Configuration database, requirements and technology overview

Introduction

The LHCb experiment is a complex particle physics detector with several hundreds of thousands electronics channels coming from many sensors, control devices, microprocessors, electronics modules, etc. The configuration of this system, i.e. which sensors and readout-channels should be taken into account during data taking, should be stored in a database. Also stored should be all the properties of these channels and devices. These data have to be extractable in "real-time". Before the start of data taking they will be fed into a large-scale, distributed, industrial controls system (SCADA). This system will then configure the hardware according to the database. The project consists of the design and implementation of this database, including the necessary interactive and automatic tools for maintenance, configuration, expansion and data retrieval. 
Requirements

Purpose

The configuration database has 2 purposes:

1. It represents the layout of the detector with the functions and the configuration of its components.

2. It is an inventory of components in the system. 

· Hardware (sensors, control devices, micro-processors, electronics modules) in the detector: where it is (geographical position: barrack, rack, crate), what type it is, its serial number, bar code?

· Spares: should be able to swap broken material in/out

The entries in the database are components that will have logical and physical descriptions. A component (for example an algorithm) can be software, in which case it will point an address where an executable can be found, alongside with parameters to make the algorithm partition aware.

Detector layout and configuration

The layout of the detector has static and dynamic information:

1. Static information is all information needed to cable the detector and start it up. 

· The data model preserves the component hierarchy (a detector channel is connected to a front-end chip which sits on a front-end board, which is connected to a readout unit, etc.)

· Components are described by properties related to:

1. hw access (all electrical connections, e.g. ELMB board to CAN bus)

2. network access (e.g. credit card PC to Ethernet)

· Components to be described:

· Front-end electronics: chips, equipment that drives them, concentration boards, CAN cards)

· DAQ: network processors, switches, subfarm controllers and configuration, PCs

· TFC: readout supervisors, switches, throttles

· Slow Control: high voltage supplies, credit card PCs, VLMBs, SPECS

· Racks, crates

2. Dynamic information specifies how to configure the detector, e.g. which sensors and readout-channels should be taken into account during data taking. This depends on an activity and a partition.

· The detector can be configured to run in different modes, depending on the activity (e.g. physics runs, debugging runs, cosmics and alignment runs). 

· A partition defines which detector components should be used for a particular run (e.g. velo only, a new tracking station, etc.). 

· The partition configuration should be identifiable, choosable and savable. The names of these partitions should indicate what they are (e.g. LHCb for general partitions, VELO for partitions with only the VELO).

· The activity/partition matrix determines a range of hardware (channels).

· Parameters (e.g. thresholds on front-end board, or anything that needs to be downloaded to perform a given task; multiple sets will be stored per activity/partition)

The figure below shows an example of the hierarchical structure of some components and their relationships to be described.












Users

There are 3 types of users:

1. The data in the configuration database will be extracted in real time by the control system. 

· The control system will have to read all information required to bootstrap itself from the configuration database. 

· There will be panels with buttons to turn things on/off depending on whether they are used.

· Corresponding to the required activity, physics configurations/partitions will be selected. The configuration of system will be dynamic, the result of a set of database queries.

· Starting from front-end entities (chips or boards that behave like them) one will define what should be read out.

· Parameter tables will be constructed dynamically from a query: a module will look in and out, see what is connected and a table will be built in a form suitable for downloading.

· Minor hardware modifications will be made to the database via the control system.

2. The configuration database manager.

· The configuration manager will make modifications to the database using the same interface as the control system.

· It should be possible to make large modifications (addition of hundreds of boards, credit card PCs) programmatically.

3. At the end of the run, some information from the conditions database (final pedestals, alignment constants) will have to be saved in the configuration database.

Tools

Interactive and automatic tools need to be designed and written for maintenance, configuration, expansion and data retrieval. 
Technology Overview

IT/CO configuration database tool (Oracle)

It will use Oracle 9i, ADO (ActiveX Data Objects), and PVSS. There is an ADO implementation for both Windows as well as Linux. We should check if the ADO part can easily be extended for our purposes.

This project seems to satisfy most of our requirements; in particular the part concerning bootstrapping of the PVSS control system.

Help (from us) in designing the database schema will be welcome.

A prototype will be delivered end April and will allow storing and retrieving data. The schema caters for framework components.

Aleph (DB Tool)

The Aleph configuration database was implemented on VMS and consisted of the following components:

· A set of databases, for slow control, run control, fastbus configuration, hardware inventories.

· A generic interface to the databases called DB Tool. A DB Tool file contained a description of the available databases (metadata). A generic API (for Fortran and C) was made and used by:

· Build tool (to modify the structure of the database)

· Edit tool (to add data to the database)

· Applications (slow control, run control, etc.)

Implementation design

The IT/CO tools should be used as a starting point.

This implementation needs to be tested, particularly to see how well it performs and how well it scales. 

The following figure shows a possible design sketch:










Experience with relational databases has shown that it is more efficient to do large queries and to manipulate the results of the queries in a program, rather than to make complex queries in SQL. For example, the LHCb specific API would allow you to quickly retrieve all chips connected to a given front end module. It would also address partitioning. Physically, the API would appear to be on the users desktop, although the code will run on the database server.

Later, a Python binding to the same API will allow the creation of convenient GUIs with a separate window with a command line prompt. 

For the database any SQL database could be used, Access, MySQL or Oracle, but we should start with Oracle as it is used by the IT/CO project.

The database schema will have to cater for many associations and cross-links (switches will be connected with ports, ports with sub farm controllers. Running modes will connect to sub farm controllers etc.)

Naming convention

The naming convention should:

· Uniquely identify components and their place in the detector hierarchy

· Allow for wildcards

· Allow convenient identification of components in programs

For example, LHCb/HCAL/FE/boards/type/x/* would identify all front-end boards of type x in the HCAL. 

In the conditions database, objects are referred to via XML as follows:

conddb:/CONDDB/SlowControl/Hcal/scHcal#scHcal

The XML naming used for the detector geometry currently does not go much beyond the subdetector name. It is based on the idea that XML files are stored in a hierarchy of folders.

To be done next

1. Design the database schema.

2. Make a prototype.

3. Design the interfaces.

4. Create tools.

DataBase (Oracle)





API (SQL)





LHCb specific API





Web Interface





PVSS








GUI








ECS





ADO





























Database server





python





activity





partition





LHCb





Physics run





Farm PC





Level-1





HLT





Reconstruction





<file>





<file>





<file>





cutoffs





rate





det desc








