Understanding Microsoft Passport

Niral Shah Ruopeng Ye
Abstract

Microsoft Passport is widely used by Microsoft products to do authentication, we noticed many bugs have been reported and Microsoft has released secure updates to resolve the problem over the time. It is 5 years after it was released, we will conduct a study of the Passport technology today, to see what are the problems that remains.
1. Introduction

Microsoft Passport is a web-based authentication system which supports Single Sign On (SSO). In the paper, we study its origin and the usage statistics in section 2. And look at the detailed message flow in section 3. Based on the message flow, we found some vulnerability which is listed in section 4. In section 5 we look at the usability issues and finally we conclude with section 6.

2. Passport Background

The original Passport service was developed by Firefly Network, founded by a group of MIT Media Lab researchers in 1995. Microsoft purchased Firefly in 1998 and kept working on its Passport product. The first version of Microsoft Passport was released in 1999. It is a web service designed to make account login and online purchase easier. By relying on client side cookies, Microsoft Passport supports SSO (Single Sign On) among web sites that use Microsoft Passport.
It is not clear how many business partners of Microsoft are still using Passport service. As Microsoft has discontinued the Site Directory feature which stated all the participating web-sites. Through Internet search, the following are the sites reported to be listed on the Passport participants list before, although we found most of them don’t have a Passport sign-in button any more. These merchants include: Starbucks.com, 1-800-Flowers.com, buy.com, Expedia.com, Hilton.com, Officemax.com, Victoriassecret.com, Blue Nile, FogDog Sports, Kmart, Nordstrom, OfficeMax, RitzCamera.com, and The Sports Authority. However, the Microsoft affiliated website, such as MSN, MSN Money, MSN Hotmail, MSN Messenger still has the option to let the user sign in with their Passport account. The Windows XP operating system, is the only software application we can find (if OS can be viewed as an application running on top of the processor microcode) which can let the user login to the Passport account, it’s not a default option though.
3. Analysis of Passport

The Passport service can be viewed as a web-based authentication system. It consists of three entities, Passport server, online Merchants, and customer clients.
The Passport server is hosted and supported by Microsoft, it is the single and central location where all the customer accounts information are stored and processed for authentication purposes. When the customer tries to log-on to a Passport-participating online merchant’s website, the user authentication is transferred to Microsoft Passport server via browser redirection and secure cookie setting is stored at the customer’s web browser as the authentication result.
The secure cookie stored in the customer’s web browser is used as a proof for legitimate usage at the online merchant’s web site. If the customer goes to another Passport participating web site, as long as the secure cookie is stored in the browser, the customer doesn’t need to type in the username and password again. Instead, the secure cookie will be sent to the Microsoft Passport server for authentication purpose.

So, for the online merchants, they only need to trust the Microsoft Passport and let it handle the authentication process. After the authentication, the customers will be redirected back to the customers and they can read the customer account information from the cookies that have been set by the Passport server.

Microsoft has provided a general description of the workings of its Passport service and many other descriptions of Passport can be found on the Internet. However, to get first-hand knowledge of how Passport and in order to find out what vulnerabilities might exists in its protocol, we decided to do a detailed HTTP transaction trace of the Passport SSO service.
We use Ethereal to eavesdrop TCP messages and reconstruct complete HTTP transactions to study the workings of Passport authentication process. As MSN Hotmail is one of the most popular Passport participating site, our following examples will be based on the HTTP message flow among a user web browser, MSN Hotmail, and Microsoft Passport server.
To eavesdrop TCP message, we type TCP as the filter string to start logging messages flow that go throw the Ethernet interface card. And then we start up the web browser to finish a complete MSN Hotmail login-logout process. To minimize encountering irrelevant TCP packets which are not sent to and from our web browser, we closes other internet connected desktop applications, such as the Internet chat programs.

With TCP filter set, it will filter out all the irrelevant messages like router beacons and messages involves in other protocols that our client computer sends and receives. Still, one of the problems of analyzing the TCP messages is that there are usually 1000 to 3000 TCP packets flew by in a single MSN Hotmail login-logout event. To construct HTTP transactions from these huge number of packets, more filters need to be used.
First, we single out all the SYN packets, this is the very first packet sent in a TCP 3-way hand-shake. The corresponding filter string is: TCP[13]==2, this is the 13th byte (octet) in the TCP header, which corresponds to the control flags, if SYN bit is set it equals the value of 2. This will result in an ordered list of SYN packets, from the oldest to the latest.
Then, we can following this list of SYN packets, selecting them one by one by right-clicking them, and choose “Follow TCP Stream” from the popup menu. This will build and display the HTTP transaction that was transmitted in the TCP socket which begins with the SYN packet. By building all HTTP transactions from the list of SYN packets, we can construct the following message flow chart. Note that on the charts, the message sequence is ordered by their numbers.
Fresh Sign On

A fresh sign on here means the web browser has been cleared of cookies, and all content in its cache. This will show what a browser needs to do when it connects to a Passport participating site for the first time.
First, let’s look at the pre-login message flows, these are the messages flow when the browser fetch the login page, but the user hasn’t typed in the username and password and pressed the login button yet.

[image: image1]
Message 1:

Open connection to MSN Hotmail page.
Message 2:

Redirect response to Passport server.
Message 3:

Open connection to Passport page.
Message 4:

Redirect response to Passport server (it’s the same serer, this is done to retrieve the user login name, which is usually stored in the MSPPre cookie).

Message 5:

Open connection to Passport page with username (if available).

Message 6:

Redirect response to Passport login page content provider.

Message 7:

Open connection to Passport login page content provider.

Message 8:

Return MSN Hotmail login page.
Message 9 and 10:

Requests and Response for pictures and advertisement which come with the MSN Hotmail login page.

To the user, message 3, 4, 5, 6 are “hidden” communication which is done by the browser and the Passport server without any user intervention. This is done to retrieve the previous username if it can be found in the browser’s cookie cache.

Next let’s look at what happens when user supplies the username and password and click the login button. Here we assume a successful login happens.

[image: image2]
Message 1:

Open HTTPS (SSL encrypted) connection to MSN Hotmail page. Username, and Password are sent encrypted.
Message 2:

Response of authentication result is sent back using HTTPS, again SSL encrypted. From later messages, we can infer in the response exactly two cookies, MSPAuth and MSPProf cookies are sent back and stored by the web browser.
Message 3:

Show the MSPAuth and MSPProf, the authentication proof, to MSN Hotmail.

Message 4:

Redirect response to Hotmail Server and set the Hotmail related cookies.
Message 5:

Open connection to Hotmail Server with all the cookies received. (Message 5 and 6 might be used to confirm the cookies at the client side are all correct)
Message 6:

Redirect response to Passport mailbox page content provider.

Message 7:

Open connection to Passport mailbox page content provider.

Message 8:

Return MSN Hotmail mailbox page.

Message 9 and 10:

Requests and Response for pictures and advertisement which come with the MSN Hotmail mailbox page.

Note that MSPAuth and MSPProf are not written to the browser cache, they are stored in the memory. So if the web browser is closed, the authentication information will be lost and the user needs to re-login the Passport account.
Finally, let’s look at the logout process.

[image: image3]
Message 1:

Open connection to MSN Hotmail mailbox logout page. This is the link at the sign-out button
Message 2:

Reset client site cookies (empty them). And redirect response to Passport server to do a logout at the Passport server.

Message 3:

Open connection to Passport server’s logout script. The Passport server will do relevant logout process for the requesting account.
Message 4:

Reset client site cookies (empty them). And redirect to Passport content provider for a logout page.
Message 5:

Open connection to Passport content provider for a logout page.
Message 6:

Return a logout page showing the user is logging out, and also redirect response to MSN Hotmail and Passport logout scripts. And set the browser URL to www.msn.com, the MSN page.
Message 7:

Open connection to MSN Hotmail logout script.

Message 8:

Reset MSN Hotmail cookies.

Message 9:

Open connection to Passport server logout script.

Message 10:

Reset Passport cookies.

Message 11 and 12:

Request and show the MSN page. And requests and response for pictures and advertisement which come with the MSN Hotmail logout page.

Single Sign On
The SSO (Single Sign On) takes place when the browser has its Passport authentication stored in the disk cache, and it goes to a Passport participating site which requests the authentication cookie. So the pre-login and login processes in the previous scenario (refer to fresh sign in) are combined to one auto-sign in process, which is depicted and explained below. The sign out process is the same.

[image: image4]
Message 1:

Open connection to MSN Hotmail page.

Message 2:

Redirect response to Passport server.

Message 3:

Open connection to Passport page, with all its Passport related cookies in its disk cache, these includes MSPSec, MSPAuth, MSPProf, MSPVis.

Message 4:

Redirect response to Passport server to do a HTTPS authentication.
Message 5:

Open HTTPS connection to Passport server to do user authentication.
Message 6:

Return user authentication result and redirect browser to MSN Hotmail. It can be inferred from the later message that new sessions cookies for MSN Hotmail are sent to the browser too.
Message 7:

Open connection to MSN Hotmail with authentication proof.
Message 8:

Redirect to MSN Hotmail mailbox page server.
Message 9:

Open connection to MSN Hotmail mailbox page server with all session cookies for MSN Hotmail.

Message 10:

Return MSN Hotmail mailbox page.

Message 11 and 12:

Requests and Response for pictures and advertisement which come with the MSN Hotmail login page.

4. Vulnerability

As can be seen from the SSO (Single Sign On) process above, the most important authentication proof is the disk cache copy of the secure cookies for Passport server. These include the MSPSec, MSPAuth and MSPProf. The user should protect these cookies, because otherwise an eavesdropper or an attacker can steal these cookies and impersonate the user from another location.
Here we found one serious flaw in the current Passport implementation, and so far we haven’t seen a similar report of this flaw elsewhere.

On the MSN Hotmail page, the Passport sign-in option is described using a check box with a description (Sign me in automatically). And the Microsoft help text for this option explains that, the user will remain logged-in to Passport unless the user clicks the sign-out button. But what we found is that even if the user clicks the sign-out button, the user might still be able to login to Passport automatically, just like the button hasn’t be clicked before.
What turns out is that. If after the user selects the check-box and sign-up to Passport, the user makes a copy of the browser’s disk cache, then even if the user clicks the sign-out button to sign out of Passport (and of course Hotmail too) account, the copy of the previous disk cache can be later used to do the auto-login shown in the SSO process.

In Internet Explorer it is difficult to get an exact copy of the disk cache, as the index.dat is protected by the OS through an exclusive read only privilege. However, in other browser, such as the Opera browser, the cookie can be copied and examined anytime, we found that we can save the disk cookie. Then this cookie can be put to another Opera’s cookie catch location, when the browser goes to any Passport participating web site, the user can simple sign in without typing any username or password.
The reason may be due to the fact that at Passport server, the secure cookies are never expired, so they only rely on resetting the browser cookie cache to do the sign-out. One way to solve the problem is to store the secure cookies (the authentication information) at the Passport server with a tree(trie) structure, and use the hash of the cookie as the index(key) to store the cookie in the tree(trie). And whenever a user signs out of Passport, the cookie location should be marked as expired.

On July 31, we found another bug (related to Hotmail service), and this can not be re-verified. (And we found the Microsoft brought down the Passport services on August 1 for maintenance). That bug (if it turned out what we did was right) works as follows. Each Hotmail and Passport sign-in has a session number, it’s stored in the cookie as either lt or ct. As we note that during the logout process, the browser open the expire script at MSN Hotmail site with only the ct argument, e.g. http://www.hotmail.msn.com/cgi-bin/expire?ct=1091709615. So we tried to use Opera to login to Hotmail account and eavesdrop the ct value, then we launch an Internet Explorer at another computer and use the above script to expire it. We found that a check mark was returned, and the user at the Opera browser was asked to re-login when he tried to go to a different mailbox or open a different mail folder. However, further redo of this test after Aug 1 failed, we don’t know whether we did it wrong or something at the Hotmail site was changed during the maitenence.
5. Usability

Usability is a generic term that refers to design features that enable something to be user-friendly. A system, irrespective of how cryptographically strong, correct or bug-free, is not secure if it is not usable. In the context of Microsoft .Net Passport, a system may considered usable if the user easily understands what the concept is, .NET Passport, by the virtue of its concept of single-sign-on is very simple for users to understand. Its Human Computer Interface includes just three brand elements, the ‘sign-in’, and ‘sign-out’ buttons and the .net logo in a dialog box to enter username and password. The .Net Passport Service Development Kit also provides guidelines for the participating web-site developer about the size and color of buttons so as to make them distinguishable and easily identifiable.
These guidelines explain correct implementation of .NET Passport brand elements. Adherence to these guidelines improves the user's experience by providing a consistent representation of key design elements. –.NET Passport 2.5 Service Development Kit Guide
To see whether the participating websites follow the guidelines to achieve the desired usability, we will first do a case study of a website which does not provide the desired functionality and then consider three representative web-sites to evaluate their usability. We also compare what Microsoft states the Passport service provides in the passport review guide [PRG][1] and what actually the users get and experience.

Experiment 1:

“Passport users must be able to sign out of a site by clicking the sign out button. Each Passport enabled site must create a sign out page”[PRG] –passport review Guideline

We take up a case study of an auction web-site – www.ubid.com which is a .Net Passport participating site. We studied the web-site as a user would experience. We performed the following steps:

1. We visited the URL www.ubid.com
2. We selected an item, tried to bid. We were prompted that we need a customer login id and a password.

3. Registered as a new user, entering the name information desired.

4. Linked the account to Passport so that we could sign-in using the passport username – password.

5. Now we were signed in and the Passport button changed from ‘Sign in’ to ‘Sign out’ which we as users thought, it indicated that we were now signed in and that if we click the ‘Sign out’ button, we should sign out.

6. Again we tried to enter into a bid, this time, we were allowed, and the information we entered for sign-up was displayed on the page for preview before submitting the information. We confirmed and transaction was completed.

7. Next we decide to Sign-out. So we click the .NET ‘Sign-out’ button

8. As a user, one would expect the ‘Sign-out’ button should change its status to ‘Sign in’, meaning we should logout of the page, but nothing happens. The button remains ‘Sign Out’.

9. We browsed another website while, and tried the same web-site again by typing www.ubid.com as url. This time, the page displayed a ‘Sign In’ logo indicating that we were signed out earlier.

10. From the interface we thought that we should not be able to bid, since we were not signed in. However, we were allowed to bid, all the sensitive credit card information popped up for preview before confirming the bid.

11. We clicked ‘Sign Out’ once more, but nothing happened.

12. We tried opening a new browser window, while keeping the current window as it is. That page also displayed the logo ‘Sign In’ but which on trying revealed that we were already signed in.

13. We closed both the browser sessions and then went to the web-site in a new session.

 This time, we actually needed to sign in.

 From the above experience, we can say that a user would definitely feel insecure about his not having control over personal information (since sensitive information like credit card number is displayed when he does not expect it). Also the concept of usability and human computer interaction principles fail when the desired functionality itself is not performed. It would make the user do what he does not intend to do, like disrupt his surfing to close the browser in order to avoid his personal information being displayed when he does not expect it. This is bad user experience and can be considered a security issue as well. This is also not in conformance with the [PRG] statement.

Experiment 2 :

Passport uses cookies whenever a user signs in to a Passport participating site. These cookies allow users to move from page to page at a participating site without having to sign in again on each page [PRG].

 The first part of the statement was verified by analyzing the packets over the network using Ethereal Network Protocol Analyzer while signing in and signing out of the participating web-site using the Mozilla Firefox browser, version 0.9.1.

Next, to verify the second half, we took three sample websites: ubid.com – an auction site, ebay – an online market place and expedia.com – a web site for travelers. We performed all the permutations of sign-in and sign-out for these web-sites, first two at a time, then three at a time. The results relevant to our study are summarized in the table below. We compared the web-site and compared their behavior with the expected behavior as per the guideline document.

	 X
	Y -> Need to re-enter password?

	Sign-in Originating site
	ubid.com
	ebay.com
	Expedia.com

	ubid.com
	No
	Yes
	No

	ebay.com
	No
	No
	No

	expedia.com
	No
	Yes
	No

Table 1: X (vertical): site where 1st time Passport authentication is performed by taking username and password from user. Y (Horizontal): The sites visited after 1st site along X axis is visited.

Consider for example, we first sign in to ubid.com using .NET Passport.

Next, in the same browser session, we visit the www.ebay.com. We observe that,

In order to sign-in to ebay.com using Passport, the web-site prompted us for Passport password, which is not in accordance with the statement that “the cookies allow users to move from page to page at a participating site without having to sign in again on each page.”[PRG]

If the statement was to be true, user would not have to be prompted for passwords. Ideally, if the statement were to hold true, all the cell values in table 1 would have value ‘NO’ in table 1.Also, we observe from table 1 that ebay.com always prompts for password irrespective of the previous sign-in site. The user won’t be asked for any more passwords since the first sign–in i.e. if the user first provides .NET password at ebay.com, he need not type the same for subsequent visits to expedia.com and ubid.com.
Experiment 3

Next we observe the sign-out behavior of the participating web-sites.

 “When the user clicks the sign out button, the Passport service sends to the user a unique page which calls the sign out code for all sites the user is currently signed into. This allows the user to conveniently sign out of all sites with a single click.”- [PRG]

We verify the above by permutations of ‘signing in’ two and three participating web-sites and then signing out of them in different orders. Using the same three web-sites, the relevant results are listed in table 2. Ideally, according to the statement, all the cell values in table 2 should have been ‘Yes’ meaning that if a user signs out of one web-site, he should also automatically sign-out from every other participating web-site.

	X |
	 Y-> Signed Out?

	Sign-out Originating site
	ubid.com
	Ebay.com
	expedia.com

	ubid.com
	No *
	No
	Yes

	ebay.com
	No
	Yes
	No

	expedia.com
	No
	No
	Yes

Table 2: X (vertical): site where 1st time Passport authentication is performed by taking username and password from user. Y (Horizontal): The sites visited after 1st site along X axis is visited.

 * ‘Sign-Out’ button is displayed meaning the user is still signed in.

But as we observe, this is not observed. Signing out of ebay.com does not imply signing out of expedia.com. However, signing out of ubid.com signs a user out of expedia.com, but not from e-bay.com. ubid.com, as mentioned earlier has a special case of not signing out of itself when clicking the ‘Sign-out’ button. The ubid.com account closes only on exiting all the browser sessions in which participating web-sites still have active Passport login.

The above cases not only show that the websites are not according to what Microsoft states in the review guide but also make the overall experience of a user with Passport inconsistent.

For the participating web sites to meet the requirements they should follow the Platform for Privacy Preferences Project Compact headers. Developed by the Worldwide Web Consortium, P3P is designed to cover all the major aspects of a Web site’s privacy statements to help users better understand how the company they are dealing with will handle their personal information. With respect to sign-out, it allows a page sent by Passport.com to include links that will delete cookies set by participating Passport sites. - [PRG]

Recommendation: When a site participates in Passport, Microsoft should check whether its user interface provides the desired usability and functionality. Microsoft could have watchdogs to monitor the usability and security attached to the usage of its brand user interface elements, namely ‘sign-in’ and ‘sign-out’ buttons at participating web-sites. A sense of insecurity of associated with the usage of passport at one website may affect the user’s choice to use it at other web-sites.

Privacy Policies (As on April 2004)

 According to the privacy policies, Passport only collects information required to setup a specific Passport account. For example, while creating a ‘Limited .NET Passport’ account, user is only asked for the choice of username and password. For other accounts, additional profile information like name, gender, birth-date and geographic information are asked for.

For use on mobile phones, telephone number is used. However, there are two conflicting statements which make it unclear to the user whether the sign-in and sign-out activities of a user are stored by .NET Passport store.

“However, Passport does not collect any other information about your online activity at the participating site, such as the web pages you visit or the purchases you make, whether you are signed in or not.”

“.NET Passport also temporarily logs individual sign-ins for the purpose of ensuring the efficiency and security of the .NET Passport service.”
 Passport claims not to sell or rent personal information to third parties except for providing this information to third party to provide limited services on behalf of Passport.
Passport policy also explains that it is important for user to read each participating site’s (to which the user registers or signs in) privacy policy to understand the usage of profile information at that site. While they state they do not monitor the privacy policy of such web-sites, they also ask user to notify Passport by email of any site-specific privacy issue.

Experiment Conclusion: Passport does not provide security if the people who use the software forget to click on the Sign-out button or they do not know whether they need to click the Sign-out button to make the information unavailable to other web sites.

6. Conclusion

The idea of using disk cookies stored in the browser’s cache seems to provide opportunities for “replay attack”. The final conclusion we have is, try not to use Passport for serious transaction, for an alternative solution, Kerberos is a better choice.
Reference

[1] Windows XP-Passport Integration, Paul Thurrott, Windows & .NET Magazine, May 17, 2001
[2] Microsoft Passport SDK (MSDN)
[3] David P. Kormann and Aviel D. Rubin, Risks of the Passport Single Signon Protocol, Computer Networks, Elsevier Science Press, volume 33, pages 51-58, 2000, http://avirubin.com/passport.html
[4] Microsoft Passport to Trouble, Marc Slemko, 2001, http://alive.znep.com/~marcs/passport/.

[5] Microsoft Passport Service, http://www.passport.net/
[6] Passport Hacking, Chris Shiflett, 2001, http://shiflett.org/articles/passport-hacking
[7] Passport Hacking Revisited, Chris Shiflett, 2002, http://shiflett.org/articles/passport-hacking-revisited
www.hotmail.com

Web browser

loginnet.passport.com

login.passport.net

*.msn.com

*.msimg.com

*.passportimages.com

*.atdmt.com

(for pictures and ads)

1

2

3

4

5

6

8

7

9

10

1

10

9

7

8

6

5

4

3

2

*.msn.com

*.msads.net

(for pictures and ads)

by1fd.bay1.hotmail.msn.com

www.hotmail.msn.com

Web browser

loginnet.passport.com

1

12

11

5

6

10

9

4

3

2

www.msn.com

*.msads.net

graphics.hotmail.com

(for pictures and ads)

login.passport.net

loginnet.passport.com

Web browser

by1fd.bay1.hotmail.msn.com

www.hotmail.msn.com

8

7

1

12

11

7

8

6

5

4

3

2

*.msn.com

*.msads.net

(for pictures and ads)

www.hotmail.msn.com

loginnet.passport.com

Web browser

www.hotmail.com

by1fd.bay1.hotmail.msn.com

9

10

