SSD7: Database Systems

Introduction
This course introduces students to database systems. The course explains what a database system is, and then proceeds for the greater part of the learning material to explore relational database systems—databases designed according to the relational (or tabular) model. The material includes discussion of SQL, the Structured Query Language, as well as a unit on database design. From data abstraction, the course then turns to transaction management, with some additional material on improving query performance. Finally, there is an introduction of up-to-date trends in database system design, which also locates recent developments in the larger history of data storage technology.
Book

The required textbook for the course will be: 

· Thomas M. Connolly, et al. Database Systems: A practical approach to Design, Implementation, and Management. 4th Edition ISBN: 0321210255 Addison-Wesley, 2004 

OR

· Thomas M. Connolly, et al. Database Systems: A practical approach to Design, Implementation, and Management. 3rd Edition ISBN: 0201708574 Addison-Wesley, 2001 

OR

· Thomas Connolly and Carolyn Begg. Database Systems: A Practical Approach to Design, Implementation, and Management. 2nd Edition. Harlow: Addison-Wesley, 1998 

This is the previous edition of the book and can be used instead of the new third edition. Copies of this edition may be available through sources that sell used books.

Important: Reading assignments given in the online notes are valid for any edition unless otherwise noted. Where the readings for an edition differ from the default, the page or section numbers are listed in parentheses for the specified edition.

A complete list of SSD7 Required Readings has been compiled for your reference.

System Requirements

· Cygwin (if you are using a Microsoft Windows machine)

· PostgreSQL

· Apache Tomcat

Instructions on how to install the software is given in Appendix A: Software Installation and Usage Instructions.

Outcomes
The purpose of SSD7 is for students to

1. Learn to use database management software to develop data-intensive applications

2. Become familiar with fundamental DBMS concepts

3. Gain exposure to future trends in databases

Students successfully completing SSD7 will be able to

I. Produce

1. Database designs that support a given application

2. Data models using E-R diagrams

3. Sound schema designs using normalization

4. Web-based database applications using SQL and JSP/Servlets

II. Use

1. Index structures of a DBMS to improve performance

2. The transaction features of a DBMS to achieve fault recovery and concurrency control

3. Key relational operations to manipulate data

4. SQL DDL to model data, constraints, and views

5. SQL DML to write complex queries

III. Knowledgeably Discuss

1. The basic concepts of object-relational and object-oriented database management systems

2. The basic concepts and application of data warehousing and data mining (datacubes, OLAP)

3. The basic functions and application of multimedia databases

4. The basic issues of database privacy and security

5. The DBMS offerings of the most important vendors

IV. Hold Positions as Beginning Database Designers and Programmers

Those successfully completing this database fundamentals course will be equipped to handle small to medium size database projects. They will be able to design a database from scratch, write queries against it, and build applications that use the database.

Illustrative Capabilities:

A. Real Estate Information System: 
Successful students will be able to design and create a Web-accessible database for a real estate company to keep track of their rentals, lease renewals, and such. Included in this is the ability to write applications for the users of the database such as maintenance personnel, the property manager, and others.

B. Parts Inventory: 
Successful students will be able to create and maintain an inventory database to keep track of the parts, suppliers, and purchase orders. Included will be the ability to write Web front-ends for users of the system, such as for the purchasing department to seek quotes, for the suppliers to place bids for work-orders, and for the managers to monitor inventory. 
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

1.1 Introduction to Databases and Systems 

What are databases and database systems? And, what advantages does a database system offer over a traditional file system when it comes to storing and using data? This module will introduce database systems in part by defining concepts like data, database, database system, and database management system, and by contrasting the database system approach with the traditional file system approach to data storage. Then it will introduce the two examples of databases to which you will be returning repeatedly throughout the course—a library database system and an e-store database system. The module concludes with a summary of the advantages and disadvantages of database management systems with an eye to the question: when is one needed? 

	Readings:
· Required: Connolly and Begg, sections 1.3.5, 10.4 and Appendix A (in third edition, sections 1.3.4, 10.4 and Appendix A; in second edition, sections 1.3.4 and 1.7)

· Suggested: Connolly and Begg, Section 1.2.

· Elective: Connolly and Begg, Section 1.5.


· 1.1.1 What Is a Database?
· 1.1.2 Examples of Database Systems
· 1.1.3 When Is a Database Management System Needed?
· 1.1.4 When Is a Database Management System Not Needed?
Assessments

· Multiple-Choice Quiz 1
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

1.1.1 What Is a Database?

· Database Systems and Database Management Systems 

· Transactions 

· Characteristics of the Database Approach 

· Data Abstraction
· Reliability
· Efficiency
	Readings:
· Required: Connolly and Begg, sections 1.1, 1.3, and 1.4.


Database technology was instrumental in breaking computers "out of the box," transforming them from just fast number manipulators buried in scientific labs into symbol manipulators functioning as general information processors in personal, working, and business environments. Nowadays, most computer applications—whether an accounting system in a financial institution, a point-of-sale system in a supermarket or on the Web, a parcel tracking system in a courier company, or the network management system of a long distance company—are either built on top of a database management system or at least strongly interact with one. 

Most people will eventually interact with a database, a database system, and a database management system either knowingly or unknowingly. What are databases exactly? Let us start with the definition of data: data are raw facts that describe people, objects, and events. An integrated collection of related data constitutes a Database (DB). 

· By related data, we mean that the data represents logically coherent facts about some aspects of the real world that are required by an application. For example, in a college database, data about students, faculty, courses, students taking courses, faculty teaching courses and faculty advising students is related and represents information concerning the academic activities of the college. On the other hand, data about course schedules, bus schedules, and swimming pool hours, or any other random collection of facts, does not constitute a database. The part of the real world that a database is designed to model within a computer is often called a universe of discourse or mini-world. 

· By integrated we mean that the data for multiple applications is stored together and manipulated in a uniform way on a secondary storage such as a magnetic or an optical disk. The primary goal of integration is to support information sharing across multiple applications. For example, the registrar's office can share registration data with the accounting office for billing purposes. The focus on secondary storage is twofold. First, databases are expected to contain large amounts of data that cannot all fit in main memory at the same time—data about current and graduated students in a college, for example. Second, data in a database that would be dealing, for instance, with student registration, is maintained for a long and indefinite period beyond the execution of the particular program that created it. Typically, when a registration program executes, it creates data about a current student that is not erased when the registration program terminates. 

Database Systems and Database Management Systems

A Database Management System (DBMS) is a collection of programs that controls a database. Specifically, it provides us with an interface to create, maintain, and manipulate multiple databases. Furthermore, DBMS is a general-purpose software system that we can use not only to create and maintain multiple databases but also to implement database systems for different applications as well. As opposed to a DBMS, which is general-purpose, a database system is developed to support the operations of a specific organization or a specific set of applications. That is, a Database System consists of 1) an application specific database, 2) the DBMS that maintains that database, and 3) the application software that manipulates the database. The following figure illustrates a simplified database-system architecture.

[image: image1.jpg]Detebase System

Dawess —
designers, Desion tools
cpplcation Applcaticn and procedurd

programmers programs lenguage

computsc

Users Query
Applcation processor,
programs wensaction

processor,
form processor

Indexes
Agplication metadata
(forms, reports, stored
procedures)

Application components




We commonly refer to the DBMS software that actually manages the data, and accesses the stored data on the disks, as the database or DB engine. For a more detailed description of the components of a DBMS, see section 2.5 of Connolly and Begg. 

Transactions

The application software retrieves specific data from the database by submitting queries to the DBMS. It also transforms the database by submitting update requests to the DBMS, inserting new data, or deleting/modifying existing data due to particular events in the modeled world. Within an application program, one or more query-and-update requests to the DBMS can be logically grouped together in order to perform a task. A group of such requests is called a transaction. For example, when a customer pays with a credit card at an e-store, an approval transaction is executed against the database of the financial institution that issued the credit card. The approval transaction first queries the customer's available balance, then issues and records an authorization code, next updates the customer's balance in the database, and finally, returns the authorization code. If a transaction does not change, but only queries the database, it is called a read-only or query transaction, or just query. An example of a query is a library search that finds all the book titles written by a particular author. 

Characteristics of the Database Approach

There are two approaches to the development of systems that require access to a large amount of data. These are distinguished by the way they store and manipulate the data. In the first approach, the data are stored in traditional files, whereas in the second, the database approach, the data are stored in databases. DBMSs embody the three distinguishing characteristics of the database approach: data abstraction, reliability, and efficiency.

Data Abstraction

DBMSs allow data to be structured in ways that make it more understandable and meaningful to the applications than the ways data are physically stored on disks. They provide users with high-level, conceptual representations of the data—a table in relational DBMSs, or an object in object-oriented DBMSs, to give two examples—while they hide storage details that are not of interest to most database users. In addition, object-oriented DBMSs and object-relational DBMSs allow users to define abstract operations on data that are stored together with the data in the database. In this way, the development and maintenance of applications and transactions are simplified. For instance, the physical organization of data can be changed without affecting the application programs. The application programs can continue to operate on the conceptual representation of the data. Similarly, as long as their calling interface stays the same, the implementation of abstract operations can be changed without affecting the code of the application programs. The former is referred to as program-data independence and the latter as program-operation independence. 

Data abstraction and, in particular, data independence is what facilitates data sharing and integration. This is better illustrated by considering application programs that store their data in a traditional file system. Because these application programs depend on the low-level structure of the data or storage organization, each program stores its data in a separate data file. (To review traditional file-based systems see section 1.2 of Connolly and Begg.) 

In the traditional file system, application programs directly access the stored data, and for this reason, the names of files and the organization of data in these files, along with any other data definitions, are embedded in each program that accesses them. If data are integrated in a single, shared data file, all application programs that share the data file must be aware of all the data in the file, including those data items that they do not make use of or need to know. Further, the application programs are required to maintain all the data in the shared file. The problem gets worse when a new field is added to a data file. For example, if a new field were added to faculty records due to new benefit requirements, both the structure and size of the faculty record would change, and all the existing programs that were written to access the data file using the prior definition of the record's structure or size, would no longer work. These programs, including those having nothing to do with benefits or this particular data item, would therefore have to be changed. That is why it is extremely difficult to write applications that use integrated, shared data files.

In contrast, the DBMS stores the structure of the data as part of the description of the database in the system catalog, separately from the application programs. When an application program submits a data request to a DBMS, the DBMS extracts the appropriate definitions from the catalog and uses them to access the data. So, returning to our example, all faculty data can be integrated in a shared data file and any change to the structure of faculty records will only have to be made in the description of the faculty record in the catalog. The next time a program refers to the faculty records, the DBMS will access and use the new structure of the faculty record in the system catalog in order to access the stored data correctly. No program needs to be modified. 

Reliability

DBMSs provide high reliability by 1) enforcing integrity constraints and 2) ensuring data consistency despite hardware or software failures. 

Integrity constraints reflect the meaning (or, the semantics) of the data and of the application. The simplest form of integrity constraint is the data type of each data item, such as an integer or an alphanumeric character string of maximum length 10. Another example of an integrity constraint that a DBMS can enforce in an airline reservation system is that two passengers cannot be assigned the same seat in the same flight. DBMSs store in their catalog the specified integrity constraints that the data in a database must satisfy at all times. 

When, for whatever reason, the system fails, DBMSs still guarantee data consistency; that is, interrupted update operations do not corrupt the database with values that violate the integrity constraints and no data in the database is lost. After a failure, a DBMS automatically recovers, restoring the database to the consistent state in which it existed just prior to the interruption. This consistent state is constructed as follows. During recovery, a DBMS rolls back all interrupted transactions, obliterating their updates from the database, and re-executes successfully terminated transactions as necessary, restoring their updates in the database. For example, consider the transference of $100 from a savings to a checking account that is interrupted after the transaction withdraws the $100 from the savings account, but before it deposits the $100 to the checking account. During recovery, the transfer transaction is rolled back by depositing the $100 back to the savings account, restoring the database to a consistent state that correctly reflects all the account balances. Had rollback not occurred, the savings account would have been short by $100 and the $100 deposit in transit would have been lost. 

Efficiency

DBMSs support both efficient space utilization and efficient access to data. By making use of the data description in the catalog, DBMSs are able to minimize data redundancy, which in turn saves both space, by storing each data item only once, and processing time, by eliminating the need of multiple updates to keep the replicas consistent and up-to-date. Consider the case in which the number of credits for each student was stored twice, for example, once in the student accounting entry and once in the student academic entries. First, storing the same data item twice for each student means storage space proportional to the number of students is wasted. This waste potentially can become serious for large databases. Second, in order to register a student, two updates are required: one to update the number of credits for the accounting entry and one to do so for the academic entry. Thus, registration requires more time, because in general the amount of processing necessary on replicated data is proportional to the number of replicas. Finally, if either the accounting entry or the academic entry is not accessible during registration or updates are applied independently on these entries, the number of credits in the two entries may become inconsistent and not up-to-date. 

Further, DBMSs enhance the performance of queries by means of optimizations and the use of access methods to data based on their values. Optimizations simplify the queries so that they can execute faster, and access methods allow direct access to locations where relevant data are stored, in a way similar to the access provided by the index in the back of a book. 

Finally, DBMSs decrease response time of transactions by allowing multiple users to access the database concurrently. By interleaving the operations of different transactions, user transactions can read the same data at the same time or update different data at the same time. In systems in which transactions execute sequentially, i.e., one transaction at a time, one transaction needs to wait until another transaction completes its execution before accessing any data, and thus experiences unnecessary delays—delays that increase exponentially with the number of transactions. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

1.1.2 Examples of Database Systems

· A Library Database System 

· Data
· Usage
· Integrity Constraints
· An E-Store Database System 

We have already mentioned several applications of database systems. Here we will look more closely at two example applications: a library system and an electronic commerce system. Both of which will play a part in subsequent discussion and in homework. For additional examples, see section 10.4 and Appendices A and B of Connolly and Begg (in second edition: sections 1.1 and 1.7). 

A Library Database System

Let us consider a database that facilitates the operation of a library's circulation department, a public service with which most of us are familiar. In general, the goal of the library database is to maintain detailed information about 1) library members, 2) titles included in the library's holdings, 3) borrowed books, and 4) hold requests. Note the distinction between a book title that represents the original manuscript and one that refers to a copy of the book, which we borrow to read. A library may carry multiple copies of a single book title. 

Data

The following figure shows the database structure, populated with some sample data. The MEMBER entries include data items to represent each member's membership number, driver's license number, name, address, and phone number. When defining the database, we must specify the data type of each data item. For example, the first name Fname in MEMBER is a string of alphabetic characters, whereas the middle initial MI is a single character. The TITLE entries record each book's title, first author, ISBN (library of congress catalog number), call number, year of publication, and publisher. The BOOK entries maintain for each copy of a title (i.e. a book), the book identifier, its corresponding title call number, its edition and, if the book is checked out, the current borrower's member number and due date. Finally, HOLD records store the member number of the person requesting a hold, the requested title's call number, and the date the hold was requested. 

[image: image2.png]HOLD = MEMBER

Memte: 0011123 Memte: 00101123
Caliumber 0.201 34357555 DitarsLio 2967505

e vem 19 \ framssaney

BOOK TITLE

s s seen
it





Usage

Using this database, library members can search for a specific title and/or specific (first) author to determine if a particular book is currently available in the library. Further, library members may place a hold request on a book. They are notified either by email or by post when the book is returned. Similarly, it can also be used to generate letters or send emails to members with overdue books. These interactions with the database system both query and update the database and these database manipulations are specified in the application programs. 

Integrity Constraints

The database can also be used to enforce the rules of the library. It prevents, for example, a library member from borrowing a book if they have already borrowed 5 books—the maximum number of outstanding books per member—or have failed to return overdue books. These rules can be specified as integrity constraints on the database. 

An E-Store Database System

In the previous example, we examined the data in the database, the data's usage (or transaction requirements), and its integrity constraints in that order. Now, let us consider the database that supports the operations of the e-store, an electronic store on the Web. 

The following figure shows the database structure, populated with some sample data. The first thing that the e-store database maintains is information about the products for sale. In order to facilitate the presentation of products on Web pages, as well as to facilitate customer searches, products are grouped into categories. For simplicity, we assume here that each product belongs to a single category. In a subsequent unit, we will discuss the case of products that belong to multiple categories. PRODUCT entries include the product number, name, price, description, picture, and category. 

The database also maintains information about customers and their purchases. CUSTOMER entries include the customer identifier, name, address, zip code, and date of birth. Every time a customer visits the e-store, the customer is given a shopping basket in which to store the products to be purchased. For each purchased product, SHOPPING BASKET entries record the shopping basket number, the product number, the quantity being purchased, and the sub-total, which equals the product price times the quantity. A sale is finalized by converting a shopping-basket into a purchase order. Every purchased order is recorded in ORDER. ORDER contains the shopping-basket number, the customer identifier, the credit card number and its expiration date, the order date, the total charge, the shipping date, the shipping company, and the shipping manifest number that is used to track the delivery. Note that for simplicity the shipping costs and applicable taxes are not shown, but are included instead in the total charges. 

[image: image3.png]PRODUCT SHOPPING
T
| —
CUSTOMER = ORDER

e b Crasme -





The operations of the e-store are implemented by several application programs that interact with the customers via a Web browser and manipulate the e-store database. Most of these programs are represented as icons on the e-store Web pages and are invoked by selecting their corresponding icons. We have already mentioned those that allow customers to search for a specific product or browse through a particular category by querying the database. 

Other application programs include the customer-registration program, which updates the CUSTOMER records and issues a customer ID, and the place-order program. The place-order program prompts for and reads the customer's credit card information, computes the total of the purchases, and checks with the credit card company to verify that the purchase can be authorized; that is, that the total is within the customer's credit limits and the card is not reported as stolen or lost. If the purchase is authorized, it updates the database, recording the authorization number and the order date, and schedules the shipping of the goods. Finally, once the goods are shipped, the shipping application records the shipping date and the shipping manifest number. 

As in the case of the library database, business rules can be specified as integrity constraints. A simple example of an integrity constraint in this context is that the shipping date cannot be earlier than the purchase date. Another is that an order cannot be shipped without a credit card authorization number recorded in the database. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

1.1.3 When Is a Database Management System Needed?

	Readings:
· Required: Connolly and Begg, section 1.6.


In defining what a database management system (DBMS) is, we talked about its three basic characteristics, namely, data abstraction, reliability, and efficiency. These three features of the database system approach explain the advantages it has over the older file system approach as a means of storing and managing data. The following list provides a summary of those advantages and, in doing so, indicates the circumstances under which a DBMS is needed or more appropriate. 

1. A DBMS stores large quantities of related data on a secondary storage with minimal duplications and in a manner that can be efficiently retrieved and brought into main memory for further processing. In addition, it ensures the validity and consistency of the stored data by enforcing integrity constraints on their values. Thus, a DBMS can be used to integrate efficiently and correctly the data used by different departments in an organization. This means that a decision maker in the organization who had no access to certain data because it was stored in separate data files, for example, can now not only access it, but also use it to derive new information not previously possible from the same amount of data. 

2. A DBMS ensures a real quality of service in part by providing durability or permanence of data. This means that the effects of successfully completed transactions become permanent in the database, surviving any subsequent system failures. For example, in a banking system the effects of all the completed deposit and withdrawal transactions survive, even if the system crashes dues to a blackout. The DBMS maintains a database for an indefinite period, until the database is intentionally destroyed. In the meantime, it takes all the necessary steps so that if the database is accidentally destroyed due to a failure, for example, the DBMS restores the database back to a consistent state without any data loss. This makes a DBMS particularly suitable for handling the data in mission critical applications such as banking and electronic commerce. 

3. A DBMS supports easy and efficient data sharing among many users. First, at the level of representation, DBMS can present each user with different portions of the database based on the user's perspectives. Using views, a designer or an administrator can specify the portions of the database that are relevant to a particular user. This also facilitates the development of new applications that both need to access existing data in the database and have new data requirements. In such a case, the application designer has to specify an appropriate view on the existing data, and define and store only new data not currently available in the database. Second, at the level of data processing, a DBMS enhances its efficiency by allowing two or more users to access and manipulate the database concurrently, interleaving their operations without compromising the data. Otherwise, without a DBMS to coordinate concurrent data access, two users accessing and updating the same data items could interfere with each other in such a way as to result in the loss of information or the violation of integrity. For example, if the concurrent executions of two deposits to the same bank account were not controlled, one deposit could fail to see the account balance produced by the other deposit before overwriting it. The result would be a new balance that does not reflect the second deposit—and a financial loss for the owner of the account. 

4. In light of the new extent of sharing and integration, especially that which is now possible over the Internet, security becomes a critical component of any database system. A DBMS protects the database from unauthorized use by utilizing both security techniques and access control methods. Security techniques, on the one hand, are designed to prevent any access by unauthorized users: examples include encryption and authentication. First, information is transmitted between users and the system is encrypted. Second, authorized users are identified by utilizing the basic usernames and passwords. Access control methods, on the other hand, are designed to control the kinds of access available to authorized users. These methods control whether a user has access to data and how that user can interact with the data. Authorized users can be further restricted in two ways: 1) in what they can see including the definitions of data, and 2) in how they can manipulate the data in the database to which they have access. The first can be described using views to hide sensitive information, the second by specifying the permitted operations on each data item. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

1.1.4 When Is a Database Management System Not Needed?

	Readings:
· Required: Connolly and Begg, section 1.6.


All the services and guarantees that a database management system offers us incur some overhead cost—nothing is free. To begin with, in order to use a DBMS, we need to buy one. A DBMS is a complex system and it is usually expensive. Next, a DBMS might require some minimum hardware configuration to run, which in turn might require the purchase of more hardware. Finally, there is the overhead associated with learning to use and maintain a DBMS. 

Whether a database management system is a good environment worth purchasing for a given application, therefore, depends on the functional requirements of the application. In some cases, it may be more desirable to use regular files if the advantages that the DBMS provides are not needed. Consider the following cases: 

· The data has a simple structure and its size is small. In this case, the data could be stored in a single file. By eliminating a DBMS, we avoid paying the overhead associated with maintaining the database catalog. We also eliminate the data processing that requires both access to the catalog and the invocation of integrity functions. 

· The application, although simple and unchanging, has a special purpose. Again, in this case, we do not have to pay the overhead associated with data abstractions provided by the DBMS. The advantages of a DBMS—such as generality in defining, modifying, and processing data—are not needed in this application. 

· Concurrent access to data by multiple users is not required. In this case, the overheads associated with providing security, concurrency control, and recovery are eliminated. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

1.2 Relational Databases 

Database systems make it possible for the data to remain relatively independent of the applications that access and manipulate it. This independence is achieved through a process of data abstraction. A fundamental concept underlying data abstraction in databases is the data model, which defines how the data is organized and manipulated in the database. This module introduces relational databases, whose data is defined using the relational (or tabular) data model. The relational model is not only the most popular model for database systems but also the most formal; it is based on the mathematical concept of a relation in set theory—a table is a relation. In this module, we introduce the general properties of tabular relations, present the distinction between a data definition language (DDL) and a data manipulation language (DML), and discuss two DMLs in particular. Structured Query Language (SQL) is the DML most commonly used. We will explore it more fully later in the course. The other DML is called Query By Example (QBE), which simplifies the end user's task of retrieving data using query templates. 

	Readings:
· Required: Connolly and Begg, Section 2.2.


· 1.2.1 Key Concepts
· 1.2.2 Relational Operations
· 1.2.3 QBE (Query By Example)
Assessments

· Multiple-Choice Quiz 2
· Exercise 1
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

1.2.1 Key Concepts

· Data Model 

· Tabular Structure: Table Schema 

· Properties of Tables 

· Keys 

· Relational Database Schema 

· Referential Integrity Constraints 

	Readings:
· Required: Connolly and Begg, sections 3.1, 3.2, and 3.3.


Data Model

A fundamental concept underlying data abstraction in databases is the data model. A data model defines how the data is organized and manipulated in a database. Specifically, a data model consists of 

· A set of primitives for defining the database's structure or schema that captures data types, relationships, and integrity constraints on the data. 

· A set of operations for specifying retrievals and updates on a database, that include both system-provided operations and user-defined ones, such as "getAge," which derives the age of a person from the date of birth stored in the database. 

The first set that specifies what we also call metadata—information about the data—and stores it in the system catalog, is known as the data definition language (DDL). Since the system catalog stores data definitions and metadata, it is also called the metadata database or data dictionary. The second set is known as the data manipulation language (DML) of a data model. 

The Relational Model (Codd 1976) is currently the most popular model for database systems for two reasons: 

1. It provides the simplest and most uniform data structure: data are stored in tables, the kind of organizing figure with which everyone is familiar from their kindergarten years onward. For example, the library database includes the table MEMBER, shown below: 

	MEMBER


	
	MemNo
DriverLic
Fname
MI
Lname
Address
PhoneNumber
101
5876588
John
M.
McMillan
711 Piney Woods 
(412) 555-6782
102
6878599
Susan
W.
Jones
5216 Beckwood #3
(412) 376-8888
106
4290955
Julia
C.
Liu
5589 Joplin #23
(412) 555-0962



2. It is the most formal of all data models. It is based on the mathematical concept of a relation in set theory: a table is a relation. This means, first, that we can reason about its correctness and properties, and second, that we can use its mathematical properties to come up with optimization techniques that restructure application transactions so they can execute faster. 

Tabular Structure: Table Schema

A table, or relation, is a set of rows (alias tuples, alias records). In MEMBER, a row stores data about one library member, and consequently the MEMBER table should contain a row describing every member. Each cell of a row stores the value of a particular data item that corresponds to an attribute or property of the stored object. In our example, the cells of a row store the values of the attributes of a library member: member number, driver's license number, first name, middle initial, last name, address, and phone number. Thus, each column in the table stores the values of a particular attribute (for all rows). For example, in MEMBER, the column MemNo contains only the member numbers. 

When we define the structure of a table, or a table schema, we must provide a name for the table, and a name for each column that can be used to refer to the data value in the column. In our example, the column names are MemNo, DriverLic, Fname, MI, Lname, Address, and PhoneNumber. Further, we must specify a domain for each column. A domain defines both the data type of the stored value in the column and its format. The format is the specification of the representation of a data value. For example, the representation of the phone numbers in the U.S. is (ddd) ddd-dddd. So, in our example, we can define the domain of PhoneNumber to be a character string (the data type), whose format is (ddd) ddd-dddd.

Properties of Tables

All the properties of the table are derived from the equivalence of a table to the mathematical relation. These properties are: 

· A table is finite. Otherwise, it could not be stored in a computer. 

· There are no duplicate rows in a table. Recall that a table is a set of rows. Clearly, it is a waste of space to store the same information more than once. 

· The order of the rows in a table is not important. Many logical orders can be specified on a table. 

· A value may appear multiple times in a column. 

· The order of the columns in a row is not important, and the order of the values in a row is determined by the order of their corresponding attributes. 

· The arity, or degree, of a table is the number of columns or attributes. In our example, MEMBER is of degree 7. The arity is a property of either a table or a table schema, and cannot be zero—a table cannot exist without columns. 

· The cardinality of a table T is the number of tuples in T, denoted by |T|. The cardinality of an empty table is zero whereas in our example, |MEMBER| = 3. Cardinality is only a property of tables, but not of table schemas. 

Keys

The second property of tables referred to above states that two rows cannot be the same in a table. But, how do we determine if two rows are the same? 

In general, two rows are the same if all the corresponding columns have the same values. In reality, however, it is not necessary to compare the values of all the columns to determine duplicates. We can use the semantics of the data stored in the columns to recognize those (one or more) columns whose values are sufficient to identify a row. We call such a combination of columns a key. For example, both the member number and the driver's license number are keys of MEMBER and either can be used to identify the unique row associated with a particular member. Note that a key is a property of a table schema—not, that is, a property of the rows contained in the table at a given point in time. 

In situations in which more than one key exists in a table, such as the one in our example, we select one of the keys to use primarily in our searches and comparisons, and this key is then called the primary key. The remaining candidate keys are called alternate keys. 

The selection of the primary key is based first on the semantics of the application and secondly on pragmatic considerations such as the storage requirements of the values and the cost of comparisons. A value of type integer requires less space than any character string of length greater than 4, and comparing numbers is much cheaper than comparing character strings. A composite key, which consists of more than one column, is more expensive than a simple, single-attribute key. 

In our example, a natural choice for the primary key is the member number that is also printed on each member's membership card. 

Relational Database Schema

Now that we know what a table, or a tabular relation, is, we can define the schema of a relational database. 

A relational database schema is a set of table schemas and a set of integrity constraints. Integrity constraints can be sorted into two kinds: 

· Structural (model-specific) integrity constraints that are imposed by the model as discussed below. 

· Semantic (application-specific) integrity constraints imposed by the application, such as the constraint that the balance of a savings account cannot be negative. 

The relational model imposes four structural constraints: 

1. Atomic data values: the data type of a column must be a single value; that is, it cannot be an array or a record. For example, in PhoneNumber we cannot store two telephone numbers. If we wish to store both the home and work phone numbers of each member, we need to define two columns, HomePhone and WorkPhone. 

2. Key constraints: keys must be unique. 

3. Entity integrity constraint: no primary key value can be null. Null is defined for all data types and is used to denote a missing/unknown value or an inapplicable value. 

4. Referential integrity constraint: there can be no dangling references across tables. We will elaborate on this next. 

Referential Integrity Constraints

In the relational model, referential integrity constraints are used to enforce interrelations among tables and specifically, relations between rows in one table with rows in another table. The only way a row in the first table can reference a row in the second table is through the value of the primary key of the second row. We specify such references with the help of foreign keys. 

A foreign key (FK) is a set of one or more attributes of a table T1 that forms a primary key (PK) of another table T2. This requires the following: 

1. The columns in FK must have the same domain as the primary key columns of T2. Note that this is a requirement on the values. It does not require that the corresponding columns have the same names. 

2. The value of FK in any row r1 of T1 is either NULL or matches a value of PK for some row r2 in T2, i.e., r1[FK]=r2[PK] (we denote with [] the list of columns forming the primary and foreign keys; [] corresponds to the projection operator that we will discuss in the next module). 

Consider the constraint "a borrowed book must be charged to the borrowing member" in the library database. This establishes a referential integrity constraint between the tables MEMBER and BOOK as follows: BorrowerMemNo is a foreign key in BOOK that refers to (or references) the table MEMBER. If the book is available in the library, BorrowMemNo is NULL. Otherwise, if the book has been borrowed, it is equal to the value of MemNo, which identifies the row representing the borrowing member. 

Diagrammatically, we denote referential integrity constraints with arrows from the FK to the corresponding PK. We denote a table schema by showing just the heading of the table. First, we list the name of the table in capital letters. This is followed by the attribute names. The first letter of each word in the attribute name is capitalized. The name of the table is separated from the list of attributes by two vertical lines. Blue underline indicates primary key, and red arrow indicates referential integrity.

[image: image4.png]MEMBER] MemNo | DriverLic [ Fname [ M [Lname | Address| PhoneNumber|
PK

BOOK || Book_ld [ CallNumber | Edition | BorrowerMemNo|BorrowerDueDate
PK FK





In general, multiple referential integrity constraints can be defined between two tables in either direction, and they can be defined between rows in the same table. For example, consider the constraints—each librarian must work in some department or section, and each department has a head librarian—which we can denote as follows: 

[image: image5.png]LIBRARIAN SSN Ename Dno
PK FK

DEPT Dno Dname Head
PK FK





© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

1.2.2 Relational Operations

· DDL 

· DML 

· Update Operations 

· Query Operations 

· Specific Relational Operations 

· Projection 

· Selection 

· Join 

· Set Theoretic Operations 

· Union 

· Difference 

	Readings:
· Required: Connolly and Begg, section 4.1 (in second edition, section 3.4.1).


Like every data model, the relational one provides both a data definition language (DDL) to define a relational database schema and a data manipulation language (DML) to update and query the tables in a relational database. There are different implementations of DML, both procedural and non-procedural. A procedural DML allows the user to specify the steps of exactly how to retrieve the data. On the other hand, a non-procedural or declarative DML (also referred to as 4GL—fourth-generation language) requires that the user just specify what is to be retrieved. Typically, declarative DMLs are easier to learn: two examples of these are the two most commonly used relational DMLs—SQL (Structured Query Language), which has become the standard, and QBE (Query By Example). We will first introduce SQL  in conjunction with relational operations and then we will introduce QBE in 1.2.3 QBE (Query By Example). We will discuss SQL in detail in Unit 2. Complete SQL.

DDL

In 1.2.1 Key Concepts, we discussed the key concepts of the relational model. We will first see an example of a DDL statement that is designed to create a table in the library schema. Then we will examine various DML statements. 

The command to create a table in SQL is the CREATE TABLE command. SQL supports all the basic data types found in most programming languages: integer, float, character, and character string. SQL commands are not case sensitive. 
CREATE TABLE MEMBER

(

  MemNo        integer(4),

  DriverLic    integer,

  Fname        char(10),

  MI           char,

  Lname        char(15),

  PhoneNumber  char(14),

  PRIMARY KEY  (MemNo),

  UNIQUE       (DriverLic)

);
The primary key is specified using the PRIMARY KEY directive, alternate keys using the UNIQUE directive. 

DML

Update Operations

Relational DML allows us to insert and delete rows in a table as well as to update the values of one or more columns in a row. 

In SQL, only one row can be inserted at a time, by specifying the values of each column, as in the following example: 

INSERT INTO MEMBER

VALUES (101, 6876588, 'Susan', W, 'Jones', '412-376-8888');

This statement inserts a new row for Susan W. Jones in the MEMBER table. In SQL, strings are enclosed within single quotes. 

Delete and update can be applied to multiple rows that satisfy a selection condition. In SQL, a selection condition in a deletion is specified by a WHERE clause. In the simplest case, a row is selected by specifying the value of its primary key. For example, the statement 

   DELETE FROM  MEMBER

   WHERE        MemNo = 102;

deletes the row with member number 102 from the MEMBER table. The following statement changes the middle initial of the member 101 in the MEMBER table. 

   UPDATE  Member

   SET     MI = S

   WHERE   MemNo = 101;

An update operation succeeds if it does not violate any integrity constraints. For example, an insert operation will not succeed if it attempts to insert a row whose keys, primary and alternate, conflict with existing keys. That is, if the row were to be inserted, the property that keys should be unique would be violated. On the other hand, deleting a row never violates a key constraint, unless the deleted row is referenced by a foreign key. In that case, deleting a row might violate a referential integrity constraint. 

Query Operations

The query operations provide us with facilities with which to access and retrieve data from one or more tables. Each operation operates on entire tables and produces a table as its result. By returning a table, the result of the query can be manipulated further with other query operations—or subsequently combined with other tables in the database and results from other queries—thus constructing more complex queries. 

The relational operations can be categorized into set theoretic operations and specific relational operations. In this learning page, we will discuss the operations commonly supported by a relational DBMS. Section 4.1 (section 3.4.1 in second edition) of your book Connolly and Begg provides a complete list of relational operations, most of which we will discuss later. As we will see, in SQL most query operations are specified using the SELECT command. 

Specific Relational Operations

The basic relational operations are Projection, Selection, and Join. The first two are unary operations, i.e., they are applied on a single table; whereas the last one is binary, i.e., it is applied on two tables. 

Projection

The Projection operation, Π, selects the attributes specified on an attribute_list from a table r, while discarding the rest. 

Πattribute_list(r) 

As a simple example, consider the following is a projection operation and an equivalent SQL statement that generates a table with three columns: MemNo, Lname, and PhoneNumber. 

ΠMemNo,Lname,PhoneNumber(MEMBER)

     SELECT   MemNo, Lname and PhoneNumber

     FROM     MEMBER;

In SQL, the SELECT clause specifies the attribute list of a projection, and hence the columns in the resulting table. The FROM clause specifies the table from which the data is extracted. 

Selection

The selection operation, σ, selects some rows in a table r that satisfy a selection condition (alias predicate). 

σselection_condition(r) A selection condition is an expression similar to one we use when defining an if-statement, or a loop condition, in any programming language. Specifically, it can be any logical expression using the attributes of a table involving any applicable comparison operators {=, <, <=, >, >=, <>} and any Boolean operators { AND (Λ), OR (V), NOT (¬) }. 

In SQL, a selection condition is specified in a WHERE clause. Here is a simple example of a selection condition and its equivalent SQL statement that involves only one attribute. 

σFname='John'(MEMBER)

    SELECT  *

    FROM    MEMBER

    WHERE   Fname='John';

	MEMBER


	
	MemNo
DriverLic
Fname
MI
Lname
Address
PhoneNumber
101
5876588
John
M.
McMillan
711 Piney Woods 
(412) 555-6782
104
4598934
John
R.
Hall
2715 Murry Ave. 
(412) 555-9293



This statement selects the set of rows in the MEMBER table for which the attribute Fname has the value John. The asterisk in the selection clause is used to indicate all attributes, a shortcut that prevents us from having to write all the names of columns in a table. 

Another somewhat more complex example (which includes projection as well) is the statement 

     SELECT  MemNo, Fname, Lname

     FROM    MEMBER

     WHERE   (Fname = 'John' or Fname = 'Susan') AND (MemNo > 100);

that lists the member number, and the first and last names of all members whose first name is either John or Susan and whose membership number is greater than 100. 

Join

The Join operation combines two tables, thereby allowing us to obtain more information. Specifically, consider the tables r and s with degrees (i.e., numbers of columns) αr and αs, respectively. The join of tables r and s produces a table whose first αr columns are from table r and whose last αs attributes are from table s. To be combined, the rows from each table must satisfy a joining condition. 

r [image: image6.png]


joining_condition s 

A joining condition is similar to a selection condition, with the exception that the joining condition involves comparing attribute values in two tables. The most common joining conditions contain only equalities. This type of join is referred to as an equi-join. Equi-joins involve a pair of primary and foreign keys satisfying integrity constraints. 

Because of the similarity between joining and selection conditions, in SQL joining conditions can be specified together with selection conditions in a WHERE clause. The tables involved in the join are specified in the FROM clause. 

      SELECT  r.*, s.*

      FROM    r, s

      WHERE   joining condition;

We can use the names of the tables to qualify the names of attributes, e.g., r.A, r.B, s.A, s.B, r.*, and s.*. This is particularly useful in situations in which the tables have the same name for some of their attributes. 

In the example of the library database, consider the following join operation and its equivalent SQL statement that lists the membership numbers and last names of all the members who currently have a borrowed book. 

MEMBER [image: image7.png]


 MEMBER.MemNo=BOOK.BorrowerMemNoBOOK

      SELECT   MemNo, Lname

      FROM     MEMBER, BOOK

      WHERE    MEMBER.MemNo = BOOK.BorrowerMemNo;

The statement joins the MEMBER and BOOK tables using a joining condition. The joining condition tests for the equality of the MemNo attribute in MEMBER and the BorrowerMemNo attribute in BOOK, in order to determine those members with books checked out. Note that MemNo and BorrowerMemNo are related with referential integrity. 

Let us refine the above statement to list only those members who have borrowed the book with call number QA76.9.D26C66. This can be easily done by specifying a selection condition along with the joining condition. 

      SELECT   MemNo, Lname

      FROM     MEMBER, BOOK

      WHERE    MemNo = BorrowerMemNo AND

               CallNumber = 'QA76.9.D26C66';

Set Theoretic Operations

Let us first consider the tables r and s. We assume that these tables are union compatible, which means that they have the same degree (i.e., number of attributes) and the same domains of corresponding attributes. This is important because we can compare their tuples for equality by comparing individual attributes of the tuples (remember that a tuple is a row in a table). The union and difference operations are applied on union-compatible tables. 

	Table r 

	A
	B
	C

	a
	b
	c

	d
	a
	f

	c
	b
	d


	Table s 

	D
	E
	F

	b
	g
	a

	d
	a
	f


Union

r U s is a table whose tuples are members of r or s or both. In accordance with set theory, the resulting table should not contain any duplicates. 

	Table r U s 

	A
	B
	C

	a
	b
	c

	d
	a
	f

	c
	b
	d

	b
	g
	a


The resulting table has no obvious names for its columns. The convention is that in such cases the resulting table inherits the same attribute names from the first table in operation. 

Difference

r - s is a table whose tuples are members of r but not of s. 

	Table r - s 

	A
	B
	C

	a
	b
	c

	c
	b
	d


SQL supports both the operations UNION and EXCEPT (difference). UNION eliminates duplicate rows in the resulting table. However, we are often interested in seeing duplicate rows, and, for this reason, SQL provides the option UNION ALL, which retains duplicates. The statement 
                ( SELECT   MemNo

                  FROM     MEMBER, BOOK

                  WHERE    MemNo = BorrowerMemNo AND

                  CallNumber = 'QA76.9.D26C66'

                )

                UNION

                ( SELECT   MemNo

                  FROM     MEMBER, BOOK

                  WHERE    MemNo = BorrowerMemNo AND

                  CallNumber = 'QA76.9.D7E53'

                );
returns a list of member numbers of all members currently borrowing the book that has either call number QA76.9.D26C66 or call number QA76.9.D7E53. If we replace UNION with UNION ALL, no duplicates will be eliminated. In this case, the appearance of a member number twice indicates that the member is currently borrowing both these books. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

1.2.3 QBE (Query By Example)

· Projection in QBE 

· Selection in QBE 

· Join in QBE 

	Readings:
· Required: Connolly and Begg, sections 7.1 and 7.2 (in second edition, sections 15.1 and 15.2).


Query By Example (QBE) is another visual query language developed by IBM [Zloof, 1977] to simplify an average end-user's task of retrieving data from a database. QBE saves the user from having to remember the names of tables and columns, and the precise syntax of a query language. The basic idea is to retrieve data with the help of query templates. 

Currently, most DBMSs provide a query facility based on QBE, with different capabilities and extensions. These include Microsoft Access, whose capabilities are discussed in chapter 7 of Connolly and Begg (chapter 15 in second edition). In most systems, QBE queries can automatically be converted into an equivalent SQL statement to be executed or used subsequently to construct more complex queries. 

In high level, QBE works as follows: 

· The system provides the user with a skeleton or query template of the tables in the database. 

· The user fills in the tables with examples of what is to be retrieved or updated. 

A skeleton of a table is a copy of the table without any rows, i.e. an empty table. For simple selection conditions, the examples can be constant values, such as Susan and 100, or comparisons with constant values such as 100, specified under a column. In constructing complex selection conditions and joining conditions, we can use example variables or example elements to specify comparisons. These are introduced with an underscore (_X and _y, for example), so they can be distinguished from constant values (such as X and y, respectively). Below, we show how to construct in QBE the same queries that we specified above in SQL. 

Projection in QBE

Projection is specified by selecting the show button associated with each field, which we denote in our example with "P.". To print all columns of retrieved tuples, we only need to put one "P." under the name of the table. Let us revisit the example of the first query above that displays MemNo, Lname, and PhoneNumber from MEMBER: 

QBE1:

    MEMBER |MemNo| DriverLic| Fname| MI| Lname| Address| PhoneNumber|

            P.                            P.              P.

The result of a query is displayed in a result table, which subsequently can be either stored or manipulated further. In Microsoft Access, the resulting table is called a datasheet. 
Selection in QBE

QBE2: Retrieve all members whose first name is John. 

    MEMBER |MemNo| DriverLic| Fname| MI| Lname| Address| PhoneNumber|

       P.                     John

By placing P. under the table name, this will retrieve and display the data in all the columns. 

QBE3: Retrieve the name and member number of all the members whose member number is greater than 100. 

    MEMBER |MemNo | DriverLic| Fname| MI| Lname| Address| PhoneNumber|

            P.>100             P.         P.

Comparison with constant value (in the above example the constant value is 100) is placed in the appropriate column. The resulting table will have the following columns: 

    Result| MemNo | Fname | Lname |

In QBE, a disjunction (OR) is expressed by using different examples in different rows of the skeleton. 

QBE4: Retrieve the name and member number of all the members whose first name is John or Susan. 

    MEMBER |MemNo| DriverLic| Fname| MI| Lname| Address| PhoneNumber|

            P.                P.John      P.

            P.                P.Susan     P.

A conjunction (AND), on the other hand, is expressed in the same row. 

QBE5: Retrieve the name and member number of all the members whose first name is Susan and whose member number is greater than 100. 

    MEMBER |MemNo | DriverLic| Fname| MI| Lname| Address| PhoneNumber|

            P.>100            P.Susan     P.

If the conjunction is a condition involving a single column, the condition can be specified using the AND operator, as in SQL. For example, if the MemNo should be greater than 100 and less than 150, this is specified under the MemNo column as: (_x > 100) AND (_x < 150) 

Join in QBE

Joins can be expressed by using common example variables in multiple tables in the columns to be joined. 

QBE6: List the member number and last name of all the members who currently have a borrowed book. 

    MEMBER |MemNo  | DriverLic| Fname| MI| Lname| Address| PhoneNumber|

            P._join                        P.
    BOOK |Book_id | CallNumber| Edition| BorrowerMemNo| BorrowDueDate|

                                         _join

To express multiple joins you can use multiple example variables at the same time. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

Unit 2. Complete SQL 

Unit 2 explains SQL, or Structured Query Language, a comprehensive language for data definition and data manipulation. The discussion focuses largely upon DML, or the data manipulation language. This unit also discusses how to embed SQL statements in general-purpose programming languages like Pascal and C. Then client-server architectures and Web database applications are presented, including JDBC, Java's equivalent to embedded SQL statements. The unit ends with Microsoft Active Platform, an open software architecture that supports the development of Web applications. 

· 2.1 Basic SQL 

· 2.2 Advanced SQL 

· 2.3 Web Databases
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.1 Basic SQL 

SQL (Structured Query Language) is the de facto standard query language for relational DBMSs. SQL is a comprehensive language providing statements for both data definition on the one hand, and data manipulation (query and update) on the other hand. Hence, it is both DDL (Data Definition Language) and DML (Data Manipulation Language). As a historical note, ANSI/ISO released in 1986 the first standard of SQL named SQL (ANSI 1986), which was subsequently revised and became SQL1 (ANSI 1989). In 1992, SQL2 or SQL-92 (ANSI 1992) was released and is currently implemented in most commercial DBMSs. It has also laid the foundations for SQL3 (also called SQL99), parts of which have been released and which extends SQL with OO and other concepts. This module will present several important commands in SQL data definition language as well as in SQL data manipulation language. 

	Readings:
· Required: Connolly and Begg, sections 5.1 and 5.2 (in second edition, sections 13.1 and 13.2).


· 2.1.1 SQL Data Definition Language
· 2.1.2 SQL Data Manipulation Language
Assessments

· Multiple-Choice Quiz 3
· Exercise 2
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.1.1 SQL Data Definition Language

· Creating a Database 

· Understanding SQL Data Types 

· Numeric Data 

· Character Strings 

· Bit Strings 

· Temporal Data 

· Date and Time 

· Intervals 

· Operations on Dates 

· Creating a Domain 

· Creating a Table 

· Destroying a Table 

· Modifying a Table Schema 

	Readings:
· Required: Connolly and Begg, sections 6.1, 6.2 and 6.3 (in second edition, section 13.4).


SQL DDL provides the following basic commands for defining the conceptual schema of a database. SQL allows us to define multiple schemas, or to create and maintain multiple databases, within a DBMS. 

· For database schemas: CREATE SCHEMA and DROP SCHEMA. 

· For domains: CREATE DOMAIN, and DROP DOMAIN. 

· For tables: CREATE TABLE, DROP TABLE, and ALTER TABLE. 

· For views: CREATE VIEW and DROP VIEW. 

SQL provides additional commands, including commands to define both access privileges to users and integrity constraints, all of which will be discussed in the next module. SQL used to support commands to create and remove an index. Although they have become defunct in SQL2, some DBMSs still support them. 

In our discussion, we will use the standard notation for denoting options and choices. We will denote optional clauses within "[]" and separate choices with "|". We will again use examples from the library database presented in 1.1.2 Examples of Database Systems and 1.2 Relational Databases, after extending the database to include two tables (LIBRARIAN and DEPENDENT) for keeping track of information about  librarians and their dependents. With the addition of these tables, the library database consists of the following six tables: TITLE, BOOK, MEMBER, SECTION, LIBRARIAN, and DEPENDENT. We will design such a library database and derive these tables in module 3.2 Entity-Relationship Models.  

Creating a Database

Before SQL2, only a single database was supported within a DBMS. SQL2 introduced support for multiple databases owned by different users. For this reason, the create schema command expects two arguments, the name of the database and the name of the creator or owner. 

      CREATE SCHEMA database-name AUTHORIZATION user-identifier;

For example: 

      CREATE SCHEMA library_db AUTHORIZATION aravindan;

A database can be destroyed using the drop schema command, which supports two options, restrict and cascade: 

      DROP SCHEMA database-name [RESTRICT | CASCADE];

in which 

· The Restrict option removes the schema if the database has no data in it, that is, if all tables are empty. 

· The Cascade option removes everything including data (tuples) and definitions (tables, domains, etc). 

For example, DROP SCHEMA library RESTRICT; 

Understanding SQL Data Types

SQL is a data programming language that supports four categories of data types, namely, numeric, character strings, bit strings, and temporal data, in terms of which the domains of table attributes are defined. Except for temporal, the data types bear a great similarity to those provided by any high-level programming language, particularly the languages C/C++. Furthermore, all data types in SQL include the special value NULL that is used as the default value for missing, unknown values. 

Numeric Data

SQL provides three numeric data types. 

· Exact Numbers: These are integers or whole numbers, which may be positive, negative, or zero. SQL supports two integer types with different ranges: INTEGER (or INT) and SMALLINT. 
As in C, the range of numeric types is implementation dependent. For example, SMALLINT, which is used for small integers, might be defined to store values from -32768 to 32767 inclusively. INTEGER stores large values and might be from -2,147,483,648 to 2,147,483,647 inclusively. 

· Approximate Numbers: These are numbers that cannot be represented exactly, such as real numbers, that is, numbers with fractional part, like π. We represent such numbers using floating-point types of various precisions. Precision refers to the number of decimal or fractional digits to be stored. SQL supports three floating-point types: FLOAT[precision], REAL, and DOUBLE PRECISION. Users can define the precision for FLOAT. The precision of REAL and DOUBLE PRECISION is implementation defined. Floating-point numbers can be expressed in decimal notation or scientific notation such as 5.2E3 or 314E-2. 

· Formatted Numbers: These are numbers stored in decimal notation. They can be exact values such as those we use to represent dollars and cents, for example $10.99. Formatted numbers can be defined using DECIMAL(i,j), DEC(i,j) or NUMERIC(i,j), where i is the precision, or the total number of digits excluding the decimal point, and j is the scale, or the number of fractional digits. The default scale is zero. 

Character Strings

A character string is a sequence of printable characters. In SQL, a character string is denoted by enclosing it in single quotes. 'This is a character string' is an example. SQL provides two character string types for specifying the maximum length of a sequence of characters in a column. 

· Fixed length n: CHAR(n) or CHARACTER(n) always stores n characters. If we enter a string with fewer than n characters, the string is padded with spaces at the end to make up for the required size. 

· Varying length of maximum n: either VARCHAR(n) or CHAR VARYING (n) stores up to n characters. If the user enters a string with more than n characters, then only the first n characters are stored by the DBMS. If the user enters a string with fewer than n characters, then all the characters are stored. 

The default value of n is 1, representing a single character. That is, CHAR, or CHARACTER can be used to declare a single character column. The allowable characters in a character string are usually drawn from ASCII or EBCDIC character sets. SQL-92 also added the NATIONAL CHARACTER(n) and NATIONAL VARYING CHARACTER(n), which allow foreign-language characters drawn from the ISO-defined character sets.

Bit Strings
Bit strings are sequences of binary digits, or bits. Bit strings are useful for storing encoded values such as control, or non-printable, characters and pictures. In SQL, bit strings are denoted similarly to the way character strings are denoted, that is, within single quotes—'010110' for example. Bit string types are also similar to character string types. 

· Fixed length n: BIT(n) 

· Varying length of maximum n: VARBIT(n) or BIT VARYING (n) 

The default value for n is 1. 

Temporal Data

All SQL implementations support the DATE data type. Most SQL implementations support the TIME and TIMESTAMP data types. Many support the INTERVAL data type, which is used to represent lengths of time. We use DATETIME to express dates and times in general. 

Date and Time

Date and time are divided into the following fields, allowing different degrees of accuracy: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR, and TIMEZONE_MINUTE. 

· DATE stores calendar values representing YEAR, MONTH, and DAY: yyyy-mm-dd. Four digits are used to represent the year (YYYY), two digits represent the month (MM), and two digits represent the day (DD). For example, '2000-02-29'. 

· TIME defines HOURS, MINUTES, and SECONDS in a twenty-four-hour notation: HH:MM:SS. Two digits for hours (HH), two for minutes (MM), and two for seconds (SS): For example, 15:33:59 represents 3:33 and 59 seconds p.m. 

· TIME(i) defines i additional decimal fractions of seconds: HH:MM:SS:ddd...d. For example, in TIME(4), a time could be 22:20:01:2345. 

· TIME WITH TIME ZONE includes the displacement [+13:00 to -12:59] from standard universal time zone: HH:MM:SS+/-hh:mm. hh are the two digits for the TIMEZONE_HOUR and hh the two digits for TIMEZONE_MINUTE. For example, 6:30 am local time in Greece can be represented as 06:30:00+02:00, whereas 6:30 local time on the East coast of the U.S. as 06:30:00-05:00. This is particularly useful if times from different zones (for example, from different countries) are stored in the database. 

· TIMESTAMP represents a complete date and time with six fractions of seconds and optional time zone. 

Intervals

An interval results when two dates are subtracted, such as in the example of OrderDate - ShipDate. The interval data types specify what sort of interval should be the result in terms of hours, days, years, minutes, and seconds, or some combination thereof. 

In SQL, there are two interval data types: Year/Month and Day/Time. Their format is: INTERVAL start-field(p) [TO end-field(fs)], where p is the precision, or maximum number of digits in the leading field, and fs is the fractional second precision, which is only applicable to DAY/TIME. The default precision, if not specified, is 2 digits. The default fs precision is six digits. 

In the Year/Month case, the start-field and end-field can be YEAR and/or MONTH. This means you can specify INTERVAL YEAR, INTERVAL YEAR(p), INTERVAL MONTH, INTERVAL MONTH(p), INTERVAL YEAR TO MONTH, or INTERVAL YEAR(p) TO MONTH. For example, the INTERVAL YEAR (3) to MONTH could be an interval between 0-0 (0 years and 0 months) and 999-11 (999 years and 11 months). 

In the DAY/TIME, the fields can be a contiguous selection from DAY, HOUR, MINUTE, SECOND. For example, you can specify INTERVAL DAY TO HOUR, INTERVAL DAY TO MINUTE, INTERVAL SECOND(8), INTERVAL DAY(5) to SECOND(10), or INTERVAL MINUTE(3) to SECOND. For example, the INTERVAL DAY(2) to MINUTE could be an interval between 00:00:00 (0 days. 0 hours, 0 minutes) to 99:23:59 (99 days, 23 hours, and 59 minutes). 

Operations on Dates

All systems provide functions for constructing a date from integers or strings—extracting out the month, day, or year from a date—and for displaying dates in different ways, such as '1-JAN-2000'. However, different systems use different names for these functions. For example, a MAKEDATE (year, month, day), or equivalent, constructs a date out of the integers representing the year, month, and day. SQL-92 provides the function CAST (string AS DATE), which accepts a string and converts it into a date, for example '1999-12-31' AS DATE. 

Notice that a date plus or minus an interval yields a new date. The expression (CURRENT_DATE + INTERVAL '1' MONTH) returns the date of a month from today, whereas (CURRENT_DATE - INTERVAL '28' DAY) returns the date of 28 days ago. CURRENT_DATE is a system function that returns the current date in the local zone of the user. 

In SQL92, other valid combinations of DATETIME and intervals are: 

· Datetime - Datetime = Interval of year/month or day/time 

· Datetime (+ or -) Interval = Datetime 

· Interval (* or /) Number = Interval 

· Interval (+ or -) Interval = Interval 

Creating a Domain

Domain is a new, powerful schema component in SQL-92 that is expected to be supported by all SQL implementations. It allows the definition of new data types, more precisely data type macros, for columns expressed in terms of the basic data types but not in terms of other domains. 

A domain can be defined using the CREATE DOMAIN command, which also permits specifying a default value as well as validity conditions. A default value is used to initialize an attribute (column). Default values are introduced with the DEFAULT keyword. Validity conditions are expressed using the CHECK() clause. 

Consider the following examples. The first three define new character string domains of fixed length 20, of varying length 20, and of fixed length 15—called name_dom, section_dom, and address_dom, respectively. In addition, the second and third definitions specify a default value to be the string 'none' and the special value NULL, respectively. Note that the AS keyword is optional. 

CREATE DOMAIN  name_dom  AS CHAR(20);

CREATE DOMAIN  sectno_dom  AS SMALLINT;

CREATE DOMAIN  section_dom  VARCHAR(20) DEFAULT 'none';

CREATE DOMAIN  address_dom  CHAR(50)    DEFAULT  NULL;

The following domain examples also specify validity conditions. The statement 

CREATE DOMAIN gender_dom AS  CHAR(1)

           CHECK (VALUE IN ( 'F', 'f', 'M', 'm' ));

specifies that the value of a column declared as gender_dom must be a single, lower or upper case, character F or M. 

CREATE DOMAIN  ssn_dom CHAR(11) 

   CHECK ((VALUE BETWEEN '000-00-0000' AND '999-99-9999'));

The above statement specifies the valid character strings of U.S. social security numbers. Finally, the statement 

CREATE DOMAIN  hour_dom AS INTEGER DEFAULT  0

   CHECK (VALUE >= 0);

specifies that the value set of hour_dom is the positive integers. 

Creating a Table

In 1.2.2 Relational Operations, we discussed the CREATE TABLE command and used it to create the MEMBER table. Here we illustrate the usage of a domain in defining a column in a table by creating the BOOK, LIBRARIAN, and DEPENDENT tables of the library database. 

As in the case of domain, when defining a column, we can specify its default value and validity conditions in the same way using the DEFAULT and CHECK() clauses. Entity constraints are also specified at the column definition level using NOT NULL. Column and constraint definitions in CREATE TABLE are separated by commas. The usage of each column in BOOK should be evident from the column's name, with the possible exception of LibCheck, which is used to keep track of all instances in which a librarian validates a book checkout.  

    CREATE TABLE BOOK

    ( Book_Id          NUMERIC(6)  NOT NULL, 

      Edition          NUMERIC(3)  NOT NULL, 

      BorrowerMemNo    NUMERIC(4), 

      BorrowDueDate    DATE, 

      CallNumber       VARCHAR(8) NOT NULL, 

      LibCheck         ssn_dom,

      Primary Key (Book_Id),

      FOREIGN KEY (BorrowerMemNo) REFERENCES MEMBER(MemNo),

      FOREIGN KEY (CallNumber) REFERENCES TITLE(CallNumber),

      FOREIGN KEY (LibCheck) REFERENCES LIBRARIAN(SSN)

    );

When we specified foreign keys above, we specified the column names forming the referenced primary keys. However, as we show below, this is not necessary and can be omitted. Also, primary and foreign keys can be specified at the same level as the definition of the column, as long as they are simple atomic ones, that is, composed of a single column. This was an early SQL syntax and although we demonstrate it below, for reasons of readability and maintainability, we do not recommend this syntax. These reasons we will discuss later when naming the constraints. 

    CREATE TABLE LIBRARIAN

    ( SSN       ssn_dom     NOT NULL PRIMARY KEY,

      Name      name_dom    NOT NULL, 

      Address   address_dom, 

      Salary    DEC(4.2)    DEFAULT 0.0 CHECK(Salary >= 0),  

      Gender    gender_dom, 

      Birthday  DATE, 

      SUPERSSN  ssn_dom     FOREIGN KEY REFERENCES LIBRARIAN,

      Section   sectno_dom FOREIGN KEY REFERENCES SECTION

    );

The SUPERSSN column stores the SSN of a librarian's direct supervisor and the Section column stores the number of the section in which a librarian works.  The use of domains in creating the LIBRARIAN table—in particular the ssn_domain twice and the gender_dom domain once—clearly shows the power of domains. Both ssn_dom and gender_dom have relatively complex definitions. Without these domain components, we would have to repeat their definitions in each column in which they are used.

Note the subtle difference between the syntax of the CHECK() clause in the CREATE TABLE and the corresponding syntax in the CREATE DOMAIN. In the latter, since the domain is going to be used to define multiple columns, we use the keyword VALUE to denote the column value. However, in the CREATE TABLE we use the actual name of the column. In our example, we used Salary in CHECK (Salary >= 0). 

In this final example, we show how primary keys composed of more than one column can be specified. In the case of the DEPENDENT table, the primary key is composed of the librarian's SSN (LIBSSN) and the name of the librarian's dependent (Name). 

    CREATE TABLE DEPENDENT

    ( LIBSSN     ssn_dom, 

      Name       name_dom  NOT NULL, 

      Birthday   DATE, 

      Kinship    CHAR(5)   DEFAULT 'none',

      PRIMARY KEY (LIBSSN, Name),

      FOREIGN KEY (LIBSSN) REFERENCES  LIBRARIAN

    );

It should be pointed out that when specifying foreign keys, the order in which the tables are created does matter. A foreign key specification is accepted only if it references an existing table. This problem can be alleviated if foreign key constraints are added after the creation of tables, using the ALTER TABLE command that will be discussed later in this page in Modifying a Table Schema. This is in fact the only way that we can define circular referential integrity. 

Recall that two rows in a table cannot have the same values for the alternate key columns. SQL also provides for the ability to specify that a set of columns may serve as an alternate key. The unique key word specifies each row must have unique values. Consider a different implementation of the BOOK table above where the CallNumber may serve as an alternate key. A create-table statement that reflects this constraint is given below:

    CREATE TABLE BOOK

    ( Book_Id          NUMERIC(6)  NOT NULL, 

      Edition          NUMERIC(3)  NOT NULL, 

      BorrowerMemNo    NUMERIC(4), 

      BorrowDueDate    DATE, 

      CallNumber       VARCHAR(8) NOT NULL unique, 

      LibCheck         ssn_dom,

      Primary Key (Book_Id),

      FOREIGN KEY (BorrowerMemNo) REFERENCES MEMBER(MemNo),

      FOREIGN KEY (CallNumber) REFERENCES TITLE(CallNumber),

      FOREIGN KEY (LibCheck) REFERENCES LIBRARIAN(SSN)

    );

Destroying a Table

A table can be destroyed and removed from a schema using the DROP TABLE command. This works similarly to the DROP SCHEMA command and supports the same options: restrict and cascade. 

For example, 

    DROP TABLE MEMBER CASCADE;
    DROP TABLE MEMBER RESTRICT;

With the CASCADE option, the table and all references to it are removed. With the RESTRICT option, the table is removed if it is not referenced. 

Modifying a Table Schema

We can correct or evolve the schema of a table using the ALTER TABLE command. Using the ALTER TABLE command we can change, add, and drop column definitions in a table. Let us illustrate these capabilities with examples. 

· ALTER TABLE table-name ALTER. 

· Using this command, we can alter the domain of an attribute. The statement 

·    ALTER TABLE LIBRARIAN

·      ALTER Salary NUMBER(6,2);

changed the domain of Salary from DEC(4,2) to NUMBER(6,2). When changing the domain of a column, care must be paid in order that the new domain can accommodate the existing values. Otherwise, existing values will be truncated. This is similar to the type-narrowing problem in C/C++: for example, an integer (INT) value cannot be assigned to short integer (SMALLINT) variable (column). 

· With the SET and DROP options, we can set or drop the default value of a column, as in the following examples. 

·    ALTER TABLE DEPENDENT

·      ALTER kinship DROP DEFAULT;

·    ALTER TABLE BOOK

·      ALTER BorrowerMemNo SET DEFAULT NULL;

· ALTER TABLE table-name ADD 
Using this command we can add a new column in a table, such as adding a column Gender in the DEPENDENT table. The definition of the new column can be as complex as in the CREATE TABLE command. That is, except for domain, a new column definition can include default value and constraint checks. 

·    ALTER TABLE DEPENDENT

·      ADD Gender gender_dom;

· ALTER TABLE table-name DROP
This command behaves exactly like the DROP TABLE command except that it is applied at the column level. With the CASCADE option, the column and all references to it are removed. With the RESTRICT option, the column is removed if it is not referenced. 

·    ALTER TABLE BOOK

·      DROP Edition CASCADE

·    ALTER TABLE BOOK

·      DROP Edition RESTRICT;

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.1.2 SQL Data Manipulation Language

· The Complete SELECT Statement 

· Resulting Tables as Sets 

· Aliasing in SQL: The AS Operator 

· Comparing NULL Values 

· Range Conditions 

· Pattern Matching and String Concatenation 

· Aggregate Functions 

· Grouping in SQL: The GROUP BY and HAVING Clauses 

· Sorting the Results: The ORDER BY Clause 

· Nested Queries and Set Comparisons 

· Set Membership 

· Quantified Set Comparisons 

· Set Comparisons: EMPTY and UNIQUE 

· Joining Tables in SQL2 

· More on the Insert Command 

In 1.2.2 Relational Operations, we introduced the SQL DML: the basic SELECT statement and the three update commands, namely, INSERT, DELETE, and UPDATE. In this page, we will discuss all the clauses of the SELECT and INSERT commands without repeating the other discussion in 1.2.2 Relational Operations that had to do with projection, selection, join, and set operations. 

	Readings:
· Required: Connolly and Begg, section 5.3 (in second edition, section 13.3).


The Complete SELECT Statement

The general form of the SELECT statement provides six clauses out of which only the first two are mandatory; the rest are optional. We introduce comments with -- although this is not part of the standard. 

SELECT    attribute list             -- Output columns of result table

FROM      table list                 -- Input tables

WHERE     selection-condition        -- Condition to filter out rows

GROUP BY  grouping attribute(s)      -- Grouping of rows with common column values

HAVING    grouping  condition        -- Condition to filter out groups

ORDER BY  {attribute ASC|DESC} pairs -- Ordering of rows in output

The order of the clauses cannot be changed. Optional clauses can be omitted. 

Resulting Tables as Sets

We have talked about set operations and the equivalence between tables and sets. In theory, tables as sets should not contain any duplicates, so the same should apply to the resulting table of a SELECT statement. However, for pragmatic reasons, SELECT does not eliminate duplicate tuples: duplicate elimination is computationally expensive because it requires sorting. Duplication may be part of the expected result; for example, we are looking for duplicates. Duplication is required by most aggregate functions (such as, for example, average and total) in order to work properly. 

If duplicate elimination is desired, it can be achieved using the DISTINCT keyword in the SELECT clause: 

     SELECT DISTINCT  CallNumber

     FROM             BOOK;

Aliasing in SQL: The AS Operator

Another powerful and useful operator in SQL is the AS operator. It allows us to customize the names of the columns in the resulting table and to simplify these constructions of complex queries involving long table and column names. We illustrate all three cases in the following examples. 

· Renaming attributes in the result of a query: 

·       SELECT  Name AS Librarian_Name

·       FROM    LIBRARIAN

·       WHERE   Salary > 18000;

· Table alias can be achieved with the AS operator in the FROM-clause: 

·       SELECT  *

·       FROM    LIBRARIAN AS L

·       WHERE   L.name = 'Ruchi Jones';

· Renaming of columns within a query: 

·       SELECT  *

·       FROM    DEPENDENT AS D(LS,FN,BD,KIN)

·       WHERE   D.FN = 'Thalia' AND KIN = 'CHILD';

Comparing NULL Values

NULL is a special value that is valid in any domain, whether it is a character string, an integer, or a DATETIME. Since NULL can appear in a column, we need to be able to determine its presence and consider NULLs in conditions explicitly. For this reason, SQL provides the IS NULL and IS NOT NULL operators to test for NULL values. 

As an example, the statement 

             SELECT Book_id

             FROM   BOOK

             WHERE  BorrowerMemNo IS NULL; 

returns all the books that are currently in the library. 

In the presence of NULL values, it is hard to test for the TRUE or FALSE of a condition. In such a case, the value of the condition is UNKNOWN, that is, it is neither TRUE nor FALSE. Thus, some times it might be necessary to test explicitly for a specific condition. We can do this using the operators: 

· IS FALSE and IS NOT FALSE 

· IS TRUE and IS NOT TRUE 

· IS UNKNOWN and IS NOT UNKNOWN 

The following example retrieves the name of all librarians who are male and earn less than $29,000. 

  SELECT Name

  FROM   LIBRARIAN

  WHERE ((Salary < 29000) AND (Gender = 'M')) IS NOT FALSE;

The selection condition will filter out all the rows in LIBRARIAN in which Salary, Gender, or both are set to NULL. 

Range Conditions

Among the most common selection conditions are range search conditions, like the condition "retrieve all the librarians whose salary is between 25000 and 35000." Typically, such a condition will be expressed with a conjunction: 

     SELECT *

     FROM   LIBRARIAN

     WHERE (Salary >= 25000 AND Salary <= 35000);

Using the BETWEEN operator, we can express the same condition in a rendering that is closer to the English language: 

     SELECT *

     FROM   LIBRARIAN

     WHERE (Salary BETWEEN 25000 AND 35000);

BETWEEN, and its negation NOT BETWEEN, can be used with other data types such as DATETIME and CHARACTER. 

Pattern Matching and String Concatenation

Often we are searching for a string appearing in a column. The LIKE operator supports comparisons with partial strings. 

· A percent sign `%' indicates a match with an arbitrary number of characters including spaces. 

· An underscore sign '_' matches a single arbitrary character. 

Consider the query: Retrieve all the Librarians whose first name is Nick. 

    SELECT  SSN, Name

    FROM    LIBRARIAN

    WHERE   Name LIKE 'Nick%';

Recall that the Name attribute in LIBRARIAN is a character string that includes both first and family names. The pattern will match all strings that start with Nick. 

In the case of the MEMBER table, the first name, middle initial, and family name are stored separately. Using the string concatenation ( || ), we can put them in a single string under a column. 

Consider the query: Display in a single column the full name of all members in Pittsburgh (area code number 412) who have phone numbers, the first digit of which is a 6 and the third a 3. 

    SELECT  Fname || MI || Lname AS Name, PhoneNumber

    FROM    MEMBER

    WHERE   PhoneNumber LIKE '(412) 6_3%';

This will return a two-column table with column names: Name and PhoneNumber. 

In the event that the search pattern includes a percent sign, we can use an escape character to cause the SQL interpreter to interpret the percent sign as itself. ESCAPE can be used to define an escape character. 

    SELECT  Name, CallNumber

    FROM    TITLES

    WHERE   Name LIKE '%10&%%' ESCAPE '&';

This will return the name and call number of all the book titles that contain '10%' as part of the title name. The leading '%' will match any number of characters preceding '10%' and the trailing '%' will match any number of characters following '10%'. 

Aggregate Functions

SQL provides five aggregate functions that typically appear in the SELECT clause: SUM, MAX, MIN, AVG, and COUNT. In some cases, they can also appear in conditions in the WHERE and HAVING clauses. 

COUNT can accept any type of argument, including *, and returns the number of occurrences. MAX and MIN accept a character or an integer type column and return the maximum and minimum values, respectively. SUM and AVG accept only integer values and return the sum and the average of arguments, respectively. SUM can be applied on both values stored in a single column and on computed values, for example, from different columns. For instance the total of a purchase order can be specified as SUM(Price * Quantity). 

Example: Display all the statistics about librarian salaries. 

     SELECT   SUM (Salary) AS TotalSalaries, 

              MAX (Salary) AS MaxSalary, 

              MIN (Salary) AS MinSalary,

              AVG (Salary) AS AvgSalary, 

              COUNT (*)    AS Cardinality, 

              COUNT (DISTINCT Salary) AS Salarylevels

     FROM     LIBRARIAN;

We use DISTINCT with COUNT in order to eliminate same salaries, hence counting only the number of salary levels. Using COUNT(*) without DISTINCT will return the number of salaries, which is the same as the number of librarians in the library. 

Grouping in SQL: The GROUP BY and HAVING Clauses

Above we have applied aggregate functions on an entire table. In many situations, there is a need to apply the aggregate functions to subsets of rows of a table. In SQL, we can group rows together based on the value of some attributes that we call the grouping attributes. We can use the GROUP BY clause to specify such groupings by listing the grouping attributes. 

Example: List the call number of the books that have more than two editions. 

          SELECT    CallNumber, COUNT(*) AS NoPopularBooks

          FROM      BOOK

          WHERE     Edition  >= 3

          GROUP BY  CallNumber;

Note that the grouping attributes should appear in the SELECT clause. In our case, the grouping attribute is CallNumber. The order of evaluation proceeds along the order of the clauses. First, the WHERE clause is evaluated and thus the rows for grouping are selected (in our example, the rows of books with Edition >=3), and then the grouping is done. 

The HAVING clause works on groups in a way similar to the WHERE clause on rows. We can use the HAVING clause to select only those groups that we are interested in. For example, assume that we are interested in finding out the number of copies of the popular books (for example, with Edition >=3), for which at least five copies exist in the library. 

          SELECT    CallNumber, COUNT(*) AS NoPopularBooks

          FROM      BOOK

          WHERE     Edition  >= 3

          GROUP BY  CallNumber;

          HAVING    COUNT (*) >= 5;      

The above statement, after forming the group of popular books, ignores the group consisting of fewer than five copies. 

Sorting the Results: The ORDER BY Clause

As we have already mentioned, sorting is expensive, and different users often prefer the result of a query to be presented in different ways. For this reason, SQL provides the ORDER BY clause. We can use ORDER BY to specify the columns, according to which the resulting rows must be sorted, separated by commas. For each column, we can also specify the order to be used: ASC (ascending) or DESC (descending), with ASC as the default order. 

Example: List all the highly paid librarians (that is, with Salary > 40K) sorted in a funny way—last and first name in ascending order and middle initial in descending order. For example, Weine John W., Weine John K., Weine John A. 
          SELECT    *

          FROM      LIBRARIAN

          WHERE     Salary  > 40000

          ORDER BY  Lname, Fname ASC, MI DESC;

Note that for Lname, the default order ASC is assumed. 

Nested Queries and Set Comparisons

In some queries, the selection conditions can be expressed more easily in terms of set comparisons. SQL supports both explicit and implicit definitions of a set. 

· Explicit definition: We list the members of the set within parenthesis, for example (1, 2, 3) and ('Science', 'Art', 'Children'). 

· Implicit definition: We use an inner SELECT statement (subquery) whose output table (set) is used by the selection condition of the outer SELECT statement in order to produce the final result. The use of implicit definition is called nested queries. 

Note that in a nested query, if the output of the inner SELECT is a single column and a single row, then this can be used in any expression in which a single value may appear. Such an inner query is called a scalar subquery. For example, in the statement 

    SELECT MemNo, Fname, MI, Lname

    FROM   MEMBER

    WHERE  MemNo = ( SELECT BorrowerMemNo

                     FROM   BOOK

                     WHERE  Book_id = 999);

the inner SELECT statement (SELECT BorrowerMemNo FROM BOOK WHERE Book_id = 999) finds the member number of the current borrower of the book copy 999. The returned BorrowerMemNo is used in an equality expression as a scalar, single value by the outer SELECT statement to retrieve the full name of the borrower. 

Set Membership

The IN and NOT IN operators check for simple membership. 

The following is an example of NOT IN with explicit set definition. List each head librarian's SSN, along with their section, except those of the Science, Art, and Children sections. 

     SELECT HeadSSN, Name

     FROM   SECTION

     WHERE  Name NOT IN  ('Science', 'Art', 'Children');

The following is an example using the IN operator. List the names of all librarians who have a dependent of the same gender. 

     SELECT L.Name

     FROM   LIBRARIAN AS L

     WHERE  L.SSN IN (SELECT LIBSSN 

                      FROM   DEPENDENT D

                      WHERE  D.LIBSSN = L.SSN AND

                             D.Gender = L.Gender);

The above query works like two nested loops, with the outer loop counter as a librarian and the inner loop counter as a dependent. That is, for each librarian, his/her dependents are selected based on the equality of the librarian's SSN (L.SSN) and the dependent's associated LIBSSN (D.LIBSSN); for each dependent, his/her gender (D.Gender) is compared with the librarian's gender (L.Gender). Note that the aliases L for LIBRARIAN and D for DEPENDENTS are used as prefixes to disambiguate columns with the same name. In our example, only the Gender columns needed to be differentiated, but we used the prefixes for SSN and LIBSSN for clarity. 

Quantified Set Comparisons

The test for membership, which is an equality comparison, can be generalized to other comparisons ( =, <>, >, >=, <, <= ) and can be quantified using ANY (that is, SOME) or ALL. 

The following example uses the < ANY operator. List the name and SSN of all head librarians whose salary is lower than that of any librarian who is not a head librarian. 

     SELECT  Name, SSN

     FROM    LIBRARIAN, SECTION

     WHERE   SSN = HeadSSN AND

             salary < ANY  (SELECT Salary

                            FROM   LIBRARIAN L

                            WHERE  L.SSN NOT IN ( SELECT HeadSSN

                                                  FROM SECTION    ));
Set Comparisons: EMPTY and UNIQUE

The EXISTS (not empty) and NOT EXISTS (empty) operators test for emptiness of a result. 

As an example, consider the query: List the names and SSNs of all librarians who are not head librarians. Notice that this is a variant of the above inner subquery that retrieves the librarians' salaries. 

     SELECT L.SSN, L.Name

     FROM   LIBRARIAN L

     WHERE  NOT EXISTS (SELECT  *

                        FROM    SECTION

                        WHERE   L.SSN = HeadSSN);

If a librarian is a head librarian, the inner subquery will not be empty. It will return the row of the section headed by the librarian. Hence, NOT EMPTY will be false and the head librarian will be ignored and not included in the result. 

The UNIQUE and NOT UNIQUE operators test for duplicates in a result. That is, they test for results that are a set and a bag, respectively. (A bag is a set with duplicates.) 

Example query: List the names and SSNs of all librarians with more than one dependent. 

     SELECT Name, SSN

     FROM   LIBRARIAN

     WHERE  NOT UNIQUE (SELECT  *

                        FROM  DEPENDENT

                        WHERE LIBSSN = SSN);

Joining Tables in SQL2

Thus far, we have used the traditional way to join two tables according to which the join condition is specified along with the selection condition in the WHERE clause. 

SQL2 introduced JOIN in order to separate the selection and join conditions, leaving the WHERE clause for selection only, while explicitly capturing the fact that a joined table is itself a table and as such should be specified in the FROM clause. 

For example, consider the query: list only once the last name and address of all the members with a borrowed book and whose first name is Andreas or Rebecca. 

    SELECT DISTINCT Lname, Address

    FROM    (MEMBER JOIN BOOK ON MemNo = BorrowerMemNo)

    WHERE   Fname = 'Andreas' or Fname = 'Rebecca';

The above SELECT statement joins the MEMBER and BOOK tables ON the MEMBER.MemNo and BOOK.BorrowerMemNo columns in order to find the members with borrowed books. Recall that DISTINCT eliminates duplicates. 

Nested JOIN is supported: one table in a join is itself a joined table. Further, the JOIN operator allows the specification of different types of join: NATURAL JOIN and outer joins (LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN). For the definition and use of outer joins, see Connolly and Begg, section 4.1.3 (section 3.4.1, pages 92-95 in second edition). 

Natural join is a very common operation that joins tables based on the equality of columns with identical names. Hence, in the case of NATURAL JOIN the ON-clause is not needed. However, we might need to rename the columns of one of the joining tables to identify the common columns. In the resulting table, one of the identical columns is eliminated. 

For example, let us join the LIBRARIAN and SECTION tables in order to retrieve the name of the librarian who heads the Children section. 

  SELECT Name

  FROM   (LIBRARIAN NATURAL JOIN SECTION AS S (SN, NM, SSN))

  WHERE  S.NM = 'Children';

Here, we rename the LIBSSN column in SECTION as SSN, to match the SSN column in LIBRARIAN. We also rename the other columns of SECTION for short hand, because we have to specify all the columns of the table during renaming. 

More on the Insert Command

In 1.2.2, we saw only one of the two forms of INSERT, namely, the implicit form. The implicit form requires that we supply data for all columns. The order of data must be the same as the order of their corresponding columns in the table schema. 

Here is an example of INSERT with implicit specification of attributes: 

   INSERT INTO BOOK

   VALUES (999, 2, NULL, NULL, 'QA7.56B7', NULL);

The second form of INSERT is the explicit form, which allows data to be inserted only in some columns. The remaining columns are assigned the default values, and if a column is not specified in the table schema, NULL is used as the default. The names of the columns into which we are inserting data are specified within parentheses along with the table name. The order of the column names is insignificant. 

   INSERT INTO BOOK (Book_id, Edition, CallNumber)

   VALUES  (999, 2, 'QA7.56B7');
   INSERT INTO BOOK (Edition, CallNumber, Book_id)

   VALUES  (2, 'QA7.56B7', 999);

It is possible to populate a table in the database from data already in the database. That is, in that case the tuples to be inserted into a table would be derived from the database using the SELECT statement. This is useful in creating summary and archive tables. Assume that there is a table Section_Info(SectCode, NumLibrarian) that keeps track of the number of librarians working in each section. Section_Info can be populated from LIBRARIAN and SECTION tables using the statement: 

   INSERT INTO Section_Info (SectCode, NumLibrarian)

        SELECT   SectNo, Count(*)

        FROM     LIBRARIAN, SECTION

        WHERE    Section = SectNo

        GROUP BY SectNo;

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.2 Advanced SQL 

This module concentrates on advanced topics in SQL, beginning with a discussion of how views in SQL are used as a means of simplifying complex queries. Then we turn to integrity constraints: both the nature of their close relation to the transactions they affect, and the commands for specifying particular syntactic and semantic integrity constraints. The two SQL commands for controlling user access to the database are then introduced. Finally, the module explains embedded SQL, or the feature of a programming language that supports the insertion of SQL commands into a program. 

· 2.2.l Views
· 2.2.2 Integrity Constraints in SQL
· 2.2.3 Access Control
· 2.2.4 Embedded SQL
Assessments

· Multiple-Choice Quiz 4
· Exercise 3
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.2.1 Views

· Creating and Querying a View 

· Dropping a View 

· Updating a View 

· Migrating Rows: WITH CHECK OPTION 

· Views as a Security Mechanism 

In 1.1.3 When is a Database Management System Needed? we introduced the concept of a view in two interrelated contexts—the context of external schemas, which presents the database from the perspective of a user, and the context of security, which presents the database on a need-to-know basis. Such views are typically defined on a single table. 

There is a third use of views that simplifies the construction of complex queries. A view can be used to express an intermediate step involving multiple tables. Such a view, however, is not a temporary table defined within a single query. Once it is created, it can be used in a way similar to base tables in many queries. 

	Readings:
· Required: Connolly and Begg, sections 3.4 and 6.4 (in second edition, sections 3.5 and 14.1).


Creating and Querying a View

A view can be created using the CREATE VIEW command. It is a single table derived from other tables, which in turn are called the defining tables. The defining tables can be base tables and other views. A view is expressed as a query on the defining tables using the SELECT command. As a simple example, consider the ART_LIBRARIAN view, which contains the data of all the librarians (i.e., rows in the LIBRARIAN table) who work in the Art section. We assume that the section number of the Art section is 3. 

    CREATE VIEW ART_LIBRARIAN

    AS  SELECT  *

        FROM    LIBRARIAN

        WHERE   Section = 3;

The above view is an example of a horizontal view. A horizontal view allows user access to only specific rows of the defining tables. On the other hand, if a view restricts user access to only selected columns of the defining tables, it is called a vertical view. The following is an example of a vertical view that allows access to librarians' names (Name column) in the LIBRARIAN table and to the section names (Name columns) in the SECTION table. 

    CREATE VIEW SECTION_LIBRARIAN

    AS  SELECT  L.Name As LibName, S.Name As SectName

        FROM    LIBRARIAN L, SECTION S

        WHERE   Section = SectNo;

This view defines a table each of whose rows contains the name of a librarian (LibName) and the name (SectName) of the section in which the librarian works. 

As opposed to base tables, a view is a virtual table: it does not physically exist. Its rows are derived every time it is referenced in a query, as in the following example. Hence, a view is always up to date. 

    SELECT    SectName, Count(*)

    FROM      SECTION_LIBRARIAN

    GROUP BY  SectName;

The above query lists for each section the number of librarians who work in this section. 

A view can be used as one of the defining tables of another view. A view derivation from another view is called a view hierarchy. 

Dropping a View

When a view is no longer needed, it can be purged using DROP VIEW: 

          DROP VIEW SECTION_LIBRARIAN;

Updating a View

Updates to a view are complex. Recall that a view does not physically exist; only base tables store data. Thus, any update to a view must be mapped onto updates of the defining tables that are base tables. If such mapping is possible for a view, then the view is updateable. 

A view is updateable if it involves a single table and contains a key. However, a view is generally not updateable if it involves joins, and a view is not updateable if it involves aggregate functions and nested queries. For example, if you increase the value resulting from COUNT, it means that a new row must be inserted in the corresponding tables, but the data in such a row is unknown. The same situation arises with multiple joins. 

Since not all views are updateable, when we define an external schema or when we want to use a view for updates, we must define views on either single tables or tables that involve only a single join, containing keys from the involved tables. Furthermore, DISTINCT should not be used to eliminate any rows from the query result. Using the keys, the mapping can identify the base table's rows that are involved in a modification. For example, an insert on single table view is translated into an explicit insert on the base table. Recall that the omitted columns in an explicit insert are assigned their default value or NULL. 

Migrating Rows: WITH CHECK OPTION

An issue related to updateable views is that of migrating rows out of the view. For example, consider a row in a view that is modified in such a way that it no longer satisfies the selection criterion (WHERE-clause) to be part of the view. According to the view definition, such a row must be removed from the view. 

For instance, the ART_LIBRARIAN view is updateable and we can issue the following UPDATE command to update the section number from 3 (of the Art section, according to our view definition) to 4 (of, say, the Science section) of the librarians whose first name is Kathy. This will cause any row that is updated to be migrated out of the view. 

   UPDATE ART_LIBRARIAN

   SET Section = 4

   WHERE LibName LIKE 'Kathy%';

Similarly, if a row is inserted on the view that does not satisfy the view selection criterion (i.e., Section = 3), it will not appear within the view. For example, the following INSERT command will insert a new librarian who will work in the Science section and hence will not appear within the ART_LIBRARIAN view. 

   INSERT INTO  ART_LIBRARIAN (SSN, Name, gender, Section)

   VALUES ('345-77-8901', 'John Sussa', 'M', 4);

The update command above is equivalent to transferring a librarian from the Art section to the Science section. The INSERT command is equivalent to assigning a librarian to a section other than ART. Neither of these actions will likely be desirable or permissible. 

We can prevent rows from migrating out of an updateable view by using the WITH CHECK OPTION clause when creating a view. For example, if we create the ART_LIBRARIAN view using the 

    CREATE VIEW ART_LIBRARIAN

    AS  SELECT  *

        FROM    LIBRARIAN

        WHERE   Section = 3

    WITH CHECK OPTION;

both the above UPDATE and INSERT commands will be rejected. That is, the WITH CHECK OPTION will prevent any INSERT or UPDATE command on a view that will cause row migration. 

For view hierarchies, we can use the options: WITH LOCAL CHECK OPTION and WITH CASCADE CHECK OPTION (the default one). If the WITH LOCAL CHECK OPTION is specified, then a row insert or an update on this view, or on any view derived from this view, will all be rejected, if the WITH LOCAL CHECK OPTION does not cause the row to migrate out of all the views in the hierarchy. The default WITH CASCADE CHECK OPTION is similar to the WITH CHECK OPTION in that it prevents a row from migrating out of a view, and the views derived from this view, as a result of a row update or insert. 

Views as a Security Mechanism

Views may be used to provide a level of security and confidentiality in a database. Recall that a view is a single table derived from a set of defining tables. A view may be used to allow users access to only certain information in a set of tables. Consider a company database storing information about employees, company contributions to their retirement savings accounts and their performance evaluations. The SQL schema for each table is given below: 

Employee (ID, given_name, family_name, home_address, telephone_number, salary)
Retirement (deposit_date, employee_ID, contribution)
Performance (ID, date, review)
A clerk in the company is assigned the task of gathering salary and retirement account contributions for each employee to be used in a yearly audit. The clerk's supervisors believe that he should only be able to access an employee's name, salary, and retirement account activity for the year 2002 for the audit. This information may be made available to the employee using a view. The view can be created using: 

  
CREATE VIEW AUDIT_INFORMATION

    
AS  SELECT  given_name, family_name, salary, sum(contribution)

        FROM    employee e, retirement r

        WHERE  (e.ID=r.employee_ID) and (r.date > TO_DATE('2002/01/01', 'YYYY/MM/DD') 

 


and r.date < TO_DATE('2002/12/31', 'YYYY/MM/DD');

The proper access permissions must be set on the view such that the employee may only select data from it. The employee may then query the information for the audit by issuing the SQL Query: 



SELECT * FROM AUDIT_INFORMATION; 

The employee is now only about to access the necessary information for the audit. The remainder of an employee's information remains confidential. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.2.2 Integrity Constraints in SQL

· Transactions and Integrity Constraints 

· Specifying Syntactic Integrity Constraints 

· Naming and Altering the Constraints 

· Specifying Semantic Integrity Constraints 

· Check Constraints 

· Assertions 

· Triggers 

	Readings:
· Required: Connolly and Begg, sections 6.2 and 6.5 (in second edition, sections 14.2 and 14.3).


Transactions and Integrity Constraints

The notion of an integrity constraint is strongly related to the notion of a transaction. Recall that a transaction is a sequence of database statements that needs to execute atomically, as a whole, in order to maintain database consistency. Some integrity constraints are validated during the execution of a transaction and some at the time when the transaction completes its execution. We call the time during which integrity constraints are validated at the end—the commit or commitment time. A transaction is committed if it satisfies all the integrity constraints. If a transaction violates an integrity constraint or it cannot complete successfully, the DBMS aborts and rollbacks the transaction. That is, the system reverses the transaction whenever it is necessary. 

In order for the system to know the boundaries of the transaction, we must declare each transaction by using: 

· SET TRANSACTION READ WRITE (in some implementations, DECLARE TRANSACTION READ WRITE). 

· SET TRANSACTION READ ONLY (or DECLARE TRANSACTION READ ONLY). 

The directives READ WRITE and READ ONLY are used to provide a hint to the system that the transaction is an update or a read-only transaction, respectively. The system uses such hints to optimize the execution strategy for the transaction. The default is READ WRITE, i.e., an update transaction. 

If a transaction is not explicitly declared, the system implicitly declares an update transaction at the beginning of an SQL statement and expects the user to specify its termination condition. A termination condition can be specified using the COMMIT and ROLLBACK statements. 

· COMMIT is used to request that the updates of a transaction be made permanent to the database. 

· ROLLBACK is used to discard the updates of a transaction. Any changes to the database are reversed back to the last transaction commit. 

Specifying Syntactic Integrity Constraints

When creating a table we specified the domain for each column, the primary and foreign keys, and some alternate keys. All these are examples of syntactic constraints. SQL allows us to specify additional syntactic constraints as well as the time of their evaluation and enforcement. 

The time of constraints enforcement can be 

· DEFERRABLE until commit time. 

· NOT DEFERRABLE, or immediate. 

Except for domain constraints, which immediately evaluate the correct data type of a value, all constraints can be specified as either DEFERRABLE or NOT DEFERRABLE, with DEFERRABLE as the default. 

Evaluating constraints in a deferrable mode provides us with more flexibility. During the execution of the transaction, we do not have to worry about an INSERT operation violating referential integrity. In fact, this is the only way to insert rows in tables with a circular referential integrity constraint. An insert into each table must be executed together within a single transaction in order to establish referential integrity. 

As an example, consider the LIBRARIAN and SECTION tables, which have a circular integrity constraint. 

  SET TRANSACTION READ WRITE;

  INSERT INTO SECTION

    VALUES (3, 'COOKING', '195-23-1245');

  INSERT INTO LIBRARIAN (SSN, Name, SECTION)

    VALUES ('195-23-1245', 'Lee Ha', 3);

  COMMIT;

Notice that after the first insert the referential integrity does not hold, because the specified head librarian is not a librarian in the LIBRARIAN table. If the referential integrity constraints were to be enforced immediately, then the first insert would fail and consequently the second one as well. 

Here is a complete list of constraints on columns. 

· NOT NULL constraint specifies the entity constraint. A column cannot accept a NULL value. 

· DEFAULT value allows the specification of default value without the DEFAULT-clause; the default value is NULL. 

· PRIMARY KEY (column-list) specifies the primary key. 

· UNIQUE (column-list) allows the specification of an alternate key. 

· FOREIGN KEY (column-list) REFERENCES TABLE (key) allows the specification of referential integrity. It also allows the specification of actions to be taken if referential integrity is violated during a delete or an update. 

If a referential integrity constraint is violated, SQL supports three referentially triggered actions. These actions specify the new value of the foreign key when the referred primary key is changed. 

· SET NULL stores NULL in the foreign key. 

· SET DEFAULT stores the default value in the foreign key. 

· CASCADE propagates the updated values to the foreign key. 

SQL allows these actions to be specified separately for delete and update operations, using the triggering conditions: ON DELETE and ON UPDATE. 

As an example, let us rewrite the in-line foreign key constraint (it is named Section, in this case) in LIBRARIAN as a separate and complete foreign key constraint. 

   Foreign Key (Section) References SECTION(SectNo)

     On Delete SET DEFAULT On Update CASCADE DEFERRABLE;

In the case of someone closing a section and removing its corresponding row from SECTION, the librarians' rows working in that section will be automatically modified, assigning the default value (NULL in this case) to their Section column. In the case of someone modifying the SectNo, for example, from 3 to 7, 7 will be automatically cascaded and assigned to the Section columns that reference this section and have the old value 3. 

This example illustrates the flexibility as well as readability of specifying constraints separately as opposed to specifying them in-line as described in 2.1. Next, we will discuss how we can further enhance maintainability by naming and modifying the constraints. 

Naming and Altering the Constraints

By being able to name the constraints, we can subsequently identify and modify them without having to modify the entire table within which they were defined. 

We can use the keyword CONSTRAINT to name a constraint, as we illustrate below. 

    CREATE DOMAIN gender_dom  AS  char(1)

           CONSTRAINT bad_gender_dom_value

           CHECK (VALUE IN ( 'F', 'f', 'M', 'm' ));
    CREATE TABLE BOOK

    ( Book_Id          NUMERIC(6)  NOT NULL, 

      Edition          NUMERIC(3)  NOT NULL, 

      BorrowerMemNo    NUMERIC(4), 

      BorrowDueDate    DATE, 

      CallNumber       VARCHAR(8) NOT NULL, 

      LibCheck         ssn_dom,

      CONSTRAINT Book_PK 

        PRIMARY KEY (Book_Id),

      CONSTRAINT Book_FK1

        FOREIGN KEY (BorrowerMemNo) REFERENCES MEMBER(MemNo),

      CONSTRAINT Book_FK2

        FOREIGN KEY (CallNumber) REFERENCES TITLE(CallNumber),

      CONSTRAINT Book_FK3

        FOREIGN KEY (LibCheck) REFERENCES LIBRARIAN(SSN)

    );

A named constraint in a table can be modified using the ALTER TABLE and the keyword CONSTRAINT. For example, we can add a new, alternate key constraint to SECTION with the statement 

    ALTER TABLE SECTION

     ADD CONSTRAINT CONSTRAINT section_AK

       UNIQUE(Name);

Note the need for the two CONSTRAINT keywords; the first one is part of the ADD CONSTRAINT, whereas the second is part of the new constraint to be added, and names the new constraint. To remove this constraint, we can simply issue the statement: 

     ALTER TABLE SECTION

      DROP CONSTRAINT section_AK.

Specifying Semantic Integrity Constraints

SQL DDL provides three constructs for specifying semantic integrity constraints: Checks, Assertions, and Triggers. We have already used the CHECK clause, which, unlike assertions and triggers, is implemented in all DBMSs. 

A constraint is a predicate that must be satisfied, and it can be expressed as a condition over multiple tables similarly to the way in which the WHERE-clause of a query using EXIST and NOT EXIST is expressed. 

Check Constraints

We have seen that CHECK prohibits an operation on a table that would violate the constraint. Let us express two integrity constraints on the SECTION table that was evolved to include a Budget column. We will name the first constraint section_budget_IC1 and the second section_budget_IC2. 

   CREATE TABLE SECTION

   (

      SectNo   sectno_dom,

      Name     section_dom,

      HeadSSN  ssn_dom,

      Budget   budget_dom,
      CONSTRAINT section_PK

        PRIMARY KEY (SectNo),

      CONSTRAINT section_FK

        FOREIGN KEY (HeadSSN) REFERENCES LIBRARIAN(SSN), 
      CONSTRAINT section_budget_IC1

        CHECK ((Budget >= 0) AND (Budget IS NOT NULL)),
      CONSTRAINT section_budget_IC2

        CHECK (NOT EXISTS (SELECT * FROM SECTION s

           WHERE budget < (SELECT SUM (Salary) 

                              FROM LIBRARIAN

                              WHERE LIBRARIAN.SECTION = s.SectNo)))

   );

The section_budget_IC1 constraint specifies that the Budget column cannot be negative and cannot be NULL. 

The section_budget_IC2 constraint is an example of a constraint that involves another table. It states that the budget in SECTION cannot be less than the sum of the salaries of the librarians who work in that section. Both this and section_budget_IC1 will be evaluated when a transaction that is updating the Budget, or inserting a new row in SECTION, attempts to commit. 

Assertions

Similar to CHECK, an assertion prohibits an action that would violate a specified constraint. However, unlike CHECK, it is evaluated every time a table involved in the constraint is modified. In this sense, CHECKs can be thought of as local constraints, and assertions as global constraints. 

An assertion is specified using the CREATE ASSERTION command. As an example, consider the constraint that we have seen above when discussing CHECK constraints: that the budget in SECTION cannot be less than the sum of the salaries of the librarians who work in that section. The same constraint expressed as an ASSERTION is given below. 

CREATE ASSERTION  budget_constraint

CHECK (NOT EXISTS (SELECT * FROM SECTION

           WHERE budget < ( SELECT SUM (Salary) FROM LIBRARIAN)));

When an assertion is not needed any longer, it can be removed, using the DROP ASSERTION command: 


  DROP ASSERTION budget_constraint;
Triggers

Although triggers are supported by several DBMSs, SQL2 has not fully defined them. Triggers are expected to be defined fully in SQL3. 

A trigger is specified using the DEFINE TRIGGER command, and it consists of two parts: a condition and an action. The action is executed when the condition becomes true. The condition specifies the time, and the events that will trigger the action. The time can specify before or after a particular event. An event could be one of the modification operations: INSERT, DELETE, or UPDATE. 

The general form of DEFINE Trigger is 

    DEFINE TRIGGER  trigger-name

                    time events

                ON  list-of-tables

              WHEN  Predicate

                action-name

An action could be, for example, a ROLLBACK, a DELETE, a transaction with multiple updates, a stored procedure (as in our example below), and so on. 

Let us express the same constraint we used above as a trigger: the salary of a librarian must not be greater than the salary of his or her head librarian. 

 DEFINE TRIGGER  librarian_salary_trigger

   after UPDATE of Salary

   ON LIBRARIAN

   WHEN (EXISTS (SELECT * FROM LIBRARIAN L, LIBRARIAN H, SECTION S

         WHERE  L.Salary > H.Salary AND L.Section = S.SectNo

                AND S.HeadSSN = H.SSN and L.SSN <> H.SSN))

   inform_director (L.SSN,HeadSSN);

We assumed that inform_director() is a procedure stored in the database and can be called by the DBMS. Its arguments are the SSNs of the librarian and the head librarian and it sends an email to the director of the library. When a trigger is not needed any longer, it can be removed using the DROP TRIGGER command: 


  DROP TRIGGER librarian_salary_trigger;
In conclusion, note the difference between assert and trigger in the condition. A trigger allows an action that may violate a constraint and hence it tests for the presence of the violation. An assertion does not permit a violation and hence it typically tests for its absence. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.2.3 Access Control

· The GRANT Command 

· The REVOKE Command 

	Readings:
· Required: Connolly and Begg, section 6.6 (in second edition, section 14.4).


All DBMS vendors provide primitives for the database administrator (DBA) to use to authenticate users: for example, CREATE USER user-name IDENTIFIED BY password. They also provide primitives for the DBA to create user accounts, a feature that grants the users the privilege of creating their own databases by issuing the CREATE SCHEMA command. 

Although different DBMS vendors support different levels of access control, they all support the two basic access control SQL commands: GRANT and REVOKE. 

The GRANT Command

The owner of a table can use the GRANT command to give other DBMS users access privileges (i.e., permission) to the table. Considered from the point of view of access control, each of the possible data manipulations also represents an access privilege: SELECT, DELETE, INSERT, UPDATE, REFERENCE, and USAGE. Except for USAGE, these privileges are all applicable to tables. USAGE is the privilege applicable to the other database objects, such as domains. 

REFERENCE is associated with the CREATE TABLE command and represents the ability to refer to another table in a FOREIGN KEY definition. INSERT, UPDATE, and REFERENCE support finer degrees of access control, allowing the specification of columns on which the corresponding privilege is applicable. Consider, for example, UPDATE (Salary, SuperSSN) on the LIBRARIAN table, and REFERENCE (SectNo) on the SECTION table. If you do not specify a column name, then the privilege is granted to every column of the table. 

The general form of the GRANT statement is 

    GRANT privilege list | ALL PRIVILEGES

    ON    object_names

    TO    user-name list | PUBLIC

    [WITH GRANT OPTION]

The privilege list consists of one or more privileges separated by commas. ALL PRIVILEGES is shorthand for all six of the privileges. PUBLIC is also shorthand that can be used to grant privileges to current and future DBMS users. On the other hand, the user-name list is a list of currently authorized DBMS users, separated by commas. 

By default, users receiving a privilege cannot share it with other users. The WITH GRANT OPTION clause represents the privilege of granting a further privilege. We can use the WITH GRANT OPTION to specify that the users on the user-name list are allowed to grant the privileges on the privilege list to other users. 

The following simple example gives to all the users the privilege to search the TITLE Table. 

  GRANT SELECT

  ON    TITLES

  TO    PUBLIC;

The following example gives to the users identified as Director and Jose the privileges SELECT, INSERT, and UPDATE on the columns Salary and SuperSSN of the LIBRARIAN table, and it gives them the grant privilege as well. 

  GRANT SELECT, INSERT, UPDATE (Salary, SuperSSN)

  ON    LIBRARIAN

  TO    Director, Jose

  WITH GRANT OPTION;

Some systems allow the creation of user groups in the form of roles and the granting of privileges to roles. This is similar to the concept of the PUBLIC keyword, in the sense that whatever user acquires a role, currently or in the future, this user is automatically granted all the privileges associated with that role. Note that the roles option is not part of the SQL2 standard. 

The following example creates the head librarian's role and grants it all the privileges on the SECTION table. 

   CREATE ROLE head-librarians;
   GRANT ALL PRIVILEGES

   ON    SECTION

   to head-librarians;

Users can be specified as head librarians as follows: 

  GRANT head-librarian TO Jose;

The REVOKE Command

The owner of a table can use the REVOKE command to remove privileges that were granted using the GRANT command. The format of the REVOKE command is very similar to that of the GRANT command. For example, we can revoke the INSERT and UPDATE (salary) privileges given to Jose, using the statement 

  REVOKE INSERT, UPDATE(Salary)

  ON     LIBRARIAN

  FROM   Jose;

Jose still retains the other privileges specified in the GRANT statement above. Jose was also given the privilege to grant his privileges to other users. If we would like to revoke the same privileges from all those users who subsequently got the privileges from Jose, we can so specify using the CASCADE option: 

  REVOKE INSERT, UPDATE(Salary)

  ON     LIBRARIAN

  FROM   Jose

  CASCADE;

The other optional clause of REVOKE is RESTRICT. We can use RESTRICT to specify that a granted privilege cannot be revoked if it has been passed on to other users. 

It should be pointed out that if a user is granted the same privilege by two other independent users, then the receiving user does not lose the privilege if it is revoked by one of the granting users. In order for the receiving user to lose the privilege, both granting users need to revoke it. 

Finally, the PUBLIC and ALL PRIVILEGES shorthands can be used in a REVOKE statement as well. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.2.4 Embedded SQL

	Readings:
· Required: Connolly and Begg, sections E.1.1 and E.2 (in third edition, sections 21.1.1, 21.2.1, and 21.2.2; in second edition, sections 14.5.1, 14.5.7, and 14.6.1). 


So far, we have discussed SQL DML as an interactive language to manipulate data in a database. SQL is a data language that we can use to write our application programs and their interfaces, and not a general-purpose programming language like C/C++, Visual Basic, and Java. Also different from C/C++, Visual Basic, and Java, which are all compiled, SQL is interpreted by the system. For this reason, SQL is typically used in conjunction with a general programming language, which is called the host language. SQL statements can be embedded in host language statements by enclosing them between "&SQL(" and ")"; between "EXEC SQL" and "END-EXEC"; or between "EXEC SQL" and ";". This technique of inserting SQL statements inside host language statements is sometimes called a Statement-Level Interface. 

There are two ways to embed SQL commands in a host language: static SQL and dynamic SQL. 

· Static SQL allows complete SQL statements to be inserted in a program, statements that are translated into DBMS calls at the compile time of the program. Consider as an example the SQL statement that deletes all rows from MEMBER corresponding to members whose first name is JoXi: 

·      EXEC SQL DELETE FROM MEMBER

·            WHERE Fname = 'JoXi';

The arguments used in an SQL statement do not have to be constants as they are in our above example. Data can be passed between the host language and the SQL commands through the use of program variables. Program variables can be used within an SQL command by prefixing them with the ':' sign. In a C/C++ program, for example, the above SQL statements can be re-written to prompt for the first name as follows: 

    char mem_name[20];

    cout << "Please Enter Member First Name to be deleted" << endl;

    cin >> (char *) mem_name;

    EXEC SQL DELETE FROM MEMBER

         WHERE Fname = : mem_name;

Because static embedded SQL is compiled into an executable program, it executes faster than interactive SQL, which is interpreted at the execution time. 

· Dynamic SQL allows the creation of new SQL statements during the execution time of a program. The statements are passed to DBMS in the form of a string to be interpreted and executed. Using the above example, we can build the SQL statement string dynamically: 

·     char mem_name[20];

·     char sqltxt[100];

·     cout << "Please Enter Member First Name to be deleted" << endl;

·     cin >> (char *) mem_name;

·     strcpy("DELETE FROM MEMBER WHERE id = '", sqltxt);

·     strcat(sqltxt, mem_name);

·     strcat(sqltxt,"'");

·     EXEC SQL EXECUTE IMMEDIATE : sqltxt;

Above, we could have prompted for the SQL statement and read it in as we have done with the first name. 

Clearly, dynamic SQL provides more flexibility and extensibility than static SQL in coping with situations that cannot be foreseen in detail at the time of program development. However, it is slower than static SQL because the new SQL statements need to be interpreted at execution time in a fashion similar to interactive SQL. 

Both static and dynamic SQL statements can be used together and embedded in the same program whose general structure includes the following: 

1. Define host data structures. 

2. Open database using EXEC SQL CONNECT dbname IDENTIFIED BY password. 

3. Start a transaction using EXEC SQL SET TRANSACTION command. 

4. Retrieve data using EXEC SQL SELECT. 

5. Write data back to the database using EXEC SQL UPDATE, or INSERT, or DELETE. 

6. Terminate the transaction using either EXEC SQL COMMIT or EXEC SQL ROLLBACK. 

7. Close database using EXEC SQL DISCONNECT. 

Static and dynamic SQL support their own versions of SQL commands, some of which, except for some additional clauses, are very similar to the interactive SQL commands. The additional clauses are typically used to specify the program variables into which a retrieved row is to be stored. For more in-depth discussion on embedded SQL, see sections E.1 and E.2 of Connolly and Begg (sections 21.1 and 21.2 in third edition; sections 14.5 and 14.6 in second edition). 

In 2.3.4 JDBC (Java DataBase Connectivity) we will discuss an alternative approach to embedded SQL that is based on an Application Programming Interface (API) (also called call-level interface)—namely, JDBC (Java DataBase Connectivity). JDBC is designed by Sun Microsystems to support access to databases through the Java language. In short, in the API approach, programmers are provided with a set of library functions for connecting and accessing a database. Another instance of the API approach for the C/C++ and Visual Basic is the ODBC (Open Database Connectivity standard) designed by Microsoft. In fact, JDBC is modeled after ODBC. For more information on ODBC, see section E.3 of Connolly and Begg (section 21.3 in third edition; section 14.8 in second edition). 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.3 Web Databases 

The recent prehistory of Web database applications might begin with a database system, such as we have been describing, all centralized on a single mainframe computer. Next, the client-server architecture, a two-tier architecture, in which the server is a centralized point-of-service provider for data and security services, while multiple clients execute the basic application programs that issue transactions, process data, and handle data presentation was developed. Our history would then conclude (roughly) at the present, with Web database applications. The Web has made possible exciting new opportunities, even as it has necessitated new requirements related especially to security concerns. This module describes Web database applications, an introduction to HTTP and HTML Forms, the Microsoft Active Platform, the Application Program Interface (API) called Java DataBase Connectivity (JDBC, Java's equivalent to embedded SQL statements), an exposition of Java Web technologies, and an architecture for managing Web database projects. 

· 2.3.1Web Database Applications
· 2.3.2 HTTP and HTML Forms
· 2.3.3 Microsoft Active Platform
· 2.3.4 JDBC (Java Database Connectivity)
· 2.3.5 Java Servlets
· 2.3.6 Java Server Pages
· 2.3.7 JavaBeans
· 2.3.8 MVC Architecture
Assessments

· Exercise 4
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.3.1 Web Database Applications

· Two-Tier Client-Server Architecture
· Three-Tier Client-Server Architecture
· Four-Tier Client-Server Architecture
· Java-Based Web Applications
	Readings:
· Required: Connolly and Begg, sections 29.2.5 - 29.2.8 and 29.3 - 29.6 (in third edition, sections 28.3 - 28.7 except 28.7.1; in second edition, sections 24.2 - 24.6).


Two-Tier Client-Server Architecture

In the 1960s and 1970s, business computing was performed on large (often room-sized) mainframe computers. These mainframe computers executed both the database and the applications that accessed the database. In the 1980s, advances in local area networking and in workstations with graphical user interface capabilities led to the development of client-server architectures. In this two-tier architecture, the server is a centralized provider for data and security services to the clients. Clients are primarily responsible for executing the basic application programs that issue data requests to the server, process the data, and handle the presentation of data.

[image: image8.png]Two-Tier Client Server

Client

Server

tetoe

Busingss g and
appleaton programs

Database Server:
- Data managamert

Transaction
Proseccing





Client-server architecture offers both operational and performance advantages. First, it better accommodates the decentralized business environment; business logic resides and executes where it is more appropriate: on the end-users' desktops. Enterprise-wide data is integrated and managed by the server. Second, it offers a cost effective solution that allows for increased performance due to load balancing and better resource utilization on both desktop and server computers, and scalability and growth to more clients and new client application software. However, the data services and connectivity offered by these traditional client-server architectures depended upon the vendor and required costly support from the vendor. 

Three-Tier Client-Server Architecture

The two-tier client-server architecture evolved into the three-tier client-server architecture when the need arose to support more complex applications. The three tiers are a "thin" client who runs only the user interface on the end-user computer, an application server that runs the business logic and processes the data, and a database server. The emergence of the World Wide Web in the 1990s demonstrates a common use of the three-tier client-server architecture. A Web browser used for data presentation with no prior configuration and minimum resource requirements serves as the thin client, a Web server, such as Apache, is the application server, which can query a database server. The World Wide Web has created a new business-computing environment. This new environment has created new opportunities for advanced database applications such as e-commerce systems. Using the Web for database applications provide new conveniences to the client and imposes new requirements on the server such as the need for users to access and query data securely, in single or multiple databases from anywhere, using any Web browser, and with no prior configuration at the user side. 

[image: image9.png]Three -Tier Client Server

Ciient || Application|{ DBMS
Server
[ —— JE—

Pragrams (o

P ransaction Prosssing




Initially, all Web pages were static. When two users requested the same Web page from a server, they each received the same information. Static pages are not well suited for e-commerce applications, as each user requires customized data, for example two users searching for books at an online library will need to see different results. Dynamic Web pages serve data tailored to each user's request. A DBMS can be used to store information that is later integrated with HTML to deliver dynamic content on demand. Generating dynamic content may be logically partitioned between processing the business logic of an application and displaying the processing's result. There are three mechanisms for generating dynamic content on the Web: CGI programs, Web server scripting, and four-tier application servers. 

The Common Gateway Interface (CGI) is a widely used method for activating programs at the server to handle client requests, which may involve accessing a database. CGI is a standard for interfacing applications with information servers, usually Web servers. Programs that use CGI may be written in any language, typically in C, C++, or Perl. A program using CGI is invoked when a client makes a request by either clicking a link or a button, or by loading a Web page. The Web server must start the program, which creates a new process in addition to the Web server's process. 

Despite its wide applicability, the CGI based approach has many disadvantages. First, it cannot support transactions that span multiple requests because CGI programs are like procedure calls that do not retain their state across invocations. Second, it is relatively inefficient and not scalable because each request spawns a new system process. Third, database connections cannot be pooled across multiple requests, requiring a new connection to the database to be opened for each request. 

CGI applications, however, can provide good application-logic performance. A program using CGI that is written in a compiled language like C or C++ does offer all of the execution-speed benefits of a compiled language. CGI programs also offers greater reliability in the form of address space protection to the Web server process. A failing CGI program will not cause the Web server to crash as well. 

Web server scripting, in contrast to CGI, places the burden of processing the application logic on the Web server. Typically, Web server applications, such as the Apache Web Server are enhanced with modules that allow calls to interpreted scripting languages including PHP, Perl, and Python. When a request arrives, the Web server loads the request file and scans it for programming language calls. These calls are passed through the appropriate programming language interpreter. The result is returned to the client.

Web server scripting has many advantages compared to CGI. First, each user-request to a scripted HTML page does not require the Web server to create a new process in addition to the Web server process. Second, the development time is much faster as one can intermingle code with HTML. HTML may be used to display the output of the business logic. Third, Web server scripting can allow database connection pooling. Once a database connection is made, it can be persisted in the Web server's memory for many client invocations. Fourth, Web server scripting does allow for easy session management on the part of the application developer. Some scripting languages, such as PHP, have special constructs that allow Web developers to use sessions. 

Web-server scripting, however, does not allow the address space protection that CGI programs offer. A crashing Web server script can potentially crash the entire Web server application. Thus, any current and future user can no longer request any content until the Web server is restarted. Web server scripting may also slow down the business logic of an application. The application logic is programmed using an interpreted scripting language, which will run slower than a compiled language. 

[image: image10.png]Four-Tier Application Server

Client

—| wen

Server

N\

Application
Server

i

Dams





Four-Tier Client-Server Architecture

Four tier application servers remove the burden of processing the business logic of an application from the Web server and place it on another process, the application server. When a request arrives for dynamic content, the Web server must be able to tell that it is for a resource that is served by the application server. The Web server forwards the request to the application server, which does all necessary processing and manages all connections to the DBMS. The application server returns the result of the request to the Web server, which returns a page to the user. 

The application server scenario has a number of advantages compared to Web server scripting. First, the business logic is processed outside the address space of the Web server. This protects the Web server from crashing due to a malicious or mal-formed request. Second, processing the request, which could potentially involve complex and time-consuming queries to a database, can be handled by another machine. This allows greater performance for those clients requesting static Web pages. Third, the application server can be written using a compiled language. This can potentially increase the performance of the business logic of an application. 

Four-tier application servers do share some of the advantages of Web-server scripting. Similar to Web-server scripting, four tier application servers can allow for easy session management. The application server can keep a session record for each client in its memory. When a user makes a request during a session, the user's cookie is presented to the Web server, which passes it to the application server. This cookie can then be used to identify a user's session. The application server approach also allows for database connection pooling. The application server can open a connection to the DBMS when it first starts and use it for all client requests. 

The four-tier application server also has a number of disadvantages. First, the development time for such an architecture can be much longer than Web-server scripting. Using this architecture requires developing all of the necessary communication mechanisms for the Web server and the application server to communicate in addition to writing the application server itself. 

The following table summarizes the characteristics of the various approaches to generating dynamic Web content. 

	Method
	DBMS Connection Pooling
	Address Space Protection
	Invocation Overhead
	Business Logic Speed
	Development Time
	Session State
	Distribution

	CGI
	Impossible
	Possible
	High
	Fast
	Moderate
	Difficult
	Three Tier

	Server Side Scripting
	Possible
	Not Possible
	Very Low
	Slow
	Fast
	Easy
	Three Tier

	Four Tier Application Server
	Possible
	Possible
	Low
	Can be fast
	Can be slow
	Can be easy
	Four Tier


Java-Based Web Applications

Recently there has also been an increasing interest in Java-based approaches due to the inherent properties of Java as a platform-independent, type-safe, and object-oriented programming language. Furthermore, Java supports a small footprint (i.e., has a small amount of compiled code) and its run-time environment, the Java Virtual Machine, provides secure program execution. Java can be used to generate Web page templates (Java Server Pages) and server applications (Servlets). 

Java Server Pages and Servlets must be run by a Servlet Container. A servlet container may be used as either of two approaches listed above. A servlet container, such as Apache Tomcat, can be run as a stand-alone Web server. In this regard, it may function as a three-tier application. A servlet container may also be run in addition to a Web server. When a request arrives for a Java Web application, the Web server forwards that request to the servlet container that could potentially be running on a machine separate from the Web server. The servlet container processes the request and generates a Web page, which is sent back to the Web server that returns the page to the client. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.3.2 HTTP and HTML Forms

· Introduction to HTTP 

· HTML Forms 

· GET and POST Parameters 

· HTTP Session Management 

Introduction to HTTP

HTTP stands for Hypertext Transfer Protocol. HTTP defines how a client (such as Internet Explorer or Netscape Navigator) requests a file from a Web server and how the file is transferred from the Web server to the Web client. Each time you request a Web page, say http://www.carnegietech.org, an HTTP request is made. 

Web servers respond to GET requests, which are plain strings of text sent to a server. Here is an example Get request:
    GET /path/file.html HTTP/1.0

    From: user@anotherdomain.com

    User-Agent: HTTPTool/1.0

    [blank line here]

HTML Forms

HTML forms provide a method for a Web client to send additional data entered into a Web page to a Web server. This data may be used for a variety of purposes including registering for an online service, signing a guestbook of Web site visitors, or entering ordering information at an online retailer. 

The <form>...</form> html tags denote the beginning and end of a form. The opening form tag typically allows the application developer to specify two things: the program to process the form at the server and the HTTP method to submit the form data. There are two methods: GET and POST. An example of such a tag that specifies form data is to be processed by myprogram using the POST method is:
    <form action="myprogram" method="post"> 
HTML form data may be processed on the server by any program that can accept parameters sent via HTTP. Typically, these programs are CGI programs written in C++, Perl or PHP, or Web applications written in PHP or Java.

A form may consist of many form elements. Each form element has a name. This name is analogous to the name of a variable in your favorite programming language. 

A form element can be any of the following types: 

· Text Input Boxes

Used to gather simple text input.

· Password Input Boxes

Used gather simple text input but displays all characters as *.

· Hidden Fields

Form elements that allow parameters to be stored within the form but are displayed in the Web browser.

· File Input 

Used to upload a file. A browse button is displayed automatically that opens a file browsing window.

· Radio Buttons

Sets of buttons, all with the same name, where only one of the set may be selected.

· Check Boxes

Boxes that may be checked or unchecked. Each element acts as an 'on/off' switch.

· Push Buttons

General buttons that can be used to trigger events. Push buttons have several types:

· Reset Buttons reset each form element to its default value. 

· Submit Buttons send the information in a form to a server.

· Images may be displayed as the submit button in a form.

· Text Areas

Multi-line text input boxes where users may enter multiple lines of text.

· Drop Down Menus

Multiple-choice menus where only one item may be selected at a time.

· Combo Boxes

Multiple-choice menus where more than one item may be selected at a time.

A sample html form that gathers a user’s first name, last name, and middle initial is given below. The maximum length of the middle initial is one character. The user is also presented with a button that submits the data and a reset button that clears all of the fields on the form. The data is sent to a CGI program named program.cgi. 

    <form action="program.cgi" method="POST">

    First Name <input type="text" name="first_name"><br>

    Last Name <input type="text" name="last_name"><br>

    Middle Initial <input type="text" name="middle_initial" maxlength="1" size="1"><br>

    <input type="submit" name="submit" value="Submit">

    <input type="reset" name="reset" value="Reset">

    </form>
The form above generates this Web page:

[image: image11.png]Sk 0D H Bewn Srean 3

Fire Name| —
Last Name| pa—
Middie il

Submi | Reset |

LT vy o

e





GET and POST Parameters

The above form used POST parameters. Recall that form data may be sent using either GET or POST. The main difference between GET and POST is how parameters are sent to the server. The GET method places the parameters in the URL. The POST method places the parameters at the end of the request to the Web server (see below). For example, suppose Vince was entered as the first name on the above form, Smith as the last name and S as the middle initial. If this form were sent using GET, the URL that you would see in the Web browser's address bar would look something like: 

http://www.example.com/path/program.cgi?first_name=Vince&last_name=Smith&middle_initial=S 

This request translated into the actual get request sent to www.example.com is: 
    GET /path/program.cgi?first_name=Vince&last_name=Smith&middle_initial=S HTTP/1.0

    From: user@anotherdomain.com

    User-Agent: HTTPTool/1.0

    [blank line here]
The POST method, on the other hand, places the parameters in the actual request body, not in the URL. Since the parameters are not sent in the URL, the user cannot see or manipulate them using a Web browser's address bar. The request itself is sent using a POST request, which is very similar to a GET request. The corresponding POST request for the above form would look like:
    POST /path/program.cgi HTTP/1.0

    From: user@anotherdomain.com

    User-Agent: HTTPTool/1.0

    Content-Type: application/x-www-form-urlencoded

    Content-Length: 32
    first_name=Vince&last_name=Smith&middle_initial=S
POST's advantage over GET is confidentiality. Consider a Web user who logs into his favorite Web-based email service from an internet café. To log in, the user must enter his username and password. At the café, there are many users close to one another. If the username and password were sent as GET parameters, then any user with wandering eyes may see his password encoded in the URL in the address bar of the Web browser. For this reasons, POST is the preferred method of data submission.

HTTP Session Management

It is often useful to relate a series of client-server interactions. These related interactions are known as sessions. The Web server keeps a record of client-server interactions for each session. Consider an online library. This library has a basket where users place books that they want to borrow. The user places books in his basket as he browses through the library's books. When the user is finished browsing, he checks all of the books out that he has placed in his basket. Sessions allow the Web server to remember a user's basket while he browses. Each user's basket is stored in the Web server's memory for the duration of a session. 

Sessions may be implemented using cookies. A cookie is a piece of information stored on the client machine. A cookie stored on a client machine typically stores a session id number. This session id number is sent to the server for each request. This id number is used by the Web server to differentiate two different sessions. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.3.3 Microsoft Active Platform

· Active Server Pages and Active Data Objects
· ASP.NET
	Readings:
· Required: Connolly and Begg, sections 29.3.2 and 29.8 (in third edition, sections 28.4.2 and 28.9; in second edition, sections 24.8.2 and 24.9).


The Microsoft Active Platform (ActiveX) is an open software architecture that supports the development of Web applications. In our discussion thus far on the integration of Web-DBMSs, we have referred to different languages and components of Microsoft Active Platform, such as JScript, VBScript, and ActiveX. The idea is that by using these languages and components, we can develop Active Desktops that execute as operating-system-independent clients, and Active Servers that support multi-tier applications such as the three-tier Web database applications discussed earlier. 

Active Desktop was introduced as part of Internet Explorer 3.0 but its components can be integrated with other applications. It is the evolution of the Component Object Model (COM) that has allowed functional object components to be created and plugged into any desktop application that needs their service. COM provides both a specification to define the interface of the component objects, and a binary-compatible implementation, packaged as a Dynamic Link Library (DLL). DCOM (Distributed COM) and COM+ are the other two steps in the evolution. These provide unified services to applications executing on different computers on the internet. These include database and data access services. 

Active Server Pages and Active Data Objects

Active Server's two core components are Active Server Pages (ASPs) and Active Data Objects (ADO). ASP is a programming model similar to CGI but based on scripting languages. As we discussed above, scripting languages eliminate some of the performance overheads of CGI by being executed within the Server as multiple-threads. ASP was introduced with the Microsoft Internet Information Server (IIS) 3.0, having as its default language Microsoft's VBScript. JScript is also supported by ASP. 

ASP scripts are stored in '.asp' files. When a link within a Web page pointing to an '.asp' is selected, the Web server passes the '.asp' file to ASP, which executes the script and generates an HTML document that is sent back to the browser. 

Active Data Objects is a programming extension of ASP to support database connectivity. It is based on ODBC, and resembles JDBC in providing services for: 

· Independently created objects 

· Batch updating 

· Querying and different cursor types 

· Support for stored procedures 

· Support for multiple record sets returned from queries, and for stored procedures 

Active Data Objects also resembles JDBC in having the following execution requirements: 

· High speed 

· Low memory overhead 

· Small footprint 

Appendix H.7 of Connolly and Begg third edition (appendix G.5 of the second edition) has an example of ASP and ADO. Note: Fourth edition does not have an example.

ASP.NET

ASP.NET is the Microsoft .NET framework for the Web. ASP.NET application files typically end with the '.aspx' or '.ascx' extensions. There are two major differences between ASP and ASP.NET. The first is that ASP.NET has full built-in support for all Microsoft .NET languages. Thus, an ASP.NET developer may program dynamic content in a Web page using any current or future Microsoft .NET language. Current Microsoft .NET languages include VB.NET, C#, C++ and JScript. This is in contrast to previous versions of ASP that only allowed the programmer to program dynamic content using VBScript and JScipt. The second difference is that ASP's server side code was interpreted, not compiled. ASP.NET's server side code is compiled. Compiled code runs faster than interpreted code and client requests are handled with much greater speed.

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.3.4 JDBC (Java DataBase Connectivity)

· Java and SQL 

· JDBC Drivers 

· Connecting to a Database 

· The Statement Class 

· The PreparedStatement Class 

· The ResultSet Class and Cursors 

· Databases and Result Metadata 

· Executing Transactions 

· Error Handling 

· The CallableStatement Class 

	Readings:
· Required: Connolly and Begg, section 29.7 (in third edition, section 28.8; in second edition, section 24.7).


Java and SQL

In our discussion on Embedded SQL, we mentioned the two approaches of including SQL in an application program to interact with a database, namely, Statement-Level Interface and Application Program Interface. Currently, Java supports both of these approaches. 

· JDBC (Java DataBase Connectivity) is an API that is part of the Java languages designed to access multiple DBMSs over the Web at different URLs. JDBC consists of a set of predefined classes whose methods provide the interface to the databases. In some respects, JDBC resembles dynamic SQL, in which SQL statements are passed in the form of strings. 

· SQLJ (not JSQL as stated in section 24.7.2 of the second edition of Connolly and Begg) is the ANSI standard for a statement-level SQL interface to Java. SQLJ is a dialect of the static SQL that combines the efficiency of the compiled static SQL with the ability to access multiple DBMSs through JDBC. 

JDBC Drivers

JDBC supports its own dialect of SQL. When an application program (Java applet) wishes to execute an SQL statement, it submits the statement to the JDBC driver manager. In turn, after checking for any errors, the JDBC manager passes the statement to the appropriate DBMS-specific driver for it to be translated into the SQL dialect supported by the DBMS. Afterwards, the DBMS-specific driver submits the statement to the DBMS for execution. 

There are four different implementation types of DBMS-specific driver: 

  Type 1: JDBC-ODBC bridge

This driver translates JDBC calls into ODBC calls.

  Type 2: JDBC-Gateway

This pure Java driver connects to a database middleware server that in turn interconnects multiple databases and performs any necessary translations.

  Type 3: Java JDBC Native Code

This partial Java driver converts JDBC calls into client API for the DBMS.

  Type 4: Pure Java JDBC

This driver connects directly to the DBMS.

In each case, a Java program can access any database using the JDBC API as long as a number of conditions are met. First, an appropriate, DBMS-specific driver must exist. Second, this driver must be loaded. Third, this driver must be registered with the driver manager. 

A driver can be loaded using the Class.forName(). But, before that, the program must import the Java.sql package that defines JDBC SQL dialect and methods. 

   import java.sql.*;
   Class.forName("jdbc.driver_name");

Connecting to a Database

Once a JDBC driver is loaded, the Connection class can be used to establish a connection with a database at a specific URL, with a specific user I.D. and password. 

  Connection dbcon = DriverManager.getConnection("URL","user_id","password");

When getConnection is called, the driver manager will select the appropriate driver from the previously loaded JDBC drivers and establish the database connection. If the connection is successful, it returns a Connection Object that is assigned to dbcon. 

A database connection can be closed by invoking the close method: dbcon.close(). 

The Statement Class

The Statement class is used to execute complete SQL statements without parameters. A Statement object is created by invoking the createStatement method on a previously established Connection object. 

  Statement st = dbcon.createStatement();

Once the Statement object st is created, then we can use the executeQuery method to execute a SELECT statement directly, and the executeUpdate method to execute an UPDATE, DELETE, INSERT, or DDL statement. (These are equivalent to the EXECUTE IMMEDIATE dynamic SQL statements.) 

Let us first consider an update: insert a new row in SECTION. 

   int nrows = st.executeUpdate("INSERT INTO SECTION 

                                  VALUES (5, 'Cooking', NULL");

This method returns the number of rows affected. In our example, if 1 is returned, it means that the new row was inserted. If the update returns a 0, it means that the insert failed. In general, an SQL statement can be stored in a string variable that can be used as the argument in the executeUpdate and executeQuery methods. 

The result of a query is stored in a ResultSet object that is declared when the query is executed. As an example, let us consider the query that lists the first and last names of librarians based on their first names. Further, let us make the program somewhat interactive—prompting for the first name to be used by using a method readString that, let's assume, we had written earlier. We will construct the query as a string using the concatenation operator + and store it in query1. 

   String fname = readString("Enter First Name: ");

   String query1 = "SELECT Fname, Lname FROM LIBRARIAN WHERE Fname = '" +

                    fname + "'";
   ResultSet res1 = st.executeQuery(query1);

As we will elaborate below, the rows in the ResultSet can be retrieved one at a time using a cursor. 

The PreparedStatement Class

Every time an execution method is invoked on a Statement object, the specified SQL statement has to be interpreted before it is executed. If the same SQL statement is executed many times, this becomes very costly. In such situations, we can use the PreparedStatement class to pre-compile the SQL statement. Furthermore, with the PreparedStatement class, we can create parameterized queries using parameters markers, indicated by question marks (?). (This is equivalent to the PREPARE, EXECUTE, and USING statements in dynamic SQL). 

Let us revisit our example query above and specify the fname value in the WHERE clause as a parameter. 

  PreparedStatement st2 = dbcon.prepareStatement (

                 "SELECT Fname, Lname FROM LIBRARIAN WHERE Fname = ?");

Before executing a prepared SQL statement, we can specify its parameter values by using the setXXX methods, where XXX specifies a valid SQL type. For example, setString(i,v) specifies a String (VARCHAR) argument and setInt(i,v) an integer argument. The two arguments of setXXX(i,v) methods are: i is an integer that specifies the argument to be assigned, and v is the value to be assigned. 

PreparedStatement is derived from Statement and inherits the Statement's methods of executeQuery and executeUpdate. However, executeQuery and executeUpdate on a PreparedStatement object have no arguments. Since our example is a query, we can use the executeQuery to execute our statement as we did above. 

   String fname = readString("Enter First Name: ");

   st2.setString(1, fname);

   ResultSet res2 = st2.executeQuery();

The ResultSet Class and Cursors

Cursors allow us to retrieve one row at a time from a resulting table in a ResultSet object. The notion of cursor in JDBC is the same as it is in embedded SQL, with the restriction that a cursor can only move forward. (In embedded SQL, a cursor can move in any direction and to any offset position, giving random access). A cursor can be moved using the next function, which also returns a 0 when there are no more rows in the ResultSet object; otherwise, it returns a 1. The name of the ResultSet object in our examples res and res2, for instance, is used to refer to the cursor. 

JDBC provides us with the getXXX methods for retrieving column values of the row to which the cursor is currently pointing. Similar to setXXX, XXX is a valid type. Consider getString and getInt. A column can be specified either by using its name or its index number (or position). Names are not case sensitive and columns are numbered starting from one. 

As an example, let us retrieve and display the rows from our sample query, using both methods of specifying a column. 

   String rfname, rlname;
   while (res2.next()) {

     rfname = res2.getString(Fname);

     rlname = res2.getString(2);

     System.out.print(rfname+" "+rlname);

   };

Two other useful ResultSet methods are as follows: 

· wasNULL can be used to check if the previously retrieved column value was NULL. It returns True if it is NULL; it returns False otherwise. 

· findColumn is used with a column's name to return the index of that column. 

A result set is destroyed and its resources deallocated using the close method, or res1.close. 

Note that JDBC uses the cursor mechanism provided by the DBMS. This means that if a DBMS supports position deletes and updates through a cursor, JDBC also supports position deletes and updates through a cursor. In such a case, new cursor names can be created using the getCursorName method on the ResultSet object. For more details on cursor position deletes, and updates, see section E.1.5 of Connolly and Begg (section 21.2.6 of third edition; section 14.6.4 of second edition). 

Databases and Result Metadata

Unlike embedded SQL, JDBC allows application programs to request schema information about a database (such as its tables) or about retrieved tables (such as field names, types, etc.) These two kinds of information are obtained using the getMetaData method, which stores them in a DatabaseMetaData object or a ResultSetMetaData object, respectively. 

This capability is particularly useful when the * is used in an SQL Statement. For example, 

   ResultSet res3 = st.executeQuery("SELECT * FROM MEMBERS");  

   ResultSetMetaData resmd = res3.getMetaData();

JDBC provides many methods with which to retrieve schema information from a ResultSetMetaData. For example, we can use getColumnCount() to find out the number of columns, getColumnName(index) to find the name of the indexed column, getColumnType(index) to find the type of the indexed column, and isNullable(index) to check if the indexed column permits NULL values. 

  int num_columns = resmd.getColumnCount();

  string column_name = resmd.getColumnCount(3);

Similarly, a database schema can be queried after retrieving it in a DatabaseMetaData object. 

   DatabaseMetaData dbmd = dbcon.getMetaData();

Executing Transactions

Each JDBC statement is treated as a separate transaction that is automatically committed when it completes successfully. In order to allow two or more statements to execute as a single transaction, we need to disable the autocommit mode on the Connection object: 

    dbcon.setautocommit(false);

A new transaction automatically starts when the previous one is either committed or rolled back. For instance: 

    dbcon.commit; or

    db.rollback;

Note that JDBC does not support global transactions. Global transactions consist of SQL statements against multiple databases that are either committed in all databases or are not committed in any of the databases. SQL statements against each database are treated as separate transactions and must be committed, or rolled back separately. 

Error Handling

JDBC provides us with the SQLException class to deal with errors. This is typically used with the Java try-catch construct, which includes a try-clause and a catch clause. Statements in the try-clause are executed. During their execution, an exception is thrown if an error occurs. The exception is caught and handled by the catch-clause. For example, 

  try {

        ResultSet res3 = st.executeQuery("SELECT * FROM MEMBERS");  

  } 

  catch (SQLException e1) {

     System.out.println("SQL Error");

     while (e1 != null) {

       System.out.println("Message = "+ e1.getMessage());

       System.out.println("SQLState = "+ e1.getSQLstate());

       System.out.println("SQLState = "+ e1.getErrorCode());

       e = e.getNextException();

     };

  };

In our example, we used all the methods defined on an SQLException object: getMessage(), which retrieves the error message; getSQLstate(), which retrieves the SQLState that identifies the exception according to the X/Open standard; and getErrorCode(), which retrieves the vendor specific error code. 

Since it is possible for more than one error to occur in a statement execution, we use the getNextException to retrieve the next exception from the SQLException object. Placing it within a loop, we can retrieve all errors. 

The CallableStatement Class

One of the new features of most DBMSs is stored procedures. These are user-defined procedures that are stored in the database along with the data. We have seen one use for them when defining foreign key constraints in 2.2. 

If a DBMS supports stored procedures, a stored procedure can be declared as a CallableStatement object using the prepareCall method. For example, assume that there is a procedure Overdue_Notice in our library database that expects two arguments. As for a prepared statement, we use question marks to denote the expected arguments and setXXX methods to specify their values. 

    CallableStatement sp = dbcon.prepereCall("{Overdue_Notice(?,?)}");

    sp.setInt(1, memno);

    sp.String(2, duedate);

The braces around the statement are required and indicate to the driver that it is not a regular SQL statement and needs to be handled differently. If the Overdue_Notice does not return a value then it can be executed as an update: 

    sp.executeUpdate();

Otherwise, it can be executed as a query: 

    ResultSet res4 = sp.executeQuery();

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.3.5 Java Servlets

· Introduction to Java Servlets 

· Compiling and Running Servlets 

· Processing HTML Forms with Servlets 

· Useful Servlet Objects 

Introduction to Java Servlets

Java servlets are Java applications that implement the functionality of a server. Servlets may use any classes and packages that are written for Java. Typically, servlets are used as server applications on the Web that handle client requests. Java Servlets must be run in a servlet container, such as Apache Tomcat.

The javax.servlet and javax.servlet.http packages provide the interfaces and classes to define servlets. All servlets must extend the HttpServlet class. Java servlets are an extension to the standard Java Development Kit (JDK). Before you begin working with servlets, you will need to either download the Java Servlet Development Kit from Java’s Web site or download a servlet container, such as Apache Tomcat. 

Servlets use the init() method to initialize. This method takes a single input parameter of type ServletConfig. This input argument is automatically supplied by the servlet container that executes the servlet. The init() method is a convenient method for setting up servlet properties such as pooled JDBC connections that are to be used by the servlet. The init() method is called exactly once by a servlet container when the servlet is first invoked. The init() method must complete successfully before a servlet can receive requests. For very simple servlets that require no initialization, the init() method may be omitted.

Consider the simple servlet below that prints the string Hello World to a Web browser:
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;
 public class ExampleServlet extends HttpServlet{

    public void doGet( HttpServletRequest request, HttpServletResponse response ){

      try

        {

          PrintWriter out = response.getWriter();

          String output;

          //Instruct the servlet to respond with html

          response.setContentType( "text/html" );

          output = "<html><body><head><title>Example Servlet</title></head>Hello World</body></html>";

          //Print the response to the Web browser.

          out.println( output );

          //Close the Printwriter object

          out.close();

       }

      catch( Exception e)

       { 

            //Print any exceptions to the system console.

           System.err.println( e.toString() );

       }

    }

}
Compiling and Running Servlets

To compile servlets, you will need to add servlet.jar to your classpath. This file contains the implementations for the javax.servlet and javax.servlet.http packages. 

Servlets must be invoked from a form in a Web page. The following HTML page invokes ExampleServlet.
  <html>

  <body>

  <h3>Click the button below to run the servlet!</h3><br>

  <form action="http://localhost:8080/examples/servlet/exampleServlet" method="get">

  <input type="submit" value="Click Me!">

  </form>

  </body>

  </html>
This is a screen capture of this Web page before the button was pushed:

[image: image12.png]3 & Qo Glrerotes 3|
Click the button below to run the servlet!

o I T —





This is a screen capture after the button was pushed:

[image: image13.png]o I T —





Recall that html forms may be sent to programs for processing using either the POST or the GET method. The form called the exampleServlet servlet using a GET request. This GET request was handled by exampleServlet's doGet() method. In the doGet() method, a PrintWriter object was created to send I/O back to the client using the HttpResponse object. This text was written back to the Web browser. The Web browser only received the Web page <html><body>Hello World</body></html>. Try running the example and viewing the source in a Web browser yourself. 

Processing HTML Forms with Servlets

Servlets allow HTML forms to be processed using the Java language. Parameters passed using GET may be handled in the doGet() method and parameters passed using POST may be handled in the doPost() method. The parameters sent in forms may be accessed in servlets using the getParameter() method of the HttpServletRequest object. This method takes a string parameter representing the name of the parameter to be loaded. Consider an extension to the previous example where a user must enter his name into the form and the servlet prints out this name instead of World after Hello. The HTML form to perform this action is:
  <html>

  <body>

  <h3>Click the button below to run the servlet!</h3><br>

  <form action="http://localhost:8080/examples/servlet/exampleServlet" method="get">

  <input type="text" name="myname">

  <input type="submit" value="Click Me!">

  </form>

  </body>

  </html>
The servlet code to process this form is: 
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

 public class exampleServlet extends HttpServlet{

    public void doGet( HttpServletRequest request, HttpServletResponse response ){

      try

       {

         PrintWriter out=response.getWriter();

         //Servlet is to get the myname parameter from the form.

         String name = request.getParameter( "myname" );

         String output;

         //The servlet will respond with html.

         response.setContentType( "text/html" );

         output = new String( "<html><body>Hello " + name + "</body></html>"  );

         out.println( output );

         out.close();

       }

      catch( Exception e)

       { 

         System.err.println( e.toString() );

       }

  }

}
Try running this servlet. 

Useful Servlet Objects

Servlets have a number of interfaces and objects that are useful for programmers. These objects are used to allow the servlet to communicate with the servlet container, store information about sessions, and store information about requests and responses. These objects are also used to store JavaBeans (see 2.3.7 JavaBeans). These objects are:

· ServletContext is an interface that allows a servlet to communicate with a servlet container. The ServletContext object has a number of useful methods including: 

· public Object getAttribute( String attributename ) that returns a copy of an object stored in the ServletContext bound to the identifier attributename. NULL is returned if the attribute does not exist. 

· public void setAttribute( String name, Object object ) that stores an object in the ServletContext bound to the identifier name.

· HttpSession is an interface that provides a way to identify a user across multiple page requests to a Web site and to store information about that user's requests. The HttpSession interface has a number of useful methods including: 

· public Object getAttribute( String attributename ) that returns a copy of an object stored in the HttpSession bound to the identifier attributename. NULL is returned if the attribute does not exist. 

· public void setAttribute( String name, Object object ) that stores an object in the HttpSession bound to the identifier name.

· public void invalidate() that invalidates a session and unbinds any objects bound to it.

· HttpServletRequest is an interface that represents HTTP client requests. The HttpServletRequest has a number of useful methods including: 

· public HttpSession getSession() that returns the HttpSession for this request if one exists. If one does not, a new HttpSession object is created.

· public String getParamter( String paramname ) that returns the HTTP parameter with name paramname if one exists. NULL is returned if a parameter with this name does not exist.

· HttpServletResponse is an interface that represents an HTTP response. The HttpServletResponse has a number of useful methods including: 

· public void sendRedirect( String location ) that redirects a client to a new Web page specified by location.

· public void addCookie( Cookie cookie ) that adds a cookie to a servlet's response.

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.3.6 Java Server Pages

· Introduction to Java Server Pages 

· Java Server Page Tags 

· Displaying Output with Java Server Pages 

· A Java Server Page That Queries a Database 

· Java Server Pages and Servlets 

Introduction to Java Server Pages

Java Server Pages (JSP) are Web page templates that include embedded Java statements. When served from a servlet container, such as Apache Tomcat, the output of the embedded Java statements are sent to the Web browser inline with the surrounding HTML. In fact, Java Server Pages are compiled by a Java-enabled Web server into servlets. These servlets are then processed by the Web server. 

The power of JSPs comes from the fact that Java code may be combined with static HTML tags to create dynamic content. Java is used in a JSP to control the presentation of a page. Web application developers can use loops, conditionals and other standard Java constructs to control the manner in which data is presented in a Web page. 

Java Server Page Tags

A set of special tags are used to tell the Java enabled Web server where the Java statements begin and end. When requested, the Web server scans the JSP and determines where the Java statements begin and end. These statements are sent to the JSP engine that compiles and executes the Java statements and builds the HTML page.

[image: image14.png]Browser

Response

eb Server
5P Engine

Template
5P Page

HTML Page





Figure 1: A JSP Request and Response

Java Server Pages support three types of tags in addition to static html tags:

· Scripting elements (scriptlets). Scriptlets are portions of Java code that are included inline with the html code. This code is compiled into the resulting servlet by the Web server. Scriptlets are started using the <% delimiter and ended using the %> character delimiter. For example, consider a simple Java Server Page:

<html>
<body>
<% out.println( new java.util.Date() ); %>
</body>
</html>
This JSP reports the current date and time at the Web server using the java.util.Date class. The out.println() function is used to print output to the Web browser from the JSP. When this JSP is requested by a client, it is processed by the Web server and the result is returned to client as HTML. The static html returned to the client might be:

<html>
<body>
WED Apr 2 9:43:31 EST 2004
</body>
</html>
· Directives. Directives control how the JSP engine compiles a JSP. Directives are started using the <%@ tag and ended using the %> tag. Typically, directives are used to instruct the JSP engine to import a Java package for use in a page, such as java.util. This is called a page directive because it gives instructions to the JSP engine for processing a page. Let us modify our simple JSP to include directives.
<%@ page import="java.util.*" %>
<html>
<body>
<% out.println( new Date() ); %>
</body>
</html>
· Actions. Action tags allow Java Server Pages to use existing components. In particular, JavaBeans are used in a Java Server Page using action tags. Action tags are started with the <jsp:action_name and ended with the /> tag. An example of an action tag is to use a session scoped JavaBean with name myPerson which is an object of class Person is: <jsp:useBean id="myPerson" scope="session" class="Person" />. Extending our simple JSP to use session scoped JavaBeans: 
<jsp:useBean id="myPerson" scope="session" class="Person" />
<html>
<body>
<% myPerson.setName( "Vince" );
out.println( myPerson.getName() ); 
%>
</body>
</html>
The output of this JSP is:
<html>
<body>
Vince
</body>
</html>
Displaying output with Java Server Pages

Output may be displayed two ways using a JSP. The first method is very similar to displaying output with a Java console application. Remember that in a Java console application the System.out.println() command is used to display text in a console by writing data to the console's standard output buffer. Using a JSP, text may be displayed in a Web browser using the out.println() function. This function uses the out object implicit to every JSP to display strings of text. This means that if an HTML tag is encountered in the string, for example <b> … </b>, it is treated as HTML. So, if out.println( "<b>Hello World</b>") were in a JSP, the Web browser would displays Hello World. The second method allows strings to be displayed using scriptlet tags without out.println statements. The "=" operator must precede the string that is to be displayed. For example, consider the JSP given below:
    <jsp:useBean id="myPerson" scope="session" class="Person" />

    <html>

    <body>

    <%myPerson.setName( "Vince" ); %>

    <%=myPerson.getName()%>

    </body>

    </html>
The output of this JSP is:
    <html>

    <body>

    Vince

    </body>

    </html>
A Java Server Page That Queries a Database

Let us consider, once again, an online library. The library would like to display the table of books that are currently available. This table may look like:
	BookId
	Title
	Status

	1
	Core JSP
	Available

	2
	SQL Standard
	Checked Out

	3
	Core Servlets
	Available


The logic needed to construct this table consists of inserting data gathered from a SQL query into an HTML table. Recall that any legal Java statement may be used in a JSP to control the presentation of HTML. This includes JDBC calls to a database. A JSP is a natural choice for generating such a table as JDBC may be used to query the database of books and dynamically build a Web page that is sent back to the client's Web browser.

The code below is a JSP that displays the book table above. 


<%@ page import="java.sql.*, java.util.*" %>

<html><body>

<%

           String URL = "jdbc:postgresql:librarydb"
           Class.forName("org.postgresql.Driver");
           Connection conn = DriverManager.getConnection( URL, username, password );
           Statement stmt = conn.createStatement();
           ResultSet rset = stmt.executeQuery( "Select BookID, Title, Status from books"); 


%>

<table><tr><td>BookId</td><td>Title</td><td>Status</td></tr>

<% while(rset.next()){%>


         <tr><td>

              <%=rset.getInt("BookID")%>

            </td>

            <td>

              <%=rset.getString("Title")%>

            </td>

            <td>

              <%=rset.getString("Status")%>

            </td>

         </tr>

<%}%>

</table>

</body>

</html>
This code results in the following HTML page being generated: 

<html><body>

<table><tr><td>BookId</td><td>Title</td><td>Status</td></tr>

<tr><td>

         1

        </td>

        <td>

         Core JSP

        </td>

        <td>

         Available

        </td>

        </tr>

        <tr><td>

         2

        </td>

        <td>

         SQL Standard

        </td>

        <td>

         Checked out

        </td>

        </tr>
        <tr><td>

         3

        </td>

        <td>

         Core Servlets


</td>

        <td>

         Available

        </td>

        </tr>

</table>

</body>

</html>

Java Server Pages and Servlets

A servlet may forward the response to a request to a JSP. Forwarding brings a user to a new resource. This is particularly useful if a servlet is being used to process an HTML form and this processing generates some output that must be displayed. Recall that a JSP is actually compiled into a servlet. This means that a JSP can use the request.getAttribute() and request.getParameter() functions to load data from the request object. This is particularly useful when you want to pass information from a servlet to a JSP. Consider a scenario from the online library where new users register online. Any errors are to be forwarded to a standard library error page. A message must also be displayed to denote a successful registration. This type of scenario may be implemented with an HTML form, a servlet, and two JSPs. A new user registers by filling out an online form. When the user submits the information to the server, the servlet that processes the form determines whether the submitted data contained errors. If there were errors, the servlet forwards those errors to a special JSP used to display errors. If the registration was successful and the information was correctly inserted into the library database, the user is presented with a registration success page that prints a thank you message and the user's username. The form to retrieve the information, which, in this case, is the username and password, could be: 

<form action="servlet/RegisterController" method="post">

username: <input type="text" name="username"><br>

password: <input type="password" name="pass_word"><br>

<input type="submit" name="submit" value="Register">

<input type="reset" name="reset" value="reset">

</form>
The corresponding servlet methods to process this information can be implemented as:

//handle post form requests



public void doPost( HttpServletRequest request, HttpServletResponse response )

{

     String username = request.getParameter( "username" );

     String password = request.getParameter( "pass_word" );

     String message;

     /**

      * Determine whether or not the username and password are 

      * valid this is application specific, for this example, if 

      * we determine the username and password to be good, we set 

      * a boolean variable named valid to true and forward the message.

      */

     if (valid)

      {

        message = new String(username);

        //set the message into the request object

        try

         {

           request.setAttribute( "message", message);

           sendForward( request, response );

         }

        //handle any exceptions

        catch( Exception e )

         {}

       }

      else

       {

        message = new String( “Registration Error” );

        try

         {

           request.setAttribute( “message”, message);

           sendErrorForward( request, response );

         }

         //handle any exceptions

        catch( Exception e )

         {}

       }


}

public void sendForward( HttpServletRequest request, HttpServletResponse response )

{

     try

      {

        /**

         * This line sets up a RequestDispatcher which is used to 

         * pass the processing of a request from one resource to another. 

         * The RequestDispatcher for this Servlet is obtained

         * from the current ServletContext. The ServletContext contains 

         * methods that allow the servlet to communicate with the servlet 

         * container.  The RequestDispatcher is obtained and used only 

         * once to send using the forward() method the HttpServletRequest 

         * and HttpServletResponse objects to registrationsuccess.jsp.

         */

         RequestDispatcher rd;

         rd = getServletContext().getRequestDispatcher( "/registrationsuccess.jsp" );

         rd.forward( request, response );

       }

     catch( Exception e )

       {}

}

public void SendErrorForward( HttpServletRequest request, HttpServletResponse response)

{

     try

      {

        //forward the error to the standard library error page named error.jsp

        RequestDispatcher rd;

        rd = getServletContext().getRequestDispatcher( "/error.jsp" );

        rd.forward( request, response );

      }

     catch( Exception e )

      {}

}

The JSP to display a success message, registrationsuccess.jsp, could look like: 


<html>


<body>


<h3>Success!<br>

        Thank you for registering, <%=request.getAttribute(“message”)%>!

        </h3><br>


</body>


</html>
The JSP to display an error message, error.jsp, could look like:


<html>


<body>


<h3>Error<br>

        The following error occurred:<%=request.getAttribute(“message”)%>

        </h3><br>


</body>


</html>
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.3.7 JavaBeans

· Introduction to JavaBeans 

· JavaBeans and Java Web Applications 

· JavaBeans and Java Server Pages: An Example 

Introduction to JavaBeans

Any Java class that adheres to certain conventions may be a JavaBean. All JavaBeans must have a constructor with no arguments. Also, JavaBeans must be coded using pre-defined patterns for method signatures. The conventions for method signatures are listed below:

· All instance variables in Java should be declared to be private. All JavaBean variables must be private. When variables are private, they may not be accessed directly. They may only be accessed and manipulated using public methods. 

· The names of accessor and mutator methods must follow a strict naming convention. Accessor methods must be of the form: public <returntype> get<propertyname>. The return type of the function must be the same type as the instance variable that it accesses. Mutator methods must be of the form public void set<propertyname> (parameter). The type of the parameter must be the same type as the instance variable that it manipulates.

Consider a JavaBean that represents a person. This object only has one variable, a name. The name is stored as a string. The name may be accessed using the getName() method. The name may be changed using the setName() method. The implementation of this person JavaBean is below:

public class Person {



private String name;



public Person(){




//initialize Name to an empty string




name = "";



}


public String getName(){




return name;



}


public void setName(String input){




name = new String( input );



}


}
JavaBeans and Java Web Applications

Java Web application developers can use JavaBeans to store state information. Recall that HTTP stores no information associating any two requests from the same session. JavaBeans may be used to store information that can be accessed by Java Server Pages and Java Servlets throughout an entire session. 

A JavaBean may be referenced in a Java Server Page using the <jsp:useBean /> tag. This tag is used to set the name of the bean, the name of the bean's class and the scope of the bean. The scope of a bean refers to its lifetime, not its visibility. A bean's scope determines when references to that bean are released, subsequently making it ready for garbage collection. JavaBeans are created in a Java Server Page when no other bean with the same id and scope are found in a page. If a bean with the same id and scope is found on a page, it is bound to the variable referenced by the id. A bean is visible, i.e. can be accessed, throughout the entire page that references it after its existence has been ensured using the <jsp:useBean /> tag. For example, <jsp:useBean id="myPerson" class="Person" scope="session" /> ensures the existence of a session-scoped JavaBean with name myPerson of type Person. If no session-scoped bean with the name Person exists, one will be created. If one does exist, that bean will be referenced by the name myPerson.

JavaBeans may have one of the following scopes:

· page Scope. Beans are only accessible from the page in which they were created. Beans with page scope have their references released after the JSP is processed or after the request is forwarded to another resource. Recall the online library. The online library uses a JavaBean to represent a book. This Book JavaBean stores information about a book such as its title, ISBN, author and edition. The Book JavaBean contains a method called setProperties() that takes a book's ISBN as a parameter. This method sets all of the attributes of a book, e.g., title, ISBN, author and edition, by querying the information from a database. The Book bean also has accessor methods that returns the title, ISBN, author and edition. The library uses a JSP named showbook.jsp to display a book's information. The showbook.jsp takes a single parameter, a book's ISBN. showbook.jsp uses this parameter to initialize a page scoped bean of type Book named myBook. myBook's accessor methods are used on the page to display information about the requested book. Since each invocation of showbook.jsp will most likely be for a different book, it is most appropriate to make this bean page scoped.

· request Scope. Beans with request scope are only accessible from pages processing the same request in which they were created. References to a JavaBean in two separate requests are two different beans. Any bean with request scope is released when the request processing is complete. Beans with request scope are stored in the HttpServletRequest object for the duration of a particular request. For example, a bean may be used in a forwarded page without the <jsp:useBean /> tags.

· session Scope. Beans with session scope are accessible from pages that are in the same session as the objects were created. All references to the bean are released when the session ends. Beans with session scope are stored in the HttpSession object associated with a particular request. A Servlet may access beans through the HttpSession object using the getAttribute() method. An HttpSession may be retrieved from a servlet's HttpServletRequest object using the getSession() method. For example, consider a servlet that is used to process basket for an online library. The basket allows users to store books they wish to borrow while browsing. When the users are finished browsing, they proceed to check out all books in their respective baskets. The basket is implemented in a class name LibraryBasket of the library package. The basket is referred to on a page with id myBasket. The basket is a session-scoped JavaBean. The following code may be used to both load myBasket from an HttpSession and to place it back into an HttpSession using a servlet:

· 
public void doPost( HttpServletRequest request, HttpServletResponse response )

· 
{

· 
  HttpSession mySession = request.getSession();

· 
  // Load the myBaskter bean from the HttpSession.  This returns a copy of the object in the session.

· 
  library.LibraryBasket myBasket = (LibraryBasket) mySession.getAttribute( "myBasket" );

· 
  /**

· 
   * Set the bean back into the session for later use.  This

· 
   * method will associate the myBasket bean with the name "myBasket".

· 
   */

· 
  mySession.setAttribute( "myBasket", myBasket );

· 
}
· application Scope. Beans are accessible only from pages in the same application in which they were created. Beans with application scope are stored in the ServletContext object and are accessible using the getAttribute() method. The ServletContext object stores information about the environment where the servlet is currently executing. An application scoped may be used for database connection pooling. A database connection can be established the first time a servlet is accessed and this connection can be used until the servlet container is shutdown or restarted using an application scoped bean. Consider a JavaBean named DatabaseBean that is used to connect to a JDBC data source. This bean has a method named connect() that establishes a connection to a database. This connection is left open throughout an entire application. A servlet may load this bean from the ServletContext object to make use of a database connection that is already established. 

JavaBeans and Java Server Pages: An Example

Recall the online library. Library members should be able to browse for books and store the books they want to borrow in a basket. Members should be able to view the contents of their baskets at any time while browsing for books. This functionality may be implemented using a session-scoped JavaBean that represents a basket. For the purpose of this example, a class has been written in the library package. The class name is Basket. The function getTitles() of this class returns a list of book titles stored in the basket. The JSP below prints out a user's basket.
  <jsp:useBean id="myBasket" class="library.LibraryBasket" scope="session" />

  <html>

  <body>

  <% 

  
String [] myTitles = myBasket.getTitles();

  
for( int i=0; i<myTitles.length; i++){%>


  Title: <%=myTitles[i]%> <br>

  <%}%>


  </body>

  </html>
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

2.3.8 MVC Architecture

· Introduction 

· MVC and Java Web Applications 

Introduction

The Model View Controller (MVC) architecture describes a way to organize and separate the tasks of an application into three distinct parts: Model, View, and Controller. These parts each perform a specific task. The View manages the output of a user interface. The Controller processes the user's input. The Model represents the data and logic of the subset of the external world used in the program, i.e. the application domain. 

The separation of these tasks into Model, View, and Controller allows for easily maintainable systems. MVC has been traditionally applied to many different types of systems with graphical user interfaces. We will examine how MVC can be applied to Java-based Web applications. 

MVC and Java Web Applications

Applying the MVC architecture to Java Web applications allows the creation of large and complex, but flexible and easy to maintain, Web applications. These applications are easy to develop and maintain because the user interface code is completely separate from the database access code and the code handling user input, making each much easier to write, test, and debug. Let us return to the online library system. Suppose members should now have the ability to check out books over the phone. In this case, only the user interface code needs to be altered, whereas the Model and Controller do not. 

In Java-based Web applications using the MVC architecture, JavaBeans (hereafter called beans) serve as the Model. For example, an MVC-based Java Web application that implements a library basket would have a basket bean. All access to the contents of a user's basket would be handled by this bean. The basket bean could have methods such as addItem, removeItem, and updateQuantity used by the Model to change the state of the data. The basket would also have methods to access the data, such as getItem and getQuantity. These methods would be used primarily by the View in order to gain information about the state of the data. 

When using the MVC architecture in Java based Web applications, JSP pages are primarily used to implement the View component. The JSPs in an MVC-based Java Web application render the user interface, i.e., generating a Web page, based on the information they receive from the Model beans. Following the library example, a view basket JSP file can be written that would issue requests for state information to a basket bean. These requests, which are calls to methods such as getItem and getQuantity, are made by the JSP to get information about the items in the basket. The contents of the basket are then displayed in the Web page by the JSP. 

Java servlets are used to implement the Controller component of the MVC architecture. Typically, servlets accept Web browser requests (user input), determine the appropriate action to take, execute the action and then forward the request to another resource to display the results. For example, consider the action of adding an item to a basket in an online library. A request to add an item to the basket originates from an HTML form submission and arrives at the BasketController servlet. The BasketController servlet retrieves the user's basket bean from the Web server's memory. The BasketController then makes a call to method addItem of the basket. Finally, the BasketController forwards the HTTP request to the view basket JSP page, which displays the basket. It is important to note the division of labor in this simple basket example. The servlet processes the user input and issues commands to a bean. Only the bean reflects the true modifications to the state of information. Finally, the JSP displays the updated state of the basket after the servlet forwards the user to this page. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved. 

Unit 3. Database Design 

Careful design of database systems is crucial due to the complexity of the systems involved. This unit discusses both application design and database design, with particular focus upon the latter. Database design proceeds from constructing a model that is independent of any particular implementation, to mapping that model description to a database schema that can be implemented. The entity-relationship model, which is the most widely used model, provides a focus for this unit. Next, the criteria for a good relational database schema are specified, as well as the method for rearranging relations (in a bad schema) and composing new relations using functional dependencies. This latter process is known as normalization. 

· 3.1 Database System Design
· 3.2 Entity-Relationship Models
· 3.3 Normalization
	Readings:
· Elective: Connolly and Begg, sections 2.3 and 9.7 (in second edition, sections 2.3 and 4.6).


© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

3.1 Database System Design

· Overview of Database System Design 

· Application Program Design 

· Database Design 

· Three-Schema Architecture 

Database systems are complex software systems, and, for that reason, they especially need careful database system design before they are implemented. This page outlines the process of designing both the application programs and the database that stores the data. On the one hand, application design involves designing transactions and designing user interfaces. Database design, on the other hand, proceeds from constructing a conceptual design, which is then used in a process called logical design to create a conceptual schema that, if good enough, will be implemented and stored in the database system catalog. The discussion then turns to revealing how the "three-schema architecture" of database systems further clarifies the meaning of data independence.

	Readings:
· Required: Connolly and Begg, sections 2.1, 9.1–9.6, 9.8–9.13, 15.1 (in third edition, sections 2.1, 9.1–9.6, 9.8–9.13, 14.1; in second edition, sections 2.1, 4.1–4.5).


Overview of Database System Design

Database systems are typically large and complex software systems. As with any other software system before it is implemented and deployed, a database system needs to be carefully designed so that it can meet its intended use fully and correctly. It is useful here to repeat that a database system is designed to support the operations or activities of a specific application, such as book lending in a library database system, or customer invoicing in an e-store database system. Thus, a database system design involves two basic steps: designing of the database that stores the application or operational data, and designing of the application programs that implement the activities. Designing a database system may require an additional step, if there is no DBMS already available for procurement. This additional step is to evaluate alternatives and select an appropriate DBMS to support the database application. 

Before discussing further the two basic design steps specific to database systems, it should be mentioned that database systems follow the same software development cycle or software life cycle as any other software system. For an overview of the database application lifecycle see section 9.2 of Connolly and Begg (section 4.1 in the second edition). 

[image: image15.png]Database planning &
Systems definition

Regquirements collecion
and anaiyss

DBMS selsction

Databas

< dasign Application dasign

Prototyping

Implementation

Testing

Operational maintenance





Application Program Design

Let us start with the design of application programs whose data requirements in some respect define the content of the database. In other words, these data requirements will define the kind of data that goes in and comes out of the database. There are two aspects to application program design: transaction design, which focuses on the functionality of the database system, and user interface design, that focuses on user friendliness. The latter basically deals with the layout of forms and reports that must follow the general software engineering principles for user interfaces. A list of these principles (or guidelines) developed by Schneiderman (1992) is provided in section 9.8.2 of Connolly and Begg (section 4.4.2 in the second edition). 

During transaction design, we derive the functional specification of the application by identifying its major activities and their relationships. For example, the activities in a circulation department of a library include searching for an author, searching for a title, checking a book out, checking a book back in, holding a book, and sending overdue notifications. 

Application programs can be decomposed into smaller logical tasks, specifying for each task its input data, used data, and output data. Each logical task's data request corresponds to a transaction. As we discussed in 1.1.1 What is a Database? transactions are distinguished into either read-only or update transactions based on their data manipulation. The relationship between application programs is established by identifying their common tasks. The information flow within an application and between its component tasks (or transactions) can be represented in the form of an information or flow chart—that, in turn, can be translated subsequently into an actual code during implementation. 

Database Design

Database design is the activity of specifying the schema of a database in a given data model. Recall that a schema defines the data types, relationships, and integrity constraints on the data. 

In the past, database design used to involve three main phases: conceptual design, logical design, and physical design. The physical design produces both the internal schema, which describes the physical storage structure of the database, and the access methods, which achieve efficient access to the data. Nowadays, most existing DBMSs use fixed physical designs, automatically select the best possible access paths, and in general attempt to minimize manual tuning. Consequently, our emphasis is on the first two phases—conceptual and logical design. 

Conceptual design identifies the entities, the properties, and the relationships in an application, or, more precisely, in the mini-world defined by the application. It starts from a set of requirements, which, typically, was collected during the preceding requirements and analysis stage and was usually described informally in English. It produces a high-level description of the data to be stored that is independent of any implementation considerations. Several high-level conceptual data models have been proposed to support this phase, most notably the Entity-Relationship (ER) model and the Unified Modeling Language (UML), two models very similar to each other. In the next module, we will discuss the ER model, which has been the consensus choice in databases thus far. 

During logical design, the initial conceptual design is translated into a formal schema called the conceptual schema. The conceptual schema is expressed in a specific, implementation data model such as the relational, object-oriented, or object-relational model, supported by a DBMS. Although the conceptual design should be independent of a particular DBMS and other physical details, the choice of the data model at this point basically determines the selection of the type of DBMS that will support the application. A good conceptual schema that will be the one finally implemented and stored in the catalog should simplify the construction of queries, reduce redundancy, and eliminate update anomalies. We will formally define what good and bad schemas are, later, when we discuss normalization. During this stage, we can also define the external schemas that describe the portion of the database structure from the point of view of different users or application programs. These external schemas have to do with differently structured views of the database, which we examined earlier in pages 1.1.3 When is a Database Management System Needed? and 2.2.1 Views. 
Three-Schema Architecture

Now that we have defined the different kinds of schemas, we can visualize a database system as having a three-schema architecture (also known as the ANSI/SPARC architecture). Notice that data actually exist only at the physical level. The schemas are just descriptions of data, and user requests expressed on a particular schema are translated or mapped down to requests at the physical level by the DBMSs. Furthermore, the DBMS translates any retrieved data back to the same level as that of the user request, matching the user's view of the data. 

[image: image16.png]user'

user*

user®

External

|l Schema

v

view!

view?

view?

Conceptual Schema

v

Internal

Schema

Phys
Storage

sical





The three-schema architecture can be used to better illustrate and refine the concept of data independence: 

· Logical data independence is the ability to change the conceptual schema without having to change the external schemas or the application programs. This ability includes the ability to modify the integrity constraints without affecting the external schemas and the application programs. This means that we can easily expand the database by changing or evolving the conceptual schema, for example, to include a table or an attribute. The database can also be easily reduced by dropping a table or an attribute definition from a conceptual schema, affecting only those schemas that refer to the dropped data. The rest of the external schemas that refer to the remaining data are not affected. 

· Physical data independence is the ability to change the internal schema without having to change any of the following: the external or conceptual schemas, or the application programs. This means that it is very easy to reorganize data physically, improve access performance, and allow expansion by placing data on larger and faster disks. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

3.2.1 ER Concepts

· Background 

· Requirements of the Library Database System 

· Entities and Relationships 

· Attributes 

· Entity Type Schema 

· Constraints on Relationship Types 

· Cardinality Ratio 

· Participation 

· Weak Entity Type 

	Readings:
· Required: Connolly and Begg, sections 11.1–11.6 (in second edition, section 5.1–5.2).

· Optional: Connolly and Begg, section 11.7 (in second edition, section 5.3).


Background

The Entity-Relationship or ER model (P. Chen 1976) is the consensus choice for use in conceptual database design. Whenever it is necessary to distinguish the basic ER model from its extension, we refer to the latter as the Enhanced-ER or EER model. The ER model provides a semi-formal notation that allows designers to create a high-level conceptual schema; that is, an abstract implementation that is a complete—and independent—description of the structure of a database. By being semi-formal, the ER model helps us in eliminating redundancy and in identifying ambiguities and omissions in the requirements. It should be pointed out that there is no single agreed upon ER notation, either textual or diagrammatic. Here we will use the most commonly used textual and diagrammatic notations. 

The ER model is based on an Aristotelian classification, distinguishing things into entities, their attributes (properties), and their relationships with other entities. We will demonstrate these concepts using our library database system example. What follows, first, however, is a summary of the library database system's requirements. 

Requirements of the Library Database System

We will consider the following requirements for our library database system, which primarily supports the departments that keep track of membership and circulation. 

1. The library is organized into sections, like art, children, computing, science, etc. Each section has a name and a number. Each section is headed by a head librarian. 

2. For each book title, we want to store its title, all its authors, its ISBN, call number, year of publication, and publisher. Also, for each copy of a book, we want to keep track of the current borrower, the due date, and the librarian who charged it out. Recall from the library database description in 1.1.2 Examples of Database Systems, A Library Database System the distinction between book title and book copy. 

3. Members have a membership number, a driver's license, an address, a phone number, and a birthday. Members can have up to five borrowed books. If a book copy of a title is not available, members can put a hold request on it. They will be notified when a copy becomes available. 

4. We store each librarian's name, social security number, address, salary, gender, and birthday. We also want to keep track of the name, birthday, and kinship of each of the librarians' dependents. We also keep track of the direct supervisor of each librarian. 

Entities and Relationships

An entity is an object in the real world that is uniquely identifiable and has independent existence. On the one hand, an entity can be an object with physical existence, such as the library member named Mary. On the other hand, an object can have a conceptual existence, such as a book title, a department, or a savings account. 

The specification of the entities is simplified by grouping them. Entities having the same properties are grouped together to form an entity type. For example, all library members are grouped in the entity type MEMBER; all books are grouped in the entity type BOOK. Note that the convention is to use singular form for an entity type name. Other entity types in our example are LIBRARIAN and SECTION. On the other hand, the name or birthday of a librarian, or a section name and number, are not entities. As we will see below, these are properties or attributes of the LIBRARIAN and SECTION entities. At the level of the entity type, it is sufficient to specify the properties that are shared by all entities in an entity type, at the level of the entity type, thereby eliminating the need to specify the properties of each individual entity. 

A relationship is a meaningful association between two or more entities. For example, borrows and holds indicate the associations "Peter borrows Book_X" and "Mary holds Book_X" respectively. Other examples of relationships are "John married Susan," "Mary studies Physics," etc. 

Just as an entity type is a grouping of similar entities with the same properties, a relationship type is a grouping of similar relationships. A relationship type specifies the nature of association between entity types. For example, the relationship type BORROW: <MEMBER, BOOK> is an association (borrowing) between members and their currently borrowed books. The degree of a relationship is the number of participating entity types. A relationship that involves two entity types, such as the one in the preceding example, has a degree two. This is called a binary relationship. One that involves three entity types has a degree three. This is called a ternary relationship. In general, an N-ary relationship has degree N and involves N entity types. Relationships with degrees higher than three, however, are complex and very rare. The majority of the relationships in a database are binary.  

An example of a ternary relationship can be observed when representing book collections in a library.  To better illustrate this, let us slightly modify the original requirements for book titles and book copies. Consider the case in which multiple publishers own the copyright of a book title (original manuscript) and hence, can print book copies of it. In addition, we would like to keep some information about publishers such as address, phone number, and partnership status. This information forms the Publisher entity type. Each book collection has a name and an establishment date. Collections are grouped in the Collection entity type. The association between a Title, which is held in a specific Collection, that was published by a specific Publisher—can be expressed by the ternary relationship GROUP:< Title, Publisher, Collection>. Examples of this relationship are given below.

· The Title "Fundamentals of Crockery Making" that is held in the Collection "Classic Crockery books in Carnegie Library" was published by "Addison Wesley." 

· The Title "Fundamentals of Crockery Making" that is held in the Collection "Classic Crockery books in Pittsburgh Library" was published by "MIT Press." 

It should be pointed out that a ternary relationship is not always equivalent and hence cannot be replaced with three binary relationships. In the table below, we provide a comparison of the ternary relationship GROUP:<Title, Publisher, Collection> and the three binary relationships PARTOF:<Title, Collection>, PUBLISH:<Title, Publisher>, and CONTRIBUTE:<Publisher, Collection>. Consider the titles "Information Revolution" and "Future Technologies" both of which were published by the same publishers, namely J&P and Wilson-Pubs. Now, consider the collection First-Editions consisting of "Information Revolution" published by J&P and "Future Technologies" published by Wilson-Pubs.

	Ternary Relationship
	Three Binary Relationships

	For every title that is part of a collection, GROUP specifies the publisher of the title.
	The three binary relationships capture only the following.

1. A title is part of a collection.

2. A title is published by specific publishers.

3. A publisher has published at least one title that is part of a collection (without specifying the title). 

 

	The GROUP relationship type will contain two triples <Information Revolution, J&P, First-Editions> and <Future Technologies, Wilson-Pubs, First-Editions>.
	· The PARTOF relationship type will contain the pairs 

· <Information Revolution, First-Editions> 

· <Future Technologies, First-editions>

· The PUBLISH relationship type will contain the pairs 

· <Information Revolution, J&P>

· <Information Revolution, Wilson-Pubs>

· <Future Technologies, J&P>

· <Future Technologies, Wilson-Pubs>

· The CONTRIBUTE relationship type will contain the pairs 

· <J&P, First-Editions>

· <Wilson-Pubs>

	GROUP correctly reflects the composition of the First-Editions collection.
	The binary relationships do not provide for titles to be linked with a specific publisher in a collection. Thus, we cannot infer that the title "Information Revolution" in the "First-Editions" collection is published by "J&P".

	This example also illustrates that a ternary relationship cannot always be used in place of a binary relationship. For instance, the GROUP relationship does not fully capture the PUBLISH relationship. The GROUP does not specify that both of our titles be published by both publishers.
	Note: In this example, in addition to the ternary relationship, GROUP, we require the binary relationship PUBLISH:<Title, Publisher>. We do not, however, require the binary relationships PARTOF:<Title, Collection>, and CONTRIBUTE:<Publisher, Collection>. 


It is possible for a relationship to be between entities belonging to the same entity type. Such a relationship is called a recursive relationship. When specifying a recursive relationship it is necessary to give role names to the participating entities in order to distinguish them. The typical example of a recursive relationship is the one that represents the association between a librarian and her supervisor who is also a member of the entity type LIBRARIAN: 
SUPERVISES: <supervisor-LIBRARIAN, supervisee-LIBRARIAN>. 
The role names here are supervisor and supervisee. 

To recapitulate the fundamental distinction between entities and relationships, then, it is useful to note that the nouns in an English form of the requirements document typically indicate entities. Verbs indicate relationships.

Attributes

Both entities and relationships are characterized by their properties or attributes. For example, the entity Peter has the attributes age and weight. A car entity has a color attribute. The relationship Peter borrowed Book_X has an attribute borrowed_date. An attribute has its existence in an entity or a relationship, and does not exist independently (as does the entity Peter or the relationship marriage). Hence, an attribute cannot be another entity or relationship. 

Within a mini-world (which is defined by an application and is a subset of the real world), attributes represent the facts that are relevant to us whose values we will store in the database as data. Attributes can be classified with respect to their value set (domain) and their structure. 

· Along the value set continuum we have: 

· A single-valued attribute is an attribute that at any given point in time can only have a single value, for example weight. 

· A multi-valued attribute is an attribute that may have multiple values at any given time, e.g. a person may have multiple degrees={BS,MS,PhD}. Multi-valued attributes are denoted within braces, e.g. degree, showing that they represent a set of values. In our example, a title may have multiple authors, e.g. {Authors}. 

· A derived attribute is an attribute whose value can be derived from the values of other attributes and hence there is no need to store it, e.g. age can be derived from date of birth. In fact, many such attributes, were they to be stored, would make necessary extra overhead to keep them up-to-date. For example, if Age were stored, it would have to be incremented on every date of birth. A derived attribute is denoted as a function, e.g. age[date of birth]. 

· A NULL attribute is an attribute with an unknown or a not applicable (N/A) value. An example of the latter is the number of pregnancies for a male person, which is NULL as not applicable. 

· Along the structural continuum we have: 

· A simple or atomic attribute has a basic data type value, e.g. weight is a real number. 

· A composite attribute represents an attribute that is composed by (or can be divided into) more basic attributes. For example, date can be thought of as composed of three attributes: day, month, and year. The component attributes of a composite attribute are shown within parentheses, e.g. Date (day, month, and year). The value of a composite attribute is the concatenation of the values of the components, e.g. date = '10-12-1999'. A component attribute can also be a composite attribute as, for example, an address which can be represented as a composite attribute with two composite components, Street and Zip: Address (Street (number,name), City, State, Zip (ZipCode, Blockcode)). The choice between a single composite attribute versus a number of simple attributes is based on whether we need to refer to the composite attribute as a unit or to refer to individual components. 

Entity Type Schema

An entity type schema specifies the common structure shared by individual entities of that type. These include a type name, name, and domain (value set) for each entity attribute, and constraints on entities. The notions here are similar to the ones we discussed in 1.2.1 Key Concepts. For example, a key is a uniqueness constraint on attributes, and individual entities are distinguished by using various keys, namely, primary and alternate keys. 

Textually, the entity type MEMBER can be represented as follows. The attributes forming the primary key are underlined—in our example, the primary key is MemNo; and the attributes forming an alternate key are over-lined—in our example, DriverLic. Note that in this example, DriverLic and Name are composite attributes. The domains of the attributes are listed below the schema heading: 
[image: image17.png]Wemtto | SiverLio Giste, Hombe) | NametFname, Ml Lname) | Address | Phonettumber





MemNo: 5-digits long integers

DriverLic: State 2-letter abbreviation and a 10-digit integer separated by a blank

Name: alphabetic string of length 30 containing blanks and hyphens

Address: character string of length 50

PhoneNumber: character string of length 14

Constraints on Relationship Types

The constraints on relationships are used to express restrictions on relationships that exist in the real world. These restrictions are often called business rules. For example, each section has a head-librarian and a librarian can only head one section. Business rules have a direct effect on the entities that can be part of the related entity types. Our example business rule does not allow two (or more) librarians to be head-librarians of the same section, and vice versa, (a librarian cannot be a head-librarian of two (or more) sections). In ER model, we can capture business rules using two types of constraints, namely, cardinality ratio and participation. 

Cardinality Ratio

The cardinality ratio specifies the number of relationships in which an entity can participate in a particular relationship type. The cardinality ratio can be derived by considering a relationship from the viewpoint of each participating entity. In the most common case of binary relationships, the cardinality ratios are 

· one-to-one (1:1): In our example above, the Manages relationship is one-to-one, denoted as MANAGES:<LIBRARIAN,SECTION> 1:1. Only one librarian entity and only one section entity can be associated by this relationship: each section has one head-librarian, and a librarian can only head one section. 

· one-to-many (1:N): In our library example, consider the business rule that each book has a single title. This can be expressed as a binary relationship COPY between the entity types Book and Title whose cardinality is one-to-many, COPY:<TITLE,BOOK> 1:N. This means that a book entity can be associated with only one title entity, whereas a title may be associated with many book entities. Note that the inverse of 1:N is many-to-one,  COPY_OF:<BOOK,TITLE> N:1, meaning that one title is associated with many book copies. Back to 1:N, the value of N can be an explicit number: for example, 1:5 as cardinality ratio for the BORROW relationship discussed above. The cardinality of BORROW:<MEMBER,BOOK> 1:5 specifies that a member can borrow up to five books at any given time, and a book can be lent to only one member. 

· many-to-many (M:N): Consider the relationship HOLD, which relates members and book titles. This binary relationship is many-to-many, HOLD:<MEMBER,BOOK> M:N. Again, this ratio can be derived by considering the relationship from the viewpoint of the participating entities. A member pay put on hold many titles at a given time, and a specific book may be requested by many members. 

Participation

The participation constraint specifies whether the existence of an entity is dependent on the existence of another entity to which it must be related. There are two types of participation constraints: 

· Total: indicates that the existence of an entity depends on being related to another entity. For example, Books have total participation to the COPY relation that relates books to their titles. A book cannot exist without a title. 

· Partial: indicates that the existence of an entity is not dependent on being related to another entity. Some entities may exist in an entity type without being related to any other entity. For example, a person can be a member in a library without currently having any borrowed books. That is, entities in MEMBER have partial participation to the BORROW relation. Similarly, entities in the BOOK entity type have partial participation to the BORROW relation. 

Weak Entity Type

As we have discussed above, entities have an independent existence in the real world. However, it is possible for the existence of an entity type within the mini-world defined by an application to be dependent on some other entity type. Such an entity type is called a weak entity type.  

Entity types that retain their independence within the mini-world are called ordinary or strong entity types, or just entity types. A subset of the attributes of a strong entity type can form a key for the entity type. On the other hand, a weak entity type does not have enough attributes of its own within the mini-world to form a key. Hence, to form their identity, a weak entity type has to depend on another entity type. The specific entity on which a weak entity depends is called the identifying owner.  Weak entities can be grouped into weak entity types, and an identifying relationship is established between a weak entity type and the identifying owner entity type. 

In our example, a dependent has no primary key attribute. The Name attribute constitutes a partial key (denoted with a dotted underline) that can be used to identify the dependent with respect to the primary key of the owner librarian. The LIBRARIAN entity type is the identifying owner of the DEPENDENT weak entity type, and DEPENDS:<LIBRARIAN,DEPENDENT> is the identifying relationship. Clearly, weak entities have a total participation in the identifying owner relationship, and the identifying owner has a partial participation in the identifying owner relationship.  Furthermore, a weak entity type must participate in a one-to-many relationship type with the identifying owner. In other words, an identifying owner (strong) entity may identify one or more weak entities; and a weak entity must be identified by one identifying owner entity. 
    [image: image18.png]Name Date otBith | Kinship





It should be pointed out that the presence of a total participation constraint does not imply that the corresponding participating entity type is a weak entity. As discussed above, a participation constraint captures the restriction on the entity, and not the entity type. The fact that BOOK has a total participation in the COPY relation, because of the requirement that a book cannot exist without a title, does not mean that BOOK is a weak entity.  BOOK is a strong entity type because books are the central objects of the circulation activities. It is impossible to capture circulation activities without the entity type BOOK.

A legitimate question here is when do we need to define weak entity types? Since weak entities' existence and identity are dependent on the identifying owner entity type, why don't we represent them as multi-valued, composite attribute of owner entity type? We may represent entity types as an attribute of the owner entity type as long as a weak entity type is related to only one owner entity. On the other hand, if a weak entity is related to more than one owner entity, representing it as an attribute will duplicate the data of that weak entity in each entity. In this case, we represent it as a weak entity type in order to avoid any undesirable redundancy. 

Notice that the requirements of the system determine the choice of strong entities versus weak entities versus multi-valued attributes. So, when you are in a situation where you are not sure whether to choose between a multi-valued attribute, a weak entity, or a strong entity, you should re-examine the system requirements and let them drive your choice. 

References: 

Chen, P. "The Entity-Relationship Model: Toward a Unified View of Data." ACM Transactions on Database Systems 1, no. 1 (March 1976): 9-36. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

3.2.2 Enhanced ER and ER Notation

· Specialization, Generalization, and Inheritance 

· Constraints on Specialization and Generalization
· ER Notation 
	Readings:
· Required: Connolly and Begg, sections 12.1-12.3 (in second edition, section 5.4).


Specialization, Generalization, and Inheritance

In many applications, it is useful and often necessary to refine an entity type into several subgroups, called subclasses. For example, the library members that belong to entity type MEMBER can be subdivided into the subclasses: LIFE-MEMBER, REGULAR-MEMBER, and SEASON-MEMBER. The entity type MEMBER is called the superclass for these subclasses. Similarly, the librarians can be thought of as a superclass with three subclasses of head librarians, salary librarians, and hourly librarians. 

The basic ER model discussed earlier in 3.2.1 ER Concepts cannot fully express such entity type refinements. In the ER model, an entity refinement may be expressed, in a limited way, by defining each subclass of an entity type as an independent entity type, and then relating to the superclass entity type and every other subclass entity type. Clearly, this approach makes the conceptual design a very difficult process and the ER schema unnecessarily complex and hard to understand. The EER model was proposed to facilitate the specification of superclasses, their subclasses, and their relationships. Specifically, the EER model introduced the concepts of superclass and subclass entity types in the ER model. The EER model was introduced for two additional reasons: 

1. To help in identifying the attributes and relationships specific to some entities, thereby enhancing the understanding of the application and adding more semantic clarity to the design. For example, if only salary-librarians can belong to the librarian guild, then this can be expressed as a BelongTo relationship between SALARY-LIBRARIAN and LIB-GUILD entity types and not between all librarians in LIBRARIAN and LIB-GUILD. 

2. To avoid specifying attributes to an entity not applicable to it. This eliminates the need for a great number of NULL values. NULL values that represent not-applicable values are a waste of space. A simple example is that it is meaningless to associate a membership expiration date to a life-member. 

Each entity in a subclass is also an entity in the superclass. This defines the superclass/subclass relationship between the superclass and any of its subclasses. This means that an entity member of a subclass has all the attributes and values—as its attributes and values as a member of the superclass. We say that a member of a subclass inherits the attributes and relationships of the superclass. 

We call specialization the process of defining a set of subclasses of an entity type by identifying their distinguishing characteristics. We associate additional specific attributes with each subclass, and establish additional relationships between a subclass and other entity types or subclasses. Generalization is the inverse of specialization. Generalization is the process during which we identify entity types with common characteristics, both attributes and relationships, and we aggregate them into a single (generalized) superclass entity type. Specialization is related to the top-down design approach—and generalization to the bottom-up design approach—that you discussed in your programming courses. 

During specialization, a subclass may be further subdivided into subclasses; during generalization, subclasses may be further aggregated into a superclass. A superclass, its subclasses, and their subclasses create a type hierarchy, also known as either a specialization or generalization hierarchy. In the case where a subclass is related to more than one superclass, we have multiple inheritance. In such cases, we need to specify which attributes are inherited from which superclass. 

Constraints on Specialization and Generalization

We can define constraints on the superclass/subclass relationships to restrict the participation of entities to the subclasses. 

· Inclusion Constraints: 

· The disjoint constraint specifies that the subclasses of a superclass are disjoint. This means that an entity can be a member of only one subclass. For example, life-member, regular-member, and seasonal-members are disjoint subclasses. We can specify exactly the entities for each class with a predicate-defined subclass. In a predicate-defined subclass, we use a selection condition, or predicate, on one or more attributes to define the entities of the subclass. In our example, the predicate can be on MemberhipStatus. 

· The non-disjoint constraints specify that the subclasses are overlapping and an entity may be a member of more than one subclass. 

· Completeness Constraints: 

· A total specialization constraint specifies that every entity in the superclass must be a member of some of its subclasses. For example, a librarian must belong to one of the subclasses of LIBRARIAN. 

· A partial specialization constraint specifies that an entity may not belong to any subclass. For example, an honorary member may not belong to any of the specializations (subclasses) of MEMBER. 

In the case of generalization, a generalized superclass is always total, since it is derived from the subclasses. 

ER Notation

The overall structure of a database can be expressed graphically by an ER diagram, which is usually smaller and easier to display. 

Here is the summary of ER diagram notation: 

	An entity type is shown in a rectangle.
	[image: image19.png]




	A weak entity type is shown in a double rectangle. 
	[image: image20.png]




	 A relationship type is shown in diamond-shaped boxes attached to the participating entity types. A single straight line denotes partial participation and a double line total participation. Cardinalities are shown as annotations on the participating lines. Also, the roles in recursive relations are shown as indicated on the participating lines. 
	[image: image21.png]




	Identifying relationship type is shown in double diamonds. 
	[image: image22.png]




	Attributes are shown in ovals connected to entity type.
	[image: image23.png]




	Key attribute names are underlined, alternate key names are over-lined, and partial key names are underlined with a dotted line. 
	[image: image24.png]




	Multi-value attributes are shown within two ovals, whereas a composite attribute is shown as a tree of ovals with the component attributes shown as internal and leaf nodes. 
	[image: image25.png]




	Derived attributes are shown in dotted ovals.
	[image: image26.png]




	The subclasses of a superclass are connected to a circle that is connected to the superclass. The subset symbol (C) on each connecting line of a subclass indicates the direction of the specialization/generalization. An 'o' in the circle indicates non-disjoint constraint and a 'd' a disjoint constraint. The partial specialization constraint is indicated by a single line between the superclass and the specialization circle, whereas a total constraint is shown with a double line. 
	[image: image27.png]





Here is the ER schema of the Library database. To simplify the drawing, we show the attributes of each entity type separately in a textual form. 

[image: image28.png]Member

Hold
Borrow,

Bock Copy Title

Checks

Supervises

Librarian

Depends Dependent

Works Manages

Section





Entities: 

[image: image29.png]TITLE: CallNumber, Name, Author (Mame(Fname, M, Laame)) , TEBN, Year, Publisher,
MEMBER: MemMo, DriverLic(State,No), Name(Fname, M, Lname), Address, PhoneNumber,
BOOK: Book 1d, Ediion;

LIBRARIAN: SSN, Name, Address, Salary, Gender, Date of Birth;

SECTION: SectMo, Name, HeadSSH,




Weak Entity 

1. DEPENDENT: Name, Date of Birth, Kinship

              ----

Relationships: 

1. HOLD: <MEMBER, TITLE>, M:N, PARTIAL/PARTIAL, Date; 

2. BORROW: <MEMBER, BOOK>, 1:5, PARTIAL/PARTIAL, BorrowDueDate; 

3. CHECKS: <LIBRARIAN, BOOK> 1:N, PARTIAL/PARTIAL; 

4. COPY: <TITLE, BOOK>, 1:M, PARTIAL/TOTAL; 

5. WORKS: <LIBRARIAN, SECTION> 1:N, TOTAL/PARTIAL; 

6. MANAGES: <LIBRARIAN, SECTION> 1:1, PARTIAL/PARTIAL; 

7. DEPENDS: <LIBRARIAN, DEPENDENT> 1:N, PARTIAL/TOTAL; 

8. SUPERVISES: <supervisor-LIBRARIAN, supervisee-LIBRARIAN> 1:N, PARTIAL/PARTIAL; 

Some Assumptions/Clarifications: 

· One author writes one or more titles. 

· Several co-authors write one or more titles. 

· A book is a copy of a title. A title can have one or more copies of the book. 

· A book has a unique ID (not a copy ID). If a copy ID is used then book is a weak entity type. 

· A particular member places a hold on a particular title. 

· A particular member borrows a particular book up to a maximum of five books. 

· Not all members necessarily borrow books. Not all books are necessarily borrowed. 

· Not all titles need necessarily be of books. However, all books must have a title and only one title. 

Further, we can use the ER diagram notation as a visual language to construct the ER schema of a database. Most database design tools provide ER diagram editors, along with translators, that automatically map an ER diagram to a textual ER-schema or a relational database schema in the DDL of a specific relational DBMS. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

3.2.3 Mapping from ER Models to Relational Models

· Mapping Algorithm 

· Example 

There is almost a one-to-one correspondence between the ER constructs and the relational ones. The two major distinctions are: 

1. In a relational schema, relationships are represented implicitly through primary and foreign keys of participating entities. 

2. In a relational schema, columns of relations cannot be multi-valued or composite. Composite attributes are replaced with their simple component ones, and multi-valued attributes are stored in a separate relation. 

	ER Construct
	Relational Construct

	entity
	table

	1:1 or 1:N relationship
	Foreign key (or a table to capture the relationship)

	M:N relationship
	"relationship" table and 2 foreign keys

	n-ary relationship type
	"relationship" table and 'n' foreign keys

	simple attribute
	column

	composite attribute
	set of simple component columns

	multi-valued attribute
	table and foreign key

	value set
	domain

	key attribute
	primary (or secondary) key


Mapping Algorithm 

We can translate an ER schema to a relational schema by following a nine-step algorithm based on the one given in Elmasri and Navathe 1994. The algorithm attempts to minimize the need for joins and NULL values when defining relations (Steps 2, 4, and 5). 

1. For each strong entity E: 

· Create a new table. 

· Include as its columns, all the simple attributes and simple components of the composite attributes of E. 

· Identify the primary key and the alternate keys. Do not include any multi-valued attribute as a key. If the only unique field of an entity is a multi-valued attribute, introduce an artificial primary key field. 

2. For each weak entity W that is associated with only one 1:1 identifying owner relationship: 

· Identify the table T of the owner entity type. 

· Include as columns of T, all the simple attributes and simple components of the composite attributes of W. 

3. For each weak entity W that is associated with a 1:N or M:N identifying relationship, or participates in more than one relationship: 

· Create a new table T.

· Include as its columns, all the simple attributes and simple components of the composite attributes of W.

· Form the primary key of T as follows: 

· In the case of a 1:N owner relationship, by including as a foreign key in T, the primary key of the owner entity. The primary key of T is the combination of W's partial key and the foreign key.

· In the case of an M:N owner relationship, create a new column that will hold unique values. (In this case, the association between the weak entity and its owner entity will be specified in Step 6.)

4. For each binary 1:1 relationship R: 

· Identify the tables S and T of the participating entity types. 

· Choose S (preferably the one with total participation). 

· Include as a foreign key in S, the primary key of T. 

· Include as Columns of S, all the simple attributes and simple components of the composite attributes of R. 

5. For each binary 1:N relationship R: 

· Identify the table S (at the N-side) and T of the participating entities. 

· Include as a foreign key in S, the primary key of T. 

· Include as columns of S, all the simple attributes and simple components of composite attributes of R. 

6. For each N-ary relationship (including binary N:M relationship) R: 

· Create a new table T. 

· Include as columns of T, all the simple attributes and simple components of composite attributes of R. 

· Include as a foreign keys, the primary keys of the participating (strong or weak) entity types. 

· Specify as the primary key of T, the list of foreign keys. 

7. For each multi-valued attribute A: 

· Create a new table T. 

· Include as columns of T, the simple attribute or simple components of the attribute A. 

· In table T, include as a foreign key, the primary key of the entity or relationship type that has A. 

· Specify as the primary key of T, the foreign key and the columns corresponding to A. 

8. For each specialization with disjoint subclasses: 

· Create a new table Ti for each subclass Si. 

· Include as columns of Ti, the simple attributes and simple component attributes of the superclass. 

· Include as columns of Ti, the simple attributes and simple component attributes specific to Si. 

· Identify the primary key. 

9. For each specialization with overlapping subclasses: 

· Create a new table O for the superclass. 

· Include as columns of O, the simple attributes and the simple component attributes of the superclass. 

· Identify its primary key and alternate keys. 

· Create a new table Ti for each subclass Si. 

· Include as columns of Ti, the simple attributes and simple component attributes specific to Si. 

· Include as a foreign key in Ti (to be part of the primary key of Ti), the primary key of O. 

Example

Let us convert our library ER schema into a relational one using the above mapping algorithm. We tag each definition with the step Si (i = 1..9) in the algorithm that introduced it. 

· In step1, we map all the entities types into tables and define their primary keys PKs and alternate keys AKs. Note that Author in TITLE is a multi-valued attribute and as such will be handled in Step 7. All the composite attributes, e.g., DriverLic in MEMBER, are broken down to their components that are included as separate columns. 

· S1    TITLE(Name, ISBN, CallNumber, Year, Publisher); 

· S1    PK(CallNumber)

· S1    AK(ISBN)

· S1    MEMBER(MemNo, DriverLicState, DriverLicNo, Fname, MI, Lname, Address, PhoneNumber);

· S1    PK(MemNo)

· S1    AK(DriverLicState,DriverLicNo)

· S1    BOOK(Book_Id, Edition);

· S1    PK(Book_Id)

· S1    LIBRARIAN(SSN, Name, Address, Salary, Gender, Birthday);

· S1    PK(SSN)
· S1    SECTION(SectNo, Name);

· S1    PK(SectNo)

· In step 2, we do not take any action, since there are no weak entities satisfying the 1:1 relationship constraint. DEPENDENT is a weak entity with 1:N relationship constraint, namely, DEPENDS, and will be handled in the next step. If we had to take any action, this would have been along the lines of step 4. 

· In step 3, we create a table for each remaining weak entity that was not handled in step 2. In our example, we create only one, namely DEPENDENT. 

· S3  DEPENDENT(LIBSSN, Name, Birthday, Kinship);

· S3  PK(LIBSSN, Name)

· S3  FK(LIBSSN) -->  LIBRARIAN(SSN)

The primary key is formed by LIBSSN, the primary key of the owner entity LIBRARIAN, and Name, the partial key of DEPENDENT. LIBSSN is a foreign key (FK) in the DEPENDENT table. 

· In Step 4, we consider the binary 1:1 relationships. In our example, MANAGES is such a relationship. Since all sections have a head librarian, we choose the SECTION table into which to capture (collapse) the relationship. By choosing SECTION, we avoid storing any NULL values, which would have been the case, had we decided to choose librarians. This is because not all librarians head a section and for any librarian who is not a head librarian, the corresponding column would be NULL. 

We collapse the MANAGES relationship by including the primary key of LIBRARIAN, i.e., the SSN of the head librarian, as a foreign key in SECTION, i.e., HeadSSN. 

S1  SECTION(SectNo, Name, HeadSSN);

S1  PK(SectNo)

S4  FK(HeadSSN) --> LIBRARIAN(SSN)

· In step 5, we consider 1:N relationships. Here we have five such relationships in our example, namely, BORROW, CHECKS, COPY, WORKS and SUPERVISES. In each case, we choose the table that corresponds to the N-side of the relationship and collapse the relationship in the selected table including all the attributes of the relationship as columns in the table. 

The reason for selecting the N-side table is as follows. Given that each row in the N-side table can be related to only one row of the 1-side table, we need to introduce only one column in the N-side table to capture the relationship. This will be a foreign key in the N-side table corresponding to the primary key of the 1-side table. If we had selected the 1-side table, then we would have to specify as many foreign keys as the number of related entities. In general, N is not bounded and hence we cannot predict how many foreign key columns to introduce. If we attempt to make a prediction we run the risk of either overestimating or underestimating. If we overestimeate, our table will contain a great number of NULL values which is a waste of space. If we underestimate, our table will not be able to store a relationship and hence our database will fail to meet fully its intended usage. 

In our example, we choose BOOK for BORROW, BOOK for CHECKS, and BOOK for COPY. Hence we introduce three foreign keys in BOOK, namely, BorrowerMemNo, LibCheck and CallNumber, respectively. 

S1  BOOK(Book_Id, Edition, BorrowerMemNo, BorrowDueDate, CallNumber, LibCheck);

S1  PK(Book_Id)

S5  FK(BorrowerMemNo) --> MEMBER(MemNo) 

S5  FK(CallNumber) --> TITLE(CallNumber)

S5  FK(LibCheck) --> LIBRARIAN(SSN)

For the WORKS and SUPERVISES relationships we choose LIBRARIAN and introduce the foreign keys Section and SuperSSN. 

S1  LIBRARIAN(SSN, Name, Address, Salary, Gender, Birthday, SuperSSN, Section);

S1  PK(SSN)

S5  FK(SUPERSSN) --> LIBRARIAN(SSN)

S5  FK(Section) --> SECTION(SectNo)

· In step 6, we consider the M:N relationships. In our example, HOLD is such a relationship. We create a new table to store this relationship and its attribute, namely Date. As above, the relationship is expressed using foreign keys. For each participating table, in our example, MEMBER and TITLE, we include a foreign key referring to their primary keys, namely MemNo and CallNumber, respectively. 

· S6  HOLD(MemNo, CallNumber, Date); 

· S6  PK(MemNo, CallNumber)

· S6  FK(MemNo)  --> MEMBER(MemNo) 

· S6  FK(CallNumber)  --> TITLE(CallNumber)

The reason for creating a new table is that we cannot collapse an N:M relationship in any of the participating tables without guessing the required number of foreign keys as we discussed in step 5, above. 

· In the last step for ER schemas, step 7, we consider all multi-value attributes. In our example, we have one multi-valued attribute, namely, Authors in TITLE. We store such an attribute as a separate table, e.g., AUTHOR, whose rows correspond to each of the values of the multi-valued attribute. In order to relate these values to the originating table, we include the primary key of the originating table, in our case, TITLE, as a foreign key in AUTHOR. 

· S7  AUTHOR(CallNumber, Fname, MI, Lname);

· s7  PK(CallNumber, Fname, MI, Lname)

· s7  FK(CallNumber) --> TITLE(CallNumber)

Let us conclude by listing the entire relational schema produced above. It is worth recalling here that PK, AK, and FK correspond to PRIMARY KEY, UNIQUE and FOREIGN KEY REFERENCES statements, respectively, in SQL. 

S1  TITLE(Name, ISBN, CallNumber, Year, Publisher); 

S1  PK(CallNumber)

S1  AK(ISBN)
S1  MEMBER(MemNo, DriverLicState, DriverLicNo, Fname, MI, Lname, Address, PhoneNumber);

S1  PK(MemNo)

S1  AK(DriverLicState, DriverLicNo)
S1  BOOK(Book_Id, Edition, BorrowerMemNo, BorrowDueDate, CallNumber, LibCheck);

S1  PK(Book_Id)

S5  FK(BorrowerMemNo) --> MEMBER(MemNo) 

S5  FK(CallNumber) --> TITLE(CallNumber)

S5  FK(LibCheck) --> LIBRARIAN(SSN)
S1  LIBRARIAN(SSN, Name, Address, Salary, Gender, Birthday, SuperSSN, Section);

S1  PK(SSN)

S5  FK(SuperSSN) --> LIBRARIAN(SSN)

S5  FK(Section) --> SECTION(SectNo)
S1  SECTION(SectNo, Name, HeadSSN);

S1  PK(SectNo)

S4  FK(HeadSSN) --> LIBRARIAN(SSN)
S3  DEPENDENT(LIBSSN, Name, Birthday, Kinship);

S3  PK(LIBSSN, Name)

S3  FK(LIBSSN) -->  LIBRARIAN(SSN)
S6  HOLD(MemNo, CallNumber, Date); 

S6  PK(MemNo, CallNumber)

S6  FK(MemNo)  --> MEMBER(MemNo) 

S6  FK(CallNumber)  --> TITLE(CallNumber)
S7  AUTHOR(CallNumber, Fname, MI, Lname);

S7  PK(CallNumber, Fname, MI, Lname)

S7  FK(CallNumber) --> TITLE(CallNumber)

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

3.3 Normalization 

Designing a relational database schema gives rise naturally enough to the question: what constitutes a good schema? This module details the criteria for a good schema, and then formalizes these criteria in terms of functional dependencies, or the dependencies of attributes on the primary key of a relation. The discussion then presents an example of bad database design and introduces normalization, or the method of rearranging data in a relation and composing new relations using functional dependencies. Finally, relational schemas are classified in degrees of normal forms, a term that is explained at length, with the better-designed schemas being in the higher (usually third) degree normal form.

· 3.3.1 Why Normalize?
· 3.3.2 Normal Forms
Assessments

· Multiple-Choice Quiz 6
· Exercise 6
· Exercise 7
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

3.3.1 Why Normalize?

· An Example of Bad Database Design 

· Functional Dependencies 

	Readings:
· Required: Connolly and Begg, sections 13.1–13.4 (in third edition, sections 13.1–13.3; in second edition, sections 6.1–6.3).


In 3.2 Entity-Relationship Models, we discussed conceptual database design using the ER model and saw a method that automatically translates an ER schema into a relational schema. It can be shown that the produced relational schema is a good one. The question is what constitutes a good schema? 

We can show that a good relational schema exhibits the following criteria, all of which we have already discussed. These criteria can be modified to apply to other data models. 

· Tables group only related attributes. 

· Tables have no data redundancy to ensure space efficiency. 

· Tables have no data redundancy to avoid update anomalies. Besides the potential of inconsistencies that we have already discussed, update anomalies may also lead to loss of data, as we will show below. 

· Tables have no data redundancy to ensure time-processing efficiency. Recall that a simple change is translated into multiple updates. 

· Null values in tuples can waste space. 

We can formalize these criteria in terms of the dependencies of attributes on the primary key of a relation. We call these functional dependencies. Depending on the existence of various functional dependencies, relation schemas are classified in various normal forms with known good properties. Each normal form is included in the next one higher up, and therefore the higher the degree of normal form a relation is, the better its design is. A schema that is in 3NF (third normal form) is considered a good one. The mapping ER-to-relational algorithm produces 3NF relations. 

The same principles can be used to convert a bad relational schema into a good one. We can use functional dependencies to rearrange data in a relation and compose new relations, thereby removing data redundancy without loss of information. This method is called normalization. Before elaborating on functional dependency and normalization, let us consider an example involving update anomalies. 

An Example of Bad Database Design

In our library database system, we define the MEMBER and BOOK tables (or relations) in order to store data about the members and books, respectively. Consider an alternative version of our MEMBER and BOOK tables that has merged these into a single table Member_Book. For brevity, we show some of the columns of the MEMBER and BOOK tables only. 

	Relation MEMBER_BOOK 

	MEMBER_BOOK

	MemNo
Mname
City
CallNo
Title
Book_ID
DueDate
3
Avi
PGH
301
DBS
84
10/12/99
5
Susan
NYC
500
OS
50
11/12/99
2
Rajiv
LONDON
20
AI
20
01/06/00
5
Susan
NYC
400
PL
85
12/12/99
5
Susan
NYC
301
DBS
86
02/29/00



Clearly, the relation schema of MEMBER_BOOK is bad, because it permits data redundancy. Because of this data redundancy, all three kinds of update anomalies are possible: 

· A modification anomaly typically leads to inconsistencies because of missed updates. For example, since the member's name and city are repeated for each book, when modifying the city from NYC to PHILLY for Susan, there is a possibility that the fifth row might not be modified. In that case the table would show that Susan lives in both NYC and PHILLY. 

· An insertion anomaly occurs when we are prevented from inserting information that we want to keep track of. For example, we cannot insert the name and city of a new member in the MEMBER_BOOK until he or she borrows a book. 

· A deletion anomaly occurs when a deletion leads to an unintended drop of data. For example, information about a member is lost, when the only book he has borrowed is returned, and that information is deleted. This will happen to Rajiv if he returns the AI book before borrowing another one. 

The above insertion and deletion anomalies can be eliminated by detecting the last row associated with a member and storing NULL as the value for the attributes related to books. Detecting this condition increases the processing time for each insert and delete operation, and unnecessarily stores NULL values in rows. Hence, this alternative strategy violates two of the above criteria. This means that the MEMBER_BOOK table can only store efficiently those members who have borrowed books. 

Functional Dependencies

Obviously, when we are faced with a relation such as MEMBER_BOOK we need to decompose it into smaller tables. The decomposition needs to be done in such a way that it is 1) a lossless or non-additive join, meaning that if we join the smaller tables we will get back only the tuples of the original table; and 2) dependency preserving, meaning that the constraints on the original table are preserved in some of the individual smaller tables. 

Functional dependencies help us to ensure these two properties as well as to detect potential update anomalies. 

A functional dependency FD describes the relationship between attributes (columns) X and Y in a relation R. The FD "X functionally determines Y" (X -> Y) holds, if a value of X uniquely determines a value of Y in a row. 

In the simplest form, X and Y are both single attributes. For example, in the MEMBER_BOOK table, 

 MEMBER_BOOK(MemNo, Book_Id, DueDate, Mname, City, CallNo, Title)

                  PK

The following FDs involve single attributes. 

 fd1: MemNo -> Mname

 fd2: MemNo -> City

 fd3: CallNo -> Title

 fd4: Book_Id -> CallNo

 fd5: Book_Id -> Title

In the following FDs, the left-hand-side X involves more than one attribute. 

 fd6:  {MemNo, Book_Id} -> DueDate

 fd7:  {MemNo, Book_Id} -> Mname

 fd8:  {MemNo, Book_Id} -> City

 fd9:  {MemNo, Book_Id} -> CallNo

 fd10: {MemNo, Book_Id} -> Title

Since, for example, {MemNo, Book_Id} functionally determines DueDate, Mname, City, CallNo, and Title; it is customary to collapse all the attributes on the right hand side as: 

  {MemNo, Book_Id} -> {DueDate, Mname, City, CallNo, Title}

The collapsed form expressed as a single FD is equivalent to the expanded form expressed as multiple FDs—each conveys the same information to the reader. Furthermore, the collapsed form makes more obvious the attributes that are functionally dependent on the common attributes. Note, however, that you cannot collapse, or conversely, expand the left hand side of a functional dependency. Doing so would convey a completely different meaning. For example, {Book_ID, MemNo} -> DueDate is not the equivalent of saying Book_ID -> DueDate, MemNo -> DueDate. The expanded form does not capture the semantics of the library system. It states that a book determines its due date independently of the borrowing member, and that a member uniquely defines the due date of a book. On the other hand, the original, unexpanded FD states that a due date for a particular book is uniquely determined by the book in conjunction with the borrowing member. In short, in a given table we present only the collapsed FDs present in the table. For example in MEMBER_BOOK, we present the following FDs after collapsing fd6 through fd10 into FD0, fd1 and fd2 into FD1, and fd4 and fd5 into FD3. 

 FD0:  {MemNo, Book_Id} -> {DueDate, Mname, City, CallNo, Title}

 FD1: MemNo   -> {Mname, City}

 FD2: CallNo  -> {Title}

 FD3: Book_Id -> {CallNo, Title}

Note that the functional dependency FD0 captures the primary key (PK) of MEMBER_BOOK.

Two important further observations about FDs are: 

· FDs are creations of the database designer; hence, they cannot be proven mathematically. 

· FDs are statements about all possible instances of a relational schema. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

3.3.2 Normal Forms

· 1NF: First Normal Form 

· 2NF: Second Normal Form 

· 3NF: Third Normal Form 

	Readings:
· Required: Connolly and Begg, sections 13.5–13.9 (in third edition, sections 13.4–13.8, and 13.10; in second edition, sections 6.4–6.7, and 6.9).

· Optional: Connolly and Begg, sections 14.1–14.4 (in third edition, sections 13.9 and 13.11; in second edition, sections 6.8 and 6.10).


Schemas are classified in various normal forms, depending on the existence of various FDs. The presence of a specific type of FD in a relation schema indicates the vulnerability of the relation schema to a particular update anomaly. A dozen FDs have been identified that are used to define more than five normal forms. However, as mentioned earlier in this unit, most database designs aim at creating schemas in 3NF form, a form that involves only three functional dependencies. 

1NF: First Normal Form

1NF Definition: A relation schema is in 1NF, if the domain of every attribute allows a single atomic value. 

That is, every cell in the table contains one and only one value. 

For example, MEMBER_BOOK is in 1NF depending on whether or not DueDate and Mname are composite attributes and Title is a multi-valued attribute—some books have a title and a subtitle. 

 MEMBER_BOOK(MemNo, Book_Id, DueDate, Mname, City, CallNo, Title)

There are no composite or multi-valued attributes, if DueDate, Mname, and Title are character strings; then all attributes are simple atomic and hence MEMBER_BOOK is in 1NF. On the other hand, if any of DueDate, Mname, and Title is a set or an array of character strings, then MEMBER_BOOK is not in 1NF. 

If you review the ER-to-relational mapping algorithm, you will notice that it replaces both composite and multi-value attributes with single atomic values, so as to generate relations in 1NF. 

2NF: Second Normal Form

The 2NF is defined in terms of partial and full dependencies, and is associated with modification anomalies. 

· Full Dependency.X -> Y is full in a relation R, if there is no attribute A in X that can be removed from X and the dependency still hold: X-{A} -> Y. In MEMBER_BOOK, for example, FD1, FD2, and FD3 are full dependencies. 

· Partial Dependency. The inverse of full dependency. X -> Y is partial in a relation R, if there is an attribute A in X that can be removed from X and the dependency can hold: X-{A} -> Y. In MEMBER_BOOK, for example, FD0 is a partial dependency as FD1 and FD3 indicate. 

2NF Definition: A relation is in 2NF, if it is in 1NF and every non-primary-key attribute is fully functionally dependent on the primary key. 

In other words, in a relation that is in 2NF there are no partial dependencies on the primary key. Clearly, MEMBER_BOOK cannot be in 2NF because of FD0, which involves a partial dependency on the primary key. 

 MEMBER_BOOK(MemNo, Book_Id, DueDate, Mname, City, CallNo, Title)

                     PK

We can convert MEMBER_BOOK into a 2NF by breaking it into three smaller tables along the lines of using the full dependencies to indicate the presence of the partial dependency. In this way, the partial dependency is removed. After removing from FD0 the attributes that are fully determined by FD1 and FD3, the remaining attributes are fully dependent on the original key—namely, {MemNo, Book_Id} (this is denoted by FD4 below). Each full dependency is localized within a single table and captured as a full dependency on the primary key. 

  MEMBER(MemNo, Mname, City)

          PK
  FD1: MemNo   -> {Mname, City}
  BOOK(Book_Id, CallNo, Title)

         PK
  FD3: Book_Id -> {CallNo, Title}

  FD2: CallNo  -> {Title}
  BORROW(MemNo, Book_ID, DueDate)

               PK
  FD4: {MemNo, Book_ID} -> {DueDate}

Notice that our decomposition is dependency preserving. All four dependencies have been preserved in some table — three of them by the primary keys of the tables, and FD2 within the BOOK table. 

3NF: Third Normal Form

The 3NF is defined in terms of transitive dependencies and is associated with insertion and deletion anomalies. 

Transitive Dependency: X ->Y is transitive in a relation R, if the following condition holds—X, Y, and Z are attributes of R, such that X -> Z and Z -> Y, and X is not functionally dependent on Y or Z. 

For example, in MEMBER_BOOK, FD0 and FD2 form a transitive dependency. So, do FD3 and FD2 in BOOK. 

3NF Definition: A relation is in 3NF, if it is in 2NF and does not contain a non-primary-key attribute that is transitively dependent on the primary key. 

Considering our example tables, MEMBER_BOOK is not in 3NF, because it is not in 2NF and contains FD2, which establishes a transitive dependency. BOOK is in 2NF but not in 3NF, because it also contains FD2. On the other hand, both MEMBER and BORROW are in 3NF. A relation in 3NF does not suffer from insertion and deletion anomalies, and such is the case with MEMBER and BORROW. 

We can convert BOOK into a 3NF by breaking it into two tables, namely NEWBOOK and TITLE, at the point at which the transitive dependency is established, as we did above in the case of 2NF. 
  NEWBOOK(Book_Id, CallNo)

            PK
  FD3: Book_Id -> {CallNo}
  TITLE (CallNo, Title)

          PK
  FD2: CallNo  -> {Title}

Notice again that all the dependencies in the original BOOK are preserved in the new tables, and that we can join the two tables over CallNo to reconstruct the original table. 

A final note is that the normalization, or normal form approach, is not like the ER approach in that it is not a conceptual design methodology. The normal form approach deals directly with relations and attributes. It can only be applied after we have developed a schema to assert whether it is good or not. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

Unit 4. Transactions and Indexes 

This unit covers transaction management, the process of assuring that queries and updates to the database can be efficient and reliable. Query performance can be further improved through the use of hash files and indexes, which are also thoroughly discussed. 

· 4.1 Transaction Management
· 4.2 Improving Query Performance
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

4.1 Transaction Management 

If one were to divide the idea of a database system into its two core concepts, these would be the data model, which supports data abstraction, and the notion of transaction. This module will introduce and discuss transaction management, focusing on the transaction properties and guarantees that are commonly referred to as the ACID properties—atomicity, consistency, isolation, and durability—and presenting the means of actually providing a database system's transactions with these properties.

· 4.1.1 Transaction Support
· 4.1.2 Concurrency Control Protocols
· 4.1.3 Database Recovery
· 4.1.4 Programming with Transactions
Assessments

· Multiple-Choice Quiz 7
· Exercise 8
· Exercise 9
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

4.1.1 Transaction Support

· Unit of Work and Consistency 

· Unit of Atomicity 

· Unit of Isolation and Concurrency Control 

· ACID Properties 

· Correctness of Concurrent Executions 

· Principles of Concurrency Control 

· Principles of Recovery 

From our discussion thus far, it should be clear that one of the two core concepts in the design of DBMSs is the data model that supports data abstraction, the first characteristic of DBMSs (see 1.1.1 What is a Database?). As we will see, the notion of transaction is the second core concept; it supports reliability and efficiency, the other two characteristics of DBMSs. 

	Readings:
· Required: Connolly and Begg, sections 20.1, 20.2.1, and 20.2.2 (in third edition, sections 19.1, 19.2.1, and 19.2.2; in second edition, sections 17.1, 17.2.1, and 17.2.2).


Unit of Work and Consistency

A transaction is the execution of a program segment that performs some function or task by accessing a shared database. In this respect, a transaction is a logical unit of work on the database; it may consist of one or more database requests—SQL statements, for instance. Examples from different environments are: 

· deposit, withdraw, or transfer money (banking transaction) 

· reserve a seat on a flight (airline reservation) 

· reserve a room in a hotel (hotel reservation) 

· print monthly payment checks (business transaction) 

· update inventory (inventory transaction) 

In our discussion of integrity constraints in 2.2.2 Integrity Constraints in SQL, we also defined a transaction as a unit of consistency. A transaction always takes the database from one consistent state to another. A transaction is committed by the DBMS, if it satisfies all the database integrity constraints. Otherwise, it is aborted, and its effects are rolled back (or undone). For example, a withdrawal transaction that would result in an overdraft is not permitted to commit, but instead is rolled back in order to leave the current account balance intact. 

Unit of Atomicity

Even a correct transaction might violate the integrity constraints on the database, or result in loss of data, if it fails to execute all its statements. Recall the example of the fund transfer transaction in 1.1.1 What is a Database? in which the transfer transaction failed after debiting one account and before crediting the second one. Such a partially executed transaction would violate the integrity constraint that calls for the invariance of the sum of the balance of the two accounts. A number of things can go wrong to interrupt the execution of a transaction that is beyond the control of a transaction. These include hardware failures, such as power outages and disk head crashes, and software failures, such as operating system failures and buffer congestions. 

For these reasons, the DBMS controls and coordinates the execution of a transaction, treating it as a single, indivisible, atomic unit. As a unit of atomicity, either a transaction executes in its entirety or it is not performed at all. As in the case of integrity violation, an interrupted or failed transaction is undone, erasing all its effects from the database. In this way, the database is restored to the consistent state produced by the latest committed transaction just prior to the point at which the failed transaction began executing. 

Unit of Isolation and Concurrency Control

A similar loss of data and integrity may occur even in the absence of failures, because of interferences among concurrently executing transactions. In 1.1.3 When is a Database Management System Needed? we discussed the example of two interfering deposit transactions that result in the loss of the first deposit. This example is an instance of the lost update problem. 

Interferences between concurrently executing transactions may also result in a retrieval by a transaction that is inconsistent with the values of the data in the database, without any loss of database integrity. As a simple example of incorrect retrieval, consider a transaction T that changes column A from 3 to 6 and column B from 5 to 2. The sum of these two columns before and after the committed execution of T is the same. The sum is 8. Now consider a transaction S that selects both these columns and computes their sum. In an interleaved execution of S and T, it is possible for S to retrieve the value of A before it is updated by T (that is, S retrieves 3 for A) and the value of B after it is updated by T (that is, S retrieves 2 for B). As a result, S will compute the sum to be 5 instead of 8! This example is an instance of the non-repeatable read problem. If S executes again after the completion of T and without any other transaction to intervene in between, then S will not return 5 as before, but the correct sum that is 8. 

DBMS executes transactions concurrently, interleaving their database operations in order to maximize transaction throughput and resource utilization. We know that in systems in which transactions execute sequentially or serially, one transaction needs to wait until another transaction completes its execution before accessing any data, thus producing unnecessary delays. In order to prevent any interference, DBMS treats transactions as units of concurrency control and isolation. 

ACID Properties

As data models support data abstraction, transactions can be thought of similarly as supporting activity abstraction. Transactions provide application programmers with a high-level execution interface that hides both the effects of concurrency among the different transactions, and the presence of failures. In this way, programmers are relieved from dealing with the complexity of concurrent programming and failures. They need only to focus on designing the business and application logic, and developing correct individual transactions. At the same time, transactions provide QoS (Quality of Service) guarantees of data consistency and database integrity—despite system failures and concurrent data sharing. 

The above properties and guarantees with regard to transactions are commonly referred to as the ACID properties: Atomicity, Consistency, Isolation, and Durability. The definitions of Atomicity, Consistency, Isolation, and Durability are as follows: 

· Atomicity requires that either "all or none" of the transaction's operations be performed. Thus, all the operations of a transaction are treated as a single, indivisible, atomic unit. 

· Consistency requires that a transaction maintain the integrity constraints on the database. Thus, transactions are assumed to be correct and are treated as the unit of consistency. 

· Isolation requires that a transaction execute without any interference from other concurrent transactions. That is, transactions are assumed to be independent. 

· Durability requires that all the changes made by a committed transaction become permanent in the database, surviving any subsequent failures. 

A DBMS supports the ACID properties of transactions by implementing three different sets of algorithms. The first set, referred to as concurrency control protocols, ensures the isolation property; the second set, referred to as recovery protocols, ensures atomicity and durability properties; and the last set, referred to as triggering mechanisms, enforces the integrity constraints on a database. In 2.2.2 Integrity Constraints in SQL, we discussed the general mechanisms for triggers and assertions. Below we will elaborate on Concurrency Control and Recovery protocols. 

Correctness of Concurrent Executions

Principles of Concurrency Control

In order to design any concurrency control algorithm, we first need to understand what it means for a concurrent execution of transactions to be correct, free from interferences. 

To begin with, let us consider the case of a serial execution of a set of transactions, each of which is consistent. Such an execution is correct because transactions that execute serially cannot interfere with each other. In a serial execution, transactions execute in isolation, one after the other, and without any interleaved operations from other transactions. 

Now let us assume that an interleaved, concurrent execution of the same set of transactions has the same effects on the database, and returns the same data as the serial execution above. Since we cannot distinguish the serial and concurrent execution from their results and we know that the serial execution is correct, then the concurrent execution must be correct as well. Such concurrent transaction executions that are equivalent to a serial execution are called serializable. 

Serializability is the basic notion of correctness for the concurrent execution of transactions in DBMSs. An execution of a set of transactions is also called a schedule or history. It should be pointed that in an execution, the order of the operations in each of the individual transactions is preserved. That is, the semantics of the individual transactions are preserved. 

There are several definitions of serializability but most practical concurrency control protocols provide for conflict serializability. Conflict serializability is based on the notion of conflicting operations. Two transactions are conflict serializable if their serialization order is determined by their conflicting operations. Two operations on the same data item conflict, if it matters which order they are performed in. Operations may conflict for the following reasons: 

· the return values are order dependent 

· the effects on the state of the database are order dependent 

For example, a transaction T1 writes 5 into data item x, and a transaction T2 writes 3 into data item x. If the write by T1 precedes the write by T2, then the final value of x will be 3. If their order is reversed, then the final value of x will be 5. In general, if one transaction writes a data item and another either reads or writes the same data item, the order of execution is important, and therefore write operations conflict with any other read or write operations on the same data item. 

Non-conflicting operations are called compatible. For example, two read operations are compatible. 

Conflicts represent ordering dependencies between transactions that may result in interference. In fact, the presence of the above three conflicts—write-write, read-write, and write-read—is associated with the three types of interference in an interleaved execution. For example, the non-repeatable read problem discussed earlier is due to the presence of the read-write dependency between S and T. The lost update problem is due to the presence of the write-write dependency between the two deposit transactions. The last type, the write-read dependency, leads to problems known as dirty read or uncommitted read. As an example of dirty read, consider a withdrawal transaction that reads the balance written by another deposit transaction before the deposit transaction commits or rolls back. If the deposit subsequently issues a rollback, then the withdrawal read data that never committed, and thus never existed. 

There are two reasons for using conflict serializability. Concurrency control protocols based on conflict serializability can be easily designed, and more importantly, easily verified as being correct. A schedule produced by a concurrency control protocol can be shown to be conflict serializable using a precedence graph, called a serialization graph. A schedule is conflict serializable if its corresponding serialization graph is acyclic, that is, if it does not contain cycles. A cycle in the serialization represents circular ordering dependencies. It means that a transaction involved in a cycle both follows and precedes itself, which is of course impossible in any serial execution and, consequently, impossible in any serializable execution as well. 

Let us clarify the concepts with two examples. 

Example: Schedule H1 

        T1           T2

        Read (x)

                     Read (x)

                     Read (y)

        Read (y)

        Commit 

                     Commit
The schedule H1 is serializable. Because T1 and T2 have only invoked read operations that are compatible, there is no ordering dependency between them. This means that T1 and T2 can be serialized in any order. For instance, if read(y) of T1 had been executed before the read(x) of T2, the result of this new schedule would have been the same as H1. But, this new schedule is a serial schedule in which T1's execution precedes T2's execution. On the other hand, if the read(x) of T1 had been moved after the read(y) of T2, the resulting schedule is a serial schedule in which T2 precedes T1. 

Example: Schedule H2 

      T3           T4
      Read(x)

                   Read(y)

      Write(y)

      Commit

                   Commit

The schedule H2 is also serializable. H2 is equivalent to a serial schedule in which T4 precedes T3. The reason is that the read(y) of T4 conflicts with the write(y) of T3. This means that the read(y) of T4 cannot appear after the write(y) of T3 in any equivalent schedule of H2. On the other hand, since the read(x) of T3 and the read(y) of T4 are compatible, the read(y) of T4 can appear before the read(x) of T3 in an equivalent schedule. But, such a schedule in which the read(y) of T4 appears before the read(x) of T3 is a serial schedule in which T4 precedes T3. 

Principles of Recovery

The goal of recovery is to ensure atomicity and durability. 

· When a transaction is aborted due to either a rollback request or a system failure, the recovery mechanisms must 

· obliterate any updates on data items by the aborted transaction in the database, and 

· obliterate any effects of the transaction on other transactions—transactions that read data items updated by the aborted transactions. 

· When a transaction is committed, the recovery mechanism must make its updates permanent in the database so it can reinstate them after a system failure. 

The commit and rollback are irrevocable primitives. Once the DBMS commits or aborts a transaction, it "forgets" it. This means that if a transaction is aborted and rolled back, then the system cannot subsequently commit it. Of course, an aborted transaction can be submitted, re-executed, and committed as a new transaction. Similarly, a committed transaction cannot be subsequently aborted and rolled back. If it was a mistake to commit a transaction, the only way to reverse its effects is to write and submit another compensating transaction. 

A DBMS cannot roll back a committed transaction without violating the durability property because transactions are independent. This is in addition to the fact that a DBMS cannot automatically write compensating transactions. This means that a DBMS should prevent unrecoverable transaction executions, never committing a transaction that might have to be aborted as part of the rollback of another transaction. 

An execution is recoverable if for every pair of transactions Ti and Tj, where Tj reads dirty or uncommitted data from Ti, then the commitment of Tj follows the commitment of Ti. 

Interestingly, the ordering dependencies (conflicts) that are used to define serializability, i.e., the correctness of concurrent executions in the absence of failures, can also be used to define the recoverability properties of concurrent executions. For example, in the presence of write-read dependencies, an execution is recoverable if for every pair of transactions, its order of commitment is consistent with its write-read dependencies. 

The absence of write-read dependencies leads to a stronger recoverability property, called Avoiding Cascading Aborts or Rollbacks. Having to abort a transaction due to the rollback of another transaction not only violates the transaction independence assumption but also wastes resources and reduces system performance. A single transaction rollback can potentially lead to a series of rollbacks, called cascading rollbacks, with even greater impact on system performance. Clearly cascading rollbacks are undesirable. They can be prevented if every transaction is permitted to read only those values that were written by committed transactions. 

Finally, the absence of write-write dependencies from an avoiding-cascading-aborts execution significantly simplifies the recovery algorithms, reducing their computational overhead both during normal processing and during recovery. Such an execution is called strict. All the practical recovery mechanisms assumed strict executions in which a transaction is not permitted either to read or to overwrite values produced by another uncommitted transaction. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

4.1.2 Concurrency Control Protocols

· Two-Phase Locking Protocols 

· Basic 2PL 

· Strict 2PL 

· Deadlocks and Livelocks 

· ANSI SQL2 Isolation Levels 

	Readings:
· Required: Connolly and Begg, sections 20.2.3 and 20.2.4 (in third edition, sections 19.2.3 and 19.2.4; in second edition, sections 17.2.3 and 17.2.4).


Broadly speaking, concurrency control protocols are distinguished into conservative (or pessimistic) and aggressive (or optimistic). 

· Conservative protocols are based on the assumption that conflicts are frequent, so a transaction has to get permission before performing an operation on a data item. A permission request is denied if there would be a conflict that can potentially lead to a non-serializable execution. Depending on the scheme, a requesting transaction is either made to wait (blocked) until the permission can be granted, as in the case of locking methods, or aborted and restarted, as in the case of timestamp methods. 

· Aggressive protocols are based on the assumption that conflicts are rare, so transactions are allowed to perform conflicting operations without being made to wait. When they attempt to commit, transactions are validated or certified to ensure that they are serializable. If a transaction is validated, it means that it has not executed any conflicting operations and it can be committed. 

Every proposed concurrency control protocol has been shown to exhibit superior performance under certain situations, but there is no single protocol that performs best in all situations. However, commercial DBMSs have adopted for the strict two-phase locking protocol, because of its simplicity and ease of implementation compared to the alternatives. Next, we discuss the two-phase locking protocols. For a discussion of timestamping methods, and on optimistic methods, see sections 20.2.5, 20.2.6, and 20.2.7 of Connolly and Begg (sections 19.2.5, 19.2.6, and 19.2.7 in third edition; sections 17.2.5 and 17.2.6 in the second edition). 

Two-Phase Locking Protocols

Locking is the most common synchronization mechanism both in operating systems and in DBMSs. Lock represents permissions to perform operations. In DBMSs, locks are associated with each data item in the database. There are two types of locks. 

  Read or Shared lock

A shared lock on an item represents the permission to perform a read operation on the data item. 

  Write or Exclusive lock

An exclusive lock on an item represents the permission to perform a write operation on the associated data item. 

Locks conflict if they are associated with conflicting operations. For example, a read lock conflicts with a write lock on the same data item, but it is compatible with other read locks on the same data item. 

Before performing an operation on a data item, a transaction must obtain an appropriate lock on the data item. The two-phase locking (2PL) protocols specify the rules for transactions acquiring and releasing locks. 

Basic 2PL

In 2PL, a transaction requests an appropriate lock just before performing an operation. If a transaction requests a conflicting lock, it is blocked, awaiting the release of the conflicting lock. Otherwise, the appropriate lock is granted to the transaction. 

Each transaction is executed in two phases. 

  The growing phase
The transaction acquires all the required locks, but cannot release any lock. 

  The shrinking phase
The transaction releases its locks, but cannot request additional locks on any data item. 

According to these rules, a transaction cannot downgrade a write lock into a read lock, because downgrading is equivalent to releasing the write lock and subsequently requesting and acquiring a new read lock. However, it is possible for a transaction to upgrade a read lock into the stronger write lock during the growing phase. 

Since transactions are made to wait on conflicting locks, the order in which locks are granted to transactions imposes an execution ordering on the transactions with respect to their conflicting operations. The 2PL protocol ensures serializability by not allowing transactions to acquire any lock after a lock has been released. Hence, it prevents cyclic ordering to be established. Let us illustrate this by showing how the non-repeatable read problem is solved using 2PL. 

Recall our example above, of inconsistent retrieval involving two transactions T and S and two columns A and B. We depict below their non-2PL and 2PL executions with time diagrams. We denote local variables with lower case letters and with * values produced by committed transactions. In the 2PL execution, we specify the required lock requests. 

  ________________________________________________________

  A Non-2PL Execution

  ________________________________________________________

  Time       T             S           A    B    Sum
   t1     v = read(A)                  3*   5*    8*

   t2                    x=read(A)     3*   5*    8*

   t3     v = v + 3                    3*   5*    8*

   t4     write(A,v)                   6    5*    11

   t5     v = read(B)                  6    5*    11

   t6     v = v - 3                    6    5*    11

   t7     write(B,v)                   6    2     8

   t8     commit                       6*   2*    8*

   t9                    y=read(b)     6*   2*    8*

   t10                   output(x+y) ----> 5  <>  8*

   t11                   commit

  ________________________________________________________

In the non-2PL execution, there is a cyclic ordering captured by the conflicting of read(A) by S with the write(A) of T, and the conflicting of write(B) by T with the read(B) of S. 

In the 2PL execution, by requesting and acquiring a write lock on A at the beginning, T blocks S's read lock request, forcing S to wait until T commits and reads the consistent values of A and B that are produced by T. In the non-2PL, a non-serializable execution, S reads inconsistent values for A and B. It reads B from T, and A from another previously committed transaction. 

  ________________________________________________________

  A 2PL Execution

  ________________________________________________________

  Time       T                S           A    B    Sum
   t1     write_lock(A)

   t2     v = read(A)                     3*   5*    8*

   t3                      read_lock(A)   3*   5*    8*

   t4     v = v + 3        WAIT           3*   5*    8*

   t5     write(A,v)       WAIT           6    5*    11

   t6     write_lock(B)    WAIT           6    5*    11

   t7     v = read(B)      WAIT           6    5*    11

   t8     v = v - 3        WAIT           6    5*    11

   t9     write(B,v)       WAIT           6    2     8

   t10    release-locks    WAIT           6    2     8

   t11    commit           WAIT           6*   2*    8*

   t12                     x=read(A)      6*   2*    8*

   t13                     read_lock(B)   6*   2*    8*

   t14                     y=read(b)      6*   2*    8*

   t15                     output(x+y) ----> 8  ==   8*

   t16                     release-locks

   t17                     commit

  ________________________________________________________

Strict 2PL

In general, not all the locks required by a transaction are known when the transaction begins its execution. This is also true at any stage during the execution of a transaction. Required locks are determined and obtained dynamically as the transaction executes its statements. And, in accordance with 2PL, the transaction keeps all the acquired locks until it reaches the stage in which no more locks are needed and the transaction can safely enter its shrinking phase. But, as we have just discussed, we cannot predict the point at which no more locks will be needed, which is especially the case in the presence of deferred integrity constraints that are evaluated at commit time. Thus, the safest point to release all the locks is when the transaction is committed. 

The Strict 2PL protocol, a variant of the basic 2PL, is one in which transactions request locks just before they operate on a data item and their growing phase ends just before they are committed. For this reason, strict 2PL is easier to implement than other 2PL variants. 

Since a transaction does not release any of its locks until it commits, no other transaction can read or overwrite any of its generated values. Thus, except in the case of serializable executions, strict 2PL produces strict executions that are amenable to simple recovery mechanisms. Further, strict 2PL produces rigorous executions whose fundamental property is that the serialization order of a set of transactions is the same as their commit order. Rigorous executions are strict executions in which a value read by an uncommitted transaction is not overwritten by another transaction. This property is important when interoperating heterogeneous database systems. 

Deadlocks and Livelocks

There are two interrelated problems with 2PL locking. 

· Deadlock occurs when two or more transactions are blocked indefinitely because each holds locks on data items upon which the others are trying to obtain conflicting locks. 

· Livelock—also known as a cyclic restart—occurs when a transaction is aborted and restarted repeatedly. 

A livelock differs from a deadlock in that it allows a transaction to execute but not to complete itself, whereas in a deadlock, transactions cannot execute at all. 

Unfortunately, there is only one way to resolve deadlocks: to abort and rollback one or more transactions, releasing their locks in order that the other blocked transactions can complete their executions. Ideally, aborted transactions are automatically restarted by the DBMS, also making sure that the same transaction is not selected and restarted indefinitely, leading to a livelock. For this reason, an aging scheme is typically used in conjunction with deadlock resolution schemes that prevent a transaction from ever becoming a victim later on. The simplest aging scheme defines a threshold. This scheme associates each transaction with a counter that is incremented every time the transaction becomes a victim and is aborted. A transaction is not considered for selection once the value of its counter exceeds the threshold value. 

There are two methods commonly used by DBMSs to detect and break deadlocks. The simplest method is timeout, which aborts a transaction that has been waiting too long for a lock by simply guessing that the transaction may be involved in a deadlock. This method might unnecessarily abort transactions due to wrong guessing, but it does not lead to incorrect executions or failures to detect deadlocks. 

The other common, more accurate (but more expensive) method is based on wait-for graphs. A wait-for graph is constructed as follows: 

· For each active transaction, create a node. 

· Add a directed edge from Ti → to Tj, if Ti is waiting for a lock on a data item that is currently locked by Tj. 

A cycle in a wait-for graph represents a deadlock. For example, Ti → Tj → Ti. 

Deadlock detection involves checking for cycles in a wait-for graph, and if there is a deadlock, selecting a victim and aborting it, thus freeing all the locks held by the victim. Deadlock detection is performed either periodically or each time a transaction is blocked. The latter is referred to as deadlock avoidance since it does not allow any deadlock to exist undetected in the system. It is very expensive, however, since it adds considerable overhead to the execution of each and every transaction. On the other hand, periodic deadlock detection reduces this overhead but with the risk of potentially failing to detect a deadlock for a long period. Dynamic deadlock detection algorithms attempt to tune the deadlock detection interval automatically based on the frequency of deadlocks. For example, each time without any detection of deadlocks, the detection interval is then doubled, and each time a deadlock is detected, the current deadlock detection interval is cut in half. 

ANSI SQL2 Isolation Levels

Serializability is the default correctness criterion in DBMSs. However, enforcing serializability is computationally expensive and might unnecessarily delay some transactions due to blocking. For example, in the case of statistical applications, absolutely consistent retrievals ensured by serializability are not necessary because any inconsistencies can be taken care of as part of the statistical errors. 

For this reason, SQL allows for specifying the isolation level that a transaction is required to have with respect to its read operations. There are four different levels of isolation that can be specified in a separate, optional clause of the SET TRANSACTION statement: 

 SET TRANSACTION  READ ONLY | READ WRITE

 [ ISOLATION LEVEL  READ UNCOMMITTED | READ COMMIT |

                    REPEATABLE READ  | SERIALIZABLE  ]

READ UNCOMMITTED permits the reading of dirty data, whereas the READ COMMIT does not. That is, READ COMMIT prevents write-read dependencies. REPEATABLE READ prevents both write-read and read-write dependencies. That is, it ensures that a transaction does not experience dirty or non-repeatable reads. On the other hand, it might experience the phantom problem. The phantom problem is similar to the migrating rows problem in views. Two consecutive executions of the same select statement might return a different set of rows, because, for example, new rows were inserted in between the two executions that satisfy the selection condition. In SERIALIZABILITY, none of the problems, including the phantom problem, are possible. 

In JDBC, levels of isolation can be specified using the setTransactionIsolation() method on Connection objects. For example, the default is dbcon.setTransactionIsolation(TRANSACTION_SERIAZABLE). 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

4.1.3 Database Recovery

· The DBMS Executing Environment 

· Recovery Actions 

· Logging 

· Recoverability Rules 

· Crash Recovery Techniques 

· Restart with UNDO/REDO Recovery 

· Checkpointing 

· Restart with Action-Consistent Checkpointing 

	Readings:
· Required: Connolly and Begg, section 20.3.1–20.3.4 (in third edition, section 19.3; in second edition, section 17.3).


The DBMS Executing Environment

In order to understand better what recovery requirements are, it is necessary to review the DBMS environment within which transactions execute, and identify the different types of failures. 

A DBMS stores a database on a secondary storage. We will refer to the database on secondary storage as the stable database. Because transactions execute within the main memory, the DBMS needs to bring portions of the stable database into a database buffer in main memory. The database pages in the database buffer may not be written back to the stable database immediately after a transaction commits. They are kept in the database buffer in order to optimize writing back to the disk as well as to avoid the cost of accessing the stable database for each data access. (Note that disk access is one of the most expensive computer operations.) On the other hand, when the database buffer runs out of space, the DBMS flushes some database pages back to the stable database in order to free up some space. It is possible for some of these pages to have been modified by uncommitted transactions. 

Recovery Actions

Recovery protocols usually implement two basic actions that are performed on the state of the stable database, namely, the undo action and the redo action. 

  undo action
This is required for atomicity. It undoes the effects that aborted transactions have had on the stable database.

  redo action
This is required for durability. It redoes the effects that committed transactions have had on the stable database.

After a transaction failure or a rollback request, the undo action is used as part of the transaction recovery (rollback). The undo action is used to remove from the stable database any of the aborted transaction's updates that might have been flushed to the stable storage in order to free up space in the database buffer. In this way, the state of the stable storage is restored to a state that does not reflect the effects of the aborted transaction. Any updates of the aborted transaction in the database buffer are discarded. 

After a system failure, both undo and redo actions are used as part of the crash recovery or restart procedure. Because of the crash, it is possible for the stable database 1) to contain updates of uncommitted transactions and 2) not to contain updates of committed transactions that were in the database buffer. Again, the undo action can be used to remove from the stable database the updates of the uncommitted transactions that failed because of the system failure. The redo action is used to install in the stable database the updates of the committed transactions. Thus, after a system failure, the stable database is restored to a state that is consistent to the state of the entire database just prior to the failure, the state that reflects only the effects of the transaction committed up to the system failure. 

After the stable database is destroyed by a media failure, such as a disk crash, the redo actions are also used as part of the media recovery to repair the stable database from a backup copy. Backup copies of the database are similar to file backups, made periodically without necessarily interrupting transaction processing. 

Logging

The information needed for the undo and redo actions is kept in a log (which is also called a journal or audit trail since it usually contains additional information used for auditing purposes.) 

A log is a sequence of records that represents all modifications to the database. Furthermore, the log records the identifiers of the transactions that are committed or aborted. For example, 

              [Ti, COMMIT]   [Tj, ABORT]

Log update records may describe either physical changes or logical database operations. 

· In physical logging, for each operation that updates a data, the DBMS records the transaction identifier Ti, the updated data D, the old value b of the data (called the before image), and the new value a of the data (called the after image). For example, [Ti, D, b, a]. Before images are used by undo actions and after images by the redo actions. 

· In logical logging, instead of recording the before images, the DBMS records the higher level operations OP that cause the modifications; and instead of after images, it records the inverse operations INV. [Ti, OP, OP Parameters, INV, INV parameters] For example, an operation can be to insert a key and its inverse to delete the key. 

In a sense, the log represents the history of the transaction execution with respect to its updates. The order in which updates appear is the same as the order in which they actually occurred. 

Recoverability Rules

The DBMS maintains the log in a log buffer in main memory. In order to ensure that a log contains the needed information for recovery, it saves the log on secondary storage that survives systems failures. The log is made stable, i.e., written on secondary storage, following two rules. 

· The Undo Rule better known as the WAL (Write-Ahead Logging) principle: The updates of a transaction are not applied in the stable database until after the log records that correspond to the updates show up in stable storage. In this way, if a system failure occurs, the required information for undoing uncommitted updates is available in the stable log. 

The undo rule permits updates to be applied on the stable database one at a time and at any time, without the threats of violating transaction atomicity and corrupting the stable database. 

· The Redo Rule: A transaction is not committed until after the part of the log pertaining to the transaction is in stable storage. In this way, if a system failure occurs, the information required for redoing the committed updates can be found again in the stable log. The redo rule decouples the processing of transaction commits from the forcing of the updates of committed transactions onto the stable database. Once all the log records corresponding to the updates of a transaction are on stable storage, the transaction can be committed. 

Crash Recovery Techniques

The complexity of the crash recovery procedure—and the need for undo and redo actions—depend on the database update and update propagation policies employed by the DBMS. 

The need for undo actions depends on which one of the two database update policies is used: 

  Immediate Updates
Transaction updates are applied directly on the pages in the database buffer. Since modified pages can be flushed to the stable database before a transaction reaches its commit point, undo actions are needed in the event of a system failure. 

  Deferred Updates
Transaction updates are applied to the database after the transaction has reached its commit point. Since modified pages cannot be propagated to the stable database, there is no need for undo actions in the event of a system failure. 

The need for redo action depends on the page propagation strategy at commit time: 

  Force Propagation
All modified pages are propagated during the commit processing of the modifying transaction. Since a transaction is not committed until all its modified pages are written back to the stable database, there is no need for redo actions in the event of a system failure. 

  No-Force Propagation
No page propagation is initiated during commit processing. Since pages modified by committed transaction might not have been propagated to the stable database, there is a need for redo actions in the event of a system failure. 

In general, crash recovery techniques are classified into four types: Undo/Redo, Undo/No-Redo, No-Undo/Redo, and No-Undo/No-Redo protocols. 

· The Undo/Redo recovery protocol requires both undo and redo actions and allows great flexibility in the management of the database buffer by employing immediate updates and no-force propagation. It permits pages written by uncommitted transactions to be replaced and flushed back to the database whenever there is a need. It does not unnecessarily delay transaction commitment by requiring pages written by a committing transaction to be propagated to the database during that transaction's commit processing. Hence, Undo/Redo recovery protocol maximizes efficiency during normal operation but at the expense of less efficient recovery processing than is possible with the other recovery protocols, which avoid redo, undo, or both. 

· The Undo/No-Redo recovery protocol requires undo but never redo actions by ensuring that all the updates of a committed transaction are reflected in the stable database. This is achieved by combining immediate updates and force page propagation policies. Thus, the commitment of a transaction is delayed until all its updates are recorded in the stable database. In order to minimize the delays during transaction commitment, such protocols typically flush the database buffer back to the stable database more frequently than necessary, and therefore they involve more I/O and are less practical. 

· The No-Undo/Redo recovery protocol, also known as logging with deferred updates, never requires undo actions, but it does require redo actions. This is achieved by combining deferred updates and non-force page propagation policies. The updates of a transaction are not applied directly in the database buffer but instead are recorded in the system log in a list, called an intention list. At commit time, the committed transaction's intention list is put on a stable storage and subsequently its updates are applied on the database, one by one. This scheme effectively redoes every committed transaction during normal processing, and as a result incurs an additional overhead for each transaction. 

· The No-Undo/No-Redo recovery protocol is commonly referred to as shadow versions, shadow pages, or careful replacement. It combines deferred updates and no-force page propagation policies and does not use a log. It avoids undo actions by creating a private shadow version in stable storage for each page a transaction updates. It keeps track of the two sets of pages by maintaining two page tables for each transaction. When modified pages are flushed out of the database buffer these are written in their shadow version. This protocol also avoids redo actions by atomically replacing the actual page table of the stable database with the transaction's shadow table at transaction commit time. In this way, the actual pages in the stable database are replaced with their corresponding shadow versions that are associated with a transaction. Despite the fact that the shadow version recovery is significantly faster compared to the other recovery protocols, and does not require a log, it is not used in practice. This is because of its extensive disk space requirements (especially for large databases), the need for periodic garbage collection to reclaim inaccessible blocks, and the fact that it leads to data fragmentation, which destroys any clustering of the data that improves its retrieval (see cluster index in "4.2.3 Indexes"). 

Our above discussion indicates that the first recovery protocol, namely, the UNDO/REDO protocol, must be the most practical of all, especially given the fact that nowadays systems failures are rather rare. In fact, this is the recovery protocol implemented by almost all DBMSs. Next, we will elaborate on this recovery protocol, assuming strict executions such as those produced by strict 2PL. Note that the other two log-based recovery techniques work similarly. 

Restart with UNDO/REDO Recovery

After a system crash, recovery is performed as part of the system restart. Assuming strict executions and physical logging, the undo/redo recovery proceeds in three sequential phases: analysis phase, undo phase, and redo phases. 

· During the analysis phase, the log is scanned backwards from the end of the log in order to determine the following: 

1. Which transactions have committed (which, that is, are associated with a commit record). 

2. Which transactions have aborted (which are associated with an abort record). 

3. Which transactions were active at the time of the crash (which are associated with an update record but with no commit or abort record). 

When the entire log is scanned, the analysis phase terminates by producing two transaction lists, namely, the redo list, containing all the committed transactions, and the undo list, containing both all the abort transactions and active transactions at the time of the crash. 

· During the undo phase, the log is again scanned backwards starting from the end. For each update log record associated with a transaction on the undo list, the before image in the record is written to the data item specified in the record. When the update that is associated with the first update log record of an aborted transaction (specifically marked as such) is undone, then the transaction is removed from the undo list. The undo phase is only complete when all these have been removed and the undo list is empty. Notice that each transaction's updates are undone in the reverse order of their execution, effectively rolling back the transaction. 

· During the redo phase, the log is scanned forward, starting from the beginning. For each update log record associated with a transaction in the redo list, the after image in the record is written to the data item specified in the record. When the commit record of a transaction is read, the transaction is removed from the redo list. The recovery is complete when the redo list is empty. 

As an example, consider the following diagram showing a number of concurrent executing transactions and a system failure at time t9. The beginning of the arrow represents the beginning of the transaction, the head of the right arrow represents a commit, and the head of the left arrow an abort. 
                                               Crash

    T1 |-------------------->                    |

           T2 |----------------------------------|

                   T3 |--------------<           |

         T4 |---->                               |

                                                 |

            T5 |----------------<                |

                                                 |

                   T6 |-------------------->     |

 time t0.........................................t9
During the analysis phase, scanning backwards from the end, the recovery procedure will immediately identify T2 as being active at the point of the crash and will add it on the undo list. Then it will encounter the T6' commit record and it will add T6 to the redo list. Subsequently, it will encounter the abort records of T3 and T5, adding them to the undo list. Finally, it will read the commit records of T1 and T4 and add them to the redo list. During the undo phase, it will undo T2, T3, and T5, and during redo phase, it will redo T1, T4, and T6. 

Note that the above recovery procedure is idempotent, which is to say that even if it is interrupted because of another system failure and re-executed as part of the new restart, it will have the same effect as just one completed recovery. That is, it will restore the database to the consistent state just prior to the first failure. 

Finally, because both the analysis and undo phases scan the log backwards, they are typically combined for efficiency. 

Checkpointing

The basic UNDO/REDO recovery assumes that all the effects of the aborted and active transactions—and none of the effects of the committed transactions—were propagated to the stable database. As a result, it needs to scan the entire log! As the log grows longer, restart and the recovery procedure become prohibitively slow. Furthermore, the stable log may become very long and may not fit on disk. 

The recovery procedure can be sped up, and the size of the log reduced, by checkpointing the updates that have been performed up to a certain time. With checkpointing, the effects of all transactions that are committed or aborted by the time of a certain checkpoint are propagated to the stable database, thereby eliminating the need to redo or undo these transactions after a system failure. Hence, their associated log records are not needed and can be discarded from the stable log. Transactions that started and committed or aborted after the checkpoint need to be redone or undone completely. Whether the effects of transactions in progress are also propagated to the stable database during checkpointing depends on the particular checkpointing method. 

When a checkpoint is taken, no transaction processing is performed. There are several checkpointing methods offering different trade-offs between transaction suspension time (and hence increase-in-transaction-response time) and reduction of the size of the log (and hence acceleration of recovery). The most commonly used checkpoints are action-consistent checkpointing, and its variant, fuzzy checkpointing. 

Restart with Action-Consistent Checkpointing

The action-consistent checkpoint method waits for all the operations in progress to reach completion, and then it forces all the updates in the database buffer onto the stable database, making them permanent. As a result, the effects of active transaction during checkpointing are propagated to the stable database, along with those of the committed and aborted transactions. It is possible for some of these active transactions at the checkpoint to abort, or fail, due to a system failure afterwards. This means that their effects have to be undone during recovery. On the other hand, if they finally commit, these transactions need to be redone, starting from the checkpoint and not from their beginning. In order for the system to remember these active transactions, it records them in the corresponding checkpointing log record. The process of checkpointing is complete when the log record is forced onto stable storage and becomes part of the stable log. 

Let us illustrate how UNDO/REDO recovery works with action-consistent checkpointing by revisiting our above example. Assume that at times t3 and t6 two checkpoints have been performed. 
             Checkpoint1     Checkpoint2       Crash

                  |               |               |

    T1 |----------|---------->    |               |

           T2 |---|---------------|---------------|

                  | T3 |----------|----<          |

         T4 |---->|               |               |

                  |               |               |

            T5 |--|--------------<|               |

                  |               |               |

                  | T6 |----------|---------->    |

 time t0..........t3..............t6..............t9
After Checkpoint2 is taken, Checkpoint1 can be ignored because it is not needed for recovery. After the crash at t9, the analysis phase will proceed as before, building the redo and undo lists. When it reads a checkpoint log record corresponding to Checkpoint2, it finds which transactions recorded in the checkpoint do not appear on either the undo or redo lists. It adds these transactions to the undo list and finishes. Such transactions must have been active at the times of the checkpoint and the crash, but they have not performed any update operation after the checkpoint. In our example, T2 is such a transaction and will be added to the undo list along with T3. The redo list will contain only one transaction—T6. 

During the analysis phases, the log will be scanned backward from the end and beyond the checkpoint as necessary to undo T2 and T3. During the redo phase, T6 will be redone starting from checkpoint2. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

4.1.4 Programming with Transactions

· Introduction 

· Consistency of Program Variables 

· Transaction Boundaries 

· Isolation Level 

· Transactions in PostgreSQL 

Introduction

Transactions may be initiated, committed, and rolled back from within applications. Embedded SQL statements can be used to start and stop transactions. There are many advantages to using transactions in applications. For example, this allows a set of operations on the database from within a program to act as an atomic unit, either completing or not occurring at all. An application developer must keep the following factors in mind when programming with transactions: 

· Care must be taken to ensure the consistency of program variables.

· Transaction boundaries must be set properly to allow maximum concurrency and semantic correctness.

· The correct isolation level must be set to allow maximum concurrency and semantic correctness.

Consistency of Program Variables

When using transactions within an application, the application developer must take great care to ensure the consistency of any program variables that are set by data queried within a transaction. If a transaction is rolled back, variables that were updated by the transaction may need to be set back to their original values. Consider an online banking system that allows users to pay their monthly bills via the internet. The system consists of an HTML form where users see a list of their bills and a text-input box that allows them to enter the amount to pay for each bill. The user clicks a submit button to submit the form. When the form is submitted, all bills are paid in a single transaction. For each bill that is paid, a variable named amount within the application is updated to reflect the cumulative amount deducted from the user's checking account. When all of the bills are paid, the amount deducted is displayed to the user. Consider the following sequence of operations that depict this scenario:

· amount = 0

· Begin Transaction

· For Each Bill

· Transfer money from payer to payee (transferring money will deduct from the payer's account balance and increment the payee's account balance).

· Increment amount transferred from the payer to the payee.

· Commit if success, roll back otherwise

· Display the amount deducted from payer's checking account.

If the transaction to pay the bills fails, the cumulative amount variable must be set back to zero so that the correct amount is displayed at the end. The amount variable should also be set to zero after the transaction begins because a retry of the transaction will need to have amount=0.

Transaction Boundaries

Incorrect transaction boundaries may also lead to incorrect behavior in an application. In particular, incorrect transaction boundaries may lead to both logic errors and poor performance. 

Consider the Web-banking example above. Suppose the total amount deducted from a user's checking was displayed before the commit. If the transaction fails to commit and is subsequently rolled back, then a user will see the incorrect amount deducted from his checking account and mistakenly think his bills had been paid. 

In general, you should set transaction boundaries in an application so that only operations on the database are part of the transaction. Placing any user input statements within an application level transaction may limit the concurrency of other transactions in the database, thus degrading the performance of the entire system. This problem arises when an application-level transaction locks a data item and must wait for user input. All data items that the transaction has accessed are locked. All other transactions in the system that operate on these data items must wait for the transaction that locked them to release the locks.

For example, consider a Web banking system. Suppose two users are sharing a checking account and they simultaneously initiate transactions on the account. A poor implementation of the application may look like the following:

1. User logs into the system.

2. DBMS starts a transaction.

3. The system waits for user's choice of action.

4. User chooses to withdraw money from checking.

5. DBMS locks checking account.

6. The system waits for user to enter withdrawal amount.

7. User enters amount.

8. The system issues command to DBMS to update the account balance.

9. The system waits for user to choose new action or quit.

10. User chooses to quit.

11. DBMS commits transaction and unlocks the checking account.

The above scenario will stop one of the two users from accessing the checking account while the other has locked it. The user who cannot access the account must wait to begin until the other has completed his transaction. A different implementation that allows greater concurrency is given below. This scenario allows each user to use the Web banking system simultaneously. 

1. User logs into the system.

2. The system waits for user's choice of action.

3. User chooses to withdraw from checking.

4. The system waits for user to enter withdrawal amount.

5. User enters amount.

6. DBMS starts transaction and locks checking account.

7. The system issues command to DBMS to update the account balance.

8. DBMS ends transaction and unlocks the checking account.

9. ATM waits for user to choose new action or quit.

10. User chooses to quit.

Isolation Level

Setting improper isolation levels for transactions may limit the concurrency of all transactions in the database as in-progress transactions hold unnecessary locks that others need to proceed. Improper isolation levels may also lead to an application retrieving inconsistent or "dirty" data written by updates from other transactions.

For example, in the case of an application reporting rough statistics, absolutely correct retrievals ensured by the serializable isolation level are not necessary because the statistics need not be the most accurate and up-to-date. In this case, read-committed isolation may be appropriate to allow maximum performance for all transactions. For example, consider a sensor network that is to record temperatures once per second for twenty-four hours in an area where temperatures do not fluctuate dramatically. Each sensor records the temperature and updates an average temperature for the area stored in a DBMS. Because samples are taken at very short intervals, two transactions that update average temperatures that differ slightly at the same instant will not adversely affect the final average temperature. 

In other circumstances, such as financial applications, absolute consistency is necessary. Allowing more than one user to operate on a record may violate the consistency of the database. Simultaneous accesses to an account record may cause two transactions to see inconsistent values for the account balances. An example of this is illustrated on page 579, figure 20.6 of Connolly and Begg (page 557, figure 19.6 in the Third Edition; page 564, figure 17.5 in the Second Edition). 

In general, you should use the least strict isolation level for your read transactions that will allow for semantically correct application behavior. Using the least strict, yet semantically correct, isolation level allows your application to experience correct behavior and maximum concurrency. You must analyze the potential dependencies between the database items that your application is accessing and the effects on their values. Consider the following heuristics: 

· If the transactions in your system have the potential to suffer from reading dirty data and the semantics of your application do not allow this, your transactions should be run at least at read committed isolation. Consider figure 20.5 of Connolly and Begg (19.5 in the third edition; page 563, figure 17.4 in the second edition). 

· If reading dirty data is acceptable, your transactions can be run at read uncommitted isolation.

· If the semantics of your application dictate that non-repeatable reads are unacceptable but phantom reads are acceptable, then, minimally, repeatable read isolation is appropriate. 

· Serializable isolation should be used when phantom reads are unacceptable. Consider the example from figure 20.6 of Connolly and Begg above (figure 19.6 in the Third Edition; figure 17.5 in the Second Edition). If this behavior for your application is unacceptable, your transactions should be run at the serializable isolation level.

Transactions in PostgreSQL

PostgreSQL, by default, operates in unchained mode, also known as autocommit mode. This means that each user query is run as its own transaction and is automatically committed upon successful completion, or rolled back if the transaction fails. The begin transaction statement begins a chained mode transaction in PostgreSQL. All user statements executed after a begin statement are executed as a single transaction that either ends with an explicit rollback or commit. Consider the following queries that reference a librarian table, which stores a single column, a name:
  SELECT * FROM librarian;

  INSERT INTO librarian VALUES('Mary');
If these queries were run in unchained mode, the following sequence of events would occur in PostgreSQL:
  BEGIN TRANSACTION (implicit)

  SELECT * FROM librarian;

  commit (implicit)

  BEGIN TRANSACTION (implicit)

  INSERT INTO librarian VALUES('Mary');

  COMMIT (implicit)
If these queries were run as a transaction in chained mode, the following series of actions would occur:
  BEGIN TRANSACTION; (explicit)

  SELECT * FROM librarian;

  INSERT INTO librarian VALUES('Mary');

  COMMIT; (explicit)
Statements are executed more quickly in chained mode, as there is significant CPU and disk cost associated transactions. Chained mode transactions are also useful in both executing a set of queries atomically and in ensuring consistency in a multi-user environment.

PostgreSQL supports two transaction isolation levels: read committed and serializable. PostgreSQL's default isolation level is read committed. The following SQL commands set a transaction's isolation level to read committed and serializable respectively:
  SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

  SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

4.2 Improving Query Performance 

In this module, you will learn about techniques for physically organizing the data in order to improve query performance. A DBMS stores a database on a secondary storage, which typically is a disk. As we have learned in our discussion of database recovery, disks are extremely slow devices compared to main memory. So, when attempting to improve the performance in a database system, we need to try to minimize the data flow between the main memory and the disk. Performance also improves if the number of disk accesses required for locating a row is minimized. All database operations, whether updates or queries, involve searching for a row stored on the disk based on the value of some column, typically of the primary key. This idea allows for physically organizing rows in data files in such a way that rows can be directly located in a disk page based on the value of a column and without having to scan the entire table. Hash files exhibit such a file organization. Generalizing this idea led to the concept of access paths, which are algorithms designed to translate any column values into physical disk addresses. Indexes are examples of access paths and can greatly reduce the time it takes to process a query. 

	Readings:
· Required: Connolly and Begg, section C.1 (in second edition, section B.1).

· Elective: Connolly and Begg, sections C.2 and C.3 (in second edition, sections B.2 and B.3).


· 4.2.1 Database Storage and Query Performance
· 4.2.2 Hash Files
· 4.2.3 Indexes
· 4.2.4 Query Optimization and Index Choice
Assessments

· Multiple-Choice Quiz 8
· Exercise 10
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

4.2.1 Database Storage and Query Performance

· Introduction 

· Hard Disk Design 

· Measuring Hard Disk Performance 

· Access Methods 

· Improving Query Performance with Indexes 

	Readings:
· Required: Connolly and Begg, section C.1 (in second edition, section B.1).

· Elective: Connolly and Begg, sections C.2 and C.3 (in second edition, sections B.2 and B.3).


Introduction

A DBMS stores a database on a secondary storage device, typically is a hard disk. As we have learned in our discussion of database recovery, disks are extremely slow devices compared to main memory. So, when attempting to improve the performance in a database system, we need to try to minimize the data flow between the main memory and the disk. As we discussed earlier, buffering can help avoid accessing the disk for each data access because the buffer is used as a cache. Performance also improves if the number of disk accesses required for locating a row is minimized. Most database operations involve searching for a row stored on the disk based on the value of some column or set of columns, typically the value of the primary key. This introduces the need for physically organizing rows in data files in such a way that rows can be directly located on the disk based on the value of some column or set of columns, and without having to scan the entire table. Hash files exhibit such a file organization. Generalizing this idea leads to the concept of access paths, which are algorithms designed to translate any column values into physical disk addresses. Indexes are examples of access paths and can greatly reduce the time it takes to process a query. 

Hard Disk Design

The simplest unit of storage on a magnetic disk is a binary digit, also known as a bit. A bit can either have the value one or zero. Bits are represented on disk by magnetizing the surface in certain ways. One such magnetization represents a one, another represents a zero. To store information, bits are arranged in bytes or words. Each byte is eight bits and is usually used to store one character. 

Hard disk drives are made of a magnetic material that is in the shape of a thin circular disk known as a platter. Hard disks typically have more than one platter. Each platter usually holds equal amounts of data. For example, a sixty-gigabyte hard drive may be built using three twenty gigabyte platters. A platter is single-sided if data can be stored on one side of the platter and double-sided if data can be stored on both sides of the platter. Data is stored on each platter in narrow concentric circles known as tracks. For hard disk drives that have more than one platter, the tracks with the same diameter on each platter form a cylinder. Tracks may store anywhere from tens to hundreds of kilobytes of data. Because it is inefficient to use an entire track to store a data item, tracks are physically divided into equal sized sectors. The operating system divides a track into equal sized disk blocks (also known as pages), which may be stored on one or more sectors. Block sizes range from 512 to 4096 bytes. The number of database records that may be stored on one disk block is known as the blocking factor. For example, assume that you have a hard disk drive with 4096-byte disk blocks. You have a table where records are 128 bytes each. The blocking factor for this scenario is 4096/128 = 32. 

An index occupies much less storage space than an entire table because the index is built using a subset of the data in a table. You can achieve increased performance because the blocking factor of an index is much smaller than the blocking factor of a table. Scanning an index for the address of a record is much faster because the number of disk accesses is much lower.


[image: image30.png]



Figure 1: A multi-platter hard disk drive 
Measuring Hard Disk Performance

Data is accessed on a disk by means of a read/write head that is attached to an arm. The read/write head glides on a thin stream of air between the platter and the read/write head. There are usually only a few microns between the read/write head and the disk platter. This means that a platter must be perfectly smooth so that the read/write head does not contact the platter. Movement of the arm is controlled by an actuator, which is controlled by an electric motor. The read/write head reads data from the disk platter while the platter spins at a constant speed. Hard drive speeds today range from 5400 rotations per minute (rpm) for low-end hard drives to 15,000 rpm for premium hard drives. 

The performance of a hard drive is measured by a number of factors. The first being the amount of time it takes to move the read/write head to the appropriate track on disk. This is known as the seek time. Seek times are in the range of 8 to 14 milliseconds. Once the read/write head is positioned over the proper track, there is an additional delay know as rotational latency which is the amount of time it takes for the appropriate disk block to be positioned under the read/write head. The final delay in transferring data is the amount of time it actually takes to read the data from disk, which is known as the block transfer time. The total amount of time to transfer one disk block is in the range of 9 to 15 milliseconds.

Access Methods

The arrangements of the data into records (or tuples, rows, data items, objects) and pages (or blocks) on a disk is called file or physical organization. Each file organization supports specific methods to store and retrieve records from the file. For example, records in an ordered file are sorted by the value of a particular field or combination of fields, called the ordering field. We can efficiently retrieve records based on the ordering field value using the binary search algorithm. See section C.3 of Connolly and Begg (section B.3 in the second edition) for a description of the binary search algorithm. However, similar to heap files, which support no record ordering, search and retrieval on any other (non-ordering) field is quite expensive, requiring linear search that brings into main memory and scans all the disk pages of the file. 

Improving Query Performance with Indexes

Index structures allow different routes to accessing records. Any column or set of columns in a table may be used to build an index and more than one index may be constructed for each table. Consider the index in the back of a book. For each term in the book, the pages on which it appears are given. Indexes can greatly reduce the time it takes to find a concept in a book. Consider a table consisting of 100,000 records and a blocking factor of 100. Sequentially scanning this entire table for a record can require as many as 1,000 disk blocks being read. Assuming you have an index which is stored on a single disk block, on the other hand, may require as few as two disk blocks being read to find a record in this table (one disk block read to load the index and one disk block read to load the data).

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

4.2.2 Hash Files

· Hashing: Basic Organization 

· Collisions 

· Properties of a Good Hash Function 

· Pros and Cons of Hashing 

	Readings:
· Required: Connolly and Begg, appendix C, section C.4 (in second edition, appendix B, section B.4). 


Hashing: Basic Organization

A heap file is a data structure in which new records are appended at the end of the file on the last page. In order to insert a new record sequentially in correct order, order files must perform a binary search to locate the appropriate page. 

Hash files use a hash function to convert the key of a record into a page address in which the record is to be stored. In the context of hashing, a page or a block is often called a bucket. More precisely, given a key value k, a hash function H(k) computes and returns a, the number or address of the bucket in which the record having that key value k is to be stored or found: a = H(k). 

Each bucket has multiple slots that can be used to store multiple records. Within a bucket, records can be either ordered or unordered. Since speed is crucial, records in a bucket are sorted so that binary search can be used to locate the precise location of a record in a bucket and identify duplicates very fast. In databases, the hash key typically corresponds to the primary key and records are stored without any duplicates based on their primary key. 

A first comparison with other file organizations shows us that hash files require only one disk access in order to insert a new record similar to a heap file, and similarly only one disk access in order to retrieve a record based on the hash key. By contrast, both heap order files require multiple disk accesses. 

Collisions

A fundamental problem with most hashing functions is that they are static, only capable of directly mapping records into a fixed number of buckets of fixed size. The universe of possible keys is huge, however, compared to the size of the individual buckets, and it is possible that a collision will occur when a new record hashes to a location already occupied by an existing record. Note: In cases where a bucket can hold more than one record, the use of buckets alleviates the problem of collision while preserving the single-disk access property of hashing. Use of buckets does not eliminate the problem of collision. 

Several schemes, such as conflict resolution and probing, have been proposed to address the problem of collisions. Unfortunately, these schemes all destroy the single-disk access property of hashing without any collisions and inevitably the ordering within a bucket. These schemes are classified into open addressing and chaining. 

· Open Addressing 

· Rehashing or multiple hashing: If bucket h(k) is full, use another hash function until a bucket with a free space is found. 

· Linear probing: If bucket h(k) is full, perform a serial search to find the first available slot in another bucket. 

· Chaining (using overflow buckets) 

· Unchained Overflow: If bucket h(k) is full, the record is not stored in any of the file buckets but in a common overflow area. In the common overflow area, records hashed to the same bucket are linked together forming a link list. Each bucket has a pointer pointing to its first record in the overflow area. This first record is the head of the link list. 

· Chained Overflow: As opposed to the common overflow access in the previous case, in the case of chained overflow, there is a set of overflow buckets. If bucket h(k) is full, the record is stored in the first available slot in a link list of overflow buckets linked to the bucket h(k). In this scheme, buckets use the last slot to point to the next overflow bucket; this last slot, used in this way, is sometimes called a synonym pointer. 

Open addressing is not appropriate for database searchers because in the worst-case scenario, a key search degenerates into an exhaustive, linear search as in the case of heap files. For an example, suppose that we are searching for a record that does not exist in the hash file. In linear probing, after failing to find the record in the hashed bucket, the rest of the buckets must be scanned one by one until we revisit the hashed bucket, at which point we know that such a record is not stored in the file. 

Between the two chaining schemes, chained overflow exhibits the best performance, because in the case of an overflow, it is faster to do a linear search on a small overflow bucket than follow pointers in a large common overflow area. Hence, chained overflow is more appropriate for storing database records. 

Properties of a Good Hash Function

From our discussion on collision, it is clear that a good hash function must have two fundamental properties: 

1. It should be computed easily and efficiently. 

2. It should minimize the number of collisions by spreading keys around the file as evenly and uniformly as possible. 

In general, hashing functions can be grouped into three families: division-remainder, folding or partition, and ad hoc methods. Modulo is the representative example of the first family and is the most commonly used hashing function: h(key) = key MOD S, where S is the number of buckets. Folding techniques apply some arithmetic function such as addition or multiplication to different parts of the hash fieldÃ¢Â€Â”the middle digits, for example. In the case of non-numeric fields such as character strings, their values are converted into numeric ones using an encoding scheme such as the ASCII values of characters. 

One way to deal with the problem of collisions is to allocate a very large space to the hash file, but this leads to a waste of space that DBMSs attempt to eliminate. Another alternative is to estimate a "reasonable" size, and periodically reorganize the entire file when it runs out of space. However, in a dynamic environment like database systems, it is very difficult to predict what a reasonable size is. As a result, space is either wasted due to an overestimation or general reorganization is performed frequently, which is computationally expensive. 

To alleviate the cost of general reorganization, dynamic hashing techniques, such as extensible hashing and linear hashing, perform incremental reorganization. Whenever a record cannot be accommodated in its hashed bucket, the hash file is expanded by adding a new bucket and the hash function is adjusted to access it directly. Dynamic hashing techniques are also space efficient because they not only grow a hash file when there is a need, but they also shrink the file by freeing buckets when they become empty. 

Pros and Cons of Hashing

To recap, then, if we assume low density (or practically no collisions), then hashing exhibits the best possible performance for equality searches involving the key, provided that key is used for hashing. This is easier to achieve in dynamic techniques, even though it involves a more complex operation, than it is to achieve in static techniques. 

However, records in hash files are not ordered. As a result, any search other than an equality search involves exhaustive, linear search, as in the case of heap files. Therefore, it is very expensive to do searches that don't involve equality. Also similar to heap files, retrieving fields in order requires sorting the record. 

The use of hashing schemes in DBMSs is limited to the special cases in which there is a need to optimize queries involving equality on a key. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

4.2.3 Indexes

· Types of Indexes 

· Indexed Sequential Access Method (ISAM) 

· Cluster Index 

· Secondary ISAM 

· Multi-Level ISAM 

· Drawbacks of ISAM 

· B+ Trees 

· Indexes in SQL 

	Readings:
· Required: Connolly and Begg, sections 6.3.5, 6.3.6, and C.5 (in second edition, sections 13.4.6, 13.4.7, and B.5).


Types of Index

An index is an auxiliary file that makes it more efficient to search for a record in a data file. As we have already mentioned earlier, an index is analogous to the index of a book. It is usually defined on one field of the data file, called the indexing field. Each index entry is a pairing of an indexing value with a pointer to the page in which the value appears as part of a record. For fast search, the entries are sorted by the indexing field values. Thus, an index is an ordered file of index entries. 

There are several types of indexes, distinguished by the different properties of the indexing fields involved. 

· Primary Index
The indexing field of a primary index has a unique value in each record and corresponds to the ordering field of the data file. That is, a primary index is defined on an ordered file whose ordering field is a key. An ordering field that is also a key (i.e., unique) is called an ordering key. 

· Secondary Index
The indexing field of a secondary index may or may not have a unique value in each record and it is not an ordering field of the data file. That is, a secondary index can be defined on a heap (or unordered) file. 

· Cluster Index
The indexing field of a cluster index may not have a unique value, but it corresponds to the ordering field of the data file. That is, a cluster index is defined on ordered files on a non-key field. 

Clearly, a data file can have either a primary index or a cluster index depending on its ordering field. It can have several secondary indexes, however. A file is called fully inverted if all its fields are accessible through an index— that is, if every field is associated with an index. 

Indexes are also classified as 1) sparse, meaning that they have index entries for only some of the search key values in the data file; and 2) dense, meaning that they have an index entry for every search key value. 

Indexed Sequential Access Method (ISAM)

An ISAM is a sparse, primary index. It includes one index entry for each page in the data file. The first record in a data page is called the page anchor. The field value of an index entry is the key value of the page anchor. For some key values, the index entry has an index value that is equal or less than the key value and the value of the next index entry is greater than the key. For example, in the following figure, the index entry for the key value 12 is 2, because 12 is greater than 2 but less than 19. 

[image: image31.png]Example of Primary ISAM

2 merry boston m

1 11 piok newyork ny.

12 heten nevtan ma

17 susan pah pa

1

Y

180

2

™ 2

54,

159

169

I

s

eyl

a0

)

11038

12708

1167





To search for a particular record based on its key value, we first need to find the index page that has the needed index entry, and then perform a binary search to find the desired index entry in the index page. Given that an index file is ordered on the index value, we can determine if the desired index entry is on a particular page by comparing the key value with the values of the first and last index entry on the page. If the key value is equal or greater than the value of the first index entry, and less than the value in the last entry, the index entry to the key value is on that page. If the key is greater than the value of the last entry, but less than the value of the first entry of the next page, then the last entry is the needed entry. For example, if we are searching for 169, then the last index entry of the first page whose index value is 154 (169 > 154 and 169 < 171) is the one that points to the appropriate data page. 

Indexes trade speed for space. The reason that indexes speed up access to data files is that they usually occupy considerably fewer disk pages than the corresponding data file and therefore they can be searched faster. As a simple example, consider the MEMBER table, and assume that each record occupies 170 bytes. If each disk page has a size of 512 bytes, then we can store only three records per disk page. This means that for each disk access, we can consider at most three records, assuming that we bring a page at a time. On the other hand, if we assume that the MemNo field is 4 bytes and the pointer 6 bytes, then each index page stores 51 entries that can index 153 data records. 

ISAMs not only improve selections based on the primary key, but also range queries based on the primary key. Given that data files are ordered, reading records in the order of the ordering field is quite efficient. Now consider a selection condition using the BETWEEN v1 AND v2 operator. Such query can be answered by using the primary key to find the record with the first value v1, and then retrieving all the records in the data file sequentially until the record with the value v2 is retrieved. 

Cluster Index

Cluster data files store (or cluster) records with the same value of a non-key field together. Furthermore, cluster data files are ordered on the cluster value. For such a file, a cluster index is equivalent to a primary index. Thus, a cluster index is very similar to the primary ISAM but with the difference that it is dense. A cluster index includes one index entry for each distinct value of the indexing field that points to the first data page containing records with that field value. 

Secondary ISAM

The Secondary ISAM works similarly to the primary ISAM. Because it is defined on an unordered data file, however, it is a dense index, having an index entry for each distinct indexing value. 

· If the indexing field is a non-ordering key in the data file, then the index pointer points to the page anchor of the page in which it is stored. 

· If the indexing field is a non-key field, the index pointer points to a pointer page that contains pointers to the corresponding page anchors. 

Multi-Level ISAM

As a data file grows larger, so do its indexes. When an index extends over many pages, its performance is decreased because it takes more time to search it. However, we can speed up index searching by treating the index as a data file and building an index for it. This idea led to the multi-level ISAM. A multi-level ISAM is a tree of index pages whose leaves point to the data pages, as illustrated by the following figure. 

[image: image32.png]Multi-level ISAM
Ithas index entries pointing to indices

2 >z -2 merryboston m

™ 1 11 piok newyork ny.

12 heten nevtan ma

17 susan pah pa

1

Y

a0 180
2

™ 2

54,

159

169

I

s

n

72

a0

)

108

12708

1167





Drawbacks of ISAM

ISAMs are static structures and can offer great performance guarantees for searching, as long as insertions, deletions, and updates are very infrequent. In dynamic database system environments in which modifications are frequent, data files need to be reorganized frequently and indexes rebuilt in order to maintain the same performance guarantees. However, a frequent rebuilding of indexes defeats their purpose. In fact, this high cost of maintaining the indexes prevents us from making every data file a fully inverted one. One way to minimize the impact of insertions on the index is to allow insertions to be handled by some form of overflow files. But, even this still has an impact on performance guarantees. 

B+ Trees

This limitation of ISAMs can be alleviated with the use of a dynamic multi-level index such as B-tree and B+tree. These are variations of balance search trees that allow efficient insertion and deletion of new values. 

In a B-tree and a B+ tree, each node in the tree is a disk block. The differences between a B-tree and a B+ tree are: 

· In a B-tree, pointers to data records exist at all levels. 

· In a B+ tree, as in an ISAM, all pointers to data records exist at the leaf-level nodes. 

As a result of these differences, a B+ tree can store more index entries in a single index block and hence a B+ tree can have fewer levels than the corresponding B-tree. Furthermore, B+ trees have the welcome property that the search cost is the same for any value, that is O(log n). 

More precisely, a B+ tree has the following structure: 

· If the root is not a leaf node, it must have at least two children. 

· A node is of the form, 

·    [p0, k1,p1, k2,p2,.., ki,pi,k{i+1}.., kn,pn]

where pi is a pointer, ki is an index field value (key), and n is the degree or order that defines the maximum number of children allowed per parent node. 

· Every field value k in a node is pointed to by pi, if ki <= k < k{i+1}. 

· Each node is kept between half full and completely full. That is, in a tree of degree n, every node except for the root has between k/2 and k children or pointers. So, internal nodes have [image: image33.png][pr2]



pointers and leaf nodes have [image: image34.png]P2



pointers. 

· Leaf nodes are chained to form a link list. 

A search for a value using a B+ tree proceeds as in an ISAM. By linking the leaf nodes, in addition to random access, B+trees also support fast sequential access based on the key. As we have discussed earlier this is particularly useful in range queries. 

The idea of requiring each node to be between half full and completely full is to anticipate new insertions and avoid re-organization of the tree after every insertion. Thus, insertion is very efficient if there is space. Otherwise, a full node is split into two nodes, making space for the new value. However, splitting a node at one level may propagate splitting at other levels, possibly extending the tree by an additional level. 

The deletion is also efficient as long as it does not cause the node to be less than half full. Otherwise, it must be merged with its sibling node. This also may propagate merging in other levels, possibly reducing the tree by one level. 

B+trees can be used to implement cluster and secondary indexes in ways similar to the ones discussed for ISAMs. Furthermore, B+ trees, as well as ISAMs, can be used to define dense, secondary indexes on multiple field values. Multi-value indexes allow for finer granularity searchers. 

[image: image35.png]‘1345 =il 7| e

B+ Tree with mcords 1,35,7 and 8. Each node has p=3 pointers.




Indexes in SQL

Most existing DBMSs use fixed physical design and automatically build the best possible access path, which usually is some B+ tree. For this reason, indexes were dropped from SQL2 (ANSI SQL 1992). 

Earlier versions of SQL provide (as part of the DDL) certain commands to create and drop indexes dynamically. In fact, in these early versions, the only way to specify primary key constraints was by creating a primary index. 

The general syntax of the CREATE INDEX statement is 

    CREATE [UNIQUE] INDEX  index-name

              ON  table (indexing-attribute-order-list) [CLUSTER];

where the indexing-attribute-order-list is a list of attribute and order pairs, similar to that specified in the ORDER BY clause. The order can be ASC (the default) or DESC. 

Here is an example of a primary index on the LIBRARIAN table: 

     CREATE UNIQUE INDEX  ssn_index

                      ON  LIBRARIAN (SSN);

A primary index allows NULL values, but not duplicate NULL, ensuring that entity integrity constraint is not violated. 

The following is an example of a multi-value index that groups librarians with their sections: 

     CREATE INDEX ssn_section

               ON LIBRARIANS (SSN, Section);

Here is an example of a cluster index that clusters the rows of books. 

     CREATE INDEX Book_index

               ON BOOK (CallNumber) CLUSTER;

An index that is of no use can be removed using the DROP INDEX statement. 

      DROP INDEX  ssn_index;

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

4.2.4 Query Optimization and Index Choice

· PostgreSQL Analysis Tools 

· PostgreSQL Indexes 

· Application 

· Index Choice and Optimization Heuristics 

Query optimization is a process by which programmers and database administrators make use of access methods to ensure that an application accesses data as efficiently as possible. Recall that hard drives are slow devices. Performing a sequential scan of a table on disk is a very expensive operation. We want to minimize the number of sequential scans used in an application. 

One of the steps in optimizing queries is to examine the physical storage characteristics of tables accessed by those queries. Consider a table that is stored on two disk pages. One option is to create an index that is stored on a third disk page. Adding an index in this case is not useful because the index will save at most one disk-page access to find a record, but will also incur one disk-page access to access the index (if the index page is not cached). The net savings, therefore, is zero. However, if you are optimizing queries that access a table stored on a large number of disk pages, and the size of the index is relatively small, you may see a substantial performance improvement. 

The next step in query optimization is analyzing the run-time characteristics of queries. These characteristics include the number of disk pages accessed and the elapsed time for each query. Using the data one has gathered regarding the run-time characteristics of queries, one must decide where bottlenecks are in the system and how to alleviate these bottlenecks. One bottleneck could be slow query performance due to needless sequential scans of tables. Such a bottleneck could be alleviated with an index that will enable random access of tuples in table. This process of optimization repeats until optimal performance is attained. 

We will analyze the query performance on a number of tables storing information for a school. These tables are defined by the following SQL schema:

Student (student_id, student_given_name, student_family_name )
Course (course_id, course_name, course_description, course_term)
Assessment (total_points, course_id, assessment_id)
Student_Course(student_id, course_id)
Student_Assessment (student_id, assessment_id, score) 
The queries commonly run against these tables include the following:

1. Selecting a student's full name (given name and family name) based upon their student id. 

2. Selecting the ids of students and assessments where students have received a score in a given range. 

3. Inserting student scores on assessments. 

Follow this link for instructions on populating these tables.

PostgreSQL Analysis Tools

The first step in optimization is to gather and analyze empirical data about the physical storage characteristics of the tables and run-time characteristics of the queries. Most commercial databases support query analysis. Query analysis typically reports the total run-time for a query, the types of operations used in the query and the number of disk pages accessed. PostgreSQL uses a query planner to determine the best possible execution plan for a query. The query planner makes its plan based upon statistics stored in the system table named pg_class. The pg_class table stores information and statistics about each table including the number of tuples, the number of disk pages used to store the table, the table's type (relation, view, etc.), and any triggers, checks or indexes on the table. 

Below are the statistics stored in the pg_class table about the student table and the SQL query used to display it: 

SELECT relname, reltuples, relpages FROM pg_class WHERE relname = 'student'; 
relname  | reltuples | relpages
---------+-----------+---------- 
student  | 249999    | 4425 
The pg_class table indicates that the student table consists of 249,999 tuples stored on 4425 disk pages. Similarly, the statistics for the course, assessment, student_assessment and student_course tables are:

relname  | reltuples | relpages 
---------+-----------+----------
course   |    249999 |     5155
relname     | reltuples | relpages 
------------+-----------+----------
assessment  |    249999 |     4167
relname             | reltuples | relpages 
--------------------+-----------+----------
student_assessment  |    249999 |     2942

relname         | reltuples | relpages 
----------------+-----------+----------
student_course  |    249999 |     2703
It is important for the query planner to have accurate statistics in the pg_class table. Stale statistics may lead to poor query plans that can degrade the performance of the system. The analyze command updates the statistics in the pg_class table. PostgreSQL does not update the data stored in the pg_class table for each update to a user table. To allow the query planner to make the best possible plan, the database administrator should run the analyze command often. This task may be automated on some systems. 

PostgreSQL can report a query's execution plan. The explain command displays the actual operations used in a query. Let us consider a query that selects the distinct course ids for the term 'Fal02.' This query is written as:

select distinct course_id from course where course_term = 'Fal02'; 
This query's plan as reported by PostgreSQL is:

school=> explain select distinct course_id from course where course_term = 'Fal02';
NOTICE:  QUERY PLAN:
Unique  (cost=12223.09..12339.76 rows=4667 width=4)


-> Sort (cost=12223.09..12223.09 rows=46666 width=4)
        
->  Seq Scan on course  (cost=0.00..8279.99 rows=46666 width=4)
EXPLAIN
The output of the explain command must be read from the bottom up. The explain reports the operation used by a query, the start-up cost of a query, the total cost of a query, the number of rows visited by a query, and average width of rows visited by the query. The start-up cost is the time expended before the output is started, for example, the time that it takes to sort data during a sort operation. The total cost is the cost of the operation if all rows were to be retrieved. The cost includes the estimated number of disk-page fetches, and the CPU computation time expressed in disk page fetch units. In this case, the query planner will first use a sequential scan on the course table. The rows in the course table have an average width of four bytes. The query plan results in visiting 46,666 rows in the course table. The sequential scan has no start-up cost and a total cost of 8,279.99 expressed in units of disk-page fetches. The output of this sequential scan is then sorted. The sort visits 46666 rows which also have an average width of four bytes. This sort has an initial startup cost of 12,223.09 disk page fetches and a total time cost of 12,223.09 disk-page fetches. It is important to note that each step's cost includes the cost of the step below it. So, the start-up cost of the sort operation is actually 12,223.09-8,279.99 = 3943.1 disk-page fetch units to sort the data. Finally, only the unique values are returned to the user by the unique operation which costs 12,223.09 disk page fetches to start, a total cost of 12,339.76 disk-page fetches and accesses 4,667 rows of data. Thus, the cost for retrieving unique values is 0.67 disk page accesses. 

It is important to note that the explain command does not actually execute a query, it only gets the plan for a query's execution and the estimated cost of running the query from PostgreSQL's query planner. The explain analyze command will execute a query and display the plan of execution for a query as well as the actual run-time in milliseconds and the actual number of disk page fetches for a query. Running explain analyze on the previous example's query yields the following output:
school=> explain analyze select distinct course_id 
from course 
where course_term = 'Fal02';                         
NOTICE:  QUERY PLAN:
Unique  (cost=12223.09..12339.76 rows=4667 width=4) 

(actual time=1643.87..1797.34 rows=41803 loops=1)
  ->  Sort  (cost=12223.09..12223.09 rows=46666 width=4) 


(actual time=1643.86..1706.05 rows=41803 loops=1)
        ->  Seq Scan on course  (cost=0.00..8279.99 rows=46666 width=4) 



(actual time=184.83..1075.11 rows=41803 loops=1)
Total runtime: 1899.24 msec
EXPLAIN
Notice that the query planner estimates a cost of 8,279.99 disk-page fetches for a sequential scan but actually only costs 1,075.11 disk-page fetches. 

PostgreSQL Indexes

Now that we have seen how you can analyze queries in PostgreSQL, we will now examine how you make use of indexes in PostgreSQL. PostgreSQL supports both hash and b-tree indexes. PostgreSQL also supports clustering indexes. Recall that clustering a table using a clustered index will re-order a table based upon an index's key. Only one index on a table may be clustered. Take great care when clustering an index. PostgreSQL clusters indexes by copying data to a temporary table, deleting the original table and renaming the temporary table back to the original table. This operation destroys all indexes and grant permissions that were set on the original table. You should also note that new records are not inserted in order of the clustered value on a clustered table, they are appended to the end of the table, thus destroying the ordering of the table. To maintain peak performance, you should occasionally recluster indexes. The following commands are used to index and cluster tables in PostgreSQL:
create index index_name on table using index_type(column[,column[,...]]);
cluster index_name on table;
Note from the above example that it won't make sense to cluster a table on a hash. Thus, if you were to cluster a table, it only makes sense to do so using a b-tree index. 

For example, the following commands create a clustered b-tree index on an assessment's total_points, and a hash on an assessment's id. Note that the assessment_id_index is created after the cluster. Recall that clustering a table will destroy all indexes on the table. Creating the assessment_id_index first will be futile as it will be destroyed by the cluster. 
create index assessment_point_index on assessment using btree(total_points);
cluster assessment_point_index on assessment;
create index assessment_id_index on assessment using hash(assessment_id);
Application

The first step in optimizing the school database is to gather empirical data about the run-time performance of the queries run against it. We already know how many disk pages are needed to store each table. Each table is large enough to use indexes effectively. Recall that small tables, e.g. tables that can be stored on one or two disk blocks, cannot effectively used indexes. We will analyze the behavior of the query that selects the ids of students and assessments where students have received a score in a given range. PostgreSQL's query plan is given below.
school=> explain analyze select student_id, assessment_id 
from student_assessment 
where score between 50 and 80;
NOTICE:  QUERY PLAN:
Seq Scan on student_assessment  (cost=0.00..6691.98 rows=78990 width=8) 
       (actual time=114.35..790.73 rows=77833 loops=1)
Total runtime: 847.33 msec
EXPLAIN
PostgreSQL is using a sequential scan on the student_assessment table that visits 77,833 rows. The total run-time cost of this query is 790.73 disk-page fetch units and a total run time of 847.33 msec. 

The performance of this range query may be helped by an index structure that allows for fast sequential access to data. A b-tree may improve performance in this case because b-tree support range queries as opposed to hashing. We can create a b-tree index on the student_assessment table's score column using the following SQL query:
create index student_assessment_index on student_assessment using btree(score);
As demonstrated below, an increase in performance was not realized when the b-tree was applied to the student_assessment table.
school=> explain analyze select student_id, assessment_id 
from student_assessment 
where score between 50 and 80;
NOTICE:  QUERY PLAN:
Seq Scan on student_assessment  (cost=0.00..6692.02 rows=78991 width=8)
   (actual time=233.38..907.74 rows=77835 loops=1)
Total runtime: 963.98 msec
EXPLAIN
The performance of this query has actually degraded by roughly 12%.

The lack of a performance increase is counter-intuitive because b-trees can improve performance on range queries. However, an index is only useful when the number of tuples that satisfy a condition are small compared to the total number of tuples for the entire table. Selecting the distinct scores in the student_assessment table shows that there are one-hundred distinct values that are in the range 0-99. Consider the blocking factor of the student_assessment table. It is 249,999/2942 ~ 85. In this case, the chance that any page will have one of the values in the range 50-80 is very high, thus all pages must be scanned.

The above query plan indicates that the data in the student_assessment table may not be highly selective. Selectivity is the ratio of the number of tuples that satisfy a condition to the total number of tuples in the table. Selectivity ranges between zero and one where zero selectivity means that no record satisfies a condition, and one means that all records satisfy a condition. Lower values denote highly selective values, larger values denote lower selectivity. An index has greatest effectiveness when column values are highly selective. We can test the selectivity of the scores by querying the count of each distinct score. We must calculate the selectivity of the rows where a score is between 50 and 80. The following SQL query displays the number of rows that have a score between 50 and 80:
school=> select count(*) from student_assessment where score between 50 and 80;  
count
-------
 77837
Recall that the student_assessment table has a total of 249,999 rows. The selectivity of the rows that have a score in the range 50 to 80 is 77,837/249,999 ~ .311. In this case, over 31% of the rows in the database satisfy this condition. The performance of this query may be improved if we were to order the data based upon score. We can cluster the b-tree that we have created. Recall that clustering re-orders a table so that it is ordered based upon an index's key. The following SQL query will cluster the index on the student_assessment table:
school=> cluster student_assessment_index on student_assessment;
CLUSTER
As you can see below, clustering the index on the student_assessment table allows PostgreSQL to use the b-tree index on the score column of student_assessment. 
school=> explain analyze select * 
         from student_assessment 


 where score between 50 and 80;
NOTICE:  QUERY PLAN:
Index Scan using student_assessment_score_index on student_assessment  
     (cost=0.00..3533.07 rows=1250 width=12) 

    (actual time=0.42..496.26 rows=77837 loops=1)
Total runtime: 554.51 msec
EXPLAIN
The performance of this query has improved by about 34.5%. 

Index Choice and Optimization Heuristics

Choosing the best index structure for a table depends upon the types of queries that run against that table. The index structures we have studied each have different properties. These properties allow the indexes to improve query performance in some but not all circumstances. Consider hashing which maps the key of a record to the address of the disk page where that record is stored. This type of index is useful for queries where equality selection takes place. Hashing, however, may not improve performance on range queries as the data file may not be ordered based on the selection condition. In the case of range queries, a b-tree is a much better index choice. The following heuristics will help you choose what columns to index and what indexes to use for those columns.

1. When deciding whether or not to index a table, you must consider the size of the table and the size of the index. Indexes may not improve performance on tables that are small, e.g. that are stored on only a few disk blocks. 

2. An index will most likely hurt performance for insert, update, and delete queries. Each update operation on an indexed table may require an update to the value stored in the index. Carefully consider the tradeoff between the benefit of indexing tables for select queries and the disadvantages of indexing for insert, delete, and update queries. 

3. An index has greatest effectiveness when column values are highly selective. 

4. Columns that are involved in equality selection conditions may be hashed. Hashing allows the address of each record's disk page to be calculated directly. Thus, an average O(1) operation is performed in finding the appropriate disk page. 

5. Group by queries group all records for each unique value. A hash, or a clustered b-tree may improve the performance of such queries as the address of each unique value may be calculated using a hash function. 

6. The sorting that is maintained by a b-tree allows quick access to data in order, potentially speeding up order by queries. 

7. Those columns that are used as selection conditions for range queries should use an index that allows fast ordered access to the data, e.g. a b-tree. 

8. Clustering a table orders the table based on the index value. This may be useful in speeding up range queries on data that is not highly selective. 

9. The implementation of each DBMS varies. Both the analysis tools and optimizations strategies that work on one DMBS may not work on another. The indexing strategies we have examined will work on PostgreSQL. Some may not work on MySQL as MySQL only supports b-tree indexes; it does not hash indexes. Oracle, on the other hand, implements more indexes (such as bitmaps) than PostgreSQL does. Some optimization strategies used for Oracle may not work on PostgreSQL or MySQL.

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

Unit 5. Current Trends 

This final unit of the course presents current and developing trends in the field of database design, including non-relational data models, data warehouses, OLAP, and data mining. 

· 5.1 Non-Relational Data Models
· 5.2 Data Warehousing, OLAP, and Data Mining
Assessments

· Multiple-Choice Quiz 9
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

5.1 Non-Relational Data Models 

Relational data models have certain limitations when it comes to data whose complex structure is too difficult or cumbersome to be represented using tables. Such complex data is used by programs such as design applications, image and graphic databases, and scientific databases, for example. This module discusses some of these limitations of the ER model, and then proceeds to present newer non-relational models, all of which follow one of two approaches: the object-relational and the object-oriented approaches. An extended discussion follows of the object-relational model and the new SQL3 language that will support it. Then the module introduces three new data types that are related to the new object abstraction. Finally, the module places the relational model, with which most of this course has been concerned, in the context of not only the newer object-oriented model but also the older hierarchical and network data models—both older models having been largely replaced in the marketplace. 

· 5.1.1 Object Relational Models
· 5.1.2 Varying Data Types
· 5.1.3 Database Classifications and the Marketplace
© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

5.1.1 Object Relational Models

· A Shortcoming of the Relational Data Model 

· Multi-Valued Attributes 

· IsA Hierarchy 

· Binary Large Objects and Character Large Objects 

· Solution: User-Defined Data Types and Objects 

· Object-Relational Databases and SQL3 

· Collection Types 

· User-Defined Types 

· Row Types 

· Type Inheritance 

· Table Inheritance 

· Object IDs and Reference Types 

· Querying with Complex Types 

· User-Defined Functions 

· Inserting Complex Values 

	Readings:
· Required: Connolly and Begg, sections 28.1 and 28.4 (in third edition, sections 27.1 and 27.4; in second edition, sections 23.1 and 23.4).

· Optional: Connolly and Begg, sections 28.2, 28.3, and 28.6 (in third edition, sections 27.2, 27.3, and 27.6; in second edition, sections 23.2, 23.3, and 23.6).


A Shortcoming of the Relational Data Model

It has been shown that the relational data model is very powerful when applied to traditional business database applications. Besides its simplicity, the concept of a table has offered just the right representation for business data. However, when the relational data model was applied to non-business applications, such as design applications (CAD/CASE/CIM Systems), image and graphics databases, and geographic and scientific databases, to name a few, it became obvious that the relational data model was not appropriate. These applications involve data whose complex structure is too difficult or cumbersome to be represented using "flat" tables. 

Multi-Valued Attributes

Interestingly, the first two shortcomings of the relational model are due to its structural constraints. For example, when mapping the composite and multi-valued attributes in an E-R schema to a relational schema, we had to break the composite attributes into their simple, atomic components and to map the multi-valued ones on a separate table. As a result, the information about the structure of the attributes was lost as the data was scattered over many relations. 

Furthermore, by not being able to represent multi-valued attributes directly in the relational model, recursive queries cannot be expressed with a single SQL SELECT statement. For example, try to express the query "Find all librarians who have grandchildren" using the LIBRARIAN and DEPENDENT tables. 

IsA Hierarchy

Another concept with which we are familiar from the E-R model is the ISA hierarchy. Given that we cannot directly express hierarchies in the relational model, we cannot use inheritance to simplify queries. For example, we cannot define the LIFE_MEMBER table as 

          LIFE_MEMBER (MemNo, Year)

and then use the query 

         SELECT Fname, MI, Lname

         FROM LIFE_MEMBER;

to retrieve the names of all life members without specifying a join with the MEMBER table. Because of the fact that LIFE_MEMBER is a MEMBER, the join should be implicit and all the attributes of the MEMBER table should be inherited by the LIFE_MEMBER table. 

Binary Large Objects and Character Large Objects

Relational DBMSs support the notion of a bit string. However, this is typically of small size, possibly representing a graph, for example. In general, bit strings are not capable of supporting binary large objects or blobs such as video clips with sizes in the hundreds of Megabytes. Even if we ignore the size limitations for a moment and assume that a blob can be stored in a table, there is no way to query it using a SELECT statement. For example, we cannot retrieve frames 13 and 17 from a video blob. Such a retrieval requires special operations, such as getframes (from, to), and traditional relational DBMSs do not provide for the specification of type-specific operations. 

A problem similar to that between bit strings and blobs exists also between character strings and CLOBs, that is, character large objects, such as semi-structure data and html documents. 

Solution: User-Defined Data Types and Objects

The problems with blobs and CLOBs are illustrative of the more general problem of lack of support for user-defined types and functions. The problems of data with complex structures and of data that need to be manipulated in a specific way can both be solved by encapsulating them as abstract data types (ADTs). ADTs have been successfully used in programming languages to deal effectively with the complexity of developing and maintaining large software systems. 

An ADT consists of the following: 

· A specification of its visible data structures and permissible operations. 

· An implementation of its state, its relationships with other ADTs, and its operations. 

If an ADT is used to define the domain of a column, then the operations defined on the ADT can be used in queries and transactions to manipulate the values of the column. 

Furthermore, an ADT can be thought of as the type of an object; or in other words, an object can be thought of as an instance of an abstract data type. In such a case, the idea of inheritance of state and operations from object-oriented programming languages can be applied to objects and ADTs in databases. (Recall that we have discussed the notion of inheritance in the context of the E-R model). 

The introduction of ADTs and objects to support advanced database application has taken several forms, two of which—object-relational databases and object-oriented databases—are in the process of standardization. The first approach extends the relational model with ADTs and objects. This is expected to be standardized by SQL3, the next version of SQL. The second approach extends an object-oriented language, typically C++, with database concepts such as persistence (or durability). An object-oriented data model standard is proposed by the Object Database Management Group (ODMG), a consortium of object-oriented database companies. Another object-oriented standardization is also in progress by the Object Management Group (OMG), and this initiative pushes for a standard object-oriented client-server model called CORBA (Common Object Requester Broker Architecture). For more on the object-oriented database standardization efforts, see section 27.2 of Connolly and Begg (section 26.2 in the third edition; section 22.8 in the second edition). It should be pointed out that there is a great overlap between all three standardization efforts. 

Object-Relational Databases and SQL3

The Object-Relational (OR) model extends the relational model with object-oriented features, while maintaining the declarative access to data. The SQL3 is being designed to standardize the support for ADTs and objects, while remaining backward compatible with SQL2. 

The new object-oriented features of SQL3 include the following: 

· object identifiers and reference types 

· complex types and non-1NF representation (nested relations) 

· inheritance of type and table 

· complex queries and functions 

SQL3 also attempts to standardize stored procedures (or persistent stored modules), multimedia extensions, transaction-definition language, and an application programming interface similar to Microsoft's ODBC. 

Collection Types

The OR model allows the definition of nested relations that have multi-valued columns. A multi-valued column is declared, using one of the collection type constructors: 

· ARRAY 

a fixed-size one-dimensional array

· SET 

an unordered collection without duplicates

· LIST 

an ordered collection with duplicates

· MULTISET 

an unordered collection with duplicates

As an example, let us define a table of DOCUMENTS with two collection columns: a set of keywords and a list of authors. 

   CREATE TABLE DOCUMENT (

     title CHAR(20),

     revision  DATE,

     keyword SET(CHAR(10)),

     authors LIST(CHAR(10)),

     PRIMARY KEY (title)

   );

Type constructors can also be used to construct queries. For example: 

   SELECT title, revision

   FROM   DOCUMENT

   WHERE  title in SET ('DBS', 'DDBS', 'MDBS');

User-Defined Types

Users can introduce new types using the CREATE TYPE command. For example, we can use the following two statements to define the distinct type String and the structured type MyDate. 

   CREATE TYPE String AS VARCHAR(20);
   CREATE TYPE MyDate (

     day integer,

     month char(3),

     year integer

   );

User-defined types can be used in the definition of other types and the definition of columns in a CREATE TABLE statement, as we will see below. 

Row Types

A special structured type is the row type that can represent the types of rows in a table. By defining the rows of a table as types, we can assign them to variables and use them as arguments in functions. Let us define again the DOCUMENT table, based on a row type. 

   CREATE ROW TYPE Doc_row (

     title String,

     revision  MyDate,

     keyword SET(String),

     authors LIST (String),

   );
   CREATE TABLE Document OF TYPE Doc_row (

      PRIMARY KEY (title));

Type Inheritance

The OR model supports both single inheritance and multiple inheritance. Inheritance can be specified using the keyword UNDER. 

As an example of single inheritance, let us consider the classical example of a Student and a Teacher both being derived from Person. 

 CREATE TYPE Person (

  name String,

  ssn integer);
 CREATE TYPE Student (

   degree String,

   dept String)

 UNDER Person;
 CREATE TYPE Teacher (

   salary integer,

   dept  String)

 UNDER Person;

As an example of multiple inheritance, consider teaching assistants (TAs) who are both students and teachers. 

 CREATE TYPE TA

   UNDER Student WITH (dept as student-dept),

         Teacher WITH (dept as teacher-dept);

We use the WITH clause in order to rename and hence disambiguate common names. In our example, a TA will have two "dept" attributes, one representing his or her home department as a student (student-dept) and the other the teaching appointment (teacher-dept). 

It should be pointed out that an entity can have only one type, the most specific one. For example, an entity cannot be a TA and a Teacher at the same time. 

Table Inheritance

As opposed to type hierarchy, table hierarchy allows an object to belong to multiple tables. Let us revisit the above examples in the context of table inheritance. 

An example of single inheritance is below. 

 CREATE TABLE Person (

  name String,

  ssn integer);
 CREATE TABLE Student (

   degree String,

   dept String)

 UNDER Person;
 CREATE TABLE Teacher (

   salary integer,

   dept  String)

 UNDER Person;

Note that every subtable inherits every column of its super-table. Given the above schema, this means that a row corresponding to a teaching assistant belongs to both Student and Teacher tables. 

A constraint on single inheritance is that each row in a super-table (Person) can correspond to one tuple in a subtable (Student and Teacher) and vice-versa. INSERT, DELETE, and UPDATE operations are appropriately propagated. 

A multiple inheritance example: 

 CREATE TABLE TA

   UNDER Student WITH (dept as student-dept),

         Teacher WITH (dept as teacher-dept);

An entity in TA table is also present in tables Teacher, Student, and Person. 

Object IDs and Reference Types

Recall that keys are properties of tables and can be used to identify a unique row only within a given table. When a row is assigned to variables or passed in and out of a function, the key is meaningless. On the other hand, object IDs or OIDs are system unique identifiers that can be used to reference a row (or an object) in any context. 

In OR model, rows can be associated with OIDs using the WITH OID option, 

  CREATE ROW TYPE people_row (

   Name String,

   Birthday DATE )

   WITH OID;

  CREATE TABLE Person of TYPE people_row;

and referenced using the keyword REF: 

   CREATE TABLE Document1 (

     title  String,

     revision  DATE,

     keyword SET(String),

     authors LIST(REF(Person)),

     PRIMARY KEY (title)

   );

In the above example, we reference the table in authors. Alternatively, we could reference the row type. If several tables of the same row type exist, we can restrict a reference to a specific table using a SCOPE FOR clause. As an example, let us rewrite the above CREATE TABLE statement 

   CREATE TABLE Document1 (

     title  String,

     revision  DATE,

     keyword SET(String),

     authors LIST(REF(people_row)),

     SCOPE FOR authors IS Person,

     PRIMARY KEY (title)

   );

Querying with Complex Types

We can refer to the components of components of a row by building a path expression using the double dot notation. For example, consider the query that lists the titles and the authors' names of all documents associated with the keyword database. The path expression here is Document1.authors.Name. 

  SELECT Document1.title, Document1.authors.Name

  FROM Document1

  where 'database' in keyword;

Path expressions can also be expressed using the dereferencing operator (->). Dereferencing works in the same way as in C. 

  SELECT Document.title, Document1.authors->Name

  FROM Document1

  where 'database' in keyword;

A collection type, such as the result of a path expression, can appear in the FROM clause. For example, the above query can be rewritten using the collection type B.authors in the FROM clause as follows: 

  SELECT  B.title, Y.name

  FROM    Document1 as B, B.authors as Y

  where  'database' in keyword;

User-Defined Functions

A user-defined function can be written in either SQL or in a high-level programming language like C or C++. In the latter case, the function is compiled externally but is loaded and executed within the DBMS. 

The general structure of user-defined functions is 

    CREATE FUNCTION  () RETURNS ;

As an example of a function in SQL, consider the function that counts the authors of a document. 

  CREATE FUNCTION author-count (ADOC Document)

    RETURNS integer AS

      SELECT COUNT(authors)

      FROM ADOC;

This function can be used in any other query. For example, 

  SELECT title

  FROM Document d

  WHERE author-count(d) > 1;

Inserting Complex Values

DELETE and UPDATE commands in the OR model are the same as in the traditional relational model. Inserts are also very similar, but they require using the SET type constructor when inserting multi-valued attributes, such as authors and keywords. 

   INSERT INTO Document (title,revision,authors,keyword)

   VALUES

   ('DBS', (29,'Feb',2000), SET('Suri','Smith'),

     SET('Data Models','Databases', 'Transactions'));

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

5.1.2 Varying Data Types

· Multimedia Data types 

· Time-Series Data 

· Spatial Data 

In 5.1.1 Object Relational Models, we mentioned that the need for supporting new forms of data such as multimedia data types led to the introduction of the object abstraction in databases. Here we discuss three new data types that current DBMSs do not adequately support but that, it is expected, they will be supporting in the near future. SQL3, for example, includes multimedia extensions. 

Multimedia Data types

Multimedia data types include images, such as pictures and graphs, video clips, such as movies, audio clips, such as songs and phone messages, and documents, such as books and HTML pages. These kinds of multimedia data are what we referred to as BLOBs and CLOBs in 5.1.1 Object Relational Models.

The two main issues in managing multimedia data are how to store and access it efficiently, given its very large size, and how to perform content-based retrieval. A typical query is to locate a multimedia source that contains objects with some specific features. For example, locate all video clips that include a certain building, or all audio clips that include a particular phrase. In the case of the video clip, the query might involve an activity, such as the photo finish of a car race. 

In order to store multimedia data efficiently, DBMSs need to store them in a compressed form. Compressions standards, like GIF for images and MPEG for video clips, attempt to minimize the loss of any important features during the transformation process. Furthermore, compression techniques not only need to be fast, but also they must allow for a fast recall and play back of the multimedia source. 

In order to support content-based retrieval, a model is needed that can organize and index multimedia data based on their contents. Identifying the content of a multimedia source is not easy. Certain type-specific mathematical characteristics can be extracted automatically. For example, in an audio clip, loudness, intensity, pitch, and clarity are characteristics that can be automatically extracted. Other features require human intervention. For example, the identification of a sound that is pleasing to the ear. 

The principle technique in the identification of features is to isolate them in a segment of the source. In the case of images, a segment is a region of adjacent rectangle cells of a certain width and height (i.e., pixels—picture elements). In the case of videos, a segment is a certain number of contiguous frames, identified by its starting and ending frames within the source. Having determined the presence of the important features in a segment, these can subsequently be used to index the segment. Different indexing structures have been proposed for different multimedia data. 

Clustering indexes can also be used to group together segments that are similar. For this purpose, a distance function between two segments is defined in terms of a set of features. If a computed distance value is small, the probability of a match is high and the segments are grouped together. 

Making the management of multimedia data more efficient and improving the quality of its delivery are currently two of the most active research areas. 

Time-Series Data

Time-series data represents a special collection type typically found in financial and scientific applications. It is a set of values, and each value is recorded at a predefined point in time. As a good example, consider the closing daily stock prices of a particular company at the New York Stock Exchange. Another example is the sequence of values recorded every microsecond by a sensor during a high-energy physics experiment. 

Typical queries on time series include temporal aggregation over different temporal intervals. For example, find the average weekly closing stock price or the maximum monthly closing stock price from the daily time series. Another example is the query that compares this year's maximum monthly closing stock price for a specific stock with that of the previous year. A more complex query is the one that, given a collection of monthly stock price movements, finds a time series that is similar to one specified, or to one that has specific characteristics. 

Traditional DBMSs did not provide any support for temporal aggregation and the above queries on time series could not be supported. Recently commercial DBMSs started to offer extensions for time series and there is a standardization effort in academia to define TSQL (temporal SQL) that will support time series. Currently, time series can be supported in objected-oriented DBMSs as a user-defined data type. 

Spatial Data

Spatial data are objects in a multi-dimensional space, typically found in Geographic Information Systems. Geographical coordinates, for example, namely latitude and longitude, are two-dimensional spatial descriptors; cartographic databases use these two-dimensional spatial descriptors to specify countries, rivers, roads, etc. On the other hand, meteorological databases for weather information are three-dimensional because they also require the distance from the earth. 

In order to store and query spatial data, spatial data models are needed that can interpret spatial characteristics. For example, in two-dimensional geometric space, we need to interpret points, lines, line segments, circles, polygons, and arcs. Spatial characteristics can be static, such as the location of a building, or dynamic, such as a moving car. 

Furthermore, in order to perform queries, we need operations that manipulate the spatial characteristics. For example, we need operators that compute the distance between two objects in a range query (e.g., find all the gas stations within 5 miles), or that determine which objects are the closest objects from a given point in a nearest neighbor query (e.g., find the closest gas station). Operators are also needed to support spatial join or overlays that test whether one object is contained within another, or whether the two objects overlap. 

In order to enhance the performance of spatial queries, spatial indexing techniques have been developed such as R-trees and Quad-trees, and newer techniques are currently under development. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

5.1.3 Database Classifications and the Marketplace

· Database Classification 

· Hierarchical Data Model 

· Network Data Model 

· Relational Data Model 

· Object-Oriented Data Model 

· Marketplace 

	Readings:
· Elective: Connolly and Begg, section 2.3.2 (in second edition, appendices C, D, and E).


Database Classification

Database systems are classified according to the way they represent data, i.e., on their provided data model. Broadly speaking, data models are classified into record-oriented and object-oriented models. There are three standardized record-oriented data models, namely, hierarchical, network, and relational. Although there is not a single object-oriented data model standard, as we discussed in 5.1.1 Object Relational Models, there are two objected-based approaches: namely, object-relational and object-oriented. 

Let us summarize these models. 

Hierarchical Data Model

The hierarchical model stores the data records in a tree structure with edges that connect the different records representing their relationships. Except for the root, all other nodes must have a parent node and each node may have either zero, or more child (dependent) records. Thus, in the hierarchical model, relationships between record types can be only one-to-one or one-to-many binary relationships. 

IBM's IMS is possibly the only hierarchical DBMS in use today. There are only a few places where it is being used. In IMS, many-to-many relationships are handled by storing the data in two trees with opposite dependencies. Recursive relationships are handled in the same way. This means that the database contains redundant data, which is a waste of space, which makes the database structure inflexible to data change, and which makes the update operations more complex. Basic referential integrity of parent-child relationship is enforced by the DBMS. 

The hierarchical model does not support declarative query processing. Retrievals are achieved through navigation embedded within a high-level programming language. The navigation is a tree pre-order traversal that starts from the root and proceeds down the tree, accessing the subtrees in order from left to right. This means that users know and operate directly on the physical schema. Hence, the hierarchical model supports a low level of abstraction compared to relational and object-oriented models, and it also offers only weak security and integrity. 

Network Data Model

The network model is similar to the hierarchical one in that it eliminates data redundancy in a database by storing the data in a graph (or network) structure rather than in a tree structure. In this way, recursive and circular relationships, for example, can be expressed with edges connecting two records of the same type. 

The basic one-to-many relationship is represented by connecting the dependent records together in an ordered linked list with the parent record, which is called the owner, at the head of the list. Records are permitted to contain more than one link. This capability is used in expressing many-to-many binary relationships between two record types. Many-to-many relationships are expressed with the help of intermediate records that can be directly linked with records of both the related record types, providing an indirect link between these records. (The use of intermediate records is called decomposition.) Basic referential integrity constraints are enforced by the DBMS. 

Similar to the hierarchical data model, the network model does not provide for declarative query processing. Access to records is achieved by navigation through the network structure using a set of predefined commands. These one-record-at-a-time commands must be embedded in a general-purpose programming language. Unlike records in the relational model, records in the network model can have fields, which are either single value, called simple attributes, or multi-valued, called vector attributes. 

Relational Data Model

In the relational model, data is stored in tables that completely hide the physical organization of data. Thus, compared to the hierarchical and network models, the relational model supports a high level of abstraction and a flexible database structure. The database structure, i.e., the schema, can easily be changed to accommodate new data and new access requirements. 

Relationships of any cardinality (1:1, 1:N, and N:M) and degree (binary, recursive, or higher order) can be expressed by means of foreign keys that are logical pointers. Binary 1:1 and 1:N, and binary recursive relationships, can be expressed directly, whereas high-order and N:M relationships can be expressed by decomposition, i.e., with the use of an intermediate table. 

In addition to basic referential integrity, the relational model supports semantic integrity constraints by means of checks, assertions, and triggers. 

Finally, as we have discussed in some detail, the relational model supports declarative, interactive query languages such as SQL and QBE. Furthermore, it can be embedded in almost any programming language, and therefore it supports the development of database application programs. 

Object-Oriented Data Model

The object-oriented model supports a high level of abstraction and exhibits the same flexibility in specifying data relationships as the relational model. Relationships in the object-oriented model are expressed as references to object IDs. However, the object-oriented model offers more flexibility in specifying the schema of the database by means of complex types, user-defined types, user-defined functions, and object inheritance. 

Unlike the object-relational model, object-oriented data models are strongly tied to an object-oriented programming language (such as C++ and Smalltalk) acting as their data manipulation language. (In this respect, object-oriented models resemble the hierarchical and network models.) The object-oriented language is extended to support persistent objects whose values are stored in the database and can be shared with other programs. By manipulating transient and persistent objects uniformly, object-oriented models eliminate the so-called impedance mismatch; that is, object-oriented models can thus eliminate any incompatibility between the declarative database manipulation language and the procedural application programming language that is due to difference in programming paradigms and type systems. Thus, object-oriented databases simplify the task of programming by supporting a single level storage and a computationally complete DDL/DML. 

In order to support declarative and interactive query processing, the ODMG standardization treats the object-relational model as a special object-oriented model, implementing its declarative query language. 

Marketplace

Since the 1960s, when database systems first appeared, record-oriented database systems have dominated the marketplace. After its standardization in the late sixties, the network data model became known as the CODASYL (Conference on Data Systems Languages) and was widely used until the mid 1980s, at which point it was replaced by the relational data model. In the 1990s, both the hierarchical and the CODASYL DBMSs lost their market share. At this point, the relational model dominates the market with more than 90% of the market share, which is estimated to be around $10 billion (without including the database tools which are estimated to be at more than $15 billion). With the release of SQL3 and the evolution of the relational DBMSs to object-relational ones, it is expected that relational DBMSs will increase their market share even more, with an expected growth rate of more than 25% per year. A significant part of this growth can be attributed to the emergence of the Web and the proliferation of Web database applications. 

Although object-oriented DBMSs appeared almost 15 years ago, they did not have the same acceptance as relational DBMSs had during their first 15 years. Currently, object-oriented DBMSs are used in several important applications but their market share is estimated to be only 3 to 5% of the overall database market share. But, its market share is expected to grow further, due partially to new Web database applications, in spite of tough competition from object-relational DBMSs. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.

5.2 Data Warehousing, OLAP, and Data Mining

· Supporting OLAP and Data Mining 

· What Is a Data Warehouse? 

· Data Warehouse Architecture 

· Multidimensional Modeling 

· Data-Warehouse-Enhanced Query Operations 

· Multidimensional Storage Model 

· Issues and Categories of Data Warehouses 

	Readings:
· Required: Connolly and Begg, pages 1204–1208, sections 31.1, 34.1, and 34.5 (in third edition, pages 1101–1104, sections 30.1, 32.2.1, and 32.2.8; in second edition, sections 25.1, 26.1.1, 26.2.1, and 26.2.8).

· Elective: Connolly and Begg, sections 33.2–33.5, 34.2 and 34.4(in third edition, the remainder of chapter 32; in second edition, the remainder of chapter 26).


Supporting OLAP and Data Mining

Database systems are developed with a specific application in mind, with the goal of supporting the day-to-day activities in that application. DBMSs were designed to handle such daily activities by storing the data they require in a consistent fashion based on some data model, and by optimizing their retrieval and update transactions for high-level transaction throughput. Given that such daily activities are interactive, this type of DBMS is called an online transaction processing system. 

The goal of OLTP systems can be thought of as the support of day-to-day decisions of a large number of operational users. However, there is also a need to support analysis and strategic decisions made by a small number of managerial users. For example, after a marketing campaign, a manager can assert its effectiveness by analyzing the performance of sales before and after the campaign. Furthermore, a manager can analyze the performance of sales in order to forecast product sales and plan accordingly for product ordering and storage capacity. For instance, by identifying the pre-school season and local market trends, store managers can, in a timely fashion, order and display on the store floor those schooling goods that are appealing to students and their families in their local school district. The alternative—ordering a large number of general schooling goods and having to return them—is not profitable. Such an on-line analytical processing (OLAP) can be enhanced with the use of data mining tools. 

Data mining tools discover new patterns or rules that cannot necessarily be found with mere querying processing. They utilize AI machine learning techniques that automatically classify the data into different groups based on different criteria. For example, it is possible from data on product sales to derive a rule that if a customer shops on Sunday before 11 a.m. and buys milk, the customer buys a newspaper and chocolate cookies as well. When a store manager wishes to promote a particular brand of chocolate cookies, she can use the above rule and stack the chocolate cookies next to the Sunday newspaper stand. 

OLAP and data mining involve no modifications, and require ad hoc access to all the organization's data, current as well as historical. This points to the need for new data models for organization and storage of historical data—models that optimize query processing rather than transaction processing. Data warehouses extend the database technology to integrate data from multiple data sources and organize them for efficient querying processing and presentation. 

What Is a Data Warehouse?

The best definition for data warehouses was given by Inmon (1992) when he introduced the data warehouse term: a data warehouse is a subject-oriented, integrated, non-volatile, time-variant collection of data in support of management decisions. 

· Subject-oriented collection means that data are organized around subjects such as customers, products, sales. In databases, by contrast, the stored data are organized around activities. For example, we use databases to store detailed data about purchasing orders and product acquisition. We use a data warehouse to store the summarization of the detailed data based on a subject. A summarization can be produced, for example, by applying aggregate functions on groups of rows that are specified using the GROUP BY clause. For instance, a summarization around a product can be product sales, 

·   SELECT   Product, SUM(Total) AS ProductSale

·   FROM     PurchaseOrders

·   GROUP BY Product;

and a summarization around a sale can be daily sales, 

  SELECT   WorkDay, SUM(Total) AS DailySale

  FROM     PurchaseOrders

  GROUP BY WorkDay;

An aggregation of daily sales yields the example of time series that we discussed in 5.1.2 Varying Data Types. 

· Integrated collection means that a data warehouse integrates and stores data from multiple sources, not all of which are necessarily databases. A data source can be a certain application file. Note that a data warehouse is not an example of a multi-database system that just provides access to data stored in heterogeneous databases. A data warehouse actually stores the integrated data after they are cleaned, removing any inconsistencies such as different formats and erroneous values. In this way, users are presented with a consistent unified view of the data in the data warehouse. 

· Non-volatile collection means that the data warehouse is not updated in real time and in coordination with the updates on the data sources. Updates on a data source are grouped and applied together on the data warehouse by a maintenance transaction. Maintenance transactions execute periodically or on demand. 

· Time-variant collection means that data in a data warehouse is historical data whose values have temporal validity. This clearly shows that data warehouses must support time series. 

Data Warehouse Architecture

A high-level structure of a data warehouse is shown below. The figure also shows the information flow from data sources to extraction, then to cleansing and transformation tools, and from there to the data warehouse and to applications. Although the extraction, cleansing, and transformation tools are shown as separate tools in order to depict clearly the different stages of the information flow, they can be integrated in a single solution. 

[image: image36.png]Databases Files and other repositories

Edraction Tools

h

Cleansing tools

Femoving inconsitancies
corecting eroneous enties
fiting missing values

h

Transtormation tools

Fetomatiing from source data
model to mulidimansional mods)

h

Cead Manzaer
43t Ioading + index building

;

lighty sagregated dsta

¥

Wighty sagregated dsta

Badup
and Arohive

Data Warshouse Manager

'

Query manager

MOCOIMD»E»A4»0

A N

ouse
Multidimensionat
Views

Reporing & Quary
Tools (@BE)

Decision Support

o 8 Data Mining





Multidimensional Modeling

The relational model currently used to structure databases was designed for transaction processing. Although it can be used to support efficient processing of ad hoc queries, as we have already discussed, it does not provide for an intuitive data manipulation and flexible reporting as required by OLAP. 

Let us consider time-series data. An intuitive way to report them would be to plot them as a graph and store them in a matrix such as a spreadsheet. This type of data representation is called multidimensional modeling. 

Multidimensional models populate data in multidimensional matrices. Three-dimensional (3-d) matrices are called data cubes, and matrices with more than three dimensions are called hypercubes. 

As an example of a cube, consider the dimensions: fiscal period, product, and region. As we have mentioned earlier, we can use a 2-d matrix such as a spreadsheet, to represent regional sales for a fixed period. 

          | R1  R2  R3 ...

     -----|-------------------> Region

      P1  |

      P2  |

      P3  |

       .  |

       .  |

          V

          Product

A spreadsheet can be converted into a cube by adding a time dimension to the spreadsheet, such as, for example, month intervals. 

[image: image37.png]Month

p1[RT RZ R3 Region

P2
P3

Product




Visualizing a data cube is as easy as using 3-d graphs or visualizing spreadsheets in 3-d tables. Visualizing hypercubes is very hard, and therefore hypercubes are often decomposed into cubes when visualizing them. 

Query processing on cubes/hypercubes is faster than in relational storages. A query is basically transformed into a reading of elements in a matrix. Data can be queried directly in any combination of dimensions. 

Data-Warehouse-Enhanced Query Operations

Data warehouses provide a multidimensional conceptual view with unlimited dimensions and aggregation levels. They offer several operators to facilitate both querying and visualizing data in a multidimensional view. 

· Pivot or Rotation 

Cubes can be visualized and reoriented along different axes. In the example above, product and region are presented in the front. Using rotation, we can bring time and product in the front, pushing region to the back. 

· Roll-Up Display
It can be used to derive a coarse-grain view—that is, a summarization and grouping along a dimension. For example, months can be grouped into years along the time axes. Products can be grouped into categories, toys, computer games, etc. 

· Drill-Down Display
It can be used to derive a finer-grain view, that is to say, a disaggregation along a dimension. For example, regions can be disaggregated to cities within each region, and months can be disaggregated into weeks or days. 

· Slice and Dice
It can be used to specify projection on dimensions, creating smaller cubes. For example, retrieve all the toy products in cities in Pennsylvania during the winter months. 

· Selection
This is similar to the standard select in SQL that can be used to retrieve data by value and range. 

· Sorting
It can be used to specify the ordering of data along a dimension. 

· Derived Attributes
It allows the specification of attributes that are computed from stored and other derived values. 

Multidimensional Storage Model

Data warehouses support the summarization provided by the drill-down and roll-up operations, in one of two ways, both of which trade time for space. 

· They maintain smaller summary tables that are retrieved to display a summarization. 

· They encode all different levels along a dimension (e.g., weekly, quarterly, yearly) into existing tables. Using the appropriate encoding, a summarization is computed from the detailed data when needed. 

Tables in a data warehouse are logically organized in a so-called star schema. A star schema consists of a central fact table containing the factual data that can be analyzed in a variety of ways, and also a dimension table for each dimension, containing reference data. Detailed data are stored in the dimension tables and are referenced by foreign keys in the fact table. 

For example, a star schema that can support the above example would consist of a fact table, surrounded by three dimension tables—one for Products, one for regional sales, and one for month intervals. 

Fact table:

  SALE SUMMARY (Product, Month. Region, Sales);

  Product -> PRODUCT(PID)

  MONTH -> MONTH_INTERVAL(Month)

  Region -> Regional_Sales(RegionNo)
Dimension tables:

  PRODUCT (PID, Pname, PCategory, PDescription);

  REGIONAL_SALES (Region, County, City);

  MONTH_INTERVAL (MonthNo, Month, Year);

In the star schema, dimension tables might not be normalized, containing redundant data (recall our discussion on normalization). The motivation for this redundancy is to speed up querying processing by eliminating the need for joining tables. On the other hand, an unnormalized table can grow very large and the overhead of scanning the table may offset any gain in query processing. In such a case, dimension tables can be normalized by decomposing them into smaller dimension tables, and referencing them within the original dimension table. This decomposition leads to a hierarchical "star" schema called the Snowflake schema. 

As in databases, data warehouses utilize different forms of indexing to speed up access to data. Further, they implement efficient handling of dynamic sparse matrices. 

Issues and Categories of Data Warehouses

Compared to databases, data warehouses are very costly to build in terms of both time and money. Furthermore, they are very costly to maintain. 

· Data warehouses have huge sizes and grow at enormous rates. They are at least one order of magnitude larger than their data sources. They range between hundreds of gigabytes to terabytes and petabyte sizes. 

· It is both complex and time-consuming to resolve semantic heterogeneity between data sources and to convert different bodies of data from their data source models to the data warehouse model. This process is not executed only once, but is repeated almost every time that the data warehouse is synchronized with its data sources. An example of a heterogeneity that must be resolved each time is when two data sources are using different currencies and follow different fiscal calendars. 

· Cleaning data to ensure quality and validity is another complex process. In fact, it has been identified as the most labor-intensive process of the data warehouse construction. The reason is that recognizing incomplete or erroneous data is difficult to automate, at least in the beginning. After being recognized, if some erroneous or missing entries follow a specific pattern, then these entries can be automatically corrected. For example, if a data source uses -99 to represent the NULL value in a specific column, then all -99 in that column can be converted into NULL. Another example: using the zip code, one can correct the misspelling of a city. For instance, Pittsburgh, PA ends with "h" whereas Pittsburg, CA does not. 

· The decision of what data to summarize and how to organize it is another very critical process. It affects both the utility of the data warehouse and its performance. 

· The sheer volume of data makes data loading and synchronization a significant task. The data warehouse must be recovered from incomplete or incorrect updating. 

It is clear that administration and management tools are essential in such a complex environment. It seems, nowadays, that data administration is shifting away from database systems to data warehouses. 

In order to reduce the severity of the above issues, two other alternatives to an enterprise-wide data warehouse have been proposed: 

· Data Marts: These are small, highly focused data warehouses at the level of a department. An enterprise-wide data warehouse can be constructed by forming a federation of data marts. 

· Virtual Data Warehouses: These are persistent collections of views of operational databases that are materialized for efficient access and complex query processing. 

© Copyright 1999-2008, iCarnegie, Inc. All rights reserved.
