Web Services Choreography Requirements 1.01

W3C Working Draft 3 December 2003

This version:

http://www.w3.org/2002/ws/chor/reqs/2003/07/WD-ws-chor-requirements-20031117.xml
Latest version:

http://www.w3.org/2002/ws/chor/reqs/2003/07/WD-ws-chor-requirements-20030730.xml
Previous version:

http://www.w3.org/2002/ws/chor/reqs/2003/06/WD-ws-chor-requirements-20030616.xml
Editors:

Daniel Austin, W. W. Grainger, Inc. <daniel_austin@grainger.com>
Abbie Barbir, Nortel Networks, Inc. <abbieb@nortelnetworks.com>
Ed Peters, WebMethods, Inc. <ed.peters@webmethods.com>
Steve Ross-Talbot, Enigmatec, Inc. <steve@enigmatec.com>
Copyright © 2003 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark, document use and software licensing rules apply.

Abstract

As the momentum around Web Services grows, the need for effective mechanisms to co-ordinate the interactions among Web Services and their users becomes more pressing. The Web Services Choreography Working Group has been tasked with the development of such a mechanism in an interoperable way.

This document describes a set of requirements for Web Services choreography based around a set of representative use cases, as well as general requirements for interaction among Web Services. This document is intended to be consistent with other efforts within the W3C Web Services Activity.

Status of this Document

This document is an editors' copy that has no official standing.
This section describes the status of this document at the time of its publication. Other documents may supersede this document. The latest status of this document series is maintained at the W3C.
This is the first W3C Working Draft of the Web Services Choreography Requirements document.

It is a chartered deliverable of the Web Services Choreography Working Group, which is part of the Web Services Activity. Although the Working Group agreed to request publication of this document, this document does not represent consensus within the Working Group about Web Services choreography requirements.

This document is in a state of perpetual change. Feedback on this document is sought by the Working Group.

Comments on this document should be sent to www-ws-chor-comments@w3.org (public archive). It is inappropriate to send discussion emails to this address.

Discussion of this document takes place on the public public-ws-chor@w3.orgmailing list (public archive) per the email communication rules in the Web Services Choreography Working Group charter.

Patent disclosures relevant to this specification may be found on the Working Group's patent disclosure page.

This is a public W3C Working Draft for review by W3C members and other interested parties. It is a draft document and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in progress". A list of all W3C technical reports can be found at http://www.w3.org/TR/.

Table of Contents

1 Mission Statement
2 Introduction
 2.1 What is Web Services Choreography?
 2.2 How is a Choreography used?
 2.3 What are the benefits of a choreography language?
 2.4 Conventions Used In This Document
3 Requirements Methodology
4 Use Cases
 4.1 Structure of Use Cases
 4.2 Use Case Descriptions
 4.2.1 D-UC-001 -Travel Agent
 4.2.1.1 Primary Description
 4.2.1.2 Requirements
 4.2.1.3 Variation on the use case
 4.2.1.3.1 Variation 1
 4.2.1.3.2 Variation 2
 4.2.1.3.3 Variation 3
 4.2.1.3.4 Variation 4
 4.2.1.3.5 Variation 5
 4.2.2 D-UC-002 - Quote Request
 4.2.2.1 Primary description
 4.2.2.2 Requirements
 4.2.2.3 Variation on the use case
 4.2.2.3.1 Variation 1
 4.2.2.3.2 Variation 2
 4.2.2.3.3 Variation 3
5 Critical Success Factor Analysis
 5.1 CSF Analysis Goals
 5.1.1 G-001
 5.1.2 G-002
 5.1.3 G-003
 5.1.4 G-004
 5.1.5 G-005
 5.1.6 G-006
 5.1.7 G-007
 5.1.8 G-008
 5.1.9 G-009
 5.1.10 G-010
 5.2 Critical Success Factors
 5.2.1 CSF-001
 5.2.2 CSF-002
 5.2.3 CSF-003
 5.2.4 CSF-004
 5.2.5 CSF-005
 5.2.6 CSF-006
 5.2.7 CSF-007
 5.2.8 CSF-008
 5.2.9 CSF-009
 5.2.10 CSF-010
 5.2.11 CSF-011
 5.2.12 CSF-012
 5.2.13 CSF-013
 5.2.14 CSF-014
 5.2.15 CSF-015
 5.2.16 CSF-016
 5.2.17 CSF-017
 5.2.18 CSF-018
 5.2.19 CSF-019
 5.3 CSF Analysis Requirements
6 Choreography Requirements
 6.1 Charter Constraints
 6.2 Interoperability
 6.3 Management and Provisioning
 6.4 Exception Handling
 6.5 Messaging and Protocols
 6.6 Interfaces
 6.7 Reliability
 6.8 Transaction
 6.9 Composition
 6.10 Testing and Validation
 6.11 Support for Semantics
 6.12 External Dependencies
 6.13 Systems
7 Correlation of Use Cases and Requirements
 7.1 Use Cases and Requirements Cross-Reference
 7.2 Requirements Coverage
8 Appendix A - References
 8.1 Normative References
 8.2 Informative References
9 Appendix B - Acknowledgements

1 Mission Statement

The mission of the W3C Web Services Choreography Working Group is to define a language, based on WSDL 1.2 that can describe a peer-to-peer global model for cross-enterprise interactions and their semantics through the composition of web services that are independent of any specific programming language.

2 Introduction

The description of interactions among Web Services - especially with regard to the exchange of messages, their composition, and the sequences in which they are transmitted and received - is an especially important problem. These interactions may take place among groups of services which, in turn, make up a larger, composite service, or which interact across organizational boundaries in order to obtain and process information. The problems of Web Services choreography are largely focused around message exchange and sequencing these messages in time to the appropriate destinations. In order to fulfill the needs of the Web Services community, these aspects of Web Services must be developed and standardized in an interoperable manner, taking into account the needs of each individual service as well as those of its collaborators and users.

This document describes a set of requirements for Web Services choreography based around a set of representative use cases, as well as general requirements for interaction among Web Services. This document is intended to be consistent with other efforts within the W3C Web Services Activity.

2.1 What is Web Services Choreography?

Web Services Choreography concerns the observable interactions of services with their users. Any user of a Web Service, automated or otherwise, is a client of that service. These users may, in turn, be other Web Services, applications or human beings. Transactions among Web Services and their clients must clearly be well defined at the time of their execution, and may consist of multiple separate interactions whose composition constitutes a complete transaction. This composition, its message protocols, interfaces, sequencing, and associated logic, is considered to be a choreography.

A choreography description is a multi-party contract that describes the external observable behavior across multiple clients (which are generally Web Services but not exclusively so) in which external observable behavior is defined as the presence or absence of messages that are exchanged between a Web Service and its clients.

A choreography language is a language in which such a contract is described.

2.2 How is a Choreography used?

A choreography description may be used to generate the necessary executable code skeleton that can be said to implement the required external observable behavior for that Web Service. Thus a choreography description that is used to describe the multi-party contract between a travel agent and a number of hotel companies might be used by any potential participant to generate a code skeleton for a web service that can be guaranteed to be interoperable with that particular travel agent.

A choreography description may also be used to aid the testing of Web Services through the generation of test messages that could be sent to a Web Service by means of an appropriate vendor specific tool that reads the choreography description and manages the test interaction according to the choreography description.

A choreography description may also be used to police the multi-party contractual behavior amongst a collection of Web Services. In such a scenario each hotel may load a choreography description into a vendor specific tool which informs them of any breaches of the behavioral contract so that they and the Web Services that are participating can be informed of such breaches and the necessary modification made to the offending Web Services.

A choreography description may also be used to show the absence of deadlocks and livelocks in the behavioral contract. In this sense a choreography description acts as a model of the behavior across a number of Web Services which in turn can be subject to static analysis to show that if and only if the underlying Web Services behave according to the contract that the interaction between the Web Services will be free from deadlock and livelock.

Finally a choreography description may be used by vendor specific tools to show that an abstract protocol for a single Web Service conforms to some participant Web Service defined in a choreography description, either in full or in part.

2.3 What are the benefits of a choreography language?

The Web Services Choreography working group believes that all five uses of a choreography description necessitate the existence of a standardised language for the description of choreographies. The benefits of such an approach:

1. will enable more robust Web Services to be constructed;

2. will enable more effective interoperability of Web Services through behavioral multi-party contracts, which are choreography descriptions;

3. will reduce the cost of implementing Web Services by ensuring conformance to expected behaviour;

4. will increase the utility of Web Services as they will be able to be shown to meet contractual behavior;

2.4 Conventions Used In This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

A few words on the naming convention used here and throughout this document: all use cases and requirements are labeled according to the following convention:

[D-](C)(R|UC)nnn

[D-] indicates that the item is in a draft state

(C) indicates Candidate status.

(R|UC|) is one of Requirement|Use Case|User Scenario.

mmnn where, mm indicates the section number and nn is sequence number of the item.

Please note that due to the changing nature of requirements analysis, numbering of requirements, use cases, and user scenarios may not always reflect sequential order.

3 Requirements Methodology

In order to gather requirements for Web Services Choreography, the working group has currently chosen to follow two paths toward this end. The first means of gathering requirements consists of examination of member-submitted use cases, from which requirements may be inferred. The second method involves the use of the Critical Success Factor analysis methodology.

4 Use Cases

In order to organize and make use of the member-submitted use cases, a specific template has been developed for use by the Working Group, which includes fields for the requisite information. As a base definition, a use case may be considered to be a description of an interaction which takes place across one or more system boundaries, involving one or more users and services.

4.1 Structure of Use Cases

It is intended that the uses cases presented here are to include the widest possible number of requirements using the fewest possible number of use cases.

The use cases included here are meant to be representative, meaning that the general concepts are common to many possible use cases across a broad array of organizations.

Structurally, uses cases are submitted using a predefined template that specifies the information required to generate requirements. This template loosely follows the standard UML requirements gathering activities, and is well-aligned with common industry best practices.

4.2 Use Case Descriptions

4.2.1 D-UC-001 -Travel Agent

4.2.1.1 Primary Description

A travel agent wants to offer to customers the ability to book complete packages that may consist of services offered by various providers. The available services may include: air travel, train travel, bus tickets, hotels, car rental, excursions and other services such as insurance.

The goal of the consumer is to get the best combination of services and prices suiting their needs. The travel agent tries to maximize customer satisfaction and sell packages. Service providers aim to sell as many products as possible. Credit card companies guarantee and perform payments for purchased products.

In this scenario, service providers offer Web Services that could be used by the Travel agent to query their offerings and perform various tasks such as reservations. Credit card companies provide services to guarantee payments made by consumers. The client should be able to query, reserve and purchase any available service. The basic steps of the interaction are listed below

1. The client interacts with the travel agent to request information about various services.

2. Prices and availability, matching the client requests, are returned to the client. The client can then perform one of the following actions:

a. The client can refine their request for information, possibly selecting more services from the provider (Repeat step 2). OR

b. The client may reserve services based on the response. OR

c. The client may quit the interaction with the travel agent.

3. When a customer makes a reservation, the travel agent then checks the availability of the requested services with each service provider.

4. Either

a. All services are available, in which case they are reserved. OR

b. For those services that are not available, the client is informed.

i. Either

A. Given alternative options for those services. OR

B. Client is advised to restart the search by going back to step 1.

ii. Go back to step 3.

5. For every relevant reserved service the travel agent takes a deposit for the reservation. A credit card can be used as a form of deposit

6. The client is then issued a reservation number to confirm the transaction.

7. Between the reservation time and the final date for confirmation, the client may modify the reservation. Modifications may include cancellation of some services or the addition of extra services.

a. Client is expected to fully pay for those relevant services that require full payment prior to final confirmation.

The use case is illustrated in the figure below.

[image: image1.jpg]Air Travel
Serice

Train Travel
Serice

Potential clients

Car Hire
Service

Bus
Booking
Senice

Travel
Agent

Hotel
Booking
Senice

Excursion
Booking
Semice

Insurance
Service

Credit Check
Serice

Travel Agent Use case - section 4.2.1.1

4.2.1.2 Requirements

1. UC-001-O-R-00: Need to facilitate cancellation of orders and exception handling.
2. UC-001-O-R-xx: Need to facilitate confirmation of orders.
3. UC-001-O-R-01: Needs callbacks to be able to express asynchronous interactions such as credit checking in a credit card company or availability from an airline.

4. UC-001-O-R-02: Needs composition to be able to reuse established choreographies such as that used by a credit card company.

5. UC-001-O-R-03: Needs reference passing to enable the car hire company to interact with the credit card company on behalf of the user.

6. UC-001-O-R-04: Needs exception handling to be able to express observable actions to take on receipt of an exception message.

7. UC-001-O-R-05: Needs timeouts to be able to express time to live on reservations.

8. UC-001-O-R-06: Need hierarchical composition to facilitate the inclusion of the individual service type choreographies.

9. UC-001-O-R-07: Need transactional boundaries to facilitate the integration of various transactions.

4.2.1.3 Variation on the use case

4.2.1.3.1 Variation 1

The travel agency might use a choreography definition internally as a documented model for its entire reservation booking process. The choreography definition language would need to present a multi-party global view of the reservation choreography, depicting the communication amongst the travel agent and all its various partners. Further, the definition language would need to support the addition of annotation or comments to the various elements of a choreography, in order to fully describe the behavior of the global choreography.

Requirements for variation 1

1. UC-001-V1-R-00: There MUST be a mechanism for adding annotation or comments to a choreography description.

2. UC-001-V1-R-01: A CDL must support the description of a multi-party global model.

4.2.1.3.2 Variation 2

The travel agent might assist new service providers to join its "network" by providing them with a choreography description outlining their communication responsibilities. The choreography definition language should support the construction of a global model (see above) and allow choreographies to reference one another, thus providing composition.

For instance, the travel agent would share a "credit check" choreography with a new credit bureau, and the travel agent's internal global choreography would simply include an instruction to "call credit check choreography". The global choreography could be composed of calls to many such nested choreographies. This has the added benefit of making the travel agent's global choreography modular and easier to understand.

Requirements for variation 2

1. UC-001-V2-R-00: A CDL must facilitate hierarchical decomposition to enable choreography descriptions to reference each other and to support some notion of abstraction to make descriptions easier to understand.

4.2.1.3.3 Variation 3

In order to protect against out-of-sequence messaging, a choreography participant might use a choreography definition to provide runtime validation of message typing and sequencing. When messages arrive they are checked for appropriate sequencing and, if the check fails, an exception is issued.

For instance, a rental car agency might wish to protect its backend systems from potential corruption by out-of-sequence messages -- for instance, a reservation being cancelled before it's ever placed. The corresponding action would be to respond to the offending document with an error message.

This runtime validation and exception generation is the responsibility of the choreography engine; however, the choreography definition language must not preclude the implementation of such a feature.

Requirements for variation 3

1. UC-001-V3-R-00: “Failure to comply” exception MAY be generated by a choreography

4.2.1.3.4 Variation 4

During the confirmation step, it may happen that one or more of the parties fails and are not immediately re-contactable. Depending on the urgency and importance of the travel services offered by the crashed parties, some form of recovery or correction may be required. In some cases it may be necessary to wait for the crashed parties to become active again, and to replay the messages back to them from some pre-defined checkpoint. The ability to demarcate such checkpoints is required in order to support this sort of scenario.

Requirements for variation 4

1. UC-001-V4-R-00: A CDL shall facilitate the demarcation of observable transactional behaviour.

When interacting with the various parties, a number of errors could occur. There will be system or infrastructure errors and failures that all choreographies would have to deal with, but more importantly there will be application/choreography specific errors that need to be considered and built into the choreography design. For example, between being offered services to a certain destination and confirming those services, it is entirely possible that the destination is withdrawn from sale for some travel advisory reason. When the client goes to book such services this should result in a set of error messages that signify some erroneous state. Depending on how the actual web services are defined, these errors may simply be specific wsdl operations, or may be defined as wsdl faults; which is chosen is a web service design issue.

Additional requirements

1. UC-001-V4-R-01: A CDL shall support the description of application exceptions.

2. UC-001-V4-R-02: A CDL shall support the description of WSDL faults.

4.2.1.3.5 Variation 5

In this variation of the Travel Agent use case most of the main carriers (airlines) have in place a robust messaging infrastructure that delivers high quality robust connections that ensure guaranteed delivery. However the rise of budget airlines means that a new class of carriers has become part of the overall offering from travel agents where the messaging infrastructure is no where near as reliable.

Fortunately the same choreography description can be used for both classes of carrier and the only thing that needs to change on both sides of the connection is for the participants to bind to the underlying messaging protocol available.

Also in this variation each carrier has different correlation keys that are used to match messages that belong to a specific transaction. The choreography that is used across the various carrier types is left unchanged with only the binding to correlation different across them. For each instance of a choreography, the choreography description, on instantiation with a participant, binds the appropriate correlation mechanism in to the choreography so that it may be followed. Binding on a per participant basis enables the choreography to use whatever correlation mechanism is required between any two participants.

Requirements for variation 5

1. UC-001-V5-R-00: There should be a binding mechanism to enable a choreography to bind to differing QoS as applied to messaging and to differing correlation mechanisms.

4.2.2 D-UC-002 - Quote Request

4.2.2.1 Primary description

In this use case a buyer interacts with multiple suppliers who in turn interact with multiple manufacturers in order to get a quote for some goods or services. A concrete example might be for a company that wishes to purchase a fleet of cars from automobile suppliers which in turn request quotes for specific bill or material items from their component manufacturers. The basic steps of the interaction are listed below:

1. A buyer requests a quote from a fixed set of suppliers.

2. All suppliers receive the request for quote and send requests for bill of material items to their relevant manufacturers.

3. The suppliers interact with their manufacturers to build their quotes for the buyer. The eventual quote is then sent back to the buyer.

4. EITHER

a. The buyer agrees with one or more of the quotes and places the order or orders. OR

b. The buyer responds to one or more of the quotes by modifying the quotes and sending them back to the relevant suppliers.

5. EITHER

a. The suppliers respond to a modified quote by agreeing to it and sending a confirmation message back to the buyer. OR

b. The supplier responds by modifying the quote and sending it back to the buyer and the buyer goes back to step 4. OR

c. The supplier responds to the buyer rejecting the modified quote. OR

d. The quotes from the manufacturers need to be renegotiated by the supplier. Go to step 3.

The use case is illustrated in the figure below.

[image: image2.jpg]Buwer

Manufacturar 1

Supplier &

Manufacturer 2

Supplier B

Manufacturer 3

.
.
.

Supplier N

Manufacturer n

Manufacturer

Quote Request — section 4.2.2.1

4.2.2.2 Requirements

1. UC-002-O-R-00: The ability to repeat a set of interactions is needed. The interactions between supplier and manufacturers need only be defined once and then repeated for each supplier manufacturer interaction.

2. UC-002-O-R-01: Needs variable timeouts because timeouts may differ from flight to flight and between carriers and so without it, it would be impossible to express the timeout of a reservation in a choreography.

3. UC-002-O-R-02: Needs variable participants that may be bounded or unbounded that may send quotes back to the travel agent. The number of participants maybe known at design time. The number of participants may only be known at runtime. The number of participants may only be observable.

4. UC-002-O-R-03: Needs (observable) transactional boundaries to facilitate recovery in the event of a participant failure.

4.2.2.3 Variation on the use case

4.2.2.3.1 Variation 1

In this variation of the Quote Request use case a new manufacturer wishes to participate in the overall supply chain. They manufacture a component in a new way that makes them very competitive with their rivals and the suppliers certainly wish them to participate.

In order for them to participate they look for tools that can be used in conjunction with the existing CDL descriptions that the suppliers use in order to generate the web services required. In this case they use eclipse as their IDE with a WS-BPEL plug-in and the new W3C CDL plug-in from Acme Software Tools. The tool imports the CDL description and generates the necessary abstract WS-BPEL and the skeleton for the Web Service, which is in Java. This enables the new manufacturer to build the necessary web services to participate in the supply chain at a much lower entry cost that would have been possible otherwise.

Having created the necessary Web Services CDL IDE plug-in used the CDL description to generate test messages which are then played into the newly created Web Services. This further cuts the cost of this work and ensures that the Web Services conform to the contractual definition laid down by the CDL description that is in use by the existing suppliers.

Requirements for variation 1

1. UC-002-V1-R-00: A CDL description needs to participate in the generation of a CPL
 (which maybe WS-BPEL, Java, C# or some other executable language).

2. UC-002-V1-R-01: A CDL description needs to be able to participate in the generation of test messages.

Note:
These are not language requirement but a use of a CDL description that may inform the design of a CDL.

4.2.2.3.2 Variation 2

A variation of this is that modified quotes from a buyer are an agreement to order based on the modified quote.

Requirements for variation 2

1. UC-002-V2-R-00: Needs the support of conditional paths.

4.2.2.3.3 Variation 3

Another variation that may be observable is that the supplier may, in response to the buyer or for its own reasons, require there to be more than one manufacturer that can meet the quote and so fulfill the order.

Requirements for variation 3

1. UC-002-V3-R-00: Needs the support of sequence.

5 Critical Success Factor Analysis

From the CSF Analysis 10 goals were extracted, 19 critical success factors identified and 19 requirements. These are summarised next.

5.1 CSF Analysis Goals

The next subsections list the CSF goals.

5.1.1 G-001

To be able to capture the interaction of a set of web services, from a global perspective.

5.1.2 G-002

To enable reusability of choreography components.

5.1.3 G-003

To be able to work with existing standards (i.e. WS-BPEL and other standards) to avoid duplication where possible).

5.1.4 G-004

To provide a conceptual model that is understandable by normal human beings.

5.1.5 G-005

To enable interoperability amongst participating web services.

5.1.6 G-006

To be simple for simple things and as simple as possible for complex things.

5.1.7 G-007

To be robust (against change). This might be achieved by being sufficiently abstract.

5.1.8 G-008

To be able to express business processes.

5.1.9 G-009

To be scalable.

5.1.10 G-010

To be applicable to a domain wider than B2B applications.

5.2 Critical Success Factors

Those factors that define the success of a choreography description language are as follows:

5.2.1 CSF-001

To be successful a CDL MUST NOT assume a single controller.

5.2.2 CSF-002

To be successful a CDL MUST promote a peer to peer relationships.

5.2.3 CSF-003

To be successful a CDL MUST enable choreographies to be composed of other choreographies.

5.2.4 CSF-004

To be successful a CDL MUST enable a choreography to be segmented based on some facet.

5.2.5 CSF-005

To be successful a CDL MUST be able to describe a declarative global model of interaction.

5.2.6 CSF-006

To be successful a CDL must enable state to be aligned such that the different participants when they communicate have the same view of the state communicated.

5.2.7 CSF-007

To be successful a CDL description MUST be verifiable at runtime so that the web services participating can be monitored or forced to be adherent to the choreography.

5.2.8 CSF-008

To be successful a CDL description may be verifiable statically to show freedom from deadlocks and livelocks.

5.2.9 CSF-009

To be successful a CDL SHOULD NOT be dependent on future specifications.

5.2.10 CSF-010

To be successful a CDL SHOULD be extensible.

5.2.11 CSF-011

To be successful a CDL SHOULD be have a simple conceptual model.

5.2.12 CSF-012

To be successful a CDL MUST facilitate the use of tools to manage and generate descriptions of choreographies.

5.2.13 CSF-013

To be successful a CDL MUST be able to capture interactions in a mixed security environment.

5.2.14 CSF-014

To be successful a CDL must have a clear business case for its adoption.

5.2.15 CSF-015

To be successful a CDL MUST support WSDL1.2

5.2.16 CSF-016

To be successful a CDL MUST conform to the WSA.

5.2.17 CSF-017

To be successful a CDL MUST NOT require existing Web Services to change.

5.2.18 CSF-018

To be successful a CDL SHOULD be consistent with the emerging Semantic Web.

5.2.19 CSF-019

To be successful a CDL should be an XML language.

5.3 CSF Analysis Requirements

The requirements are listed for completeness. A fuller description with reference numbers is provided in the requirements section.

1. A choreography description MAY be shown to be free from livelocks and deadlocks.

2. A CDL SHOULD be distinguishable from implementation languages.

3. A CDL SHOULD be machine readable (and therefore processable).

4. A CDL SHOULD be mappable to some graphical notation.

5. A CDL SHOULD provide design-time and run-time validation.

6. A CDL SHOULD enable recovery from exceptional conditions.

7. A CDL SHOULD enable third-party software validation at runtime.

8. A CDL MUST be able to express conditional paths.

9. A CDL MUST have ability to express conditional start and completion.

10. A CDL SHOULD be amenable to the generation of implementation code and test cases.

11. A CDL MUST be able to express a choreography in which the one choreography description is dependent on the outcome of another.

12. A CDL SHOULD allow exceptions to be propagated to different levels in the choreography description.

13. A CDL MUST not have any business semantics.

14. A CDL MUST support the description of the concurrent execution of processes
.

15. A CDL SHOULD be able to correlate message exchanges.

16. A CDL SHOULD provide the ability to specify various levels of QoS.

17. A CDL SHOULD be able to express a choreography in terms of external observable behavior.

18. A CDL SHOULD enable the description of the semantics of a choreography description to be easily specified.

19. In a CDL all interactions SHOULD be atomic.

6 Choreography Requirements

6.1 Charter Constraints

	D-CR-1001
	Level: MUST
	

	All specified choreography descriptions MUST be compatible with WSDL 1.2.
	
	

	D-CR-1002
	
	Level: SHOULD

	A choreography SHOULD not be bound to any specific implementation.
	
	

	D-CR-1003
	
	Level: MUST

	A choreography MUST provide a global model for presenting its interactions from the point of view of all the parties and not from the point of view of just one party.
	
	

6.2 Interoperability

	D-CR-2301
	
	Level: MAY

	A choreography language MAY provide a means by which a choreography description can be bound to technologies other than WSDL1.2.
	
	

	D-CR-2302
	
	Level: MAY

	A choreography definition language MUST NOT be restricted to any single implementation.
	
	

6.3 Management and Provisioning

	D-CR-4201
	
	Level: MUST

	It MUST be possible to manage choreographies and their relationships and the messages exchanged between them.
	
	

	D-CR-4202
	
	Level: MUST

	A choreography language MUST provide a means by which a third party (tools) may observe the state changes within the choreography as the choreography itself is active.
	
	

	D-CR-4290
	
	Level: SHOULD

	It MUST be possible to query the state of a choreography.

Note:
We are not providing mechanisms to do this in a standard manner but we are not seeking to prevent it.

Status: Further discussion; contentious
	
	

6.4 Exception Handling

	D-CR-4210
	
	Level: MUST

	A choreography MUST provide exception handling that allows propagation of errors.
	
	

	D-CR-4211
	
	Level: MUST

	A choreography language MUST be able to describe a timeout against any observable interaction such that an alternate path can be pursued should the timeout occur.

Note:
Level Clarification needed.
	
	

	D-CR-4212
	
	Level: MUST

	A choreography language MUST be able to describe the handling of unexpected exceptions. If an unexpected exception occurs the default behaviour MAY be to terminate the choreography.

Note:
Clarification on unhandled exceptions
	
	

	D-CR-4213
	
	Level: SHOULD

	If a process detects that a choreography is not being followed correctly, then the process SHOULD be able to use the choreography definition to identify exactly what went wrong.
	
	

6.5 Messaging and Protocols

	D-CR-4220
	Level: MUST
	

	A choreography description MUST be independent of the format of the messages that make up the interaction between participants.
	
	

	D-CR-4221
	Level: MUST
	

	A choreography language MUST provide a means to express different types of messages that make up an interaction between participants whereby messages can be marked as requests, responses, timeouts, exceptions and WSDL-faults and such that these messages can be bound to a named observable state change in the choreography.
	
	

	D-CR-4222
	Level: SHOULD
	

	It SHOULD be possible to define asynchronous and synchronous interaction between participants in a choreography description.

Note:
Wordsmith ("Callback mechanism")
	
	

	D-CR-4223
	Level: MUST
	

	It MUST be possible to model message flows that repeat, based on information within the messages (for instance, the contract negotiation protocol).

Note:
Further discussion

Note:
A company has built a web service for ordering books. The buyer receives partial order completion messages so that for an order of 100 books the user may receive an indeterminate number of completion messages until the order is fully complete. Completion in this sense is based on a condition against the message flow summing the book units for the completion.
	
	

	D-CR-4224
	Level: MUST
	

	A choreography definition language MUST provide a construct that describes the sending of a single message.

Note:
Deletion candidate

Note:
Revisit. This would be needed to model publishing or notification and is required to model one-way WSDL operations.
	
	

	D-CR-4225
	Level: MUST
	

	It MUST be possible to define a choreography without having to specify the contents of the messages being used.

Note:
Possible Duplicate

Note:
This will require further discussion.
	
	

6.6 Interfaces

	D-CR-4310
	Level: MUST
	

	A choreography MUST provide the ability to have prose associated with it to enable its behaviour to be explained.
	
	

	D-CR-4311
	Level: MUST
	

	A choreography language MUST provide a means to abstract parts of a choreography for the purpose of readability. THE CONCEPT OF ARBITRARILY HIDING INFORMATION IS OUT OF SCOPE.

Note:
Wordsmith (Information hiding vs Segmentation)
	
	

6.7 Reliability

TBD

6.8 Transaction

	D-CR-4510
	Level: MUST
	

	It MUST be possible to describe conditional behaviour for a choreography.
	
	

	D-CR-4511
	Level: MUST
	

	It MUST be possible to describe a choreography in terms of its messaging behaviour.
	
	

	D-CR-4512
	Level: SHOULD
	

	It MUST be possible for a choreography to modify its behaviour based on its operational context.
	
	

	D-CR-4513
	Level: MUST
	

	A choreography language MUST be able to describe the repetition of a set of interactions between participants.

Note:
Clarification (of use case)
	
	

	D-CR-4514
	Level: MUST
	

	It MUST be possible to define multi-party interaction.

Note:
Reclassify: Could be charter constraint
	
	

6.9 Composition

	D-CR-4610
	Level: MUST
	

	It MUST be possible to describe a behaviour recursively.

Note:
Wordsmith (What not how)
	
	

	D-CR-4611
	Level: MAY
	

	A choreography MAY have run time changes which allow the actual participants to vary.

Note:
At least with respect to dynamic participation.
	
	

	D-CR-4612
	Level: MUST
	

	It MUST be possible to make a choreography C2 dependent on another choreography C1 such that you can only create a new instance of C2 after a related instance of C1 has been completed.
	
	

	D-CR-4613
	Level: MUST
	

	A choreography language MUST provide mechanisms to facilitate top-down-design of choreography descriptions, support syntactic reuse and aid readability (e.g. #include).

Note:
Clarification

Dynamic whereas 34 is static design time? But seem to be related - agreed needs clarification.
	
	

	D-CR-4614
	Level: MUST
	

	It MUST be possible to dynamically add sub-choreographies to a "running" choreography.
	
	

	D-CR-4615
	Level: MUST
	

	A choreography language MUST be able to describe observable interactions between participants that are strictly related in time (sequence) as well as those that are unrelated in time (parallel).

Note:
Clarification
	
	

	D-CR-4616
	Level: MUST
	

	A choreography language MUST be able to express alternative paths of behaviour (based on state change).

Note:
Clarification: Not understood - major clarification required
	
	

	D-CR-4617
	Level: MUST
	

	It MUST be possible to define a new choreography by "extending" an existing one.

Note:
Reclassify ("Reuse")
	
	

	D-CR-4618
	Level: MUST
	

	It MUST be possible to dynamically determine the participants in a choreography at runtime.

Note:
At least with respect top dynamic participation.

Note:
This should be left in and is also related to D-CR-???

Duplicate Leave in for now
	
	

6.10 Testing and Validation

	D-CR-5001
	Level: MUST
	

	It MUST be possible to validate a choreography definition for correct behaviour at the time it is designed.
	
	

6.11 Support for Semantics

	D-CR-5100
	Level: MUST
	

	A choreography MUST be uniquely named.
	
	

	D-CR-5101
	Level: SHOULD
	

	There SHOULD be a distinction between a "participant" and a "role", where the participants might be dynamic but the roles need not be.
	
	

6.12 External Dependencies

TBD

6.13 Systems

TBD

7 Correlation of Use Cases and Requirements

7.1 Use Cases and Requirements Cross-Reference

This section cross references the use case requirements with the requirements in section 6.

	D-CR-4201

	Relate to: UC-001-O-R-00, UC-001-O-R-01, UC-001-O-R-02, UC-001-O-R-04, UC-001-O-R-05, UC-001-O-R-06, UC-001-O-R-07

	D-CR-4202

	Relate to: UC-001-O-R-04, UC-001-O-R-05, UC-001-O-R-06, UC-001-O-R-07, UC-001-V1-R-00, UC-001-V1-R-01

	D-CR-4290

	Relate to: UC-001-O-R-07, UC-001-V2-R-00

	D-CR-4210

	Relate to: UC-001-O-R-04

	D-CR-4211

	Relate to: UC-001-O-R-05

	D-CR-4212

	Relate to: UC-001-O-R-04, UC-002-O-R-01

	D-CR-4213

	Relate to: UC-002-O-R-01, UC-002-O-R-03, UC-002-V1-R-01

	D-CR-4220

	Relate to: TBD

	D-CR-4221

	Relate to: TBD

	D-CR-4222

	Relate to: UC-002-O-R-02, UC-002-V1-R-0, 1 UC-002-V2-R-00, UC-002-V3-R-00

	D-CR-4223

	Relate to: TBD

	D-CR-4224

	Relate to: TBD

	D-CR-4225

	Relate to: TBD

	D-CR-4310

	Relate to: UC-001-O-R-07, UC-001-V1-R-00, UC-001-V1-R-01, UC-001-V2-R-00, UC-001-V4-R-01, UC-001-V3-R-00

	D-CR-4311

	Relate to: UC-002-O-R-00, UC-002-O-R-03, UC-002-V2-R-00, UC-002-V3-R-00

	D-CR-4510

	Relate to: UC-002-V2-R-00

	D-CR-4511

	Relate to: TBD

	D-CR-4512

	Relate to: UC-002-O-R-02

	D-CR-4513

	Relate to: UC-002-O-R-00

	D-CR-4514

	Relate to: UC-002-O-R-01, UC-002-O-R-02

	D-CR-4610

	Relate to: TBD

	D-CR-4611

	Relate to: UC-002-O-R-02

	D-CR-4612

	Relate to: TBD

	D-CR-4613

	Relate to: TBD

	D-CR-4614

	Relate to: TBD

	D-CR-4615

	Relate to: TBD

	D-CR-4616

	Relate to: TBD

	D-CR-4617

	Relate to: TBD

	D-CR-4618

	Relate to: UC-002-O-R-02

	D-CR-5100

	Relate to: TBD

	D-CR-5101

	Relate to: TBD

7.2 Requirements Coverage

No requirements document can provide complete coverage for any particular technology. However, these user scenarios, use cases, and the requirements derived from them are intended to provide coverage for the majority of the most common possible use of Web Service Choreography. It is hoped that any omissions or errors contained herein will be corrected as this document matures.

8 Appendix A - References

8.1 Normative References

DAML-S

DAML-S: Semantic Markup for Web Services, The DAML Services Coalition, Version 0.9 Beta. Available from http://www.daml.org/services/daml-s/0.9.

SOAP-1.2

Simple Object Access Protocol (SOAP) 1.1, Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik Frystyk Nielsen, Editors. World Wide Web Consortium, 24 June 2003. Available from http://www.w3.org/TR/soap12-part1.

RFC2119

S. Bradner, RFC 2119: Key words for use in RFCs to Indicate Requirement Levels, Internet Engineering Task Force, 1997. Available from http://www.ietf.org/rfc/rfc2119.txt.

WS-ARCH

Web Services Architecture, David Booth, Michael Champion, Chris Ferris, Francis McCabe, Eric Newcomer, David Orchard, Editors. World Wide Web Consortium Working Draft. Available from http://www.w3.org/TR/ws-arch.

WS-CHOR

Web Services Choreography Working Group Charter, World Wide Web Consortium, January 2003. Available from http://www.w3.org/2003/01/wscwg-charter.

WSDL-1.2

Web Services Description Language (WSDL) Version 1.2 Part 1: Core Language, Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau, Sanjiva Weerawarana, Editors. World Wide Web Consortium Working Draft. Available from http://www.w3.org/TR/wsdl12.

8.2 Informative References

BPEL

Business Process Execution Language for Web Services Version 1.1, Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, Sanjiva Weerawarana. BEA, IBM, Microsoft, SAP, and Siebel, 2003. Available from http://www-106.ibm.com/developerworks/library/ws-bpel.

BPML

Business Process Markup Language 1.0, Assaf Arkin. BPMI.org, 2002. Available from http://www.bpmi.org/specifications.esp.

BPSS

ebXML Business Process Specification Schema Version 1.01, ebXML Business Process Project Team. UN/CEFACT and Oasis, 11 May 2001. Available from http://www.ebxml.org/specs/ebBPSS.pdf.

CSF

Chief Executives Define Their Own Data Needs, Rockart, J., Harvard Business Review, March/April 1979.

UML

Unified Modeling Language Version 1.5, Object Management Group, March 2003. Available from http://www.omg.org/technology/documents/formal/uml.htm.

WSCI

Web Service Choreography Interface 1.0, Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke Kawaguchi, David Orchard, Stefano Pogliani, Karsten Riemer, Susan Struble, Pal Takacsi-Nagy, Ivana Trickovic, Sinisa Zimek, Editors. World Wide Web Consortium, 15 March 2001. Available from http://www.w3.org/TR/wsci.

WSCL

Web Services Conversation Language (WSCL) 1.0 W3C Note 14 March 2002, Arindam Banerji, Claudio Bartolini, Dorothea Beringer, Venkatesh Chopella, Kannan Govindarajan, Alan Karp, Harumi Kuno, Mike Lemon, Gregory Pogossiants, Shamik Sharma, Scott Williams, Editors. World Wide Web Consortium, 14 March 2002. Available from http://www.w3.org/TR/wscl10.

WS-COOR

Web Services Coordination (WS-Coordination), Felipe Cabrera, George Copeland, Tom Freund, Johannes Klein, David Langworthy, David Orchard, John Shewchuk, Tony Storey. BEA, IBM and Microsoft, 2002. Available from http://www-106.ibm.com/developerworks/library/ws-coor/.

WS-TRANS

Web Services Transaction (WS-Transaction), BEA, IBM and Microsoft, 2002. Available from http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/.

9 Appendix B - Acknowledgements

The editors would like to thank Jack Herer, Len Greski, and all of the members of the Web Services Choreography Working Group for their assistance.

�Provide expansion of abbreviation CDL on first occurrence.

�This requirement mentions flights. Should it be moved to previous use case, or changed to talk about car parts?

�This requirement mentions travel agent. Move to previous use case or change language to automobile supplier?

� Provide expansion of abbreviation CPL on first occurrence.

� The meaning of this requirement is not obvious. Does mean a sequence construct, or a sequence of something?

� Spell out acronyms on first occurance.

�So useless for B2B? Conflicts with. G-010 and 18 below. Requires clarification.

�Is it a requirement that the language have the notion of processes? I thought the focus was on messages.

�Why?

