Data Protection and Rapid Recovery From Attack With A Private File Server
Abstract
When a personal computer is attacked, the most difficult thing to recover is personal data. The operating system and applications can be reinstalled returning the machine to a functional state, usually eradicating the attacking malware in the process. Personal data, however, can only be restored from private backups – if they even exist. Once lost, personal data can only be recovered through repeated effort (e.g. rewriting a report) and in some case can never be recovered (e.g. digital photos of a one time event). To protect personal data, we house it in a file server virtual machine running on the same physical host. Personal data is then exported to other virtual machines through specialized mount points with a richer set of permissions than the traditional read/write options. We implement this private file server virtual machine using a modified version of NFS installed in virtual machines under both Xen and VMWare. We demonstrate how this architecture provides protection of personal data as well as rapid recovery from attack. Specifically, we show how we could defend against 5 of the 9 new viruses posted on CERT since April  21, 2004. We also demonstrate that by placing the user’s applications in a virtual machine rather than directly on the base machine we can provide near instant recovery from even a successful attack. Finally, we quantify the overhead costs of this architecture by running a series of benchmarks on both Windows and Linux in the base machine as well as on an NFS partition mounted in a virtual machine.

1. Introduction 

Worms and viruses have entered the consciousness of the majority of the personal computer users. Even novice users are aware of the attacks that can come in the form of email from a friend or a pop-up ad from a web site. The goals of an attack can vary from using the compromised system to attack others, to allowing a remote attacker to harvest data from the system, to outright corruption of the system. 

Fully restoring a compromised system is a painful process often involving reinstalling the operating system and user applications. This can take hours or days even for trained professionals with all the proper materials readily on hand. For average users, even assembling the installation materials (e.g. CDs, manuals, configuration settings, etc.) may be an overwhelming task, not to mention correctly installing and configuring each piece of software. 

To make matters worse, the process of restoring a compromised system to a usable state can frequently result in the loss of any personal data stored on the system. From the user’s perspective, this is often the worst outcome of an attack. System data may be painful to restore, but it can be restored from public sources. Personal data, however, can be restored only from private backups and the vast majority of personal computer users do not routinely backup their data. Once lost, personal data can only be recovered through repeated effort (e.g. rewriting a report) and in some case can never be recovered (e.g. digital photos of a one time event).

We propose the use of a specialized private file server virtual machine to provide added protection for personal data.  This file server virtual machine is made accessible only to other clients running on the same host by way of a local virtual network segment.  Personal data is housed in the private file server and exported through specialized mount points with a richer set of permissions than the traditional read/write options. This architecture provides a number of benefits including 1) the opportunity to separate personal data into multiple classes to which different finer grained permissions can be applied, 2) the separation of personal data from system data allowing each to be backed-up and restored appropriately, 3) the opportunity to create virtual machine appliances, and 4) rapid recovery from attack by rolling back system data to a known good state without losing recent changes to personal data.

In Section 2, we describe our architecture and its benefits in detail. In Section 3, we describe how it can be used to protect user data against specific attacks. In Section 4, we quantify the overheads associated with this architecture by running a variety of benchmarks on a protoype implemented using a modified version of NFS in conjunction with virtual machines in both Xen and VMWare. We discuss related work in Section 5, future work in Section 6 and finally, conclusions in Section 7.
2. Architecture

Figure 1 illustrates the main components of our architecture. A single physical host is home to multiple logical machines. First, there is the virtual machine monitor, in some instances this may be implemented as a base operating system running a virtual machine system such as VMWare, Xen, X or Y. Second, there is a virtual network that is accessible only to this base machine and any virtual machine running on this host. Third, there is a file system virtual machine which has only one network interface on the local virtual network. This file system virtual machine is the permanent home for personal data and exports subsets of this personal data store via specialized mount points to local clients. Fourth, there are virtual machine appliances. These virtual machines house system data such as an operating system and user applications. They can also house locally created data temporarily.   These virtual machine appliances can have at most two network interfaces – one on  the physical network bridged through the base machine and one on the local virtual network.  Depending on its function, a virtual machine appliance may not need one or both of these network interfaces.

2.1. Base Machine

We have implemented several prototypes of this architecture using either Linux or Windows as the base operating system and Xen or VMWare as the virtual machine monitor. There are several other excellent virtual machine systems we could have used, but our purpose was not a comparison of existing virtual machine systems. We chose VMWare for its robustness, ease of use and support of Windows guest operating systems. We chose Xen for its lower overhead [Xen03][CDE+04].

Regardless of implementation, the base machine is used to create the local virtual network, the file system virtual machine and the virtual machine appliances.  It is used to assign resources to each these guests. It can also be used as a platform for monitoring the behavior of each guest. For example, in our prototype, we ran an intrusion detection system on the base machine. It can also be used as a firewall or NAT gateway further controlling access to even those virtual machine appliances with interfaces on the physical network.

The security of base machine is key to the security of the rest of the system. Therefore, in our prototype, we “hardened” the base machine by strictly limiting the types of applications running on the base machine and closing all network ports.  Normal user activity takes place in the virtual machine appliances.

2.2. File System Virtual Machine

We implemented the file system virtual machine using a modified version of Sun’s Network File System (NFS) running in a Linux guest  virtual machine. Virtual machine appliances using both Linux and Windows as the guest OS mount personal data over NFS across a local file system. For Linux, there is an open source NFS client. For Windows, we used a commercial NFS client from Labtram.

Much like the base machine, the file system virtual machine is hardened against attack by stripping away any unnecessary applications and closing all unnecessary network ports. It is easier to secure a system with a limited number of well-defined services than a general purpose machine. All the software in the file system virtual machine is focused on exporting personal data to local clients and to facilitating maintenance on that data such as backup, the creation of particular exported volumes and the setting of permissions that each client can have to the exported volumes.

The file system virtual machine is additionally protected by only being reachable over the local virtual network. Attacks cannot target the file system virtual machine directly. They could only reach the file system virtual machine by first compromising a virtual machine appliance.

Personal data is housed in the file system virtual machine and subsets of it are exported to virtual machine appliances. This allows you to restrict both the amount and access rights that a given virtual machine has to your personal data. For example, if you have a virtual machine appliance running a web server, you may chose to only export the portion of the personal data store that you wish to make available on the web. You can export portions of your user data store with different permissions in different virtual machine appliances. For example, you may mount a picture collection as read only in the virtual machine you use for most tasks and then only mount it writeable in a virtual machine used for importing and editing images. This would prevent your collection of digital photos from being deleted by malware that compromises your normal working environment. Similarly, you may choose to make your financial data accessible only within a virtual machine running only Quicken or you may choose to make old, rarely changing data read-only except in the rare case that you do really want to change it.

It is simple to have multiple mount points within the same virtual machine. You can mount some portions of your personal data store read only and others read/write. We also implemented a richer set of mount point permissions to allow “write-rarely” or “read-some” semantics.

In our prototype, we modified NFS to add read and write rate-limiting capability to each mount point in addition to full read or write privileges.  For example, one can specify the amount of data that can be read or written per unit of time. Figure 2 shows an example of an /etc/exports file with read and write limits. The first line indicates that the client at IP Address foo can read bar.

This required …describe patch

Read and write limits are one example of a richer set of mount point permissions that can be used to help protect against attack.  Another example would be restricting the size or file extension on files that are created.

Still could allow malware that read very slowly through your data store, but another good hurdle

Protecting data in a file system virtual machine does not remove the need for regular back-ups, but it does streamline the process by allowing backup efforts to focus on the irreplaceable personal data rather than on the recoverable system data. It also allows backup efforts to be customized to the differing needs of system data and personal data.

For system data, ease of checkpoint and restore. Appliances – ability to try out new appliances or roll back to old

Why better than backup whole system – 1) ability to catch attack with Snort (if catch with inbound virus scanner then can prevent) – if don’t then can look for attack out behavior and restart from known good or just pull their network access

Much like bringing benefit of managed LAN to a personal computer – file server, net boot server, firewall, it is bringing the benefits of network servers and seperation of responsibilitis to people with just one computer not a whole network

Creates market for appliances – helps not only with reinstallation but also with first installation 

creates a market for easy to use appliance VMS sell your VM ot others if it is easy to use the "plugs" are well defined

easier to use a working VM  with server software installed and running than to configure it yourself

how long to install from scratch versus use a preconfigured VM

Windows Desktop Installation (if know exactly what you are doing)

Apache Server Installation 

Similar to Benefits of Live CDs

Versus DeepFreeze or other system reset facilities – great for environments where you want a fresh start everytime – here we want to be able to make changes – download new apps and have them stay there etc – but isolate user data – if VM with a  new app dies you can reinstall from last known base 

Isolate easily attacked things in their own VM with a few rights to user data as is necessary to accomplish the task

if we find that expensive togo to NFS/AFS server and cheaper to stay in a VM - then we are better off the more things are to system data (kept local) only pay the expense on mounted "user data"

TODO  quantitative data on backups - references for how few people do itor expense/time involved

1. Protection Against Attack

CERT attacks – how we defend against them

Other kinds of attacks we can defend against

For example, these mount points can specify the allowable read or write rate or prevent files with certain properties from being created. 

Action item would be to group these into categories of what fixes them

       write restriction


     lastest CERT restriction on executables


     email and file sharing (some versions of outlook do not



   allow saving executables but many email clients and



   many people don't have set - also don't let you



   view HTML so many people turn off because to restrictive )



   we are not preventing people from saving and running



      executables - just not saving them to the FS-VM



      - we let people try them and if it goes wrong they



      can reset APP-VM to a known good state - this



      is much safer/easier user experience



      safe "playpen"

       read restriction


    latest CERT restriction on read all

       snort rule/restart/pull network

CodeRed (2/9/05)

Blaster

Leslie - MyDoom (Bagle like this?) lots of versions    change registry  to run itslef when the system restarts   puts copies of itslef in shared directories what does it do? mass emailing        snort could catch and go back to known good   that wouldn't have registry mods        can't NFS mount the registry Teatime prevents registry changes? Spybot
 

       MyDoom doesn;t do anything just mails copies of itself    takes up network BW        leaves a backdoor - allows later attacks to be run from this client        overwrites host file so users can't acccess antivirus or windows   update site

Kevin CodeRed1 and CodeRed2

        CodeRed - a little defacing on main page of web pages (little writing) 1-19 of month generate list of Ips      CodeRed1.0 static list of Ips      CodeRed1.1 random generation of Ips      IIS exploit - some kind of server attack 21-29 DOS attack on popular sites   CodeRed1 stays in memory CodeRed2 writes an exectutable - could do blocking of executables limits on outside connections  
 CodeRed1 reboot would kill it off and won't come back unless reinfected 

watch snort logs and if detect it - restart the VM only restart N times and then alert the user that       this snort rule constatnly fails       restart it but without a bridged connection ******** or possibly pause the VM?      equivalent of pulling a machines network connection 

Patty – Blaster       randomly picked an IP address and then exploited a RPC flaw (port 135)    snort rule finds and pulls its network access       automatically run the patch on this system??

2. Overhead Measurements
Lots of VM monitors comparision of them all beyond the scope of this– we experiemented with VMWare and Xen  - why

VMWare  is robust and it supports Windows VMS; Xen suports XenoLinux today and plans for XenoWindows; For Windows VMs is VMWare the only choice? Win4Lin, Win, Crossover Office

Qemu and Bochs
 whats wrong with VMWare? 1) we would prefer a base OS that is a simple hardened VM manager; VMWAre is not that VMWARE ESX - is it that?

What do we know from Xen paper and Freenix paper?

Specs on two machines

What Linux we used for base and guest; What Windows we used for base and guest

What NFS server; what NFS clients especially for Windows

does powerful vs less powerful matter? Y

does base OS matter?

does guest OS matter? Y

does the VM system matter - Xen vs VMWare (yes from other paper)

does NFS vs AFS matter?

break down base OS/local FS to guest OS/ NFS/AFS in FSVM   

      with guest OS/ local FS

how many runs

parameters to Iozone

Iozone issues

3. Related Work

We propose the use of virtual machine technology to isolate and protect user data from the rest of the system and to provide rapid restoration of system state. Virtual machine technology has been available for over 30 years on mainframes [VM370, Goldberg74], but it is relatively new for commodity personal computers [Denali02, VMWare, Xen03]. Today, virtual machine technology on commodity hardware has many applications including providing multiple operating systems platforms on the same physical machine, building efficient honeypot machines and as a stable platform for OS development.  As the computing power and storage capacities of commodity platforms increase, virtual machine technology is also being used to provide enhanced system services such as secure logging [Chen01] and backtracking of intrusions [King03]. 

We propose using virtual machine technology to provide rapid restoration of a compromised system.

Recently, virtual machine technology has been used to identify the specific vulnerabilities that allowed an attack to succeed so that similar attacks can be prevented in the recovered system. We apply virtual machine technology to a related problem – that of rapid recovery from an attack.

TODO cOMPARE to DeepFreeze or other system reset facilities 

TODO stateless Linux clients (Red Hat Fedora project)? network booting

TODO on summary of other VM systems besides VM ware

We would also like to investigate logging data modifications in the file system virtual on a per  client basis. Logging data modifications would allow the FS-VM to roll back the changes of a compromised VM when suspicious behavior is detected. 

4. Future Work

Hardened base machines

Appliances – especially open source appliances

not for the novice user  it could be - VMWware GUI is pretty easy to use        integrate some of these configurations by degault  right now they don't give you a choice of VM with an interface on a local virutalk network and the real network you have to configure that custom creates a market for easy to use appliance VMS sell your VM ot others if it is easy to use the "plugs" are well defined

More benchmarks especially Windows system benchmarks

Richer mount point semantics

Note that there can be multiple mount points from the file system virtual machine into a client. Each mount point can have different permissions. 

We argue that even this simple step offers significant advantages in terms of system restoration and protection of user data. A compromised PLATFORM-VM can be restored from a trusted snapshot. User data does not become an automatic casualty of the restoration process because it is held in the FS-VM. The single purpose nature of the FS-VM allows it to be more readily secured against attack. 

In the third configuration, we divide the single PLATFORM-VM into multiple virtual machines in order to group applications with similar resource requirements and/or security risks. This allows the system to provide tighter control over the expected behavior of each PLATFORM-VM. This tighter control can take the form of more specific intrusion detection rules or of tighter restrictions on the acceptable actions and resource consumption of the PLATFORM-VM.  We express these controls as a contract between each PLATFORM-VM and the virtual machine monitor.

2. Separating User Data From System Data
In our first virtual machine configuration, we isolate user data in a file server virtual machine (FS-VM) and mount portions of this data store at specific points in another virtual machine containing the operating system and applications (PLATFORM-VM). 

An FS-VM is a virtual machine running a file server that exports portions of the user data space to other virtual machines in the system. All other extraneous functions can be stripped from this FS-VM; no unneeded applications are run and no unnecessary ports are open.  Thus, it is easier to reason about the security of FS-VM and to “harden” it against attack.  In addition, it can be configured to accept incoming requests only from other registered local VMs. 

In this configuration, the PLATFORM-VM contains all the applications run by the user. As a result, it is difficult to put too many restrictions on the actions is should be able to perform or resources it can consume. The PLATFORM-VM can, however, be restricted to its own partition of the disk. This would prevent attacks that corrupt the partition table and other on-disk structures. Other particularly dangerous actions such as modification of the system BIOS could also be prevented, thus thwarting attacks that attempt to gain a foothold below the operating system itself.

The system would also include a virtual machine monitor to control the resource exposed to the FS-VM and the PLATFORM-VM. A third maintenance/administration VM could provide users an API for saving and restoring VM images, setting limits on VM behavior and resource consumption etc. These are typical components in virtual machine environments (e.g. the hypervisor and domain0 in Xen.) Much like the FS-VM, the virtual machine monitor and the maintenance VM can each be made simpler and thus less vulnerable to attack. 


Figure 1: First System Configuration
This first configuration involves separating user data and system data. User data is separated into the FS-VM. To do this, we must distinguish between user data and system data. In one sense, user data is anything that can be mounted remotely and for which additional protection is desired. In this section, we describe data that would typically fall into this category.

2.1 Identifying User Data and System Data
User data housed in the FS-VM would typically include a user’s home directory or documents directory. Many applications are already configured to store data in these locations. User data could also include other locations in which applications store user data (e.g. mailboxes, calendars, archives of scanned photos). Subsets of the user’s data store could be mounted into the PLATFORM-VM at different locations and with different permissions. 

System data would include the operating system image and related files as well as all installed software.  System data would typically also include any information written by the OS or user applications such as logs or paging files.

Clearly, there is flexibility in this boundary between user and system data. For example, if a user runs a web server, the content directory could be considered personal user data and mounted read-only from the FS-VM.  However, if the user has a static copy of that data within the FS-VM, she might simply place a copy in the PLATFORM-VM instead. Similarly, web server logs may be considered system data. However, if the user wanted to prevent the loss of these logs in case of attack, a mount point could be established into the FS-VM. 

2.2 Key Differences Between System Data and User Data

This separation of user data from system data is motivated by several key differences between system data and user data. First, system data is more predictable and thus is easier to attack. Second, system data is often more valuable to an attacker and thus more attractive to attack. Third, system data can be restored from public sources and thus is less critical to protect. These differences lead to different approaches to data protection and restoration.  

2.2.1 System data is more predictable and thus is easier to attack.
From the earliest worms [Spafford89], attackers have exploited the homogeneity or monoculture of system data. Attackers can target a small number of operating systems or commonly used pieces of user level software (e.g. web servers, email readers). The attackers themselves have easy access to the actual binaries and typical configurations.  If they discover vulnerabilities when probing their own test system, the chances are excellent that the exact same vulnerabilities will exist on many other systems.

Users data, on the other hand, is more unpredictable in its contents, name and location. There are exceptions to this rule. For example, some malware has exploited the homogeneity of address books in Microsoft Outlook. However, for the most part, user data is significantly less predication and thus harder to exploit in an automated fashion than system data.

Malicious code or data can still be introduced into the user’s data store. For example, a virus may be written to a user’s email log. However, a virus scan program could be run against the user’s data store to clean it without loss of data and if the PLATFORM-VM was compromised it could be restored.

2.2.2 System data is often more valuable to an attacker and thus more attractive to attack.

As a general rule, user data is also less valuable to attackers. For example, a report may represent weeks or months of careful work for a user, but to an attacker it is of no value. Similarly, a video of a special event may be priceless to a user, but irrelevant to an attacker. 

System data on the other hand is valuable because once compromised it can provide the attacker with resource such as an idle CPU, free disk space or an under-utilized network connection. Attackers can use these resources for many purposes such as to store and serve illegal content or as the launching pad for additional attacks.

Once a system is compromised, attackers may be able to log in at will and search through user data in a less automated fashion. In this way, attackers may locate valuable user data such as credit card numbers or other financial data. However, the difficulty of automation has to-date limited the scope of such attacks.

User data is rarely the primary target of an attack. However, it is often a casualty of attacks on system software. Isolating user data from system data makes it less likely that user data will be lost simply because malfunctioning system software makes it inaccessible.

2.2.3 System data can be restored from public sources and thus is less critical to protect.

Restoring system data by reinstalling the operating system and all applications can be difficult and expensive. However, without a backup, restoring user data is impossible. At best it can be recreated by repeating the original labor involved. Thus user data warrants more careful protection and backup schemes.  Collection user data into an FS-VM facilitates this distinction.

In addition, there is a mismatch between the overall rate of change in system data and the user visible rate of change. A large percentage of the data written in the average computer system is not directly related to user data (e.g. logs of system activity or writes to the page file). However, it is produced constantly even when the system is otherwise idle. This activity is of no interest to most users as long as the system continues to function. If a month’s worth of such activity were lost, users would be perfectly happy as long as the system was returned to an internally consistent and functioning state.

User data is exactly the opposite. Overall, user data changes at a slower, human driven pace.   However, the rate of user-visible change is high. For example, a user may only add 1 page of text to a report in an 8 hour workday but the loss of that one day of data would be immediately visible. Fortunately, this means that efforts to protect user data can be effective even if targeted at a small percentage of overall data.

2.3 Rapid System Restoration
We have described a system configuration in which user data is contained in an FS-VM from which it is exported to an PLATFORM-VM containing the user’s primary computing platform (operating system and applications). 

The FS-VM is hardened against attack by carefully controlling the software that is run within it. The PLATFORM-VM, however, will continue to run an unpredictable mix of user applications including high-risk applications. As a result, it is susceptible to attack through an open network port running a vulnerable service or through a user-initiated download such as email or web content. 

When an attack is detected, either by the user or by an intrusion detection system, the system restoration process can be triggered. This restoration process can also be used to recover from accidental system corruption as well. 

To restore a compromised system, the user or their system administrator would use the API in the maintenance VM to replace the corrupt PLATFORM-VM image with a trusted image. Changes in the system configuration made after the trusted image was created would be lost as would any information stored directly in the PLATFORM-VM image.  However, the trusted PLATFORM-VM image would provide an immediately functional computing platform that would mount the user’s data store from the FS-VM. 

The corrupted image could be saved or shipped to a system administrator for analysis and possible recovery of data stored inside. During this analysis and recovery process, the user would still have a functional computing platform with access to the majority of their data. This is a significant improvement over the extended down time that is often required when restoring a compromised system today.

To prevent future attacks, the trusted image should also be updated to patch the exploited vulnerability. Analysis of the corrupted image and/or secure logs collected by the virtual machine monitor [King03b ] would provide clues to what needs to be modified. 

System administrators could also proactively release new trusted images with updated software versions and security patches. Users could try these new images without compromising their existing image. It would simply appear as a second PLATFORM-VM on the user’s system.  Many users are rightfully nervous about possible system corruption from routine software updates. (In addition to the promise of safer and better operation, any update represents a non-negligible chance of system corruption). This would encourage users to be compliant with upgrade requests by allowing them to easily experiment with the upgraded image.

If the user does make routine backups of their personal data, the FS-VM can also make that process more efficient. The FS-VM contains exactly the data that should be backed-up. Even if the user does not make routine backups, this configuration prevents loss of user data simply because it is intermingled with high-risk system data.

This first configuration offers significantly more protection for user data than traditional systems. However, user data would still be vulnerable to attacks that specifically target user data directly (e.g. remove all files or search through files for email addresses). In the next sections, we will present alternate configurations that an offer increased benefits.

3. Customizing the File System in the FS-VM 

In the first virtual machine configuration, we proposed separating user data into an FS-VM and mounting portions of that data at various locations in the PLATFORM-VM.  For this purpose, any file server could be used – NFS, AFS, etc. However, there is an opportunity to customize the file server to this particular environment. In this section, we discuss some aspects of a personal file server or file server that is designed to specifically to export data to other VMs on the same machine and to protect data from attack. 

In our second configuration, we propose a customized FS-VM that provides a rich set of possible permissions for each mount point and logs data written to allow roll back if an attack is detected.

This configuration would have the same components as shown in Figure 1. The FS-VM would simply be running a file system that is specifically designed for this task.

3.1 Richer Set of Mount Point Permissions

Subsets of the user’s data store could be mounted into the PLATFORM-VM at different locations and with different permissions. In addition to traditional read-only vs. read-write access, the FS-VM could provide a richer set of permission choices. For example, a mount point could be classified as reading at most 1% of the data under the mount point in 1 hour. Such a rule could prevent downloaded code from rapidly scanning the user’s complete data store. Similarly, a mount point could be classified as append-only to prevent data from being removed or overwritten. For example, a directory containing photos could be mounted append only allowing the PLATFORM-VM to add photos, but not to delete existing photos. To delete photos, the same directory could be mounted in another location temporarily with expanded permissions. 


3.2 Logging Data

In addition, the FS-VM could log modifications to the user’s data store. As in a log-structured file system, the data written would immediately be visible in the file system; however, earlier versions of the file system could be recovered if garbage collection of old data is delayed.  Such a delay in garbage collection would allow the user or the intrusion detection system time to detect the attack. Once detected, the log could be truncated at a point before the attack began. The length of the log could be based on the amount of time required to detect an attack. Such a delay would also provide an undo facility to recover from accidental destruction of user data. The maintenance VM could be used to control rollback of the FS-VM. 

4. Multiple PLATFORM-VMs
In our third virtual machine configuration, we run multiple PLATFORM-VMs in which applications with similar resource requirements and/or security risks can be grouped together. Each PLATFORM-VM would be isolated and thus an attack against one PLATFORM-VM would not effect other PLATFORM-VMs. Similarly, each PLATFORM-VM would likely need access to only a subset of the user data store. 

Of course there is a tradeoff to introducing additional PLATFORM-VMs. Each PLATFORM-VM would consume resources for the guest OS inside of it. Also, it will be more difficult for users to copy data between PLATFORM-VMs (similar to copying data between multiple physical machines). Therefore, we are not advocating one PLATFORM-VM for each application. Rather we advocate grouping related applications with similar resource requirements and especially isolation of applications with a high risk of attack.

Figure 2: Multiple PLATFORM-VMs
4.1 PLATFORM-VM Appliances

Server software is an excellent candidate for isolation in its own PLATFORM-VM. For example, if a user wishes to run a web server or database server, they could run them in a separate PLATFORM-VM. This new PLATFORM-VM could be given access to only a subset of the users data store and the virtual machine monitor could grant the PLATFORM-VM a smaller set of privileges. For example, a web server PLATFORM-VM may be given read only access to the content it is serving and may be prevented from establishing outgoing network connection. Thus even if the web server is attacked, the damage done to the user’s system is minimized. The attacker would also be prevented from harvesting information from the rest of the user’s data store and their ability to use the system as a launching pad for other attacks would be diminished.

In many ways, we see these types of PLATFORM-VMs as a new model for software distribution. Often times installing and configuring server software is difficult and time-consuming. A pre-configured PLATFORM-VM could be delivered to a user with well-defined resource requirements and connections to the rest of the system including the characteristics of any mount points into the user’s data store. 

In this way, the user could view such an PLATFORM-VM as an appliance. Appliances have a well-defined purpose and connections to the rest of the world. They also specify their resource requirements and can be replaced with an equivalent model if they malfunction. In the case of a preconfigured PLATFORM-VM, a user would load it on their system and plug in into their data store by mapping its defined mount points to the local FS-VM.  If the PLATFORM-VM was attacked or malfunctioned, it would be straight-forward to replace it with a functional equivalent.

This would provide a new platform for value added services including configuration, testing and characterization of PLATFORM-VMs. Those who produce PLATFORM-VMs could compete to produce the an appliances that are easy to “plug in”, have a good track record of being resistant to attacks or use fewer system resources. Validation of these PLATFORM-VMs would be more straightforward because they would be designed to run in isolation from other user level applications.

4.2 Contracts

Virtual machine technology can provide guest operating systems with a restricted subset of the full capabilities of the underlying physical machine. In Section 2, we described some limits that could be placed on a single PLATFORM-VM including limiting access to a single disk partition or preventing access to the system BIOS. However, we also observed that it wouldn’t make sense to place too many limits on a single PLATFORM-VM. If a user is going to run all their applications in that PLATFORM-VM, then they would rightfully want the full resources exposed to it. With specialized PLATFORM-VMs that are tailored to support a specific set of applications, the system need only supply a subset of resources. The more specialized the VM the easier it is to specify tight bounds on its expected behavior. 

To express these limitations, we introduce contracts between PLATFORM-VMs and the virtual machine monitor. Contracts can specify the type and amount of resources that the PLATFORM-VM can request. For example, a contract may state which network ports may be opened or how much memory an PLATFORM-VM can consume.

Contracts can be thought of as a rules file that is associated with the PLATFORM-VM image when it is loaded into the system via the API in the maintenance VM. These contracts would be distributed by those that produce the PLATFORM-VM image. Users or their system administrator could examine the contract before loading the image. Accomplishing the required functionality under a more restricted contract would be another aspect of a high quality PLATFORM-VM image.

5. Xen Prototype 

We are in the process of building a prototype system using Xen, an open source virtual machine monitor for x86. In a recent study, we found that we could run 16 VMs on a Xeon server with 2 GB of memory and 3 VMs on an older 486 machine [Clark04].

The first configuration we described (one FS-VM and one PLATFORM-VM) can be assembled today using Xen and existing software. For example, the FS-VM can simply be a Linux virtual machine running an NFS file server and the PLATFORM-VM can be a virtual machine running Linux and all regular user applications.  

We have experimented with this exact platform and experimented with running dbench, an I/O intensive benchmark in our PLATFORM-VM. We saw little degradation in performance relative to the same benchmark run on Linux installed without Xen on the bare machine.

We have also implemented a simple contract system that intercepts a subset of system calls and checks them against a preloaded contract. We also ran dbench on machines with and without contracts and again saw little degradation in performance. 

In Figure 3, we show the performance of dbench relative to native Linux for XenoLinux. XenoLinux is shown with and without the contract system running and with and without mounting the data from another VM running NFS.  Performance differs by at most 15% among all these configurations. Standard deviation is typically high in dbench and this variation is well within its range. 

These simple experiments give us confidences that the overhead added by the contracts system and by mounting data from a separate FS-VM are reasonable.
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Figure 3: Performance of dbench shown relative to native Linux for XenoLinux with and without the contract system and with and without NFS mounting the data

6. Future Work

We are working on improving our contract system and on implementing the modifications to the FS-VM described in Section 3. We would also like to explore contract rules that link multiple system resources. For example, an PLATFORM-VM specializing in the processing of email might have a rule that the amount of data written to the user’s data store should be less than or equal to the amount of data that comes in over the network via a POP connection.

We are also in the process of analyzing the top virus threats reported on the Symantec Security Response website to determine which of the virtual machine configurations we described would be necessary to thwart each attack.

We look forward to the release of the Windows port of Xen. Since the majority of high-impact worms and viruses target Windows systems, we are anxious to test the effectiveness of our configurations when actually attacked.

Some longer range plans include examining file traces to quantify the percentage of file system traffic directed to system data versus user data on a set of desktop systems. The lower the percentage of traffic directed to user data, the easier it will be to efficiently protect the user data without significant overhead.

7. Related Work

Virtual machine technology has been available for over 30 years on mainframes [VM370, Goldberg74], but it is relatively new for commodity personal computers [Denali02, VMWare, Xen03]. Today, virtual machine technology on commodity hardware has many applications including providing multiple operating systems platforms on the same physical machine, building efficient honeypot machines and as a stable platform for OS development.  As the computing power and storage capacities of commodity platforms increase, additional applications of virtual machine technology are explored. 

Several systems have used virtual machine technology to enhance system security and fault tolerance. Bressoud and Schneider developed fault-tolerant systems using virtual machine technology to replicate the state of a primary system to space back-up system [Bressoud96]. Dunlap et al used virtual machines to provide secure logging and replay [Dunlap02]. King and Chen used virtual machine technology and secure logging to determine the cause of an attack after it has occurred.  Reed et al used virtual machine technology to bring untrusted code safely into a shared computing environment.

We focus on the related problem of rapid system restoration and protection of user data. We are unaware of another system that has seperated user data and system data in the way we are proposing and optimized the handling of each to provide rapid system restoration after an attack.
8. Conclusion
Recovering a compromised computer system can be a painful process often involving reinstalling the operating system and user applications.  In addition, any personal data stored on the machine is often lost unless a recent backup exists.  We describe the fundamental differences between user data and system data which lead to different approaches to protecting and recovery each class of data after a attack.

We propose using virtual machine technology to provide rapid restoration of a compromised system. In particular, we describe a range of virtual machine configurations that provide varying degrees of protection and support for restoration. 

In the first configuration, we run two virtual machines – one containing the operating system and all the applications currently that typically run on physical machine today (PLATFORM-VM) and one containing a file server (FS-VM). The FS-VM isolated and protects user data from attacks that destroy user data simply by destroying intermingled system data.

We also propose customizing the file server in this FS-VM to provide a richer range of mount point permissions and to allow the state of the file system to be rolled back once an attack is detected.

Finally, we propose isolation of high-risk applications like web servers or database servers is special purpose PLATFORM-VMs whose actions can be more carefully monitored and restricted.

We describe some initial experiments with prototype configurations and report data that indicates these features can be added with small overhead.
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