in China [Li et al, 2001].

Yet another integrated system for face modelling, animation and lip synchronisation has been developed by researchers at the University of Illinois [Hong et al, 2001]. This uses facial cues and a motion unit-based system to animate a realistic face.

These systems work with various combinations of the following:

2.1 Changing faces

There are a few different methods for animating a face model. The works cited above use either of the following:
2.1.1 Muscle-based face modelling and animation
This method seeks to animate a face model by simulating the effects of movement of the underlying facial muscles. Some systems attempt to simulate muscles and tissues directly with layers of meshes, but this method is computationally intricate and complicated. Other methods use a face mesh that is deformed by moving the control vertices forming the mesh [Hong et al, 2001]. The human face has a diverse and complex system of muscles, but virtually the entire spectrum of expressions can be covered by moving only seven pairs of facial muscles and the jaw [Bondy et al, 2001]. The simulation defines area of effect on the facial mesh for each muscle, i.e. control vertices forming the face mesh were placed in sets controlled by one muscle. Control vertices could be affected by more than one muscle, and were consequently placed in more than one set. Bondy’s team defined forty-four Action Units [AU’s], which are representations of basic facial muscle actions; this relatively small number of controls was able to reproduce all fifty thousand visually distinguishable facial expressions by combining AU’s.
AU’s are defined during a training phase by recording a sample video of a subject speaking. In this case, subjects are asked to count in French from one to ten. After recording and digitising the sample, the audio track is segmented to give an audio sample for each frame. This audio frame is then analysed, and a number of important points are marked. A Principle Component Anaylsis [PCA] run using audio data and data representing the shape of the mouth for that frame yields the forty-four basic action units.
Hong and his team use a very similar method. They define sixty-two points on the face, and create a mesh linking them. A subject is then asked to pronounce all of the English phonemes [see Error! Reference source not found.]. The system then works through the video frame by frame and attempts to refit the mesh to the points on the face. If this has any difficulty, a graphic interface allows a controller to manually refit points. This is also subjected to a PCA, and the resulting basic positions as represented by the mean facial deformations and the first seven eigenvectors are called Motion Units, as opposed to Action Units.
2.1.2 Morphing XE "Morphing"  techniques

Morphing works in a similar way to keyframe animation; a number of distinct states, i.e. keyframes or mouth positions are used as important states, and then some method of filtering or animation changes the picture from one state to the next. 

Li et al [2001] use a series of pre-drawn cartoon faces and low-pass filtering to animate a face sequence. They focus on two areas of interest, namely lip motion and facial emotion. Lip motion is reconstructed from an analysis of phonemes in the audio soundtrack. Emotion is also drawn from the soundtrack. During a training period an array of support vector machines are taught to recognise four different emotions in the speech signal. They are then able to analyse a new audio track and produce a total emotive curve that is a combination of various levels of the four emotions. This is combined with the lip movements gained by analysing phonemes to produce a total face model.
2.2 Motion capture XE "Motion capture"  methods

2.2.1 Marker systems

Markers used in motion capture can either be visual or electronic. Electronic markers can transmit radio signals from each marker so that receivers can pinpoint their positions and animate models accordingly. Visual markers need to be recognised by an image processing system to extract their positions. 

Both of these methods have advantages and disadvantages. Visual systems are comparatively inexpensive and simpler to operate, but have a limited ability to transmit data, especially when used in a full-body scenario or on a face that is moving and rotating a lot, since the markers are useless if they become obscured. They also tend to supply much less three-dimensional data than electronic systems, since the image processing systems may not be fine enough to detect a change is the size of the marker, which reflects a change in the Z direction relative to the camera.

Electronic marker systems are much more accurate than visual systems when transmitting data from points that are undergoing large amounts of motions in all three dimensions, since they can transmit their absolute positions regardless of the position of the actor. They are, however, expensive and complex to set up, and may be too bulky to wear on the face without interfering with the actor.

Many animation companies use a combination of both systems to record animation data. Electronic systems are used to capture data front full-body motion, while visual markers are used on the face, which is usually filmed by a head-mounted camera so that the actor can move as freely as possible [Links DigiWorks, 2002].
Some commercial systems currently available include Vicon 8i
, vTracker
 and Si 2.0
.

The Vicon 8i system uses visual markers, but has a large array of cameras co-ordinated by a high-speed system to track the markers from all angles [Bohlen, 2002].  
2.2.2 Facial cue recognition

Hong et al [2001] attempt to use facial cue recognition to alter a mesh formed from sixty-two points on the lower face, which is then in turn used to alter a face model. This is a difficult motion capture method, because it does not look for a single type of visual cue, as with marker systems. It needs to look for cues such as the corner of the mouth and the middle of the chin, which are not easy to define. Hong et al admit that their system sometimes needs an operator to tweak the mesh into position if the system cannot follow the facial cues accurately. 

Facial cue recognition tends to be easier when dealing with the upper half of the face, since the eyes provide distinct shapes and colour changes. 
Bondy et al [2001] use a method called Structure from Motion, which attempts to transform an object by analysing input gained during motion. Their particular implementation of this method uses a perspective camera model to convert the 2D video stream of a subject’s head into 3D estimates of the position and orientation of the head. This system can recognise and separate out the head from the background by using facial cue recognition to identify relevant features on the face.
2.2.3 Physical probes 

One of the first methods to gain input directly from the human body was through use of a device called a goniometer, which were potentiometers attached to whichever part of the body that was being scrutinised. For example, if the knee joint was under study, then a potentiometer would be connected across it. This system was developed in 1983 by researchers at the Simon Fraser University, and drove animated figures which provided input for choreographical studies and movement disorders. This method was not particularly flexible, and could only provide input for a limited number of joints at one time.

The next breakthrough in non-visual motion capture methods was developed by SimGraphics in 1992. Called a face waldo, it was comprised of a helmet with mechanical sensors attached to the chin, lips, cheeks and eyebrows and an electromagnetic device attached to the helmet, which provided positional data. It was used to drive a character that, among other things, was used to promote Nintendo’s Super Mario Brothers game, by having a CGI Mario character projected on a screen at shows and controlled by an actor hiding backstage. This allowed the character to interact with the audience and presenters. At first, the system was slightly unreliable, and fairly uncomfortable, but SimGraphics has been working to improve both reliability and comfort [Sturman, 1994].
Although other mechanical input devices have been developed, they do not use direct input from the face, which is the focus of the project, and are therefore not going to be mentioned here.
2.3 Vocal cues
It is well known that facial coarticulation is highly correlated with the vocal track. Speech as an import media has been used to drive to face models. Speech-driven face animation takes advantage of the correlation between speech and facial coarticulation. It maps audio tracks into face animation sequences. The audio-to-visual mapping can be learned from an audio-visual database [Hong et al, 2001].
An audio signal can be analysed at three different levels from low to high: front end [signal level], acoustic model [phoneme level] and language model [word level]. The advantages of the first two levels is that they are language-independent, so that a system trained using Chinese input will be able to work with an English input as well [Li et al, 2001].

The problem with using phonemes is that there is no standard definition for a phoneme; in this case it can be thought of as a distinct syllable, e.g. ‘ma’, ‘noo’, etc. Another problem is that a speech engine must be incorporated into the system to extract phonemes from the audio signal, which has a bad time impact on a realtime system.
Li and co. use the lowest level of signals, which can be visualised as a sound, e.g. ‘aaa’, ‘eeee’, and maps them to a visual signal, in this case a drawing of a mouth.

The audio signal is once again split into audio frames, which correspond to a single video frame, and analysed to produce unique values for each unique sound. During a training period, a spline representing a mouth shape is mapped to each unique audio value, so that a series of mouth shapes can be reconstructed for each audio sequence.

Bondy et al also use speech as an input for animation. They also map low level sounds to lip shapes, as does Li and co., but actually animate a face model rather than morphing between a series of 2D images. After testing their system for speech-driven lip animation, the width of the lips in the animation produced by an audio input were tested against the lip widths of the video from which the audio sequence was taken, and the standard deviations for both ale and female subjects were between 1.0 and 2.5 pixels, which is very low, making this an accurate lip motion synthesis system.
 XE "Phonemes" 
3 My Solution

3.1 Objectives of the system

The major objective XE "objective"  is to produce a system that accurately produces facial animation and lip synchronisation from a video clip input. Other objectives include building the system to run on computers that do not have to be particularly fast or graphics-capable, as well as designing the system to be as useable as possible, i.e. simple and fairly intuitive to use.
3.2 System Design
The system is divided into two halves: the marker extractor and the Maya plug-in. This separation gives the ability for data collected by the marker collector to be used by plug-ins for other graphics packages. The system would have been extremely difficult to develop solely in Visual C++ since it needs to make use of video and frame capture controls, which are easy to work with, and available in Delphi, hence the split in the system.
3.2.1 Data collection

The input video XE "input video"  for the marker extractor is a clip of a person face while they are speaking. The person must have a system of markers stuck to their face [see 3.4.1]. The markers can be made of any material as long as they are matte and have colours that are not found elsewhere in the video. The input video must be digitised. 
3.2.2 The marker extractor

The marker extractor XE "marker extractor"  accepts a video clip and produces a file containing marker information as an output. It is developed in Delphi 6.0. It uses image scanning methods to extract the locations of the markers by using colours selected by the user from a sample image taken from the video clip.
3.2.3 The Maya plug-in XE "Maya plug-in" 
The plug-in accepts as input the file produced by the marker extractor, and translates and keyframes user-defined clusters on a face mesh to produce an animation running at the same speed as the original input video, easily facilitating splicing in the audio from the original video. The code is written in C++, using Microsoft Visual Studio and the MSDN library, as well as the Maya plug-in API and the Maya Plug-in Wizard.

3.3 Technologies used

3.3.1 Delphi

Delphi is a RAD development environment, which uses Visual Pascal as its programming language.
Development in Delphi was fairly easy, although it does not have much functionality for dealing with images and image processing. If it had had a bit more functionality in that area, development would have been a bit faster, and possibly would have produced code that was more optimal than the code produced by using basic structures, e.g. scanlines 

The advantage of using Delphi is that it is the one remaining RAD [Rapid Application Development] tool that can produce standalone executables, i.e. not requiring a framework to run, such as the JVM for Java and the VBRUN dll’s for Visual Basic. This extends its usability, since it decreases the number of minimum requirements needed to run the system.

The most frustrating aspect of coding the marker extractor in Delphi was the Delphi help system. It is difficult to find the exact reference that one is looking for, mostly since the help system also leans towards databases, INDY and others, and does not cater very well for programmers who are not very skilled in Delphi programming. This is a rather large mistake on Borland’s part, since new Delphi programmers trying to learn to code will be put off by this lack of support.
3.3.2 Visual C++ and the Maya API

Visual C++ is part of Microsoft’s Visual Studio. It provides C++ with GUI controls and functionality. The Maya API provides classes to write plug-ins that interface with Maya. It is written in C++, and the recommended development environment for Windows is Visual C++.
Setting up the plug-in development environment in Visual C++ becomes easy when the Maya Plug-in Wizard is used, since that sets up all environmental variables, and generates basic code very easily.

The Visual C++ help and the MSDN library makes development in Visual C++ quite easy. 

The Maya API is incredibly difficult and frustrating to use. Maya’s structural complexity is repeated and heightened in its API. Developers of the API could have opted to attempt to simplify the language a bit, but instead have made it very complex. For example, to translate an object and set a keyframe for both its X and Y attributes requires around 80 lines of code and the instantiation of numerous types. A simpler way would be to create what could be viewed as an interface for an interface, i.e. an API that interacts with the current Maya API, which would accept code like


Sphere1.Create(radius, xpos, ypos, zpos);


Sphere1.translateBy(1.0, 3.0, 0.0);


Sphere1.setKeyFrame(“xy”, time);

While the complexity of the code may offer higher functionality, it severely reduces usability by adding a very steep learning curve to programming with the API.

This could have been remedied by a well-thought-out API programming guide and help system, but the API guide is fairly useless to programmers learning how to use the API, and the help system is very incomplete, lacking references for most of the important aspects of modelling and animation. As an example, the help system and the API guide have no references describing object creation, selection and translation, as well as keyframing. This is a rather large oversight, considering that these functions form the base of modelling and animation.
3.3.3 Maya

Maya is a 3D graphics package for modelling, animation and rendering. It is used by modellers and animators at all levels, from amateurs to professional animation companies.  

Maya uses a fairly complex system of nodes to describe objects, materials and many other structures of its 3D environment. Unlike the API, however, its help system is comprehensive and supportive of people learning to get to grips with its complexity. Its tutorials are very well laid out, with step-by-step instructions and images.

3.4 Marker extractor implementation
3.4.1 Filming a sequence
3.4.1.1 Marker colour selection XE "Marker colour selection" 
The purpose of the markers is to provide reference points on the face that are distinguishable from the face and background. Although they do not have to be extremely prominent, they must not be of a colour found on the face or in the background. This system makes use of four pairs of individually coloured markers. The colours are not fixed, i.e. there are no set colours that must be used, and are made known to the system at the beginning of the marker extraction process (see Marker recognition).
Important considerations to be made when selecting the colours include the following: 

1. Subject’s skin tone

2. Subject’s eye colour

3. Subject’s lip colour

4. Subject’s teeth colour

5. Subject’s hair colour

6. Colour of subject’s clothes [if visible]

7. Lighting colour

8. Background colour

For example, a subject with a very dark skin, hair and eyes has a fairly wide range of colours to choose from, as long as they remain light enough to be distinguishable against their skin. However, in this case care must be taken not to use colours that are too light, since they may be present in the subject’s teeth or the white of their eyes. 

At the opposite corner of the spectrum, a subject with bright red hair, sallow skin, vivid blue or green eyes and red lips has a much more restricted set of colours that may be used. In this example, ideal colours would include fairly dark purples, mauves and maroons, blues and greens [depending on eye colour], and day-glo colours such as lime green.
3.4.1.2 Marker tester
A small application called markertester.exe XE "markertester.exe"  had been included in this system. It allows the user to load a picture, and then when the user clicks on a point in the picture that has a certain colour it displays a small white cross over every instance of that colour that occurs in the picture.
This allows the user to test a setup for correct marker colours, since if the marker in the picture is clicked then the only places that should be marked are within the bounds of the marker.

It works by scanning the image line-by-line, comparing the colour of each pixel with a colour specified by the user and marking each colour match with a small white cross. This makes it very easy to see which areas certain colours appear in.
It uses the same scanning and colour extraction methods as the marker extractor [see Figure 3‑2 and Figure 3‑4]

3.4.1.3 Marker material

The markers XE "markers"  used to test the system are coloured pieces of card with adhesive backing. This works very well, since the card used is matte XE "matte" , with a strong, bright, even colour. Another alternative would be to draw the markers on the face with a felt-tip pen or something similar. This may be problematic, since the opacity of felt-tip pens is not very high, and would therefore be more difficult to distinguish against the skin. However, it would ensure that the markers do not move while recording a sequence, as paper markers applied with water-soluble glue may become unstuck quite easily, especially if they are placed in an area where the skin stretches constantly, e.g. a corner of the mouth.
Three-dimensional objects or objects that have a shiny finish, such as beads or shiny plastic markers should not be used, as the reflectivity of the surface will distort the colour of the marker. Best results will be obtained by using totally matte markers, since they will display the largest areas of the same colour.
3.4.1.4 Marker placement XE "Marker placement" 
This system works with a specific positioning of eight markers [see Figure 3‑1]. They are:

1. Bridge of nose

2. Tip of nose

3. Bottom of nose

4. Middle of upper lip

5. Left corner of mouth

6. Right corner of mouth

7. Middle of bottom lip

8. Cleft of chin

[image: image1.jpg]



Figure 3‑1 Basic marker placement
The markers at the bridge and the tip of the nose are not used for animation. They are rather used as references, to keep track of head motion. If the subject rotates their head, then the offset between the X values of the markers can be used to rotate the rest of the points so that the marker positions do not become distorted. The marker on the chin keeps track of jaw motion, which can be independent of lip motion. The four markers around the mouth provide feedback on lip movements. These markers could be increased in future versions to provide finer detail on the motion of the lips. The marker underneath the nose does not currently provide any feedback, and can be left out of the system. 
3.4.1.5 Backgrounds XE "Backgrounds" 
The background should be kept as neutral and constant a colour as possible. Black would probably be the most ideal colour, since no shadows would be cast on it, unlike a white background. Once again, the background should be utterly matte, i.e. nonreflective, since reflectivity may add more colour to the image, which is not preferable.
3.4.1.6 Lighting XE "Lighting" 
The ideal lighting setup for filming a sequence involves a fairly strong white light, i.e. a tungsten bulb or fluorescent light, since white light would make colours more vivid than ordinary yellow bulbs. Shadows should be avoided, since they will change the colour of the marker if they fall across them. Try to angle the light so that it shines almost straight into the subject’s face. The system is not concerned with the contours of the face, which will disappear under strong light. It only deals with the placement of the markers, which must be well lit to avoid colour changes due to shadows. 
3.4.2 Digitising the sequence XE "Digitising the sequence" 
There are many different methods for producing and digitising, if necessary, video footage. Test input for this system was recorded using a hand-held camcorder, and digitised using a computer with a TV card. Sample video was originally compressed using the DIVX
 codec XE "DIVX codec" , but that method was suspended when the codec’s colour-distorting compression interfered with the marker extractor algorithms.

The aspect ratio XE "aspect ratio"  of the input footage does not have to be anything specific. The resolution XE "resolution"  can affect the marker extraction process in a couple of ways:

1. A low resolution may make it difficult to find the markers to set the marker colours, since they are fairly small in comparison to the area of the face. Also, if the aspect ratio is very low, then the markers may not appear at all, since the colours may be distorted when the colours are averaged out to form “blocks”.

2. A very high resolution will affect the processing time of the marker extractor
3.4.3 Marker recognition XE "Marker recognition" 
3.4.3.1 Colour picker XE "Colour picker" 
The colour picker uses the MouseDown event of the Delphi TImage component to record the coordinates of the pointer relative to the image when the picture is clicked. It then uses the Scanline method of TPicture to access the byte data at the same coordinates in the TBitmap object, which is where the actual image information is stored. TBitmap is used as a child object of TPicture. 

The colour data is reassembled according to the code below [Error! Reference source not found.].

	function makeCol(line: PBytearray; pos: Integer) :TColor;

var

pointr, pointg, pointb: Integer;

sr, sb, sg, final: String;

begin

        pointr := line[pos*3];

        pointg := line[pos*3+1];

        pointb := line[pos*3+2];

        sr := inttohex(pointr,2);

        sg := inttohex(pointg,2);

        sb := inttohex(pointb,2);

        final := '$00' + sr + sg + sb;

        makecol := stringtocolor(final);

end;




Figure 3‑2 Colour extraction code
3.4.3.2 Tolerance
Simply scanning the image looking for exact matches for certain colours will not yield very consistent results, as the slightest changes in the position and lighting of the subject will change the colours that are found in the face. Even the smallest change in colour, e.g. a change of one in any of the red, green or blue attributes causes the colour searcher to miss the colour. A better method of dealing with colour matching is to look within a range of colours when attempting to find the markers. This range can be defined as

col-tol <= col <= col+tol

where col is the marker colour and tol is the tolerance level. The method for checking to see if a colour falls within this range is shown below [Figure 3‑3]. This particular example checks red before grebe and blue, and is therefore not optimised for scanning faces, which tend to have more red than green or blue [see 3.4.5 Optimisation – page 26]
	function withinTol( col1, col2:TColor):Boolean;

var

r1, g1, b1, r2, g2, b2: Integer;

tol: Integer;

begin

tol:=0;

//col1 = the colour of the picture pixel

//col2 = the colour to compare

if (leftstr(colortostring(col1),1)<>'c') and (leftstr(colortostring(col2),1)<>'c') then

        begin

        r1 := strtoint('$'+ midstr(colortostring(col1), 3, 2));

        r2 := strtoint('$'+ midstr(colortostring(col2), 3, 2));

        g1 := strtoint('$'+ midstr(colortostring(col1), 5, 2));

        g2 := strtoint('$'+ midstr(colortostring(col2), 5, 2));

        b1 := strtoint('$'+ midstr(colortostring(col1), 7, 2));

        b2 := strtoint('$'+ midstr(colortostring(col2), 7, 2));

        if (r2>=r1-tol) and (r2<=r1+tol) then

                begin

                if (g2>=g1-tol) and (g2<=g1+tol) then

                        begin

                        if (b2>=b1-tol) and (b2<=b1+tol) then

                                begin

                                withinTol := True;

                                end

                        else

                                withinTol := false;

                        end

                else

                        withinTol := false;

                end

        else

                withinTol := false;

        end

else

        withinTol := false;

end;



Figure 3‑3 Tolerance testing function
3.4.3.3 Double-scan method

The double-scan method works by running through each frame twice. It only looks at every second line of the picture in an effort to speed up processing time. On the first sweep it finds the biggest patch of each of the four marker colours, and stores the coordinates of the middle of the patch, and well as the approximate radius of the patch. On the second sweep, it again finds the biggest of each of the patches, but disregards the area given by a square with the first point as the centre and the radius as half of a side. A very much simplified example of the scanning function is shown below [Figure 3‑4 Simplified scanning function]. It only searches for the largest patch of a single colour, and passes through the image once, rather than searching for the two largest patches of four colours and traversing the image twice, but it should serve to illustrate the logic behind the scanning method actually used.
	function scan (image: TBitmap; colour: TColor) as TCoord;

//TCoord is a user-defined type that is made up of two integer values //giving an X and a Y attribute

var

temp: TCoord;

sb, eb, y, feb, fsb, fy, i, j: Integer;

started: Boolean;

line: PByteArray;

begin

for i := 0 to image.Height-1 do


begin


line := image.Scanline(i);
//scans a line of the image into a byte array


for j := 0 to line.length()-1 do



begin




if (line[j].color := colour) and (started := false) then

//there is no such colour attribute for scanline()

//another function extracts the colour [see Error! Reference source not found.]

//this has been misrepresented here for clarity 





begin





sb := j;

//line block starts here





y := i;





started := true;





end




else if (line[i].color <> colour) and (started := true) then





begin





eb := j;

//line block ends here





started := false





end;



end;



if ((eb-sb) >= (feb-fsb)) then

//keep track of the biggest block



begin



feb := eb;



fsb := sb;



fy := y;



end;

end;

temp.X := round((feb-fsb)/2 + fsb);
//find the midpoint of the biggest block

temp.Y := fy;

scan := temp;

//return values

end;




Figure 3‑4 Simplified scanning function
3.4.3.4 Only-two method

This method assumes that there will only be two instances of each colour in a frame, and that the markers will be circular. It scans through the frame, looking at every second line, and when it finds an instance of one of the colours it’s searching for at a certain point, it will scan the lines below the point one by one until the colour does not appear any more. It will then select a point halfway down the distance it has travelled down the colour line as the midpoint of the patch of colour. It therefore finds the two markers for each colour while working through the image once, with a few extra lines due to scanning down to find the bottom of the marker circle.  
3.4.3.5 Multiple scanning

The method scans through the picture eight times, finding the largest patch of whichever colour it’s looking for and returning the midpoint.
3.4.3.6 Comparison
This system uses the double-scan method, since it combines robustness and processing effectiveness, even though it is fairly complex to code. The only-two method will return the midpoint of the first two spots of colour it finds, regardless of whether they are the largest. This will fail badly if even a single pixel of the marker colour appears in the picture unintentionally. It’s only real advantage is speed, since it only has to travel through the picture approximately once, although this varies with marker size.

The multiple scan would simply take up too much processing time to be truly viable. It would be very simple to code, but since the marker extractor has in all likelihood to work through a couple of thousand frames, it’s best to opt for a slightly more complex solution so that processing time is four to eight times faster.
3.4.4 Frame capture

This system uses an ActiveX component called TActiveMovie, which is available as shareware or to purchase from http://www.delphicity.com. It requires DirectX 8.0 or higher to run, and works by making calls to DirectShow within Windows. It has two modes for frame capture, namely a single and a multiple frame capture mode. It accepts an AVI file, and can output either Bitmap or JPEG images, or a TBitmap object within Delphi. This implementation uses the multiple frame capture method, since using the single frame capture method multiple times would be problematic, as the frames need to be sampled at a set rate so that the resulting animation will match the audio of the original clip, and the single frame capture method would require code between each capture to trigger the next capture, which might not allow every single frame to be captured. Stopping and playing the video would not be a very accurate way of regulating the capture process. It also works with Bitmap images, since storing what could potentially be a very large array of TBitmap objects within memory would require a fairly large amount of memory. On the other hand, saving each frame as a Bitmap could also require large amounts of resources, in the form of hard disk space, but overflows with disk space are less likely to cause major problems than memory overflows. 

The system needs to store the bitmaps and work through them later because it is the only way to ensure that the frame grabber will capture frames at the correct interval, since any processing code after a capture will delay the next capture, and, as stated above, stopping and playing is not a good regulation method.

Requiring the user to have a computer with very large amounts of memory restricts the number of users who can use this system without having to upgrade their systems, which compromises the aim of making this system as accessible and robust as possible. Although Maya requires a system with a fairly large amount of memory to run, a capture run of a thousand frames of 500kB bitmaps would overrun even the larger systems.   
The ActiveMovie object has BurstCount and BurstInterval attribute, which can be used to specify the number of frames to be captured, and the interval between frames. The interval between frames can be set to 2 or more to give a “rougher” animation, although the effects should not be very noticeable, since the Keyframing in Maya produces a smooth curve path for each keyframed object.
	procedure TfrmMain.btnStartClick(Sender: TObject);

var

Dialog1: TOpenDialog;

begin

Dialog1 := TOpenDialog.Create(frmMain);

dialog1.InitialDir := '';

Dialog1.Filter := 'Video Files |*.AVI;';

//set up dialog variables

if Dialog1.Execute then


vidfilename := Dialog1.FileName;
//select AVI file

amgrabber.Enabled := true;


//grabber must be enabked before opening the file

amgrabber.FileName := vidfilename;

amgrabber.FGrabber_BurstCount := strtoint(edNumFrames.Text );

amgrabber.FGrabber_BurstInterval := strtoint(edFrameInterval.Text);

amgrabber.Open;



//opens the file and starts the grabber

end;


Figure 3‑5 Frame grabber code
When the frame grabber is enabled within the ActiveMovie object, frames are captured and passed to a FrameCaptureCompleted method, which returns the frame as a TBitmap object, even if the frames are being automatically saved as a Bitmap image. This method can be rather problematic, since any code placed within the method has to be completed before the method can cue another frame capture, so that if the burst interval is very low then some frames may be skipped while the code is running. This has an impact on adding the soundtrack back to the animation, since changes in frame rate will affect timing quite badly. The video clip produced by the animation must play at the same frame rate as the original video, and the plug-in must place keyframes at every second frame while constructing the animation. If the soundtrack does not quite match the lip movements, then the system’s functionality as a lip synch system is compromised.
3.4.5 Optimisation

See section 4.2.2 on Marker processing optimisation.
3.4.6 Output

The marker extractor produces a text file with the extension “.mrk” and a name generated from the name of the video clip that it used to extract marker points. For example, if the video clip was “test.avi”, then the file produced is called “test.avi.mrk”.

The format of the outputted marker file is similar to the format of OFF object files [see Figure 3‑6 and Figure 3‑7], in that it gives certain critical numbers on the first few lines, and then uses each of the next lines to describe one object. In the case of an OFF file, each line is used to give the control vertices of one polygon, while in a marker file each line gives the coordinates of each marker for a single frame.

	4393 8184 24552

-0.036894 -0.111301 0.411781

-0.006557 -0.097904 0.408562

-0.004902 -0.108737 0.408562

-0.036894 -0.111301 0.411781

-0.012549 -0.089328 0.408562




Figure 3‑6 OFF file fragment sample

The lines are generated as follows:

1. Number of markers used [for compatibility with future versions]

2. Number of frames

3. Burst interval
4. Frame 0’s coordinates

5. Frame 1’s coordinates

6. etc…

The burst interval must be included in the resulting file because if the burst interval is anything other than 1, the Keyframing method must place keyframes the same interval when constructing the animation, otherwise the animation’s length will be, e.g., half of what it should be, if a burst interval of 2 was used for the marker capturer.


[image: image2]
Figure 3‑7 Sample marker file output
3.5 Maya plug-in implementation
3.5.1 File input

The marker file is handled using basic C++ file-handling methods, i.e. fopen() and fscanf(). The first three lines are read into appropriate variables for storage, and then a loop reads through the data lines. As each line is read, the data for the mouth and chin points are used to create the translation vectors for each cluster.
3.5.2 Objects
3.5.2.1 Joint weighting

The first option that was investigated as a simple method for animating the lips was using joints, soft skinning and joint weighting. Joints are structures that can be attached to a surface and joined together to form accurate skeletal simulations. A system of five joints is placed behind the face mesh, with one end of each either at one of the four mouth points or on the chin, to facilitate chin motion. The other ends of the joints are joined together to form a root joint, which is a requirement when working with joints. Once the joints are positioned properly, the face mesh is bound to the joints, using soft skinning. Soft skins allow control vertices on the skin to be influenced by more than one joint, in comparison to hard skins, which only calculate the influence of the nearest joint on the control vertices of the face mesh.  Control vertices are points at the intersections of the lines of the mesh, and can be moved to manipulate the shape of the mesh. 
Soft skinning is chosen because, for example, the joint at the left side of the mouth needed to be able to influence the left halves of the top and bottom lips, while the top and bottom lips each had their own joints, creating an overlap, which can only be handled by soft skinning.
To achieve a more realistic lip motion, Maya’s joint weighting tool is used to weight the amount of influence on areas of control vertices for each joint. This is an intuitive and powerful method for defining the areas which are influenced by each joint, and the amount of influence the joint has. However, areas which already have a fairly high degree of influence given by one joint will not accept a certain level of influence from another joint. Attempts to repaint an area for a different joint result in the newly painted area disappearing. There was no mention of this in the Maya documentation. According to an experienced user on a Maya mailing list, it is possible to paint the same area for two different joints, but it is extremely difficult and not at all intuitive.

The next avenue of investigation is clusters and cluster weighting.

3.5.2.2 Cluster weighting

A cluster XE "cluster"  is a set of vertices that have been defined and named as such. Creating a cluster is very simple, although editing it is not. There are no simple tools for adding and removing vertices from a cluster in Maya.

Cluster weighting works on the same principle as joint weighting. When a cluster is created, it is named and given a cluster handle, which allows the cluster to be manipulated. The cluster handle appears as a small ‘C’ on the model view. Clusters can be transformed in the same way as any other object, i.e. they can be rotated, scaled and moved.

Cluster weighting defines the amount of influence the cluster handle has on the vertices that form part of it, in the same way that joint weighting works with vertices. It does not, however, seem to have the same problem as regards defining influence on an area for two different joints, or in this case, clusters. This leads one to believe that the problem with joint weighting is a slight error on the part of the developers, since the implementation of cluster weighting should not be very different from the implementation of joint weighting.

Five clusters were defined for the prototype face, namely the four points on the lips and the chin area.

[image: image3.jpg]N\ h N\

\
sy
(o= 3 el O D (o= Fla)
\ \ \ -
I Top lip cluster [ Lt lip cluster I Bottom lip cluster

] Chin cluster [ Right lip cluster




Figure 3‑8: Cluster placement

3.5.3 Cluster transformation
The clusters are transformed by using DAG node functions supplied by MFnDagNode. The cluster is translated relative to world space, as specified by the code example below [Figure 3‑9 Cluster transformation code]. Each cluster is translated relative to the previous position of the cluster, rather than translating the cluster to an absolute position in space. This makes animating a face model that does not have the same dimensions and features as the actor from which the recording was taken simple, and results in no distortion of the face model.
	void moveObject(MVector v){

MDagPath            node;

MObject             component;

MSelectionList      slist;

MFnDagNode          nodeFn;

MVector
vector = v;

MStatus stat;

MGlobal::getActiveSelectionList( slist);

//method starts with one cluster selected

MItSelectionList iter( slist, MFn::kCluster, &stat );

if ( MS::kSuccess == stat ) {


MDagPath 
mdagPath;

// Item dag path


MObject 
mComponent;

// Current component


MSpace::Space spc = MSpace::kWorld;


for ( ; !iter.isDone(); iter.next() ) {
// Translate all selected objects



iter.getDagPath( mdagPath);
// Get path and possibly a component



mdagPath.pop();

// Get parent of cluster handle, ie transform node



if (mdagPath.hasFn(MFn::kTransform)) {




MFnTransform transFn( mdagPath, &stat );




if ( MS::kSuccess == stat ) {





stat = transFn.translateBy( vector, spc );





CHECKRESULT(stat,"Error doing translate on transform");





continue;




}



}


}

}

}


Figure 3‑9 Cluster transformation code
3.5.4 Keyframing
Keyframing using the API involves instantiating an AnimCurve object for each attribute that needs to be keyframed [see Figure 3‑10]. AnimCurves are structures that provide animation capabilities, such as keyframing, to objects. Therefore, using a face mesh with five clusters requires 10 AnimCurves, one for the X and one for the Y transformation of each cluster.

	void createCurves(void){

MDagPath            
node;

MObject             
component;

MSelectionList      
list;

MFnDagNode          
nodeFn;

MStatus


status;

MAnimCurve 

toplipcurveX

MGlobal::selectByName("toplipclusterHandle");

MGlobal::getActiveSelectionList( list);

for (MItSelectionList tlistIter(list, MFn::kCluster); !tlistIter.isDone(); tlistIter.next()){

tlistIter.getDagPath (node, component);


//get object

}

MFnDagNode tfnSet( component, &status );


//create function set
MString tattrName( "translateX" );



//attribute to translate
const MObject tattrX = tfnSet.attribute( tattrName, &status );
//create attribute object
if ( MS::kSuccess != status ) {


cerr << "Failure to find attribute\n";


}

toplipcurveX.create( node.transform(), tattrX, NULL, &status );
//create animcurve 

if ( MS::kSuccess != status ) {


cerr << "Failure creating MFnAnimCurve function set (translateX)\n";


}

MGlobal::clearSelectionList();

}


Figure 3‑10 Animcurve creation code example for X translation
Keyframes are placed for each attribute after the cluster has been translated [see Figure 3‑11].

	MVector v( (double)(opx[4]-px[4])/scale, (double)(opy[4]-py[4])/scale,0.0); //set  up vector containing delta 





//values for the marker and adjust for the scale factor
MGlobal::selectByName("toplipclusterHandle");
//select cluster handle
cout <<"Moving top lip\n";

moveObject(v);

MTime ttm( (double)i, MTime::kFilm );

//kFilm = 24 frames/sec
if ( ( MS::kSuccess != toplipcurveX.addKeyframe( ttm, v.x ) ) ||
//try adding keyframe to x animcurve

 ( MS::kSuccess != toplipcurveY.addKeyframe( ttm, v.y ) ) ) {
//and y animcurve

cerr << "Error setting the top lip keyframe\n";


}

MGlobal::clearSelectionList();


Figure 3‑11 Code fragment for keyframing
3.5.5 3D Effect

A 3D effect XE "3D effect"  is obtained by using driven keys. This method uses the Set Driven Keys method in Maya to map one object’s transformation attributes to another’s. Driven keys link object attributes. For example, the X transformation attribute of a sphere can be mapped to the Y transformation attribute of a cube, so that whenever the cube is moved along the Y plane, the sphere automatically moves along the X.

This is useful when considering that, during most speech, the movement of the sides of the mouth horizontally influences the forward and backward movement of the lips. As the mouth widens, the lips are pulled back, and are pushed forwards as the mouth narrows. Therefore, if the X transformations of the clusters at the sides of the mouth are mapped to the Z transformations of the cluster at the top and bottom of the mouth, a fairly realistic 3D effect can be easily obtained, without requiring any extra animation. 
4 Results

This system cannot currently be fully tested, due to incompatibilities between the image files produced by various digital video formats and the colour extraction algorithm. The algorithm is able to produce the correct colour for display when selecting the marker colours, but is unable to produce the correct colours when used to extract the marker positions from each subsequent frame. Use of the tolerance factor enables the marker extractor to select points from each frame, but when plotted on the image from which they were extracted they are not positioned correctly at all. 
The image below [Figure 4‑1 Marker position extraction problems] shows the same frame with the points extracted for a tolerance of five, four, three, two, one and zero. A tolerance of five has the darkest markers and a tolerance of zero the lightest. It was found that as the tolerance decreased, the frequency of the markers being positioned correctly rose slightly, but the frequency of a marker not being found at all, i.e. returning a position of [0,0] for a particular marker, rose steadily. It was interesting to note that the blue marker at the lower right of the screen seemed to receive many of the accurate hits. This could indicate that the blue element of the video clip was not altered significantly by compression. 
The reasons for this gross inaccuracy are unclear, and will require further research into colour representation methods in different digital video formats. The formats that have been tested as yet are raw AVI, raw RGB AVI, and AVI compressed by using the DIVX codec.
[image: image4.png]



Figure 4‑1 Marker position extraction problems

The Maya plug-in works correctly, translating and setting keyframes according to values inputted from a marker file outputted by the as-yet-not-fully-functioning marker extractor. It is up to the user to select, correctly name and weight the marker clusters, and decide on a suitable scaling factor for the marker values.
4.1 Effectiveness
This remains untested for the plug-in due to the problems stated in the above section. Once the first half of the system is fully functional, possible testing methods could involve showing an animation sans audio to a person who can lip-read, and asking them to repeat what the character is saying. This should give an indication of the degree of accuracy of the animation system.
4.2 Processing costs

4.2.1 Marker processing time

Adding the colour tolerance testing to the marker extractor exacts a very high penalty in processing time. Before adding the tolerance factor, the marker extractor did a simple equality test for colour matching. Processing time on a computer running at 500 MHz was just over a second per frame. Adding in the tolerance factor upped this figure to roughly two minutes per frame. This significant increase in processing time is due to the colour tolerance testing function, which had to run twice for almost every pixel in the image. 
4.2.2 Marker processing optimisation

The tolerance testing function has been optimised, so that it checks one colour attribute at a time, and if it fails a test, it does no continue to testing the next attribute [see Error! Reference source not found.]. For example, a certain colour may be within range for the red attribute, but not the green. Using this optimisation, the red test would pass, but it would fail the green test, and therefore not bother with testing the blue. Using RGB for colour comparisons is necessary because RGB space is three-dimensional, while the numbering of colours in Delphi is sequential. Simply testing colours adjacent to the colour that is being searched for will not include all of the possible related colours. This makes it necessary to test the range of each of the RGB colour attributes to get an accurate representation of the possible colour variations.
Another method for speeding marker processing up is to alter the sequence of colours tested. For example, if the picture contains more red than green and more green than blue, then blue would be tested first, since the probability of the test failing is highest for blue, since less of it appears in the image. This would prevent a fair amount of unnecessary testing, saving time.
The marker extractor currently tests every pixel of every line, but it is possible to reduce the amount of testing greatly by only testing within a certain area of the position of the last marker found. For example, if the last position of a certain marker was at [100, 50], then by defining a searching distance of 20, the marker extractor would look for the next marker somewhere within the block bounded by [80, 30], [120, 30], [80, 70], [150, 70] [see Figure 4‑2].

[image: image5]
Figure 4‑2 Marker optimisation example
A further optimisation would be to only scan every second or every third line. This assumes that the colour tolerance function is in operation, since otherwise the specific colour that is being sought may be on a line that is not being scanned. Since this application is not currently designed to operate within a realtime environment, this optimisation method is fairly unnecessary for now, but may be useful to any extensions which may need to make optimisation a priority.
4.2.3 Animation time
4.3 System requirements
This system requires a Maya installation and DirectX 8.0 or higher to run. The computer on which it runs must also have sufficient disk space to handle temporary storage of a number of large bitmaps, depending on the length of the video clip that is being analysed for markers. Apart from that, this system should run on almost any Windows system.
5 Extensions

5.1 Full-facial system
5.1.1 Marker extensions

The marker system would be very simple to extend to cover the whole face. Further markers would be placed on the apples of the cheeks and along the brow line. Markers on the eyelids for blink detection would be too intrusive, but other methods can be used instead [see below].

Driven keys can be used again to provide a 3D element to brow motion. As the eyebrows contract, they move forward, and vice versa.

Extending the marker system would require additions to the scanning algorithm, catering for at least two new colours; one for the cheeks and one for the brows. It would also require extensions to the plug-in, which currently only manipulates five areas [see 3.5.3]. With this extension and methods for tracking eye motion in place, a full-face animation system would be made possible. 

5.1.2 Single marker colour system

A logical way of streamlining the system would be to eradicate the need for colour coding markers. Colours were originally used in this system to make marker extraction easier, but when the example system was almost completed it was realised that using a single marker colour would have erased many of the difficulties with marker extraction and colour choice. 

In retrospect, implementing a system that only uses one marker colour would have been only slightly more complicated than implementing the current system.

The current system works by finding the two largest points of each colour; a single colour system would find the eight largest points of a single colour. This can be reduced to seven if the non-functional marker at the base of the nose is excluded. It is currently only included in the system for symmetry.

The marker extractor algorithm would scan through the picture once, keeping a vector list of all the blocks of colour within each line. After scanning, it would iterate through the vector to select the eight largest blocks. It would do this by filling its eight largest block placeholders with the first eight elements of the vector, making sure that if two blocks are read in that are in the same general area, i.e. part of the same marker, then the smaller one is disregarded, and then reading each of the remaining elements in the vector, eliminating the smallest out of the eight in the placeholders and the one that is currently being compared, as well as also disregarding blocks that are part of the same marker. By the time it reaches the final element, the vector will contain the eight largest blocks, which should correspond to the middles of the eight markers. If the blocks that it finds are not markers, then the marker colour needs to reselected, undergoing the same considerations when selecting markers for the current system [see 3.4.1.1]. 

[image: image6.emf]20, 5, 4 25, 3, 6 26, 35, 7 36, 24, 4 24, 56, 7 40, 34, 6 36, 56, 4 38, 56, 6

Example: Find the three largest blocks

Vector containing all blocks of colour:

X Y Block radius

36, 55, 7 40, 34, 6 36, 56, 4

Step 1: read first three into largest 

block placeholders

20, 5, 4 25, 3, 6 26, 35, 7 36, 24, 4 38, 56, 6

Current largest blocks

Step 2: are any two part of the 

same marker?

Yes

36, 55, 7 40, 34, 6 36, 56, 4 20, 5, 4 25, 3, 6 26, 35, 7 36, 24, 4 38, 56, 6

Step 3: get rid of the smaller one and read 

the next element in

36, 55, 7 40, 34, 6 20, 5, 4 25, 3, 6 41, 35, 7 36, 24, 4 38, 56, 6


Figure 5‑1 Marker sorting algorithm [Part 1]

[image: image7.emf]Step 4: are any of the chosen elements 

part of the same block?   No

36, 55, 7 40, 34, 6 20, 5, 4 25, 3, 6 41, 35, 7 36, 24, 4 38, 56, 6

Step 5: consider the next element. Is it 

part of the same marker as any of the 

current blocks or larger than them?

36, 55, 7 40, 34, 6 20, 5, 4 25, 3, 6 41, 35, 7 36, 24, 4 38, 56, 6

Same block, but 

larger [bigger 

radius]. Replace.

36, 55, 7 20, 5, 4 25, 3, 6 41, 35, 7 36, 24, 4 38, 56, 6

Step 6: consider the next block etc until only three 

blocks are left.

36, 55, 7 25, 3, 6 41, 35, 7

Largest three blocks


Figure 5‑2 Marker sorting algorithm [Part 2]
After the markers have been chosen, the marker extractor would attempt to sort them by using their relative positions, i.e. the marker with the smallest Y value would be assigned to the bridge of the nose, and the next one down would be the tip of the nose, since the chances of any person being able to cover the tip of their nose with their upper lip during normal speech are very small. The same would apply for the chin marker, since although the lower lip can cover the chin it is not likely to do so during normal speech. This process of elimination would leave the four markers around the mouth, if operating under the assumption that the marker underneath the nose is being disregarded. The remaining markers should be equally easy to sort by relative positioning.

This reworking of the marker extractor would have no effect on the functioning of the plug-in; the marker file generated would be exactly the same as a file generated by the current system. The disregarded marker at the base of the nose would be dealt with easily by simply printing an X and Y coordinate of 0 in the correct space. Since the plug-in positions cluster by calculating the change in position between the previous marker and the current, it would simply not move. In any case, the current system does not deal with positioning a cluster at that position, making any changes to the plug-in completely unnecessary. Any value could currently be printed to the position for that marker and it would have no effect whatsoever on the animation sequence. 

5.1.3 Eye tracking

The two areas that need tracking for eyes are the movements of the eyeballs and blinking, i.e. eyelid movement. Eyelid movement is not restricted to blinking, however, since eyelids can convey expression by narrowing or opening slightly. This means that it would not be sufficient simply to trigger an automatic blink at a set time interval with a slightly random element added on, and ignore eyelid motion detection altogether.

Eyelid position could be calculated in a number of ways:

1. By calculating the amount of white visible in the eyes, i.e. the less white there is visible, the further closed the eyes are. This would have to be combined with a pupil tracker, in case the subject moves their eyes right to the side so that some of the iris and pupil is hidden by the eyelids, as this would display more white and would affect the performance of the eyelid tracker.

2. By attempting to locate the eyelid by its contrast to the white of the eye. This would involve some fairly heavy computational algorithms to recognise the edge of the eyelids, and would probably have to use an area specified by the user as a starting search area.

A lot of work has been done on pupil tracking. An example of an application for this is for quadriplegics who can use an eye tracking system to type. Another field of study is in cognitive science, since the position of the eyes can provide large amount of information about cognitive perception. Work done in this field includes eye tracking for cockpit studies [5], webpage design [6], infant cognitive processes and many others.

Eye tracking setups are available, but usually appear in the form of a type of helmet that keeps a camera trained on the subject’s eye. Non-head-mounted units need to be able to sense and adjust for head motion to stay focussed on the eye area. Using eye tracking with this system would require one of the latter setups, since two the goals of this system are minimise interference to the actor using the system and to keep costs as minimal as possible, both of which would be severely compromised by the use of a head unit.
5.2 Nonhuman faces
The faces of most animals that do not have a prominent muzzle will not be a problem to animate with this system, but some animals with muzzles or beaks will require a couple of changes to the system. 

Birds with beaks that are not animated to bend, i.e. realistic beaks, will not require many changes to the system. The only differences that a user may wish to make are the removal of the pair of markers at the base of the nose and the chin and the pair at the sides of the mouth, since birds do not have lips, and a solid beak would not require lip-like motions. Birds are also unable to widen or narrow their beaks, making the markers at the sides of the mouth irrelevant. This would, of course also dispense with the need to set driven keys for 3D lip motion, since beaks cannot move forwards and backwards, and the input points at the sides of the mouth would no longer be there.
5.3 Networking

This system can conceivably be adapted for realtime image processing, if the process were fully optimised and running on a fast computer. Sending audiovisual data would not add much load to networks, since video data is transmitted via packets of plain text marker points. Audio streams in this case would also not take up much bandwidth, since compression algorithms only have to deal with a very limited range of sounds due to speech not needing a very large range to be represented accurately. Some applications of a realtime would include: 
5.3.1 Avatar chatting

IRC (Internet Relay Chat) is a popular method of nonverbal, anonymous network communication. There are currently thousands of IRC servers located worldwide, with hundreds of thousands of users chatting around the clock. IRC’s popularity stems from many different sources. Some of these are its anonymity, the ease of setting it up and getting started and its spontaneity, as opposed to message boards and similar methods of communication. Unfortunately, IRC users can have quite a lot of difficulty conveying expression and emotion through text messages, since normal emotional indicators such as tone of voice and facial expression are not transmitted. This is ameliorated slightly by the use of emoticons, but even this frequently falls far short of true communication.
On the other end of internet communications is webcams and technology like CU-SeeMe [http://www.cu-seeme.net]. These provide users with face-to-face communication via an audio/video stream, but provide no anonymity. Anonymity is an important factor in communication with unknown recipients, since it eliminates the fear of rejection due to physical or social attributes. 
Linking these two methods of communication would be a useful extension and application of this system.

The marker system could be used in conjunction with existing webcam technology to produce an animated head model of an avatar chosen by the user. Avatars are virtual representations of people, usually for use in gaming environments. Avatars can be anything from a stationary image to a fully 3D figure. This would provide the user with anonymity as well as enable them to emote and convey expression. It would also initially have a very high novelty value, which would be instrumental in building a user base.
5.3.2 Games and avatars

3D online games have traditionally been limited to text-based MUDs [Multi User Dungeon] and variations on a similar theme, and networking facilities for existing multiplayer games. Games that extend MUDs with 3D graphics have been released, and are gaining popularity worldwide. Everquest, released by Sony in 1999, has an online user count of many thousands of players, with each server able to support up to 2000 players at a time. It uses a pseudo-3D graphics engine and texture-mapped graphics to produce a fully interactive online world. It does not, however, support non-text-input chat facilities. Player chatting is text-based, similar to IRC. Player avatars are customisable, but to a limited degree. Each player race has eight player faces to choose from.
Another large 3D online game is Ultima Online, which has been running for five years. It has servers active in 115 countries worldwide, and, like Everquest, has a huge user base. It also allows characters to be limitedly customisable, but does not provide true 3D functionality. Player speech is also text-based.

Both of these games would gain an extra level of reality by supporting audio/video input. The marker system, or something similar, could be added to the game to provide true realistic communication between players, with the visual element provided by character lip movement contributing even more to the realism of the gameplay. As in the avatar chat [see above section], it could be implemented by using existing webcam setups. Using the marker system would be optional for players, since alienating those without the necessary equipment would be detrimental to the game’s growth and survival. The game could also support plain audio chat, without the visual element, to those players who may have microphones but not webcams. 
The markers systems would be simplified as much as possible, and would not be a problem for users to reapply, since they can be manufactured by and applied with a wide range of materials [see 3.4.1.3].

A problem with implementing a system like this stems from the fact that the games are played in most countries, and that users do not necessarily speak the same language, which may make communication difficult. However, these games work on servers, with each server supporting a limited number of players. Players on one server are not visible to players on another server, and need to switch servers to meet others. This means that there is a high chance that people who are connected to one server will tend to be located in the same country, since it makes sense to connect to the nearest server to reduce lag time. Therefore, there will be some linguistic problems, but these shouldn’t be too widespread.
5.3.3 Virtual videoconferencing

Current videoconferencing makes use of streaming audio/video technologies. Audio is not a problem; the average telephone call uses very little bandwidth, and videoconferencing audio is only slightly better than telephonic sound quality. Video, however, remains a problem, since graphic data at a useful resolution tends to take up large amounts of space, which translates into very high bandwidth usage. This can be a problem when transmitting data over long distances, or using a low-bandwidth network. 

Another problem with current videoconferencing technology is that it requires specialised equipment and professional help in setting the system up, making it unavailable to many potential clients due to cost.
Applying the marker system yields the possibility of videoconferencing using avatars, which would be one step up from telephone calls, but not as expensive in terms of bandwidth and equipment and setup costs.

This system would work best for one-to-one conferences, since a camera would have to be trained on the speaker’s face continuously. Modifying it to work for multiple speakers would require each speaker to have their own camera. This may turn out to be rather expensive, especially if the system is for use in a small company.

The system would involve marker processing being done in realtime, and being sent to a client that is able to model, animate and synchronise audio with a head model.

The system would initially transmit a picture of the speaker’s face without markers at the beginning of the call, which would be mapped onto a generic head model. This can be a face image specified and stored in a user profile. The speaker’s profile could be set up to allow the specification of a face image and a head model, or possibly a list of alterations to be performed on a standard head model, allowing the resulting 3D texture mapped head appearing on the recipient’s computer to be as lifelike and similar to the speaker as possible. 

This approach has already been investigated, and a method has arisen called model-based video coding, which is a very low bit rate video compression method suitable for videoconferencing and virtual reality applications. This method uses a model that has parameters defined for facial features, and instead of transmitting a full facial model at each update, it only transmits a list of changes to the facial parameters [Bondy et al, 2001].
Creating a suitable head model would require a section in the user profile setup that is able to determine a person’s head shape and characteristics from photographic input. This is possible, and systems for automatic head model generation are currently being researched.
5.3.4 Speaking email

Novelty seems to be very popular in modern communications; animated emails and sms’s are very popular. Combining the marker system with email would yield speaking email. The sender would record their email using a webcam and the markers and a plug-in for one of the email clients. The client would then send an email containing marker information, head model information and a compressed audio track. The receiver’s email client would recognise the email as a speaking email, and animate a small head model while playing back the audio track. This would yield a much more personal method of communication than a simple text email.
It would be inappropriate to use this application for most business applications, since it is customary to remain unemotional when conducting a business transaction. Rather, this would be the next generation of a video or audio tape letter.
6 Conclusion

A system has been developed that can locate and extract positional marker information from a video clip and, via a temporary file, can animate a simple face mesh to produce an animation that runs at the same speed at the original video, enabling the production of an animation with synchronised audio.

The marker extractor is fully able to perform its function, but has not produced viable results due to complications between colour representation by different video formats and the colour extraction algorithm. This means that further research needs to be done into the differences in digital video formats and colour representation to resolve this problem and to produce viable results.
Due to the lack of workable marker file input, the animation system developed in the Maya plug-in cannot be tested for realism and lip synchronisation. At present, the marker files contain a fairly random set of points, which obviously does not produce and useable animation. The system does, however, function correctly, and should only need a small amount of fine-tuning to produce realistic animation once some viable input has been produced. A user will have to manually define the clusters of control vertices, name them correctly, and adjust the cluster weightings so that the correct areas of the face mesh are manipulated by each cluster, and to the correct degree. The user will also have to experiment with obtaining the correct scaling factor for the plug-in, since it would be extremely difficult to extract this information automatically from the input video, and calculate the scale factor in the plug-in, mainly because it would involve having to define the height of the face during the marker extraction process, and then find the height of the face mesh, an operation for which there is currently no functionality within the Maya API.

This system seems to be the only automatic facial animation system plug-in that has been developed for the Maya environment as yet. Further plug-in development for some of the other large animation packages could perform identical functions as the Maya plug-in, making re-use of the same marker file possible for different packages and extending the functionality of the system.
I would like to thank Professor Shaun Bangay and the other members of the Rhodes VRSIG group for their help and input, as well as the members of the Alias UGA
 and Maya-dev
 mailing lists for some very helpful tips on plug-in writing.

7 Bibliography

	Crandol, M 1999
	The History of Animation: Advantages and Disadvantages of the Studio System in the Production of an Art Form

http://www.digitalmediafx.com/Features/animationhistory.html


	Carlson, W.
1999
	An Historical Timeline of Computer Graphics and Animation

http://www.accad.ohio-state.edu/~waynec/history/timeline.html


	Llewellyn, R.
2002
	Chronology of Animation

http://www.public.iastate.edu/~rllew/chronst.html 



	Barnig, M.
2001


	Facial Animation and Lip Synchronisation

http://webplaza.pt.lu/mbarnig/pages/lipsync.html 



	Kallqvist, C.
2000
	Eye Movements and Visual Scanning in Simulated Air Traffic Control: a Field Study

http://www.lucs.lu.se/People/Kenneth.Holmqvist/Eyetracking/Duppsats/m_thesis.pdf

	Nielsen, J.
2000


	Eyetracking Study of Web Readers

http://www.useit.com/alertbox/20000514.html


	Sony
2002
	EverQuest FAQ

http://services.station.sony.com/en/faq.jsp


	Hong, P.
Wen, Z.

Huang, T.

2001


	An Integrated Framework for Face Modeling, Facial Motion Analysis and Synthesis.
http://www.acm.org/sigmm/mm2001/ep/hong/

	Li, Y.
Yu, F.

Xu, Y.

Chang, E.

Shum, H.

2001


	Speech-Driven Cartoon Animation with Emotions

http://research.microsoft.com/asia/dload_files/group/speeches/ACM-MM-SigMM-4th.pdf

	Sturman, D.

1994
	A Brief History of Motion Capture for Computer Character Animation
http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/motion_capture/history1.htm



	Bondy, M.
Petriu, E.

Cordea, M.

Georganas, N.

Petriu, D.
Whalen, T.

2001


	Model-based Face and Lip Animation for Interactive Virtual Reality Applications.
http://www.mcrlab.uottawa.ca/papers/ACM-postr3.pdf

	Links Digiworks 2002
	Links Digiworks Homepage
http://www.linksdw.com

	Bohlen, M.
2002
	Motion capture at Redeye Studio
http://www.malamute.cc/dogpile/pages/articles/redeyestudio.htm

	Morie, J.
1998
	CGI Training for the Entertainment Film Industry

http://www.siggraph.org/education/curriculum/misc/jmorie.pdf

	Cotta Vaz, M.
1996
	Industrial Light and Magic: Into the Digital Realm
Virgin Publishing, London.


8 Appendices

8.1 Appendix A: Files

	markertester.exe
	Small program that accepts a bitmap file as input and marks all instances of a specific, user-selected colour within a picture. Used for testing that the marker colours used in the footage are not found elsewhere in the image.

	vidprocess.exe
	Marker extractor. Uncompressed AVI file input, marker file [.mrk] output. Searches a video clip frame-by-frame for the positions of the two largest areas of four user-defined colours and writes the coordinates to the output file.

	mark.mll
	Maya 4.0 plug-in. Has not been tested with previous versions of Maya. Loaded via the Maya Plug-in Manager and run using the command 

mark [filename with full path] [scale factor]
in the MEL command shell within Maya.

	test.avi
	Sample video clip. Contains footage of a person speaking with markers in place.

	test.avi.mrk
	Sample output marker file. Contains marker information gathered from test.avi.


8.2 Appendix B: Maya classes
	MAnimCurve
	Contains structures for, among other things, keyframing attributes of a node.

	MSimple
	Basic functionality for simple commands, ie command that cannot be undone.

	MItSelectionList
	Selection list iterator. Used to work through objects in the selection list.

	MFnSkinCluster
	Class holding skin cluster functions.

	MDagPath
	DAG path structures. Used, for example, to find the parent of a selected node.

	MFnDagNode
	Provides function sets to nodes.

	MFnAnimCurve
	Class providing functionality to AnimCurves.

	MGlobal
	This handles global commands such as selection calls, i.e. adding a node to the global selection list.

	MVector
	Vector class. Used in this example as a means for storing transformation values.

	MFnTransform
	Class providing transform functions.


8.3 Appendix C: Delphi classes

	TBitmap
	

	File
	

	TActiveMovie
	


9 Index



3D effect, 18

aspect ratio, 9

Backgrounds, 8

cel, 3

Cel animation, 3

CGI, 3, 4

cluster, 16

Colour picker, 9

Digitising the sequence, 9

DIVX codec, 9

Empathy, 5

input video, 6

keyframes, 4

Lighting, 9

Lip synchronisation, 5

Marker colour selection, 6

marker extractor, 6

Marker placement, 8

Marker recognition, 9

markers, 7

markertester.exe, 7

matte, 7

Maya plug-in, 6

Morphing, 5

Motion capture, 5

objective, 5

Phonemes, 5

resolution, 9

Rotoscope, 3















Old marker





New marker





[80, 30]








[150, 30]








[150, 70]








[80, 70]








Search area





[100, 50]








[90, 40]





8


10


1


0 92 160 52 87 170 212 0 0 228 91 67 71 96 192 222 54 


1 92 161 52 87 44 111 41 104 228 95 66 71 110 238 218 54 


2 52 87 74 20 44 111 230 16 58 144 75 68 160 235 222 205 


3 77 150 74 19 44 79 35 64 228 95 72 69 41 70 174 191 


4 77 150 136 23 168 212 44 79 60 151 228 90 164 235 165 211 


5 52 87 70 23 195 190 44 79 84 212 60 151 88 199 164 235 


6 52 87 70 23 146 238 44 79 93 211 59 151 58 78 162 235 


7 190 150 134 20 44 79 24 63 59 151 235 61 88 53 206 193 


8 76 150 114 12 44 77 24 63 220 66 69 65 38 66 122 46 


9 76 151 53 64 76 211 24 63 56 142 44 44 38 66 76 221











� http://www.pdi.com/shorts/gasplnt.htm


� http://www.pixar.com


� http://www.vicon.com


� http://www.famous3d.com/web/Products/vTracker.html


� http://www.motionanalysis.com/about_mac/press.html


� http://www.divx.com


� alias-l@listserv.uga.edu


� maya-dev@highend3d.com





